
2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 
 

NeOn: Lifecycle Support for Networked Ontologies 

Integrated Project (IST-2005-027595) 

Priority: IST-2004-2.4.7 – “Semantic-based knowledge and content systems” 

 

D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 

Deliverable Co-ordinator:   Peter Haase 
Deliverable Co-ordinating Institution: University of Karlsruhe (UKARL) 
 
Other Authors: Mathieu d’Aquin, Mauricio Espinoza, Qiu Ji, Chan 

Leduc, Klaas Dellschaft, Raul Palma, Johanna 
Völker,  

This deliverable describes the second set of plugins for the NeOn Toolkit that have 
been developed by the partners of the NeOn consortium. The plugins support a range 
of lifecycle activities of the NeOn ontology engineering methodology and significantly 
enrich the capabilities of the basic NeOn Toolkit. 

 

 

Document Identifier: NEON/2009/D6.10.2/v1.0 Date due: November 30,  2008 
Class Deliverable: NEON EU-IST-2005-027595 Submission date: November 30,  2008 
Project start date: March 1, 2006 Version: V1.0 
Project duration: 4 years State: Final 
  Distribution: Public 
 

NeOn-project.org 
 



Page 2 of 109 NeOn Integrated Project EU-IST-027595 

 

NeOn Consortium 

This document is a part of the NeOn research project funded by the IST Programme of the 
Commission of the European Communities by the grant number IST-2005-027595. The following 
partners are involved in the project: 

Open University (OU) – Coordinator 
Knowledge Media Institute – KMi 
Berrill Building, Walton Hall 
Milton Keynes,  MK7 6AA 
United Kingdom 
Contact person: Martin Dzbor, Enrico Motta 
E-mail address: {m.dzbor, e.motta} @open.ac.uk 

Universität Karlsruhe – TH (UKARL) 
Institut für Angewandte Informatik und Formale 
Beschreibungsverfahren – AIFB 
Englerstrasse 28 
D-76128 Karlsruhe, Germany 
Contact person: Peter Haase 
E-mail address: pha@aifb.uni-karlsruhe.de 

Universidad Politécnica de Madrid (UPM) 
Campus de Montegancedo  
28660 Boadilla del Monte  
Spain 
Contact person: Asunción Gómez Pérez 
E-mail address: asun@fi.upm.es 

Software AG (SAG) 
Uhlandstrasse 12 
64297  Darmstadt 
Germany 
Contact person: Walter Waterfeld 
E-mail address: walter.waterfeld@softwareag.com 

Intelligent Software Components S.A. (ISOCO) 
Calle de Pedro de Valdivia 10  
28006  Madrid  
Spain 
Contact person: Jesús Contreras 
E-mail address: jcontreras@isoco.com 

Institut ‘Jožef Stefan’ (JSI) 
Jamova 39 
SI-1000 Ljubljana  
Slovenia 
Contact person: Marko Grobelnik 
E-mail address: marko.grobelnik@ijs.si 

Institut National de Recherche en Informatique  
et en Automatique (INRIA) 
ZIRST – 655 avenue de l'Europe 
Montbonnot Saint Martin 
38334 Saint-Ismier 
France 
Contact person: Jérôme Euzenat 
E-mail address: jerome.euzenat@inrialpes.fr 

University of Sheffield (USFD) 
Dept. of Computer Science 
Regent Court  
211 Portobello street 
S14DP Sheffield  
United Kingdom 
Contact person: Hamish Cunningham 
E-mail address: hamish@dcs.shef.ac.uk 

Universität Koblenz-Landau (UKO-LD) 
Universitätsstrasse 1 
56070  Koblenz 
Germany 
Contact person: Steffen Staab 
E-mail address: staab@uni-koblenz.de 

Consiglio Nazionale delle Ricerche (CNR) 
Institute of cognitive sciences and technologies 
Via S. Martino della Battaglia,  
44 - 00185 Roma-Lazio,  Italy 
Contact person: Aldo Gangemi 
E-mail address: aldo.gangemi@istc.cnr.it 

