

 NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 — “Semantic-based knowledge and content systems”

D4.4.3 Presentation of prototypes for access control in
the NeOn infrastructure

Deliverable Co-ordinator: Noam Bercovici

Deliverable Co-ordinating Institution: Universität Koblenz-Landau (UKO-
LD)

Other Authors: Simon Schenk (UKO-LD)

In this deliverable we operationalize the motivation and the functionality of the approach pro-
posed in the previous deliverables in the context of granting access rights in the area of net-
worked ontologies. The deliverable accompanies two software outputs: (i) a proof of concept
combining the ontology customization plugin and the previous API described in the deliverable
D4.4.2. (ii) a prototype using a meta knowledge reasoner to grant access.

Document Identifier: NEON/2010/D4.4.3/v1.0 Date due: February 28, 2010
Class Deliverable: NEON EU-IST-2005-027595 Submission date: January 29, 2010
Project start date March 1, 2006 Version: v1.0
Project duration: 4 years State: Final

Distribution: Public

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 2 of 23 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is part of the NeOn research project funded by the IST Programme of the Commission of the
European Communities by the grant number IST-2005-027595. The following partners are involved in the
project:

Open University (OU) – Coordinator Universität Karlsruhe – TH (UKARL)
Knowledge Media Institute – KMi Institut für Angewandte Informatik und Formale
Berrill Building, Walton Hall Beschreibungsverfahren – AIFB
Milton Keynes, MK7 6AA Englerstrasse 11
United Kingdom D-76128 Karlsruhe, Germany
Contact person: Martin Dzbor, Enrico Motta Contact person: Peter Haase
E-mail address: {m.dzbor, e.motta}@open.ac.uk E-mail address: pha@aifb.uni-karlsruhe.de
Universidad Politécnica de Madrid (UPM) Software AG (SAG)
Campus de Montegancedo Uhlandstrasse 12
28660 Boadilla del Monte 64297 Darmstadt
Spain Germany
Contact person: Asunción Gómez Pérez Contact person: Walter Waterfeld
E-mail address: asun@fi.ump.es E-mail address: walter.waterfeld@softwareag.com
Intelligent Software Components S.A. (ISOCO) Institut ‘Jožef Stefan’ (JSI)
Calle de Pedro de Valdivia 10 Jamova 39
28006 Madrid SL–1000 Ljubljana
Spain Slovenia
Contact person: Jesús Contreras Contact person: Marko Grobelnik
E-mail address: jcontreras@isoco.com E-mail address: marko.grobelnik@ijs.si
Institut National de Recherche en Informatique University of Sheffield (USFD)
et en Automatique (INRIA) Dept. of Computer Science
ZIRST – 665 avenue de l’Europe Regent Court
Montbonnot Saint Martin 211 Portobello street
38334 Saint-Ismier, France S14DP Sheffield, United Kingdom
Contact person: Jérôme Euzenat Contact person: Hamish Cunningham
E-mail address: jerome.euzenat@inrialpes.fr E-mail address: hamish@dcs.shef.ac.uk
Universität Kolenz-Landau (UKO-LD) Consiglio Nazionale delle Ricerche (CNR)
Universitätsstrasse 1 Institute of cognitive sciences and technologies
56070 Koblenz Via S. Marino della Battaglia
Germany 44 – 00185 Roma-Lazio Italy
Contact person: Steffen Staab Contact person: Aldo Gangemi
E-mail address: staab@uni-koblenz.de E-mail address: aldo.gangemi@istc.cnr.it
Ontoprise GmbH. (ONTO) Food and Agriculture Organization
Amalienbadstr. 36 of the United Nations (FAO)
(Raumfabrik 29) Viale delle Terme di Caracalla
76227 Karlsruhe 00100 Rome
Germany Italy
Contact person: Jürgen Angele Contact person: Marta Iglesias
E-mail address: angele@ontoprise.de E-mail address: marta.iglesias@fao.org
Atos Origin S.A. (ATOS) Laboratorios KIN, S.A. (KIN)
Calle de Albarracín, 25 C/Ciudad de Granada, 123
28037 Madrid 08018 Barcelona
Spain Spain
Contact person: Tomás Pariente Lobo Contact person: Antonio López
E-mail address: tomas.parientelobo@atosorigin.com E-mail address: alopez@kin.es

D4.4.3 Presentation of prototypes for access control in the NeOn infrastructure Page 3 of 23

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this document, even
if they might not have directly contributed to the writing of this document or its parts:

• Universität Koblenz Landau

• Open University

Change Log

Version Date Amended by Changes
0.1 04-01-2010 Noam Bercovici Initial setting of this deliverable
0.2 11-01-2010 Noam Bercovici Add the motivation part
0.3 20-01-2010 Noam Bercovici Add the chapter about authorization views
0.4 25-01-2010 Simon Schenk Add the chapter 3
0.5 01-02-2010 Simon Schenk & Noam

Bercovici
address review comments

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 4 of 23 NeOn Integrated Project EU-IST-027595

Executive Summary

We will present in this deliverable two methods to have an access control mechnism in the NeOn Infras-
tructure. The first access control method is following up on what was proposed in the previous work, the
functional features of the access management framework designed for the NeOn Infrastructure in the form of
ontology view composer plus API. The ontology view composer is an extension of the ontology customization
plugin for helping the user to define the authorization views. The second method proposes an elegant solu-
tion to ensure access rights at the runtime. It offers fine grained control on the axiom level and dynamically
controls access to inference results.

