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Executive Summary

This deliverable describes the continued implementation of a variety of approaches for bottom-up ontology
evolution from different sources: unstructured text, ontologies, folksonomies, databases and queries. Pre-
viously in WP1, we have described methods for top-down ontology evolution, which incorporate a method
for modelling some of the dynamics of (semantic) metadata, and which focused particularly on the interac-
tion between the example clients and the NeOn toolkit, such that changes in networked ontologies can be
propagated to the semantic metadata, and vice versa. From the bottom-up point of view, we have described
preliminary versions of several systems that enable new information to be captured in ontological form and
propagated to the NeOn toolkit, using data from unstructured text and folksonomies, namely SPRAT, SAR-
DINE, Evolva and FLOR. In WP3, a preliminary version of Evolva has also been described, which aims more
at ontology refinement rather than direct ontology generation.

These approaches are all implemented as plugins for the NeOn toolkit: either loosely or tightly coupled.
Management of the ontology lifecycle is also aided by the inclusion of methods for ontology change manage-
ment which enable the synchronisation of changes in the different tools with the NeOn toolkit. We describe
also a tool for ontology refinement which can make use of the information from these different tools as fur-
ther input to improving the ontology. The ontological changes generated are evaluated not only according
to correctness but also to relevance in the ontology, and various suggestions are also proposed for further
improvement.

2006–2010 c© Copyright lies with the respective authors and their institutions.



Page 6 of 46 NeOn Integrated Project EU-IST-027595

Contents

1 Introduction 10
1.1 Related Deliverables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Evolva 12
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Evolva Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Statement Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Evaluating Statement Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Statement Correctness Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Methodology for Evaluating Statement Relevance . . . . . . . . . . . . . . . . . . . . 17

2.3.4 Relevance Patterns and Relevance Assessment Technique . . . . . . . . . . . . . . . 19

2.3.5 Statement Relevance Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Annotation-driven Ontology Learning 26
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 SARDINE and SPRAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 GATE application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.2 Lexico-syntactic patterns for ontology generation . . . . . . . . . . . . . . . . . . . . . 27

3.2.3 Restrictions on Noun Phrases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.4 Restrictions on Subclass Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.5 Restrictions on Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.6 Restrictions on Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.7 Implementation of patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 GATE Change Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 RELExO 32
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Relational Exploration with Automatic Experts . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Relational Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.2 The Wikipedia Expert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Scenario I: Knowledge Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.2 Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Scenario II: Knowledge Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



D1.5.4 Bottom-up evolution of networked ontologies from metadata Page 7 of 46

4.4.1 Meta Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.2 The Meta Knowledge Expert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Conclusion 43

Bibliography 44

2006–2010 c© Copyright lies with the respective authors and their institutions.



Page 8 of 46 NeOn Integrated Project EU-IST-027595

List of Tables

2.1 Examples of relations derived using WordNet . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Evaluation results for the relations derived from WordNet . . . . . . . . . . . . . . . . . . . . 15

2.3 Examples of relations discovered using Scarlet . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Evaluation results for the relations derived with Scarlet. . . . . . . . . . . . . . . . . . . . . . 17

2.5 Example of Statements with Relevance with respect to the SWRC Ontology . . . . . . . . . . 22

2.6 Threshold values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Evaluation results for relevance assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Results of relation extraction on 25 wikipedia documents . . . . . . . . . . . . . . . . . . . . . 29

3.2 Results of relation extraction after refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



D1.5.4 Bottom-up evolution of networked ontologies from metadata Page 9 of 46

List of Figures

2.1 Evolva Framework Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Example of ontological-context for the < Project, has− funding, grant > statement . . . . 18

2.3 Example of visualizing the mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Simplified visualization of the mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Pattern 2 example for < Organization, subClassOf,ActingEntity >. Pattern 1 counter
example for < Player, subClassOf, Person >. . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Statement relevance evaluation interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Statement relevance set by threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Generated ontology in GATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 RELExO’s conceptual architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Relational exploration process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Manually built ontology about fish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Attributes (i.e. atomic classes) representing the focus of the exploration . . . . . . . . . . . . . 36

4.5 Hypothesis > v ⊥ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6 Counterexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.7 Formal Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2006–2010 c© Copyright lies with the respective authors and their institutions.



Page 10 of 46 NeOn Integrated Project EU-IST-027595

Chapter 1

Introduction

Ontology generation and population is a crucial part of knowledge base construction and maintenance that
enables us to relate text to ontologies, providing on the one hand a customised ontology related to the data
and domain with which we are concerned, and on the other hand a richer ontology which can be used
for a variety of semantic web-related tasks such as knowledge management, information retrieval, question
answering, semantic desktop applications, and so on. Ontology evolution is also an important task for a
number of reasons. First, the data on which ontologies are based may be constantly evolving. New relevant
documents may become available based on additional knowledge acquired or new facts that emerge. Old
data may become superseded because facts change: for example, the CEO of a company will not always
be the same, a species that was once endangered may no longer be so, new production techniques may be
developed, even the names of cities and countries may change over time. These facts have to be updated
in the ontologies that represent this data. Second, ontologies are only useful when related to a particular
application: they are not useful as an end product, but only as a tool to perform further tasks. They are
also subjective and usually incomplete, so updates and modifications are often necessary. For example, an
ontology may not contain all the different variants of a term (e.g. synonyms). Thus, ontology evolution is
crucial in order to keep ontologies as up-to-date as possible, and to improve their relevance and usefulness.

This deliverable describes the continuation of work on various types of ontology evolution from metadata,
as part of the ontology lifecycle. Previously, we have described methods for top-down ontology evolution,
which incorporate a method for modelling some of the dynamics of (semantic) metadata, and which focused
particularly on the interaction between the example clients and the NeOn toolkit, such that changes in net-
worked ontologies can be propagated to the semantic metadata, and vice versa. From the bottom-up point
of view, we have previously described preliminary versions of several systems that enable new information
to be captured in ontological form and propagated to the NeOn toolkit, using data from unstructured text and
folksonomies.

In this work, we describe improvements to all these systems, and also include some work on relational explo-
ration, which is one of the most efficient approaches to semi-automatic ontology completion and refinement.
These different approaches to ontology evolution can be divided into the following classifications:

• Evolva, SPRAT and SARDINE are all methods for data-driven ontology evolution. While Evolva
makes use of information from unstructured data, other ontologies, and databases, SPRAT and SAR-
DINE make use of information solely from unstructured data, but focus specifically on semantic an-
notations. We can call these systems annotation-driven as a specific kind of data-driven evolution.
Evolva is described in Chapter 2, while SPRAT is described in Chapter 31.

• RELExO is a method for hypothesis-driven ontology evolution, which relies on several automatic
components for suggesting possible refinements to the human ontology engineer. RELExO is de-
scribed in more detail in Chapter 4.

1SARDINE is also mentioned in this chapter, but has been previously described in detail.
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• FLOR (which was described in previous deliverables) is a method for socially-driven ontology evo-
lution, since it exploits information from folksonomies in order to derive new semantic information.

These methods all make use of different techniques but complement each other, as they derive information
from different sources in order to construct or refine ontologies, and can be synergetically combined in an
integrated workflow. More specifically, suggestions for ontology changes generated by the data-driven and
socially-driven evolution tools could be fed into RELExO, which computes the most likely hypotheses from the
union of the individual result sets. These hypotheses along with provenance information, such as certainty
values or source documents, are then presented to the human ontology engineer in order to support him in
extending the ontology.

1.1 Related Deliverables

The work in this deliverable is strongly related to a number of other deliverables in NeOn:

1. It describes the final implementation of the methods for ontology change management proposed in
D1.5.1, D1.5.2 and D1.5.3;

2. It is closely related to the work on change management to support collaborative workflows described
in D1.3.2. The implementation of our change log system in GATE is designed specifically to interact
with the change log and workflows implemented there.

3. The bottom-up approaches to ontology change management such as Evolva, SPRAT and SARDINE
are closely related to work carried out in WP2 and WP7, and describe continued development from
work in D1.5.2 and D1.5.3. SPRAT is described in more detail in D2.2.2.

4. Some later work on evaluating FLOR is reported in D2.2.4.

5. The development of RELExO is related to work carried out in WP3, and describes an extension of
previous versions of the system described in D3.8.1 and D3.8.2.

6. The applications are all realised as NeOn Toolkit plugins described in WP6.

2006–2010 c© Copyright lies with the respective authors and their institutions.
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Chapter 2

Evolva

2.1 Introduction

Ontologies form the basis of Semantic Web systems. As such, they need to be kept up-to-date for the
dependent systems to remain usable. A substantial part of ontology dynamics includes learning and evolv-
ing ontologies from external data sources, which provide potential sources of new domain knowledge to be
represented in the ontology. Such ontology updates and changes mainly involve finding and selecting state-
ments to be added to the ontology. Statement selection is sometimes based on conflict detection to keep the
ontology coherent after adding such statements [HS05]. However, a conflict-free statement is not necessar-
ily correct/relevant to an ontology. Even if extracted from a carefully selected data source, some statements
might concern domains other than the one covered by the ontology, might not fit the conceptualization en-
coded in it, or might simply not add any value to the ontology. Current ontology evolution tools have paid little
attention to the (semi-)automatic assessment of the relevance of statements to an ontology.

With the increase of complexity and changes occurring in the represented domains, ontology evolution
becomes a painstaking and time-consuming process. We regard ontology evolution as the “timely adap-
tation of an ontology to the arisen changes and the consistent management of these changes” [HS05].
“Timely adaptation” suggests a quick adaptation, that can only be achieved by decreasing user involve-
ment in the evolution process. However, most current approaches heavily rely on user input. Moreover,
the definition suggests that a successful evolution can only be achieved by having both adaptation and
change management. Yet no existing approach handles both tasks in one framework. One set of ap-
proaches considers evolution as the management of changes performed by users for preserving consistency
[Kle04, NCLM06, Sto04, VPST05], while another set targets techniques for integrating new knowledge into
the ontology [AHO06, BHSV06, NLH07, OGG07], without an extensive handling of change and evolution
management.

