

 NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 — “Semantic-based knowledge and content systems”

D1.2.5 Inconsistency-tolerant Reasoning with Networked
Ontologies

Deliverable Co-ordinator: Guilin Qi

Deliverable Co-ordinating Institution: University of Karlsruhe

Other Authors: Simon Schenk (UKoblenz)

In deliverable D1.2.4, we discussed the problem of reasoning with inconsistent networked on-
tologies and proposed several inconsistency tolerant semantics. In this deliverable, we con-
sider the bilattice-based semantics and propose a segmentation-based approach for approxi-
mate query over distributed inconsistent ontologies based on the bilattice-based semantics. We
implemented this approach and provide some interesting evaluation results.

Document Identifier: NEON/2010/D1.2.5/v1.0 Date due: January 31, 2010
Class Deliverable: NEON EU-IST-2005-027595 Submission date: January 31, 2010
Project start date March 1, 2006 Version: v1.0
Project duration: 4 years State: Final

Distribution: Public

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 2 of 38 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is part of the NeOn research project funded by the IST Programme of the Commission of the
European Communities by the grant number IST-2005-027595. The following partners are involved in the
project:

Open University (OU) – Coordinator Universität Karlsruhe – TH (UKARL)
Knowledge Media Institute – KMi Institut für Angewandte Informatik und Formale
Berrill Building, Walton Hall Beschreibungsverfahren – AIFB
Milton Keynes, MK7 6AA Englerstrasse 11
United Kingdom D-76128 Karlsruhe, Germany
Contact person: Martin Dzbor, Enrico Motta Contact person: Peter Haase
E-mail address: {m.dzbor, e.motta}@open.ac.uk E-mail address: pha@aifb.uni-karlsruhe.de
Universidad Politécnica de Madrid (UPM) Software AG (SAG)
Campus de Montegancedo Uhlandstrasse 12
28660 Boadilla del Monte 64297 Darmstadt
Spain Germany
Contact person: Asunción Gómez Pérez Contact person: Walter Waterfeld
E-mail address: asun@fi.ump.es E-mail address: walter.waterfeld@softwareag.com
Intelligent Software Components S.A. (ISOCO) Institut ‘Jožef Stefan’ (JSI)
Calle de Pedro de Valdivia 10 Jamova 39
28006 Madrid SL–1000 Ljubljana
Spain Slovenia
Contact person: Jesús Contreras Contact person: Marko Grobelnik
E-mail address: jcontreras@isoco.com E-mail address: marko.grobelnik@ijs.si
Institut National de Recherche en Informatique University of Sheffield (USFD)
et en Automatique (INRIA) Dept. of Computer Science
ZIRST – 665 avenue de l’Europe Regent Court
Montbonnot Saint Martin 211 Portobello street
38334 Saint-Ismier, France S14DP Sheffield, United Kingdom
Contact person: Jérôme Euzenat Contact person: Hamish Cunningham
E-mail address: jerome.euzenat@inrialpes.fr E-mail address: hamish@dcs.shef.ac.uk
Universität Kolenz-Landau (UKO-LD) Consiglio Nazionale delle Ricerche (CNR)
Universitätsstrasse 1 Institute of cognitive sciences and technologies
56070 Koblenz Via S. Marino della Battaglia
Germany 44 – 00185 Roma-Lazio Italy
Contact person: Steffen Staab Contact person: Aldo Gangemi
E-mail address: staab@uni-koblenz.de E-mail address: aldo.gangemi@istc.cnr.it
Ontoprise GmbH. (ONTO) Food and Agriculture Organization
Amalienbadstr. 36 of the United Nations (FAO)
(Raumfabrik 29) Viale delle Terme di Caracalla
76227 Karlsruhe 00100 Rome
Germany Italy
Contact person: Jürgen Angele Contact person: Marta Iglesias
E-mail address: angele@ontoprise.de E-mail address: marta.iglesias@fao.org
Atos Origin S.A. (ATOS) Laboratorios KIN, S.A. (KIN)
Calle de Albarracín, 25 C/Ciudad de Granada, 123
28037 Madrid 08018 Barcelona
Spain Spain
Contact person: Tomás Pariente Lobo Contact person: Antonio López
E-mail address: tomas.parientelobo@atosorigin.com E-mail address: alopez@kin.es

D1.2.5 Inconsistency-tolerant Reasoning with Networked Ontologies Page 3 of 38

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this document, even
if they might not have directly contributed to the writing of this document or its parts:

• UKarl

• UKoblenz

Change Log

Version Date Amended by Changes
0.1 10-01-2010 Guilin Qi Create the deliverable

0.2 20-01-2010 Simon Schenk Add chapter on paraconsistent and bi-
lattice based reasoning

0.3 25-01-2008 Guilin Qi Complete the deliverable

0.4 02-02-2008 Guilin Qi Address reviewer’s comments

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 4 of 38 NeOn Integrated Project EU-IST-027595

Executive Summary

Next generation semantic applications are characterized by a large number of ontologies, some of them
constantly evolving. As the complexity of semantic applications increases, more and more knowledge are
embedded in applications, typically drawn from a wide variety of sources. This new generation of applications
thus likely rely on ontologies embedded in a network of already existing ontologies. Ontologies and metadata
have to be kept up to date when application environments and users’ needs change. One of the major
challenges in managing these networked and dynamic ontologies is to handle potential inconsistencies.

In deliverable D1.2.4, we discussed the problem of reasoning with inconsistent networked ontologies. We
proposed a four-valued semantics for description logicsALC which was further extended to a bilattice-based
semantics that extends OWL2 to bilattice. We propose another approach for reasoning with distributed
ontologies which is based on concept forgetting. This approach is theoretical interesting but is hard to
implement in practice.

In D1.5.4 be have proposed reasoning with meta-knowledge, e.g. trust and uncertainty in OWL2. This
approach is on the one hand more general than bilattice based reasoning but on the other hand does not allow
for paraconsistent reasoning. In this deliverable, we reduce bilattice based reasoning to meta-knowledge
reasoning by adjusting the technique developed for ALC4 in D1.2.4. We provide an efficient algorithm for
meta-knowledge reasoning.

With the popularity of semantic information systems distributed on the Web, there is an arising challenge to
provide efficient query answering support for these systems. However, common approaches for distributed
query answering either exhibit performance disadvantages or loss of completeness in an unbalanced way.
In this deliverable, we introduce a novel approach for segment-based conjunctive query answering over
distributed ontologies which can be extended to deal with inconsistency. Our approach balances the trade-off
between performance and completeness by introducing segmentation-based distributed ontology integration.
We define the notions of segment and approximate conjunctive query answering. Corresponding algorithms
are designed and implemented.

We implemented both approaches and provide some interesting evaluation results.

D1.2.5 Inconsistency-tolerant Reasoning with Networked Ontologies Page 5 of 38

Contents

1 Introduction 8
1.1 The NeOn Big Picture . 8

1.2 Motivation and Goals of this Deliverable . 8

1.3 Overview of the Deliverable . 10

2 Practical Reasoning with Trust, Uncertainty and other Meta-Knowledge 11
2.1 Reasoning Based on Logical Bilattices . 11

2.1.1 Obtaining bilattices . 11

2.1.2 Application to Reasoning with Trust . 12

2.1.3 Extending OWL2 to logical bilattices . 13

2.2 Reasoning with Meta-Knowledge . 16

2.2.1 Running Example . 16

2.2.2 Pinpointing . 17

2.2.3 Semantics of Meta Knowledge . 17

2.3 Bilattice Based Reasoning using Meta Knowledge . 19

2.4 An Optimized Algorithm for Reasoning with Meta Knowledge 20

3 A Segmentation-based Approach for Approximate Query over Distributed and Inconsistent On-
tologies 23
3.1 Preliminaries . 23

3.1.1 Description logic SHIQ . 23

3.1.2 Conjunctive query answering over SHIQ KB . 23

3.2 Segment-based Conjunctive Query Answering over Distributed Ontologies 24

3.3 Algorithms for Segment-based Query Answering . 28

4 Evaluation 31
4.1 Complexity and Evaluation of Reasoning with Meta Knowledge 31

4.2 Evaluation of Distributed Reasoning . 32

4.2.1 Experiment settings . 33

4.2.2 Results and discussions . 34

5 Conclusion 36

Bibliography 37

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 6 of 38 NeOn Integrated Project EU-IST-027595

List of Tables

2.1 Extended Class Interpretation Function . 15

2.2 Satisfaction of Axioms . 15

2.3 Example Ontology and Meta-Knowledge . 17

4.1 Ontologies used in experiment . 32

D1.2.5 Inconsistency-tolerant Reasoning with Networked Ontologies Page 7 of 38

List of Figures

1.1 Relationships between different work packages in NeOn . 9

2.1 FOUR . 12

2.2 FOUR− T . 13

2.3 Virtual Sources . 13

3.1 Figure for Example 1. Given D = (O,M), source ontology Oi ∈ O, target ontology Ot ∈ O and mappings

(light-dot lines) between them. Circles are ontologies distributed on different nodes. 4 25

3.2 Figure for Example 2. Given D = (O,M), source ontology Oi ∈ O, target ontology Ot ∈ O and mappings

(light-dot lines) between them. 26

4.1 Average Time to Compute Meta Knowledge for an Inconsistency 32

4.2 Example of data allocation in 5 segments case. The circles stand for distributed ontologies with different schemata;

O-Target means the target ontology. 33

4.3 Experiment results for the two queries. respectively. 34

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 8 of 38 NeOn Integrated Project EU-IST-027595

Chapter 1

Introduction

1.1 The NeOn Big Picture

Next generation semantic applications will be characterized by a large number of ontologies, some of them
constantly evolving. As the complexity of semantic applications increases, more and more knowledge will be
embedded in applications, typically drawn from a wide variety of sources. This new generation of applications
will thus likely rely on ontologies embedded in a network of already existing ontologies. Ontologies and
metadata will have to be kept up to date when application environments and users’ needs change. We argue
that in this scenario it will become prohibitively expensive for people to directly adopt the current approach
to semantic integration, where the expectation is to produce a single, globally consistent semantic model
that serves the needs of application developers and fully integrates a number of pre-existing ontologies. In
contrast to the current model, future applications will very likely rely on networks of contextualized ontologies,
which are usually locally, but not globally consistent.

This report is part of the work performed in WP 1 on “Dynamics of Networked Ontologies”. The goal of this
work package is to develop an integrated approach for the evolution process of networked ontologies and
related metadata. As shown in Figure 1.1, WP1 belongs to the central part of the research and development
WPs in NeOn. The tasks of WP1 are heavily inter-related with other work packages. For the individual
phases of the process we will develop new methods that consider the complex relationships in a network of
ontologies. These include dependencies, mappings, different versions and also take possible inconsistencies
into account.

Specific goals in this work package include support for:

1. representing, managing and interpreting dependencies between multiple networked ontologies

2. evolution of networked ontologies in exploiting various models of change propagation, which have
different applicabilities depending on the model of coordination and control

3. maintaining partial/local consistency of a set of networked ontologies, which might not be globally
consistent

4. evolving metadata along with changing ontologies and predicting future structural changes in ontolo-
gies.

