NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies
Integrated Project (IST-2005-027595)

Priority: 1IST-2004-2.4.7 — “Semantic-based knowledge and content systems”

D7.4.3 Prototype System for Managing Fisheries Ontology Lifecycle

Deliverable Co-ordinator: Claudio Baldassarre, Peter Haase

Deliverable Co-ordinating Institution: FAO, UKARL

Other Authors: Claudio Baldassarre (FAO), Peter Haase (UKARL)

Document ldentifier: NEON/2009/D7.4.3/v1.0 Date due: December 31, 2008
Class Deliverable: NEON EU-IST-2005-027595 Submission date: December 31, 2008
Project start date: March 1, 2006 Version: V1.0
Project duration: 4 years State: Final

Distribution: Public

2006—2009 © Copyright lies with the respective authors and their institutions.

Page 2 of 34 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is a part of the NeOn research project funded by the IST Programme of the
Commission of the European Communities by the grant number I1ST-2005-027595. The
following partners are involved in the project:

Open University (OU) — Coordinator Universitat Karlsruhe — TH (UKARL)
Knowledge Media Institute — KMi Institut fur Angewandte Informatik und Formale
Berrill Building, Walton Hall Beschreibungsverfahren — AIFB

Milton Keynes, MK7 6AA Englerstrasse 11

United Kingdom D-76128 Karlsruhe, Germany

Contact person: Martin Dzbor, Enrico Motta Contact person: Peter Haase

E-mail address: {m.dzbor, e.motta} @open.ac.uk E-mail address: pha@aifb.uni-karlsruhe.de
Universidad Politécnica de Madrid (UPM) Software AG (SAG)

Campus de Montegancedo Uhlandstrasse 12

28660 Boadilla del Monte 64297 Darmstadt

Spain Germany

Contact person: Asuncion Gomez Pérez Contact person: Walter Waterfeld

E-mail address: asun@fi.upm.es E-mail address: walter.waterfeld@softwareag.com
Intelligent Software Components S.A. (ISOCO) Institut ‘JozZef Stefan’ (JSI)

Calle de Pedro de Valdivia 10 Jamova 39

28006 Madrid SI-1000 Ljubljana

Spain Slovenia

Contact person: Jesus Contreras Contact person: Marko Grobelnik

E-mail address: jcontreras@isoco.com E-mail address: marko.grobelnik@ijs.si

Institut National de Recherche en Informatique University of Sheffield (USFD)

et en Automatique (INRIA) Dept. of Computer Science

ZIRST - 655 avenue de I'Europe Regent Court

Montbonnot Saint Martin 211 Portobello street

38334 Saint-Ismier S14DP Sheffield

France United Kingdom

Contact person: Jérome Euzenat Contact person: Hamish Cunningham
E-mail address: jerome.euzenat@inrialpes.fr E-mail address: hamish@dcs.shef.ac.uk
Universitat Koblenz-Landau (UKO-LD) Consiglio Nazionale delle Ricerche (CNR)
Universitatsstrasse 1 Institute of cognitive sciences and technologies
56070 Koblenz Via S. Martino della Battaglia,

Germany 44 - 00185 Roma-Lazio, Italy

Contact person: Steffen Staab Contact person: Aldo Gangemi

E-mail address: staab@uni-koblenz.de E-mail address: aldo.gangemi@istc.cnr.it
Ontoprise GmbH. (ONTO) Food and Agriculture Organization
Amalienbadstr. 36 of the United Nations (FAQO)
(Raumfabrik 29) Viale delle Terme di Caracalla 1

76227 Karlsruhe 00100 Rome

Germany Italy

Contact person: Jirgen Angele Contact person: Margherita Sini

E-mail address: angele@ontoprise.de E-mail address: margherita.sini@fao.org
Atos Origin S.A. (ATOS) Laboratorios KIN, S.A. (KIN)

Calle de Albarracin, 25 C/Ciudad de Granada, 123

28037 Madrid 08018 Barcelona

Spain Spain

Contact person: Tomés Pariente Lobo Contact person: Antonio Lépez

E-mail address: tomas.parientelobo@atosorigin.com | E-mail address: alopez@kin.es

D7.4.3 Prototype System for Managing Fisheries Ontology Lifecycle Page 3 of 34

Change Log
Version Date Amended by Changes
0.8 01-01-2007 Claudio Baldassarre Version 0.8
0.9 10.12.2008 Peter Haase Architectural aspects, formatting
1.0 17.12.2008 Claudio Baldassarre Executive Summary, References

Executive Summary

This deliverable represents an incremental view of the work previously performed and
reported in D7.4.2; it retains the same title, motivations and scope. The report on the steps
already taken and the current situation is done in light of the additional knowledge gathered
from the project experience over the past months.

The support to the ontology lifecycle management is achieved by serializing the usage of
features either embedded in the core implementation of the toolkit:, or delivered with
additional plugins developed by partners within the project. To have a comprehensive
outlook on the available functionalities to date, and assess how they cope with the initial
requirements exposed for the lifecycle case study, we report on a list of delivered plugins, the
required functionalities mapped to them, and more important, what still remains uncovered to
complete the overall support.

1 At the time of writing this deliverable the toolkit version available and used is Ver.1.2.1

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 4 of 34 NeOn Integrated Project EU-IST-027595

Table of Contents

1
11
1.2
1.3

2.1

3.1
3.2

3.3
3.4

N o o1 b~

INtFOAUCTION ..o 5
70 1AV 1[0 o 5
RelationsShip WIth D7.4.2..... ..ot a e e 5
WY o] o] (o T Tod o 1N {0 g T Y (=0 =11 (0] o 6

REQUITEMENTS ANAIY SIS . uuiuiiiiiiiiiiiiiiiiiiiieeiiieeeeeeeeeeaeeeaeeseeseeeeseeesaeeeaeersaeraseesrserrreererarrraerrererees 8
ANAIYSIS OULCOIME ... e e e e e e e e e et r e e e e e e e e e e bt s e e s e e e e e eeaannna s 8

e ol 0e) 47 o= L= 11T L= PP 10
INEFOAUCTION ... 10
Plugins Verification.............coooviiiiiii 10

T I o1 I = 3 F= (o) PSRRI 12

G I © X1 T 5 T T oSSR 13

3.2.3 Workflow/Change ManagemMENTcocuuuiie ittt ribe e e e s e e e snneees 14

R J 0 B = 110 1 N S PPPN 16

Bu2.5 SPAR L ittt ittt — et et e e e e et e e e e e 17

G I T =) (22 ©] o (o SR 18

T |V [To [L= PO PPOPPPPPPPPPR: 20

G T2 T O T - o] (] S PSP 22

3.2.9 COre NEON TOOIKIL.......uiiiiiieeeeieiiitee e e e s ee e e e e e s se e e e e e e e e s st b ateeeeeaesesastsbaeeeaaeassnnraaeeeeeesseanns 23
Functionalities achievable with alternative Workflows..............ccvvviiiiniie e, 26
Current status of the ontology maintenance SUPPOIt...........oeeeeeeeeeeeeerieeieeeeieeeeeeeeeeeeeeeeeeeee 26

(0] o od 11 F=7 Ko] 1 30

N[y RS (=] o = ST PP PP P PP PP PP PPPPPPPPPPPPPPN 31

L =T =T o 1o = 32

ANNEX A — Features clustered per degree of criticalityccccceeeiii e, 33

D7.4.3 Prototype System for Managing Fisheries Ontology Lifecycle Page 5 of 34

1 Introduction

1.1 Motivation

WP7 major outcome pivots around the realization of two software environments: one will
support the creation and maintenance of a pool of fishery domain ontologies, the other will
exploit the information in ontological format to feed service-oriented functionalities, aimed at
improving document and data retrieval from Fishery division repository in FAO. The former
application is known as “Ontology Lifecycle Support System” (T7.4), and the latter is known
as “Fishery Stock Depletion Assessment System, (FSDAS).

