

 NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 — “Semantic-based knowledge and content systems”

D1.4.5 Query Answering with Distributed Lightweight
Ontologies

Deliverable Co-ordinator: Andreas Harth

Deliverable Co-ordinating Institution: University of Karlsruhe (UKARL)

Other Authors: Andreas Harth (UKARL), Katja Hose, Marcel Karnstedt, Axel
Polleres, Kai-Uwe Sattler, Jürgen Umbrich

This deliverable investigates methods for query answering in distributed environments. We show
how to answer a subset of SPARQL queries directly over distributed data sources, and inves-
tigate lightweight data summaries to support on-demand queries on the web. As part of the
deliverable we have implemented the direct lookup algorithm and included the functionality in
the SPARQL plugin for the NeOn Toolkit.

Document Identifier: NEON/2010/D1.4.5/v1.0 Date due: January 31, 2010
Class Deliverable: NEON EU-IST-2005-027595 Submission date: January 31, 2010
Project start date March 1, 2006 Version: v1.0
Project duration: 4 years State: Final

Distribution: Public

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 2 of 31 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is part of the NeOn research project funded by the IST Programme of the Commission of the
European Communities by the grant number IST-2005-027595. The following partners are involved in the
project:

Open University (OU) – Coordinator Universität Karlsruhe – TH (UKARL)
Knowledge Media Institute – KMi Institut für Angewandte Informatik und Formale
Berrill Building, Walton Hall Beschreibungsverfahren – AIFB
Milton Keynes, MK7 6AA Englerstrasse 11
United Kingdom D-76128 Karlsruhe, Germany
Contact person: Martin Dzbor, Enrico Motta Contact person: Peter Haase
E-mail address: {m.dzbor, e.motta}@open.ac.uk E-mail address: pha@aifb.uni-karlsruhe.de
Universidad Politécnica de Madrid (UPM) Software AG (SAG)
Campus de Montegancedo Uhlandstrasse 12
28660 Boadilla del Monte 64297 Darmstadt
Spain Germany
Contact person: Asunción Gómez Pérez Contact person: Walter Waterfeld
E-mail address: asun@fi.ump.es E-mail address: walter.waterfeld@softwareag.com
Intelligent Software Components S.A. (ISOCO) Institut ‘Jožef Stefan’ (JSI)
Calle de Pedro de Valdivia 10 Jamova 39
28006 Madrid SL–1000 Ljubljana
Spain Slovenia
Contact person: Jesús Contreras Contact person: Marko Grobelnik
E-mail address: jcontreras@isoco.com E-mail address: marko.grobelnik@ijs.si
Institut National de Recherche en Informatique University of Sheffield (USFD)
et en Automatique (INRIA) Dept. of Computer Science
ZIRST – 665 avenue de l’Europe Regent Court
Montbonnot Saint Martin 211 Portobello street
38334 Saint-Ismier, France S14DP Sheffield, United Kingdom
Contact person: Jérôme Euzenat Contact person: Hamish Cunningham
E-mail address: jerome.euzenat@inrialpes.fr E-mail address: hamish@dcs.shef.ac.uk
Universität Kolenz-Landau (UKO-LD) Consiglio Nazionale delle Ricerche (CNR)
Universitätsstrasse 1 Institute of cognitive sciences and technologies
56070 Koblenz Via S. Marino della Battaglia
Germany 44 – 00185 Roma-Lazio Italy
Contact person: Steffen Staab Contact person: Aldo Gangemi
E-mail address: staab@uni-koblenz.de E-mail address: aldo.gangemi@istc.cnr.it
Ontoprise GmbH. (ONTO) Food and Agriculture Organization
Amalienbadstr. 36 of the United Nations (FAO)
(Raumfabrik 29) Viale delle Terme di Caracalla
76227 Karlsruhe 00100 Rome
Germany Italy
Contact person: Jürgen Angele Contact person: Marta Iglesias
E-mail address: angele@ontoprise.de E-mail address: marta.iglesias@fao.org
Atos Origin S.A. (ATOS) Laboratorios KIN, S.A. (KIN)
Calle de Albarracín, 25 C/Ciudad de Granada, 123
28037 Madrid 08018 Barcelona
Spain Spain
Contact person: Tomás Pariente Lobo Contact person: Antonio López
E-mail address: tomas.parientelobo@atosorigin.com E-mail address: alopez@kin.es

D1.4.5 Query Answering with Distributed Lightweight Ontologies Page 3 of 31

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this document, even
if they might not have directly contributed to the writing of this document or its parts:

• UKO-LD

Change Log

Version Date Amended by Changes
0.1 15-12-2009 Andreas Harth Initial version
1.0 29-01-2010 Andreas Harth Including changes requested by reviewers

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 4 of 31 NeOn Integrated Project EU-IST-027595

Executive Summary

Deliverable D1.4.4 investigated the distributed aspects of knowledge representation formalisms, and pro-
posed three novel approaches dealing with 1) efficient reasoning in distributed knowledge bases, 2) reason-
ing with integrated distributed description logics, and 3) reasoning with distributed temporarily unavailable
data sources.

In this Deliverable we are concerned with the data aspect of the NeOn’s Networked Ontologies model.
The recently popularised Linked Data model covers the basic data properties of the Networked Ontologies
model.Both Linked Data and Networked Ontologies are sides of the same coin: NeOn’s Networked Ontology
model provides for knowledge representation formalisms where reasoning is a core functionality; Linked Data
is primarily concerned with data and scale.

The Linked Data substrate provides a large, distributed environment which can be seen as a network of
lightweight ontologies. Hence, by investigating query answering over Linked Data we investigate in this
deliverable how to provide query answering over lightweight ontologies.

Specifically, we show how to answer a subset of SPARQL queries directly over distributed data sources, and
investigate lightweight data summaries to support on-demand queries on the web. As part of the deliverable
we have implemented the direct lookup algorithm and included the functionality in the SPARQL plugin for the
NeOn Toolkit.

This deliverable is based on a paper that has been written in collaboration with several of external collab-
orators and has been accepted at the research track at WWW2010 under the title “Data Summaries for
On-Demand Queries over Linked Data”.

D1.4.5 Query Answering with Distributed Lightweight Ontologies Page 5 of 31

Contents

1 Introduction 6
1.1 The NeOn Big Picture . 6

1.2 Motivation and Goals for Deliverable . 6

1.3 Implementation as Plug-in . 7

2 Linked Data 8

3 Querying Linked Data 11

4 Source Selection using Data Summaries 13
4.1 Source Indexing using the QTree . 13

4.2 Source Selection . 14

4.2.1 Triple Pattern Source Selection . 14

4.2.2 Join Source Selection . 15

4.3 Source Ranking . 17

5 Data Summary Construction & Maintenance 19
5.1 Initial Phase . 19

5.2 Expansion Phase . 20

6 Evaluation 21
6.1 Setup . 21

6.2 Results . 22

6.2.1 Quality of Source Selection . 22

6.2.2 Impact of Ranking . 23

6.2.3 Query Execution Time . 23

6.2.4 Comparison with Other Approaches . 24

6.3 Discussion . 25

7 Related Work 26

8 Conclusion & Future Work 27

Bibliography 30

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 6 of 31 NeOn Integrated Project EU-IST-027595

Chapter 1

Introduction

1.1 The NeOn Big Picture

Next generation semantic applications will be characterised by a large number of ontologies, some of them
constantly evolving. As the complexity of semantic applications increases, more and more knowledge will be
embedded in applications, typically drawn from a wide variety of sources. This new generation of applications
will thus likely rely on ontologies embedded in a network of already existing ontologies. Ontologies and
metadata will have to be kept up to date when application environments and users’ needs change. We argue
that in this scenario it will become prohibitively expensive for people to directly adopt the current approach to
semantic integration, where the expectation is to produce a single, globally consistent semantic model that
serves the needs of application developers and fully integrates a number of pre-existing ontologies.

In contrast to the current model, future applications will very likely rely on networks of contextualized on-
tologies, which are usually locally, but not globally consistent. This report is part of the work performed in
WP 1 on "Dynamics of Networked Ontologies". The goal of this work package is to develop an integrated
approach for the evolution process of networked ontologies and related metadata. As shown in Figure 1.1,
WP1 belongs to the central part of the research and development WPs in NeOn. The tasks of WP1 are
heavily inter-related with other work packages. For the individual phases of the process we will develop new
methods that consider the complex relationships in a network of ontologies. These include dependencies,
mappings, different versions and also take possible inconsistencies into account.