Ontoprise GmbH. (ONTO) 
Amalienbadstr. 36   
(Raumfabrik 29) 
76227 Karlsruhe  
Germany 
Contact person: Jürgen Angele 
E-mail address: angele@ontoprise.de 

Food and Agriculture Organization  
of the United Nations (FAO) 
Viale delle Terme di Caracalla 1 
00100  Rome 
Italy 
Contact person: Marta Iglesias 
E-mail address: marta.iglesias@fao.org 

Atos Origin S.A. (ATOS) 
Calle de Albarracín, 25 
28037  Madrid 
Spain 
Contact person: Tomás Pariente Lobo 
E-mail address: tomas.parientelobo@atosorigin.com 

Laboratorios KIN, S.A. (KIN) 
C/Ciudad de Granada, 123 
08018  Barcelona 
Spain 
Contact person: Antonio López  
E-mail address: alopez@kin.es 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 3 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

Work package participants 

The following partners have taken an active part in the work leading to the elaboration of this 
document, even if they might not have directly contributed to the writing of this document or its 
parts: 

UKARL 

ONTO 

UPM 

OU 

UKOB 

INRIA 

Change Log 

Version Date Amended by Changes 

0.1 01-11-2008 Peter Haase Creation 

0.2 30-11-2008 Peter Haase Input of partner contriutions 

0.3 06-12-2008 Peter Haase Conclusions    

1.0 01-08-2009 Peter Haase Final Changes after QA review. 

    

    

 



Page 4 of 109 NeOn Integrated Project EU-IST-027595 

 

Executive Summary 

 

The NeOn toolkit is an extensible Ontology Engineering Environment. It serves as the reference 
implementation of the NeOn architecture. It integrates functionalities common to today’s ontology 
management tools and advances the state-of-the-art by addressing the requirements that must be 
met in order to support the lifecycle of ontologies in networked, distributed, and collaborative 
environments. 

Basic ontology management and editing functionalities are provided by the core NeOn Toolkit. 
Plugins extend the core NeOn Toolkit with additional functionalities supporting specific lifecycle 
activities. The NeOn Toolkit relies on the architectural concepts of the Eclipse platform to enable 
the development of plugins: The Eclipse IDE (integrated development environment) provides both 
GUI level components as well as a plugin framework for providing extensions to the base platform.  

In deliverable D6.10.1 we have described the first set of plugins that have been implemented by 
NeOn partners for the NeOn Toolkit.  

This deliverable at hand (D6.10.2) provides an update of the available partner plugins. We 
describe plugins that have been developed either completely new or have been considerably 
extended.  

The developments have been driven largely based on feedback from case study partners who 
used the first set of plugins within the case study prototypes. With the new set of plugins we now 
support an even wider range of ontology lifecycle activities according to the NeOn methodology.  

Additional novel contributions of this deliverable include the availability of Eclipse help functionality 
for all plugins and an improved quality assurance process. 

 

 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 5 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

Table of Contents 

NeOn Consortium .................................................................................................................. 2 
Work package participants ................................................................................................... 3 
Change Log ............................................................................................................................ 3 
Executive Summary ............................................................................................................... 4 
Table of Contents ................................................................................................................... 5 
List of figures ......................................................................................................................... 6 
1.  Introduction ................................................................................................................ 9 

1.1.  The NeOn Toolkit: Architecture and Plugins ............................................................ 9 
1.3.  Relationship with other workpackages ................................................................... 11 

2.  Plugin Development Process .................................................................................. 11 
2.1.  Source Code Management .................................................................................... 11 
2.2.  Licensing ................................................................................................................ 11 
2.3.  Plugin Wiki .............................................................................................................. 12 
2.4.  Plugin Documentation ............................................................................................ 13 
2.5.  Quality Assurance and Bug Management .............................................................. 13 
2.6.  Download Site: Plugins as Eclipse Features .......................................................... 14 

3.  Plugin Descriptions .................................................................................................. 16 
3.1.  Overview  of Plugins ............................................................................................... 16 
3.2.  Alignment Server Plugin ......................................................................................... 17 