D4.4.3 Presentation of prototypes for access control in the NeOn infrastructure Page 5 of 23

Contents

1 Introduction 7

2 Presentation of the prototype to create authorization views 10
2.1 Key determinants for the chosen access control method . 10

2.2 Realization of access control in the NeOn infrastructure . 11

2.2.1 The access right acquisition . 11

2.2.2 Using access right within the toolkit . 12

3 Using Meta Knowledge for enabling Access Control 16
3.1 Meta Knowledge . 16

3.1.1 Pinpointing . 16

3.1.2 Semantics of Meta Knowledge . 17

3.2 Modelling ACLs using Meta Knowledge Dimensions . 19

3.3 Prototype and Discussion . 20

3.4 Comparison of the two approaches . 21

4 Conclusion 22

Bibliography 23

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 6 of 23 NeOn Integrated Project EU-IST-027595

List of Figures

1.1 Use Case using the Semantic Nomenclature as a common knowledge sharing platform 9

2.1 Annotate an entity to target the use of the filtering operator 12

2.2 Annotation filter operator . 13

2.3 Creation of the view focus on “Virus” . 13

2.4 The view of Snomed centric on the class “Virus” . 14

2.5 Schematic data flow for handling access control processing 14

3.1 Example Groups. Left the actual groups, right the resulting lattice of ACLs. ACLs in grey are
not neccessary in practice and could be omitted. 20

3.2 Time needed for classification . 20

D4.4.3 Presentation of prototypes for access control in the NeOn infrastructure Page 7 of 23

Chapter 1

Introduction

In deliverable D4.4.1 [DKG+07] we discussed the role of access rights and access control mechanisms in
the context of working with networked ontologies. While this previous deliverable focused on the clarification
of terms, on the review and analysis of various access control models, and on the proposal for a new model
applicable to distributed ontologies, it was left as a conceptual foundation for further work. In fact, one of its
explicit objectives was “to serve as a potential foundation for a further, more formal development of access
rights as a part of NeOn model and/or ontology meta-data vocabulary [... to investigate the impact of] access
control on such aspects of networked ontologies as modules, collaboration workflows and processes, [...]
and possibly others [...]” In the previous deliverable [Dzb09] we described and exemplified the functional
features of the access management framework designed for the NeOn Infrastructure in the form of API. The
API is broadly based on the existing Watson API, which in turn enables the user to query a remote ontology
repository for entire ontologies, selected ontological resources and the respective meta-data. Mendelzon et
al. in [RMSR04] had a proposal for database access control which consists of defining “authorization views”
that specify the accessible data. We decide to adapt partially this idea for ontologies. The capability to set
access rights to a part of an ontology can be seen as an instance of ontology customization. That is, a larger
ontology is “partitioned” based on different criterion (meta-knowledge or/and data itself) for assigning access
to certain concepts to different users. Consequently, access right definition user interface depends, at least
to some extent, on the functional ontology customization plug-in. Since the work on ontology customization
has been delayed, we were not able to show the full picture of our approach about granting the access to
part of the ontology. In this deliverable we are able to present this full picture. We start this deliverable by
reviewing a sample of conceptual motivations and situations where access control may play some role. Its
main purpose is to match the generic report D4.4.1 [DKG+07] with the implementation work carried out in
WP4since that deliverable.

We present two approaches for managing access rights for ontologies. First, we describe our implementation
based on ontology views. This approach is analogous to access control in relational databases, where access
rights also implicitly define a user specific view on the database. This approach offers reasonably fine grained
access control and fast access. A disadvantage of this approach in the context of reasoning is that it only
allows to limit the fragment of an ontology or ontology network used as input for reasoning. Second, we
discuss access control based on meta knowledge, that is, annotations of axioms with access levels and
reasoning over these annotations. This approach allows for an extremely fine grained control on the axiom
level. Moreover, the ontology is not restricted a priori, but access rights can also be computed for the results
of inferences, instead of only for explicit axioms. This approach, however, is based on meta knowledge
reasoning as described in deliverables [QSJ09, QS09]. Hence for each subsumption check with access
control, a potentially large number of subsumption checks in the underlying DL needs to be performed.
Hence this approach is rather slow.

In early phases of the project, we analyzed user requirements coming from the two use cases - the pharma-
ceutical and agricultural domains. In the wide array of requirements, we would like to flag the following ones
as directly motivating and bootstrapping the work relevant to this deliverable:

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 8 of 23 NeOn Integrated Project EU-IST-027595

1. For the semantic nomenclature use case, D8.1.1 sees the aspect of managing access control in terms
of recognizing the need of the original owners of information in the data repositories (e.g., BOTPlus)
to consider some, usually detailed, information about drugs, their tests, approvals, etc. “private” -
that is, available to different degree of granularity to different users. There is no explicit discussion
of the need to carry out different actions on the access-controlled semantic content, the deliverable
mainly discusses the “use of data” that needs to be managed for the purposes of sharing semantic
nomenclature content. This requirement is described as a potential use case later in this introduction.

2. Section 5.4.5 in D7.1.1 discusses the need to tailor the user interface to different types of user (e.g.,
experts, editors, etc.). In addition to this customization aspect it also proposes to recognize the adap-
tation based on the expert’s and/or editor’s user rights that is, access to the authorized ontologies for
the purposes of editing, mapping, adding label in another language, etc.

3. D8.1.1 follows on and requires a framework to deal with access rights for the users of their pharma-
ceutical information systems. It envisions a scenario in which ontologies are reused by other actors
but some parts of the original ontology or of the data must be not public. E.g., pharmacists generate
statistical information about product sales, epidemics, and diseases that could be accessed by the
professional associations, but laboratories must not access to this kind of information, so access rights
must be preserved.