1.2 Motivation and Goals for Deliverable

In this Deliverable we are concerned with the data aspect of NeOn’s Networked Ontologies model partially
covered in D1.4.4 [THD+09]. The recently popularised Linked Data model covers the basic data level of
the Networked Ontologies model. Both Linked Data and Networked Ontologies are sides of the same coin:
NeOn’s Networked Ontology model provides for rich knowledge representation formalisms rooted in Descrip-
tion Logics where reasoning is a core functionality; Linked Data is primarily concerned with data and scale.
Both models share RDF as underlying graph-structured data model.

The main difference is that the distributed model outlined in D1.4.4 [THD+09] relies on explicit
owl:imports statements to interlink distributed ontologies, while the Linked Data approach assumes an
implicit link by reusing identifiers of external RDF documents. The resulting interlinked dataset is amenable
for basic query answering functionality.

The Linked Data substrate provides a large, distributed environment which can be seen as a network of
lightweight ontologies. Hence, by investigating query answering over Linked Data we investigate in this
deliverable how to provide query answering over lightweight ontologies.

Specifically, we show how to answer a subset of SPARQL queries directly over distributed data sources, and
investigate lightweight data summaries to support on-demand queries on the web. As part of the deliverable

D1.4.5 Query Answering with Distributed Lightweight Ontologies Page 7 of 31

Figure 1.1: Relationships between different workpackages in NeOn

we have implemented the direct lookup algorithm and included the functionality in the SPARQL plugin for the
NeOn Toolkit.

1.3 Implementation as Plug-in

The SPARQL plug-in allows for query answering over local ontologies residing in-memory in the OWL API
by using the ARQ query processor included in the Jena Semantic Web Framework1. The installed reasoner
materialises inferences and combines them with the ontology, over which the query evaluation is carried out.
A second option is to use the direct lookup approach as elaborated in the remainder of the deliverable to
evaluate SPARQL queries from within the NeOn Toolkit against Linked Data. For example, the ontologies
published as part of WP7 [CHG+09] can serve as sources for direct lookup queries. Results of the query
evaluation can be loaded into the NeOn Toolkit and edited further.

1http://jena.sourceforge.net/

2006–2010 c© Copyright lies with the respective authors and their institutions.

http://jena.sourceforge.net/

Page 8 of 31 NeOn Integrated Project EU-IST-027595

Chapter 2

Linked Data

The recent developments around Linked Data promise to lead to the exposure of large amounts of data on the
Semantic Web amenable to automated processing in software programs [BL06]. Linked Data sources use
RDF (Resource Description Format) in various serialisation syntaxes for encoding graph-structured data.
The Linked Data effort is part of a trend towards highly distributed systems, with thousands or potentially
millions of independent sources providing small amounts of structured data. Using the available data in data
integration and decision-making scenarios requires query processing over the combined data.

For evaluating queries in such environments we can distinguish two directions:

• data warehousing or materialisation-based approaches (MAT), which collect the data from all known
sources in advance, preprocess the combined data, and store the results in a central database; queries
are evaluated using the local database.

• distributed query processing approaches (DQP), which parse, normalise, and split the query into sub-
queries, determine the sources containing results for subqueries, and evaluate the subqueries against
the sources directly.

Unfortunately, applying DQP directly is not a viable for Linked Data sets: Firstly, in most cases the data
in the different sources cannot be described by simple expressions because they may vary in the schema
or do not even have common values. Secondly, queries cannot be “dispatched”, unless query processing
capabilities exist at the source sites. Preliminary results for distributed query processing over distributed RDF
sources [QL08] assume, similar to resp. approaches from the traditional database works, relatively few query
endpoints with probably huge amounts of data, rather than many small Web resources accessible via simple
HTTP GET only.

The aim of the present paper is to narrow the gap between these two extreme approaches and find a rea-
sonable middle-ground for processing queries over Linked Data sources directly. Although currently only a
few data sources offer full query processing capabilities (e.g., by implementing SPARQL [PS08, CFT08], a
query language and protocol for RDF), we still can eschew the cost of maintaining a full index of the data at
a central location. On the current Web, all we can assume is that the sources implement a single operation
GET which returns the content of the source in RDF. Thus, instead of full federation, in this work we propose
an approximate multidimensional indexing structure (a QTree [HKS06]) to store descriptions of the content of
data sources. The QTree forms the basis for sophisticated query optimisation and helps the query processor
decide on which sources a query or a subquery to route to. We assume – as typical for Linked Data – a large
number of sources, which, in contrast to typical data integration scenarios, are of small size in the range of a
few kilobytes to megabytes.

Approximate data summaries such as QTrees can be populated by crawling techniques similar to those
employed by centralised systems, with the advantage of a significantly smaller index, which can be kept in
memory, and live query results, by processing the actual query only over those sources which likely contain
relevant information. Also, such a QTree index can be dynamically extended, by adding either user-submitted
sources or sources discovered during the query processing.

D1.4.5 Query Answering with Distributed Lightweight Ontologies Page 9 of 31

The strategy we propose is a reasonable compromise under the assumption that the overall data distribution
does not change dramatically over time, that is, that the distribution characteristics are relatively stable,
which holds for a wide range of Linked Data sources (e.g., DBpedia1, DBLP2, or machine-readable personal
homepages. Under this assumption we can employ an approach which stores a data summary reflecting
these immutable characteristics in lieu of a full local data index.

axel:foaf.rdf#me dblp:Axel_Polleres
axel:foaf.rdf

owl:sameAs

"Axel Florian
Polleres"

foaf:name

andreas:foaf#ah dblp:Andreas_Harth

"Andreas Harth"

owl:sameAs

foaf:knows

foaf:knows

dblppub:HoganHP08

"SAOR: Authoritative
Reasoning for the Web"

dc:titledc:creator

dc:creator dc:creator...

dblp:HoganHP08foaf:name

"Axel Polleres"

foaf:name

"Andreas Harth"

foaf:name

andreas:foaf.rdf

dblp:Axel_Polleres

dblp:Andreas_Harth

dc:creator

...

...

foaf:knows

foaf:knows

rdf:type

foaf:Person

rdf:type

rdf:typerdf:type

Figure 2.1: Linked Data in RDF about persons and their publications

Our approach works as follows:

• prime an approximate index structure (a QTree) with a seed data set (various mechanisms for creating
and maintaining the index are covered in Section 5)

• use the QTree to determine which sources contribute partial results for a conjunctive SPARQL query
Q

• fetch the content of the sources (optionally using only the top-k sources according to cardinality esti-
mates stored in the QTree) into memory

• perform join processing locally given remote sources do not provide functionality for computing joins

The main problem of processing such queries hence becomes finding the right sources to contain possible
answers that can contribute to the overall query and efficient parallel fetching of content from these sources.

We conclude the section by introduction example data and queries used throughout the paper. Section 3
discusses alternative methods for answering queries over Linked Data. In Section 4, we present an approach
to select sources from a QTree, an approximate data summary index. Section 5 describes approaches to
construct and maintain these data summaries followed by a discussion of results of an evaluation in Section
6. In Section 7, we align our system with existing work and conclude with an outlook to future work in
Section 8.

Example As an example used throughout the paper, consider a scenario in which sources publish inter-
linked data about people, the relations between them and their publications. Such data is indeed available
as Linked Data in RDF on the Web in the form of hand-crafted files in the friend-of-a-friend (FOAF) vo-
cabulary [BM07]) describing personal information as well as social connections, and automatic exports of
publication databases such as DBLP.

For instance, consider the Linked Data sources depicted in Figure 2.1. RDF graphs comprise (subject
predicate object) triples that denote labelled edges between the subject and the object. The figure
shows five RDF graphs covering data about Andreas and Axel: personal homepages encoded in FOAF,

1http://dbpedia.org/
2http://dblp.l3s.de/d2r/

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 10 of 31 NeOn Integrated Project EU-IST-027595

data covering personal information at DBLP, and data about one of their joint publications at DBLP. We as-
sume that namespace:localname pairs expand to full URIs, e.g. dblp:Axel_Polleres expands to
http://dblp.l3s.de/d2r/resource/authors/Axel_Polleres.