3.2.1.  Functional Description ................................................................................................. 17 
3.2.2.  User Documentation .................................................................................................... 18 
3.2.3.  Integration into the NeOn Toolkit ................................................................................. 22 
3.2.4.  Intended Usage in the Case Studies ........................................................................... 23 

3.3.  Change Capturing .................................................................................................. 23 
3.5.  Cicero ..................................................................................................................... 30 
3.6.  Collaborative Workflow Support ............................................................................. 35 
3.7.  DIG Interface .......................................................................................................... 38 
3.8.  LabelTranslator ...................................................................................................... 42 
3.9.  LeDA ...................................................................................................................... 48 
3.10.  Modules Plugin ....................................................................................................... 51 
3.11.  ODEMapster ........................................................................................................... 55 
3.12.  OntoModel .............................................................................................................. 72 
3.13.  OWLDoc ................................................................................................................. 76 
3.14.  Oyster Registry ....................................................................................................... 78 
3.15.  RaDON Plugin ........................................................................................................ 93 
3.16.  SPARQL Plugin .................................................................................................... 101 
3.17.  Text2Onto ............................................................................................................. 103 
3.18.  Watson ................................................................................................................. 105 

4.  Conclusions and Future Work .............................................................................. 108 
5.  References .............................................................................................................. 109 
 



Page 6 of 109 NeOn Integrated Project EU-IST-027595 

 

List of figures 

Figure 1: NeOn Architecture 9 

Figure 2: Plugin Concept of Eclipse 10 

Figure 3: NeOn Plugin Wiki 12 

Figure 4: NeOn Toolkit Help 13 

Figure 5: NeOn Toolkit Bugzilla 14 

Figure 6: NeOn Toolkit Update Site 15 

Figure 7: Functions of the Alignment Server plug-in 18 

Figure 8: Matching two ontologies 20 

Figure 9: Browse OWL alignment in Ontology Navigator 21 

Figure 10: Fetch alignments available from server 22 

Figure 11: Starting Change Capturing 24 

Figure 12: Visualizing Changes 25 

Figure 13: Change Synchronization 26 

Figure 14: Architecture of Change Capturing 27 

Figure 15: Alignment Server: Fetching Alignments 29 

Figure 16: Cicero Configuration 31 

Figure 17: Cicero Context Menu 32 

Figure 18: Annotating with an Issue in Cicero 33 

Figure 19: Creating an Issue 33 

Figure 20: Showing an Issue 34 

Figure 21: Collaborative Development Preferences 36 

Figure 22: Draft view 37 

Figure 23: Setting the Reasoner Preferences 39 

Figure 24: Invoking the coherency view 40 

Figure 25: Getting back the results 40 

Figure 26: A classification example 41 

Figure 27: Linguistic Information Page 44 

Figure 28: Label Translation Context Menu 44 

Figure 29: Label Translation 45 

Figure 30: Updating the Linguistic Information Repository 46 

Figure 31: Lexicalizations associated with a lexical entry 46 

Figure 32: Architecture of LabelTranslator 47 

Figure 33: LeDA User Interface 49 

Figure 34: LeDA Preferences 50 

Figure 35: The result of union operator 52 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 7 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