1.2 Motivation and Goals of this Deliverable

Real knowledge bases and data for Semantic Web applications will rarely be perfect. They will be distributed
and multi-authored. They will be assembled from different sources and reused. It is unreasonable to expect
such realistic knowledge bases to be always logically consistent, and it is therefore important to study ways of

D1.2.5 Inconsistency-tolerant Reasoning with Networked Ontologies Page 9 of 38

Figure 1.1: Relationships between different work packages in NeOn

dealing with inconsistent knowledge. This is particularly important if the full power of logic-based approaches
like the Web Ontology Language OWL shall be employed, as classical logic breaks down in the presence
of inconsistent knowledge. The study of inconsistency handling in Artificial Intelligence has a long tradition,
and corresponding results are recently being transferred to description logics, which underly OWL. On the
other hand, today, many semantic information systems on the Web are going beyond a centralized setting
and working in a distributed scenario. In those systems, ontologies are increasingly applied as the data
schemata, sources, mediators, etc. [CGL01, CWW+06, GR03], thus, querying the distributed ontologies is
one major task in distributed semantic information systems.

There are two extreme situations for query answering over distributed ontologies: (1) We can integrate
the distributed ontologies into a single local node and perform query answering in a centralized way (e.g.
[CWW+06, GR03]). This approach apparently lacks the optimization for query answering in the distributed
scenario, because queries are not executed in a distributed way. (2) On the other hand, we can also query
over distributed ontologies without integration. In this case, the ontologies are queried in a pure distributed
way on an individual ontology in parallel, so overall execution time is reduced. However, by using this ap-
proach, we may lose significant information that is inferred by considering the interrelationships (e.g. in the
form of mappings) between the ontologies. The first extreme keeps completeness by losing performance,
while the second one pursues performance but loses completeness. Our aim is to find a reasonable balance
between the two extremes: We argue that performance is a critical issue on today’s Web, while there is often
a tradeoff between the completeness and the performance when querying distributed ontologies.

Because it’s difficult to achieve complete answers and performance advances at the same time, approximate

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 10 of 38 NeOn Integrated Project EU-IST-027595

query answering based on a proper integration of distributed ontologies but provides quick response times is
an important issue to be addressed. This issue has been widely recognized and discussed in the traditional
database community in order to improve query answering performance [AGPR99]. However, there is little
existing work on approximate query answering over distributed ontologies in this field. The popular descrip-
tion logics (DL) reasoners, such as FaCT++1, Pellet2 and KAON23, only support exact query answering over
ontologies and are not particularly optimized for a distributed scenario.

In this deliverable, we introduce a novel approach for approximate conjunctive query answering over dis-
tributed and inconsistent ontologies in semantic information systems on the Web. We focus on improving
the overall performance by sacrificing part of the completeness. We integrate ontologies in a segmentation-
based approach, where distributed ontologies are divided into several groups that are connected via map-
pings. We also find an appropriate way to identify the segments of the integrated global ontology. As central
contribution of our approach, we have designed three algorithms for segmentation, query distribution, and
termination and results collection, respectively. We implemented this approach and the bilattice-based se-
mantics and provide some interesting evaluation results.

The work presented in this deliverable is related to some activities in WP1 and WP3. This work is closely
related to the work presented in NeOn deliverable D1.4 where KAONp2p is proposed. The work presented at
Task 3.3 of NeOn project has discussed how to generate mappings connecting distributed and heterogenous
ontologies. This work is also related to the work on contextualization presented in Task 3.1 of NeOn project.
For example, the work on bilattice-based semantics is closely related to the work on reasoning with meta-
knowledge given in D3.1.4.

1.3 Overview of the Deliverable

This deliverable is structured as follows. We first present the bilattice-based semantics in Chapter 2. We then
give our segmentation-based approach in Chapter 3. The evaluation results are given in Chapter 4. Finally,
we conclude this deliverable and provide the roadmap in Chapter 5.

1
http://owl.man.ac.uk/factplusplus/

2
http://www.mindswap.org/2003/pellet/

3
http://kaon2.semanticweb.org

http://owl.man.ac.uk/factplusplus/
http://www.mindswap.org/2003/pellet/
http://kaon2.semanticweb.org

D1.2.5 Inconsistency-tolerant Reasoning with Networked Ontologies Page 11 of 38

Chapter 2

Practical Reasoning with Trust, Uncertainty
and other Meta-Knowledge

In D1.2.4 we have generalized ALC4 to reasoning with arbitrary bilattices in OWL and applied this gen-
eralization to reasoning with trust. While the approach presented there is very flexible and theoretically
interesting, it is difficult to implement directly. In D1.5.4 we discussed reasoning with meta-knowledge e.g.
trust, uncertainty or edit histories. The approach presented there has a straight forward naive implementa-
tion, but lacks support for paraconsistent reasoning provided by bilattices based reasoning. In this chapter,
we briefly recapitulate the foundations of both approaches. Then we discuss, how bilattice based reason-
ing with trust can be reduced to meta-knowledge reasoning. Finally, we provide an optimized algorithm for
reasoning with meta-knowledge, which is inspired from pinpointing algorithms. In chapter 4 we evaluate the
optimized algorithm and show that it performs up to several orders of magnitude faster than the baseline.

2.1 Reasoning Based on Logical Bilattices

A logical bilattice [Gin92] is a set of truth values, on which two partial orders are defined, which we call the
truth order ≤t and the knowledge order ≤k. Both ≤t and ≤k are complete lattices, i.e. they have a maximal
and a minimal element and every two elements have exactly one supremum and infimum.

In logical bilattices, the operators ∨ and ∧ are defined as supremum and infimum wrt. ≤t. Analogously join
(⊕) and meet (⊗) are defined as supremum and infimum wrt. ≤k. As a result, we have multiple distributive
and commutative laws, which all hold. Negation (¬) simply is an inversion of the truth order. Hence, we can
also define material implication (a→ b = ¬a ∨ b) as usual.

The smallest non trivial logical bilattice is FOUR, shown in figure 2.1. In addition to the truth values t and f ,
FOUR includes > and ⊥. ⊥ means “unknown”, i.e. a fact is neither true or false. > means “overspecified”
or “inconsistent”, i.e. a fact is both true and false.

2.1.1 Obtaining bilattices

Ginsberg [Gin92] describes how we can obtain a logical bilattice: Given two distributive lattices L1 and L2,
create a bilattice L, where the nodes have values from L1 × L2, such that the following orders hold:

• 〈a, b〉 ≤k 〈x, y〉 iff a ≤L1 x ∧ b ≤L2 y and

• 〈a, b〉 ≤t 〈x, y〉 iff a ≤L1 x ∧ y ≤L2 b

If L1 and L2 are infinitely distributive— that means distributive and commutative laws hold for infinite combi-
nations of the operators ∨1,∧1 and ∨2,∧2 respectively — then L will be as well, i.e. arbitrary combinations

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 12 of 38 NeOn Integrated Project EU-IST-027595

Figure 2.1: FOUR

f t

truth

knowledge

of ∨,∧,⊕, and⊗ are possible in the resulting bilattice. In other words this means that the language of logical
connectives over bilattices is complete.

Next, we discuss how a bilattice representing trust ratings can be obtained.

2.1.2 Application to Reasoning with Trust

In addition to inconsistencies, which will almost certainly occur in the Semantic Web, be will also be faced
with information sources, which are of varying trustworthiness. Hence, we define a logical bilattice, which
allows for reasoning with trust orders. In the previous chapter we have focused on two levels of reliability of
information. More generally, we would like to be able to infer multiple levels of trust in a distributed setting.

Definition 1 (Trust Order) A trust order T is a partial order over a finite set of information sources with a
maximal element, called∞.

∞ is the information source with the highest trust level, assigned to local data. For any two information
sources a and b comparable wrt. T , we have a FOUR− C lattice as described above, with the less trusted
information source corresponding to the inner part of the lattice. Extended to multiple information sources,
this results in a situation as depicted in Figure 2.2, where the outermost bilattice corresponds to local, fully
trusted information.

If a and b are not comparable we introduce virtual information sources infab and supab, such that

• infab < a < supab and infab < b < supab;

• ∀c<a,c<b : c < infab and

• ∀d>a,d>b : d > supab

To understand the importance of this last step, assume that c > a > d and c > b > d and a, b are
incomparable. Then the truth value of a ∨ b would have a trust level of c, as c is the supremum in the trust
order. Obviously this escaping to a higher trust level is not desirable. Instead, the virtual information sources
represent that we need to trust both, a and b, if we believe in the computed truth value. We illustrate this
situation in Figure 2.3 (We abbreviate infab by < and supab by >).

In the general case (≥ 3 incomparable sources) such a trust order results in a non-distributive lattice. This
can be fixed, however, by introducing additional virtual nodes. The basic idea here is to create a virtual node

D1.2.5 Inconsistency-tolerant Reasoning with Networked Ontologies Page 13 of 38

11

22

∞∞

2∞

1∞

1221

∞1

∞2

∞∞

22

11

12

1∞

2∞∞2

∞1

21

f∞1

f22

f1∞

f12

f11

f21f∞2

f∞∞

f2∞

t∞1

t22

t1∞

t2∞

t∞∞

t∞2t21

t11

t12

truth

knowledge

trust level ∞

trust level 2

trust
level 1

Figure 2.2: FOUR− T

>

ba

< <

a

>

><a

><

a><<>a

<>

a<>

b

><b

b><<>b

b<>

leads to:

a

b

c

bc

abc

abba

cba

cb

a

b

c

leads to:

a) comparable sources

b) incomparable sources

Figure 2.3: Virtual Sources

for each element in the powerset of the incomparable sources, with set inclusion as the order. We will call
this modified trust order completed. We can again derive a complete lattice from the completed trust order.
As it can become quite large, we only show for > how a fragment of the logical bilattice is derived from the
trust order for the case of two incomparable information sources in Figure 2.3.

Now we can construct the corresponding bilattice from a given completed truth order as follows: Given a trust
order T , generate a lattice L1, such that

• fa <L1 fb, iff a >T b;

• tb <L1 ta, iff a >T b and

• ∀a : fa <L1 ta.

The result is a lattice with t∞ and f∞ as maximal and minimal elements. Now create the logical bilattice L
from L1 × L1 as described in the previous section.

In Figure 2.2 we see a bilattice resulting from a strict trust ordering, i.e. every pair of information sources
in the trust order is comparable. In general, it will not be possible to come up with such a strict ordering.
For example, interpretations of news may vary also among very trustworthy newspapers, depending on their
political background. Hence, we might have a trust ordering with incomparable information sources. This
case is demonstrated in Figure 2.3. Case a) shows the> part of the logical bilattice from Figure 2.2. Case b)
shows the same part for a bilattice resulting from a trust ordering, in which sources a and b are incomparable.
Their supremum and infimum are denoted by < and > respectively. As we can see, trust-bilattices can grow
quite complex. As users of reasoning services will be interested in trust levels only, they need not be faced
with all these values, however. Further, the bilattice needs not be materialized for reasoning, as many truth
values will not even be used. However, to be complete, all these values must be defined.