To demonstrate the access rights plugin, we adopt a use case from the pharmaceutical industry. The phar-
maceutical industry is an important element of medical assistance systems around the world; this sector is
constituted by numerous public and private organizations dedicated to the research, development, manufac-
ture and commercialization of medicines for both human and animal health. In the semantic nomenclature
case study, the information of the pharmaceutical products have different providers and recipients: laborato-
ries, government entities (Ministry of Health, Agemed, CCAA RegionsE), pharmacists associations (GSCoP
), etc. Aspects like access control are of great importance for the Semantic Nomenclature, due to the fact that
the case study is about aggregation of multiple and heterogeneous sources of information and spray around
this information. Therefore, the BOTPlus Ontology that represents the knowledge of this source of informa-
tion should have public and private parts to allow the Nomenclature’s users which have the correspondent
and adequate credentials to access the private part and to obtain more information about the pharmaceutical
products. The figure 1.1 describes a common situation meet by the user of the Semantic Nomenclature. The
Semantic Nomenclature is called to become a standard for describing drugs, then it would be the natural
choice for sharing information. The “research unit” of a pharmaceutical industry is collaborating on a specific
project about the season flu 2010 with the “epidemiological department” of a public research group, they are
using the Semantic Nomenclature as knowledge base. Nevertheless each of them is working on different
projects related or not to this one. Let’s assume that Bob from the pharmaceutical industry is also working on
the different medicines for other flu like the H1N1 or the H5N1. He may want to keep private the part of the
ontology related to those viruses. In the case illustrated in figure 1.1, we need to deal with two different views;
what Alice can access is represented in the figure by the yellow rectangle which includes the public ontology
ABox + TBox (classes and instances) and the private part. This view excludes the private ontology part of
their industrial partner. Unlike Bob’s access shown on the figure via the green rectangle, he can access the
private part of the Semantic Nomenclature from his company plus the public part but not the restricted area
of his partner.

D4.4.3 Presentation of prototypes for access control in the NeOn infrastructure Page 9 of 23

Figure 1.1: Use Case using the Semantic Nomenclature as a common knowledge sharing platform

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 10 of 23 NeOn Integrated Project EU-IST-027595

Chapter 2

Presentation of the prototype to create
authorization views

As we keep mentioning throughout this deliverable, access control has been positioned as a feature pertain-
ing to the NeOn Infrastructure. However, we decided to make it “modular” that is, to design and develop a
suite of access control components that build on top of the basic, “free to all” infrastructure and act as a kind
of gatekeeper to facilitate so-called cautious knowledge sharing. This approach suits the experimental status
of the access control in the world of ontologies at the moment, the research community is more concerned
with actually having some ontology repositories at all, far less with making those repositories naturally com-
pliant with the usual work practices of enterprises and enterprise information systems. In other words, our
solution allows using the NeOn Infrastructure as it is as a public data store, and it offers means to also deploy
access control as an enhancing but optional feature. We will describe the approach outline in [DKG+07] and
refine later in [Dzb09]. Afterward, we will present the realization of the prototype in the NeOn infrastructure.
As we will explain throughout this chapter, the access control process can be split into two sub processes;
first, the acquisition of the module or authorization view; second, the retrievability of the authorization view
depending on the access rights of a user.

2.1 Key determinants for the chosen access control method

As is common with business processes, certain information is restricted to selected individuals. Even if sev-
eral people access the same information, they may see different versions of it and/or different levels of detail.
Hence, it makes sense to replicate this situation and to create a number of partitions on the ontological
models involved in such business processes. This can be achieved by expressing access authorities to the
individual “views”. Access control is governed by one or several access control models. Different access con-
trol models rely (to a different extent) on such operations as authentication or authorization to manage user
access to the resources that would otherwise be accessible to potentially unauthorized users. In principle, in
any access control model there are two entities:

1. subject entities / Agent : subjects are the entities permitted to perform a particular action in the access
control system;

2. object entities : objects are those entities that represent resources to which access may be needed
and may need to be controlled.

As further elaborated in D4.4.1 [DKG+07] access control relies at the very least on a triple comprising
elements from three sets: Σ - a set of subjects (entities wanting to gain access); Ω - a set of objects (entities
that may be accessed, also known as resources); and I - a set of access actions or invocations. A triple
α = (s, o, i)|Σ.Ω.I represents an access right or authority of subject s to access object o using action i.

D4.4.3 Presentation of prototypes for access control in the NeOn infrastructure Page 11 of 23

Unlike documents, files and similar objects that usually are access-managed at the level of self-contained
units, ontologies are naturally more granular. In terms of access control this means one can have an access-
controlled ontology, in which primitive entities (e.g., classes, properties or instances), sub-sets of the primitive
entities forming ad-hoc structures, formally modularized ontology segments and even entire ontologies may
be given certain access rights.

This is a far too broad scenario, it is why we are making the following assumption; we will be treating modules
as the minimal entity that can be access-controlled. An authorization view, in principle, may be as small as
comprising a single class or instance, or as large as the whole ontology. More usually, module’s size would
be somewhere between the two extreme points of the spectrum. There are, in principle, two ways to create
such a module for the sake of access control.

1. First, one may select appropriate entities from an ontology and declare them as sharing the same
access privilege/right. Hence, we can define module as a customized view upon an ontology that
satisfies certain meta-conditions with respect to sharing the same access right. This user-driven,
personalization view of modules has been championed, e.g., in WP4 [[BDS+08], [BS09] and [Ber10]].

2. Another way to define modules would be based on some structural or topological patterns appearing
in the ontology. This formal, topic or structure-driven approach to module creation has been prefered
in WP1.