The main objective of T7.4 is to create and maintain a set of domain ontologies, and to
support their continuous internal and cross-related information update. To achieve this
objective some critical mechanisms must be in place:

1. creation and maintenance of data models, modularization and versioning;
2. functionality for checking ontology validity, integrity, and soundness;

3. techniques for ontology learning and population.

The NeOn Toolkit provides the framework where these activities can be performed, as well
as the basic functionalities to support the work for ontology creation and modification. What
the NeOn Toolkit does not provide but is still needed for the success of T7.4, will be
provided in the form of application plugins that integrate with the toolkit architecture.

The additional plugins are intended to support the users in activities and tasks which
otherwise require either a long time to execute (e.g. ontology population), or huge manual
effort (e.g. automatic ontology mapping), or face to face coordination (e.g. editorial work).
This deliverable is hence motivated by the need to describe how the NeOn Toolkit will
accommodate the plugins (software integration), provided that they satisfy the requirements,
and give the view as a whole of a compact and robust software environment for ontology
maintainers.

1.2 Relationship with D7.4.2

This deliverable represents an incremental view of the work previously performed and
reported in D7.4.2; it retains the same title, motivations and scope. The report on the steps
already taken and the current situation is done in light of the additional knowledge gathered
from the project experience over the past months.

The description of work relative to T7.4 has not changed since the first definition of functional
requirements in D7.1.1, neither has its intended meaning. However a work for detailing the
initial specifications has generated an updated version (see D7.1.2), and on whose basis we
are able to present the “delta” achieved so far.

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 6 of 34 NeOn Integrated Project EU-IST-027595

We started with analyzing the requirements (see 2.1) for the ontology lifecycle support,
considering how they evolved in time (D7.1.1 to D7.1.2). After the delivery of D7.4.2, we
have hence worked on the development and refinement of the plugins according to that
evolution, to meet and to accomplish T7.4 goals.

We found that despite the effort provided by project partners towards software development,
the status of the above mentioned components highlights that some have only partially
reached their final shape, and others still do not completely meet FAO’s specifications.

This deliverable intends to gather an added value around the following main points:

1. the status of each specific plugin identified as the provider of a subset of required
functionalities

2. the status of the overall T7.4 in term of the benefits collected and limitations yet to be
overcome

3. the steps taken since the first prototype, level of satisfaction, and expectations for the
last year of the project.

1.3 Approach for integration

For the integration of software components we follow the architectural approach of the NeOn
reference architecture as described in D6.2.1. In this architecture, components are realized
as plugins to core NeOn Toolkit, which provides the base set of functionalities along with
extension mechanisms. Additional plugins realize particular functionalities to address certain
ontology lifecycle activities.

There are three layers in the NeOn Toolkit architecture, as displayed in Figure 1:

1. Infrastructure services: in this layer, basic services and functionalities are provided for
most components.

2. Engineering components: this middle layer consists of tightly coupled components
and loosely coupled services to provide major ontology engineering functionality.

3. GUI components: this layer is aimed directly at users. Both engineering components
and infrastructure services may have GUI components. A set of predefined core GUI
components also exists.

D7.4.3 Prototype System for Managing Fisheries Ontology Lifecycle

Page 7 of 34

GUI Standard GUI Graph-based Form-based
components it Interface Interface
[class tree, ...]
Property Mapping Collab. : .
components - —
Vlsual!zatlon m Data Service Infrastructure
Algorithms Annotation
Tightly coupled components Loosely coupled services Orthogonal Functionality
Infrastructure - > i u
services Frames/ Frames/ Basic .
Query Metadata Versioning
Reasoner Model API Repository Service Registry Service Orthogonal Functionality

Figure 1: NeOn Architecture

Most plugins integrated as part of this software deliverable are engineering components with
GUI components.

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 8 of 34 NeOn Integrated Project EU-IST-027595

2 Requirements analysis

The analysis conducted to realize the second prototype of lifecycle support system has
considered the functional requirements as they are described in D7.1.2, and how they
evolved compared with the initial attempt in D7.1.1. In the most recent documentation FAO
has identified specific categories of requirements with the purpose of exposing a clearer
elaboration of the maintenance aspects. The result was intended to drive plugins developers
with more substantial indications to focus their effort.

2.1 Analysis outcome

As anticipated in the introduction the main added value in D7.1.2 is the classification of the
requirements in to broader categories to associate with a specific plugin responsible to
provide them at the best. Unfortunately this approach cannot be easily replicated for each
category with respect to all plugins for the following reasons: it is not always possible to map
one-to-one category with one plugin; there are plugins which partially share the same
purposes, and there are functionalities for which no specific plugin exists but nonetheless
can be achieved with some alternative workflows.

Chapter 4 presents extensively the results of verifying which portions of the listed features
are covered by its associated plugin(s).

The following table gives an overview of the analysis outcome, compacting a view of the
plugins available? at the time of writing, and the associated requirement category(ies).

2 By available we mean plugin that are included in D6.10.2, and hence have passed quality assessment

D7.4.3 Prototype System for Managing Fisheries Ontology Lifecycle

Page 9 of 34

Plugin Name

Requirement Category?

NeOn Toolkit Core

Ontology implementation
Ontology reuse
Ontology Editing

Quality check

Ontology Visualization

— Search
LabelTranslator — Ontology Editing
— Multilinguality
OWLDoc — Documentation

WorkFlow/Change Management

Ontology Editing
Workflow
Ontology Visualization

RaDON — Support to Editing
SPARQL — Search
Text20nto — Support to Ontology Editing
— Ontology Visualization
Modules — Modularization
ODEMapster — Ontology implementation

Table 1: Plugins associated with the supported lifecycle activities

The analysis is not reduced to only assert associations between plugins and requirements. It
also expands in verifying that the features required match with the plugin working behaviour.
Hence some tests specific to the scope of ontology lifecycle support have been performed to
ensure that this work provides a different value than the review process undertaken in
D6.10.2. Chapter 4 gives details on the outcome of this verification phase, as well as on the

technical value added by this activity.

IMPORTANT REMINDER: taking into account the constraint on the modelling language
expressed by FAO, all the plugins will be guaranteed to work for OWL language otherwise
they cannot be considered to be valid regardless of the fact that they perfectly support other

ontology formalization languages.