2.1.3 Extending OWL2 to logical bilattices

In this section we recapitulate the extension of SROIQ, the description logic underlying the proposed
OWL2 [GM08], to SROIQ− T evaluated on a logical bilattice. The extension towards logical bilattices
works analogously to the extension of SHOIN towards a fuzzy logic as proposed in [Str06]. Operators
marked with a dot, e.g. ≥̇ are the lattice operators described above, all other operators are the usual (two
valued) boolean operators. For two valued operators and a logical bilattice L we map t to maxt(L) – i.e. the
maximal value with respect to the truth order of L (usually denoted by >) – and f to mint(L), in order to
model that these truth values are absolutely trusted1. Please note that while we limit ourselves to SROIQ
here, analogous extensions are possible for SROIQ(D) to support datatypes. Please also note that we

1In FOUR− T these would be f∞ and t∞, but we start with the general case.

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 14 of 38 NeOn Integrated Project EU-IST-027595

do not include language constructs, which can be expressed by a combination of other constructs defined
below. In particular, Sym(R) = R− v R and Tra(R) = R ◦R v R.

Definition 2 (Vocabulary) A vocabulary V = (NC , NP , NI) is a triple where

• NC is a set of OWL classes,

• NP is a set of properties and

• NI is a set of individuals.

NC , NP , NI need not be disjoint.

A first generalization is that interpretations assign truth values from any given bilattice. In contrast, SROIQ
is defined via set membership of (tuples of) individuals in classes (properties) and uses two truth values only.

Definition 3 (Interpretation) Given a vocabulary V an interpretation I = (∆I ,L, ·IC , ·IP , ·Ii) is a 5-tuple
where

• ∆I is a nonempty set called the object domain;

• L is a logical bilattice and Λ is the set of truth values in L

• ·IC is the class interpretation function, which assigns to each OWL class A ∈ NC a function: AIC :
∆I → Λ;

• ·IP is the property interpretation function, which assigns to each property R ∈ NP a function RIP :
∆I ×∆I → Λ;

• ·Ii is the individual interpretation function, which assigns to each individual a ∈ NI an element aIi

from ∆I .

I is called a complete interpretation, if the domain of every class is ∆I and the domain of every property is
∆I ×∆I .

The notion of a complete interpretation is needed, because interpretation functions assign a truth value
instead of just defining a set membership. In two valued description logics, set membership of an individual
in a class corresponds to a truth value of true and the default is false. In four valued description logics,
analogously two sets are used for each class. Hence, by listing only the membership of some individuals, the
truth value of class membership is still well defined for all individuals. Here, such a simple convention can
not be applied, as we have multiple possible truth values. Instead, truth values must explicitly be assigned
for each individual.

We extend the property interpretation function ·IP to property expressions:

(R−)IP = {(〈x, y〉, u)|(〈y, x〉, u) ∈ RIP }

The second generalization over SROIQ is the replacement of all quantifiers over set memberships with
conjunctions and disjunctions over Λ. We extend the class interpretation function ·IC to descriptions as
shown in table. 2.1.

Satisfaction of axioms in an interpretation I is defined in table 2.2. With ◦ we denote the composition of
binary relations. For any function f , dom(f) returns the domain of f . The generalization is analogous to
that of ·IC . Note that for equality of individuals, we only need two valued equality.

Satisfiability in SROIQ− T is a bit unusual, because when using a logical bilattice we can always come
up with interpretations satisfying all axioms by assigning > and ⊥. Therefore, we define satisfiability wrt. a
truth value:

D1.2.5 Inconsistency-tolerant Reasoning with Networked Ontologies Page 15 of 38

>I(x) = tyy,where y is the information source, defining>I(x)

⊥I(x) = fyy,where y is the information source, defining⊥I(x)

(C1 u C2)I(x) = CI1 (x)∧̇CI2 (x)

(C1 t C2)I(x) = CI1 (x)∨̇CI2 (x)

(¬C)I(x) = ¬̇CI(x)

(S−)I(x, y) = SI(y, x)

(∀R.C)I(x) =
∧̇

y∈∆I
RI(x, y)→̇CI(y)

(∃R.C)I(x) =
∨̇

y∈∆I
RI(x, y)∧̇CI(y)

(∃R.Self)I(x) = RI(x, x)

(≥ nS)I(x) =
∨̇
{y1,...,ym}⊆∆I ,m≥n

∧̇n

i=1
SI(x, yi)

(≤ nS)I(x) = ¬̇
∨̇
{y1,...,yn+1}⊆∆I

∧̇n+1

i=1
SI(x, yi)

{a1, ..., an}I(x) =
∨̇n

i=1
aIi = x

Table 2.1: Extended Class Interpretation Function

(R v S)I =
∧̇

x,y∈∆I
RI(x, y)→̇SI(x, y)

(R = S)I =
∧̇

x,y∈∆I
RI(x, y)↔̇SI(x, y)

(R1 ◦ ... ◦Rn v S)I =
∧̇
〈x1,xn+1〉∈dom(SI)

∨̇
{x2,...,xn}

∧̇n

i=1
RIi (xi, xi+1)

(Asy(R))I =
∧̇

x,y∈∆I
¬̇(RI(x, y)∧̇RI(y, x))

(Ref(R))I =
∧̇

x∈∆I
RI(x, x)

(Irr(R))I =
∧̇

x∈∆I
¬̇RI(x, x)

(Dis(R,S))I =
∧̇

x,y∈∆I
RI(x, y)→̇¬̇SI(x, y)

(C v D)I =
∧̇

x∈∆I
CI(x)→̇DI(x)

(a : C)I = CI(aI)

((a, b) : R)I = RI(aI , bI)

a ≈ b = aI = bI

a 6≈ b = aI 6= bI .

Table 2.2: Satisfaction of Axioms

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 16 of 38 NeOn Integrated Project EU-IST-027595

Definition 4 (Satisfiability) We say an axiom E is u-satisfiable in an ontology O wrt. a bilattice L, if there
exists a complete interpretation I of O wrt. L, which assigns a truth value val(E, I) to E, such that
val(E, I) ≥k u.

We say an ontology O is u-satisfiable, if there exist a complete interpretation I, which u-satisfies all axioms
in O and for each class C we have |{a|〈a, v〉 ∈ C ∧ v ≥t u}| > 0, that means no class is empty.

Analogously we define consistency wrt. the knowledge order. O is an ontology with axioms collected from
multiple sources Si. Please note that we use a single ontology here to follow the definition of SROIQ, but
the composition could happen through imports, or mappings in a network of ontologies. The Si differ with
respect to their trustworthiness. Hence, a partial trust order T models their trustworthiness. Also note that
an analogous is possible for partial interpretations for parts of an ontology. Again we focus on complete
interpretations analogous to models in SROIQ.

Definition 5 (Consistency) Let I be a complete interpretation, O an ontology, which is composed from
multiple data sources {S1, ..., Sn} and T a trust order over {S1, ..., Sn}. Let source(E) denote the T -
maximal datasource, from which axiom E originates.

We say O is u-consistent, if there exists an I, which assigns a truth value val(E, I) to all axioms E in O,
such that u ≤k val(E, I). I is called a u-model of O.

We say O is consistent, if there exist an I, which assigns a truth value val(E, I) to all axioms E in O, such
that ∀x : val(E, I) /∈ {>x,⊥x}. We say I is a model of O.

Finally, we define entailment:

Definition 6 (Entailment) O entails a SROIQ− T ontology O′ (O � O′), if every model of O is also a
model of O′. O and O′ are equivalent if O entails O′ and O′ entails O.

2.2 Reasoning with Meta-Knowledge

We summarize the foundations of meta-knowledge reasoning before reducing trust based reasoning with
bilattices to meta-knowledge reasoning.

2.2.1 Running Example

When answering queries in the semantic web, one must not only handle the knowledge itself, but also
characterizations of this knowledge, e.g.: (i) where did a knowledge item come from (i.e. provenance), (ii)
what level of trust can be assigned to a knowledge item, or (iii) what degree of certainty is associated with it.
We refer to all such kinds of characterizations as meta-knowledge. On the semantic web, meta-knowledge
needs to be computed along with each reasoning task.

As a motivation consider a serious faux pas, which happened to the German Press Agency DPA on 10
September 2009: A person called DPA and notified them, that a terrorist attack had just taken place in
Bluewater, CA. DPA did a short internet recherche and found a website for Bluewater’s local TV station, vpk-
tv, and the town itself, and also Wikipedia entries for both the town and vpk-tv. DPA announced the attack as
breaking news. However, Bluewater, CA does not exist and all this was guerilla marketing for the new movie
"Shortcut to Hollywood" set up by Neverest, a professional marketing agency.

DPA did not take into account meta-knowledge when doing their background recherche. If they had done
so, they would have noticed, that all related websites as well as the Wikipedia article had been set up by the
same marketing agency at roughly the same time. On the non-semantic Web such a faux pas can only be
avoided by a most careful professional analysis of data provenance. We show here, how the analysis may
be automated on the Semantic Web - even when using sophisticated reasoning machinery such as OWL-2.

D1.2.5 Inconsistency-tolerant Reasoning with Networked Ontologies Page 17 of 38

ID Axiom source modified conf.d.
#1 RealCity v City u ∃hasCompany.Broadcaster DPA 2009-09-10 0.2
#2 Broadcaster v ∃hqIn.City DPA 2009-09-09
#3 inverseProperty(hasCompany, hqIn) DPA 2009-09-10 0.6
#4 bluewater : City Neverest 2009-09-09
#5 vpktv : Broadcaster NeverestWP 2009-09-10 0.4
#6 hqIn(vpktv, bluewater) Neverest 2009-09-09

Table 2.3: Example Ontology and Meta-Knowledge

We will use the DPA scenario to illustrate our method in a concise fashion. In the DPA example, the data
from Wikipedia would have come from an open, Wiki-like system, while Bluewater’s and the TV broadcaster’s
webpages would correspond to ontologies from a single source. In both cases, change histories or modifica-
tion dates and authors respectively are available. For the running example we will use the ontology fragment
listed in Table 2.3, which allows to answer the question, whether bluewater is a RealCity. A RealCity is
a City with at least one Broadcaster, who has its headquarters in the City. Associated with each axiom
is meta-knowledge describing, who has created the axiom (DPA, Neverest or NeverestWP, their Wikipedia
user), when it has been modified, and a confidence degree for those axioms coming from Wikipedia. Such a
confidence degree can be computed for Wikipedia using for example the approach described in [AdA07].

2.2.2 Pinpointing

As we use pinpointing as a vehicle for computing meta-knowledge, we introduce pinpointing as a foundation
for the rest of the paper and give some information of existing algorithms for finding pinpoints.

The term pinpointing has been coined for the process of finding explanations for concluded axioms or for
a discovered inconsistency. An explanation is a minimal set of axioms, which makes the concluded axiom
true (or the theory inconsistent, respectively). Such an explanation is called a pinpoint. While there may be
multiple ways to establish the truth or falsity of an axiom, a pinpoint describes exactly one such way.

Definition 7 Pinpoint.
A pinpoint for an entailed axiom A wrt. an ontology O is a set of axioms
{A1, ..., An} from O, such that {A1, ..., An} |= A and
∀Ai ∈ {A1, ..., An} : {A1, ...Ai−1, Ai+1, ..., An} 6|= A. Analogously, a pinpoint for a refuted axiom A wrt.
an ontology O is a set of axioms {A1, ..., An} from O, such that {A,A1, ..., An} is inconsistent and
∀Ai ∈ {A1, ..., An} : {A,A1, ...Ai−1, Ai+1, ..., An} is not.