Thus, as can be seen from this design decision, our approach is transparent as to the way modules are
created. In the description of our approach in the next section we will use the ontology customization plugin.

2.2 Realization of access control in the NeOn infrastructure

As we see in the previous section, one of the key determinants is the definition of the view. In the ontology
customization we choose a user-driven approach to help the user to write the view definition which we will
present first. Afterwards, we will show a realization of granting access to users using our “access control
API”.

2.2.1 The access right acquisition

This section aims to give an overall idea about the different manner to create the view. But first we will
solve the designation problem: how to refer the object the user want to access. In [DKG+07] we raise this
aspect and we proposed in the case of ontologies we have URL-s and URI-s at the disposal, we also ran an
argument that to a great extent the ontologies and their content are about URI-s (pointers, identifiers), but
access control is more about the URL (location to get content from).

In D4.4.1 we proposed using capability identifiers to act as an access handler and as an ontology desig-
nation. However, this is not practical - the URI of such an authority would look different for each user and
would be hard to remember, especially if presented in the hashed form. In other words, the content of
ontology (say, with URI http://foo.org/ontology) corresponds to many different access-handling URI-s (e.g.,
https://repo.org/ab3-1xy for user A, https://repo.org/de3-14s for user B, etc.). To resolve this issue we decided
to split the designation process into several “layers”. Upon creating an access-controlled view, this is given
a URI, which also becomes the main access key, this value can be assigned using the GUI as shown in 2.2,
a button help the user to generate the URI. This access key is then associated with the logical URI of the
parent ontology and with a particular user name. Thus, user A may still use the logical URI to request the
content of an ontology - let us denote it as rqONT . This logical URI is translated by our engine into possible
access keys, thus the following mapping exists:

µ→ ΛONT |ΛONT = {KEYi : viewOf(Keyi, rqONT), i = 1, 2, ...}

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 12 of 23 NeOn Integrated Project EU-IST-027595

To make a decision about granting access or otherwise, a similar mapping retrieves the keys associated with
the respective user:

ϕ→ ΘUSR|ΘUSR = {KEYj : grantedTo(Keyj , idUSR), j = 1, 2, ...}

Mapping µ can be interpreted as possible ways to modularize a given ontology for the purpose of a finer-
grained access control. On the other hand, mapping ϕ is interpreted as the user’s “keyring” containing valid
access keys (capabilities, authorities). The actual access control decision is made on finding the most or
least restrictive key satisfying the following condition:

rqONT |idUSR ⇐⇒ KEYj ∈ ΘUSR|∃KEYi ∈ ΛONT : KEYj = KEYi

Figure 2.1: Annotate an entity to target the use of the filtering operator

The figure 2.1 shows a use of the filtering operator, first the user has to go through the ontology to annotate
each entity he wants to share. We see in this figure the annotation of the class “Virus” with the annotation
property “accessRight” and the value “level1”. Of course the step can be done when the axion is created
which makes this task less tedious for the user. Figure 2.2 shows the process of creating the view after
we have annotated the needed axioms. We need to select the original ontology and then the plugin will
automaticly detecte the different annotation properties used in this ontology. The user selects one property
and specifies the value in this case level1. The tool allows the user to select several entites with different
access right value.

We understand this method can be long and tedious for the user which is why we bring to the user another
method to extract a view focus on a particular entity. In most cases, giving the access control at the entity
level is too fine a granularity as the entity by itself is semanticless. What makes this entity semantic is the
process of connecting it to other using properties or including it in a class expression. User wants to allow
access to a specific part of the ontology this is exactly what we offer with the functionality shown in the
figure2.3. In this figure we propose to create a view of Snomed focus on the class âĂIJVirusâĂİ to share this
view with others. The view for our example is partially shown in the figure 2.4.

2.2.2 Using access right within the toolkit

The following section is extracted from the previous deliverable [Dzb09] and was inclued here for conve-
nience.

D4.4.3 Presentation of prototypes for access control in the NeOn infrastructure Page 13 of 23

Figure 2.2: Annotation filter operator

Figure 2.3: Creation of the view focus on “Virus”

Figure 2.5 represents the data flow for handling access control processing in the “access control API”. In order
to explain the process of access control application the diagram is presented as data flow. The interaction
starts with the user issuing either explicit or implicit query towards some ontology (1). By explicit query we

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 14 of 23 NeOn Integrated Project EU-IST-027595

Figure 2.4: The view of Snomed centric on the class “Virus”

Figure 2.5: Schematic data flow for handling access control processing

mean, for example, requests to find all known entities that contain terms “dog” and “cat”; by implicit query
we mean, for example, requests to describe domain and range for a given and known property in a given
and known ontology. At the same time as the access to an ontology is initiated, the application passes user

D4.4.3 Presentation of prototypes for access control in the NeOn infrastructure Page 15 of 23

identifier onto the access control engine (2) and the actual query is opaquely passed onto the appropriate
Watson web service (3), but formally, it is issued by the access control engine rather than the original user.