Our hypothesis is that it should be possible to assess the relevance of a statement by analyzing the context
in which it occurs, and by checking how the context complements the ontology to evolve. We use online
ontologies to provide contexts where statements are used. We extract the context of a statement from an
ontology as the sub-graph of the ontology surrounding the entities linked through the statement. We then
use matching techniques to align such a context with the ontology to evolve, relating common entities and
relations in both graphs. We have also developed a visualization tool that provides an overview of this
mapping. Using such a visualization, we studied the intersection of the context of a statement with the
ontology to evolve, which helped us identify clues and indications to support the assessment of the relevance
of the statement to the ontology.

Applying this methodology leads to interesting results and raises a number of issues related to the use of the
proposed approach. Indeed, looking at various examples, general patterns emerge from specific contexts
that seem to indicate either the relevance or the non-relevance of the statement. Also, while the large
variety of ontologies available on the Semantic Web provides a great source of contexts for this approach, it
also leads to new research questions, concerning for example the use of contexts having different levels of
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granularity from the considered ontologies, or that apply different modeling principles.

In this chapter, we discuss our ontology evolution tool Evolva (Section 2.2), which evolves ontologies starting
from external data sources. Evolva detects new ontological entities from such data sources, and links them
through its relation discovery component, which relies on various sources of background knowledge. In ad-
dition to our evolution tool, we discuss the assessment of statements in terms of correctness and relevance,
and their evaluation when applied to the fishery domain (Section 2.3).

2.2 Evolva Framework

Evolva is a comprehensive ontology evolution framework, covering a complete ontology evolution cycle in-
cluding a) the performing of changes based on external data sources, and b) the management of these
changes as shown in Figure 2.1.

We identify the need for evolution by contrasting the content of the ontology with that of external data sources.
Such sources could be text documents, folksonomies, databases, or other ontologies. Each source requires
a different method of content extraction handled by the information discovery component (first box in Figure
2.1).
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Figure 2.1: Evolva Framework Architecture

A detailed description of Evolva’s components can be found in our previous NeOn deliverable D1.5.3
[MAP+09]. In brief, the data validation component identifies new terms that are relevant for the ontology. It
also checks the quality of content and filters out noise generated from the information discovery component.
The validated information is passed to the ontology changes component in which background knowledge
plays a core role in automating the integration of new information to the ontology. The use of background
knowledge aims to decrease user input throughout the evolution. Background knowledge exists in various
formats including lexical databases such as WordNet [Fel98], online ontologies, and unstructured web doc-
uments. Our relation discovery step uses background knowledge to determine the relationship path of new
knowledge to existing knowledge in the ontology. The evolution could generate conflicts and problems that
are handled at the level of the evolution validation component. We plan to have in this component temporal
reasoning for time-related problems, coupled with duplication and consistency checks. Finally the validated
ontology is passed to the evolution management component (bottom right part of Figure 2.1) where the user
has control over the evolution, and changes are recorded and propagated to dependent ontologies.

2006–2010 c© Copyright lies with the respective authors and their institutions.
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Evolva has been implemented as a plugin for the NeOn toolkit. Currently it covers the data discovery from
text documents, the relation discovery using WordNet and online ontologies as sources of background knowl-
edge, in addition to integrating the changes on the ontology itself or on a separate new version. In addition,
Evolva is fully compatible with the Change Capturing plugin, and all changes are recorded and integrated
in the workflow for change management [PHYd08]. Implementation details are discussed in [MAP+09]. In
this deliverable, we focus on improving the output of the relation discovery feature in Evolva, by providing
statement validation techniques as presented in the following sections.

2.3 Statement Evaluation

Evolva automatically discovers new statements to be added to the ontology to increase its domain coverage,
with respect to a set of external data sources. The question arises as to how such statements should be
evaluated. Adding new statements to an ontology can have several effects on the ontology. Most current
approaches limit their validation to conflict detection mechanisms, such that statements are only added if
they do not cause conflicts in the ontology. However, adding an incorrect or irrelevant statement would not
necessarily initiate an inconsistency state in the ontology. In order to obtain higher precision in the process
of ontology evolution, it is worth evaluating the statements in terms of (1) correctness and (2) relevance with
respect to the ontology.

2.3.1 Evaluating Statement Correctness

One of the assets of Evolva is in the use of online ontologies as background knowledge, as a source of new
statements linking new entities to existing entities in the ontology. However, with little control over the quality
of published ontologies, there remains a possibility of getting incorrect statements. The NeOn deliverable
D2.2.3 [SdCd+09] describes in detail various techniques for evaluating ontological entities. The parts of
D2.2.3 that mainly focus on evaluating the statement correctness are:

1. Trust-based Evaluation of Ontology Components: this technique relies on feedback from the com-
munity of users for assessing the quality of an ontology or ontological entity. Such feedback can be
accessed through Watson [dBG+07], a Semantic Web gateway that collects, indexes and gives ac-
cess to thousands of online ontologies, that can be searched and explored through its user interface,
or through Web services. This would give a direct indication of the correctness of a statement, in order
to decide whether or not to use it in the ontology evolution.

2. Other techniques are described in the deliverable for evaluating the correctness of ontology state-
ments. Such methods are partly inspired from existing work in NLP and applied in Web/Semantic Web
environments, and can be reused to evaluate the correctness of statements generated by ontology
evolution tools.

2.3.2 Statement Correctness Experiment

We performed an experimental evaluation of the current implementation of the relation discovery module on
the data sets provided by the KMi scenario. Our goal is to get an insight into the efficiency, in particular
in terms of precision, of the relation discovery relying on our two main background knowledge sources:
WordNet and online ontologies. Online ontologies are accessed using Scarlet [SdM08], a Semantic Web
based relation discovery engine, which matches terms to online ontological entities for resolving relations
[ES07].
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Extracted Ontology Relation Relation
Term Concept Path

Contact Person v contact v representative v negotiator
vcommunicatorv person

Business Partnership v business v partnership
Child Person v child v person

Table 2.1: Examples of relations derived using WordNet

Evaluator 1 Evaluator 2 Evaluator 3 Agreed by all
Correct 106 137 132 76
False 96 53 73 26
Don’t know 2 15 0 0
Precision 53 % 73 % 65 % 75 %

Table 2.2: Evaluation results for the relations derived from WordNet

Experimental Data

We used 20 documents from the KMi news repository1 as a source of potentially new information, from which
520 terms were identified. The base ontology which we wish to evolve (i.e. KMi’s ontology based on the AKT
ontology) currently contains 256 concepts. By using the Jaro matcher we discovered that 21 of the extracted
terms have exact correspondences within the base ontology and that 7 are closely related to some concepts
(i.e. their similarity coefficient is above the threshold of 0.92).

Evaluation of the WordNet Based Relation Discovery

WordNet has been long used as a reference resource for establishing relations between two given concepts,
based on the relation that exists between their synsets. Thanks to the WordNet based relation discovery
module, 162 out of the 492 remaining new terms have been related to concepts in the ontology. Some
of these relations were duplicates as they related the same pair of term and concept through the relation
of different synsets. For evaluation purposes, we eliminated duplicate relations and obtained 413 distinct
relations (see examples in Table 2.1).

We evaluated a sample of randomly selected 205 relations (i.e. half the total) in three parallel evaluations.
This manual evaluation2, which is not part of our evolution framework, helped to identify those relations which
we considered correct or false, as well as those for which we could not decide on a correctness value ("Don’t
know"). Our results are shown in Table 2.2. We computed a precision value for each evaluator; however,
because there was considerable variation between them, we decided to compute also a precision value on
the sample on which they all agreed. Because of the rather high disagreement level between evaluators
(more than 50%), we cannot draw a generally valid conclusion from these values. Nevertheless, they already
give us an indication that, even in the worst case scenario, more than half the obtained relations would be
correct. Moreover, this experiment helped us to identify typical incorrect relations that could be filtered out
automatically.

1http://news.kmi.open.ac.uk
2To our knowledge, there are no benchmarks of similar experimental data against which our results could be compared.

2006–2010 c© Copyright lies with the respective authors and their institutions.
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Evaluation Results for Scarlet

Scarlet [SdM08] automatically selects and explores online ontologies to discover relations between two given
concepts. For example, when relating two concepts labelled Researcher and AcademicStaff, Scarlet iden-
tifies (at run-time) online ontologies that can provide information about how these two concepts inter-relate,
and then combines this information to infer their relation. [SdM08] describes two increasingly sophisticated
strategies to identify and exploit online ontologies for relation discovery. We rely on the first strategy, which
derives a relation between two concepts if this relation is defined within a single online ontology, e.g. stating
that Researcher v AcademicStaff. Besides subsumption relations, Scarlet is also able to identify disjoint and
named relations. All relations are obtained by using derivation rules which explore not only direct relations
but also relations deduced by applying subsumption reasoning within a given ontology. For example, when
matching two concepts labelled Drinking Water and tap_water, appropriate anchor terms are discovered in
the TAP ontology and the following subsumption chain in the external ontology is used to deduce a sub-
sumption relation: DrinkingWater v FlatDrinkingWater v TapWater. Note that, as in the case of WordNet,
the derived relations are accompanied by a path of inferences that lead to them.

The Scarlet-based relation discovery processed the 327 terms for which no relation had been found in Word-
Net. It identified 786 relations of different types (subsumption, disjointness, named relations) for 68 of these
terms (see some examples in Table 2.3). Some of these relations were duplicates, as the same relation can
often be derived from several online ontologies. Duplicate elimination led to 478 distinct relations.

For the evaluation, we randomly selected 240 of the distinct relations (i.e. 50% of them). They were then
evaluated in the same setting as the WordNet-based relations. Our results are shown in Table 2.4, where,
as in the case of the WordNet-based relations, precision values were computed both individually and for
the jointly agreed relations. These values were in the same ranges as for WordNet. One particular issue
we faced here was the evaluation of the named relations. These proved difficult because the names of the
relations did not always make their meanings clear. Different evaluators provided different interpretations for
these, which increased the disagreement levels. Therefore, again we cannot provide a definitive conclusion
of the performance of this particular algorithm. Nevertheless, each evaluator identified more correct than
incorrect relations.

Summary

The overall precision of around 77% shows that background knowledge can largely contribute to automating
the integration of new knowledge into the ontology. This is where user input is traditionally most needed. We
also found that precision can be further increased through introducing validation techniques such as using
the ontology itself as a relation validator, and by using filter mechanisms for excluding irrelevant terms.

