

 NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 — “Semantic-based knowledge and content systems”

D2.3.5 C-ODO plugin updates and extensions

Deliverable Co-ordinator: Alessandro Adamou

Deliverable Co-ordinating Institution: CNR

Other Authors:

This document presents an overview of new functionalities and improvements on existing ones
for the Kali-ma plugin, which exploits the C-ODO Light ontology for enhancing user interaction
with the NeOn Toolkit.

This upgrade focused on enhancing the overall interaction experience, and on introducing fea-
tures targeted at supporting both collaboration among ontology engineers and interoperability
between other plugins and with Kali-ma itself.

Since the new version of the plugin now provides development tools for other contributors to ex-
tend their plugins with interoperability features, these tools are both described on the operational
level and documented for NeOn Toolkit developers.

Document Identifier: NEON/2009/D2.3.5/v1.2 Date due: February 8, 2010
Class Deliverable: NEON EU-IST-2005-027595 Submission date: February 2, 2010
Project start date March 1, 2006 Version: v1.2
Project duration: 4 years State: Final

Distribution: Public

2006–2010 © Copyright lies with the respective authors and their institutions.

Page 2 of 25 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is part of the NeOn research project funded by the IST Programme of the Commission of the
European Communities by the grant number IST-2005-027595. The following partners are involved in the
project:

Open University (OU) – Coordinator Universität Karlsruhe – TH (UKARL)
Knowledge Media Institute – KMi Institut für Angewandte Informatik und Formale
Berrill Building, Walton Hall Beschreibungsverfahren – AIFB
Milton Keynes, MK7 6AA Englerstrasse 11
United Kingdom D-76128 Karlsruhe, Germany
Contact person: Martin Dzbor, Enrico Motta Contact person: Peter Haase
E-mail address: {m.dzbor, e.motta}@open.ac.uk E-mail address: pha@aifb.uni-karlsruhe.de
Universidad Politécnica de Madrid (UPM) Software AG (SAG)
Campus de Montegancedo Uhlandstrasse 12
28660 Boadilla del Monte 64297 Darmstadt
Spain Germany
Contact person: Asunción Gómez Pérez Contact person: Walter Waterfeld
E-mail address: asun@fi.ump.es E-mail address: walter.waterfeld@softwareag.com
Intelligent Software Components S.A. (ISOCO) Institut ‘Jožef Stefan’ (JSI)
Calle de Pedro de Valdivia 10 Jamova 39
28006 Madrid SL–1000 Ljubljana
Spain Slovenia
Contact person: Jesús Contreras Contact person: Marko Grobelnik
E-mail address: jcontreras@isoco.com E-mail address: marko.grobelnik@ijs.si
Institut National de Recherche en Informatique University of Sheffield (USFD)
et en Automatique (INRIA) Dept. of Computer Science
ZIRST – 665 avenue de l’Europe Regent Court
Montbonnot Saint Martin 211 Portobello street
38334 Saint-Ismier, France S14DP Sheffield, United Kingdom
Contact person: Jérôme Euzenat Contact person: Hamish Cunningham
E-mail address: jerome.euzenat@inrialpes.fr E-mail address: hamish@dcs.shef.ac.uk
Universität Kolenz-Landau (UKO-LD) Consiglio Nazionale delle Ricerche (CNR)
Universitätsstrasse 1 Institute of cognitive sciences and technologies
56070 Koblenz Via S. Marino della Battaglia
Germany 44 – 00185 Roma-Lazio Italy
Contact person: Steffen Staab Contact person: Aldo Gangemi
E-mail address: staab@uni-koblenz.de E-mail address: aldo.gangemi@istc.cnr.it
Ontoprise GmbH. (ONTO) Food and Agriculture Organization
Amalienbadstr. 36 of the United Nations (FAO)
(Raumfabrik 29) Viale delle Terme di Caracalla
76227 Karlsruhe 00100 Rome
Germany Italy
Contact person: Jürgen Angele Contact person: Marta Iglesias
E-mail address: angele@ontoprise.de E-mail address: marta.iglesias@fao.org
Atos Origin S.A. (ATOS) Laboratorios KIN, S.A. (KIN)
Calle de Albarracín, 25 C/Ciudad de Granada, 123
28037 Madrid 08018 Barcelona
Spain Spain
Contact person: Tomás Pariente Lobo Contact person: Antonio López
E-mail address: tomas.parientelobo@atosorigin.com E-mail address: alopez@kin.es

D2.3.5 C-ODO plugin updates and extensions Page 3 of 25

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this document, even
if they might not have directly contributed to the writing of this document or its parts:

• CNR

• FAO

• JSI

• ONTO

• UKARL

• UKO-LD

• UPM

• USFD

Change Log

Version Date Amended by Changes
0.1 05-01-2010 Alessandro Adamou TOC and early layout
0.2 09-01-2010 Alessandro Adamou Added sections for UI and plugin access

upgrades, with figures
0.4 12-01-2010 Alessandro Adamou Finalized UI section, added interoperabil-

ity API section
0.5 13-01-2010 Alessandro Adamou Added introduction, updated whole inter-

operability section
0.6 15-01-2010 Alessandro Adamou Finalized interoperability section, moved

usage section to appendix
0.8 18-01-2010 Alessandro Adamou Finalized introduction, conclusion and ap-

pendix
0.9.5 19-01-2010 Alessandro Adamou Added collaboration section, overall revi-

sion
1.1 02-02-2010 Alessandro Adamou Applied reviewer comments, added imple-

mentation updates to chapter 2, added
executive summary

1.2 10-02-2010 Alessandro Adamou Final QA

2006–2010 © Copyright lies with the respective authors and their institutions.

Page 4 of 25 NeOn Integrated Project EU-IST-027595

Executive Summary

The purpose of this deliverable is to provide an insight on the improvements and additions proposed and
implemented for the Kali-ma plugin since its first public release. The document is intended to confirm the
outcome of the short-term implementation plan outlined in the “Ongoing Work” chapter of deliverable D2.3.4,
which describes the functionalities, motivation and architecture of Kali-ma, the C-ODO plugin. A preliminary
review of D2.3.4 is therefore advisable for a better understanding of the grounds which the second version of
the tool improves upon.

The current version of the tool garnishes the plugin organization interface with a dynamic graph-like view
whose expressiveness is actually enhanced with respect to the original tree-like view that is still available as
an option. Third-party tool support has been extended with the ability to run actions or open wizards and help
pages provided by the tools themselves. A realtime chat service is being added for user collaboration support,
while APIs are now available for allowing other plugins to contribute to the Kali-ma user interface, either by
controlling the dashboard or by running tasks from within the dashboard itself. Finally, we implemented a
search function that allows users to retrieve up to four different types of data and metadata generated by
either the NeOn Toolkit core or selected plugins.

The appendix attached to this document is intended for developers to gain knowledge on how their plugins
can be extended to support Kali-ma for integration and interoperability, in addition to the OWL-based method
that still holds from version 1.0. This conclusive section describes both APIs for dashboard control and plugin
interoperability, and comes with examples and suggested practices for avoiding strict dependencies between
third-party plugins and Kali-ma.

D2.3.5 C-ODO plugin updates and extensions Page 5 of 25

Contents

1 Introduction 7

2 Kali-ma updates and extensions 8
2.1 User interface enhancements . 8

2.2 Collaboration support . 11

2.3 Plugin access method support . 12

2.4 Plugin interoperability . 13

2.4.1 Metalevel integration . 14

2.4.2 Interoperability API . 16

3 Conclusion 19

A Usage of the Kali-ma interoperability API 20
A.1 Dashboard control . 21

A.2 Computational tasks . 22

Bibliography 25

2006–2010 © Copyright lies with the respective authors and their institutions.