Conjunctive SPARQL queries3 consist of so-called basic graph patterns (BGPs), i.e., sets of triple patterns
containing variables. For instance, the following query asks for names of Andreas’ friends:

SELECT ?n WHERE {
andreas:foaf#ah foaf:knows ?f. ?f foaf:name ?n. } (2.1)

The next query asks for authors of article dblppub:HoganHP08 who mutually know each other:

SELECT ?x1 ?x2 WHERE {
dblppub:HoganHP08 dc:creator ?a1, ?a2.
?x1 owl:sameAs ?a1. ?x2 owl:sameAs ?a2.
?x1 foaf:knows ?x2. ?x2 foaf:knows ?x1. }

(2.2)

3We focus on the core case of conjunctive queries and do not consider more complex features such as unions, outer joins, or
filters available in SPARQL, which could be however layered on top of conjunctive query functionality.

namespace:localname
dblp:Axel_Polleres
http://dblp.l3s.de/d2r/resource/authors/Axel_Polleres
dblppub:HoganHP08

D1.4.5 Query Answering with Distributed Lightweight Ontologies Page 11 of 31

Chapter 3

Querying Linked Data

Linked Data [BL06] is RDF published on the Web according to the principles: 1) use URIs as names for things
2) use (dereferenceable) HTTP URIs, 3) provide useful content at these URIs (e.g. encoded in RDF), and 4)
include links to other URIs for discovery. In the same way the current Web is formed by HTML documents and
hyperlinks between documents, the Linked Data Web is constructed by using HTTP URIs (principle 1 and
2). Principle 3, providing meaningful content for dereferenced URIs (that is, RDF triples describing the URI,
typically in the subject position) allows for a new way to perform lookups on the data during query runtime.
The principle provides a correspondence (in URI syntax or via redirects in the HTTP protocol) between a
URI of a resource and the data source. For example, the resource URI http://dblp.l3s.de/d2r/
resource/authors/Axel_Polleres redirects to the source URI http://dblp.l3s.de/d2r/
page/authors/Axel_Polleres. Finally, reusing URIs across sources (principle 4) makes sure that
data covering the same entity can be collated from multiple sources.

Most current approaches enabling query processing over RDF data operate very much along the lines of
relational data warehouses or search engines; Semantic Web search engines [HHUD07,dBG+07,ODC+08,
CQ09] crawl large amounts of RDF documents for materialisation and indexing in a centralised data store.

The centralised approaches using materialisation (MAT) provide excellent query response times due to the
large amount of preprocessing carried out during the load and indexing steps, but suffers from a number of
drawbacks. First, the aggregated data is never current as the process of collecting and indexing vast amounts
of data is time-consuming. Second, from the viewpoint of a single requester with a particular query, there is
a large amount of unnecessary data gathering, processing, and storage involved since a large portion of the
data might not be used for answering that particular query. Furthermore, due to the replicated data storage
the data providers have to give up their sole sovereignty on their data (e.g., they cannot restrict or log access
any more since queries are answered against a copy of the data).

On the other end of the spectrum, there are approaches that assume processing power attainable at the
sources themselves (DQP), which could be leveraged in parallel for query processing. Such distributed or
federated approaches [HM85] offer several advantages: the system is more dynamic with up-to-date data
and new sources can be added easily without time lag for indexing and integrating the data, and the systems
require less storage and processing resources at the query issuing site. The potential drawback, however,
is that DQP systems cannot give strict guarantees about query performance since the integration system
relies on a large number of potentially unreliable sources. DQP is a well-known database problem [Kos00].
Typically, DQP involves the following steps for transforming a high-level query into an efficient query execution
plan: parsing, rewriting by applying equivalence rules in order to normalise, unnest, and simplify the query,
data localisation, optimisation (i.e., replacing the logical query operators by specific algorithms and access
methods as well as by determining the order of execution both at global level as at the different local sites),
and finally execution. Besides optimisation, data localisation is an important step that affects the efficiency
of the execution. The goal of data localisation, also known as source selection, is to identify the source sites
that possibly provide results for the given query or – in other words – to eliminate sites from the query plan
which do not contribute to the result. In classic distributed databases this step is supported by (query or

2006–2010 c© Copyright lies with the respective authors and their institutions.

http://dblp.l3s.de/d2r/resource/authors/Axel_Polleres
http://dblp.l3s.de/d2r/resource/authors/Axel_Polleres
http://dblp.l3s.de/d2r/page/authors/Axel_Polleres
http://dblp.l3s.de/d2r/page/authors/Axel_Polleres

Page 12 of 31 NeOn Integrated Project EU-IST-027595

view) expressions describing the fragmentation of a global table.

Possible approaches to evaluate queries over such Web resources and particularly addressing the problem
of source selection are:

• Direct Lookups (DL) The direct lookup approach is implemented in [HBF09] where one tries to lever-
age the correspondence between source addresses and identifiers contained in the sources to answer
queries. The query processor performs lookups on the sources which contain identifiers mentioned in
the query or are retrieved in subsequent steps. To answer query (2.1), one could fetch content from
andreas:foaf#ah, dereference foaf:knows links, and gather new information where hopefully
the respective names of friends are found. The sources in the DBLP realm are irrelevant for an-
swering this query. The strategy fails to find the solutions for query (2.2), however, since the necessary
owl:sameAs links come from outside the linked closure of the graph dblppub:HoganHP08. Apart
from possible incompleteness issues the approach also has limitations in the sense that only limited
parallelisation is possible: the query processor starts with one source and iteratively performs more
lookups on sources determined by intermediate results rather than looking up the entire list of relevant
sources in a single pass. On the positive side, if one can live with partial results, e.g., for star-shaped
queries such as (2.1), this approach has no need for maintaining indexes since only the correspon-
dence between source and contained identifiers is used.

• Schema-Level Indexes (SLI) A second approach, mainly based on distributed query processing re-
lies on schema-based indexes (e.g., [SVHB04], [GW97]). Here, the query processor keeps an index
structure with properties (i.e., predicates) and/or classes (i.e., objects of rdf:type triples) which oc-
cur at certain sources, and uses that structure to guide query processing. Using such schema-based
indexes the incompleteness problem of direct lookups is alleviated while only using lightweight index
structures. The drawback here is that instance-level descriptions are missing, i.e., (i) only queries
which contain schema-level elements can be answered, and (ii) on very commonly used properties
(e.g., foaf:knows, foaf:name), this index selects a (possibly too) large portion of all possible
sources.

• Data Summaries (DS) A third approach, and the one we are advocating in this paper, uses a combined
description of instance- and schema-level elements to summarise the content of data sources. We
cannot keep every data item in this index, so we use a summarising index – a data summary – which
represents an approximation of the whole data set. The DS approach uses more resources than the
schema-level indexes, however, adds the ability to cover also query patterns including instance-level
queries. Since the DS return sources which possibly contain answers to a query directly (i.e., taking
joins into account), this approach may be viewed as subsuming both direct lookups and schema-level
indexes. Further, a DS can be updated incrementally as the query processor obtains new/updated
information about sources.

andreas:foaf#ah
foaf:knows
owl:sameAs
dblppub:HoganHP08
rdf:type
foaf:knows
foaf:name

D1.4.5 Query Answering with Distributed Lightweight Ontologies Page 13 of 31

Chapter 4

Source Selection using Data Summaries

The main idea of our approach is, in order to identify relevant sources, to index RDF triples provided by the
sources by first transforming them into a numerical data space (applying hash functions) and then indexing
the resulting data items with a data summary. In our work, we use an index structure called QTree [HKS06] –
originally developed for top-k query processing [HKK+05] – as data summary. In the following, we describe
the basic principles of this structure as well as its usage for source selection.

4.1 Source Indexing using the QTree

The QTree basically is a combination of histograms and R-trees [Gut84] inheriting the benefits of both data
structures: indexing multidimensional data, capturing attribute correlations, dealing with sparse data, efficient
look-ups, and supporting incremental construction and maintenance. Like the R-tree, a QTree is a tree
structure consisting of nodes defined by minimal bounding boxes (MBBs). MBBs of all nodes always cover
all MBBs of their children and the subtrees rooted by them. Thus, an MBB describes the multidimensional
region in the data space that is represented by the node the subtree underneath. Because R-trees are
used to manage data items, leaf nodes in R-trees contain the data items that are contained in their MBBs.
However, for our purposes we cannot hold detailed information about all data items. Rather, we have to
reduce memory consumption by approximating this information.

Thus, in order to limit memory and disk consumption, we replace subtrees with special nodes called buck-
ets. Buckets correspond to histogram buckets or bins and are always leaf nodes in the QTree – and leaf
nodes are always buckets. Data items are represented by the buckets in an approximated version. As the
construction of the QTree aims at grouping data items with similar hash values into the same bucket, we can
use the MBBs as a good basis for approximation. As mentioned above, in our case data items are points in
the multidimensional space whose coordinates are obtained by applying hash functions to the components
(S, P, O) of RDF triples provided by the data sources. These components correspond to dimensions in a
three-dimensional QTree.