No. Extracted Ontology Relation Relation
Term Concept Path

1 Funding Grant v funding v grant
2 Region Event occurredIn region v place←occurredIn- event
3 Hour Duration v hour v duration
4 Broker Person isOccupationOf broker -isOccupationOf→ person
5 Lecturer Book editor lecturer v academicStaff v employee

v person←editor-book
6 Innovation Event v innovation v activity v event

Table 2.3: Examples of relations discovered using Scarlet
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Evaluator 1 Evaluator 2 Evaluator 3 Agreed by all
Correct 118 126 81 62
False 96 56 57 17
Don’t know 11 47 102 8
Precision 56 % 70 % 59 % 79 %

Table 2.4: Evaluation results for the relations derived with Scarlet.

2.3.3 Methodology for Evaluating Statement Relevance

Evaluating the correctness of statements is only part of the process in reaching a higher quality ontology
evolution. In many cases, there are a lot of new correct statements, which are discovered and proposed to
enrich the base ontology. However, not all of them are useful to be added to the ontology. For example, if
a user is evolving an ontology in the academic domain, and the concept Death occurs in a text document,
Evolva would probably link Death as a type of Event in the ontology. Of course the statement by itself
is correct and would not conflict with the ontology, but it is probably not relevant to add. With plenty of
statements to check, it becomes a burden on the user to manually select the relevant ones. In this section,
we present our methodology for identifying such relevance.

Exploring the Ontological Context of a Statement for Assessing its Relevance

One way to assess whether a statement is relevant to a particular ontology is to rely on additional information
provided by background knowledge sources. More specifically, we consider that such background knowledge
can be given by the contexts in which this statement has been used and applied. The main idea of our method
is to explore the ontological contexts of statements, i.e. the contexts in which they are applied in other,
external ontologies, to identify factors allowing to assess their relevance. In this work, it is assumed that the
relevance of a statement relates to the added value of this statement with respect to a particular ontology.
In other words, we want to check whether the considered statement should be added to the considered
ontology.

To analyze the use of ontological contexts to assess the relevance of a statement s to an ontology O, three
main tasks need to be realised. First, such ontological contexts have to be discovered and extracted. We
use a relation discovery engine on the Semantic Web, based on a Semantic Web gateway to identify online
ontologies where a statement s appears, and devise a technique to extract the surrounding of s in these on-
tologies. The result is a set of contexts {C1, C2, ..., Cn} corresponding to sub-parts of ontologies surrounding
s. Second, these ontological contexts have to be aligned to the ontology O. We use simple matching tech-
niques to identify common entities in a context Ci and the ontology O. Then, the degree of overlap between
the context of the statement and the ontology needs to be interpreted and translated into a relevance mea-
sure. However, this is not a trivial task. Therefore, in order to gain a better understanding of which elements
of the mapping might indicate relevance, we performed a study of various cases of such mappings. For this,
we visualise the mapping between Ci and O, and study their intersection and complementarity in the search
for relevance factors. We have implemented a visualization tool that displays a merged graph based on
this mapping, distinguishing clearly the common parts from the parts specific to the ontology and statement
context.

Discovering and Extracting Statements’ Contexts

In order to obtain ontological contexts in which a given statement appears, we also use the relation
discovery engine Scarlet [SdM08]. Scarlet exploits Watson’s Web services to find ontologies that (di-
rectly or indirectly) relate entities with each other. In our case, considering a statement s of the form
s =< Subject, relation,Object >, we use Scarlet to find ontologies that relate the entities subject and

2006–2010 c© Copyright lies with the respective authors and their institutions.
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object through the relation relation.

Once the ontologies in which s appears have been identified, we extract the context surrounding s in each
ontology. To achieve this, we traverse the existing relations between the entities subject and object linked
by the statement s until a given recursion level is reached. This technique (which is very similar to the
Prompt ontology view extraction feature [NM04] or some modularization techniques [dSSS09] using traversal
approaches), includes a number of parameters to customize the size and the content included in the context.
In our case, we use separate parameters to limit the extraction depth of the entities’ parents, children and
other named relations.

As an example, Figure 2.2 shows the result of extracting the context of the statement < Project, has −
funding,Grant > from an online ontology3, with a recursion level of 1 for the parents, children and other
named relations.

Figure 2.2: Example of ontological-context for the < Project, has− funding, grant > statement

Context Graph Matching

The goal of matching the statement context to the ontology is to indicate how well the statement fits in the
ontology. In other words, we want to analyse the intersection, as well as the differences, between the context
of the statement s and the ontologyO, to derive potential factors indicating how well the considered statement
would fit in O. The method we apply relates to the task of ontology matching [ES07], but considers only a
sub-part of one ontology (the context). The purpose of our method is essentially different from ontology
matching: while ontology matching aims to assess how similar two knowledge structures are, our aim is
to identify how complementary the two structures are (i.e. how the relation context completes or fits in the
ontology to evolve).

3http://www.mindswap.org/2004/SSSW04/aktive-portal-ontology-latest.owl
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The approach we use for matching can be seen as a graph matching process. Graphs here are the set of
asserted statements in a context or ontology. It starts by matching the names of the nodes (i.e. the entities) in
the graphs of Ci and O using the Jaro-Winkler string similarity [CRF03]. In a second step, it tries to align the
edges of the graphs (i.e. the relations), first by comparing their names using the same similarity measure,
and second by using the direction of the relation. We do not currently take into account the matching of
relations in the analysis of our experiment.

Visualising Ontology-Statement Context Mappings

In order to analyze the mappings between statement contexts and the ontology to evolve, we developed a
tool to visualise such a mapping, clearly showing the intersection as well as the differences between the two
graphs. The mappings resulting from the process described above allow us to divide the elements of the
context and the ontology into three groups: (1) entities that are common to both Ci and O, (2) entities that
are only present in Ci and (3) entities that are only present in O. Our visualization displays a unique graph
based on these three groups of elements, using different shapes and colours to distinguish them. Entities
from the first group are merged and displayed in green, and represented as star-shaped nodes. Entities
from the second group are represented in red, with round-shaped nodes. Entities from the third group are
represented in blue, with square-shaped nodes.

Figure 2.3 shows an example of the mapping visualization between the SWRC ontology4, and the context of
the statement < Deliverable, subClassOf,Report > in an online ontology describing bibTeX entries5.

As can be seen from this example, depending on the size of the ontology and of the context, many elements
might be displayed that are not useful to assess the relevance of a particular statement. Optional filters can
then be applied to obtain a simpler visualisation, keeping only the surrounding concepts of the statement’s
nodes that are common in the two graphs (see Figure 2.4 for the same example with this filter applied),
presenting a clearer view of the context match.

2.3.4 Relevance Patterns and Relevance Assessment Technique

The ultimate goal of our work is to automatically assess the relevance of a statement to an ontology based
on the level of matching between its context and the ontology (thereby exploiting the result of the techniques
presented above). We conducted a study of which factors could be taken into account for computing rele-
vance. Concretely, in the study presented in this section, we applied the techniques above to obtain contexts
for 10 statements and then assess the relevance with respect to the SWRC ontology. We chose this set of
statements because it contained both relevant and irrelevant ones. Table 2.5 shows some examples of the
selected statements.

We report here on the observations we derived from analysing the visualization of the corresponding map-
pings presented above in our methodology. We discuss two relevance patterns we detected in these exam-
ples, and an additional third pattern generated as a side effect of Pattern 1. These patterns correspond to
general situations appearing in the mapping graphs and indicating that the statement is relevant.

Pattern 1: adding a sub-class to a joint concept (non-leaf in the ontology to evolve)

Pattern 1 occurs when the statement to be assessed includes a concept being a subClassOf a concept
occurring in both the context and the ontology (see the example in Figure 2.4, where the considered state-
ment is < Deliverable, subClassOf,Report > and the shared concept is Report). The factor indicating
relevance in this case is the fact that other subclasses of the common concept are also shared between the
context and the ontology, are close to each other (like TechReport and TechnicalReport in our case) or
are somehow related to each other. Such a pattern clearly indicates the relevance of the statement, as it

4http://ontoware.org/frs/download.php/354/swrc_updated_v0.7.1.owl
5http://oaei.ontologymatching.org/2004/Contest/103/onto.rdf
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Figure 2.3: Example of visualizing the mapping

shows that, while the context and the ontology have many subclasses of the same concept in common, the
one to be added through the statement is missing in the ontology. Thus we calculate the degree of confi-
dence of Pattern 1 by taking the ratio of the new concept’s siblings that are in common between the context
of the statement and the ontology to evolve, to the total number of the new concept’s siblings according to
the following formula:

Conf(p1) =
|Siblings(NewC) ∩ SubClassOnt(CommonC)|

|Siblings(NewC)|

where p1 refers to Pattern 1, NewC to the new concept suggested to be added to the ontology, CommonC
to the concept in common between the ontology to evolve and the context, and SubClassOnt to a function
for extracting the subclasses of C in the ontology to evolve.

Conversely, if the conditions of the pattern do not hold for a particular context mapping, it also provides an
indication of the irrelevance of the statement. Such a counter example is presented in Figure 2.5, where the
statement considered is< Player, subClassOf, Person >. In this case, the concept to be added (Player)
and its siblings are not related to the subclasses of Person in the SWRC ontology.
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Figure 2.4: Simplified visualization of the mapping

Pattern 2: adding a super-class to a joint concept

Pattern 2 occurs when the statement considered would add a superclass to a concept common to the con-
text and the ontology. In this case, similarly, if the other subclasses of the added concept also occur in both
ontologies or are somehow related, this represents an indication of the relevance of the statement. For ex-
ample, this pattern appears with the statement < Organization, subClassOf,ActingEntity > in Figure
2.5 where the joint concept Person is also a subclass of ActingEntity, therefore reinforcing its addition to
the ontology.

We calculate the confidence of Pattern 2 based on the ratio of subclasses in common between the statement
context and the total number of subclasses in the context, as in the following formula:

Conf(p2) =
|SubClassContext(NewC) ∩ ClassList(Ont)|

|SubClassCont(NewC)|

Where SubClassContext is a function to retrieve subclasses of a concept in its context and ClassList is a
function to get all classes in an ontology.