Figure 36: The alignment between two modules 53 

Figure 37: Module Specification 54 

Figure 38: Open R2O Mapping Perspective 56 

Figure 39: R2O Mapping perspective sections 57 

Figure 40: Ontology visualization 58 

Figure 41: New R2O Mapping item 58 

Figure 42: Create a new R2O mapping window 59 

Figure 43: Create a database window 59 

Figure 44: R2O Mapping perspective 60 

Figure 45: Constant mapping 61 

Figure 46: R2O Code 61 

Figure 47: Concat mapping 62 

Figure 48: getDelimited mapping 63 

Figure 49: Show and hide mappings 64 

Figure 50: Filter database items 65 

Figure 51: Filter ontology items 66 

Figure 52: Expand and collapse the database tree. 67 

Figure 53: Remove a mapping 68 

Figure 54: Query mapping menu item 69 

Figure 55: Query mapping window 70 

Figure 56: ODEMapster component within NeOn Toolkit. 70 

Figure 57: FAO Databases 71 

Figure 58: Adding a view 72 

Figure 59: Ontology diagram 73 

Figure 60: Module Parameters 74 

Figure 61: OntoModel Architecture 75 

Figure 62: OWLDoc Export 77 

Figure 63: Starting Oyster 80 

Figure 64: Stopping Oyster 81 

Figure 65: Oyster Preferences 82 

Figure 66: Server selection combo 82 

Figure 67: Server list shown by the server selection combo 83 

Figure 68: Server list dialog 84 

Figure 69: The search view 85 

Figure 70: The configuration section 85 

Figure 71: Properties selection dialog 86 

Figure 72: The search results view 87 



Page 8 of 109 NeOn Integrated Project EU-IST-027595 

 

Figure 73: The import ontology entry in the context menu 88 

Figure 74: The import ontology dialog 88 

Figure 75: Toolbar detail with the submit metadata button on the top right corner 89 

Figure 76: The submit dialog 89 

Figure 77: The update entry in the context menu 90 

Figure 78: Oyster architecture 91 

Figure 79: Invoking Diagnosis and Repair 94 

Figure 80: Handling incoherence 95 

Figure 81: To repair an ontology automatically 96 

Figure 82: To repair an ontology manually 97 

Figure 83: The input for an ontology network 98 

Figure 84: Compute the justifications for an ontology network 99 

Figure 85: Repair an ontology network manually 100 

Figure 86: SPARQL Query View 102 

Figure 87: Text2Onto User Interface 103 

Figure 88: Text2Onto Preferences 104 

Figure 89: Watson Search 106 

 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 9 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

1. Introduction 

1.1. The NeOn Toolkit: Architecture and Plugins 

The NeOn toolkit is an extensible Ontology Engineering Environment. It serves as the reference 
implementation of the NeOn architecture. In this section we present an overview on the NeOn 
architecture, which is targeted to become the reference architecture for ontology management in 
large-scale semantic applications. The NeOn reference architecture (as introduced in [NeOnD621]) 
integrates functionalities common to today’s ontology management tools and advances the state-
of-the-art by addressing the discussed requirements that must be met in order to support the 
lifecycle of ontologies in networked, distributed, and collaborative environments. 

The general architecture of NeOn is structured into three layers (see Figure 3-8). The layering is 
done according to increasing abstraction together with the data- and process flow between the 
components. This results in the following layers: 

• Infrastructure services: this layer contains the basic services required by most ontology 
applications. 

• Engineering components: this middle layer contains the main ontology engineering 
functionality realized on the infrastructure services. They are differentiated between tightly 
coupled components and loosely coupled services. Additionally interfaces for core engineering 
components are defined, but it is also possible to realize engineering components with new 
specific ontology functionality. 

• GUI components: user front-ends are possible for the engineering components but also 
directly for infrastructure services. There are also a predefined set of core GUI components. 

 

Tightly coupled components

Standard GUI
components

[class tree, …]

GUI 
components

Engineering
components

Repository Service

Storage

Basic
Query

Loosely coupled components

Translation

Visualization
Algorithms

Collab.
Support

[…]Data 
Annotation

Mapping
Editors

Property
Editors

[…]

Orthogonal Functionality

Security

Service Infrastructure

Text-based
Interface

Graph-based
Interface

Reasoner

OWL

Frames/
Rules

Infrastructure
services

Model API

OWL

Frames/
Rules

Registry Service

Query

Metadata

Orthogonal Functionality

Security

Versioning

Form-based
Interface

 

Figure 1: NeOn Architecture 



Page 10 of 109 NeOn Integrated Project EU-IST-027595 

 

 
1.2.  Eclipse as integration platform 

The NeOn architecture relies on the architectural concepts of the Eclipse platform1. The Eclipse 
IDE (integrated development environment) provides both GUI level components as well a plugin 
framework for providing extensions to the base platform. 

The Eclipse platform itself is highly modular. Very basic aspects are covered by the platform itself, 
such as the management of modularized applications (plugins), a workbench model and the base 
for graphical components. The real power in the Eclipse platform lies however in the very flexible 
plugin concept. 