Page 6 of 25 NeOn Integrated Project EU-IST-027595

List of Figures

2.1 C-ODO organizer widget showing known design aspect in its wheel view on a fresh start. . . . 9

2.2 Comparison of the two organizer views displaying NeOn Toolkit plugins for the ‘Design pat-
terns’ and ‘Reuse and reengineering’ categories. Notice how the wheel view eliminates all re-
dundancy and displays more design aspects supported by those tools, than the ones queried
by the user. 10

2.3 List of access methods supported by Kali-ma for the gOntt plugin. All the actions provided by
gOntt are now part of the list, although some actions may require a gOntt plan to be already
loaded, or the gOntt Perspective to be already shown. A cheat sheet can be optionally selected
from a second drop-down list. 13

2.4 The Search widget displaying results matching the “re” string within the “Rock” project. Matched
results include, from top to bottom: one datatype property, four classes, one R2O mapping and
one argumentation session. The wrench icon in the bottom-left corner allows the user to set
restrictions on (meta)datatypes to search for. 16

A.1 Suggested layout for plugin dependencies when a generic plugin implements any of the Kali-
ma APIs. It is preferable, for the sake of independence, that a bridging plugin (here called
org.example.myplugin.kalima) be created. Note: Kali-ma no longer depends on ex-
ternal OWL API and Pellet plugins, as it is now fully integrated with the NeOn Toolkit datamodel
and its Reasoner plugin. 20

D2.3.5 C-ODO plugin updates and extensions Page 7 of 25

Chapter 1

Introduction

In Deliverable D2.3.4 [AGP09], the C-ODO plugin for the NeOn Toolkit, named Kali-ma, was introduced
in its conceptual, functional and infrastructural aspects. The document included an analysis of recurring
metaphors in the interaction flow between ontology engineers and the Eclipse environment, which is the
basis for the NeOn Toolkit (shortly NTK or “the Toolkit”). Some implications of employing these metaphors
were outlined, and the setbacks deriving from this usage were assessed in the NTK context. Along with this
analysis came our proposal, in the form of the Kali-ma plugin, for an interaction environment that can help
users in overcoming these hurdles, which mainly derive from an unmanaged and potentially inconsistent
model of the NeOn Toolkit platform as it emerges from the ways to access its functionalities. Our document
included a real-world application scenario inspired from the pharmaceutical case study in WP8 (cf. [CL08]),
plus an evaluation of preliminary user feedback obtained during the development phase of the tool.

The first release of the Kali-ma plugin was centered on introducing ontology developers and NTK users in
general to an alternative, widget-based user interface view on the platform. From said view, the Toolkit itself
is interpreted as a functionality provider, where these functionalities can all be accessed through similar
interaction paths of equal length. To demonstrate the benefits deriving from this user interface, we included
an early implementation of features such as plugin access methods and organization based on semantics.

While the features implemented in version 1 were still far from our final goal, this early release was a neces-
sary premise for testing how the interaction paradigm adopted by Kali-ma would be well-received. Moreover,
we took advantage of this version in order to assess the perception of our approach as a valid alternative to
standard Eclipse mechanisms, which we argued to be at high risk of being inconsistent by a design-centered
model of the platform, and even going as far as to (unwittingly) conceal some functionalities from users.
Related arguments and an analysis on the feedback received were discussed in [AGP09].

With this first release in place, paving the way for extending the range of our approach, we are proceeding to
plug more functionalities into the Kali-ma tool, overhauling existing ones in the meantime, all in accordance
with the chosen interaction paradigm. Our goals for this updated version are: (i) to strengthen the interactive
capabilities of the Kali-ma dashboard system for end-users; (ii) to promote the vision of the dashboard
system as a host of services, which plugin providers can deploy by simply wrapping the functionalities already
implemented; (iii) to introduce functions by which Kali-ma can natively act as a contributor to the collaborative
engineering of Web ontologies; finally, (iv) to make users aware of a NeOn Toolkit workspace or project
as way more than simple ontology stores, but as broad, searchable repositories of knowledge and meta-
knowledge, that can be explored even in the absence of the plugin(s) that generated it.

The rest of this document will be structured as follows. Chapter 2 is the core of the entire deliverable, as
it documents, both for end-users and, to some extent, contributing developers, the whole set of upgrades
implemented upon Kali-ma since version 1. Final remarks and further development strategies are discussed
in Chapter 3. To conclude, since some new features involve the use of application programming interfaces
(APIs) for plugin developers, a usage guide to such APIs is also provided as an appendix.

2006–2010 © Copyright lies with the respective authors and their institutions.

Page 8 of 25 NeOn Integrated Project EU-IST-027595

Chapter 2

Kali-ma updates and extensions

This chapter is structured in sections where the new features are grouped by significant categories on the
functional level: Section 2.1 concentrates on user interface improvements, with particular focus on the re-
vamped Organizer widget. Section 2.2 outlines those features aimed at enhancing the Kali-ma plugin as
a collaboration-oriented tool. Section 2.3 describes in what additional ways Kali-ma is now able to allow
users to interact with other NeOn Toolkit plugins, besides the basic methods already present in the first ver-
sion. Section 2.4 introduces new features through which Kali-ma can facilitate the mutual co-operation of
third-party plugins with each other as well with Kali-ma itself.

2.1 User interface enhancements

In addition to improving the Kali-ma tool on the functional level, development kept focusing on the mainte-
nance of the user interaction aspect, taking up from the intuitions and feedback that emerged during the
first stable development cycle. The release of a second version offered us an opportunity to renovate the
most significant parts of the Kali-ma dashboard so as to render it semantically closer to the “dial and switch
housing” metaphor that our Graphical User Interface GUI is named after.

Most of our GUI enhancement efforts were concentrated on providing a more powerful way to render the
space of NeOn Toolkit plugins in terms of their categorization rules. As with Kali-ma v1.0, this release still
offers a choice of three classification criteria for ontology design tools. While we refer to the previous WP2
deliverable [AGP09] for a thorough outline of these criteria, it is useful to recall them here as being:

1. Ontology engineering activities according to the NeOn methodological guidelines (cf. deliverable
[SFBd+09]).

2. Arbitrarily defined design functionalities implemented by tools (usually defined by plugin providers
themselves).

3. Specialized functionalities defining design aspects of networked ontology engineering (proposed by
this workpackage in deliverable 2.3.2 [PMP+09]).

The Kali-ma dashboard features a widget, called C-ODO organizer, whose function is to present the user
with an overview of existing, or installed, NeOn Toolkit plugins according to the preferred criterion. In the
previous version, this overview was only available in the form of a two-level tree structure, with the leaves
being NTK plugins and their parents being the categories that best describe these plugins from a functional
standpoint.

This graphical representation form, albeit sufficiently functional, tended to fall short of aesthetic appeal, but
most of all, suffered from an inherent limitation of acyclic hierarchical structures, i.e. node redundancy.
Regardless of the classification criterion selected by the end user, some ontology design tools will most likely
pertain to multiple categories. For example, the Cicero plugin supports both the Ontology assessment and

D2.3.5 C-ODO plugin updates and extensions Page 9 of 25

Ontology evaluation activities, while the XD Tools plugin is classified as covering both the Design patterns and
Reuse and reengineering design aspects. The most obvious way of representing such multiple categorization
as a tree is to replicate the nodes that represent plugins, which has a potential for confusing end users.

To make up for this downside, the second release of Kali-ma includes a further rendering mechanism, while
still retaining the old tree view for the benefit of users who might be accustomed to it. This interface element
was dubbed the wheel view, as a reference to the radial layout strategy it adopts when no tools or categories
are selected. Figure 2.1 shows an example of a wheel view as shown on startup, in the case where design
aspect coverage is chosen as a criterion. Initially, tool categories are laid out in a radial fashion and no tools
are displayed. When the user selects a category by clicking on its node, the plugins for that category appear,
and the view is rearranged as a bipartite graph: tool categories make up one partition, while NeOn Toolkit
plugins make up the other. Connections between partitions indicate which categories a plugin belongs to, i.e.
which design functionalities are implemented, which NeOn methodology activities are supported, or which
design aspects are covered by that plugin. If the user clicks on an empty region of the wheel view, the graph
is arranged back to its original state, displaying only categories in a radial fashion.

Figure 2.1: C-ODO organizer widget showing known design aspect in its wheel view on a fresh start.

As with the tree view, a plugin widget can be opened by simply double-clicking on a node representing an
installed plugin. Also, the wheel view sports the same context-sensitive features as those implemented in
version 1.0 for the tree view. The Helper widget will display natural language information about a selected
plugin or category, as extracted from the corresponding ontologies describing it. The wheel can be filtered in
order to show all the NeOn Toolkit plugins that are not installed on the running system, or even those ontology
design tools that are not NeOn Toolkit plugins at all but are, for example, Web applications or standalone
desktop tools. Additionally, it is now also possible to filter out all the categories for which no ontology design
tool is known to exist at a given time. Note that this is independent of the outcome of any other filters applied
to the view, as categories for which plugins exist but are filtered out will appear anyway. This additional filter
was provided in order to minimize unnecessary overcrowding of the organizer view, with special attention on
activities from the NeOn methodology, which currently amount to over 50 items, yet at least half of them are
awaiting plugins to be registered. As for the remaining criteria, since design functionalities are instantiated
by plugin providers themselves, it is highly unlikely for any of them to be left blank, while we have now been
able to classify at least one plugin for each of the six design aspects defined.