Figure 2.4 provides another interesting case of Pattern 2 for < Book, subClassOf,Reference >. The ad-
dition of this statement to the ontology is reinforced by the fact thatReference could be the superclass of two
joint concepts. However, since Reference and Publication denote similar concepts, adding Reference
would be redundant and would add little value to the ontology. In contrast, ActingEntity is sufficiently
different from other concepts in the ontology to be a worthwhile addition.

Pattern 3: adding a subclass to a joint concept, being a leaf in the ontology to evolve

This is a variation of the initial Pattern 1, which fails if the common concept is a leaf in the ontology to evolve
(as there will be no subclasses in this case). We spotted this pattern during our user evaluation, where many
relevant statements have been undetected before the introduction of Pattern 3. This pattern is especially
useful in scenarios where ontology extension to more specific concepts is needed.

2006–2010 c© Copyright lies with the respective authors and their institutions.
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Statement Context Ontology Relevant Figure
< Project, has− funding, Grant > http://www.mind\discretionary{-}{}{}swap.org/2004/SSSW04/ Yes 2.2

aktive-portal-ontology-latest.owl

< Deliverable, subClassOf, Report > http://ontoware.org/frs/download.php/ Yes 2.3

354/swrc_updated_v0.7.1.owl

< Organization, subClassOf, http://www.atl.external.lmco.com/projects/ Yes 2.5

ActingEntity > ontology/ontologies/basketball_soccer/

basketball.daml

< Player, subClassOf, Person > http://www.atl.external.lmco.com/projects/ No 2.5

ontology/ontologies/basketball_soccer/

basketball.daml

< Media, disjoint, Event > http://watson.kmi.open.ac.uk/ontologies/ No N/A

LT4eL/CSnCSv0.01Lex.owl

Table 2.5: Example of Statements with Relevance with respect to the SWRC Ontology

The indication of relevance in Pattern 3 is when the context of the statement has classes in common with
the ontology to evolve. The more common elements there are, the more relevant the statement is. To get a
better indication of common elements, we focus on the part of the evolving ontology where the statement is
most likely to end up, by extracting a subgraph of the corresponding ontology around the common concept.
This is very useful in the case where the ontology to evolve is of considerable size. We use the following
formula for the Pattern 3 formula calculation:

Conf(p3) =
|ClassList(Context) ∩ ClassList(OntGraph)|

|ClassList(Context)|

Where OntGraph is the subgraph of the ontology starting from the common node, up to a customisable
depth (distance between the common node and the leaf of the subgraph generated around the common
node of the ontology).

2.3.5 Statement Relevance Experiment

In addition to the statement correctness experiment, we performed an experiment to evaluate our statement
relevance assessment approach. The goal of the experiment was to get an insight into how well our pattern-
based algorithm would perform, and to identify potential new patterns to introduce in our algorithm.

Experimental Data

We performed our experiment in the fishery domain, taking the BioSphere6 ontology as the ontology to
evolve, with a fishery related corpus extracted from the (www.fishonline.org) website composed of 109 text
documents at the time of experiment. The task here is to evolve the ontology by focusing on adding new
knowledge about the fishery domain. We used Evolva to identify potentially new concepts from the corpus,
and online ontologies as the source of background knowledge.

Evolva identified 216 new statements to be added to the ontology. We filtered out statements with highly
generic concepts (e.g. Fish v Individual or Bird v Object) which are clearly irrelevant to add. We also
focused on the subClass relations, leaving the named relations’ relevance as part of our future work. We
ended up with 124 statements, out of which we randomly selected a set of 100 statements for evaluation.

6http://kmi-web06.open.ac.uk:8081/cupboard/ontology/Experiment1/biosphere?rdf

http://www.mind\discretionary {-}{}{}swap.org/2004/SSSW04/
aktive-portal-ontology-latest.owl
http://ontoware.org/frs/download.php/
354/swrc_updated_v0.7.1.owl
http://www.atl.external.lmco.com/projects/
ontology/ontologies/basketball_soccer/
basketball.daml
http://www.atl.external.lmco.com/projects/
ontology/ontologies/basketball_soccer/
basketball.daml
http://watson.kmi.open.ac.uk/ontologies/
LT4eL/CSnCSv0.01Lex.owl
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Figure 2.5: Pattern 2 example for < Organization, subClassOf,ActingEntity >. Pattern 1 counter
example for < Player, subClassOf, Person >.

Relevance Evaluation Results

Our data set of 100 statements has been evaluated by three users using a customized Web interface (shown
in Figure 2.6). A statement can be evaluated Relevant if it is important to add to the ontology, Irrelevant
if it is better to discard it, or Don’t Know if the user cannot judge from the given information. In the case
of irrelevance, the user has the option to specify if the irrelevance is due to the fact that the statement is
incorrect, or if it does not fit in the ontology.

Given the three possible answers by users, we represent each answer by a value “Relevant” = 1, “Don’t
Know”=0.5, and “Irrelevant”=0. Then we take the average of the answers per statement as a representation
of an overall relevance evaluation:

Rel(s) = Ans(u1) +Ans(u2) +Ans(u3)

where Rel is the overall relevance returned by the users, s is the corresponding statement, and Ans is the
answer of the user.

Then we take two thresholds: a relevance_threshold, irrelevance_threshold between the range [0,3]. As
shown in Figure 2.7, a statement s is relevant iff (Rel(s) > relevance_threshold), while it is irrelevant
iff (Rel(s) < irrelevance_threshold), or undetermined iff (irrelevance_threshold < Rel(s) <
irrelevance_threshold).

We have also assigned a threshold per type of pattern to evaluate the corresponding confidence value. In
this experiment, we set the threshold values as shown in Table 2.6. The evaluation results are presented in
Table 2.7. We calculate the precision/recall of our algorithm based on the formula below. Our algorithm was
able to find 30 of the 36 relevant statements judged by the users, giving 83% recall. In terms of irrelevant
statements, the recall is 63%. The 84% precision in finding irrelevant relations is acceptable, however we

2006–2010 c© Copyright lies with the respective authors and their institutions.
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Figure 2.6: Statement relevance evaluation interface.

0  3 Irrelevance 
Threshold 

Relevance 
Threshold 

Irrelevant  Don’t know  Relevant 

Figure 2.7: Statement relevance set by threshold.

will be working on improving our algorithm to increase the 53% precision in spotting the relevant statements.
Overall, in this tested domain scenario, our algorithm is considered to behave well in filtering out irrelevant
statements, and finding most of the relevant ones.

Precision =
User_AlgorithmAgreement
TotalRelevancebyAlgorithm

Recall =
User_AlgorithmAgreement
TotalRelevancebyUser

where User_AlgorithmAgreement is the total of relevance agreed between the users and our algorithm.

2.4 Conclusions

Ontology evolution is a tedious and time consuming task, especially at the level of introducing new knowledge
to the ontology. Most current ontology evolution approaches rely on the ontology curator’s expertise to come
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Threshold Value
Relevance 2
Irrelevance 1
Pattern 1 0.6
Pattern 2 0.1
Pattern 3 0.02

Table 2.6: Threshold values.

Fishery
Dataset

Users Algorithm User_Algorithm
Agreement

Recall Precision

Relevant
(2-3)

36 56 30 83.33% 53.57%

Don’t
Know (1-2)

6 N/A N/A N/A N/A

Irrelevant
(0-1)

58 44 37 63.79% 84.09%

Table 2.7: Evaluation results for relevance assessment

up with the right integration decisions. We have discussed in this chapter how background knowledge can
support Evolva, our ontology evolution framework, for automating the process of relation discovery. In our
experiments, we explored WordNet and Semantic Web ontologies (through the Scarlet relation discovery
engine).

Being able to assess the correctness as well as relevance of a statement to be added to an ontology is crucial
in ontology evolution as well as for other tasks such as ontology learning or enrichment. However, such a
task is generally left to the ontology developer, as it requires background knowledge to understand the added
value of the statement to the considered ontology.

In this chapter, we have envisaged an approach based on the use of the context in which a statement
is used in external ontologies, to assess its relevance with respect to the ontology to evolve. We have
presented a methodology to study the relation between this ontology and ontological contexts extracted from
online ontologies, with the goal of obtaining relevance factors. Applying this methodology to several concrete
examples taken from the Evolva scenario, we were indeed able to extract relevance patterns from the graph-
based visualization employed to study the mapping between the ontology and the contexts in which the
considered statements appear.

Our experiments show the feasibility of using background knowledge in ontology evolution with an average
precision of 77%. We also report in this chapter an experiment on assessing the relevance of statements with
respect to ontologies under evolution. While our initial results seem very promising so far, we shall continue
our work in refining our patterns, and finding additional patterns to cover a better relevance detection.

2006–2010 c© Copyright lies with the respective authors and their institutions.
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Chapter 3

Annotation-driven Ontology Learning

3.1 Introduction

In this section, we describe the final implementation of the SPRAT and SARDINE applications, which form
part of the GATE Web Services plugin1. These applications are also detailed in [MFP09b] and [MFP09a].
These exemplify the idea of annotation-driven ontology learning, which can be seen as a particular kind of
data-driven ontology learning. As discussed in previous deliverables D1.5.2 and D1.5.3, these applications
represent a bottom-up approach to ontology evolution, starting from the text and resulting in a modified
ontology. On the other hand, we have also previously described a top-down approach to ontology evolution,
in the form of a change management system which ensures that changes made to an ontology are reflected
at the annotation level and can be applied to other parts of a networked ontology. We describe here the
finalisation of the change management system developed in GATE in order to ensure compatibility between
changes made to an ontology in GATE and in the NeOn toolkit. This ensures that one can edit ontologies
in either architecture while retaining compatibility. We have applied the change log mechanism in GATE
automatically to the SPRAT and SARDINE applications, so that when an ontology is modified using these
applications, a change log is stored in GATE and can be applied to the original version of the ontology in
the NeOn toolkit (or in GATE) or viewed separately in either system. This is necessary because the GATE
web service plugins are only loosely coupled, so when changes are made to the ontology, compatibility
would not necessarily be ensured and changes would not necessarily be made available to other users. The
combination of the change management system in GATE, the existing change management system in the
NeOn toolkit, and the GATE web service plugins thereby creates a complete ontology development cycle.