Plugins are not limited to certain aspects of the IDE but cover many different kinds of 
functionalities. For example the very popular Java-development support is not provided by the 
Eclipse platform but by a set of plugins. Even functionalities users would consider to be basic (such 
as the abstraction and management of resources like files or a help system) are realized through 
plugins. This stresses the modular character of Eclipse, which follows the philosophy that 
“everything is a plugin”. 

www.ontoprise.de

RuntimeRuntime

PluginPlugin

PluginPlugin

PluginPlugin

= extension point

= extension

 

Figure 2: Plugin Concept of Eclipse 
 

A plugin itself can be extended by other plugins in an organized manner. As shown in Figure 2: 
Plugin Concept of Eclipse, plugins define extension points that specify the functionality which can 
be implemented to extend the plugin in a certain way. An extending plugin implements a 
predefined interface and registers itself via a simple XML file. In the XML file the kind of extension 
as well as additional properties (such as menu entries) are declared. 

                                                 
1 http://www.eclipse.org/ 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 11 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

1.3. Relationship with other workpackages 

The role of the WP6 task T6.10 “Realization of Core Engineering Components” is to coordinate the 
development of plugins, integrating novel methods and functionality developed in the individual 
technical workpackages (WP1-WP5). For example, the Oyster plugin makes available the registry 
functionality developed in WP1, the Cicero plugin interfaces with the argumentation support 
technology developed in WP2, etc.  

At the same time, in WP5 we develop the NeOn methodology for engineering networked 
ontologies, for which the NeOn toolkit with its plugins provides the technical tool support. The 
methodology – as described in its initial version in [NeOnD531] – is organized along a set of 
ontology lifecycle activities. In Section 3.1 we provide an overview, which activities are supported 
by which plugin. 

 As part of WP10, we provide the training activities to disseminate a working knowledge of the 
toolkit according to the NeOn methodology. 

Finally, in the case study workpackages, we deploy special configurations of the NeOn Toolkit 
within the case study prototypes. These configurations typically consist of the NeOn Toolkit along 
with a subset of the available plugins that are needed to support the ontology lifecycle activities in 
the case study. Additionally, the configuration may include plugins that are developed specifically 
for the case study prototypes. In the description of the plugins in Section 3, we explain how the 
individual plugins are used in the case studies. 

 

2. Plugin Development Process 

Generally, the plugin development process is a very open and decentralized one: Everybody is 
free to develop and publish his or her plugin, and to make it available under the conditions he or 
she prefers. 

Yet to ensure a coherent development and coordination among developers within the NeOn 
project, we have set up a basic process for plugin development that includes guidelines addressing 
aspects such as source code management, licensing and quality assurance. 

2.1. Source Code Management 

The default assumption for plugins developed within the NeOn consortium is that the plugins are 
available in open source. Plugin developers are free to use the source code management system 
(SCM) of their choice for their plugin. However, as the default SCM, we provide the Ontoware 
system (http://www.ontoware.org). Ontoware is a SCM similar in functionality to sourceforge, yet it 
focuses on hosting project related to ontologies and semantic technologies. Ontoware does not 
impose any restrictions on licensing schemes. Currently, roughly 90 projects are hosted at 
Ontoware, around 15 of them being plugins for the NeOn toolkit.  

2.2. Licensing 

The NeOn Toolkit in its open source version is distributed under the Eclipse Public License (EPL). 
In order to avoid conflicts in bundling the plugin with the NeOn Toolkit, we therefore recommend 
also the EPL as the default license to plugin developers. 



Page 12 of 109 NeOn Integrated Project EU-IST-027595 

 

The EPL is an open source software license used by the Eclipse Foundation for its software.  We 
deem the EPL as appropriate, as every plugin to the NeOn toolkit by its nature also is an Eclipse 
plugin and typically reuses various other Eclipse plugins. 

The EPL is designed to be a business friendly free software license, and features weaker copy left 
provisions than contemporary licenses such as the GNU General Public License (GPL). The 
receiver of EPL-licensed programs can use, modify, copy and distribute the work and modified 
versions, in some cases being obligated to release their own changes. 