Only buckets contain statistical information about the data items contained in their MBBs. In principle, a
bucket might contain any kind of statistics, but for the purpose of this work we consider buckets capturing
the number of data items contained in their MBBs (count). This means, each bucket contains the number
of triples whose values (subject, predicate, object) are mapped onto coordinates that are contained in the
bucket’s MBB – the MBB being defined by [S.low, S.hi], [P.low, P.hi], [O.low, O.hi].
The total number of buckets as well as the size of a QTree can be controlled by two parameters: (i) bmax

denoting the maximum number of buckets in the QTree and thus limiting memory consumption, (ii) fmax

describing the maximum fanout (i.e., the number of child nodes) for each non-leaf node. Note that the
size of a QTree is independent from the number of represented data items – it only depends on these two
parameters.

Details on constructing and maintaining a QTree are beyond the scope of this paper. Thus, in the following we

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 14 of 31 NeOn Integrated Project EU-IST-027595

R1.1

R1.2

R1

R2

R3

R2.1ROOT

R2.2

(a) Data and Regions

ROOT

1

1

R1 R2

15 15 15

R1.1R1.2

R3

R2.1 R2.2

(b) Hierarchy

Figure 4.1: Two-dimensional QTree example

only sketch the basic idea and refer the interested reader to [HKS06]. The QTree is constructed incrementally
by inserting one data item after another. For each data item p, we first check whether it can be added to an
existing bucket that encloses p’s coordinates. In this case, the bucket statistics are updated accordingly (by
incrementing the number of contained data items). Otherwise, we traverse the QTree beginning at the root
node in each level looking for a node whose MBB completely encloses p. Once we have arrived at a node
whose children’s’ MBBs do not contain p, we create a new bucket for p and insert it as a new child node.

In order to enforce the two constraints, bmax and fmax, we have to merge buckets and child nodes, respec-
tively, if the number of buckets in the QTree or the fanout of inner nodes violates the constraints. For this
purpose, we use a penalty function that represents the approximation error caused by merging two buckets
and merge the pair of sibling buckets that minimises this penalty. The expensive check of all pairs is avoided
by maintaining a priority queue [HKS06].

To capture details on which RDF triples are provided by which source, we store not only the number of data
items per bucket but also the ids of sources whose triples are represented by the bucket. Basically, there are
two possible approaches: (i) we can simply keep a list SB of source ids and a bucket cardinality cB , or (ii)
we maintain the number of triples cs

B in each bucket B per source s ∈ SB , i.e., each bucket B contains a list
of s, cs

B pairs. For ease of explanation, in the following we stick to the first approach. In Section 4.2.2, we
pick up the second approach, as it allows for a more sophisticated estimation of result cardinality or rather
the number of results a source contributes to.

4.2 Source Selection

After having introduced the main concepts and characteristics of the QTree, let us now discuss how to use
the information provided by this structure to decide on the relevance of sources to answer a particular query.

4.2.1 Triple Pattern Source Selection

As joins are expressed by conjunctions of multiple triple patterns and associated variables, a prerequisite for
join source selection is the identification of relevant sources for a given triple pattern.

In order to determine relevant sources, we first need to identify the region in data space that contains all
possible triples matching the pattern. Therefore, we need to convert a triple pattern into a set of coordinates
in data space. For this purpose, we use the same hash functions that we used for index creation to obtain
coordinates for a given RDF triple. However, in contrast to obtaining hash values for RDF triples provided
by the sources, triple patterns of queries might contain variables. Because of these variables, in general
we have to work with regions instead of points. Thus, for each literal, predicate or URI in a given triple
pattern we apply the hash functions and set the minimum and maximum coordinates of the queried region
to the obtained hash values. For each variable, we set the minimum and maximum coordinates to the
minimum/maximum possible hash values in the respective dimension. Algorithm 1 summarises the complete
procedure to determine relevant buckets (and thus, sources).

After having determined the queried region R, we only need to find all buckets in the QTree that overlap R.

D1.4.5 Query Answering with Distributed Lightweight Ontologies Page 15 of 31

Input: BGP b, QTree QT , min/max dimensional extensions dimSpec
Output: list of relevant buckets

1 for i = 0 to 2 do
2 if b[i] 6= variable then
3 R[i].low = hash(b[i]);
4 R[i].hi = hash(b[i]);

else
6 R[i].low = dimSpec[i].low;
7 R[i].hi = dimSpec[i].hi;

end
end

10 B = ∅;
11 for B ∈ QT : B overlaps R do
12 O = B.overlap(R);
13 cO = cB · size(O)

size(B)};
14 B = B ∪ {(O, cO,SB)};

end
16 return B

Algorithm 1: identifyRelevantBuckets(BGP, QTree, dimSpec)

As the QTree, similar to the R-tree, has a hierarchical structure, the lookup procedure follows similar rules:
starting at the root node we need to traverse child nodes if their MBBs overlap R until we arrive at the buckets
on leaf level.

After having identified all buckets with overlapping MBBs, we determine the percentage of overlap with R.
Let size(R) denote the size of a region R, cB the number of data items (cardinality) represented by bucket
B and O the overlapping region of B and R. Then, the cardinality of O is calculated as cB · size(O)

size(B) . Based
on this overlap, the bucket’s source ids, and the cardinality (i.e., the number of represented RDF triples) we
can determine the set of relevant sources and the expected number of RDF triples per source – assuming
that triples are uniformly distributed within each bucket. Thus, the output of the source selection algorithm is
a set of buckets, each annotated with information about the overlap with the queried region, source ids, and
the associated cardinality.

4.2.2 Join Source Selection

In order to determine which sources provide relevant data for a join query, we first need to consider the triple
patterns (BGPs) that a join query consists of in separate. In principle, we could return the union of all sources
relevant for the individual BGPs (Section 4.2.1) as the result of the join source selection. However, it is likely
that there are no join partners for data provided by some of the sources, although they match one BGP.
Thus, we consider the overlaps between the sets of obtained relevant buckets for the BGPs with respect to
the defined join dimensions and determine the expected result cardinality of the join.

The crucial question is how we can discard any of the sources relevant for single BGPs, i.e., identify them as
irrelevant for the join. Unfortunately, if a bucket is overlapped, we cannot omit any of the according sources,
because we have no information which sources contribute to which part of the bucket. In order not to miss
any relevant sources, we can only assume all sources from the original bucket to be relevant. Sources can
only be discarded if the whole bucket they belong to is discarded, such as the smaller bucket for the second
BGP in Figure 4.2.

The result of a join evaluation over two BGPs is a set of three-dimensional buckets. Joining a third BGP
requires a differentiation between the original dimensions, because the third BGP can be joined with any of

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 16 of 31 NeOn Integrated Project EU-IST-027595

them. This means, for instance, after a subject-subject join we have to handle two different object dimensions.
To this end, a join between two three-dimensional overlapping buckets results in one six-dimensional bucket
with an MBB that is equivalent to the overlap. In general, a join between n BGPs results in a (3·n)-dimensional
join space.

1st BGP

2nd BGP

2nd BGP

subject

o
b

je
ct

Figure 4.2: QTree join between first and second BGP

Figure 4.2 illustrates the first step of join source selection on example query (2.2) of the introduction, assum-
ing that the first join is processed over the triples for subject ?X1. For illustration purposes, we only show
subject and object dimensions, as the predicate is fixed in both BGPs (i.e., the figures correspond to a slice
of the actually three-dimensional space). Figure 4.2 exemplary illustrates a bucket that corresponds to the
result of the source selection algorithm for the first BGP and shows two buckets corresponding to the second
BGP. Both overlapping buckets are constrained by their overlap in the join dimension, which is the subject
dimension. Other dimensions are not constrained. Thus, the shaded parts of both buckets represent the
result buckets of the join.

o
b

je
ct

 2
 =

 s
u

b
je

ct
 3

object 3

ob
je

ct
 1

BGP 1+2

3rd BGP

subject 1 = subject 2

Figure 4.3: QTree join with third BGP

Figure 4.3 illustrates the next join for example query (2.2), assuming that it is processed on ?X2 (object-
subject join between 2nd and 3rd BGP). Again, for illustration purposes, we omit the predicate dimensions
and show equal dimensions on the same axis (slices of the six-dimensional space reduced to the three
shown dimensions).

Algorithm 2 sketches the whole algorithm for join source selection. In general, source selection will result in
multiple buckets for each BGP. The overlap has to be determined for the cross-product of all input buckets
(lines 8 and 9). We determine the buckets for each BGP separately and join them afterwards (line 9), which
allows us to use existing methods for determining the overlap between the resulting buckets.