In the following section, we describe the implementation of SARDINE and SPRAT. The two applications both
generate new ontology data from text: the difference is that SARDINE is tuned specifically to the fisheries
domain and makes use of the FAO species ontology as a seed ontology, while SPRAT is a generic version
that can be run on any kind of text and does not make use of a seed ontology. SARDINE was developed
specially for the FAO use case in collaboration with WP7, while SPRAT is aimed at more general use.

3.2 SARDINE and SPRAT

In this section, we describe our work on SARDINE and SPRAT, which generate potential new concepts for
the ontology, based on analysis of the text. This work is carried out in conjunction with work in WP2 and
WP7. In D2.2.2 [VTSFGP+08], we described the initial work extracting entities from unstructured text and
thereby reengineering information from textual documents into ontologies.

SARDINE aims to find new mentions of fish and other marine life from a corpus, and adds them to the
ontology as new instances or concepts (or makes suggestions about where to add them). It operates as a
GATE Annotation Service (GaS), taking as input the text to be processed and producing as output an OWL

1http://gate.ac.uk/projects/neon/webservices-plugin.html
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file. SPRAT aims to find new mentions of any kind of concept or instance from the text, and add them to the
ontology in the right place. It also may find synonyms and some other properties of existing instances. Since
both applications are so similar, and since SARDINE has already been described in some detail in D1.5.2,
we shall describe SPRAT in more detail and then explain how SARDINE differs.

3.2.1 GATE application

SPRAT (Semantic Pattern Recognition and Annotation Tool) is composed of a number of GATE components:
some linguistic pre-processing followed by a set of gazetteer lists and the JAPE transducers (grammars)
described above. The components are as follows:

• Tokeniser: divides the text into tokens

• Sentence Splitter: divides the text into sentences

• POS-Tagger: adds part-of-speech information to tokens

• Morphological Analyser: adds morphological information (root, lemma etc.) to tokens

• NP chunker: divides the text into noun phrase chunks

• Gazetteers: looks up various items in lists

• OntoRootGazetteer (optional): looks up items from the ontology and matches them with the text, based
on root forms

• JAPE transducers: annotate text and add new items to the ontology

The application can either create an ontology from scratch, or modify an existing ontology. The ontology
must be loaded with the application (in the former case, a blank ontology is loaded; in the latter, the ontology
to be modified) and referenced by the grammar via the runtime parameter. The ontology used is the same
one for the whole corpus: this means that if a number of documents are to be processed, the same ontology
will be modified. If this is not the desired behaviour, then there are two options:

1. A separate corpus is created for each document or group of documents corresponding to a single
output ontology. The application must be run separately for each corpus.

2. A processing resource can be added to the application that clears the ontology before re-running on
the next document. This of course requires that the ontology is saved at the end of the application,
after processing each document.

In the web service version of the application, the default behaviour is the only one possible, however (i.e. that
a single ontology is incrementally enriched by the processing of each document in the corpus).

3.2.2 Lexico-syntactic patterns for ontology generation

In D2.2.2, we described in some detail the set of lexico-syntactic patterns used in SPRAT and SARDINE, so
we shall simply provide a summary here, and discuss some extensions to the patterns we have developed.
We have identified three sets of patterns which can help us identify concepts, instances and properties to
extend the ontology: the well-known Hearst patterns [Hea92], the Lexico-Syntactic Patterns developed in the
NeOn project corresponding to Ontology Design Patterns [PGS+08, dCGPPSF08] and some new contextual
patterns defined by us [MFP09b, MFP09c].

In D2.2.2, we performed some preliminary evaluation of the SPRAT application, and drew a number of
conclusions about its performance and suggestions for future work:

2006–2010 c© Copyright lies with the respective authors and their institutions.



Page 28 of 46 NeOn Integrated Project EU-IST-027595

• incorporation of deeper semantic relations using semantic classes from VerbNet and WordNet in order
to look for verbal patterns connecting terms in a sentence.

• investigating the use of TermRaider for restricting the number of candidates for extraction. TermRaider2

is a term extraction tool we developed in-house, which is also available in its own right as part of the
GATE webservice plugin for the NeOn Toolkit.

• incorporate combinations of Hearst patterns and statistically derived collocational information.

Currently we have implemented the first two of these suggestions. First, we applied restrictions on the
patterns, based on incorporating deeper semantic relations using semantic classes from VerbNet[Sch05]
and WordNet[Fel98] in order to look for verbal patterns connecting terms in a sentence, and to restrict the
kinds of noun phrase extracted. We made use of the ANNIC plugin in GATE [ATBC05] to search for frequently
occurring annotation patterns. We aim not only to reduce the number of errors, but also to eliminate the kind
of general relations which while not incorrect, are not very useful. For example, knowing that a turtle is a
local creature is not of much interest unless more contextual information is provided (i.e. in which region it is
local).

We took inspiration also from some currently unpublished research carried out at DFKI in the Musing project3,
which looks at deriving T-Box Relations from unstructured texts in German. In this work, attention is focused
primarily on deriving relations between parts of German compound nouns, but we can make use of similar
restrictions. For example, in their work they might derive from the compound noun "bank manager" that there
is a property "has manager" belonging to "bank", and that a "bank manager" is a subclass of "manager".

3.2.3 Restrictions on Noun Phrases

We prevent certain stop words occurring as part of a noun phrase recognised in the patterns. These stop
words are a combination of some words given the wrong grammatical category by the part of speech tagger,
and some common modifiers which should not be included in the noun phrase. For example, words such as
"baby", "adult" (when modifying an NP) and most adjectives of size, number etc. should not be included. This
prevents things like "baby elephant" being recognised as a subclass of "elephant". Adjectives of colour, on
the other hand, may often be used to denote subclasses: for example, a "white rhino" is a kind of rhino. This
list of stop words was determined heuristically and can be augmented as necessary with further iterations of
testing.

3.2.4 Restrictions on Subclass Patterns

We modified the subclass rule (Adj|N) NP<class> → NP<subclass> from the set of contextual
patterns, such that either the superclass must already exist in the ontology as a recognised class, or such
that certain semantic restrictions apply. For example, one restriction states that both the proposed subclass
and superclass must have the semantic category "animal". This enables us to recognise relations such as
"carrot weevil" as a subclass of "weevil". This rule in particular has very high accuracy (98%) and only seems
to cause errors as a result of incorrect semantic categories from WordNet.

3.2.5 Restrictions on Properties

One of the most error-prone rules was the Property rule X has Y from the Lexico-Syntactic Patterns set,
which was clearly far too general. We restricted this to again use semantic categories of WordNet. For
example, for animals we can state that X must be an animal and Y must be a body part. This gave much better
results (75% accuracy, although low recall). Another restriction is the type of thing that can be considered

2http://gate.ac.uk/projects/neon/termraider.html
3http://www.musing.eu
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Relation Total Extracted Correct Precision
Subclass 163 79 48.5%
Instance 21 10 47.6%
Synonym 98 47 48.0%
Property 107 24 22.4%

Table 3.1: Results of relation extraction on 25 wikipedia documents

Relation Total Extracted Correct Precision
Class 1058 884 83.6%

Subclass 659 505 76.6%
Instance 23 12 52.2%
Synonym 98 47 48.0%
Property 55 41 74.5%

Table 3.2: Results of relation extraction after refinement

a property. We experimented with restricting the range of the property to the following semantic categories
from WordNet: plant, shape, food, substance, object, body, animal, possession, phenomenon, artifact, and
found much improved results.

3.2.6 Restrictions on Concepts

As proposed, we investigated the use of TermRaider in order to limit items proposed as new concepts to
those which had been first identified as terms. This helped greatly in preventing some more common words
being proposed as new concepts, which while correct, were not really relevant for the ontology.

The results obtained after the restrictions were applied were very encouraging. Table 3.1 shows our previous
results, reported in D2.2.2, while Table 3.2 shows the results after the improvements were made. Note that
the figures are higher in the improved version due to incorporating TermRaider – most items recognised by
TermRaider were included as new classes, which also led to recognition of more subclasses.

SPRAT generated 1058 classes, of which 83.6% were correct; 659 subclasses, of which 76.6% were correct,
23 instances, of which 52.2% were correct, and 55 properties, of which 74.5%

3.2.7 Implementation of patterns

The patterns are implemented in GATE as JAPE rules. JAPE is a pattern matching language developed by
the University of Sheffield [CMT00] and used extensively in GATE applications. On the left hand side (LHS)
of the rule is the pattern to be annotated. This consists of a number of pre-existing annotations which have
been created as a result of pre-processing components (such as POS tagging, gazetteer lookup and so on)
and earlier JAPE rules. The implementation of the lexico-syntactic patterns was described in detail in D2.2.2.
The right hand side (RHS) of the rule invokes NEBOnE and creates the new items in the ontology, as well
as adding annotations to the document itself. This part of the rule first gets the relevant information from
the annotations (using the labels assignFigureed on the LHS of the rule), then adds the new information
to the ontology and finally adds annotations to the entities in the document. NEBOnE is responsible also
for ensuring that the resulting changes to the ontology are wellformed: this was described in more detail in
D2.2.2. Figure 3.1 shows a screenshot from GATE of an ontology created from a document about sharks.

2006–2010 c© Copyright lies with the respective authors and their institutions.
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Figure 3.1: Generated ontology in GATE

3.3 GATE Change Log

In D1.5.3 [MAP+09] we described our work on developing a change log management system within the
GATE Ontology API such that it is compatible with the one produced by the NeOn toolkit. Although some
basic testing was carried out to check if the change logs were compatible with NTK, we could not test them
thoroughly because the NTK did not at that time have a functionality to load and apply change logs to existing
ontologies. Since then, a new functionality has been added in the NTK which enables the production of new
change logs and the loading of existing ones. In this deliverable, we explain how the system was modified in
order to enable this final stage of compatibility.