Hence, finding pinpoints for a refuted axiom corresponds to finding the Minimum Unsatisfiable Subontologies
(MUPS) for this axiom [KPCGS06]. Pinpointing is the computation of all pinpoints for a given axiom and
ontology. The truth of the axiom can then be computed using the pinpointing formula [BP07].

Definition 8 Pinpointing Formula.
Let A be an axiom, O an ontology and P1, ..., Pn with Pi = {Ai,1, ..., Ai,mi} the pinpoints of A wrt. O. Let
lab be a function assigning a unique label to an axiom. Then

∨n
i=1

∧mi
j=i lab(Ai,j) is a pinpointing formula of

A wrt. O.

A pinpointing formula of an axiom A describes, which (combination of) axioms need to be true in order to
make A true or inconsistent respectively.

2.2.3 Semantics of Meta Knowledge

Meta knowledge can have multiple dimensions, e.g. uncertainty, a least recently modified date or a trust
metric. For this paper, we assume that these (and possible further) dimensions are independent of each
other. At the end of this section we will sketch, how this assumption can be generalized such that multiple
dimensions are combined into one new integrating dimension.

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 18 of 38 NeOn Integrated Project EU-IST-027595

Definition 9 Knowledge dimension. A knowledge dimension D is an algebraic structure (BD,∨D,∧D),
such that (BD,∨D) and (BD,∧D) are complete semilattices.

BD represents the values the meta-knowledge can take, e.g. all valid dates for the least recently modified
date or a set of knowledge sources for provenance. As (BD,∨D) and (BD,∧D) are complete semilattices,
they are, in fact, also lattices. Hence, there are minimal elements in the corresponding orders.

As an example, let I be the meta-knowledge interpretation that is a partial function mapping axioms into
the allowed value range of a meta-knowledge dimension, and A and B be axioms of an ontology such that
A 6= B. Provenance, i.e. the set of knowledge sources a piece of knowledge is derived from, can be modeled
as:

• I(A ∨B) = I(A) ∪ I(B)

• I(A ∧B) = I(A) ∪ I(B)

The least recently modified date could be modeled as:

• I(A ∨B) = min(I(A), I(B))

• I(A ∧B) = max(I(A), I(B))

Axioms can be assigned meta-knowledge from any of the meta-knowledge dimensions. Within a single
assignment, the meta-knowledge must be uniquely defined.

Definition 10 Meta Knowledge Assignment.
A meta-knowledge assignment M is a set {(D1, d1 ∈ D1), ..., (Dn, dn ∈ Dn)} of pairs of meta-knowledge
dimensions and corresponding truth values, such that Di = Dj ⇒ di = dj .

In our running example, the meta-knowledge assignment for
bluewater: City is {(source, Neverest), (date, 2009-09-09)}

Without loss of generality we assume a fixed number of meta-knowledge dimensions. As a default value for
Dn in a meta-knowledge assignment we choose the minimal element ⊥D.

Syntactically meta-knowledge assignments are expressed using axiom annotations. We have provided a
detailed grammar for meta-knowledge annotations in [SDS09].

To allow for reasoning with meta-knowledge, we need to formalize, how meta-knowledge assignments are
combined. How provenance [GKT07] is a strategy, which describes how an axiom A can be inferred from
a set of axioms {A1, ..., An}, i.e. it is a boolean formula connecting the Ai. We call a logical formula
expressing how provenance a meta-knowledge formula. For example the following query for each city finds
all companies:

x:City ∧ hasCompany(x,y).

The result of this query and the corresponding meta-knowledge formulas are:

x y meta knowlege formula

bluewater vpktv #3 ∧ #4 ∧ #6

The operators for meta-knowledge dimensions extend to meta-knowledge assignments, allowing us to com-
pute meta-knowledge for entailed knowledge by evaluating the corresponding meta-knowledge formula.

In contrast to [SST08] we omit the ¬ operator in our formalization, as description logics are monotonic and ¬
in [SST08] allows for default negation. While axioms in the underlying description logic may contain negation,
this negation is not visible and not needed on the level of the meta-knowledge.

D1.2.5 Inconsistency-tolerant Reasoning with Networked Ontologies Page 19 of 38

Definition 11 Operations on Meta Knowledge Assignments.
Let A,B be axioms and meta(A) = {(D1, x1), ..., (Dn, xn)} and
meta(B) = {(E1, y1), ..., (Em, ym)} be meta-knowledge assignments. Let dim(A) be the set of meta-
knowledge dimensions of A. Then meta(A) ∨ meta(B) = {(D,x ∨D y)|(D,x) ∈ meta(A) and (D, y) ∈
meta(B)}. ∧ is defined analogously.

Having defined the operations on meta-knowledge assignments, we can define how the meta-knowledge of
an axiom A within a meta-knowledge dimension is obtained. The meta-knowledge of an axiom A within
a meta-knowledge dimension is obtained by evaluating the corresponding meta-knowledge formula in the
dimension under consideration.

Definition 12 Meta Knowledge of an Axiom.
Let meta be a function mapping from an axiom to a meta-knowledge assignment in dimension D. The

meta-knowledge of an axiom A wrt. O in D is obtained by computing a pinpointing formula φ of A wrt. O
and obtaining ψ by replacing each axiom in φ with its meta-knowledge assignment in D. Then meta(A) is
computed by evaluating ψ.

In our running example, if we model the information source dimension as provenance, the meta-knowledge of
the query result for bluewater, vpktv is: (source, {DPA}) ∧ (source, {Neverest}) = (source, {DPA} ∪ {Neverest})
= (source, {DPA, Neverest}).

2.3 Bilattice Based Reasoning using Meta Knowledge

We now describe how reasoning with certain classes of bilattices can be reduced to reasoning with meta-
knowledge, which can be implemented efficiently as we will see in the next chapter. More precisely, we will
show how reasoning with the kind of regular bilattices, which result from multiplying lattices according to
section 2.1.2, can be done. The approach uses to the operationalization of paraconsistent reasoning with
expressive DLs.

In D1.2.4 [QS09], we have provided a reduction of paraconsistent reasoning inALC4 to classical reasoning
in ALC. This approach has been extended to SHIQ in [MHL08] and to SROIQ in [MH09]. In this de-
liverable, we use a two step process for reasoning with regular bilattices: First, we assume, we are dealing
with the bilattice FOUR and reduce the ontology to a classical one using the approach described in [MH09].
This allows for paraconsistent reasoning.

Second, instead of assigning trust values from the bilattice we assign a value from the input lattice used to
compute the bilattice in a new meta-knowledge dimension. For example, instead of assigning a truth value
from FOUR− T , we add a meta-knowledge assignment to a value from the underlying trust order. Of
cause, this order lacks some of the truth values available in FOUR− T . However, the truth values, which
combine multiple trust levels, are only relevant for inferences. Axioms always originate from one sources and
hence can be assigned a corresponding meta-knowledge degree. In case multiple sources claim the same
axioms, the corresponding meta-knowledge assignments can be combined into a single one as described in
[THD+09] and [SS09].

As a second step, we perform normal meta-knowledge reasoning with the reduced ontology. The subscripts
in FOUR− T truth values represent the most and least trusted sources used for computing the answer.
Meta knowledge reasoning as described in section 2.2 only computes the maximum. We can easily obtain
the minimum by inverting the order of the meta-knowledge dimension and repeating the meta-knowledge
reasoning step.

The following algorithm summarizes these steps:

We observe an interesting property: The translation from four valued to classical reasoning is linear in the
size of the input ontology [MH09]. Furthermore the rewriting of truth values from FOUR− T to meta-
knowledge assignments using the input trust order is a purely syntactical transformation and also linear.

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 20 of 38 NeOn Integrated Project EU-IST-027595

Algorithm 1: ParaconsistentTrust
Data: Trust Bilattice B, Ontology O using B, trust order T underlying B, Query Axiom Q
O′ ← π(O) ;
foreach ((Axiom A, Truth Value t) ∈ O, A′ = π(A)) do

choose t′ ∈ T such that t = t′t′ ;
assignMetaK(A′, t′) ;

max← MetaPartial(O′, Q, (T,∨T ,∧T)) ;
min← MetaPartial(O′, Q, (T,∧T ,∨T)) ;
return ⊕B(min × min, max × max) ;

Finally, we have to repeat the meta-knowledge reasoning step in order to compute both, minimum and
maximum. Meta knowledge reasoning has a worst case complexity, which is exponential in the complexity of
the underlying DL. Hence, the complexity of bilattice based reasoning using meta-knowledge also is of worst
case exponential complexity. In the next section we will show that in the average case, meta-knowledge
reasoning can be optimized to perform much better. The evaluation in section 4 will show, that in fact,
reasoning can be done fast enough for interactive applications even for large and expressive ontologies.

2.4 An Optimized Algorithm for Reasoning with Meta Knowledge

We have defined meta-knowledge based on pinpointing formulas. For this reason, when reasoning in a
logic, where a pinpointing algorithm is known, we can compute a pinpointing formula and then immediately
derive meta-knowledge. However, finding all pinpoints is a very expensive operation. Hence, we provide an
optimized algorithm for computing meta-knowledge, which does not need to compute all pinpoints, and in
fact not even precisely a pinpoint but a sufficiently precise module around a pinpoint.

The optimization is based on the assumption that the meta-knowledge dimension is a lattice (BD,∨D,∧D)
such that a ∨D b = sup(a, b) and a ∧D b = inf(a, b) for a, b ∈ BD. This is true for all meta-knowledge
dimensions which are total orders and for all dimensions discussed above such as trust, modification date and
confidence degrees. In this case, the meta-knowledge formula in disjunctive normal form has the structure
of a supremum of infima.

A naive evaluation of meta-knowledge for an axiom might compute all pinpoints and then evaluate the pin-
pointing formula. We make this evaluation more efficient, by exploiting monotonicity properties of our meta-
knowledge dimensions where applicable. For instance, in the simple case of a meta-knowledge dimension
with a total order, the greatest supremum indicates the final meta-knowledge value. Thus, in many cases,
we do not need all pinpoints and we may restrict the computation of the pinpointing formula to those parts
that are relevant for the meta-knowledge computation given its particular lattice structure. Therefore, the op-
timized algorithm for computing meta-knowledge searches for the pinpoint with the greatest meta-knowledge
value. If the meta-knowledge dimension does not have a total order, several pinpoints with incomparable
meta-knowledge values may be found. Thus, we need to find all pinpoints with maximal meta-knowledge
values and merge the corresponding meta-knowledge values to determine the resulting meta-knowledge
value.

The algorithm starts by adding the query axiom to the ontology and then iteratively growing a subontology
around it based on the syntactic relevance as selection function.

Definition 13 Syntactic Relevance [JQH08]. An axiom B is directly syntactic relevant for an axiom A, if their
signatures overlap, i.e. if they share a concept, role or individual.