The loop in line 6 shows that we process all joins sequentially, storing the results in sets Ji. We insert the
result buckets of join i into a new (3 · (i + 1))-dimensional join space Ji. Note that, after the first join, two of
the six dimensions are equal. Handling them separately is just for ease of understanding and implementation.
The × operator in line 14 symbolises the operation of combining two buckets while increasing the number of
dimensions accordingly. This means, the three dimensions from OR are added to the 3 · i dimensions of OL,
together forming the 3 · (i + 1) dimensions of the result bucket. The new cardinality cOR×OL

(line 13) of the
resulting bucket is determined using the percentage of overlap for both buckets (cf. Section 4.2.1 and line 4)
and assuming uniform distribution in both buckets. The set of relevant sources SOR×OL

is a union over the
sets from both buckets. Finally, Ji serves as input for the next join (line 8).

D1.4.5 Query Answering with Distributed Lightweight Ontologies Page 17 of 31

Input: Query q, QTree QT , min/max dimensional extensions dimSpec
Output: list of relevant sources

1 J0 = ∅;
2 forall buckets B ∈ identifyRelevantBuckets(q.BGP[0],QT, dimSpec) do
3 O = B.overlap(q.BGP[0]);
4 J0 = J0 ∪ {(O, cB · size(O)

size(B)
, SB)};

end
6 for i = 1 to |q.BGP| − 1 do
7 Ji = ∅;
8 forall buckets L ∈ Ji−1 do
9 forall buckets R ∈ identifyRelevantBuckets(q.BGP[i],QT, dimSpec) do

10 dL = q.joindim[i− 1]; dR = q.joindim[i];
11 if ∃OL = L[dL].overlap(R[dR]) then
12 OR = R[dR].overlap(L[dL]);

13 cOR×OL =
cL·

size(OL)
size(L) · cR·

size(OR)
size(R)

max (L[dL].hi−L[dL].low,R[dR].hi−R[dR].low)
;

14 Ji = Ji ∪ {OL ×OR, cOR×OL ,SL ∪ SR)};
end

end
end

end
19 return

S
B∈J|q.BGP|−1

SB

Algorithm 2: identifyRelevantSources(Query, QTree, dimSpec)

4.3 Source Ranking

As source selection is approximative, the set of relevant sources will usually be overestimated, i.e., contain
false positives (note that false negatives are impossible as we consider all QTree buckets matching any BGP
of the query). Moreover, some queries may actually be answered by a large set of sources, such that a focus
on the most important ones (i.e., those producing the most results) becomes important. Both issues suggest
to introduce a kind of ranking for sources identified as being relevant to answer the query. There are two
different general approaches that could be used to rank sources:

• external ranking: ranking based on an independent/externally computed notion of the sources’ rele-
vance

• cardinality ranking: ranking based on cardinality

External ranking may be calculated using external information (i.e., a source rank ala PageRank) or may be
computed locally. Retrieving the information from, for instance, search engines, requires additional costly
lookups. Local computing requires to process a lot of additional information, which again has to be retrieved
by lookup queries or requires additional statistics maintained locally. An advantage of cardinality ranking is
that we do not need any external knowledge. All necessary information is provided by the QTree buckets that
are obtained as a result from the join source selection algorithm introduced above. The idea is to estimate
the number of results Rs that each source s ∈ S contributes to (i.e., it holds one of the input triples). The
ranks are assigned to sources according to the values of Rs in descending order.

As presented above, each bucket B provides an estimated cardinality cB and a list of associated sources
SB . In order to obtain a ranking value for a source (resembling its importance), we can just assume uniform
distribution and assign cB/|SB| to each source of a bucket, while summing over all buckets. In early tests
we recognised that this ranks sources very inaccurately. A simple modification of the QTree, which results
in constant space overhead, is to record the cardinality cs

B for each source of a bucket separately. More
specifically, cs

B estimates the number of results in B that source s contributes to, summed over all joined
triples. Thus, cB = (

∑
s∈SB

cs
B)/jlB , where jlB represents the join level of B (i.e., the number of BGPs

that have been joined to form one data item in B). This helps to overcome the assumption of a uniform
distribution in the bucket. The number of results a source contributes to is determined as:

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 18 of 31 NeOn Integrated Project EU-IST-027595

Rs =
∑

B cs
B

Algorithm 2 can be adapted straightforward. Basically, we have to apply the formulas from lines 4 and 13
separately for each source, while substituting cB by cs

B , cL by cs
L and cR by cs

R, respectively.

This is still a rough approximation, but, as we show in Section 6, it indicates the actual importance ranking
of sources in a satisfyingly accurate manner. This is grounded in probability laws, by which the probability
that a source contributes to a fraction of a bucket (the region resulting from the join overlap) increases with
its total number of data items in the bucket.

D1.4.5 Query Answering with Distributed Lightweight Ontologies Page 19 of 31

Chapter 5

Data Summary Construction & Maintenance

In this section, we discuss possible approaches to build, expand and maintain a QTree index. We identify two
main tasks, namely 1) building an initial version of a QTree and 2) expanding the index with new information
of sources, referring to 1) as the initial phase and the expansion phase for 2), respectively. Once we have
an initial version, we can use SPARQL queries to further explore new sources and expand the index in the
expansion phase. Next, we will briefly present different approaches for each of the two phases.

5.1 Initial Phase

The initial phase is an important task with high relevance for queries and the expansion of the index. Once the
QTree contains the source summaries, SPARQL queries can be evaluated against the index and the resulting
relevant sources for query answering can be gathered from the Web. Users can adjust and influence the
completeness of query results and the likelihood to discover new interesting sources in the expansion phase.
If a user wants to have complete answers, he has to ensure that the QTree contains all relevant sources
for the query. Further, the selection of seed sources can also influence the likelihood to discover new and
interesting sources. On the one hand, seed sources, selected from a nearly isolated subgraph of the Linked
Data Web, can lead to almost complete answers for queries. Assuming that resources are well interlinked in
the Linked Data Web, it is very unlikely that other sources, not contained in the isolated subgraph, will contain
relevant information to answer the particular query. On the other hand, these seed sources, isolated in the
Linked Data network, will decrease the likelihood to explore other interesting Linked Data sources.

On the contrary, randomly selecting sources from the Linked Data Web as seeds increases the exploration
of further sources, but decreases the completeness of answers. In general, we identified two different ap-
proaches for the initial phase and discuss them with respect to the above criteria:

• Pre-fetching/crawling sources The most obvious approach is to fetch seed sources for the QTree
from the Web using a Web crawler. An advantage of this approach is that existing Web crawling
frameworks and crawling strategies can be used to gather the seed URIs. The QTree can be adjusted
wrt. to answer completeness and expansion likeliness by specifying the crawl scope. Especially,
random walk strategies generally lead to representative samples of networks and thus result in seed
sources that could serve as good entry points to further discover interesting sources [HHMN99]. The
quality of query answers will depend on the selection of the seed sources and depth/exhaustiveness
of the crawl.

• SPARQL queries The second approach is essentially starting with an empty QTree and using an
initial SPARQL query to collect the initial sources for the QTree build. The index is expanded on further
queries, cf. next subsection. Given a SPARQL query, an agent iteratively fetches the content of the
URIs selected from bound variables of the query. At least, one dereferenceable URI in the SPARQL
query is required as a starting point. Thus, essentially this may be viewed as starting with the plain DL
approach mentioned in Section 3.

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 20 of 31 NeOn Integrated Project EU-IST-027595

The decision which strategy to choose strongly depends on the application scenario and has to be chosen
accordingly.

5.2 Expansion Phase

The second important phase is the expansion of the QTree index. Given a SPARQL query, it is very likely that
the initialised QTree may contain information about dereferenceable URIs that are not (yet) indexed. In this
case, the QTree should be updated with the new discovered URIs to increase the completeness of answer
sets for the next time a query is executed. This expansion can be done either offline by collecting the list
of new URIs and indexing them in batch processes or by integrating the content of new URIs at runtime.
Further, we distinguish between pushing or pulling sources into the QTree:

• Push of sources is a passive approach to get new data indexed into the QTree. With passive ex-
pansion we refer to all methods that involve users or software agents to notify the QTree about new
sources. This can be done by either a service similar to search engines’ ping services1 or by submitting
the document directly.

• Pull of sources is an active approach to index new data from the Web. One way to achieve this is to
perform lazy fetching during query execution. Lazy fetching refers to the process of dereferencing all
new URIs needed to answer a query. This particularly fits well with an initial phase based on SPARQL
queries, as outlined above. The completeness of queries and the possibility to expand the QTree with
new sources depends on the initial query and can be expected to increase gradually with more queries
expanding the index.