There is a difference between manually verifying change logs and having a functionality in NTK to test these
change logs. The obvious difference is the time it takes to verify change logs and therefore the number and
the variety of tests that can be undertaken. With the latest development in the NTK, it becomes easier to
test the change logs by loading them in the NTK and checking by simply browsing through the ontology. We
found the following issues when applying the GATE change logs in the NTK:

1. Modifications to the change log since the last version:

We observed that there were some minor changes in the NTK change log since the last version of the
NTK. The reference change logs used for our first implementation were outdated and therefore we had
to use the latest change logs to make appropriate changes to the GATE software.

2. No support for owl:import statements:

Changes recorded in change logs are recorded as instances of the classes that represent these
changes. For example, an instance of AddClass is created to record an addition of a class in the
ontology. Similarly an instance of RemoveClass is created to record deletion of a class. The taxonomy
which defines these classes is stored in a separate file. In the earlier version, we referred to such on-
tologies by simply importing them in the change log. However, after experimentation, it was discovered
that the NTK did not support owl:import statements. We therefore had to make changes to the GATE
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change log management system to include the definition of the classes/properties used in the change
log.

3. Different conventions for URI formation:

As mentioned earlier, changes are recorded as instances of the classes that represent these changes.
The NTK has different conventions for forming different types of URIs. For example, it uses the following
convention to form a URI to represent a change:

<defaultNameSpace>?location=&<typeOfInstance>=<randomCharacterSequence>

Here, the typeOfInstance could be "axiom" or "change". It turned out that the conventions used by
GATE were not compatible with the conventions used in NTK. Instead, we only used the random
character sequence that followed the default name space. Although the difference in conventions did
not prevent the loading of change logs, to make them identical and easier for debug, we changed our
system to follow the new conventions set by the NTK.

4. Difference in atomic changes:

An entity change can give rise to more than one atomic change. For example, in the NTK adding an
instance is a two step process: an instance is declared and then the class assertion is made. In GATE,
however, no declaration of individuals is required. This resulted in only one change being recorded for
the addition of individuals. We fixed this problem with an explicit mention of these changes, and at the
same time interpreting them correctly while applying change logs produced by the NTK inside GATE.

5. Missing entries in the change specification log:

It was observed that the entity changes were not recorded correctly in the history log. The NTK creates
an individual of the Log concept with a property hasLastChange, pointing to the last change made to
the ontology. While parsing a change log, the NTK looks at this instance and traverses backwards to
obtain the previous changes. In order to do so, it looks at the value of hasPreviousChange property
set on every instance of change. It was observed that in some cases, GATE did not set the value of
this property, which resulted in incorrect traversal. This issue was resolved.

Having dealt with the above issues, we were able to produce change logs from GATE and apply them in NTK
successfully.

3.4 Conclusions

In this chapter, we have presented the final implementation of the SPRAT and SARDINE applications, which
include the ability to record change logs and to apply these in the NeOn toolkit to previous versions of an
ontology. It should be noted, however, that while the applications are intended for use in real contexts (such
as the FAO fishery use case in WP7), they are very much prototype applications and could be extended and
improved. Work on the applications does not therefore stop here, and continued improvements will be made,
in particular to SPRAT. We have only tested a small number of restrictions to the lexico-syntactic patterns,
and this will form part of future development, along with increasing the number of patterns. This work will be
carried out in collaboration with work by other partners on the development of Ontology Design Patterns.

2006–2010 c© Copyright lies with the respective authors and their institutions.
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Chapter 4

RELExO

4.1 Introduction

Relational exploration is one of the most efficient approaches to semi-automatic ontology completion and
refinement. The underlying attribute exploration algorithm as well as the involvement of a description logic
reasoner help to reduce the required user effort to a minimum. However, a certain degree of user interaction
seems unavoidable. The research and development efforts we are reporting in this chapter can be considered
a first step towards fully automatic relational exploration.

In this chapter we describe an extended version of RELExO, our tool for semi-automatic ontology refinement
based on Formal Concept Analysis (see NeOn D3.8.1 [VB08]). Unlike the original release, it features an
additional automatic expert which uses textual background knowledge for suggesting possible answers to
the human ontology engineer. Even though the implementation of this expert is still ongoing, we report
preliminary results and give an elaborate example illustrating the added value that could be provided by such
an automatic expert.

4.2 Relational Exploration with Automatic Experts

4.2.1 Relational Exploration

Figure 4.1 shows the conceptual architecture of RELExO, our framework for reasoner-aided relational explo-
ration, which consists of an exploration component and a team of automatic and human experts. The icons
on the left side of the diagram symbolize the two experts (thinker and document) as well as the KAON2
reasoner (gear wheels). In the course of the exploration, all of them are asked for the validity of hypotheses
C v D and the existence of counterexamples γ. Depending on their respective answers, RELExO updates
the ontology KBΣ, the formal context or the implication base.

The ontology management infrastructure of KAON21 is used for querying and updating the ontology, while
two experts, a human ontology engineer and an automatic (e.g. ontology learning) expert, validate the
hypotheses brought up by the exploration component as depicted by Figure 4.2. Each hypothesis, corre-
sponding to a potentially missing subsumption axiom C v D with complex or atomic classes C and D, can
be accepted (i.e. confirmed) or rejected by the experts. If the hypothesis is accepted, RELExO adds the
corresponding axiom to the ontology KBΣ. If an expert rejects a hypothesis, they have to provide a coun-
terexample, that is an individual γ which is a member of C and not a member of D. In case the hypothesis
is a disjointness axiom C1 uC2 v D, for example, this must be an individual which instantiates the left-hand
side of the subsumption, C1 u C2, as every individual is per definition not a member of the empty class
⊥. Each counterexample is as well added to the ontology, before the exploration continues by computing
the next hypothesis. For further details regarding the implementation of RELExO and a sample runthrough,

1http://kaon2.semanticweb.org

http://kaon2.semanticweb.org
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please refer to [VR08b] and [VR08a].
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Figure 4.1: RELExO’s conceptual architecture

4.2.2 The Wikipedia Expert

As illustrated by Figure 4.1, the Wikipedia-based automatic expert extends the “expert team” consisting
of the KAON2 reasoner, which could be considered some kind of logical expert, and the human ontology
engineer. It is always called prior to the human expert and provides him (or her) with suggestions for possible
answers. This is also illustrated in Figure 4.2, where the gear wheels represent the KAON2 reasoner, while
the thinker symbol indicates user involvement. Whenever the non-logical, Wikipedia-based expert is called,
this is denoted by a document symbol. The implementation of the automatic non-logical expert is based on
association rules which are computed from Wikipedia (see also further below). An association rule is an
implication X → Y with itemsets X,Y ⊆ T and X ∩ Y = ∅.
For an association rule X → Y and a set of items T = t1, ...tn support and confidence are defined as
follows:

support(X → Y ) =
|{t ∈ T |X ∪ Y ⊆ t}|

|T |

confidence(X → Y ) =
|{t ∈ T |X ∪ Y ⊆ t}|
|{t ∈ T |X ⊆ t}|

Like Mädche and Staab [MS00], we transfer this definition into a text mining setting. For this purpose,
we build a corpus D = d1, ...dn of encyclopedic documents, each of them describing a concept c ∈ C as
indicated by the title of the document. We can then assume each item set ti ∈ T to consist of those concepts
ci,1, ...ci,m ∈ C which are mentioned by document di.

2006–2010 c© Copyright lies with the respective authors and their institutions.
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Example. {Zoo, Whale} → {Aquarium} is an association rule which states that the co-occurrence of the
words “Zoo” and “Whale” implies that “Aquarium” is contained in the same document. Given a corpus of
ten documents – eight of them mention both “Zoo” and “Whale” and six among those eight include all of the
words (i.e. “Zoo”, “Whale” and “Aquarium”) – we would obtain a support value of 6

10 = 0.6 and a confidence
value of 6

8 = 0.75.

The automatic expert translates each hypothesis C ⊆ D into an association rule, where each atomic class
corresponds to a search term. The support and confidence values can then be seen as indicators for the
likeliness of the conclusion terms to occur in a Wikipedia articles, given that it contains all the terms in the
premise. An article which contains all the terms in the premise and lacks many of the conclusion terms is
considered a potential counterexample.
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Figure 4.2: Relational exploration process

In the following sections, we describe two example scenarios which illustrate the use of automatic experts in
a relational exploration setting.

4.3 Scenario I: Knowledge Acquisition

Since the current prototype of the automatic non-logical expert has been finished only recently and a detailed
evaluation would have delayed the finalization of this deliverable, we will just give a short example (i.e.
a complete run of the existing implementation) which illustrates the existing functionality and leave more
extensive evaluation experiments for future work. Nevertheless, even though this example is not based on
real case study data, we are confident that a systematic user study will demonstrate the usefulness of our
approach when it comes to the refinement and evaluation of the FAO ontologies (WP7). This is why we
decided to perform initial tests with data from the fishery domain.
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4.3.1 Data Set

The data set we used for testing our implementation consists of a reasonably large text corpus and a small,
inexpressive ontology of the fishery domain. The corpus has been constructed by retrieving all the 4,709
Wikipedia articles which are contained in the “Fish” category and its subcategories. It has an overall size of
about 30 Megabytes. The fishery ontology, which we constructed ourselves in an adhoc manner, is much
smaller consisting of only 19 atomic classes. A screenshot of the ontology’s taxonomic hierarchy is shown
by Figure 4.3.

Figure 4.3: Manually built ontology about fish

4.3.2 Exploration

Before the user can start exploring the ontology, he has to specify the focus of the exploration by selecting
a set A of atomic classes (cf. Figure 4.4). In this diagram, as indicated by the plus symbols, the user has
already selected the attributes “Animal”, “Carnivore”, “Vertebrate”, “Ocean” and “River”. This dialogue is
displayed at the beginning of each relational exploration session, i.e. before the first hypothesis is raised
by RELExO. In the current implementation of RELExO, any two descriptions C and D which are part of a
hypothetical axiom C v D must only consist of conjunctions of classes contained in the previously specified
set A.