The alternative graphical view that was implemented for this version is more significant than a simple user
interface embellishment exercise. While the wheel view may not be as compact by sheer geometrical terms,
it does provide more information than the standard tree view does. An example of how such greater expres-
siveness is accomplished can be seen in Figure 2.2. Here, a comparison is drawn between the old tree view
(left) and the new wheel view (right) running on the same NeOn Toolkit instance, with the same set of tools

2006–2010 © Copyright lies with the respective authors and their institutions.

Page 10 of 25 NeOn Integrated Project EU-IST-027595

classified by their ontology design aspects. In the tree view, the nodes for both the ‘Design patterns’ and
‘Reuse and reengineering’ aspects were expanded, and it can be noticed how the child nodes of the former
are but a subset of the child nodes of the latter. By the rules that describe these aspects and the corre-
sponding plugins in their OWL manifests, this is perfectly normal. However, this leads to duplicate nodes for
the plugins in common, which can be misleading without even allowing the user to know more about these
plugins, than strictly the information requested. In the wheel view to the right, only the ‘Reuse and reengi-
neering’ aspect was queried; however, the connections between nodes from the two partitions indicate which
of the reuse and reengineering tools also belong not only to the ‘Design patterns’ aspect, but to every other
aspect in the taxonomy. For example, the user is told that the Reasoner and Ontology Customization plugins
also cover the ‘Argumentation management’ aspect, while the Reasoner plugin is also suitable for ‘Workflow
management’ (which makes sense, due to the high versatility of DL reasoning capabilities, as proved by the
Kali-ma plugin itself). All this without any need for duplicating nodes whatsoever.

Figure 2.2: Comparison of the two organizer views displaying NeOn Toolkit plugins for the ‘Design patterns’
and ‘Reuse and reengineering’ categories. Notice how the wheel view eliminates all redundancy and displays
more design aspects supported by those tools, than the ones queried by the user.

The wheel view was entirely developed using the Zest library1. Zest is a visualization toolkit that offers sup-
port for displaying read-only graphs (i.e. not used for graphical editors but mostly for displaying information)
and customizing layout policies. Also, the Zest framework has the undeniable advantage of using the JFace
UI toolkit [SHNM04], which is the same used in the tree view for decoupling the Kali-ma datamodel and user
interface, hence implementing a Model-View-Controller architecture[Ree79], as well as supporting filters like
the ones mentioned earlier in this section. Although seamlessly integrated with Eclipse, the Zest library does
not come as part of the NeOn Toolkit base distribution, but it relies upon visualization components, such as
Draw2D and the Graphical Editing Framework (GEF)2, that are included in the extended version of the NeOn
Toolkit. Therefore, it is perfectly feasible for the Zest library to be shipped either as part of the Kali-ma plugin
(for the extended NTK) or a visualization library plugin, which is already available on the update site for the

1http://www.eclipse.org/gef/zest/
2http://www.eclipse.org/gef/

D2.3.5 C-ODO plugin updates and extensions Page 11 of 25

basic NeOn Toolkit 2.3.

In addition to implementing the wheel view, we kept following up on the feedback received during the eval-
uation session that was held halfway through the development phase of Kali-ma v1.0 (cf. [AGP09], Section
“User evaluation”). In response to the widget overcrowding issue that was brought about by practitioners,
and to recommendations received during the internal review phase, we enhanced the Dock widget, which
maintained placeholders for plugin widgets hidden from view. In its latest stage, this widget now features a
row of toolbar buttons which, upon selection, toggle the visibility of non-essential native widgets, such as the
aforementioned Helper or the Profile manager.

2.2 Collaboration support

Being C-ODO Light a networked ontology aimed at identifying and leveraging those aspects of ontology
design that can, or need to be either shared or performed collaboratively, it was felt appropriate to equip
Kali-ma with some sort of “communication channel” in order to favor the process. As thoroughly described
in [DEB+08], which is reprised later in this document (cf. Section 2.4.1), the Cicero Wiki and plugin provide
valuable support to the evaluation of an ontology through discussion on its single components. It has to be
noted, however, that Cicero was mainly designed to support specific activities in the lifecycle management
of ontologies, such as argumentation, evaluation, assessment and documentation.

As with the definition of ontology design aspects (cf. [AGP09]), our goal is to have a collaborative feature that
does not target any specific phase in the ontology lifecycle management and is, in a way, transversal to the
whole methodology. Also, it has to offer an alternative to the fully asynchronous and persistent nature of a
Wiki, whose rigorous structure may have a psychological impact on end-users as to get them to deem it unfit
for quick, transient discussions on any matter or activity in an ontology engineering process.

A possible solution to this issue was identified as simple instant-messaging, or chat support. Examples
of this functionality have already been featured in the state of the art, as was the chat service available in
Collaborative Protégé [TNTM08]. In that case, however, the chat service was part of an infrastructure where
entire project data were being shared, thus implying that users had to “connect to a project” in order to share
or discuss its data. On the other hand, the NeOn Toolkit uses a local, fully decentralized project model, which
leaves users at liberty to opt for their own sharing mechanisms, such as SVN versioning systems and alike.
In the absence of a shared infrastructure for packet relaying and broadcasting within NeOn, we opted for
what was deemed the most promising off-the-shelf legacy technology, i.e. Google Wave3.

Along with the evolution and ongoing development of the Wave technology, we are maintaining a special
native widget, temporarily named Wave widget, which is mainly a lightweight browser window whose start
page embeds a Wave object. A Wave is the sum of a collaborative web-based service and a realtime
communications protocol allegedly designed to merge email, instant messaging and wikis. The federated
communications protocol has the string advantage of extending the de facto standard Extensible Messaging
and Presence Protocol (XMPP). The default Web application for displaying Waves has proved to emulate
realtime chat in an adequately efficient manner. Additionally, developer tools for customizing Wave gadgets
and adding robot participants are already available, while its communications protocol was disclosed in July
2009 as an open protocol.

Currently, Wave implementations are at a highly experimental stage and a number of limitations, such as
the restriction of Google Inc. as a unique Wave provider and the incompatibility of embedded Waves with
Microsoft Internet Explorer, are being addressed. Additional restrictions, such as invite-based participation
both for end-users and developers, are scheduled to be relaxed by the end of the ongoing preview phase. We
are closely following the advancement of these technologies and tracking down the way this evolution unfolds
to the advantage of the Kali-ma instant messaging widget. Parallel to this process, the possible development
of a simple XMPP-based fallback solution for the benefit of all NeOn technologies, should Wave technologies
fail to be on par with the expectations mentioned above, is being investigated.

3http://wave.google.com

2006–2010 © Copyright lies with the respective authors and their institutions.

http://wave.google.com

Page 12 of 25 NeOn Integrated Project EU-IST-027595

2.3 Plugin access method support

In compliance with our development plan as roughly sketched in the “Ongoing work” section of [AGP09],
support for additional interaction modes provided by NeOn Toolkit plugins has been implemented. As NeOn
Toolkit users and QA testers, we came to realize how plugins, both released and in development, offered
so great a variety of ways to contribute to the NeOn Toolkit UI, that it definitely needed broader coverage.
In other words, Kali-ma users needed a more precise interpretation of the notion of “opening a plugin”, one
that went beyond the mere action of displaying a composite panel, or “Perspective”, which is provided by
roughly one third of available plugins. An early example of this effort was already present in version 1, which
supported “New wizards”, multi-page guides for creating new resources from scratch, an instance being the
gOntt wizard for scheduling an ontology development plan in a guided way.

The discovery of access methods for each plugin is strictly related to the Eclipse implementation and does
not rely on the OWL descriptions of that plugin. Kali-ma becomes aware of supported access methods
at runtime, by scanning the extension registry of the NeOn Toolkit, which contains information about all
supported extension points, as well as the Java classes that implement the corresponding extensions. In
addition to supporting Perspectives, Views and New wizards, the second public release of Kali-ma supports
the following access methods:

1. Actions are placeholders for commands that can perform virtually any kind of operation. In an Eclipse
application, actions are attached to buttons, toolbars or menu items. Their run method, which may
include opening views or wizards, is called whenever the end user clicks on a menu item or button.
Plugins such as Cyc, Oyster-GUI, SearchPoint and the GATE services contribute to the NeOn Toolkit
UI by means of actions. Kali-ma itself is activated through an action.