The latter sounds appealing since it solves the cold-start problem elegantly, by performing a plain DL ap-
proach on the first query and successively expanding the QTree with more relevant sources. Note that this
expansion could be interleaved with prefetching one or two rounds further at each new query, thus acceler-
ating the expansion of the QTree.

In this section, we have considered the problem of construction and maintenance on a high level – dealing
mainly with the question of how to obtain information from the sources. On a lower level, we also need to
consider the quality of the indexes themselves, in this case the quality of the QTree. Ideas on how to construct
and maintain indexes, especially the QTree, in the presence of updates are discussed in [HLS09], we believe
that these strategies, although being developed for a different application scenario, can be adapted in a way
that makes them beneficial also for the systems we focus on in this paper. Although these are important
issues that have to be dealt with in general, we neglect them for the remainder of this paper and instead
focus on the problem of source selection in the presence of joins.

1such as for instance http://pingthesemanticweb.com/ or Sindice [ODC+08]

http://pingthesemanticweb.com/

D1.4.5 Query Answering with Distributed Lightweight Ontologies Page 21 of 31

Chapter 6

Evaluation

In this section, we present experiments performed on a fixed crawl. On the basis of a set of generated sample
queries, we evaluate the performance for determining relevant sources on the QTree and the time elapsed to
evaluate the query in memory. The accuracy and quality of the source selection are evaluated on the basis of
a benefit measure. Most important for evaluating the practicability of the approach is to measure the impact
of source ranking. Last but not least, we also simulate the DL approach and compare it to our method. As
the focus of this work is on query processing, we only include basic measurements for index build time; we
use the on-disk storage space requirements as a proxy for use of main memory.

We expect the QTree approach to be a lightweight but efficient and effective method to limit the search
for query answers to only a subset of relevant sources. However, due to its approximate character, source
selection cannot be absolutely accurate. For this we expect the introduced ranking to be a well-suited method
for directing search to the most relevant sources. In comparison to the DL approach, our method should be
capable of handling more types of queries in reasonable time.

6.1 Setup

Using a breadth first crawl of depth four starting at Tim Berners-Lee foaf file1, we collected about 3 million
triples from about 16.000 sources. All experiments are performed on a local copy of the so gathered data
using Java 1.5 and a maximum of 3 GB main memory. 100 sample queries corresponding to two general
classes were randomly generated. The first class of sample queries are star-shaped queries with one variable
at the subject position. The second type of queries are path queries with join variables at subject and object
positions. Figure 6.1 shows abstract representations of these query classes.

1 join operations

?s

<a>

<c>

<p2>

<s>

?j1

?j2
path-shaped

2 join operations
star-shaped <p1>

<p3>

<p2><p1>

Figure 6.1: Abstract illustration of used query classes

1http://www.w3.org/People/Berners-Lee/card

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 22 of 31 NeOn Integrated Project EU-IST-027595

The star-shaped queries were generated by randomly picking a subject from the input data and arbitrarily
selecting distinct outgoing links. Then, we substituted the subject in each BGP with a variable. Path queries
were generated using a random walk approach. We randomly chose a subject and performed a random walk
of pre-defined depth to select object URIs. The result of such a random walk was transformed into a path-
shaped join by replacing the connecting nodes with variables. Using these approaches, we generated sample
queries containing one, two and three joins operation. In the following section we use P-n to denote path
queries with n join operations and S-n to denote star-shaped queries with n join operations, respectively.
BGP refers to a queries containing only one BGP and no joins. Error bars, if shown, represent minimal and
maximal values measured over all tests. The data set represents a heterogeneous and well-linked collection
of documents hosted on various domains and with different numbers of RDF triples. Most of the sources are
manually generated by Semantic Web affiliated users and URIs are reused among documents (e.g., DBpedia
or publication/conference URIs). The query classes of choice are generally understood to be representative
for real-world use cases and are used also to evaluate other RDF query systems (e.g., [NW08]).

6.2 Results

The measured time to insert one triple into the QTree is 4ms on average, while the final QTree requires a
disk size of around 22M in serialised form. As the original data is of size 561 MB, this corresponds to a
compression ratio of 96%. In the following, we present the results of four different evaluation aspects and
finally discuss the results.

6.2.1 Quality of Source Selection

First, we show the quality achieved for source selection. Based on the total number of sources T in the
data, the number of estimated sources E and the number of sources R actually needed to answer a query
we calculate the benefit 1.0 − E

T for all queries. The benefit measures the number of sources that can be
skipped in the query process, compared to the naïve approach of simply querying all known sources. In
other words, the benefit gives an idea how much we safe, i.e., how many sources we can safely discard
from querying. Figure 6.2 shows the benefit for various query types. We observe a benefit of above 80% for
the star-shaped queries, while for path queries we achieve benefits of about 20%, 40% and 60%. The high
benefit shows that our approach is very well suited to prune the search space of all sources. The difference
between query classes is due to the fact that star queries are answered by significantly fewer sources than
path queries, which usually span a large number of documents. Thus, the benefit for path queries cannot be
as high as for star queries. However, the number of possibly relevant sources can still be in the number of
thousands. This highlights the importance of an accurate source ranking, which is evaluated next.

0%

20%

40%

60%

80%

100%

BGP S-1 P-1 S-2 P-2 P-3

B
en

ef
it

Figure 6.2: Benefit of source selection

D1.4.5 Query Answering with Distributed Lightweight Ontologies Page 23 of 31

6.2.2 Impact of Ranking

As mentioned before, an accurate ranking scheme is mandatory in the presence of a huge number of relevant
sources. To show the impact of the ranking introduced in this work, we measured how many result triples we
can determine and how many queries we can completely answer when querying only top-k ranked sources.
We show according results for reasonable values of k, namely 10,50,100 and 200. Figure 6.3 and 6.4
illustrate the results of this test. In addition, Figure 6.5 shows the average maximal k that would be required
to answer a query completely (i.e., to achieve 100% in Figure 6.3). The figure further shows the number of
actually relevant sources. We can conclude that the introduced ranking is powerful and important for praxis.
The recall values for the plots in Figure 6.3 are above 50% for 4 out of 7 test with the top-200 sources.
Inspecting the ratio of completely answered queries for the query types we observe that the path queries
dominate the star-shaped queries. This is a nice complement to the higher benefit values for star-shaped
queries. Figure 6.5 shows that the absolute error in the number of selected sources increases with the
complexity of queries.

0%

20%

40%

60%

80%

100%

Top-10 Top-50 Top-100 Top-200

A
vg

. %
 o

f q
ue

ry
 r

es
ul

ts

BGP
S-1
P-1
S-2
P-2
P-3

Figure 6.3: Impact of ranking, recall of triples

0%

20%

40%

60%

80%

100%

Top-10 Top-50 Top-100 Top-200

A
vg

. %
 o

f c
om

pl
et

el
y

an
sw

er
ed

 q
ue

rie
s

BGP
S-1
P-1
S-2
P-2
P-3

Figure 6.4: Impact of ranking, answer completeness

6.2.3 Query Execution Time

A crucial aspect besides the quality and benefit of the source selection is its performance, i.e., the actual time
needed to answer queries. Figure 6.6 shows the average time required to estimate relevant sources (qtree)
and to afterwards actually evaluating the query on the content stored in memory (query). The average query

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 24 of 31 NeOn Integrated Project EU-IST-027595

 1

 10

 100

 1000

 10000

 100000

BGP S-1 P-1 S-2 P-2 P-3

R
an

k
K

max k
real src

Figure 6.5: Impact of ranking, maximal k

time for all queries is below 10 seconds, with some outliers of maximal 100 seconds. This difference in the
query times results from the number of relevant sources, which is in parts significantly high (according to the
QTree, but also the actual number of relevant sources for some queries). Similar times can be observed for
source selection on the QTree. The difference in here is also due to the number of buckets that have to be
checked while answering single BGPs on the QTree, as query times increase with the number of buckets. The
shown query times underline the applicability and practicability of our approach for a real-world application.

 1

 10

 100

 1000

 10000

 100000

 1e+06

BGP S-1 P-1 S-2 P-2 P-3

T
im

e
in

 m
s

(lo
gs

ca
le

)

qtree
query

Figure 6.6: Query time

6.2.4 Comparison with Other Approaches

Finally, we compare our proposed solution with another possible approach, namely the DL approach. We
implemented a local generalised version of the algorithm for a fair comparison with our proposed solution.
Since the DL approach performs, by design, live HTTP lookups, we cannot expect the results to be completely
accurate. An important difference compared to live lookups is the fact that RDF data, adhering to the Linked
Data principles, have in general a relation between instance and source URIs. But, some of the instance URIs
contained in our corpus may originate from data dumps instead from direct lookups. Despite this difference,
an evaluation based on crawl data reflects the general limitations of the DL approach. Figure 6.7 shows that
the DL approach is capable of returning results only for star-shaped queries with less then 2 joins.