Having processed the request, Watson replies with a result set structured according as documented for
Watson API and depending on the scope of the query - term search, ontology search, or entity search (4).
Upon receiving the result set, this is parsed by the ontology data processor to first identify the URI of the
ontologies that are included in the result set, and then for each list of results associated with a given ontology
to make a check in the authority data store whether or not ontology in question is access-controlled. The
process captured by number 5 in figure 2.5 essentially corresponds to the formal transformations µ and ϕ that
were defined in the previous section. The outcome of step 5 is basically yes/no response - either approving
the inclusion of a particular entity from a particular ontology in the access-controlled data set or denying
(and thus removing that particular entity from the original Watson return). Since some user requests may be
implicitly nested - e.g., the request for a particular property usually assumes the description of that object
property in terms of its domain and range - we allow for additional querying, whereby the engine issues
clarifying or elaborating queries back to Watson web service and processes the partial results recursively
until satisfied. This optional step is depicted by a dashed line and labelled as 6 in Figure 2.5. All partial
results, for all retrieved ontologies that pass the authority check (and are thus accessible to a particular user)
are then collated to re-create the original structure of the result as Watson would have provided it, were it
not intercepted by the access control engine. The collation of data is shown as step 7 in Figure 2.5, and the
whole process is concluded by delivering the accessible documents and entities to the user in step 8. The
reason collation is approached recursively is to adhere to the key principle of access control, as introduced
in D4.4.1 [DKG+07]: ensuring that access control models operates at the level of minimal privileges.

In particular, one may imagine a situation where the user has access to object property geo:flowsTo but not to
all classes that occur as domain and range. Say, the user can see geo:River as a valid domain of the above
property, but has no access to get:Sea that would normally be the range of the above object property. Hence,
the entire property definition needs to be adjusted prior to sending anything back to the user, in order not to
inadvertently disclose or give a hint about the entities not accessible to the user. Note that the semantics
of the original ontology and/or its part may thus change as a result of applying access control to certain
entities. Some entities may “disappear” altogether from the ontology as it is returned to the user and others
may be semantically modified. For example, assuming the user may only access rivers (i.e., class geo:River
with its instances) and their respective countries (i.e., class geo:Country and its respective instances) from
a geographic ontology of Europe, the ontology returned to the user will only contain these entities. It will
not contain, say, classes geo:Sea or geo:City, despite them being defined in the original ontology. The latter
case where the semantics is altered for some axioms corresponds to the example situation with geo:flowsTo
object property - by denying access to class geo:Sea and thus not disclosing it as the property range we only
have incompletely defined, unqualified object property.

In this chapter we present an elegant way to create authorization views to achieve access control. This
solution allows the user to create a set of views from an ontology and restricted the access to it using a key
mechanism. We also show that this solution has a weakness when the user may want to edit the view, it is
for this reason we propose another solution based on the meta-knowledge to handle this issue.

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 16 of 23 NeOn Integrated Project EU-IST-027595

Chapter 3

Using Meta Knowledge for enabling Access
Control

Meta knowledge Reasoning allows to annotate ontology axioms with values from a Meta Knowledge Di-
mension, which is a set of values with two partial orders defined on it. When doing reasoning with such
an ontology, we can not only do subsumption checks, but also determine which axioms are involved in the
reasoning process and track and aggregate the corresponding meta knowledge assignments. This allows for
example to compute an uncertainty degree of the answer based on the uncertainty degrees of the axioms in
the input ontology, to compute from when an inference holds, based on modification dates of axioms, how
trustworthy an answer is based on a trust hierarchy of the agents doing modifications and so on. In this
deliverable, we describe how access rights can be modelled using meta knowledge dimensions, and show
how these correspond to access groups and access control lists. A similar approach for access rights to DL
ontologies is used in [BKP09]. While [BKP09] focuses on access control, our approach is based on the very
flexible meta knowledge framework. Meta knowledge reasoning in principle is not limited to DL reasoning.
Instead the blackbox algorithms used can be applied to many logical frameworks.

In the following we repeat some important definitions before modelling hierarchical ACLs in meta knowledge
dimensions. We conclude by discussing applications of the resulting framework for access control.

3.1 Meta Knowledge

The meta knowledge reasoning framework used is based on Pinpointing. The blackbox algorithm employed
is based on the pinpointing algorithm used by RadOn.

3.1.1 Pinpointing

As we use pinpointing as a vehicle for computing meta knowledge, we introduce pinpointing as a foundation
for the rest of the section and give some information of existing algorithms for finding pinpoints.

The term pinpointing has been coined for the process of finding explanations for concluded axioms or for
a discovered inconsistency. An explanation is a minimal set of axioms, which makes the concluded axiom
true (or the theory inconsistent, respectively). Such an explanation is called a pinpoint. While there may be
multiple ways to establish the truth or falsity of an axiom, a pinpoint describes exactly one such way.

Definition 1 Pinpoint.
A pinpoint for a entailed axiom A wrt. an ontology O is a set of axioms
{A1, ..., An} from O, such that {A1, ..., An} |= A and
∀Ai ∈ {A1, ..., An} : {A1, ...Ai−1, Ai+1, ..., An} 6|= A. Analogously, a pinpoint for a refuted axiom A wrt.
an ontology O is a set of axioms {A1, ..., An} from O, such that {A,A1, ..., An} is inconsistent and
∀Ai ∈ {A1, ..., An} : {A,A1, ...Ai−1, Ai+1, ..., An} is not.

D4.4.3 Presentation of prototypes for access control in the NeOn infrastructure Page 17 of 23

Hence, finding pinpoints for a refuted axiom corresponds to finding the Minimum Unsatisfiable Subontologies
(MUPS) for this axiom [KPCGS06]. Pinpointing is the computation of all pinpoints for a given axiom and
ontology. The truth of the axiom can then be computed using the pinpointing formula [BP07].

Definition 2 Pinpointing Formula.
Let A be an axiom, O an ontology and P1, ..., Pn with Pi = {Ai,1, ..., Ai,mi} the pinpoints of A wrt. O. Let
lab be a function assigning a unique label to an axiom. Then

∨n
i=1

∧mi
j=i lab(Ai,j) is a pinpointing formula of

A wrt. O.

A pinpointing formula of an axiom A describes, which (combination of) axioms need to be true in order to
make A true or inconsistent respectively.