Using the syntactic relevance selection function, MetaA(O, A, D) computes the meta-knowledge degree
of O |= A in dimension D, if O |= A. We start by determining the set of syntactically relevant axioms for
A in line 3. Then we add the ones with the greatest meta-knowledge degree to the module in line 5-8. In

D1.2.5 Inconsistency-tolerant Reasoning with Networked Ontologies Page 21 of 38

the inner loop we now recursively add all syntactically relevant axioms for the new module, which have meta-
knowledge degrees greater than or equal the current infimum stored in degree, as these degrees will not
influence the final result. Then in each iteration of the outer loop we lower degree (lines 5 and 6), until we
have found a module, which contains a pinpoint (line 13). We work with a set for degree to account for the
fact that in the presence of partial orders, minimum and maximum are not unique. For total orders, degree
always is a singleton.

Algorithm 2: MetaA(O, A, D)
degree← {>D} ;
module← {} ;
syn← {B ∈ O|B is syntactically relevant for A} ;
repeat

add← {B ∈ syn |@C ∈ syn: meta(B) <D meta(C)} ;
degree← {meta(B) | B ∈ add } ;
repeat

module← module ∪ add syn← {B ∈ O|B is syntactically relevant for module} ;
add← {B ∈ syn | ∃d ∈ degree: meta(B) >=D d} ;

until add ⊆ module ;
syn← {B ∈ O|B is syntactically relevant for module} ;

until module |= A ;
return module, degree ;

Theorem 1 Let O be an ontology, A an axiom such that O |= A and D a meta-knowledge dimension with a
total order. MetaA(O, A, D) computes the meta-knowledge degree of O |= A in dimension D.

Proof: First we show that MetaA terminates. The inner loop terminates when add is empty. add is assigned
the subset of O, which is syntactically relevant to module and has a meta-knowledge degree >=D degree.
add is then added to module. The loop terminates when add ⊆module. AsO is finite, this must eventually be
the case. Analogously in the outer loop, module is grown as a subset of O. Again, as O is finite and O |= A,
the outer loop must eventually terminate. In this case module indeed |= A and degree = meta(module).

It remains to show that if MetaA terminates, it returns the correct meta-knowledge degree of O |= A. As the
corresponding meta-knowledge formula is a supremum of infima, we look for the pinpoint with the greater
meta knowledge degree. degree is initialized with >D and gradually reduced in the outer loop, until module
|= A. module only contains axioms with a meta-knowledge degree greater or equal degree. When the outer
loop terminates, module contains a (possibly superset of a) greatest pinpoint of A wrt. O. Assume there is a
pinpoint, which has not been found and has a greater meta-knowledge degree. Then it must already be part
of module, as module contains all directly or indirectly syntactically relevant axioms with meta-knowledge
degrees >=D degree.

For partial orders the resulting degree may contain multiple elements, which need to be merged. Moreover,
the computed module may be too large, as we grow it with all relatively maximal axioms, even though some
of their meta-knowledge values may be irrelevant for the final result. MetaPartial computes accurate degree
and module values for partial orders. It uses MetaA to compute an approximation first and then computes all
pinpoints within the approximated module to come up with precise results.

Theorem 2 Let O be an ontology, A an axiom such that O |= A and D a meta-knowledge dimension.
MetaPartial(O, A, D) computes the meta-knowledge degree of O |= A in dimension D.

The proof is an extension of the one for MetaA. In chapter 4 we evaluate the performance of the optimized
algorithm using both randomly generated meta-knowledge and change tracks from a real world ontology
editing system.

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 22 of 38 NeOn Integrated Project EU-IST-027595

Algorithm 3: MetaPartial(O, A, D)
module, degree← MetaA(O, A, D);
pinpoints← GetAllPinpoints(A, module);
module← {B|P ∈ pinpoints, B ∈ P};
singledegree←

⊕
B∈module meta(B);

return module, {singledegree} ;

D1.2.5 Inconsistency-tolerant Reasoning with Networked Ontologies Page 23 of 38

Chapter 3

A Segmentation-based Approach for
Approximate Query over Distributed and
Inconsistent Ontologies

3.1 Preliminaries

We first introduce some prerequisite knowledge about conjunctive query answering [HT00] problem over
description logics SHIQ KB that is proved to be decidable in [GHLS07]. We also introduce an ontology
mapping system by following the definition of conjunctive query.

3.1.1 Description logic SHIQ

Let NR be a set of role names with both transitive and normal role names NtR∪NnR = NR, where NtR∩NnR =
∅. A SHIQ-role is either some R ∈ NR or an inverse role R− for R ∈ NR. Trans(R) and R v S represent
the transitive and inclusion role axioms, respectively, where R and S are roles. R as a finite set of transitive
and inclusion role axioms. A simple role is a SHIQ-role that neither its sub-roles nor itself is transitive. Given
a set of concept names NC, the set of SHIQ-concepts is the smallest set such that: (1) Every concept name
is a concept; (2) if C and D are concepts, R is a role, S is a simple role, and n is a positive integer, then the
following expressions are also concepts: (>), (⊥), (¬C), (C uD), (C tD), (∃R.C), (∀R.C), (6 nSC) and
(> nSC). A TBox T is a finite set of axioms with the form C v D where C and D are SHIQ-concepts, and
an ABoxA is a finite set of axioms with the form C(x), R(x, y), and x ≈ y (x6≈y). A SHIQ knowledge base
(KB) is a triple (R, T ,A) which is also considered as ontology in the semantic information systems here.

The semantics of SHIQ KB is given by the interpretation I = (∆I , ·I) that consists of a non-empty set ∆I

(the domain of I) and the function ·I as usual (e.g., see [HS04]). The reasoning and decidability of SHIQ
is also introduced in [HS04]. The interpretation I is the model of R and T if for each R v S ∈ R, RI ⊆ SI
and for each C v D ∈ T , CI ⊆ DI .

3.1.2 Conjunctive query answering over SHIQ KB

Let KB be a SHIQ knowledge base, NP be a set of names such that all concepts and roles are in NP. An
atom P (s1, ..., sn) has the form P (s1, . . . , sn), denoted as P (s), where P ∈ NP, and si are either variables
or individuals from KB. An atom is called a DL-atom if P is a SHIQ-concept or role; it is called non-DL-atom
otherwise.

Definition 14 (Conjunctive Queries) Let x1, . . . , xn and y1, . . . , ym be sets of distinguished and non-
distinguished variables, denoted as x and y, respectively. A conjunctive query Q(x,y) over a KB is a
conjunction of atoms

∧
Pi(si), where the variables in si are contained in either x or y. We denote operator

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 24 of 38 NeOn Integrated Project EU-IST-027595

π [MSS05] to translate Q(x,y) into a first-order formula with free variables x: π(Q(x,y))=∃y:
∧

(Pi(si)).
♦

For Q1(x,y1) and Q2(x,y2) conjunctive queries, a query containment axiom Q2(x,y2) v Q1(x,y1) has
the following semantics:

π(Q2(x,y2) v Q1(x,y1)) = ∀x : π(Q1(x,y1))← π(Q2(x,y2))

Definition 15 (Conjunctive Query Answering) An answer of a conjunctive query Q(x,y) w.r.t. KB is an
assignment θ of individuals to distinguished variables, using Ans(Q,KB) as a function, such that π(KB) |=
π(Q(xθ,y)). ♦

We refer readers to [GHLS07, MSS05, HT00] for further issues in conjunctive query answering for ontologies.

We follow the general framework of [Len02] to formalize the notion of a mapping system for DL ontologies,
where mappings are expressed as correspondences between conjunctive queries1 over ontologies.

Definition 16 (Ontology Mapping System) An ontology mapping system MS is a triple (O1,O2,M),
where

• O1 is the source ontology, O2 is the target ontology,

• M is the mapping between O1 and O2, i.e. a set of assertions qS qT , where qS and qT are
conjunctive queries over O1 and O2, respectively, with the same set of distinguished variables x, and
 ∈ {v,w,≡}.

An assertion qS v qT is called a sound mapping, requiring that qS is contained by qT w.r.t. O1 ∪ O2; an
assertion qS w qT is called a complete mapping, requiring that qT is contained by qS w.r.t. O1 ∪ O2; and an
assertion qS ≡ qT is called an exact mapping, requiring it to be sound and complete. ♦

To have the same segmentation result for ontology integration system introduced later, we do not consider
mapping transitivity here, i.e., if O1 and O2 have mapping M12; O2 and O3 have mapping M23, it does
not imply the existence of mappingM13 between O1 and O3. Furthermore, several mappings between two
ontologies are considered as one single mapping. This form of mapping is decidable in inferencing while it is
restricted to DL-safe mappings [HM05]. Mappings discussed in this paper are referred as DL-safe mapping
by default. Further details about semantics and restrictions of ontology mapping system can be found in
[HM05].

3.2 Segment-based Conjunctive Query Answering over Distributed Ontolo-
gies

To discover the possible optimizations using approximate conjunctive query answering in the distributed
environment, we need to analyze the distributed ontologies by considering their integration via mappings. We
here define ontology integration system using mappings for distributed networking scenario. In the following,
we denote I = {1, . . . , n}, n ∈ N and i 6= j; i, j ∈ I .

Definition 17 (Distributed Ontology Integration System (DOIS)) A distributed ontology integration sys-
tem (DOIS) is a triple ({MSi},N , Loc), where

1. {MSi} is a set of mapping systems. We denote O and M as the ontologies and mappings included
in {MSi}, respectively.

1We denote a conjunctive query as q(x,y), with x and y sets of distinguished and non-distinguished variables, respectively.

D1.2.5 Inconsistency-tolerant Reasoning with Networked Ontologies Page 25 of 38

2. N is a set of distributed nodes where the ontologies and mappings reside;

3. Loc : O ∪M → N is a location function such that Ni = Loc(Oi) and Nij = Loc(Mij), where
Ni, Nij ∈ N and Oi∈O,Mij∈M. This function aims to relate an ontology or mapping to a specific
distributed node. ♦

Given DOIS ({MSi},N , Loc) over O, we use Anse(Q, {MSi},O) to denote the complete set of answers
for conjunctive query Q(x,y) over O ∪M.

To simplify the presentation, in the following we introduce the notion of distributed system, which is inspired
from [ZE06] but not exactly the same.

Definition 18 (Distributed System) Distributed system D is a set of mapping systems {MSi}. Or equiva-
lently, D = (O,M) where O = {Oi} is a set of ontologies and M = {Mij} is a set of mappings between
Oi and Oj in O. ♦

We introduce the notion of distributed system in addition to Definition 17 for better understanding our graph-
based segmentation approach and algorithms, because by looking at Example 1, it is very easy to see D is
a graph with ontologies as vertex and mappings as edges.

Example 1 The DOIS depicted in Figure 3.1 contains five ontologies distributed over five nodes, where Ot

is the target ontology that has non-empty mappings with all other source ontologies. O1, O2 and O3 are
connected by mappings, presented as dotted line.

Figure 3.1: Figure for Example 1. Given D = (O,M), source ontologyOi ∈ O, target ontologyOt ∈ O and mappings (light-dot

lines) between them. Circles are ontologies distributed on different nodes. 4

We define the notion of an inconsistent distributed system.