2. Cheat Sheets are interactive help pages that guide users through some ontology development pro-
cesses. Each cheat sheet lists the sequence of steps required to help achieve a certain goal. Cheat
sheets can launch required tools automatically, and require users to perform manual steps as they
progress through the task. A cheat sheet opens as a view, and only one cheat sheet is open and
active at any time. Most NTK plugins come with at least one cheat sheet, as it is good practice to
provide one for each implemented use case. As Kali-ma does not rely on workbench views for its user
interface, it uses the Helper widget described in [AGP09] instead of a cheat sheet.

3. Export Wizards are paged dialogs for guiding the user through a process of saving a given workspace
resource or converting it across representation formats. The OWLDoc plugin for automatically generat-
ing Javadoc-like documentation of ontologies is a good example of export wizard, especially because
it does not require the source ontology to be selected in the workspace before launching the wizard: it
can be selected from within the first wizard page.

When multiple entry points are available for a single plugin, Kali-ma adopts the following strategy in order to
launch a plugin, unless manually overridden according to widget-based settings: if a Perspective is present, it
is opened first; otherwise, Kali-ma falls back to, in order, New Wizards, Actions and Export Wizards. If none of
the above are available, Kali-ma will switch back to the NeOn Toolkit workbench and show its standard OWL
Perspective, adding to it as many Views as are defined by that plugin. Users have an option to accompany
the chosen Perspective or View with a Cheat Sheet selected from the ones made available by that plugin.

Summing up the access methods previously supported with the ones added by this new version, Kali-ma is
now able to provide meaningful entry points to the vast majority of plugins developed for the NeOn Toolkit
platform by project partners. As a proof-by-example, Figure 2.3 shows how dramatically the list of access
method choices has increased for the gOntt plugin between versions: a similar figure in [AGP09] displayed
only the first three options (the fourth not being available due to the gOntt plugin providing only one wizard
at the time). Additionally, the list items now bear a more human-readable name than the previous unique
namespace identifier. These labels are extracted straight from the respective extension in the plugin’s mani-
fest file.

D2.3.5 C-ODO plugin updates and extensions Page 13 of 25

Note that the execution of actions can depend on certain preconditions: in the case of gOntt, actions like
“Move Up”, “Zoom In” or “Delete Event” assume a gOntt schedule to be already loaded in its perspective.
Because action management occurs directly in the plugin code, it is not possible for Kali-ma to distinguish
between actions that will or will not result in an effect. On the contrary, cheat sheets are mostly guaranteed
to be openable by standard means.

Figure 2.3: List of access methods supported by Kali-ma for the gOntt plugin. All the actions provided by
gOntt are now part of the list, although some actions may require a gOntt plan to be already loaded, or the
gOntt Perspective to be already shown. A cheat sheet can be optionally selected from a second drop-down
list.

Although a possible implementation would have been similar to the one for Export wizards, hence very
straightforward, we have opted for not supporting the Import wizard access method. An Import wizard is a
paged dialog that allows the user to bring in a resource from some context (e.g. the local filesystem, the Web
or a DBMS) and make it available as a workspace resource. Currently, this access method is the means by
which the NeOn Toolkit core is able to load OWL ontologies from the Web or the filesystem, but it is not being
used by any known plugins, with the exception of the now obsolete Robust OWL Import plugin. Additionally,
because most resources handled by the NeOn Toolkit or its plugins belong to ontology development projects,
it is highly likely that the user will need the tree view of the Navigator in order to select one such project, or
resource contained therein, before launching an Import wizard.

2.4 Plugin interoperability

The first public release of Kali-ma was focused on presenting an alternative view of the NeOn Toolkit platform
as a functionality provider, and on offering seamless access to these functionalities. It can be argued that
such operational flow is basically uni-directional, as Kali-ma’s job was to bridge the NeOn Toolkit and its
plugins by keeping them completely agnostic of the user-centered mediation that Kali-ma purveyed. We
name this feature “plugin integration”, and its most evident example is access method support as described
in Section 2.3 of this deliverable.

In parallel with enhanced collaboration support among users, this new release moves several steps for-
ward from integration towards interoperability between applications, provided by NeOn Toolkit contributors
by means of plugins. With the first milestone, initial support for metalevel integration was added. We have
made the Kali-ma tool aware of specific types of metadata that some plugins store into the user workspace at
runtime, and made the most significant ones available for user query (cf. Section 2.4.1). As a demonstration

2006–2010 © Copyright lies with the respective authors and their institutions.

Page 14 of 25 NeOn Integrated Project EU-IST-027595

of how the results of a metadata search can be leveraged, we introduced a context-sensitive mechanism that
allows plugins to consume the resulting knowledge objects as an input to their own design functionalities (or
a subset thereof) where needed, and present new knowledge objects to the system, for other plugins in turn
to consume. In addition to providing this method for allowing other plugins to interoperate, the need for a
specific integration mechanism with the gOntt plugin hinted at offering another interoperability feature which,
in fact, allows any plugin other than Kali-ma to manipulate the dashboard programmatically, in order to facil-
itate the execution of scheduled activities or simply maintain a coherent mental model of the NTK platform
throughout the execution of multiple tools.

Plugin integration is achieved by scanning a runtime configuration of the NeOn Toolkit and matching its
entries against the knowledge described in a semantic subsystem, which aggregates and reasons upon OWL
modules describing known ontology engineering tools from the Semantic Web. The procedure and external
tools to support this mechanism are thoroughly described in our previous deliverable (cf. [AGP09] Chapter 3,
“OWL plugin description management”). Therefore, integration does not require any kind of intervention on
the source code or configuration files from developers. On the contrary, to achieve interoperability as defined
in the previous paragraph, with the exception of metalavel integration (which is, indeed, a form of integration,
although it is being used for interoperability purposes), it is necessary for plugin developers to include a few,
simple extensions to their code. In principle, these extensions should not alter the functionalities already
implemented by plugins, even though developers may deliberately choose to do otherwise. This document
will also provide guidance on using the APIs exposed by Kali-ma for implementing these extensions.

2.4.1 Metalevel integration

The process of upgrading the NeOn Toolkit and its plugins, as well as migrating them to a new OWL data-
model and Eclipse platform, gave us an opportunity to analyse, source code in hand, some behavioral
patterns adopted by the NTK core and plugins for managing data and metadata, including but not limited to
ontologies and their entities, during a typical round of execution.

There are no set standards or rules for storing metadata generated by plugins in an Eclipse environment.
However, the Eclipse Rich Client Platform provides facilities for doing so, which imply a handful of best
practices for distinguishing which types of metadata should or should not “survive” when either a project or
an entire workspace is ported to other instances of the environment. The rule of thumb for metadata storage
is to use the plugin state location4 for non-sensitive information that does not pertain to any specific project
and can be rebuilt from existing data without any consistent loss, and the project directory for project-specific
metadata. For instance, Kali-ma stores its reasoning cache and merged plugin description ontologies in its
own state location, as they are cross-project metadata that may apply to the entire workspace. We may
want to change this behaviour in the future, if we decide to support a tight linkage to ontology projects within
Kali-ma.

Based on these best practices, we have conducted a preliminary analysis of the metadata stored both the
NeOn Toolkit 2.3 pre-release and the first batch of new or migrated plugins for it. The aim was to determine
which of these tools actually do store these metadata locally, and which of these can be considered mean-
ingful to either end-users or other plugins that can accept them as input. For this reason, no prior assumption
was made as to which data types to look for, nor which plugins to monitor for the generation of these data,
which should be guaranteed to be persistent even in environments where the originating tool is not installed.
These data would then be made available for retrieval by a new native widget for searching them and mak-
ing them available, along with OWL data, to the context-sensitive Kali-ma dashboard system. Our findings
summarize as follows.

The NeOn Toolkit core basically uses the state locations of its components in order to store simple UI-related
or environment-related metadata, such as user preference values, the positions and sizes of views, the

4The state location of a plugin is the $WORKSPACE/.metadata/.plugins/$PLUGIN_ID directory, where
WORKSPACE is the directory where projects are stored and PLUGIN_ID is the unique identifier of the plugin (e.g.
it.cnr.istc.stlab.kalima).