3 These are the same name used in for the headings in D7.1.2 ANNEX A — Summary of revised requirements for

the fisheries ontology lifecycle

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 10 of 34 NeOn Integrated Project EU-IST-027595

3 Prototype analysis

3.1 Introduction

The support for the lifecycle management given from the NeOn Toolkit is achieved by
serializing the usage of features either embedded in the core implementation of the toolkit, or
delivered with additional plugins developed by partners within the project. To have a
comprehensive outlook on the available functionalities to date, and assess how they cope
with the initial requirements exposed for the lifecycle case study, we report in this section on
the list of delivered plugins, the required functionalities mapped to them, and more important,
what still remains uncovered to complete the overall support.

The aim of providing a resume on the actual status is to have a pinpoint view on the reasons
why the development has not completely satisfied the requirements, and an idea of the future
commitment of partner developers to continue with their work. It should also at the same time
provide a punctual feedback to drive the next plugin releases.

In contrast with the concurrent job of plugin quality assessment, the perspective we take here
is to verify if the effort produced by developers, meets in fact the guidelines provided with the
requirements shown initially in D711, and finally revised in D712.

In other words while a normal plugin review should answer generic questions about:

e plugin integration with the NeOn Toolkit,
e usability,
e documentation support,

e bug free etc
here we try to consider more the point of view of:

¢ How are specific requirement addressed with one of the provided plugin’s features?

3.2 Plugins verification

This section is dedicated to detailing the verification phase which was undertaken to assess
the status of the ontology maintenance support. We also aim to draw conclusions that will
drive the development of the plugins for developments in the project in the coming year.

The approach adopted was to test the plugins and fill in a template like the one in Table 2

Plugin name Plugin name

D7.4.3 Prototype System for Managing Fisheries Ontology Lifecycle Page 11 of 34

Reports about the general purpose
of the plugin, and how it applies in
the scope of T4.3

Purpose of the plugin

Functionalities that cover the | Reports about the functionalities
requirements tested and covering the
requirements expressed in D712

) Reports about the functionalities
Requirements not yet covered by the tested but NOT covering the

plugin requirements expressed in D712

May be either:
Technical problems

Reasons for uncovered functionalities Development schedule

The Requirement(s) needs further
specifications (developers provide
details)

A description of development plans
with respect to the missing
functionalities during the upcoming
year of the project

Future plans

Table 2: Template to report the result of plugins assessment

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 12 of 34 NeOn Integrated Project EU-IST-027595

3.2.1 LabelTranslator

3.2.1.1 Purpose of the plugin

The plugin itself proposes to address the multilinguality requirement in ontologies that is now
demanded by institutions worldwide most of whom have a vast number of resources
available in many different languages. To tackle this requirement LabelTranslator
automatically localizes ontologies; takes as input an ontology whose labels are described in
a source natural language and obtains the most probable translation into a target natural
language of each ontology label. For more detail refer to wiki page*

In the scope of the lifecycle management of Fishery ontologies, this plugin supports the
ontology engineers to be able to add a new language to an ontology that does not yet
contain this feature; in other words localize ontology with respect to a language means to
register the human readable information into one or more languages. LabelTranslator
supports this activity by mean of a component for assisted term translation from/to a set of
languages (see wiki page), and serialize this information according to a linguistic model
(LIR), where the lexical information can be accommodated for a future programmatic
processing.

3.2.1.2 Provided functionalities that cover the requirements

Adding a new language [D7.1.2 cf. 2.4.2.5]: ontology engineers shall be able to add a new
language to a monolingual or already multilingual ontology

Selection of languages [D7.1.2 cf. 2.5.9.31.a]: select at least two languages (or more, if
required), one in view mode, the other in editing mode

Edit multilingual labels [D7.1.2 cf. 2.5.9.31.b]: add/edit/delete multilingual labels to
individual concepts;

Creation and management of annotations [D7.1.2 cf. 2.5.1.13], multilingual textual
annotation will be supported. Some examples are: “scope notes” (as commonly used in
thesauri), free-text comments.

3.2.1.3 Requirements not yet covered by the plugin

The original requirements about annotating an ontological resource consider also using
multimedia/images to associate to the elements [D7.1.2 cf. 2.5.1.13]; at this stage the LIR
model does not allow to express that a binary object is representative of an element or a
URL to such a resource

3.2.1.4 Reasons for uncovered functionalities

First, in the requirement specification for multilinguality [D7.1.2 cf. 2.5.9] the need to
associate multimedia information to ontology elements is not mentioned. The second reason
is a technical motivation: the multimedia information is not directly related with the
multilingual information that supports the LIR model.

3.2.1.5 Future plans

Label Translator developers will perform a detailed analysis of the approaches for
associating multimedia information at the meta-data level of a Knowledge Based
Representation. Then, we will implement the support for this functionality in the next release
of the LabelTranslator plugin.

4 http://www.neon-toolkit.org/wiki/index.php/LabelTranslator

D7.4.3 Prototype System for Managing Fisheries Ontology Lifecycle Page 13 of 34

3.2.2 OWLDoc

3.2.2.1 Purpose of the plugin

The OWLDoc plugin adds to the NeOn Toolkit an option to export an OWL-DL ontology as
an HTML Documentation. This plugin extracts information from the OWL Ontology and
creates an output that contains an organized set of HTML files that provide the
documentation about the ontology and all its resources. For more details refer to wiki page®

In the scope of lifecycle management of Fishery ontologies, this plugin supports non-
ontologist users to access the ontology model content, without forcing on them too many
details of a cumbersome graphic interface. Instead they can benefit from a browseable-like
documentation in the style of javadoc.

3.2.2.2 Provided functionalities that cover the requirements

Creation of documentation [D7.1.2 cf. 2.4.3.6]: The system shall support ontology
engineers in the creation of documentation for ontologies, in particular concerning ontology
design. Documentation is necessary for both ontology engineers and ontology editors,
therefore it shall be possible to use the most appropriate form of documentation for each
group.

3.2.2.3 Requirements not yet covered by the plugin

The complete requirement description for documentation creation [D7.1.2 cf. 2.4.2.6] also
reports the needs to have an UML-like diagram representing an ontology project as part of
the documentation. This last part of the requirements is actually not yet fulfilled by OWLDoc.

3.2.2.4 Reasons for uncovered functionalities

The scope of OWLDoc was intentionally restricted to Javadoc-like documentation. The
generation of UML-like diagrams is covered by other plugins, in particular the OntoModel¢
plugin for UML-based ontology modelling.

3.2.2.5 Future plans

No plans of further development are scheduled with respect to the requirement to be
covered.