Definition 19 [MST07] Given a distributed system D = (O,M) where O = {Oi} is a set of ontologies and
M = {Mij} is a set of mappings between Oi and Oj in O. The union Union(D) of O and M is defined
as Union(D) = ∪Oi∈OOi ∪Mij∈M {t(m) : m ∈ Mij} with t being a translation function that converts a
correspondence into an axiom in the following way: t(〈C,C ′, r, α〉) = CrC ′.

That is, we first translate all the correspondences in M into DL axioms, then the union of the ontologies
connected by the mappings is the set-union of the ontologies and the translated axioms.

Definition 20 (Inconsistent Distributed System) Given a distributed system D = (O,M) where O =
{Oi} is a set of ontologies and M = {Mij} is a set of mappings betweenOi andOj in O. D is inconsistent
if Union(D) is inconsistent. ♦

Given a DOIS, we know the following information: (1) A mappingM and its source and target ontologies; (2)
the locations of those mappings or ontologies in the distributed network. Now the we are able to query over
distributed ontologies that are integrated as a global ontology in mapping systems. Because a DOIS consists
of different ontologies, it is possible to improve the overall performance by dividing the distributed system of
a DOIS into several segments (Example 2). Let’s consider a simple example: The Law School and Faculty
of Physics normally do not share projects or professors, or the shared information is not usually recognized
by people. Therefore, ontologies describing these two departments are going to be grouped into different
segments.

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 26 of 38 NeOn Integrated Project EU-IST-027595

Definition 21 (Distributed Subsystem) Given a distributed system D, distributed subsystem of D is a pair
(O′,M′), denoted as D′ v D, iff O′ ⊆ O and M′ = {Mij ∈M : Oi,Oj ∈ O′}. A distributed subsystem
is also a distributed system. ♦

Definition 22 (Segment) Given a distributed system D = (O,M), a segment of D is distributed subsystem
S = (O′,M′) such that

1. for allMij ∈M′, we haveMij 6= ∅;

2. for any distributed subsystem S′ of D, if S @ S′, then S′ does not satisfy 1. ♦

Different from [SR06], which aims to generate segments from a large domain ontology to facilitate ontology
engineering, we can see a segment here is distributed subsystem S of D which satisfies the condition that
all the ontologies in it are connected by non-empty mappings and any other distributed subsystem of D which
strictly includes S does not satisfy this condition. This has two benefits:

1. If the ontologies of a distributed subsystem are not all connected by non-empty mappings, then this
distributed subsystem can be divided into smaller distributed subsystems to improve performance.

2. We achieve completeness of answers as much as possible after segmentation by requiring the seg-
ment to be the inclusion maximal distributed subsystem which satisfies Condition 1 in Definition 22.

Therefore, our definition of segment perfectly captures the idea of balancing the trade-off between perfor-
mance and completeness in querying distributed ontologies – the Example 2 presents how the segmentation
is processed.

We are able to develop an algorithm for segmenting a distributed system D directly based on existing algo-
rithms (e.g., union-find algorithm [GI91]) to process graphs. Note that not all the complete subgraphs of G
can be interpreted to segments, e.g., assuming a segment ({O1,O2,O3}, {M12,M13,M23}), apparently,
({O1,O2}, {M12}) forms a complete graph but it doesn’t satisfy Definition 22. Let’s see an example about
how mappings affect segmenting result to form DOISs with different distributed nodes.

O6

O5

4 Nodes

6 Nodes

O1

O2

O3

O4

Ot

O1

O2

O3

O4

Ot

O1

O2

O3

O4

Ot

O6

O5

O1

O2

O3

O4

Ot

Figure 3.2: Figure for Example 2. Given D = (O,M), source ontologyOi ∈ O, target ontologyOt ∈ O and mappings (light-dot

lines) between them.

Example 2 In this example, we use 5 and 7 distributed ontologies for each DOIS, respectively. Next we will
segment the DIOS to show how our segmenting approach works based on definitions above.

1. Let’s first look at the case of four distributed nodes with one ontology on each node. Before segmenting
the DOIS, we have mappingsM12,M13 andM23 between ontologies O1 and O2, O1 and O3, O2

andO3,O2 andO4, respectively. We also have mappings from target ontology to each source ontology

D1.2.5 Inconsistency-tolerant Reasoning with Networked Ontologies Page 27 of 38

Mt1,Mt2,Mt3 andMt4. According to the definition of segments, we have the segmentation result
depicted by following the arrow:

(a) ({O1,O2,O3,Ot}, {Mt1,Mt2,Mt3,M13,M12,M23})

(b) ({O4,Ot}, {Mt4}).

So there are two segments in this case.

2. It is very often the case that the distributed nodes and extra mappings are added into the current sys-
tem. Our seven nodes example indicates the segmentation status if we add O5 and O6 with mappings
M24 andM56 to the five nodes distributed system. Mappings between target ontology and O5 and
O6 areMt5 andMt6, respectively. Then we have the following segmentation result:

(c) ({O1,O2,O3,Ot}, {Mt1,Mt2,Mt3,M13,M12,M23})

(d) ({O2,O4,Ot}, {Mt2,Mt4,M24})

(e) ({O5,O6,Ot}, {Mt5,Mt6,M56})

So there are three segments in this case. 4

As mentioned in the introduction, our aim is to find a balance between the completeness and performance
for query answering over distributed ontologies by using segments of distributed systems. Thus, the union
of the individual query answering result of each segment obviously may not be equal to the exact answers.
We therefore introduce our approach to find out segment-based answers in querying distributed ontologies.
In the mean time, for uses who want to achieve complete answers, we also provide an alternative approach
to compute them (Algorithm 5).

Definition 23 (Segment-based Query Answering) Given a DOIS with D = (O,M) and a conjunctive
query Q, let S = {Si}i=1,...,n; n∈I and Anse(Q,D,O) be complete answers to query over O, where O is
the target ontology and O ∈ O. Segment-based Query Answering in DOIS is defined as:

Ansa(Q,D,O) =
⋃

i∈{1,...,n}

Anse(Q,Si,O)

where Ansa stands for segment-based query answering. ♦

Obviously, the set of segment-based answers are subset of the set of complete answers because the number
of answers monotonically increases. Let’s illustrate this by an example.

Example 3 Assume ontologies from different departments O1, O2 and mappingM bridging them:

• O1={Professor v Faculty u ∃teach.Course}

• O2={Professor v Staff u ∃teach.Lecture}

• M={1:Professor v 2:Professor, 1:Faculty v 2:Staff, 2:Lecture v 1:Course}

Here, 1:Professor means concept Professor in O1. If M holds and we ask for professors who teaches a
certain course, we get complete answers because O1 and O2 are integrated withM as a global ontology.
However, ifM does not exist, then we can ask for segment-based answers (i.e., O1 and O2 are divided into
different segments). In this case the professors who give lectures with other departments are not included in
the answers but can be computed in the end of our algorithm. 4

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 28 of 38 NeOn Integrated Project EU-IST-027595

3.3 Algorithms for Segment-based Query Answering

There are three algorithms in this segment-based conjunctive query answering approach: (1) Segmentation,
(2) query distribution and answering, and (3) termination and results collection. Different query distribution
approaches are adopted for segments with different number of mapping elements for better allocating com-
puting resources. The cardinality of S is Card(S) = |M| that indicates the number of elements contained
in M. Then,

• a segment is called single-element segment, denoted as Ss, iff Card(Ss) = 1;

• a segment is called multiple-element segment, denoted as Sm, iff Card(Sm) > 1.

The single-element segment is a segment which contains only two ontologies (i.e., a target ontology Ot and
a source ontology Oi with mappingMti between them, e.g., segment (b) in Example 1 is a single-element
segment). On the other hand, the multiple-element segment consists more than one mapping ontologies
connecting more than two ontologies (e.g., all segments in Example 1 except (b) are multiple-element seg-
ments). The exact conjunctive query answering are denoted as Anse(Q,Ss,O) and Anse(Q,Sm,O) for
single/multiple-element segments, respectively, where Q is a conjunctive query over a common target ontol-
ogy shared by all the segments of D.

Algorithm 4: Segmentation
Data: A DOIS (D,N , Loc), a target ontology Ot, empty ontology set O, empty mapping set M and empty

graph set G
begin

get all ontologies that have non-empty mappings with Ot and put them to O;
get all mappings related Ot to O and put them to Mt;
get all mappings among ontologies in O and put them to M, add Ot to O, add Mt to M;
establish graph G with n vertices O and edges M, where n is the number of ontologies in O;
k = n;
while k > 2 do

get all complete subgraphs of G with number of vertices k and put them to Gk;
remove all subgraphs that are already in G from Gk;
add Gk to G;
k −−;

establish a set of segments S of D based on G;
remove segments that are inconsistent from S;
for Sl ∈ S do

put Sl into Ss if Sl is a single-element segment, else, put Sl into Sm;
output Ss and Sm;

end

Algorithm 4 starts with input of a DOIS with distributed system D and a target ontology Ot over which the
query is about to be executed. The system gets all ontologies connected to Ot and the corresponding
mappings to establish a graph G (Step 1–4), and then it extracts the segments with k number of ontologies
(2 6 k 6 n) iteratively by computing the complete subgraphs of G with k vertices using classic union-find
algorithm [GI91] (Step 5–12), this is exactly the segmentation procedure presented in Example 1). In the
meanwhile, we need to eliminate those subgraphs of complete subgraphs of G with higher number vertices
to make sure all the generated subgraphs are maximal complete subgraphs (Step 8). Then, we interpret
the generated set of maximal complete subgraphs G back to a set of segments, written as S (Step 10). We
remove those segments that are inconsistent from S (Step 11). To facilitate query distribution, we classify the
segments into single and multiple-element segments as input of the consequent Algorithm 5 (Step 12–15).
We show all segments should contain Ot.

D1.2.5 Inconsistency-tolerant Reasoning with Networked Ontologies Page 29 of 38

Proposition 4 Given a DOIS (D,N , Loc), a target ontology Ot and a set of segments S generated in the
Step 14 of Algorithm 4, the target ontology Ot is included in all the segments in S.

Proof sketch. If G is complete graph without vertex Ot, then G and Ot forms a complete graph. According
to Definition 22, G can not be interpreted as a segment. �

Algorithm 5: Query distribution and consistent query answering
Data: A DOIS (D,N , Loc), a conjunctive query Q, a target ontology Ot, segments Ss and Sm

begin
create an empty list LN for nodes that are idle (i.e., nodes that are not involved in executing query
answering tasks);
for Ssi ∈ Ss do

get ontology source ontologies Oi of Ot in Ssi ; get remote node Ni = Loc(Oi), put Ni into LN ;
compute Ansa(Q,Ssi ,O) on node Ni in parallel (i.e., parallel processing means this task is
executed in parallel in different nodes over distributed network);

for Smj ∈ Sm do
get source ontology set Oj of Ot in Smj ;
find an arbitrary idle node Nj = Loc(Oj), where Oj ∈ Oj ;
put Nj into LN ;
compute Ansa(Q,Smj ,O) on node Nj in parallel;

get a random idle node Ni, compute Anse(Q,D,O) on Ni in parallel ;
end

In Algorithm 5, for a single-element segment, the system sends the query to the distributed node where
the source ontology in Ssi resides (Step 2–5, please note there is only one source ontology in each Ssi

so the nodes are not occupied at this stage); for multiple-element segment, the system sends the query to
an arbitrary unused node where an arbitrary source ontology resides (Step 6–11). To achieve exact query
answering (Step 12) as supplement, the algorithm simply integrates all ontologies and mapping in D on an
unused remote node without segmentation and query over D. In Step 6–12, if all nodes are occupied, the
algorithm waits until an arbitrary node finishes its querying task and put the next query answering task to this
node – this procedure managed independently by Algorithm 6 for termination and result collection.