3.1.2 Semantics of Meta Knowledge

Meta knowledge can have multiple dimensions, e.g. uncertainty, a least recently modified date or a trust met-
ric. In the next section we will model access rights using groups and access control lists as meta knowledge
dimensions.

Definition 3 Knowledge dimension. A knowledge dimension D is an algebraic structure (BD,∨D,∧D),
such that (BD,∨D) and (BD,∧D) are complete semilattices.

BD represents the values the meta knowledge can take, e.g. all valid dates for the least recently modified
date or a set of knowledge sources for provenance. As (BD,∨D) and (BD,∧D) are complete semilattices,
they are, in fact, also lattices. Hence, there are minimal elements in the corresponding orders.

As an example, let I be the meta knowledge interpretation that is a partial function mapping axioms into
the allowed value range of a meta knowledge dimension, and A and B be axioms of an ontology such that
A 6= B. Provenance, i.e. the set of knowledge sources a piece of knowledge is derived from, can be
modelled as:

• I(A ∨B) = I(A) ∪ I(B)

• I(A ∧B) = I(A) ∪ I(B)

The least recently modified date could be modelled as:

• I(A ∨B) = min(I(A), I(B))

• I(A ∧B) = max(I(A), I(B))

Axioms can be assigned meta knowledge from any of the meta knowledge dimensions. Within a single
assignment, the meta knowledge must be uniquely defined.

Definition 4 Meta Knowledge Assignment.
A meta knowledge assignment M is a set {(D1, d1 ∈ D1), ..., (Dn, dn ∈ Dn)} of pairs of meta knowledge
dimensions and corresponding truth values, such that Di = Dj ⇒ di = dj .

In our running example, the meta knowledge assignment for
H5N1 v Virus can be {(accessGroup, epidemiologicalDepartment)}

Without loss of generality we assume a fixed number of meta knowledge dimensions. As a default value for
Dn in a meta knowledge assignment we choose the minimal element ⊥D.

Syntactically meta knowledge assignments are expressed using axiom annotations. We have provided a
detailed grammar for meta knowledge annotations in [SDS09].

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 18 of 23 NeOn Integrated Project EU-IST-027595

To allow for reasoning with meta knowledge, we need to formalize how meta knowledge assignments are
combined. How provenance [GKT07] is a strategy, which describes how an axiom A can be inferred from
a set of axioms {A1, ..., An}, i.e. it is a boolean formula connecting the Ai. We call a logical formula
expressing how provenance a meta knowledge formula. For example the following query for each city finds
all companies:

The operators for meta knowledge dimensions extend to meta knowledge assignments, allowing us to com-
pute meta knowledge for entailed knowledge by evaluating the corresponding meta knowledge formula.

In contrast to [SST08] we omit the ¬ operator in our formalization, as description logics are monotonic and ¬
in [SST08] allows for default negation. While axioms in the underlying description logic may contain negation,
this negation is not visible and not needed on the level of the meta knowledge.

Definition 5 Operations on Meta Knowledge Assignments.
Let A,B be axioms and meta(A) = {(D1, x1), ..., (Dn, xn)} and
meta(B) = {(E1, y1), ..., (Em, ym)} be meta knowledge assignments. Let dim(A) be the set of meta
knowledge dimensions of A. Then meta(A) ∨ meta(B) = {(D,x ∨D y)|(D,x) ∈ meta(A) and (D, y) ∈
meta(B)}. ∧ is defined analogously.

Having defined the operations on meta knowledge assignments, we can define how the meta knowledge
of an axiom A within a meta knowledge dimension is obtained. The meta knowledge of an axiom A within
a meta knowledge dimension is obtained by evaluating the corresponding meta knowledge formula in the
dimension under consideration.

Definition 6 Meta Knowledge of an Axiom.
Let meta be a function mapping from an axiom to a meta knowledge assignment in dimension D. The

meta knowledge of an axiom A wrt. O in D is obtained by computing a pinpointing formula φ of A wrt. O
and obtaining ψ by replacing each axiom in φ with its meta knowledge assignment in D. Then meta(A) is
computed by evaluating ψ.

For illustration consider the following excerpt from Snomed and modification dates:

ID Axiom date

1 Cell v ∀ contains.Body_Substance 2009-10-15
2 Cell v Physical_Object 2009-10-12
3 Cell v ∀ physical_part_of.(Body_Part_Organ_or_Organ_Component u Cell u Tissue) 2009-04-01
4 Cell v ∀ adjacent_to.Cell 2009-12-15

Now let us answer the question: "Is something next to a cell a Physical_Object, that contains
Body_Substance?" Formulated in DL as follows:

∃adjacent_to−.Cell u∃contains v Physical_Object u∃contains.Body_Substance?

From the ontology we can conclude that everything which has an adjacent Cell must be a Cell (4). If a cell
contains something, it must be body_Substance (1). The last part to show is that a cell is a Physical_Object,
which is the case (2). Hence, a pinpointing formula for the query axiom is (1)∧ (2)∧ (4). Assume we want to
compute the least recently modified date for the answer; we replace the axiom IDs by the corresponding mod-
ification dates and the ∧ operator by the max operator: lmd = max(2009-10-15, 2009-10-12, 2009-12-15) =
2009-12-15.

D4.4.3 Presentation of prototypes for access control in the NeOn infrastructure Page 19 of 23

3.2 Modelling ACLs using Meta Knowledge Dimensions

We model access rights through a combination of user groups and ACLs. Each user is member of one or
more user groups. Groups can be hierarchical, i.e. one group can be a subgroup of another. There are two
special groups: The group of all users, >, and the empty group, ⊥. Each axiom is assigned an ACL, that is
a set of groups, whose members are allowed to use the axiom.