D1.4.5 Query Answering with Distributed Lightweight Ontologies Page 25 of 31

0%

20%

40%

60%

80%

100%

BGP S-1 P-1 S-2 P-2 P-3

A
vg

. %
 o

f t
he

 r
ea

l r
es

ul
ts

 tr
ip

le
s

Figure 6.7: Applicability of the DL approach

6.3 Discussion

The evaluation shows that our novel approach is very promising and practicable for efficiently querying the
Linked Data Web. The problems of state-of-the-art solutions can be eliminated successfully by the use of
small index structures like the QTree. As expected, this is only practicable if an accurate ranking is applied.
We were able to show that even a straightforward cardinality-based ranking is well suited to achieve this task.
Our proposed solution is applicable for real-world scenarios, given the presented index and query times and
the precision and impact of the top-k ranking. A client, able to perform multithreaded lookups and set up
with an appropriate timeout for fetching the content of the estimated sources, can answer queries with live
results in less then a minute using an index of 4% size of the original data. Almost all our expectations
were met by the evaluation. Just the precision of the QTree index is slightly below our expectations and can
benefit from according optimisations. Summarising, the proposed approach represents a novel, efficient and
effective way of supporting source selection for live queries over the Linked Data Web. It is in a state ready
for real-world applications, although the very promising results can still be tuned.

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 26 of 31 NeOn Integrated Project EU-IST-027595

Chapter 7

Related Work

An implementation of the naïve Data Lookup approach, i.e., iterative query processing with dereferencing
bound URIs, has been recently presented by Hartig et al. [HBF09]. As already sketched in Section 5, we be-
lieve our approach can be viewed as fruitfully complementing and generalising/expanding this straightforward
approach towards more complete and versatile query answering over Linked Data.

Database systems have exploited the idea of capturing statistics about data for many years by using his-
tograms [Ioa03], primarily for selectivity and cardinality estimates over local data.

The majority of work on distributed query optimisation assumes a relatively small number of endpoints with
full query processing functionality rather than a possibly huge number of “dumb” sources containing small
amounts of data. Stuckenschmidt et al. [SVHB04] proposed an index structure for distributed RDF reposi-
tories based on schema paths (property chains) rather than on statistical summaries of the graph-structure
of the data. RDFStats [LW09] aims at providing statistics for RDF data that can be used for query process-
ing and optimisation over SPARQL endpoints. Statistics include histograms, covering e.g., subjects or data
types, and estimates cardinalities of selected BGPs and example queries. The Vocabulary of Interlinked
Datasets (voiD)1 is a format for encoding and publishing statistics such as basic histograms in RDF. The
QTree contains more complete selectivity estimates for all BGPs of distributed Linked Data sources and the
ability to estimate selectivity of joins.

A recent system using B+-trees to index RDF data is RDF-3X [NW08]. To answer queries with variables in
any position of an RDF triple, RDF-3X holds indexes for all possible combinations of subject, predicate and
object, an idea introduced in [HD05]. RDF-3X uses in sophisticated join optimisation techniques based on
statistics derived from the data. In contrast to our work, the approach uses a different data structure for the
index and focuses on centralised RDF stores rather than distributed Linked Data sources.

Peer-to-peer systems (P2P) leverage statistical data for source selection using so-called routing indexes.
Crespo et al. [CGM02] introduced the notion of routing indexes in P2P systems as structures that, given a
query, return a list of interesting neighbours (sources) based on a data structure conforming to lists of counts
for keyword occurrences in documents. Based on this work, other variants of routing indexes have been
proposed, e.g., based on one-dimensional histograms [PKP04], Bloom Filters [PP04], bit vectors [MMO06],
or the QTree [HKS06]. A common feature across these systems is to use a hash function to map string data
on numerical data space or bits. In contrast to our work, the focus of query optimisation in P2P systems is to
share load among multiple sites and optimisation has to take place at every site based on the local routing
indexes.

1http://rdfs.org/ns/void

D1.4.5 Query Answering with Distributed Lightweight Ontologies Page 27 of 31

Chapter 8

Conclusion & Future Work

We have presented an approach for evaluating queries over RDF published as Linked Data, based on an
index structure which summarises the content of data sources. We have shown how the index structure can
be used to select relevant sources for conjunctive query answering, and how to process joins over relevant
sources with an optional prioritisation via ranking. We have discussed strategies for constructing such data
summaries from a static dataset or dynamically during query evaluation, and presented experimental results
and discussion of our approach on synthetically generated queries over a Web crawl from 16k sources
consisting of 3m RDF triples. We have shown that our approach is able to handle more expressive queries
and return more complete results to queries compared to previous approaches.

While our initial results are promising, there remain several issues and future directions to explore. The
possible optimisations reach from the index build and maintenance, over the integration of reasoning to an
approach of a fully decentralised architecture and algorithms. An ongoing task will be to improve the current
implementation with the overall goal to provide a stable and efficient library to the community. This involves
low level data structure issues to improve the runtime and memory usage for join estimations and in general
the maintenance of the whole QTree. In the following, we highlight some challenges and possible approaches
for various open questions in more detail.

DS Build and Updates Our evaluation results show that, while the actual query processing gains a huge
benefit from the DS approach, scalability is still an issue. On one hand this applies to building the DS.
In the current approach, the size of the index and the time for inserting statements still depends heavily
on the number of sources and triples. Preferably, we would like to have an index structure that shows
constant overhead. One idea is to generate a constant-size summary approximating each source separately.
Unfortunately, this cannot scale to millions of sources (even one bucket per source QTree would be too
much). Moreover, querying millions of separate QTrees for each query will never scale. Ideas to overcome
this issue are, among others, (i) to build separate QTrees and use one spanning QTree that combines all
buckets and refers to the according “child QTrees” rather than actual sources, and (ii) to develop strategies
for combining several source QTrees on demand (e.g., if they provide similar data).

The suggested cold-start build of the index is also worth some closer investigation. We plan to implement
and evaluate different approaches as highlighted in Section 5, which are (i) the crawling of data from a list
of seed URIs with different scopes like in a random walk or a focused crawl, and (ii) using an initial SPARQL
query to fill the QTree. Both approaches result in different initial views of the Linked Data Web and thus
can be used for special use cases, ranging from application-specific data mining support over a specialised
and focused subset of Linked Data to a general initial index which enables discovery of other interesting and
related sources.

We also explore efficient update and maintenance strategies, especially for DELETE and INSERT operations.
Possible approaches are a periodical full rebuild of the QTree, which can be quite expensive, and partial
rebuilds. For the latter we explore the possibility to take into account the information stored in the source
id-cardinality maps together with the adaption of the bucket count to keep the number of operations and

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 28 of 31 NeOn Integrated Project EU-IST-027595

changes low. Another approach worth to investigate is the idea of dynamic QTree expansion based on user
queries, as sketched in Section 5. To this end, we aim to deploy a query engine with a populated QTree for
public user queries and investigate – by in parallel feeding the user queries into an empty QTree – how a
QTree purely built on real user queries evolves.

Ranking and Accuracy Currently, we are exploring possibilities to increase the accuracy of the QTree
summary. A crucial point in this is how to choose buckets to merge as soon as the maximal number of buckets
is exceeded. At the moment, this is oriented at the usual approach for multi-dimensional data summaries,
which is to minimise the area of the resulting bucket. In the setup presented here, it might be worth to also
or only regard the number of sources contributing to the resulting bucket. Another approach is to regard the
sources as a fourth QTree dimension. But, the resulting approximation can result in new problems, as there
is no obvious strategy how to cluster sources. A specific problem is also the choice of hashing function. In
our tests, different hashing functions produced in parts significantly different results. Obviously, a clustering
(i.e., order-preserving) hashing function results in higher accuracy. Open questions in this context are which
order to preserve, what range of hash keys, how to find a general hashing function, etc. Apparently, the
choice of hashing does not only influence the accuracy, but also the performance of the whole approach.

Further, the applied ranking is a crucial point of the whole approach. Even with a straightforward cardinality
ranking we achieve satisfying results. In general, there exists a tradeoff between the completeness of query
results and the time required to evaluate queries. Restricting the number of lookups via cardinality ranking
reduces the overall processing time in our current approach. We will investigate what types of ranking could
be used to further improve the accuracy of the lookups.