D2.3.5 C-ODO plugin updates and extensions Page 15 of 25

perspectives that were open before exiting, etc., while the metadata root directory is used for logging errors
and maintaining internal command traces. As for project-related metadata, the NTK uses an XML file to
maintain the set of ontologies to be managed by the core datamodel plugin, along with rendering options
such as displaying imports or syntax information. Excluding all these metadata, which were deemed of little
to no importance to end users or applications, we concluded that, in the case of the basic Toolkit, ontologies
themselves are the real source of relevant knowledge worth searching for.

Coherently with our expectations, the pool of NeOn Toolkit plugins proved to be a valuable source of meta-
knowledge to be presented, consumed and searched for. However, by Eclipse design principles, developers
are left at liberty to decide the amount, locations and formats for storing their own metadata, which means
that no unique strategy can be assumed for all NTK plugins. Therefore, it was necessary for us to examine
any stored information on a case-by-case basis, and implement adapters for each data type that would be
deemed relevant enough to be searched for.

It was then established that plugins other than the NeOn Toolkit core tend to generate project-specific meta-
data that are stored within project directories in a variety of ways. For example, the Label Translator plugin
does not store translated RDFS labels back to the ontologies where labelled entities are asserted, but main-
tains its own ontologies, containing linguistic information based on the OWL version of the Linguistic Infor-
mation Repository model (LIR)5, in a project subdirectory called linguistic. The ODEMapster plugin
adopts a similar pattern for storing R2O mappings between databases and ontologies [BOCGP04], except
that it uses its own XML Schemas (XSD) for encoding mappings between properties and fields in database
schemas, mapping containers and database connection coordinates. Three such XML files are stored for
each ontology within the project, using a subdirectory with path $PROJECT/R2O/$ONTOLOGY_ID, where
PROJECT is the full path of an ontology development project, and $ONTOLOGY_ID denotes the shorthand
identifier (i.e. base URI local name or fragment) of the target ontology. As a conclusive example, the Ci-
cero plugin [DEB+08] stores all ontology argumentation sessions remotely in its own MediaWiki6, but it does
maintain these argumentation sessions aligned with ontology entities stored locally by applying its own anno-
tation properties to the local source ontologies. Other plugins opt to rely upon external resources or volatile
memory for storing metadata, or not to generate metadata at all.

This premise outlined the motivations and rationale that were necessary in order to introduce the metadata
search facility provided through a new native widget in the Kali-ma dashboard, quite simply named the search
widget. Thanks to this additional UI element, NeOn Toolkit users are able to comb an entire workspace or
project for data or metadata that conform to the type specifications requested and supported by the tool.
Search results are provided in realtime, at every keystroke in the keyword text field, through standard content
assistance features provided by Eclipse and JFace.

The available search facets allow users to restrict the search scope to one ontology development project and
a selection of data and metadata types to search for. With this release, the Kali-ma search feature supports
the following types:

1. OWL entity names, i.e. classes, datatype properties, object properties, annotation properties,
dataypes and individuals.

2. R2O mappings between ontologies and database schemas. The search scope includes both rela-
tional database entity names (schemas, tables, attributes) and involved OWL entity names. We do not
search within connection data, e.g. in order to obtain passwords.

3. Cicero argumentation sessions by their URIs. The actual session content is stored in the Cicero
Wiki and lies outside the search scope.

4. Linguistic information based on the LIR ontology and generated, both automatically and by user
interaction, through the Label Translator plugin. Typically, it is possible to retrieve ontology entities and
associated lexical entries by typing in (a portion of) a translated label.

5http://gate.ac.uk/projects/neon/lir.owl
6http://cicero.uni-koblenz.de/wiki/index.php/Main_Page

2006–2010 © Copyright lies with the respective authors and their institutions.

Page 16 of 25 NeOn Integrated Project EU-IST-027595

Figure 2.4 exemplifies the behaviour of the Search widget, two keystrokes since having begun typing the word
“record”, after restricting the search scope to an ontology project called “Rock”. In this example, the user has
not customized the datatype facet (available by clicking on the wrench icon), therefore the system searches
for all supported datatypes and lists their matches in realtime, ordered by datatype. This list, shown on the
popup panel to the right, displays seven matches: the hasStreetDate datatype property; four classes
(Record, RecordDeal, RecordLabel and RecordRelease); an R2O mapping that associates the
hasStreetDate property with the concatenation of the date and release_date fields7; a Cicero
argumentation issue, whose URI ends with Do_we_really_need_this_class?, associated with the
RecordRelease class8.

Figure 2.4: The Search widget displaying results matching the “re” string within the “Rock” project. Matched
results include, from top to bottom: one datatype property, four classes, one R2O mapping and one ar-
gumentation session. The wrench icon in the bottom-left corner allows the user to set restrictions on
(meta)datatypes to search for.

When browsing realtime search results, it is possible to select a single item in order to complete the input
field and trigger the presentation of this item to the dashboard system, for any compatible listening widget to
consume as an input datum. This functionality is detailed in the next section and documented in Appendix A.

Note that, for the aforementioned search facets to be available, there is no need for users to install plugins
that support or generate them, except for the base NeOn Toolkit itself. As metadata analysis was performed
on a case-by-case basis, so was the implementation of the corresponding search providers. Adapters were
written ad-hoc for each type group in the list, and adding more as more datatypes as supported will be a
fairly easy task. While the adapter for OWL elements is essentially a wrapper of the OWL Search facility of
the NeOn Toolkit, the others have no dependency on Cicero or ODEMapster or other third-party plugins.

2.4.2 Interoperability API

The Kali-ma tool makes provision for two distinct methods of allowing programmatic interoperability, which
is achieved through direct intervention on the plugin code. As documented later in this document, the two
methods cover separate interoperability aspects and can be implemented independently. They are:

1. External Dashboard control

2. Computational task execution within widgets

Dashboard control is an extremely simple API for bridging specifically Kali-ma with another plugin: it is
not intended for two plugins other than Kali-ma to interoperate. The role of this API is to allow any plugin to

7The database schema used in this example was taken from a local MySQL database about rock band discographies.
8The issue starter claims that this class is an overkill since the hasStreetDate property would suffice, obviously ignoring that

a record album may be released with different dates and record labels in different countries, thus requiring an N-ary relationship to
be defined.

D2.3.5 C-ODO plugin updates and extensions Page 17 of 25

launch a new Kali-ma dashboard with a pre-defined set of plugin widgets. By default, when Kali-ma is started
the first time after opening the NeOn Toolkit, a fresh dashboard with only native widgets is shown. According
to the standard interaction flow of the tool, the user will access plugins either by opening the corresponding
widgets from the C-ODO organizer, or by loading a stored profile from the profile manager, or both. Through
the dashboard control API, any plugin can override this behaviour and propose its own set of tools to the
user, who in turn will have to either confirm or reject this proposal.

This feature was originally intended to support development of the gOntt plugin for project scheduling
[GPSFV09], in order to have the two tools integrated on the functional level. The gOntt plugin for the NeOn
Toolkit allows project managers to layout ontology development plans, where activities and processes per
the NeOn Methodology are arranged in a Gantt-like chart. Activity scheduling per se has no direct associa-
tion with specific plugins, but gOntt sports its own way of discovering which plugins may serve the purpose
of carrying out a certain activity, and this discovery is performed at runtime on the NeOn Toolkit installa-
tion where the gOntt plan has been loaded (for reference, see the upcoming project deliverable D5.3.3 due
M48). The first step towards gOntt integration was performed during the development of Kali-ma v1.0, when
we added support for classifying design tools with respect to the activities supported. This feature was not
originally planned, but was found to be essential in order to accommodate gOntt end-users, who could ex-
perience disorientation in shifting across two orthogonal conceptual models of the NTK platform, i.e. the
NeOn methodology and codolight-based design aspects. With the dashboard control API, it is now possible
for Kali-ma to assist ontology engineers in performing a development phase or set of planned activities at
a given point in their gOntt schedule. Users will be able to pick a selection of plugins that can support the
whole phase at once, launch a Kali-ma dashboard with the corresponding plugin widgets (including one for
gOntt itself) already opened, and switching across these plugins at will. Having a gOntt widget in the dash-
board eases the process of switching back to the gOntt plan in order to advance in the schedule or adjust it.
The first example of dashboard control API exploitation is available in gOntt from version 1.3.7, which allows
users to launch a Kali-ma dashboard including widgets for all the plugins that are registered for a given ac-
tivity, or process in a gOntt plan. At the time of writing, development for additional interoperability features is
underway.