As usual the exploration starts by proposing the hypothetical axiom > v ⊥ (cf. Figure 4.5). In this diagram,
the upper part of the dialog depicts the premise, i.e. the left-hand side of the subsumption axiom, and the
lower part represents the right-hand side. This dialog is displayed each time RELExO comes up with a
new hypothesis that needs to be validated by the human expert. First, KAON2 is called to check whether this
hypothesis is true or not. The reasoner does not find any evidence for the corresponding axiom to be entailed

2006–2010 c© Copyright lies with the respective authors and their institutions.
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Figure 4.4: Attributes (i.e. atomic classes) representing the focus of the exploration

by the ontology. However, since the ABox does not contain any individuals at this time, there is nothing which
might serve as a counterexample. So, the reasoner can neither prove nor disprove the correctness of the
hypothesis and the other experts – the automatic Wikipedia-based expert and the human ontology engineer
– need to be involved. Both of them reject the hypothesis as the set of domain entities would otherwise be
empty and thus have to provide a justification in the form of a counterexample.

While the user immediately enters “Shark” as a counterexample to this rather trivial hypothesis (see Fig-
ure 4.6), the automatic expert tries to retrieve an appropriate counterexample from the Wikipedia corpus. It
does so by constructing a query which contains all the attributes from the premise and as many negated
attributes from the conclusion as possible. Whenever a hypothetical axiom gets rejected, this dialogue is
shown to the user. A plus indicates that the individual (“Shark”) has a certain attribute, e.g. being a car-
nivore, whereas a minus denotes the fact that it does not have this attribute. In this example, sharks are
modelled as carnivorous vertebrate animals which are neither rivers nor oceans. Note that the user has to
specify only those attributes of an individual which make it a valid counterexample for the given hypothesis.
An unspecified attribute would be indicated by a question mark. In this particular case, the set of attributes
in the premise is empty and all the attributes in the conclusion are negated, as the attribute nothing is
marked with a ’+’. The fulltext index of the corpus answers the query by returning the following Wikipedia
article that seems to be an optimal counterexample insofar as it contains all the keywords:

“A bottom feeder is an aquatic animal that feeds on or near the bottom of a body of water. The body
of water could be the ocean, a lake, a river, or an aquarium. ’Bottom feeder’ is a general term which is
used particularly in the context of aquariums. More specific terms for bottom feeders are: groundfish,
demersal fish and benthos. (...)” [http://en.wikipedia.org/wiki/Bottom_feeder]

The second hypothesis brought up by RELExO is > v Animal u Carnivore u V ertebrate. Like the first
one, it is rejected by both the automatic and the human expert. In order to find an appropriate counterexam-
ple, the former searches for Wikipedia articles which do not contain any of the attributes in the conclusion
(i.e. “Animal”, “Carnivore” and “Vertebrate”) while mentioning at least some of the other attributes, that is

http://en.wikipedia.org/wiki/Bottom_feeder
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Figure 4.5: Hypothesis > v ⊥

Figure 4.6: Counterexample

“Ocean” and “River”. These criteria are met by an article about the Two Oceans Aquarium in South Africa
– a reasonable counterexample, even though it does not instantiate any of the atomic classes or attributes,
respectively. However, the user decides to ignore this suggestion and enters “AtlanticOcean”.

“The Two Oceans Aquarium is an aquarium located at the Victoria & Alfred Waterfront in Cape Town,
Western Cape, South Africa. The aquarium opened on the 13 November 1995 and comprises seven
exhibition galleries with large viewing windows. (...)” [http://en.wikipedia.org/wiki/Two_
Oceans_Aquarium]

Obviously, the next hypothetical axiom (Animal v CarnivoreuV ertebrate) is invalid, too. After computing
the support and the confidence for the association rule {“Carnivore”}→ {“Animal”, “Vertebrate”} and compar-
ing them to predefined empirically determined thresholds,2 the automatic expert rejects the hypothesis. The
human agrees and gives the answer “No”. Searching for potential counterexamples the Wikipedia-based

2Both the support value of 0.00166 and the confidence value of 0.00441 are lower than the respective threshold.

2006–2010 c© Copyright lies with the respective authors and their institutions.
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expert now tries to find documents containing “Animal”, but not “Carnivore” or not “Vertebrate” and finally
retrieves the article further below. Even though the article (“Ethics of eating meat”) matches the search cri-
teria, it does not represent a useful counterexample, so the human overrides this suggestion by giving the
counterexample “Squid”.

“In most societies, controversy and debate have arisen over the ethics of eating animals. Ethical objec-
tions are generally divided into opposition to the act of killing in general, and opposition to certain agri-
cultural practices surrounding the production of meat. (...)” [http://en.wikipedia.org/wiki/
Ethics_of_eating_meat]

The fourth hypothesis (Animal v Carnivoret), which states that every animal must be a carnivore, is also
rejected by the user – following the suggestion of the automatic expert who has computed a support value
of 0.01464 and a confidence value of 0.03888. In order to find a potential counterexample, the automatic
expert searches for an article that contains “Animal”, but not “Carnivore” and finally suggests “Animal testing”
to the user. Since this answer is considered nonsense by the ontology engineer, he decides to give another
counterexample, namely “Herring” with the attributes “Animal” and “Vertebrate”.

“Animal testing, also known as animal experimentation, animal research, and in vivo testing, is the use
of non-human animals in experiments. It is estimated that 50 to 100 million vertebrate animals worldwide
– from zebrafish to non-human primates – are used annually. (...)” [http://en.wikipedia.org/
wiki/Animal_testting]

In this line, the exploration continues. The hypothetical subsumption Animal u Ocean v ⊥ (“Animal and
Ocean are disjoint.”) is accepted by the two experts, and RELExO adds it to the ontology.

The hypothesis River v ⊥ which states the emptiness of the class River is rejected by the user, and the
automatic expert give the same answer as the support value of 0.20721 exceeds the threshold. It suggests
“Blackwater river” as a counterexample – a plausible answer, but as the corresponding Wikipedia article
describes a class rather than an individual, the human ontology engineer decides to enter “Rhine”.

“A blackwater river is a river with a deep, slow-moving channel that flows through forested swamps
and wetlands. As vegetation decays in the water, tannins are leached out, resulting in transparent,
acidic water that is darkly stained, resembling tea or coffee. Most major blackwater rivers are in the
Amazon River system and the Southern United States. (...)” [http://en.wikipedia.org/wiki/
Blackwater_river]

The seventh axiom suggested by RELExO is Animal u River v ⊥ and hence states that nothing can be
both an animal and a river. Since this is obviously correct, the user answers “Yes”, whereas the automatic
expert rejects the hypothesis due to the support value of 0.11002.

Finally, the disjointness of “Ocean” and “River” (Ocean u River v ⊥) is confirmed by both experts and the
exploration process terminates.

After all, the ontology contains 3 new axioms – all of them disjointness axioms – and 5 individuals, which
were added as counterexamples (see Figure 4.7). The plus symbols indicate an incidence relation, i.e.
the fact that an individual belongs to a certain class, whereas a minus means that the individual is not a
member of that class. Although in this relatively simple scenario the acquired axioms could have easily been
added manually, it is obvious that this kind of automatic support will become indispensable in case of bigger
ontologies, where the number of potentially missing axioms is much higher.

http://en.wikipedia.org/wiki/Ethics_of_eating_meat
http://en.wikipedia.org/wiki/Ethics_of_eating_meat
http://en.wikipedia.org/wiki/Animal_testting
http://en.wikipedia.org/wiki/Animal_testting
http://en.wikipedia.org/wiki/Blackwater_river
http://en.wikipedia.org/wiki/Blackwater_river
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Figure 4.7: Formal Context

4.4 Scenario II: Knowledge Fusion

Various approaches for fully automated ontology enrichment have been proposed, of which some have been
discussed earlier in this deliverable. Automatic methods have the advantage of requiring very little or no
user interaction. This advantage, however, also leads to the main disadvantage: enrichments generated
using these methods may be erroneous and usually will contain some mistakes. RELExO can result in very
accurate results, but requires more user interaction. In this second scenario, RELExO is extended to support
controlled enrichment of an ontology based on (possibly erroneous) enrichments automatically generated
using other methods.

The extension consists of an additional logical expert, which on the one hand provides the standard reasoning
tasks of a logical expert as described above, and on the other hand provides provenance information which
can be used to import selectively from other ontologies and to further guide exploration. This additional
service is based on meta knowledge reasoning as described in D3.1.4.

4.4.1 Meta Knowledge

The following definition of meta knowledge and related reasoning tasks is an excerpt from [QS09]. For a
detailed definition, we refer the reader to [QS09].

When exploiting explicit or inferred knowledge in the semantic web, one must not only handle the knowledge
itself, but also characterizations of this knowledge, e.g. (i) where a knowledge item came from (provenance);
(ii) what level of trust can be assigned to a knowledge item; (iii) what degree of certainty is associated with
it. We refer to all such kinds of characterizations as meta knowledge. In semantic web applications, meta
knowledge needs to be computed along with each reasoning task.

Meta knowledge can come in various complex dimensions. Many simplifications performed currently, such
as assuming trust to be measured on a scale from 1 to 10, are not justified. In contrast, actual informa-
tion sources, modification dates, etc. should be tracked to establish trust [Har09]. We propose a flexible
mechanism for tracking meta knowledge, which meets these requirements.

Meta knowledge can have multiple dimensions, e.g. uncertainty, a least recently modified date or a trust
metric. For this work, we assume that these (and possible further) dimensions are independent of each
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other.

Definition 1 Knowledge dimension. A knowledge dimension D is an algebraic structure (BD,∨D,∧D),
such that (BD,∨D) and (BD,∧D) are complete semi-lattices.

BD represents the values the meta knowledge can take, e.g. all valid dates for the least recently modified
date or a set of knowledge sources for provenance. As (BD,∨D) and (BD,∧D) are complete semi-lattices,
they are, in fact, also lattices. Hence, there are minimal elements in the corresponding orders.

Axioms can be assigned meta knowledge from any of the meta knowledge dimensions. Within a single
assignment, the meta knowledge must be uniquely defined. Basically, a meta knowledge assignment is a list
of attribute value pairs assigned to an axiom, such that the attribute is a meta knowledge dimension and the
value is a value from this dimension.

Definition 2 Meta Knowledge Assignment.
A meta knowledge assignment M is a set {(D1, d1 ∈ D1), ..., (Dn, dn ∈ Dn)} of pairs of meta knowledge
dimensions and corresponding truth values, such that Di = Dj ⇒ di = dj .

Without loss of generality, we assume a fixed number of meta knowledge dimensions. As a default value for
Dn in a meta knowledge assignment, we choose ⊥D.