Query Optimisation Our current implementation is only a proof of concept and we believe that we can
improve the performance by solving and improving implementation details. We also see potential for im-
provement by optimising the source estimation for join queries. This is highly related to the structure of our
index (e.g., one QTree for all sources vs. separate QTrees). We will evaluate these approaches case by
case. This goes along with more query optimisation techniques, such as join order optimisation, for which
the introduced data summaries are especially promising.

Second, it would be intuitive, given that we act directly on the Web, to also integrate other online query
endpoints to increase the recall of the query results. Ideas to include these are, among others, to integrate
and execute the APIs of semantic search engines, such as SWSE or Sindice, and to additionally query
publicly available SPARQL endpoints. How this can be done in an efficient way and if we can gain an
significant benefit needs to be evaluated in detail in the future.

Third, we are currently discussing how a caching mechanism besides the use of HTTP proxy can help us
to improve the overall performance of our system and to reduce the caused network traffic. It is worth to
investigate how often sources change their content and especially which type of statements in the source
are deleted or added. The underlying idea is to identify statements or patterns of statements that are either
rather static or dynamic. As an example, we strongly believe that type statements (e.g., instance is of type
person) will not change very often over time, compared to stock quote or sensor information. Caching the
former and evaluating the latter live on-demand would gain a significant performance increase and reduce
necessary HTTP lookups to a minimum.

Reasoning Performing reasoning over the collected data would allow for returning consistent and extended
results adhering to the specified semantics. However, future work will have to study existing and related work
to identify promising approaches to integrate reasoning (to a certain extend) into the query processing and
index build/maintenance.

Decentralised and Distributed Architecture Last but not least, we should highlight that QTrees are also
applicable in a fully decentralised distributed query processing scenario, where peers are able to indepen-

D1.4.5 Query Answering with Distributed Lightweight Ontologies Page 29 of 31

dently process and forward queries themselves. We will investigate the possibilities to which extend peers
can act as stockholders for their own data and discuss their integration into query processing. This implies
issues like trust and privacy, completeness of results and robustness, but also architectural questions like
super-peer topologies in the presence of data sources with limited query processing capabilities. We are
going to analyse the wealth of existing works in this area and to evaluate the tradeoff between benefit and
complexity of such a setup in the context of ad-hoc queries on the Linked Web of Data.

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 30 of 31 NeOn Integrated Project EU-IST-027595

Bibliography

[BL06] Tim Berners-Lee. Linked data - design issues, July 2006. http://www.w3.org/
DesignIssues/LinkedData.html.

[BM07] Dan Brickley and Libby Miller. FOAF Vocabulary Specification 0.91, November 2007. http:
//xmlns.com/foaf/spec/.

[CFT08] Kendall Grant Clark, Lee Feigenbaum, and Elias Torres. SPARQL protocol for RDF, January
2008. W3C Recommendation, http://www.w3.org/TR/rdf-sparql-protocol/.

[CGM02] A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. In ICDCS ’02, pages
23–32, 2002.

[CHG+09] Caterina Caracciolo, Juan Heguiabehere, Aldo Gangemi, Wim Peters, and Armando Stellato.
D7.2.4 Second Network of Fisheries Ontologies. NeOn Deliverable 7.2.4, NeOn Project Mem-
bers, December 2009.

[CQ09] Gong Cheng and Yuzhong Qu. Searching linked objects with falcons: Approach, implementation
and evaluation. JSWIS, 5(3):49–70, 2009.

[dBG+07] Mathieu d’Aquin, Claudio Baldassarre, Laurian Gridinoc, Sofia Angeletou, Marta Sabou, and
Enrico Motta. Characterizing knowledge on the semantic web with watson. In EON’07, pages
1–10, 2007.

[Gut84] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In SIGMOD ’84, pages
47–57, 1984.

[GW97] Roy Goldman and Jennifer Widom. Dataguides: Enabling query formulation and optimization in
semistructured databases. In VLDB’97, pages 436–445, 1997.

[HBF09] Olaf Hartig, Christian Bizer, and Johann-Christoph Freytag. Executing sparql queries over the
web of linked data. In ISWC’09, 2009.

[HD05] Andreas Harth and Stefan Decker. Optimized index structures for querying rdf from the web. In
3rd Latin American Web Congress, pages 71–80, 2005.

[HHMN99] Monika R. Henzinger, Allan Heydon, Michael Mitzenmacher, and Marc Najork. Measuring index
quality using random walks on the web. Computer Networks, 31(11-16):1291–1303, 1999.

[HHUD07] Aidan Hogan, Andreas Harth, Jürgen Umbrich, and Stefan Decker. Towards a scalable search
and query engine for the web. In WWW’07, pages 1301–1302, 2007.

[HKK+05] K. Hose, M. Karnstedt, A. Koch, K. Sattler, and D. Zinn. Processing Rank-Aware Queries in P2P
Systems. In DBISP2P’05, pages 238–249, 2005.

[HKS06] Katja Hose, Daniel Klan, and Kai-Uwe Sattler. Distributed Data Summaries for Approximate
Query Processing in PDMS. In IDEAS ’06, pages 37–44, 2006.

http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://xmlns.com/foaf/spec/
http://xmlns.com/foaf/spec/
http://www.w3.org/TR/rdf-sparql-protocol/

D1.4.5 Query Answering with Distributed Lightweight Ontologies Page 31 of 31

[HLS09] K. Hose, C. Lemke, and K. Sattler. Maintenance Strategies for Routing Indexes. Distributed and
Parallel Databases, 26(2-3):231–259, 2009.

[HM85] Dennis Heimbigner and Dennis McLeod. A federated architecture for information management.
ACM Trans. Inf. Syst., 3(3):253–278, 1985.

[Ioa03] Y. Ioannidis. The History of Histograms (abridged). In VLDB ’03, pages 19–30, 2003.

[Kos00] Donald Kossmann. The state of the art in distributed query processing. ACM Computing Surveys,
32(4):422–469, December 2000.

[LW09] Andreas Langegger and Wolfgang WÃűÃ§. Rdfstats - an extensible rdf statistics generator and
library. In 8th International Workshop on Web Semantics, DEXA, 2009.

[MMO06] M. Marzolla, M. Mordacchini, and S. Orlando. Tree Vector Indexes: Efficient Range Queries for
Dynamic Content on Peer-to-Peer Networks. In PDP’06, pages 457–464, 2006.

[NW08] Thomas Neumann and Gerhard Weikum. RDF-3X: a RISC-style Engine for RDF. VLDB Endow-
ment, 1(1):647–659, 2008.

[ODC+08] Eyal Oren, Renaud Delbru, Michele Catasta, Richard Cyganiak, Holger Stenzhorn, and Giovanni
Tummarello. Sindice.com: A document-oriented lookup index for open linked data. JMSO, 3(1),
2008.

[PKP04] Y. Petrakis, G. Koloniari, and E. Pitoura. On Using Histograms as Routing Indexes in Peer-to-Peer
Systems. In DBISP2P ’04, pages 16–30, 2004.

[PP04] Y. Petrakis and E. Pitoura. On Constructing Small Worlds in Unstructured Peer-to-Peer Systems.
In EDBT Workshops, pages 415–424, 2004.

[PS08] Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for RDF, January 2008.
W3C Recommendation, http://www.w3.org/TR/rdf-sparql-query/.

[QL08] Bastian Quilitz and Ulf Leser. Querying distributed rdf data sources with sparql. In ESWC’08,
pages 524–538, Tenerife, Spain, 2008.

[SVHB04] Heiner Stuckenschmidt, Richard Vdovjak, Geert-Jan Houben, and Jeen Broekstra. Index struc-
tures and algorithms for querying distributed rdf repositories. In WWW’04, pages 631–639, 2004.

[THD+09] Georgios Trimponias, Peter Haase, Chan Le Duc, Antoine Zimmermann, and Simon Schenk.
D1.4.4 Reasoning over Distributed Networked Ontologies and Data Sources. NeOn Deliverable
1.4.4, NeOn Project Members, February 2009.

2006–2010 c© Copyright lies with the respective authors and their institutions.

http://www.w3.org/TR/rdf-sparql-query/

	Introduction
	The NeOn Big Picture
	Motivation and Goals for Deliverable
	Implementation as Plug-in

	Linked Data
	Querying Linked Data
	Source Selection using Data Summaries
	Source Indexing using the QTree
	Source Selection
	Triple Pattern Source Selection
	Join Source Selection

	Source Ranking

	Data Summary Construction & Maintenance
	Initial Phase
	Expansion Phase

	Evaluation
	Setup
	Results
	Quality of Source Selection
	Impact of Ranking
	Query Execution Time
	Comparison with Other Approaches

	Discussion

	Related Work
	Conclusion & Future Work
	Bibliography