5 http://www.neon-toolkit.org/wiki/index.php/OWLDoc

6 http://www.neon-toolkit.org/component/option,com_wrapper/Iltemid,128/

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 14 of 34 NeOn Integrated Project EU-IST-027595

3.2.3 Workflow/Change management

3.2.3.1 Purpose of the plugin

The main purpose of the Workflow/Change Management plugin is to track the ontology
changes and then manipulate these changes according to the role of a user, where the user
could log on / out or register in a preference page. For more detail refer to wiki page’

In the scope of lifecycle management of Fishery ontologies, this plugin supports the main
activity of monitoring the modifications applied to an ontology model and providing the
possibilities of instantiating the workflow designed in [D7.1.2 cf. 2.3].This will allow for a
collaboration between various users with different roles and expertise, aiming to keep the
data and the model up-to-date.

3.2.3.2 Provided functionalities that cover the requirements

[D7.1.2 cf. 2.5.6] Provide a simple, intuitive interface for each of the user roles in the editorial
workflow so that tasks are performed efficiently and effectively. Four specific views are
required, based on the user roles and element status:

o Draft view: approved information plus changes made by the current editor, with the
difference between the two states clearly visible. This view should be available only to
the subject expert who made the draft.

e To be approved view: approved information plus all the pending elements to be
approved by validators, with the difference between the two states clearly visible. This
view is for validators.

e Approved view: approved information only. For all users, including viewers.

e To be deleted view: approved information plus elements that are assigned “to be
deleted”, with the difference between the two states clearly visible. This view is for
validators and for the editor who made the draft.

Creation and management of metadata [D7.1.2 cf. 2.5.1.12]: Metadata is essential to a
number of activities, including collaborative editing. The editing environment shall
automatically attach and manage the following pieces of metadata:

e date of creation/editing of the element and author (automatically);
e information about author/editors of the ontology elements;
e history of changes.

Visualization of metadata [D7.1.2 cf. 2.5.5.25]: During the process of updating and
validating the ontology, it is important that a number of pieces of information be highlighted to
the user. In particular: editing history of the ontology element, including its authors and
provenance, summary statistics.

3.2.3.3 Requirements not yet covered by the plugin

The complete requirement description for documentation creation and management of
metadata [D7.1.2 cf. 2.5.1.12], also specify the support for summary statistics on the
ontology; examples of statistic are: editorial actions per ontological element, or during a time
period, or per editor etc.

7 http://www.neon-toolkit.org/wiki/index.php/Workflow_Support

D7.4.3 Prototype System for Managing Fisheries Ontology Lifecycle Page 15 of 34

This is not yet provided by the Workflow/Change plugin.

3.2.3.4 Reasons for uncovered functionalities

The required information, apart from the number of classes, properties, individuals and
axioms, and about the number of mappings/relations is not the target of Workflow/Change
management components.

3.2.3.5 Future plans

No plans to embed the required support in the Workflow/Change management plugin are
envisaged, although developers are willing to include some support as part of the
development of another plugin component (i.e. Oysters), led by them.

8 http://www.neon-toolkit.org/component/option,com_wrapper/Iltemid, 128/

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 16 of 34 NeOn Integrated Project EU-IST-027595

3.2.4 RaDON

3.2.4.1 Purpose of the plugin

The purpose of the RaDON plug-ins is to deal with inconsistency and incoherence occurring
in networked ontologies. Specifically, RaDON provides two plugins to deal with a single
ontology or an ontology network; for a single ontology the user can perform: incoherence
checks and inconsistency checks automatically repair and manually repair. Similar
functionalities are featured for an ontology network; the main difference is that they apply to a
mapping between two ontologies by assuming the two source ontologies are more reliable
than the mapping itself. For more extensive detail refer to the RaDON wiki page®.

In the scope of the lifecycle management of Fishery ontologies, this plugin assists the user in
assessing if the modification s/he is performing is causing potential inconsistency for the
ontology.

3.2.4.2 Provided functionalities that cover the requirements

Preview and check consistency of the newly added elements [D7.1.2 cf. 2.5.3.19]: Before
final inclusion in the ontology, it will be possible to visualize the ontology including the newly
added elements, and check it for consistency.

3.2.4.3 Requirements not yet covered by the plugin
None.

3.2.4.4 Reasons for uncovered functionalities
Not applicable.

3.2.4.5 Future plans

RaDON will be further developed to handle various forms of ontology networks, instead of
only dealing with single ontologies. These capabilities will be particularly relevant for building
the next versions of the fishery ontologies.

9 http://www.neon-toolkit.org/wiki/index.php/RaDON

D7.4.3 Prototype System for Managing Fisheries Ontology Lifecycle Page 17 of 34

3.2.5 SPARQL

3.2.5.1 Purpose of the plugin

The SPARQL Plugin allows a user to do conjunctive queries. It receives an OWL ontology
and a query expressed using SPARQL syntax as inputs and outputs the answers in a table;
10

more details can be found on the wiki page
In the scope of the lifecycle management of Fishery ontologies, this plugin supports

advanced searching feature inside the ontology; the subject for these kinds of searches can
be constructed to retrieve elements related by a direct/indirect simple/complex relationship.

3.2.5.2 Provided functionalities that cover the requirements

Structural search [D7.1.2 cf. 2.5.8.30a]: It is useful, especially to validators and ontology
engineers, to be able to perform searches that exploit structural aspects of the ontology. For
example, to identify instances of classes with a common ancestor, to select relations with a
given domain and/or range, or to find instances with one or more given properties.

3.2.5.3 Requirements not yet covered by the plugin

Although there is no specific bullet point in D712, that addresses the need to have an
interface to the SPARQL syntax, it is assumed by the context, and by the definition of non-
ontologist users, that a low level syntax detail should be hid by some form of a more intuitive
interaction form. This feature for SPARQL plugin is to date missing.

3.2.5.4 Reasons for uncovered functionalities

SPARQL is not really adequate for an end user oriented query interface, but more suitable
for application developers and ontology experts. As such, the SPARQL plugin is not suitable
to address this requirement. However, other plugins are being developed for this purpose.

3.2.5.5 Future plans

Current developments include plugins to translate end user queries into structured SPARQL
queries. Specifically, developers are working on two plugins:

e ORAKEL: translation of natural language queries into SPARQL
o XXPlore: translation of keyword queries into SPARQL

These plugins are planned to be available by M36 of the project.

10 http://www.neon-toolkit.org/wiki/index.php/SPARQL

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 18 of 34 NeOn Integrated Project EU-IST-027595

3.2.6 Text20nto

3.2.6.1 Purpose of the plugin

Text20nto is an ontology learning framework which has been developed to support the
acquisition of ontologies from textual documents; it provides an extensible set of methods for
learning new concepts, build a hierarchy and instantiate object properties. The wiki page
offers more details about its functioning features.

In the scope of the lifecycle management of Fishery ontologies, this plugin supports the
ontology engineers with a fast method for populating the model schemas with instances
learned from documental resources that are frequently published about Fishery domain.
Engineers might also exploit assistance in the expansion of the conceptual model.

3.2.6.2 Provided functionalities that cover the requirements

Suggest candidate elements [D7.1.2 cf. 2.5.3.17]: On the basis of given textual corpora,
the tool shall provide the author with a list of candidate elements suitable for inclusion in the
ontology.