All of the API methods, described in Appendix A, require that a mnemonic unique identifier be passed along
with the list of plugin names. This identifier is used as a proposal for a new profile name, yet it does not
automatically trigger a profile save operation, since for any reason the user might be unwilling to accept
this set of tools permanently. It is sufficient to click the save button located in the bottom area of the profile
management widget in order to have that plugin set stored as a profile with the given name. Then, it will
be possible to bind this profile to one or more ontology development projects, as with any other dashboard
profile. Additionally, developers have the option to override some user preferences for Kali-ma, by either
enforcing a preferred classification criterion (useful for gOntt to maintain the NeOn Methodology model across
plugins) or requesting all plugin widgets to be initially docked (useful for a large amount of plugins). Note
that dashboard control also works on an existing Kali-ma dashboard, in which case a call to the API will
supersede any profile or widget set already open. However, if Kali-ma has already been launched during the
session, any attempt to override the classification criterion will only take effect only upon restarting the NeOn
Toolkit.

Computational task execution allows developers to expose part of the functionalities implemented by their
plugins as services that can be invoked straight from the Kali-ma dashboard, without having to interact with
plugins through the NeOn Toolkit workbench. An operation that implements such a functionality is called
a Computational task, in accordance with the notion of Computational design task that is present in the
interaction module of C-ODO Light9 and identifies “any type of design operation (i.e. a functionality) that
needs to be performed on a tool”10.

The dashboard control system implemented in Kali-ma is sensitive to the exposure of knowledge objects,
such as OWL ontologies or entities. These knowledge objects can be presented to the system either as a

9http://www.ontologydesignpatterns.org/cpont/codo/codinteraction.owl
10Retrieved as the English RDFS comment for the ComputationalDesignTask class.

2006–2010 © Copyright lies with the respective authors and their institutions.

http://www.ontologydesignpatterns.org/cpont/codo/codinteraction.owl

Page 18 of 25 NeOn Integrated Project EU-IST-027595

result of a data-level or metadata-level search performed through the Search widget (cf. Section 2.4.1), or as
produced in output by widgets that are representatives for plugins implementing this API. In the latter case,
what plugin providers need to do is write a wrapper class that invokes the implementation of a functionality
that already exist in their plugins, and returns its output in a form that is convenient for Kali-ma. Details of
this procedure for developers are provided in Appendix A.

Implementing a computational task grants Kali-ma a direct entry-point to a functionality implemented by that
plugin, but also has a fundamental impact on the user interface for the corresponding dashboard widget. Its
main panel will no longer be limited to a natural language description of the tool, but will also feature whatever
user interface controls are necessary in order to provide the entry point with the input parameters needed for
its function to be invoked. These input parameters are essentially specified by the developer as a list of Java
types in the wrapper class. This is due to the fine-grained implementation of computational task invocation,
which requires strict type safety, as it needs to use reflection techniques [FF04] in order to match datatypes
at a much lower abstraction level than the one available in the codolight-based OWL descriptions of plugins.
Given this list of types, Kali-ma employs its own internal heuristics in order to determine which UI controls to
display on the widget. The list below outlines some examples of the most common type-control matchings
expected:

• a string is mapped to a text field where the user can input its value;

• an integer is mapped to a spinner, i.e. a text field that only allows integer values, with arrow buttons
for increasing or decreasing its value;

• a boolean is mapped to a checkbox ;

• an enumeration is mapped to a combo box, which allows a choice of one among all the members of
the enumeration thanks to a drop-down menu;

• a file is mapped to a file selector, which is provided by most operating systems for selecting a resource
from the filesystem;

• an OWL entity (e.g. a class, individual or property) is not mapped to any visible interface control, but
the widget will be automatically put on a listening state in order to get a handle on any such entity that
is presented to the system through another widget;

Instantiating these mechanics with a simple yet meaningful example, suppose to have a plugin that is spe-
cialized in creating new OWL classes that are related to an existing class by either subsumption, equivalence
or disjointness, and automatically adds annotations such as RDFS labels to it. The plugin developer may
want to implement a computational task for Kali-ma so that the plugin widget will show a text field for entering
the new class name and a combo box for selecting the relationship between classes. The OWL class to
associate with the new one with can be captured through the Search widget, while a checkbox may allow the
user to decide whether she wishes to have the plugin annotate the new class automatically.

It is also possible for developers to specify the type of the object produced in output by a computational
task, if any. With this done, provided that the wrapped function does actually generate such an object, this
is presented to the Kali-ma dashboard system, in a similar fashion as items selected through the Search
widget. By leveraging this capability, the behaviour exemplified in the paragraph above can be cascaded.
Once the output of a plugin is exposed to the system, any other plugin widget that is listening for an object of
a compatible type will capture it as an input to its own computational task. This way, it is possible to implicitly
define data pipelines in order to accomplish more complex tasks, even if end users or plugin developers are
not required to manually concatenate plugin widgets with one another.

D2.3.5 C-ODO plugin updates and extensions Page 19 of 25

Chapter 3

Conclusion

This work has illustrated the key advancements proposed for the Kali-ma plugin a few months since its initial
release, which actually occurred with several of these new functionalities actually being in incubation. After
validating the interaction approach adopted for the tool, we proceeded to consolidate its user interface and
integration with the NeOn Toolkit, offering alternative views on plugin organization, additional support for
accessible plugin functionalities and integration with the NeOn Toolkit metalevel, which in turn encompasses
its OWL metamodel.

Most significantly, the update introduces a twofold aspect of collaboration, i.e. between users with the intro-
duction of realtime chat support, and between tools with the disclosure of an API for limited control over the
Kali-ma dashboard and the extension of plugins for interoperability within the system. The extensibility fea-
tures were designed so as to require developers not to tamper with their already implemented functionalities,
but rather to wrap them in order to make them available to an entry point for Kali-ma to exploit.

With the features described here already in place, our strategy for near future development will mainly focus
on tuning up the functionalities proposed both in the first release and in this release. Rather than including
whole new, full-fledged functionalities, we aim at evolving existing ones in a manner that will have Kali-
ma span across a larger set of potential user demands (in more informal parlance, to make widgets more
powerful without necessarily adding new ones). Our goal is to emerge with an application with ample support
for the collaborative management of data and metadata of an ontology development project, including their
annotation, search, reuse and argumentation. Moreover, enhancing the Semantic Web power of the tool,
beyond an initial classification of plugins, is another key task. In particular, we plan on lifting type support for
computational tasks and pipelining, from the current level of the Java language to a comprehensive mapping
with an ontology network aligned with C-ODO Light. With that done, the system may automatically provide
adequate Java classes in line with the input and output knowledge types declared in the OWL descriptions of
plugins. Finally, special attention will be devoted to tracking the advancements of the Wave protocol, API and
application support in order to establish if they live up to promises and expectations (public disclosure of the
federated communication protocol, improved browser compatibility, etc.) in reasonable time. This evaluation
will, if negative, be parallel to the setup of a fallback strategy that will most likely include the development
and/or deployment of our own communication services.

As a follow-up to the questionnaire-based evaluation held for the first version of the tool, a second, task-
based usability study is planned. User interface efficiency will be measured against metrics that will be
established with respect to certain tasks, such as performing methodological activities or switching across
GUI environments pertaining to certain plugins. A comparison of repeated tasks, either by directly accessing
related tools or with the mediation of Kali-ma, will be performed with regard to timings and the overall quality
of interaction.

2006–2010 © Copyright lies with the respective authors and their institutions.

Page 20 of 25 NeOn Integrated Project EU-IST-027595

Appendix A

Usage of the Kali-ma interoperability API

This section illustrates details and guidelines for plugin developers who wish to extend their tools in order to
be supported by Kali-ma for interoperability purposes. The two types of API are completely independent of
each other, and there is no obligation to utilize both or neither. Developers are free to choose to implement
either method individually, and the two are not intended to interoperate with each other in general, though
developers are free do decide to do so if needed.