The EPL is approved by the Open Source Initiative (OSI) and the Free Software Foundation (FSF). 

2.3. Plugin Wiki 

As a central entry point for information about available plugins, we maintain a plugin wiki. The 
purpose of the plugin wiki is to enable both the developers and users of plugins to create and find 
information about plugins. The plugin descriptions include metadata such as developer and 
developer’s affiliation, availability, license, etc., along with a functional description and user 
documentation. The plugin wiki is integrated into the NeOn Toolkit portal (c.f. Figure 3: NeOn 
Plugin Wiki) 

 
Figure 3: NeOn Plugin Wiki 

 

In addition, we also maintain an internal wiki (restricted to the NeOn consortium) for plugins that 
are not officially published yet. This internal wiki additional information about the current 
implementation status, integration issues etc. and is used to track and coordinate the progress of 
the plugin developments. 

Once a plugin is completed, the relevant information is simply copied from the internal wiki to the 
public one. 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 13 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

2.4. Plugin Documentation 

In addition to the plugin wiki, all plugins provide user documentation integrated into the Eclipse 
help infrastructure. This allows an easy documentation for all plugins within the NeOn Toolkit in a 
standardized way.  

Figure 4: NeOn Toolkit Help shows the appearance of the NeOn Toolkit help in a sample 
configuration with a subset of the plugins installed. 

 
Figure 4: NeOn Toolkit Help 

2.5. Quality Assurance and Bug Management 

In order to ensure a professional appearance, we have established two basic measures that every 
plugin needs to meet before it is officially published. The first measure is an additional reviewing 
process for the plugins, the second measure being automated test cases. 

Before a plugin is officially published and made available to the NeOn community, every plugin is 
formally reviewed by at least two persons from within the NeOn consortium. The review is done 
using a review form, which covers the following aspects: 

- overall quality 

- deployment procedure 

- functionality and ease of use according to user documentation 



Page 14 of 109 NeOn Integrated Project EU-IST-027595 

 

- completeness and correctness of the description in the plugin wiki 

- Eclipse help documentation 

 

Further, every plugin we additionally require automated test cases to be defined. These test cases 
are realized in a standard way using JUnit. 

In order for the users of the toolkit to have a single point to report bugs and get support in the case 
of problems, we maintain a bug management system within the NeOn Toolkit. The bug 
management system is based on Bugzilla portal (c.f.Figure 5: NeOn Toolkit Bugzilla). 

 
Figure 5: NeOn Toolkit Bugzilla 

 

Depending on the experience and feedback to be collected, we may opt for a stricter quality 
assurance process (see Future Work). 

Finally, as part of [NeOnD613], we will provide an evaluation of the plugins against the 
requirements defined for the NeOn Toolkit. 

2.6. Download Site: Plugins as Eclipse Features 

To make the deployment of new plugins as easy and smooth as possible for the end user, we 
make use of the Eclipse Update mechanism2, a mechanism that allows deploying and updating 
new features.  

Features are a concept of Eclipse to represent a unit of useful set of functionality. The role of 
features is to allow providers to make collections of plug-ins that logically go together. As such, 

                                                 
2 http://www.eclipse.org/articles/Article-Update/keeping-up-to-date.html 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 15 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

when we talk about installing a plugin for the NeOn Toolkit, we actually mean a feature consisting 
of a set of plugins. 

Features are made in such a way as to provide for easy transport over the network, have 
necessary legal and security mechanisms, and are modular to allow hierarchical product building. 
Features are designed to help in installing new functionality into Eclipse products and to update the 
plug-ins you already have to the newer versions. 

For the NeOn Toolkit, we created a dedicated NeOn Update site at http://www.neon-
toolkit.org/plugins. After a quality assurance procedure, newly available plugins (features, more 
precisely) are uploaded to the update site and thus immediately become accessible to all users of 
the toolkit. 

Figure 6: NeOn Toolkit Update Site shows a screenshot of the NeOn toolkit update mechanism. 
The available updates are grouped by the functionality they provide. The user merely has to select 
the features he wants to install, while the update mechanism takes care of the deployment, 
dependency management, etc. 