Visualization of candidate elements for inclusion in an ontology [D7.1.2 cf. 2.5.5.27]:
the requirement concerning the editorial support to ontology population shall be provided with
an adequate visualization and interface in order to allow ontology editors to select, inspect,
approve and include candidate elements in the ontology.

3.2.6.3 Requirements not yet covered by the plugin

The complete requirement description [D7.1.2 cf. 2.5.3.17] about suggesting the users with a
candidate elements, also reports about the need: (i) that ontology editors may use support
for the creation of instances or relations between instances; (ii) to have property instantiation
between individual belonging to different ontologies; (iii) to give the user a way to inspect and
select the appropriate candidate [D7.1.2 cf 2.5.3.17].

Support candidate selection [D7.1.2 cf. 2.5.3.18]: Editors shall have facilities to inspect
and select the candidates suggested by the system. In particular:

e The tool shall show the documents and excerpts supporting the extracted
terminology, including document metadata such as title of the document, author, data
owner, publication date.

3.2.6.4 Reasons for uncovered functionalities

The acquisition of property assertions —also across multiple ontologies— will be made
available as a NeOn Toolkit plugin in early 2009. It will build upon the RELEXO plugin which
focuses on taxonomy refinement and integration and will be made available as part of
D3.8.212 (M36).

The explanation facilities of Text20Onto have not been ported to the plugin version and will
not be extended in the suggested way, because there is no dedicated developer for
Text20nto right now.

11 http://www.neon-toolkit.org/wiki/index.php/Text20nto

12 Evaluation of methods for contextualized learning of networked ontologies

D7.4.3 Prototype System for Managing Fisheries Ontology Lifecycle Page 19 of 34

3.2.6.5 Future plans

In the upcoming months, developers will concentrate on more ontology learning plugins
including LeDA, RELExO and RoLEXO.

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 20 of 34 NeOn Integrated Project EU-IST-027595

3.2.7 Modules

3.2.7.1 Purpose of the plugin

The Modules plugin provides the functionality to extract modules and allows the
manipulation and combination of modules; more specific details on the features provided
through this plugin are listed in the dedicated wiki page??

In the scope of the lifecycle management of Fishery ontologies, this plugin supports the
users with a simplified way to approach ontology schema which are large for some
characteristics: e.g. they contain elements classified according to several system
codifications, or contain localization in several languages, or yet contain knowledge about
diverse domains.

3.2.7.2 Provided functionalities that cover the requirements

[D7.1.2 cf 2.4.4.7] Modules may be manually created by ontology engineers and
editors/validators, or created by means of (semi)automatic methods (e.g. entire branches of
a hierarchy, subclass skeleton).

3.2.7.3 Requirements not yet covered by the plugin

Some examples of modules found relevant to WP7 use case [D7.1.2 cf. 2.4.4.8]:
Mechanisms shall be in place to allow ontology engineers to create at least the following
(types of) modules:

¢ modules by “topic”: In case of large ontologies, covering more than one domain
(e.g. AGROVOC, ASFA) it is useful to be able to select modules on the basis of the

, “pests”, etc.

domain covered, such as “fisheries”, “aquaculture

¢ modules by language: Multilingual ontologies may be available in several languages
(e.g., fisheries ontologies described in [D7.2.2] contain three or four languages,
AGROVOC sixteen) although for common applications not all of them are used. It is
then useful to select only the languages used for the specific application at hand.

e modules by code: Most fisheries ontologies include one or more classification
systems, although not all of them are used at the same time. It is useful to be able to
define, select, visualize and utilize only the module of the ontology where the desired
classification system is used. Examples of classification systems are: 1SO2 [ISO2
and ISO3 [ISO3], ISSCAAP code [ISSCAAPOQ], the ISSCFV [ISSCFV], ISSCFG

[ISSCEG].

e modules for editorial duties: Another module specification is related to editorial
work. Especially when dealing with large ontologies, it is important to be able to select
the ontology elements that are involved in the editorial work of a given editor. This is
to avoid editors being given the entire ontology, when smaller, more manageable and
focused parts of the ontology can be defined and extracted.

3.2.7.4 Reasons for uncovered functionalities

The modularization plugin is meant to be able to handle the large variety of tasks related to
modular ontologies and ontology modularization. It provides a general and flexible framework

13 http://www.neon-toolkit.org/wiki/index.php/Modules

D7.4.3 Prototype System for Managing Fisheries Ontology Lifecycle Page 21 of 34

for these tasks. As such the main reason for most of the “missing mechanisms” above is that
these are specific to the FAO case study and would require ad-hoc mechanisms.

e Modules by topic: The partitioning plugin is not specific to this purpose and can
eventually provide only with weak support. The requirement would have to be
specified; a specific process is required to identify elements related to what is called
a “domain” or a “topic”

e Modules by language: this cannot be done with the current tool as it falls outside
the scope of modularization methods in general. An ad-hoc tool to realize this is the
quickest solution.

e Modules by code: This is very specific to the FAO case study, and is not a
modularization scenario. This can eventually be treated very easily using a query
engine.

e Modules for editorial duties: the problem is unclear as well as a possible applicable
solution.

3.2.7.5 Future plans

Several complete modularization use cases will be studied as part of the modularization
methodological guideline in WP5 (deliverable D5.4.24 M36). This will include scenarios from
FAO if appropriate and sufficiently specified.

14 Revised and extended techniques for contextual visualization of ontologies and ontology networks

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 22 of 34 NeOn Integrated Project EU-IST-027595

3.2.8 ODEMapster

3.2.8.1 Purpose of the plugin

ODEMapster is a processor in charge of carrying out the exploitation of the mappings that a
user can draw between ontology elements and some data base elements, with the aim of
populating the ontological model with instances coming from the relational repository. The
language used to serialize the mapping is called R20 and the actual release of this plugin
only supports a subset of it; this release is compatible with OWL/RDF(S) and MySQL type
databases. More specific details on the features provided through this plugin are listed in the
dedicated wiki page®s

In the scope of the lifecycle management of Fishery ontologies, this plugin supports the
users with an easy way to migrate data contained in a relational data base, thus to populate
the ontological schema. Its use is particularly envisaged in scenarios where a massive
guantity of data needs to be moved into the ontological schema.

3.2.8.2 Provided functionalities that cover the requirements

Import data from databases [D7.1.2 cf 2.4.1.2.a]: taxonomies, classification schemas and
thesauri are commonly stored in relational databases, it shall be possible to connect to a
RDBMS, view (and/or import) the relevant tables (logical structure and content) and import
the data according to the defined ontological model. Deliverable D7.2.2 [D7.2.2] reports on
conversion work of this type.

3.2.8.3 Requirements not yet covered by the plugin
n/a

3.2.8.4 Reasons for uncovered functionalities
n/a

3.2.8.5 Future plans

To avoid the "pre-processing” of the RTMS tables. It is currently not possible to upgrade
directly the RTMS database content to ontologies, using ODEMapster. Due to the RTMS
structure, it is necessary to pre-process the RTMS tables, before using ODEMapster.
Therefore, we will improve the ODEMapster process to take into account the RTMS original
tables, avoiding such pre-processing.