As with most Java APIs, as well as with the Eclipse extension point mechanism, the use of types defined in
the interoperability API implies a dependency on the Kali-ma plugin that contains their specifications. While
it is comprehensible that third parties may not wish to establish a direct dependency of their code on another
plugin, this process is essentially inevitable. As a possible workaround to this potential drawback, we advise
developers to take advantage of Eclipse features in order to create distinct plugin packages.

Figure A.1 depicts a possible strategy for implementing what is being hinted at. Developers
are advised to concentrate all of their extensions that depend on Kali-ma into a second plugin
(org.example.myplugin.kalima in the figure) that bridges the two without necessarily having to tam-
per with the original (org.example.myplugin in the figure). This plugin should depend on the original
MyPlugin and the Kali-ma plugin that provides the API that the developer wishes to implement, and it should
provide the extension(s) for either dashboard control, or computational tasks, or both. For example, it could
contribute to a menu in the original plugin with an additional menu item called “Open as Kali-ma dashboard”
(cf. Section A.1), and/or contain the class that implements the extension for the computational task extension
point (cf. Section A.2). Then, it would be possible to package the two of them into a Kali-ma-compatible
feature, in parallel with an independent feature that does not include the bridging plugin.

Figure A.1: Suggested layout for plugin dependencies when a generic plugin implements any of the
Kali-ma APIs. It is preferable, for the sake of independence, that a bridging plugin (here called
org.example.myplugin.kalima) be created. Note: Kali-ma no longer depends on external OWL
API and Pellet plugins, as it is now fully integrated with the NeOn Toolkit datamodel and its Reasoner plugin.

D2.3.5 C-ODO plugin updates and extensions Page 21 of 25

A.1 Dashboard control

The Dashboard control API allows any other NeOn Toolkit or Eclipse plugin to launch the Kali-ma dashboard
and open a pre-defined set of widgets, with options for having them docked from the start and enforcing a
particular classification criterion. This set of widgets, along with the name supplied, will make up a temporary
dashboard profile, until the user decides to save it as such.

This API is essential and its usage straightforward. To use the API, the plugin developer must:

1. include a dependency on the it.cnr.istc.stlab.kalima plugin;

2. invoke any static method of the it.cnr.istc.stlab.kalima.api.DashboardLauncher
class anywhere in their code.

The most generic method signature in the DashboardLauncher class is

launchDashboard(String profileName, String[] pluginIDs,

ClassificationCriterion criterion, boolean docked)

where:

• profileName is a non-null, non-empty identifier for this set of plugins. It will be proposed as a name
for the profile, although users will be free to give it a different name.

• pluginIDs is an array of unique identifiers for the plugins to be opened as widgets. The Kali-ma
plugin identifier should not be part of this list, and will be ignored otherwise. Redundancies will be
counted as a single widget. The array can be null or empty, in which case a blank Kali-ma dashboard
will be opened as if the Kali-ma plugin itself were launched the regular way.

• criterion is a member of the ClassificationCriterion enumeration, available in the
same package as the DashboardLauncher class. Its value can be one of DESIGN_ASPECTS,
FUNCTIONALITIES or NEON_ACTIVITIES. This argument causes the corresponding classifica-
tion criterion to override user settings when generating the C-ODO organizer. If null, the criterion
defined by user preferences will be used instead. If Kali-ma is already running, this change will only
take effect after restarting the NeOn Toolkit.

• docked, if true, requests all plugin widgets to initially appear minimized as entries in the Dock widget.

For example, a call to the method DashboardLauncher.launchDashboard("scheduling +
reuse", {"org.neontoolkit.upm.gontt", "org.neontoolkit.watsonplugin"},
ClassificationCriterion.NEON_ACTIVITIES, false) will cause Kali-ma to launch its dash-
board by presenting an overview of plugins classified by activity in the NeOn methodology, with two widgets
for the gOntt and Watson plugins visible in the dashboard, and the “scheduling + reuse” title displayed on
the Profile management widget.

The criterion and docked arguments are optional, as the launchDashboard method is overloaded
with additional signatures that allow developers to not specify either argument. An unspecified criterion
is interpreted as null, while an unspecified docked is interpreted as true. See above for their meaning.

Note that dashboard creation is synchronized with the UI thread, hence developers should not worry about
managing that kind of synchronization themselves.

2006–2010 © Copyright lies with the respective authors and their institutions.

Page 22 of 25 NeOn Integrated Project EU-IST-027595

A.2 Computational tasks

Through the Computational task API, developers can provide extensions to functionalities for which code
already exists, or wrap part of such functionalities, or even create new ones from scratch, if they believe them
to pertain to the use cases specified for their plugins. These functionalities can then be invoked from within
the Kali-ma dashboard, and its input parameters will be presented as user interface elements (or controls)
for users to input where applicable, or as “invisible” listeners when such datatypes are not mappable to user
interface elements.

As opposed to the dashboard control API, computational tasks are implemented through the extension of
an Eclipse extension point specifically provided by Kali-ma. Extension points are the means by which the
Eclipse RCP allows developers to add functionalities and UI elements to the platform they are contributing
to1. Extensions for this extension point are then scanned at runtime when the Kali-ma plugin starts, just like
those that implement views, perspectives, actions or wizards.

As with the majority of standard extension points provided by Eclipse, the Kali-ma extension point requires an
interface to be implemented, along with its only method. This is slightly more complex than a straightforward
call to an API method, though seasoned plugin developers will be familiar with it. However, since developers
are most likely to wrap up existing functionalities, not much work should be required on their part for achieving
this goal.

To implement a computational task, the following steps are required for the implementing plugin:

1. include a dependency on the org.neontoolkit.kalima.api plugin;

2. add an extension to the it.cnr.istc.stlab.computationalTasks extension point (can be
done either through the Extensions GUI for that plugin or by manually editing the plugin.xml man-
ifest file). Setting an ID and/or a name for the extension is preferred but not required;

3. add a task configuration element to the newly generated extension, and create the (required) Java
class that implements the IComputationalTask interface;

4. if the extension is being implemented in an external plugin, add the main plugin ID to the
referenced_plugin attribute of the task configuration element created at the previous point;

5. implement the execute() method in the class created at point 3 (see later for details), and annotate
it with the Signature annotation (available from the newly imported package).

The last item in the checklist requires a more thorough explanation.

The IComputationalTask interface has a single execute() method, which is automatically invoked
by Kali-ma. It has the following modifiers and signature:

public Object execute(Object... params)

throws UnexpectedParameterTypeException

This method is highly versatile, as it expects a variable number of generic arguments (even zero) as input
and return a generic Object (even null) as an output. This is done in order to accommodate virtually any
kind of procedure and allow developers to use this method to emulate a call to that procedure.

Obviously, these generic Objects will have to match a limited amount of more specific types. It is fine
(and encouraged) to perform type checking in the method body, but also Kali-ma has to be made aware of
these types in order to present the appropriate UI controls. Therefore, developers are required to annotate
their implementation of the execute() method with the Signature annotation, which allows them to
specify the actual types of both the input arguments (as an array of java.lang.Class objects) and the

1For a tutorial on Eclipse extensions and extension points, see http://www.vogella.de/articles/EclipseExtensionPoint/article.html

http://www.vogella.de/articles/EclipseExtensionPoint/article.html

D2.3.5 C-ODO plugin updates and extensions Page 23 of 25

return value (as a single java.lang.Class object). Therefore, when implementing a computational task,
developers should keep the following principles in mind:

1. Always annotate an implemented execute() method with a truthful Signature.

2. If the procedure does not return anything, the annotation’s returnType parameter should be as-
signed to void.class. The execute() method should return something anyway, even null.
Although any return value will be ignored in this case, this is necessary to avoid compile-time errors.

3. The execute() method should basically call a public method that performs the desired functionality,
and convert its input and return types accordingly with the Signature annotation. If there is no
such public method, then one should be made available. Alternatively, the IComputationalTask
interface could be implemented by the very same class that does the job. In this case, however, it will
no longer be possible to implement extensions or Kali-ma as a separate plugin.

4. The method should check that every parameter supplied is of the required type, and throw an
UnexpectedParameterException every time it doesn’t.