To allow for reasoning with meta knowledge, we need to formalize how meta knowledge assignments are
combined. How provenance [GKT07] is a strategy which describes how an axiom A can be inferred from a
set of axioms {A1, ..., An}, i.e. it is a boolean formula connecting theAi. We call a logical formula expressing
how provenance a meta knowledge formula. For example, the following query finds all limbs that are either
broken or wrenched:

x : Limb ∧ (〈x, true〉 : isBroken ∨ 〈x, true〉 : isWrenched).

The results of this query and the corresponding meta knowledge formulae are:

limb1 #1 ∧#3 and limb2 #2 ∧#4

The operators for meta knowledge dimensions extend to meta knowledge assignments, allowing us to com-
pute meta knowledge for entailed knowledge by evaluating the corresponding meta knowledge formula. Here,
we extend operations on atomic meta knowledge values to assignments, i.e. we define operations on lists of
attribute value pairs.

Definition 3 Operations on Meta Knowledge Assignments.
Let A,B be axioms and meta(A) = {(D1, x1), ..., (Dn, xn)} and meta(B) = {(E1, y1), ..., (Em, ym)} be
meta knowledge assignments. Let dim(A) be the set of meta knowledge dimensions of A. Then meta(A) ∨
meta(B) = {(D,x ∨D y)|(D,x) ∈ meta(A) and (D, y) ∈ meta(B)}. ∧ is defined analogously.

Having defined the operations on meta knowledge assignments, we can define formulae using these opera-
tions.

Definition 4 Meta Knowledge Formula.
Let A be an axiom of an ontology O, lab a function assigning a unique label to each Ai from O and lab(O)

the set of all labels of axioms in O. A meta knowledge formula φ for a axiom A wrt. an ontology O is
boolean formula over the set of labels {lab(A1), ..., lab(An)} of axioms {A1, ..., An} from O, such that for
each valuation V ⊂ lab(O), which makes φ true, the following holds: lab−(V ) |= A.

The meta knowledge of an axiom A within a meta knowledge dimension is obtained by evaluating the cor-
responding meta knowledge formula after replacing axiom labels with the corresponding meta knowledge in
the dimension under consideration.
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Definition 5 Meta Knowledge of an Axiom.
Let meta be a function mapping from an axiom to a meta knowledge assignment in dimension D. The

meta knowledge of an axiom A wrt. O in D is obtained by evaluating the formula obtained from A’s meta
knowledge formula wrt. O by replacing each lab(Ai) with the corresponding meta(Ai).

4.4.2 The Meta Knowledge Expert

A dataset used by the Meta Knowledge Expert consists of

• an ontology to be enriched;

• multiple other auxiliary ontologies, which may have been automatically enriched;

• mappings from the ontology to be enriched to the auxiliary ontologies.

The mappings again may have been learned automatically. All learned axioms are annotated with confidence
degrees generated by the learning algorithm.

We associate ontology axioms with meta knowledge through axiom annotations. Basically, an axiom anno-
tation assigns an annotation object to an axiom e.g. "(brokenLimb subClass Limb) was created by Crow
on 15.01.2008". A meta knowledge annotation consists of an annotation URI and a meta knowledge object
specifying the value of the annotation. In our case, the meta knowledge object is a constant-value represent-
ing who asserted/modified the axiom, when the axiom was last modified, or the uncertainty degree of the
axiom, the data source the axiom comes from, or a combination thereof. The grammar for meta knowledge
annotations as an extension of OWL 2 annotations3 is as follows:

OWLAxiomAnnotation := ’OWLAxiomAnnotation’

’(’OWLAxiom OWLAnnotation+’)’

OWLAnnotation := OWLConstantAnnotation

OWLConstantAnnotation := MetaKnowledgeAnnotation

MetaKnowledgeAnnotation := ’MetaKnowledgeAnnotation’

’(’AnnotationURI MetaKnowledge+’)’

MetaKnowledge := CertaintyAnnotation | DateAnnotation | SourceAnnotation | AgentAnnotation

CertaintyAnnotation := ’CertaintyAnnotation’

’(’AnnotationValue’)’

SourceAnnotation := ’SourceAnnotation’ ’(’AnnotationValue’)’

DateAnnotation := ’DateAnnotation’ ’(’AnnotationValue’)’

AgentAnnotation := ’AgentAnnotation’ ’(’AnnotationValue’)’

As the different ontology enrichment approaches discussed in this deliverable use different scales for con-
fidence degrees, they need to be normalized first. Normalization may also take into account preferences
between data sources or mappings. These preferences could be modelled as separate meta knowledge
dimensions. For the data used in the experiments of the automatic methods, detailed trust and provenance
metadata is not available. As only confidence degrees are available, only these are used. Using multidimen-
sional meta knowledge is left for future work. It can be based for example on modification data derived from
the history of Wikipedia articles used as input.

The meta knowledge agent implements the same functionality as the logical agent (i.e. KAON2) described
in section 4.2, with one difference: while for the generation of hypotheses only the ontology to be enriched is
used, confirmations and counterexamples are computed using the whole ontology network. This means that
the automatically computed but potentially erroneous enrichments from earlier enrichment steps are used to
improve the guided exploration. This reduces the number of questions necessary to ask the user.

3OWL 2 Web Ontology Language: Spec. and Func.-Style Syntax: http://www.w3.org/TR/2008/WD-owl2-syntax-20081202
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For each confirmation and counterexample respectively, the meta knowledge degrees - in our case confi-
dence degrees - are computed. Results whose confidence degrees fall below a user specified threshold are
discarded. A higher threshold means more automatically learned results are discarded, and hence more
questions need to be asked to the user. In contrast, a low threshold means fewer questions, but a higher
probability of introducing errors. If the threshold is set to 0, the meta knowledge agent behaves just like a
’normal’ logical agent using the whole ontology network, such as the logical agent described in Section 4.3.

If a confirmation or counterexample has been found, the explanation with the highest confidence degree for
this result is returned and can be used to further help the user choose whether to accept or discard this
enrichment. The explanation with the highest confidence degree is not necessary the same as the most
relevant one as defined in [JQH08]. While the latter aims at returning the most comprehensive explanation,
the meta knowledge agent returns the one with the highest confidence degree.

4.5 Future Work

We have limited the discussion in the previous section to rather primitive confidence degrees, which do not
make full use of the capabilities of the meta knowledge framework. In the future we would like to take into
account more detailed information of the agent creating knowledge fragments, modification dates and trust
assignments. This will require both enriched datasets and modelling of preferences among data sources.
Moreover, detailed explanations of proposed enrichments can make it easier for the user to decide whether
certain enrichments should be made. This will require a corresponding extension of the user interface and
an evaluation of the most efficient guidance to the user.

The implementation of the automatic expert described in Section 4.2 and 4.3 can be further improved by
methods for bridging the lexical gap between the corpus and the queries. These methods could be based on
Latent Semantic Indexing or machine processable dictionaries such as WordNet, in order to obtain evidence
for lexical semantic relations between terms (e.g. synonymy, antonymy or hyponymy).

Furthermore, a full replacement of the human ontology engineer as suggested in the introduction will demand
more sophisticated error handling approaches, including uncertainty and inconsistency management. For
this purpose, RELExO must be enabled to automatically resolve logical contradictions which result from
incorrect answers of automatic experts [Ser08]. We will also consider implementing a variant of formal
concept analysis suitable for dealing with fuzzy or probabilistic contexts.

Finally, we would like to develop similar automatic experts for the exploration of other logical fragments such
as generalized domain-range restrictions. These could be integrated, for example, into RoLExO, our tool for
the semi-automatic refinement of property restrictions (see NeOn D3.8.2 [VB09]).

4.6 Conclusion

The development of non-logical automatic experts for relational exploration is a difficult task which, to the
best of our knowledge, has not been attempted before. Our prototypical implementation based on associ-
ation rules and text mining techniques yields very promising results, but needs to be improved significantly
before it can be used in a real-world setting. As none of the approaches used provide perfect results, we
have proposed knowledge fusion based on meta knowledge reasoning in order to support the user in com-
bining results from multiple learning approaches into a single high quality one. In order to be able to use a
fully automatic approach, sophisticated error handling and additional dimension of meta knowledge will be
needed. In a broader context, it will be an interesting research question to evaluate use and usefulness of
automatically generated, mapped and enriched ontologies on the Web. A lot of Linked Data, a very recent
movement, is based on such automatically generated data. Even though it contains a certain degree of
errors, it is extremely useful due to its sheer size and tight integration, which would not have been possi-
ble using manual methods alone. Hence, automatic ontology enrichment will remain an interesting area of
research in the future.
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Chapter 5

Conclusion

In this deliverable we have described the continued implementation of a variety of different approaches to
the process of ontology evolution that were described in previous NeOn deliverables. These approaches
make use of different kinds of information as their source data: annotations, unstructured text, folksonomies,
ontologies, databases and queries. These approaches are all implemented as plugins to the NeOn toolkit. In
the case of SPRAT and SARDINE, the GATE webservices plugin which encompasses them is loosely cou-
pled with the toolkit. This means that these applications require a method for ontology change management,
in order to synchronise changes made to the ontology in the NeOn toolkit with those made in GATE where the
ontology is updated by these applications. We have finalised the ontology change management tool in GATE
and have tested its interoperability with the toolkit in order to ensure full compatibility. As a result, changes
made to the ontology in GATE can be merged with an existing ontology in the toolkit and vice versa, which
enables distributed ontology development. The change management process has been fully integrated with
the GATE webservice applications, which means that it is automatically applied when the applications are
run, and a change log is automatically saved at the end of the process.

It is possible to make use of the data-driven and socially-driven applications (SPRAT, SARDINE, Evolva and
FLOR) as input to the query-driven application RELExO. In particular, we envision a meta knowledge expert
which facilitates the integration and evaluation of the axioms generated by any of these applications. This
expert could selectively import from the output of these applications all the potentially useful extensions of
the overall ontology that is being constructed thereby taking into account the provenance (e.g. uncertainty)
information associated with the individual axioms. The implementation and evaluation of such a meta knowl-
edge expert will form part of future work, as will continued development of all the tools, in order to improve
their results further.
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