15 http://www.neon-toolkit.org/component/option,com_wrapper/ltemid,128/

D7.4.3 Prototype System for Managing Fisheries Ontology Lifecycle Page 23 of 34

3.2.9 Core NeOn Toolkit

3.2.9.1 Purpose of the plugin

The core NeOn Toolkit represents a set of plugin components that belong to the core
implementation of the toolkit. They provide the basic functionalities proper of the ontology
editor, and come bundled in the binary version that a new user can download from the NeOn
Toolkit sites.

In the scope of the lifecycle management of Fishery ontologies, this plugin-set supports all
the functionalities that envisage the creation/modification/deletion of ontology elements, as
well as importing/exporting the model from/to different formats, providing the graphical
interface to the mentioned features.

3.2.9.2 Provided functionalities that cover the requirements

Support of ontology implementation [D7.1.2 cf. 2.4.1.1]: The ontology engineer shall be
able to create new ontologies and elements in them

Ontology reuse, reengineering, integration [D7.1.2 cf. 2.4.1.3]: New ontologies may be
created on the basis of existing ones, either by transforming the conceptual model of an
existing and implemented ontology into a new one (reengineering) or by including the
existing ontology into the new on (integration). The ontology engineer shall be able to open
and visualize any ontology (at least with view rights) and use it as a basis to create a new
one. This implies that the engineer be able to select and copy any ontology element and
paste it into the ontology being created (edited). The engineer shall also able to create
mappings between the two ontologies.

Edit (single and multiple) ontologies [D7.1.2 cf. 2.4.2.4]: Granted the appropriate rights,
ontology engineers shall be able to edit the necessary ontology elements, including
mappings between ontologies and relations across ontologies.

Editing ontology elements [D7.1.2 cf. 2.5.1.9]: The editing environment shall allow editors
to edit one or more ontologies at a time (assuming the appropriate editing rights are granted).
Depending on the specific ontologies at hand, editorial duties may be more focused on
specific ontology elements (instances, classes, properties, relations).

Compare ontologies [D7.1.2 cf. 2.5.2.15]: In order to compare two ontologies, ontology
editors need support from the system. This support shall be both visual and by means of
statistics (that could also be visually shown side by side) about the two ontologies to
compare

Visualization of single ontologies [D7.1.2 cf. 2.5.5.23]: Ontology editors shall be able to
visualize and browse single ontologies

16 http://www.neon-toolkit.org/component/option,com_remository/Itemid, 103/

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 24 of 34 NeOn Integrated Project EU-IST-027595

Print visualization ontologies [D7.1.2 cf. 2.5.5.28]: It shall be possible to print out the
chosen visualization(s).

Search [D7.1.2 cf. 2.5.8.30]: users shall be able to search within ontologies and legacy
systems; search shall be possible on the ontologies being visualized.

Textual search [D7.1.2 cf. 2.5.8.30b]: It is useful to be able to search for text across
ontologies, independently of where the text appears (labels, properties, annotations, etc.).

3.2.9.3 Requirements not yet covered by the plugin

The complete requirement description [D7.1.2 cf. 2.5.8.30] about searching the ontologies,
mentions the possibility to also explorer model in some repository different from the actually
loaded ontology collection in the workspace; to date this is not yet delivered.

Thesauri [D7.1.2 cf. 2.4.1.2.c]: Mechanisms shall be in place to support (semi)automatic
conversion of thesauri into ontologies (RDFS, OWL).

Runtime access to databases [D7.1.2 cf. 2.4.1.2.b] In many cases it is advisable to keep
the data in the relational database and access it through an ontological layer (ontology). The
system shall then support ontology engineers in defining the appropriate ontology, mapping it
onto the database and accessing the data (i.e., without physically export it from the
database). Facilities shall be provided to enable ontology engineers in “adding” and
exploiting relations and mappings not present in the database.

Check for “similar concepts” [D7.1.2 cf. 2.5.2.14.b] A simple case of similarity that shall be
taken into account applies when two instances appear identical to humans but are not
identical to a machine (for example in case of spelling mistakes).

Summary statistics [D7.1.2 cf. 2.5.2.14.b]: a number of summary statistics are useful to
control the development of ontology, including:

¢ depth of the ontology,

e number of ontology elements (classes, instances per class, relations, properties),
¢ number of mappings and relations between external ontologies,

o distribution of subclasses per top level classes

Export ontologies into other formats for backward compatibility [D7.1.2 cf. 2.5.7.29]: It
shall be possible to export ontologies in several output formats in order to facilitate data
exchange with legacy systems and uniformity with existing FAO resources. In particular, it
shall be possible to export ontologies converting the schema (and included instances)
according to relational database design principles, or as SKOS ontologies [SKOS] .

3.2.9.4 Reasons for uncovered functionalities

Export to syntaxes like SKOS or schemata like relational database: first a mapping must
be agreed and defined with final users on what properties are skos: broaderTerm for

D7.4.3 Prototype System for Managing Fisheries Ontology Lifecycle Page 25 of 34

example, or skos: narrowerTerm, or skos: relatedTerm etc. The export to RDBMS schema is
spurious since there are so many degrees of freedom.

Thesauri: as for the export functionality this also needs an initial agreement and definition of
some form of correspondences between the source and target model format.

Explore models in some external repositories: this requirement needs more
specifications on what repositories should be explored, for what purpose. Actually Watson
and Oyster support retrieving ontologies based on a search metaphor; these requirements
also needs more specifications about other functionalities than what has been delivered with
the present NeOn Toolkit plugins.

Runtime access to databases: this is implemented only for F-logic.

Check for “similar concepts” (for example in case of spelling mistakes): Current
implementation of a search mechanism would need to be drastically changed.

Summary statistics: the coverage is partial but the work to improve on satisfying this
requirement is ongoing

3.2.9.5 Future plans
SKOS export/import will be achieved in 2009

There are no plans for development of runtime access to databases for OWL by Ontoprise
Statistics on ontology is work in progress until May 2009

Enhanced search functionalities are in place on the development agenda for last year of the
project.

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 26 of 34 NeOn Integrated Project EU-IST-027595

3.3 Functionalities achievable with alternative workflows

Some of the requirements in D7.1.2 do not have a unique specific plugin devoted to address
them; nonetheless users can still resolve their problems if they are prepared to reframe them
in a perspective adjusted to the tool they have handy. In the following we provide a list of
examples of requirements equivalently satisfied by the NeOn Toolkit support to lifecycle
management.

Check for duplicated elements [D7.1.2 cf. 2.5.2.14.a] such as instances having exactly the
same pieces of information (e.g., labels, properties values).

A possible solution is to identify duplicates in two ontologies by using one of the features of
the Modules plugin.

Visualize overlapping portions of ontologies [D7.1.2 cf. 2.5.5.24.b]: editors should be
able to visualize the overlapping between ontologies, i.e., ontology elements present in both
ontologies. A clear visualization of overlapping between ontologies is useful as a support to
mapping creation, and during editorial workflow.