Algorithm 6: Termination and results collection
Data: list of nodes LN that is in-use (not idle), termination boolean signal U , timeout preset T
begin

while LN 6= ∅ and U =FALSE and T 6= TIMEOUT do
if Ni then

returns anwser;
send out the answer from Ni, remove Ni from LN ;

final results collection;
end

Algorithm 6 returns the real time segment-based answers, manages the distributed nodes and monitors the
terminating signal. Once all distributed nodes are not in use, or querying process are terminated. The system
also terminates in a preset, maximum allowed execution time, considering one or several distributed tasks
doesn’t respond due to possible system or network failures.

In Algorithm 4, the optimized clique discovery problem to find complete subgraphs in graphs with size n,
which is the number of ontologies, has complexity LOG-TIME [GI91]. The complexity of conjunctive query
answering over SHIQ KB with size m, which is the number of concepts, is CO-NP-COMPLETE [GHLS07],
which is the major computation in Algorithm 5. Our algorithms do not reduce the computational complexity
of query answering over distributed ontologies. Because the cope of our approach is to balance the trade-off

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 30 of 38 NeOn Integrated Project EU-IST-027595

between completeness and performance in distributed ontology query answering for actual web information
systems, but not to optimize the query processing algorithms in local query processing.

D1.2.5 Inconsistency-tolerant Reasoning with Networked Ontologies Page 31 of 38

Chapter 4

Evaluation

In this chapter, we provide some preliminary evaluation results on our approach for reasoning with meta
knowledge and our approach for approximate query over distributed ontologies separately. Although the
distributed ontologies considered in our experiments are consistent, we expect that positive results can be
achieved even if inconsistent distributed ontologies are considered.

4.1 Complexity and Evaluation of Reasoning with Meta Knowledge

The complexity of both the naive and the optimized approach for computing meta knowledge is equivalent
to the computation of pinpoints in the underlying logic as the meta knowledge formula can be evaluated in
polynomial time. If it is expressed in normal form, however, the size of the formula can blow up exponentially.
Approaches for computing pinpoints like [BP07] which, rather than representing pinpoints formula in a normal
form, derive a compact representation of the pinpoints formula benefit the computation of meta knowledge
since they avoid exponential blowup.

While in the average case the complexity of computing meta knowledge is the same as the complexity of
finding all pinpoints and hence quite high, in the average case we can do much better using the optimized
algorithm.

Evaluation Goals We want to evaluate whether meta knowledge based on pinpointing is fast enough to
support a users assessment of the reliability of inferences in real time.

Evaluation Criteria In order to demonstrate the scaleability of our very general approach for determining
meta knowledge, we have performed several type of experiments. In the first type of experiments, we have
enriched existing ontologies with artificial meta knowledge dimensions and values. For this purpose, we se-
lected ontologies that had been under investigation in related work demonstrating the efficiency of traditional
computation of pinpoints (ontologies 1-6). In the second type of experiments, we have used an actual log
of changes to a large and expressive ontology (ontology 7) to check whether our findings based on artificial
data carry over to the real world.

Let us now consider the experiments. We have evaluated the average absolute time needed to compute the
meta knowledge for an inconsistency, considering all inconsistent classes per ontology. For the ontology 7,
which contains the real world change tracks, we had to add some inconsistencies to run the experiment.

The evaluation is performed with four different kinds of data. (Naive) As a baseline we use the pinpointing
algorithm in the OWLAPI to compute all pinpoints. (Optimized Random) We augmented ontology 1-6 with
random meta knowledge in a single dimension and compute the meta knowledge of the inconsistencies.
(Optimized Cluster 1 Dimension and Optimized Cluster 2 Dimensions) We augmented ontology 1-6 with
semi random meta knowledge, such that clusters of axioms, which are syntactically relevant to each other
are assigned similar meta knowledge degrees. This shall reflect the fact that a user usually does not do
random modifications, but changes a part of the ontology focused around a certain class or property. We
performed this experiment with a single and with two dimensions to investigate the influence of combining

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 32 of 38 NeOn Integrated Project EU-IST-027595

ID Ontology Expressivity Axioms

1 People+Pets ALCHOIN 108
2 MiniTambis ALCN 173
3 University SOIN 52
4 Economy ALCH(S) 1625
5 Chemical ALCHF 114
6 Transport ALCH 1157
7 BIO SHOIN (D) 8839

Table 4.1: Ontologies used in experiment

People MiniTambis University Economy Chemical Transport BIO

1%

10%

100%

Optimized Random
Optimized Cluster 1
Dimension
Optimized Cluster 2
Dimensions
Naive

Ontologies

T
im

e
 (

%
 o

f b
a

se
lin

e
)

Figure 4.1: Average Time to Compute Meta Knowledge for an Inconsistency

dimensions. (Real life change tracks) For ontology 7 we performed the same tests as for ontologies 1-6, but
the meta knowledge is taken from real world change tracks instead of being generated.

Evaluation Setting The prototype has been implemented in
Java using Pellet and OWLAPI. For the naive implementation the black box algorithm in the OWLAPI
is used for computing all pinpoints. An overview of the ontologies used for evaluation is shown in table 4.1.
This dataset has already been used for testing the computing time of laconic justifications in [HPS08], except
for ontology 7. The evaluation was run on a dual core Atom 1,6Ghz Processor running Windows XP.

Evaluation Results The results of the evaluation are shown in Figure 4.1. We have normalized the results
to the processing time for the naive approach and used a logarithmic scale, as the absolute numbers ranged
over three orders of magnitude. Our optimized algorithm performs significantly better for all cases and scales
very well. Moreover, in every case, meta knowledge can be computed in well under a second, which is fast
enough for interactive applications. The absolute times needed on our rather slow machine ranged from
71ms for ontology 6 to 812ms for ontology 7 for the "Optimized Cluster 2 Dimensions" experiment.

Furthermore, we observe that reasoning with many independent dimensions can have a negative perfor-
mance impact due to lots of incomparable values in the combined dimension. In such cases, meta knowledge
in the independent dimensions should be computed separately. Results for the real world data from the BIO
ontology show, that in reality this is less a problem, as modification dates and creator are not independent
there.

4.2 Evaluation of Distributed Reasoning

We have implemented our approach for distributed reasoning using KAON2 as the query answering engine
for this evaluation1. Since our approach aims to improve the overall performance in querying distributed
ontologies approximately, we need to evaluate the performance increases (presented by time saved) against
the loss of completeness (presented by rates of the cardinality of the set of segment-based answers to that of

1The experimental implementation is available upon request

D1.2.5 Inconsistency-tolerant Reasoning with Networked Ontologies Page 33 of 38

the set of complete answers). The hypothesis for this evaluation is that the time saved outweighs the rates of
approximation to complete answers. We show our evaluation by first introducing the setting for experiments,
presenting and discussing the results afterwards.

4.2.1 Experiment settings

We used 17 virtual distributed nodes to simulate a distributed network. The nodes are “virtual” because
virtual machines were deployed on four actual computers, therefore the CPU power was shared. Each node
held an ontology instance data set with fixed size. The instance data have different schemata that are either
heterogeneous or homogenous. In our experiment, we are using four ontology schemata: (1) The Lehigh
University Benchmark (LUBM) ontology2; (2) Proton ontology3; (3) SWRC ontology [SBH+05]; (4) FOAF
ontology.4 The instance data includes the following:

1. LUBM automatically generated ontologies that includes instance data of information about university
life

2. Digital library data in Proton schema

3. Documents and publication data in Institute AIFB, University of Karlsruhe

4. Project and personal contacting information in FOAF schema

The ontology mappings were created manually for actual use in different projects (e.g., Proton–SWRC map-
ping was created for EU IST SEKT project5, FOAF–LUBM mapping was created for Traditional Chinese
Medicine project [CWW+06].)

Each node held a data set with either SWRC, Proton, LUBM or FOAF schema with corresponding ontology
instance data with size approximately 1MB. Let’s look at a 5 segments example of our experiment setting
to see how the data and schemata are allocated. The 17 ontologies and the mappings between them
constitute a distributed system D, whereas the segmentation process only applies to those ontologies that
hold mappings with target ontology.

Figure 4.2: Example of data allocation in 5 segments case. The circles stand for distributed ontologies with different schemata;

O-Target means the target ontology.
We used two conjunctive queries: One was to search the documents with their corresponding authors who
were professors; the other was to find out all the abstracts of the documents written by Yimin Wang in 2006
with the associated projects. The data had many schemata created for different purpose, for example, data in
SWRC schema were created for the local research group website portal, data in FOAF schema were created

2
http://swat.cse.lehigh.edu/projects/lubm/

3
http://proton.semanticweb.org/

4
http://xmlns.com/foaf/0.1/

5
http://www.sekt-project.com

2006–2010 c© Copyright lies with the respective authors and their institutions.

http://swat.cse.lehigh.edu/projects/lubm/
http://proton.semanticweb.org/
http://xmlns.com/foaf/0.1/
http://www.sekt-project.com

Page 34 of 38 NeOn Integrated Project EU-IST-027595

for the Chinese Traditional Medicine project management, etc. Therefore, it was possible that Yimin Wang
was working for a project information in FAOF schema and has publication information in SWRC schema –
the mapping was used to infer complete information in this case.

1. SELECT ?x ?y
WHERE { ?x rdf:type Professor . ?y rdf:type Document . ?y publicationAuthor ?x }

2. SELECT ?x ?y ?k
WHERE { ?x year "2006". ?x author ?z . ?x abstract ?y .

?z name "Yimin Wang" . ?z worksFor ?k . ?k rdf:type Project}

An experiment unit was one execution of one query over a certain setting with different mappings covered.
Based on Definition 22, it’s easy to find when the number of mappings changes, the segmentation results
are different. In this experiment, we set the DOISs to have four different settings with 16, 12, 9, 5 segments
(Figure 4.2 depicts the 5 segments case), respectively. The two queries above were executed for 20 times
for each experiment unit and the average execution time was computed, recorded and compared with the
execution time held by exact query answering over same size of data. We compared times saved by using
segment-based approach against the rates of approximation in different stages. We present both the time
costs using global integration with and without segmentation approach applied.

4.2.2 Results and discussions

In the experiments, the two queries above were executed in the distributed network and the results were
collected and presented in Figure 4.3.

Figure 4.3: Experiment results for the two queries. respectively.

D1.2.5 Inconsistency-tolerant Reasoning with Networked Ontologies Page 35 of 38

The X axis presents the time costs and the Y axis shows the corresponding rates of approximation (i.e.
rate of approximation equals to Na

Ne
, where Na are the numbers of segment-based and Ne are all answers,

respectively).