Definition 7 Groups.
A group is a set of users. Let G,H be groups. We say G is a subgroup of H , if ∀u ∈ G : u ∈ H . We define
an auxiliary function groups: users→ 2groups returning the groups a user is a member of.

Definition 8 ACL.
An access control list (ACL) wrt. a set S of groups is a subset of S.

Based on this we model a meta knowledge dimension as follows:

Definition 9 Access Rights Dimension.

Let S be the set of user groups. Let A be the set of all ACLs wrt. S, i.e. the powerset of S. Let L be a partial
order over A such that

• ∀G,H ∈ S : {G} ≤L {H} if Gis a subgroup of H. (subgroup inclusion)

• ∀B,C ∈ A : B ≤L C if ∀G ∈ B : G ∈ C. (ACL inclusion)

• ∀B ∈ A : B ≤L {>}. (global access)

• ∀B ∈ A : {⊥} ≤L A. (inaccessible axioms)

The Access Rights Dimension D is defined by A and the supremum and infimum wrt. L: D =
(A, supL, infL).

Depending on the desired access rights model, ACLs should default to {>} (Windows) or {⊥} (Unix). Please
note that while both Windows and Unix can control access on a per user basis in addition to groups, this can
easily be modelled with singleton groups.

Before we can enforce access rights, we need to define how ACLs are attached to (a) axioms explicitly stated
in an ontology and (b) inferred axioms. We follow the Windows strategy and use a default of >.

Definition 10 Enforcing Access Restrictions.
Let O be an ontology and ACLO a complete function mapping from axioms A : O |= A to S. ACL(A)
returns the set of groups allowed to access A. A user can see an axiom only if he is in one of the groups
ACL(A).

• If A ∈ O, ACL(A) is included in O using a meta knowledge annotation as shown below.

• The access right of an inferred axiom A is computed by computing metaD(A).

We use OWL2 annotations to express access rights in an ontology and follow the modelling of meta knowl-
edge described in [SST08]. One such annotation expresses access granted to a single group. In order to
express ACLS with multiple groups, multiple annotations on the same axiom need to be included in the on-
tology. For convenience reasons this model could be extended with assignments of access rights to named
graphs containing multiple axioms as proposed in [SST08]. An example of how access rights are represented
and associated with OWL axioms is presented below.

OWLAxiomAnnotation(SubClassOf(H5N1 Virus)
MetaKnowledgeAnnotation(
annot1 GroupAccess(epidemiologicalDepartment)))

OWLAxiomAnnotation(SubClassOf(H1N1 Virus)
MetaKnowledgeAnnotation(
annot2 GroupAccess(Anonymous)))

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 20 of 23 NeOn Integrated Project EU-IST-027595

3.3 Prototype and Discussion

The strategy for enforcing access rights described in the previous section has been tested in a prototype
using the optimized Meta Knowledge implementation described in deliverable [QS09]. We have manually
created a simple access rights dimension modelling the group structure shown in figure 3.1. ACLs have
been included in the ontology using meta knowledge annotations; group memberships need to be managed
outside of the ontology, ideally by the operating system. In order to stay platform independent, we have
omitted this step. Instead the prototype only returns the necessary access level to be allowed to see the
answer to a query. Actual enforcement of access control is left to the application.

Contributor Author

Editor

Editor

Contributor Author

Author
Contributor

Contributor

Contributor

Editor Editor
Author

AuthorEditor

Figure 3.1: Example Groups. Left the actual groups, right the resulting lattice of ACLs. ACLs in grey are not
neccessary in practice and could be omitted.

For experiments we have used the same ontologies as for the evaluation of the generic meta knowledge
implementation in deliverable 1.2.5 [QS09] and extended it with access rights annotations. Figure 3.2 shows
a comparison of access times for the example ontology with and without access control. As we can see,
even the optimized meta knowledge algorithm is up to orders of magnitude slower than direct access to
the ontology. The reason is that the meta knowledge blackbox algorithm needs multiple entailment checks
for computing meta knowledge even for a query consisting of a single entailment check in the underlying
DL. While this is perfectly acceptable when analysing query results or inconsistencies, it causes significant
overhead when used for every single interaction with an ontology.

People MiniTambis University Economy Chemical Transport BIO

1

10

100

1000

Baseline
Access Restricted

Ontologies

a
vg

.ti
m

e
 (

m
s)

 fo
r

su
b

su
m

p
tio

n
 c

h
e

ck

Figure 3.2: Time needed for classification

However, the approach to access rights presented in this chapter has a significant advantage: it is based
on a single, enriched version of the original ontology. For access control based on customization or modu-
larization in contrast, multiple modules or views respectively need to be managed. Of course the opposite
side of the coin is that when changing access rights, the original ontology needs to be modified, while in the
customization based approach only a view definition, which is declared outside of the ontology, needs to be
modified.

For the time being runtime control of access rights based on meta knowledge reasoning incurs a significant

D4.4.3 Presentation of prototypes for access control in the NeOn infrastructure Page 21 of 23

overhead. However, judging from the performance gains in DL reasoning over the last few years and from
the optimizations to meta knowledge reasoning we presented in [QS09], we expect this approach to become
feasible in the next years.

3.4 Comparison of the two approaches

Table 3.1 shows in a comprehensive manner the comparison between the two approaches. Method One
in the table corresponds to the authorization view approach and Method Two represents the method using
meta-knowledge. This table shows that those methods are complementary as the weakness from one is the
strength of the other.