A possible solution to achieve the visualization is to use one of the features of the Modules
plugin

Visualize mapping between ontologies pair [D7.1.2 cf. 2.5.5.24.a]: editors should be able
to visualize ontology elements from ontologies plus mappings and relations between them.

A possible solution to achieve this goal is to create and save a third schema that will only
contain the mappings between elements of two OWL ontologies.

3.4 Current status of the ontology maintenance support

The goal of this chapter was to identify the development status of the features delivered with
the plugins (restricted to OWL language) with respect to the functional requirements exposed
in the D7.1.2. This would then give an idea of the amount of work that still needs to be done
to cover functionalities required for the actual prototype, and also what amount of effort
needs to be dedicated to refine and add advanced functionalities in the scope of supporting
the lifecycle of Fishery ontologies.

Summarized in the table below there is a compact view of the plugin assessment outcome;
particularly interesting is the status of development with respect to FAO requirements.

e Plugin name: the name of current plugin being reported.

e Requirement category: the name of one or more categories that the plugin is
serving with its features.

o Reached final stage of development: a boolean value to synthetically say if this
plugin will be further developed with respect to the features required for lifecycle. This
evaluation is based on the feedback by the partners about their future developments
plans.

D7.4.3 Prototype System for Managing Fisheries Ontology Lifecycle Page 27 of 34

: Reached final
Requirement

Plugin Name 17 stage of
Category development
— Ontology
LabelTranslator Editing Not yet
— Multilinguality
OWLDoc — Documentation Yes
WorkFlow/Change | — Editing ot vet
Management — Workflow y
— Visualization
RaDON ~ Supportto Not Yet
Editing
SPARQL — Search Yes
— Support to
Text20nto Editing Yes
— Visualization
Modules — Modularization Not yet
ODEMapster — Ontology Not yet
implementation
— Ontology
implementation
— Ontology reuse
NeOn Core — Editing Not yet
— Quality check
— Visualization
— Search

Table 3: Compact view of the plugin assessment outcome.

The result shows that 6 plugins reached their final stage of development. It is important to
notice that some responsible developers do not consider other efforts to be applied for the
components. When this happens it is not equivalent to considering that the identified feature
set is entirely satisfied. Two main causes why this is due are: (i) the required feature does
not apply to the plugin, (ii) the required feature is part of a set addressed by plugin under
development. By eliminating such events some feature sets are reduced and finally
considered entirely covered.

Nontheless those features that remains from this migration process, are collected and
reclassified both per plugin (whether this exists), and by criticality to the success of T7.4
success. The criticality parameter assumes on of these values low/average/high.

Here in the following we list the mentioned features grouped according to criticality value;
the same list can be found in a more schematic format in ANNEX A

Under the criteria ‘criticality for T7.4 objectives success’, we consider the following missing
features as Low:

17 These are the same name used in for the headings in D7.1.2 ANNEX A — Summary of revised requirements
for the fisheries ontology lifecycle

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 28 of 34 NeOn Integrated Project EU-IST-027595

e Using multimedia file type (e.g. images, audio/video file) to annotate ontological
resource

¢ To have UML-like diagrams associated with the documentation of an ontology project

o To have the ability to extend the search for ontological entities in other repositories
other than the ones loaded in the current working space

e Toidentify similar concepts based on possible misspelling errors

e To have a matrix reporting on structural information about the ontology such as
number of classes, property, individual, max width/breadth etc.

Under the criteria ‘criticality for T7.4 objectives success’, we consider the following missing
features as Medium:

e To have statistics about the editorial workflow; examples of statistic are: editorial
actions per ontological element, or during a time period, or per editor etc.

¢ To have a graphic interface that supports users not confident with SPARQL syntax, to
build a query using elements from the ontology tab; a possible interaction can be drag
and dropping concept/property/instance into an area of the window dedicated to
compose the subject/predicate/object item of the query

e To have the possibility to export/import an ontology into SKOS or relational data
model

Under the criteria “criticality for T7.4 objectives success’, we consider the following missing
features as High:

e To have in place a mechanism that enables the users to instantiate relationships
among individuals in the ontology, and between individuals of different ontologies,
when using textual resource processing to gather new knowledge. Moreover the
users need to be supported to select the appropriate candidate entity from the list of
result extracted from the text corpus, for example displaying the text excerpt related
with the element on focus

e To be supported for creating ontology modules responding to specific contexts:
domain topic, language, standard code, editorial duties

e To have the access to entities into a relational database without necessarily having
to migrate the data into an ontology project, but instantiating links between the
ontology model and the DB model

The information we collected from partner developers (see ANNEX A) about the amount of
effort they plan to dedicate in response to the requirements not yet covered, can help to draw
a conclusive outline of a development expectation:

D7.4.3 Prototype System for Managing Fisheries Ontology Lifecycle Page 29 of 34

Out of the total number of functionalities considered highly critical, there are 75% ¢ of them
for which we received a positive comment from partners willing to commit to tackling the
missing points.

e the requirements about modularization will be satisfied, provided that more details on
the dynamic of modules definition are submitted. There are no plans to provide
support for OWL ontologies to be connected to DB at runtime for operation like
read/write from/to DB schema.

Out of the total number of functionalities considered averagely critical, there are 66%*® of
them for which we received a positive comment from partners willing to commit to tackling
the missing points

e SPARQL will have a GUI for building the queries (ORAKEL and XXPlore plugin);
SKOS export/import will be satisfied provided that an agreement on the SKOS
vocabulary is reached between end-users and developers.

Out of the total number of functionalities considered lowly critical, there are 80%* of them for
which we received a positive comment from partners willing to commit to tackling the missing
points.

e enabling LabelTranslator to annotate resource with multimedia file; support search in
ontology repositories, provided that more specifications to the requirement are
submitted to developers; enhancement of the search functionality, and finally support
enrichment of meta information about the ontology (e.g. number of classes,
individual, width, breadth etc.).

To conclude, there is a total of 65%?° of commitment to tackle missing points on behalf of
partner developers; for some of them this commitment is agreed providing they have more
specifications of the requirement.

18 This percentage is calculated considering the total number of missing functionalities per criticality -as reported
in ANNEX A- and the number of them for which a positive comment on future development commitment has
been provided by partners.

19 This percentage is calculated considering the total number of missing functionalities -as reported in ANNEX A-
and the number of them for which a positive comment on future development commitment has been provided
by partners.

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 30 of 34 NeOn Integrated Project EU-IST-027595

4 Conclusions

Further steps have been taken since the delivery of the first software prototype with respect
to the development and integration work. In the following paragraphs we adopt two main
perspectives to report on the evaluation of the enhancements achieved so far: (i) the
commitment to deliver the planned plugins, and (ii) the achieved refinement of the features
already provided. We also express our degree of satisfaction for the work completed so far
and our expectations for the fourth year of the project.