The system computes the answers of segments on each distributed node and returns the answers one by
one incrementally. Thus, in Figure 4.3, there are 16 points indicating the time saved against the rates of
approximation. Similarly, DOIS2, DOIS3 and DOIS4 have 12, 9 and 5 points in the figures, respectively. The
black star and diamond symbols in two figures are time costs of querying global integration of all ontologies in
D in local space, and querying complete distributed without considering mappings and integration. We can
obviously see these two extreme situations are significantly short of either performance or completeness.

By aligning to the motivated scenario in Section 3.2 that is considered to be common on today’s Web, there
are three major messages delivered by this evaluation: First, in the motivated scenario, data in individual
departments of a big organizations are usually reasonably (not heavily) interconnected. Moreover, the map-
ping among the departments are usually under control to avoid unintended information sharing. In this case,
our approach have good rates of approximation with remarkable time saved. Taking DOIS1 in Figure 4.3
for example, when the results have more than 80% rate of approximation to the set of complete answers by
using fully global integration in local space, up to 85%(15.7−2.3

15.7) and 68% (23.8−7.5
23.8) execution time has been

saved for the first and second queries respectively. Compare to the case without considering mappings and
integration, we see the completeness is only about 25%. This is quite obvious: We have ontologies with four
different schemata, so we can approximately get one of four answers if we do not integrate the distributed
ontologies using mappings.

Second, however, we have also realized the rate of approximation relies on the queries. For instance, in
Figure 4.3, the first query has better rate of approximation than the second one because the first query is
less possible to access remote ontologies: The information about professors and their publications usually
reside in individual departments, whereas in the second query the projects are very likely to be shared across
departments or universities, resulting frequent usage of mappings. For certain queries, it is possible that the
approximate process returns the complete answers, or doesn’t give any result at all – that’s why we also
provide the exact query answering functionality.

Last but not least, personalization of query answering task is a key issue in our approach. It’s configurable
to make certain mappings integrated or not. People just need to tune the parameters to terminate the query
answering procedure if they are satisfied with the segment-based answers, or wait for all the answers. Figure
4.3 indicates the performance is very promising if anticipated answers are achieved and process is terminated
in the middle of runtime.

In a nutshell, our approach, which addresses segment-based conjunctive query answering over distributed
ontologies, well meets our target, resulting in sound but may incomplete answers in a very efficient manner,
especially when the answers are acceptable in practical scenarios.

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 36 of 38 NeOn Integrated Project EU-IST-027595

Chapter 5

Conclusion

In this deliverable, we first reduced bilattice based reasoning to meta knowledge reasoning by adjusting the
technique developed for ALC4 in D1.2.4. An efficient algorithm was then provided for meta knowledge rea-
soning. After that, we described a novel approach to address the problem of balancing the trade-off between
completeness and performance in conjunctive query answering over inconsistent and distributed ontologies.
We introduced the notions of segment-based conjunctive query answering to achieve better performance
with acceptable completeness by introducing distributed system segmentation for query distribution. We
designed and implemented three algorithms to support our approach. We provided evaluation results for
both the approach for meta knowledge reasoning and the approach for distributed reasoning. The evaluation
results indicated that our approaches are very promising in the motivated scenario.

There is a possibility to combine the segmentation-based approach with the billatice-based semantics. That
is, if we do not require that segments returned by Algorithm 4 be consistent, then we can apply the billatice-
based semantics to handle those inconsistent segments. This work will be left as future work.

D1.2.5 Inconsistency-tolerant Reasoning with Networked Ontologies Page 37 of 38

Bibliography

[AdA07] B. Thomas Adler and Luca de Alfaro. A content-driven reputation system for the wikipedia. In
WWW2007. ACM, 2007.

[AGPR99] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ramaswamy. Join syn-
opses for approximate query answering. In Proc. of SIGMOD Conference, pages 275–286,
1999.

[BP07] Franz Baader and Rafael Peñaloza. Axiom pinpointing in general tableaux. In TABLEAUX
’07: Proceedings of the 16th international conference on Automated Reasoning with Analytic
Tableaux and Related Methods, pages 11–27, Berlin, Heidelberg, 2007. Springer-Verlag.

[CGL01] D. Calvanese, G. De Giacomo, and M. Lenzerini. A framework for ontology integration. In
Proceedings of the First Semantic Web Working Symposium, pages 303–316, 2001.

[CWW+06] Huajun Chen, Yimin Wang, Heng Wang, Yuxin Mao, Jinmin Tang, Cunyin Zhou, Ainin Yin, and
Zhaohui Wu. Towards a semantic web of relational databases: A practical semantic toolkit and
an in-use case from traditional chinese medicine. In Proc. of the 5th International Semantic Web
Conference, pages 750–763, 2006.

[GHLS07] Birte Glimm, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. Conjunctive query answering for the
description logic SHIQ. In Proc. of IJCAI-07. AAAI Press, 2007.

[GI91] Zvi Galil and Giuseppe F. Italiano. Data structures and algorithms for disjoint set union problems.
ACM Comput. Surv., 23(3):319–344, 1991.

[Gin92] Matthew L. Ginsberg. Multivalued Logics: A Uniform Approach to Inference in Artificial Intelli-
gence. Computational Intelligence, 4(3), 1992.

[GKT07] Todd J. Green, Gregory Karvounarakis, and Val Tannen. Provenance Semirings. In PODS,
pages 31–40, 2007.

[GM08] Bernardo Cuenca Grau and Boris Motik. OWL 2 Web Ontology Language: Model-Theoretic
Semantics. http://www.w3.org/TR/owl2-semantics/ [2008-05], 2008.

[GR03] Francois Goasdoue and Marie-Christine Rousset. Querying distributed data through distributed
ontologies: A simple but scalable approach. IEEE Intelligent Systems, 18(5):60–65, 2003.

[HM05] Peter Haase and Boris Motik. A mapping system for the integration of OWL-DL ontologies. In
IHIS’05, pages 9–16. ACM Press, NOV 2005.

[HPS08] Matthew Horridge, Bijan Parsia, and Ulrike Sattler. Laconic and precise justifications in owl.
In ISWC ’08: Proceedings of the 7th International Conference on The Semantic Web, pages
323–338, Berlin, Heidelberg, 2008. Springer-Verlag.

[HS04] Ian Horrocks and Ulrike Sattler. Decidability of SHIQ with complex role inclusion axioms.
Artificial Intelligence, 160(1–2):79–104, December 2004.

2006–2010 c© Copyright lies with the respective authors and their institutions.

Page 38 of 38 NeOn Integrated Project EU-IST-027595

[HT00] I. Horrocks and S. Tessaris. A conjunctive query language for description logic Aboxes. In Proc.
of AAAI/IAAI-06, pages 399–404. AAAI Press / The MIT Press, 2000.

[JQH08] Q. Ji, G. Qi, , and P. Haase. A relevance-based algorithm for finding justifications of DL entail-
ments. Technical report, University of Karlsruhe, 2008.

[KPCGS06] A. Kalyanpur, B. Parsia, B. Cuenca-Grau, and E. Sirin. Axiom pinpointing: Finding (precise)
justifications for arbitrary entailments in OWL-DL. Technical report, 2006.

[Len02] M. Lenzerini. Data integration: a theoretical perspective. In Proceedings of the twenty-first
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 233–
246. ACM Press, 2002.

[MH09] Yue Ma and Pascal Hitzler. Paraconsistent reasoning for owl 2. In Axel Polleres and Ter-
rance Swift, editors, RR, volume 5837 of Lecture Notes in Computer Science, pages 197–211.
Springer, 2009.

[MHL08] Yue Ma, Pascal Hitzler, and Zuoquan Lin. Paraconsistent reasoning for expressive and tractable
description logics. In Franz Baader, Carsten Lutz, and Boris Motik, editors, Description Logics,
volume 353 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[MSS05] Boris Motik, Ulrike Sattler, and Rudi Studer. Query Answering for OWL-DL with rules. J. of Web
Semantics, 3(1):41–60, 2005.

[MST07] Christian Meilicke, Heiner Stuckenschmidt, and Andrei Tamilin. Repairing ontology mappings.
In Proc. of AAAI’07, pages 1408–1413, 2007.

[QS09] Guilin Qi and Simon Schenk. D1.2.4 inconsistency-tolerant reasoning with networked ontologies.
Technical Report D1.2.4, Universität Karlsruhe, 2009.

[SBH+05] Y. Sure, S. Bloehdorn, P. Haase, J. Hartmann, and D. Oberle. The SWRC ontology - semantic
web for research communities. In C. Bento, A. Cardoso, and G. Dias, editors, Proceedings of
the 12th Portuguese Conference on Artificial Intelligence, volume 3803 of LNCS, pages 218 –
231, Covilha, Portugal, DEC 2005. Springer.

[SDS09] Simon Schenk, Renata Dividino, and Steffen Staab. Reasoning with Provenance, Trust and all
that other Meta Knowlege in OWL2. In SWPM2009. CEUR, 2009.

[SR06] Julian Seidenberg and Alan Rector. Web ontology segmentation: Analysis, classification and
use. In Proc. of the 15th International World Wide Web Conference, Edinburgh, June 2006.

[SS09] Renata Dividino Simon Schenk and Steffen Staab. Reasoning with provenance, trust and all
that other meta knowlege in owl. In Paolo Missier Juliana Freire and Satya S. Sahoo, editors,
Semantic Web and Provenance Management (SWPM)âĂŹ09 Workshop (co-located with ISWC
2009), 2009.

[SST08] B. Schueler, S. Sizov, and D. T. Tran. Querying for Meta Knowledge . In WWW2008, pages
625–634. ACM, 2008.

[Str06] Umberto Straccia. A Fuzzy Description Logic for the Semantic Web. In Fuzzy Logic and the
Semantic Web. Elsevier, 2006.

[THD+09] Georgios Trimponias, Peter Haase, Chan Le Duc, Antoine Zimmermann, and Simon Schenk.
D1.4.4 reasoning over distributed networked ontologies and data sources. Technical Report
D1.4.4, Universität Karlsruhe, 2009.

[ZE06] Antoine Zimmermann and Jérôme Euzenat. Three semantics for distributed systems and their
relations with alignment composition. In Proc. of ISWC’06, pages 16–29, 2006.

	Introduction
	The NeOn Big Picture
	Motivation and Goals of this Deliverable
	Overview of the Deliverable

	Practical Reasoning with Trust, Uncertainty and other Meta-Knowledge
	Reasoning Based on Logical Bilattices
	Obtaining bilattices
	Application to Reasoning with Trust
	Extending OWL2 to logical bilattices

	Reasoning with Meta-Knowledge
	Running Example
	Pinpointing
	Semantics of Meta Knowledge

	Bilattice Based Reasoning using Meta Knowledge
	An Optimized Algorithm for Reasoning with Meta Knowledge

	A Segmentation-based Approach for Approximate Query over Distributed and Inconsistent Ontologies
	Preliminaries
	Description logic SHIQ
	Conjunctive query answering over SHIQ KB

	Segment-based Conjunctive Query Answering over Distributed Ontologies
	Algorithms for Segment-based Query Answering

	Evaluation
	Complexity and Evaluation of Reasoning with Meta Knowledge
	Evaluation of Distributed Reasoning
	Experiment settings
	Results and discussions

	Conclusion
	Bibliography