Currently, only a few basic and OWL API-related types are managed by Kali-ma:

• String objects are mapped to text fields;

• Integer or even int objects are mapped to spinners;

• Boolean or even boolean objects are mapped to checkboxes;

• enums are mapped to combo boxes. Any enumeration can be arbitrarily defined by developers in the
same class that implements the IComputationalTask interface;

• File objects are mapped to file selectors;

• instances of OWL API types such as OWLEntity and its subtypes, e.g. OWLClass,
OWLNamedIndividual, OWLObjectProperty, etc. are not mapped to any visible interface
control, but the widget will be automatically put on a listening state in order to get a handle on any such
entity that is presented to the system through another widget;

• Arrays of the types mentioned above are allowed as return types, and are mapped to expansible lists.

For clarity, the Java code listing of a possible computational task implementation for the Watson plugin is
included below. Refer to Javadoc and inline comments for an explanation of each step of the procedure and
how the Signature annotation will be interpreted by Kali-ma.

package uk .ac .open .kmi .watson .neontoolkitplugin .procedures ;

impor t it .cnr .istc .stlab .kalima .api .IComputationalTask ;
impor t it .cnr .istc .stlab .kalima .api .Signature ;
impor t it .cnr .istc .stlab .kalima .api .UnexpectedParameterTypeException ;

impor t org .semanticweb .owl .model .OWLEntity ;

impor t uk .ac .open .kmi .watson .clientapi .WatsonService ;
impor t uk .ac .open .kmi .watson .neontoolkitplugin .actions .WatsonControl ;
impor t uk .ac .open .kmi .watson .neontoolkitplugin .utils .LabelSplitter ;

p u b l i c c lass WatsonQueryTask implements IComputationalTask {

/ * *
* This enumeration was created s p e c i f i c a l l y f o r having a choice o f th ree
* poss ib le values i n the combo box .
*

2006–2010 © Copyright lies with the respective authors and their institutions.

Page 24 of 25 NeOn Integrated Project EU-IST-027595

* /
p u b l i c enum EntityType {

Class , Property, Individual
} ;

p u b l i c WatsonQueryTask () {
/ / A cons t ruc to r t h a t needs to be c a l l e d by Ka l i−ma

}

/ * *
* As s ta ted i n the Signature annotat ion , Watson consumes an OWL e n t i t y and
* a choice o f Class , Proper ty and I n d i v i d u a l , and produces OWL e n t i t i e s
*
* Because i t on ly expects an OWLEntity as an input , the widget w i l l show a
* combo box i n t e r f a c e c o n t r o l f o r the second argument , wh i le f o r the f i r s t
* i t w i l l l i s t e n f o r OWL e n t i t i e s to be presented i n the Ka l i−ma system .
* /

@Signature(
parameterTypes = { OWLEntity . c lass , EntityType . c lass } ,
returnType = OWLEntity [] . c lass

)
p u b l i c Object execute(Object . . . params)

throws UnexpectedParameterTypeException {

/ / parse the f i r s t two arguments (the only ones needed)
Object arg0 = params [0] , arg1 = params [1] ;

String [] keywords ;
i n t entityType = −1;

/ / do some type checking on the argument (s) . . .
i f (! (arg0 i ns tanceo f OWLEntity && arg1 i ns tanceo f EntityType))

throw new UnexpectedParameterTypeException () ;

/ / Now conver t the f i r s t argument to an ar ray o f s t r i ng s , which i s the
/ / form requ i red by the i n t e r n a l method to be c a l l e d .
/ / This b i t was copied s t r a i g h t from e x i s t i n g Watson p lug in code .
/ /
/ / e x t r a c t the keyword ar ray from the e n t i t y name . . .
String baseKW = ((OWLEntity) arg0) .getURI () .getFragment () ;
/ / s p l i t i t to an ar ray
String st = new LabelSplitter () .splitLabel(baseKW) ;
/ / remove unwanted charac te rs
i f (st .endsWith(" / "))

st = st .substring(0 , st .length () − 1) ;
st = st .replaceAll(" / " , "−") ;
st = st .replaceAll(" ' " , " ") ;
keywords = new String [] { st } ;

/ / Now do the same wi th the second argument
swi tch ((EntityType) arg1) {
case Class :

entityType = WatsonService .CLASS ;
break ;

case Individual :
entityType = WatsonService .INDIVIDUAL ;
break ;

case Property :
entityType = WatsonService .PROPERTY ;
break ;

}

/ / I f the types are cons is ten t , make your i n t e r n a l c a l l s
/ /
/ / NOTE: I added the queryWatsonAsEnt i t ies () method to the WatsonControl
/ / c lass . I t j u s t r e tu rns an ar ray o f OWLEntit ies out o f a Watson query .
/ / Nothing out o f the ord inary , r e a l l y . Just a wrapper method f o r
/ / WatsonControl . queryWatson () . A l t e r n a t i v e l y , the IComputat ionalTask
/ / i n t e r f a c e could have been implemented s t r a i g h t i n t o the WatsonControl
/ / c lass .
r e t u r n WatsonControl .getInstance () .queryWatsonAsEntities(keywords,

entityType) ;
}

}

D2.3.5 C-ODO plugin updates and extensions Page 25 of 25

Bibliography

[AGP09] Alessandro Adamou, Aldo Gangemi, and Valentina Presutti. C-ODO plugin v1.0. Deliverable
D2.3.4, NeOn project, 2009.

[BOCGP04] Jesús Barrasa, Óscar Corcho, and Asunción Gómez-Pérez. R2O, an extensible and semanti-
cally based database-to-ontology mapping language. In Proceedings of the 2nd Workshop on
Semantic Web and Databases(SWDB2004, pages 1069–1070. Springer, 2004.

[CL08] Germán Herrero Carcel and Tomás Pariente Lobo. Revision of ontologies for Semantic Nomen-
clature: pharmaceutical networked ontologies. Deliverable D8.3.2, NeOn project, 2008.

[DEB+08] Klaas Dellschaft, Hendrik Engelbrecht, José Monte Barreto, Sascha Rutenbeck, and Steffen
Staab. Cicero: Tracking design rationale in collaborative ontology engineering. In Sean Bech-
hofer, Manfred Hauswirth, Jörg Hoffmann, and Manolis Koubarakis, editors, ESWC, volume
5021 of Lecture Notes in Computer Science, pages 782–786. Springer, 2008.

[FF04] Ira R. Forman and Nate Forman. Java Reflection in Action (In Action series). Manning Publica-
tions, 2004.

[GPSFV09] Asunción Gómez-Pérez, Mari Carmen Suárez-Figueroa, and Martin Vigo. gOntt: a tool for
scheduling ontology development projects. In 8th International Semantic Web Conference
(ISWC2009), October 2009.

[PMP+09] Valentina Presutti, Dunja Mladenic, Raul Palma, Klaas Dellschaft, Alessandro Adamou, En-
rico Daga, Holger Lewen, Michael Erdmann, and Anne Becker. Practical methods to support
collaborative ontology design. Deliverable D2.3.2, NeOn project, 2009.

[Ree79] Trygve Reenskaug. Models - Views - Controllers. Technical report, Technical Note, Xerox Parc,
1979.

[SFBd+09] Mari Carmen Suárez-Figueroa, Eva Blomqvist, Mathieu d’Aquin, Mauricio Espinoza, Asun-
ción Gómez-Pérez, Holger Lewen, Igor Mozetic, Raul Palma, Maria Poveda, Margherita Sini,
Boris Villazón-Terrazas, Fouad Zablith, and Martin Dzbor. Revision and extension of the NeOn
Methodology for building contextualized ontology networks. Deliverable D5.4.2, NeOn project,
2009.

[SHNM04] Matthew Scarpino, Stephen Holder, Stanford Ng, and Laurent Mihalkovic. SWT/JFace in Action:
GUI Design with Eclipse 3.0 (In Action series). Manning Publications, 2004.

[TNTM08] Tania Tudorache, Natalya Fridman Noy, Samson W. Tu, and Mark A. Musen. Supporting collab-
orative ontology development in Protégé. In Amit P. Sheth, Steffen Staab, Mike Dean, Massimo
Paolucci, Diana Maynard, Timothy W. Finin, and Krishnaprasad Thirunarayan, editors, Interna-
tional Semantic Web Conference, volume 5318 of Lecture Notes in Computer Science, pages
17–32. Springer, 2008.

2006–2010 © Copyright lies with the respective authors and their institutions.

	Introduction
	Kali-ma updates and extensions
	User interface enhancements
	Collaboration support
	Plugin access method support
	Plugin interoperability
	Metalevel integration
	Interoperability API

	Conclusion
	Usage of the Kali-ma interoperability API
	Dashboard control
	Computational tasks

	Bibliography