The chapter about the next steps in D7.4.2 reports on the envisaged work to be carried out
during the upcoming 10 months of the project; it describes the need to have at least 3
important plugins, supporting likewise crucial activities:

o Editorial workflow support
e Modularization

e Automatic ontology mapping

We have already shown that this software prototype indeed includes the first 2 components.
The support for automatic ontology mapping has also improved towards a stable release, but
for a minor interface defect, it was mostly impossible to assess it as we did for the other
components. We consider this a positive result because it is the materialization of the
planning work done in view of supporting this and other tasks in WP7.

D7.4.2 presented several limitations in terms of supporting the users with specific activities;
over the months those limitations had been identified, categorized and prioritized to facilitate
the realization of the second prototype. At this stage we can consider that the biggest portion
of the limitations have been addressed (witnessed by the growth number of plugins), though
not completely overtaken. This means that the behaviour experienced when using the plugin
is not definitively in line with what a user would expect. We see a closer interaction between
developers and FAO users as the means to enable a more detailed and fine grain
assessment by feeding back specific comments on the functionalities trials.

Some examples of plugins that provided an improvement over the months are; OWLDoc and
ODEMapster, together with the support for OWL offered by the toolkit. A plugin which newly
entered this software release is the RaDON component, now dedicated to assess some
aspects of correctness of an ontology model.

With respect to the work result delivered, we consider ourselves satisfied but we are also
very aware that there are still many components in need of fine tuning to be considered
completely acceptable to FAO needs. D7.4.3 can be assumed as a considerable
improvement if compared to D7.4.2, and we expect that more can still be achieved if
developers work in a closer relationship with FAO end-users. We are also confident of an
imminent step ahead when some of the functionalities, now only supporting the F-Logic
language, will also be extended to support OWL language.

D7.4.3 Prototype System for Managing Fisheries Ontology Lifecycle Page 31 of 34

5 Next Steps

At the end of the previous chapter we presented a rough statistical view showing what we
expect will be the commitment of partner developers for the next year of the project with
respect to plugins delivery. The value of 65% indicates that out of the total number of
functionalities still to be satisfied, there is a high number which is planned to be tackled by
plugins providers, and hence a strong probability that the T7.4 can succeed in its objectives.

In the coming months we predict that partners will keep the same commitment, while FAO
provides further support when it comes to specify some of the requirements that are not yet
clear. For a fine tuning of the plugins behaviour FAO also expects to forge a closer
collaboration with plugin developers.

The suggestion, on how to proceed in prioritizing the development of new features for the
lifecycle support, must be driven by the identified categories of criticality as reported in
ANNEX A.

From our investigation with partners developers, we are already able to list two planned next
steps for upcoming project time frame:

e Developments of functionalities so far only available on the F-Logic side (including
e.g. mapping support)

e End-user oriented plugins, e.g. to enable search and querying for non-ontology
experts.

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 32 of 34 NeOn Integrated Project EU-IST-027595

6 References

[D7.1.1] FSDAS Requirements, http://www.neon-project.org/ACollab/get file.php?id=475

[D7.1.2] FSDAS Revised Requirements, http://www.neon-project.org/web-
content/images/Publications/neon_2008 d7.1.2.pdf

[D7.2.2] Revised and Enhanced Fisheries Ontologies, http://www.neon-project.org/web-
content/images/Publications/neon_2007_d7.2.2.pdf

[D7.4.2] Prototype System for Managing Fisheries Ontology Lifecycle, http://www.neon-
project.org/web-content/images/Publications/neon_2008 d7.4.2.pdf

[D6.2.1] Specification of NeOn reference architecture and NeOn APIs, http://www.neon-
project.org/ACollab/drafting/revisions.php?id=489

[D6.10.2] Updated NeOn Toolkit plugins
[ISO2] International Standard Organization (1ISO): ISO 3166 ALPHA-2, 2006.
[ISO3] International Standard Organization (ISO): ISO 3166 ALPHA-3, 2006.

[ISSCAAPOQ] FAO. International Standard Statistical Classification of Aquatic Animals and
Plants (ISSCAAP). Version in use from 2000 available at:
ftp://ftp.fao.org/FI/DOCUMENT/cwp/handbook/annex/AnnexS2listiISSCAAP2000.pdf

[ISSCFV] International Standard Statistical Classification of Fishery Vessels (ISSCFV) by
Vessel Types, in use until 1995. 1984.
ftp://ftp.fao.org/FI/IDOCUMENT/cwp/handbook/annex/annexLIl.pdf

[ISSCFG] International Standard Statistical Classification of Fishing Gear (ISSCFG)
ftp://ftp.fao.org/FI/IDOCUMENT/cwp/handbook/annex/AnnexM1fishinggear.pdf

D7.4.3 Prototype System for Managing Fisheries Ontology Lifecycle

Page 33 of 34

7 ANNEX A — Features clustered per degree of criticality

Criticality Feature LA Plugin
development
There will be an analysis of
Using multimedia file type (e.g. images, audio/video file) to possible approaches and an
annotate ontological resource implementation to support LabelTranslator
annotation with multimedia file
To have UML-like diagrams associated with the
documentation of an ontology project No further development OWL Doc
Low To have be able to extend the search for ontological entities .
also to ontology in other repositories than the ones loaded in Requwzn;iriw;igsteigifurther NeOn Core
the current working space. P
To spot out similar concepts based on possible misspellin Enhanced search functionalities
P perrors P petiing on the development agenda for NeOn Core
last year of the project
To have a matrix reporting on structural information about Statistics on ontoloav is work in
the ontology like: number of classes, property, individual, roaress until Ma %09 NeOn Core
max width/breadth etc. prog y
To have statistics about the editorial workflow; examples of | Only partial requirement can be
statistic are: editorial actions per ontological element, or tackle provided some close WorkFlow Management
during a time period, or per editor etc. collaboration with other partners
Medium To have a graphic interface that supports users not
confident with SPARQL syntax, to build a query using ORAKEL and XXPlore are two
elements from the ontology tab; a possible interaction can | pjugins planned for 2009; SPARQL
be drag and dropping concept/property/instance into an area
of the window dedicated to compose the
subject/predicate/object item of the query

2006—2009 © Copyright lies with the respective authors and their institutions.

Page 34 of 34

NeOn Integrated Project EU-IST-027595

To have the possibility to export/import an ontology into

SKOS export/import will be

High

SKOS or relational data model achieved in 2009 NeOn Core
To have in place a mechanism that enables the users to In early 2009 there will be
instantiate relationships among individuals in the ontology, LeDA, RELEXO and RoOLEXO Text2Onto
and between individuals of different ontologies, when using plugins to support advanced
textual resource processing to gather new knowledge. learning features
Moreover the users need to be supported to select the
appropriate candidate entity from the list of result extracted
from the text corpus, for example displaying the text No further development Text20nto
excerpt related with the element on focus.
Several complete modularization
To be supported for creating ontology modules responding use cases will be studied
to specific contexts: domain topic, language, standard code, | including scenarios from FAQ if Modules
editorial duties appropriate and sufficiently
specified.
To have the access to entities into a relational DB without No plans for runtime access to
necessary have to migrate the data into an ontology project, databases for OWL NeOn Core

but instantiating links between the ontology model and the
DB model