 

 
Figure 6: NeOn Toolkit Update Site 

 

 



Page 16 of 109 NeOn Integrated Project EU-IST-027595 

 

3. Plugin Descriptions 

In this chapter, we provide descriptions of the individual plugins. We only include the plugins that 
either have been developed new or have been significantly extended since the publication of the 
first set of plugins in deliverable D6.10.2. After a general overview, we provide for each plugin a 
detailed functional description, user documentation, details about the integration into the NeOn 
Toolkit as well as information about the intended usage in the case studies. 

3.1. Overview  of Plugins 

In the following table we list the developed plugins along with their classification according to the 
NeOn lifecycle activities (c.f. [NeOnD531]) and developer. A complete analysis of the coverage of 
the lifecycle activities is provided as part of [NeOnD532]. 

 

Table 1. Mapping from Processes and Activities to Plug-ins that Support them 

Plug-in Process or Activity 

 AlignmentServer  Ontology Aligning  

 Change Capturing 

 Ontology Versioning 

 Ontology Evolution 

 Ontology Comparison  

 Cicero  Ontology Argumentation 

 Collaborative Workflow Support 

 Ontology Versioning 

 Ontology Evolution 

 Ontology Conceptualization  

 Ontology Formalization 

 DIG Interface  Ontology Reasoning 

 LabelTranslator  Ontology Localization  

 Modules 

 Ontology Modularization  

 Ontology Module Extraction 

 Ontology Partitioning 

 Ontology Matching 

 Ontology Merging 

 LeDA  Ontology Learning  

 ODEMapster 
 Non-ontological Resource Reuse 

 Ontology Population 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 17 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 OntoModel 

 Ontology Conceptualization  

 Ontology Formalization 

 Ontology Evolution 

 OWLDoc  Ontology Documentation  

 Oyster  Ontology Reuse 

 RaDON 
 Ontology Diagnosis  

 Ontology Repair 

 Text2Onto  Ontology Learning  

 Watson 
 Ontology Enrichment  

 Ontology Reuse 

3.2. Alignment Server Plugin 

3.2.1. Functional Description 

The Alignment Server Plugin allows one to automatically compute, manipulate and manage 
ontology alignments. More precisely, the Alignment Server Plugin offers the following 
functionalities:  

• Find alignments between ontologies  
• Match ontologies  
• Trim alignments by applying thresholds to existing alignments  
• Retrieve and render alignment in a particular format  
• Store an alignment permanently on the server 

These functionalities support the alignment life-cycle which can be described as follows.   
Alignments are first created through a matching process (which may be manual). Then they can go 
through an iterative loop of evaluation and enhancement. Again, evaluation can be performed 
either manually or automatically, it consists of assessing properties of the obtained alignment. 
Enhancement can be obtained either through manual change of the alignment or application of 
refinement procedures, e.g., selecting some correspondences by applying thresholds. When an 
alignment is deemed worth publishing, then it can be stored and communicated to other parties 
interested in such an alignment. Finally, the alignment is transformed into another form or 
interpreted for performing actions like mediation or merging. 



Page 18 of 109 NeOn Integrated Project EU-IST-027595 

 

 

3.2.2. User Documentation 

 
Use the plugin with the Alignment Server.  
To activate the Alignment Server Plugin from the NeOnToolkit, click on the "Align" menu or the 
button on Toolbar, a view "Alignment" for the plug-in will be opened. Figure 7: Functions of the 
Alignment Server plug-in shows the available functions of the plug-in. 

 

The Alignment Server Plugin can work in two modes: offline and online. Roughly speaking, the 
offline mode allows users to reach main functionalities of the Alignment Server without connection 
to server while the online mode offers additionally mechanisms to store and reuse alignments. In 
the offline mode, which is available by default or activated by clicking on button "Offline", the 
Alignment Server Plugin can access to NeOn Toolkit ontologies (i.e. opened ontologies in Ontology 
Navigator) and match any pair of them. Resulting alignments can be stored as local system files 
and exported to Ontology Navigator as OWL ontologies. In the online mode, which is activated by 
clicking on button "Online", the Alignment Server Plugin provides all functions from the Alignment 
Server. Resulting alignments are stored on the server and can be exported to Ontology Navigator 
as OWL ontologies. This allows NeOn Toolkit users, with help of an Ontology Editor, to use, share 
or edit alignments. 