Table 3.1: Comparison of the two approaches
Method One Method Two

Advantages propose an easy way to create
the module you want to share
with little interaction from the
user

Work at the runtime

pre-computed views Work on the original ontology
Disadvantages Make the changes in the origi-

nal ontology difficult
Long process to assign the access right to
each entity

Answering Requirement
(cf. chapter 1) 1,3 2,3

It is important to note that the approaches are made for different purposes. The authorization view approach
provides an easy tool through which the user can define the view related to part of the ontology he may
want to share. This is the perfect solution if the user wants to allow read access, for example, for reasoning
purposes to part of the original ontology. Nevertheless, this approach runs into one well know problem should
the user want to share this view for some editing intention. The meta-knowledge approach is the better option
here in the case of editing an ontology collaboratively with different expertise (e.g. expert in French language)
like the fishery use case presented in requirement 2.

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 22 of 23 NeOn Integrated Project EU-IST-027595

Chapter 4

Conclusion

In this report we described two methods for applying access to description logic ontologies. The first access
control method is following up on what was proposed in the previous work, the functional features of the
access management framework designed for the NeOn Infrastructure in the form of ontology view composer
plus API. The ontology view composer is an extension of the ontology customization plugin for helping the
user to define the views. The API is broadly based on the existing Watson API, which in turn enables the
user to query a remote ontology repository for entire ontologies and selected ontological resources. We say
it is only “broadly based” as due to introducing new features (user identification), one cannot implement this
access control API using the straightforward “extends” keyword. However, we strive to maintain the structure
of the API in terms of supporting search in the scope of entities, ontologies and semantic content in general.
Also, the methods exposed by the proposed API are one to one reflecting the methods provided by the
original Watson API.

The second method proposes an elegant solution to ensure access rights at the runtime. It offers fine grained
control on the axiom level and dynamically controls access to inference results. The added flexibility, however,
comes at the cost of a significant overhead in reasoning complexity. In fact, it is worst case exponential in
the underlying DL. In order to make this second method practically usable, significant efficiency gains are
needed. For this reason we have based the access control plugin on the more efficient customization based
approach.

D4.4.3 Presentation of prototypes for access control in the NeOn infrastructure Page 23 of 23

Bibliography

[BDS+08] Noam Bercovici, Martin Dzbor, Simon Schenk, Alexander Kubias, and Gerd GrÃűner. Ontology
customization and module creation: query-based customization operators and model. Deliver-
able D4.2.2, NeOn Project, 2008.

[Ber10] Noam Bercovici. Ontology customization plugin presentation. Deliverable D4.2.4, NeOn Project,
2010.

[BKP09] Franz Baader, Martin Knechtel, and Rafael PeÃśaloza. A generic approach for large-scale onto-
logical reasoning in the presence of access restrictions to the ontology’s axioms. In ISWC2009.
Springer, 2009.

[BP07] Franz Baader and Rafael Peñaloza. Axiom pinpointing in general tableaux. In TABLEAUX
’07: Proceedings of the 16th international conference on Automated Reasoning with Analytic
Tableaux and Related Methods, pages 11–27, Berlin, Heidelberg, 2007. Springer-Verlag.

[BS09] Noam Bercovici and Simon Schenk. Ontology customization prototype presentation. Deliverable
D4.2.3, NeOn Project, 2009.

[DKG+07] Martin Dzbor, Alexander Kubias, Laurian Gridinoc, Angel Lopez-Cima, and Carlos Buil Aranda.
The role of access rights in ontology customization. Deliverable D4.4.1, NeOn Project, 2007.

[Dzb09] Martin Dzbor. Realization of a prototype extension for access control in neon infrastructure.
Deliverable D4.4.2, NeOn Project, 2009.

[GKT07] Todd J. Green, Gregory Karvounarakis, and Val Tannen. Provenance Semirings. In PODS,
pages 31–40, 2007.

[KPCGS06] A. Kalyanpur, B. Parsia, B. Cuenca-Grau, and E. Sirin. Axiom pinpointing: Finding (precise)
justifications for arbitrary entailments in OWL-DL. Technical report, 2006.

[QS09] Guilin Qi and Simon Schenk. D1.2.5 inconsistency-tolerant reasoning with networked ontolo-
gies. Technical Report D1.2.5, Universität Karlsruhe, 2009.

[QSJ09] Guilin Qi, Simon Schenk, and Qiu Ji. D3.1.4 reasoning with meta-knowledge. Technical Report
D3.1.4, Universität Karlsruhe, 2009.

[RMSR04] Shariq Rizvi, Alberto Mendelzon, S. Sudarshan, and Prasan Roy. Extending query rewriting
techniques for fine-grained access control. In SIGMOD ’04: Proceedings of the 2004 ACM
SIGMOD international conference on Management of data, pages 551–562, New York, NY,
USA, 2004. ACM.

[SDS09] Simon Schenk, Renata Dividino, and Steffen Staab. Reasoning with Provenance, Trust and all
that other Meta Knowlege in OWL2. In SWPM2009. CEUR, 2009.

[SST08] B. Schueler, S. Sizov, and D. T. Tran. Querying for Meta Knowledge . In WWW2008, pages
625–634. ACM, 2008.

2006–2010 c© Copyright lies with the respective authors and their institutions.

	Introduction
	Presentation of the prototype to create authorization views
	Key determinants for the chosen access control method
	Realization of access control in the NeOn infrastructure
	The access right acquisition
	Using access right within the toolkit

	Using Meta Knowledge for enabling Access Control
	Meta Knowledge
	Pinpointing
	Semantics of Meta Knowledge

	Modelling ACLs using Meta Knowledge Dimensions
	Prototype and Discussion
	Comparison of the two approaches

	Conclusion
	Bibliography