Figure 7: Functions of the Alignment Server plug-in 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 19 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 
Stepwise example 
 
Show the Ontology Navigator view 
From the menu bar of the NeOnToolkit, create an OWL project, for example "OntologyProject", in 
this view.  

Open working OWL ontologies 
From the menu bar of the NeOnToolkit, open OWL ontologies in the project "OntologyProject" 
created above.  

Activate the Alignment Server Plugin 
From the menu bar or the button, activate the Alignment Server Plugin and a view for the plug-in 
will be opened.  

Activate the on-line mode 
From the view for the plug-in, activate the on-line mode by clicking on the button "Online".  

Connecting 
To connect to the INRIA's Alignment Server from the NeOn Alignment Plugin, you have to type 
"aserv.inrialpes.fr" for hostname and "80" for port. 
If the connection is successful, a list of available alignment methods is visible at "methods".  

Matching two ontologies 
First we must fetch the opened ontologies from Ontology Navigator by clicking on the button 
"Refresh". All the working ontologies will be added to two lists "Ontology 1" and "Ontology 2". 
Choose two ontologies to match from the two lists. Next, choose an alignment method from the list 
"Methods". Click on "Match" to match these two ontologies with the method chosen. The resulting 
alignment will be added to the list "Server alignments" as an URI if the online mode is active. 
 



Page 20 of 109 NeOn Integrated Project EU-IST-027595 

 

Exporting an alignment 
To browse and export the alignment computed, choose it from the list "Server Alignments" and 
click on "Export". The alignment will be visualized in a native format and exported as an OWL 
ontology to the alignment project which was created in Ontology Navigator. Users can navigate the 
OWL alignment imported in Ontology Navigator. 

Figure 8: Matching two ontologies 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 21 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 

Fetch available alignments 
This function allows users to obtain a list of all alignments available on the Alignment Server. See 
Figure 10: Fetch alignments available from server. 

Figure 9: Browse OWL alignment in Ontology Navigator 



Page 22 of 109 NeOn Integrated Project EU-IST-027595 

 

 

Trim an alignment with a threshold 
This function allows users to select from an alignment the correspondences whose confidence 
degree is greater or equal to a threshold. The selected correspondences will be store in a new 
alignment.  

Upload and store an alignment 
These functions allow users to upload an alignment, which can be manually created and edited, 
from local machine to Alignment Server. Alignments can be permanently stored on the server. This 
provides a possibility to share and reuse an alignment. 

3.2.3. Integration into the NeOn Toolkit 

In order to be activated in NeOnToolkit environment, the plug-in uses the following Eclipse 
extension points:  

• org.eclipse.ui.actionSets 

• org.eclipse.ui.views  

The plug-in communicates with NeOnToolkit in the following way: (i) it gets working ontologies from 
projects in Ontology Navigator, (ii) and exports alignments in OWL to a project in Ontology 
Navigator. In order to implement this communication the plug-in uses the packages provided by 
NeOnToolkit, like  

“com.ontoprise.ontostudio.datamodel”,  

“com.ontoprise.ontostudio.gui”,  

“com.ontoprise.ontostudio.io”, 

Figure 10: Fetch alignments available from server 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 23 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

“com.ontoprise.ontostudio.owl.gui”.  

3.2.4. Intended Usage in the Case Studies 

First, the Alignment Server plug-in is used in WP3 for finding alignments for jointly using two 
ontologies under the Neon Toolkit, and contextualizing an ontology with respect to another one.  

In addition, the plug-in is a basic tool for finding and manipulating alignments between 
pharmaceutical ontologies in WP8. This work will be presented in the deliverable D.3.4.1. 

3.3. Change Capturing 

3.3.1. Functional Description  
The purpose of this plug-in is to capture ontology changes from the NTK editor and log them into 
Oyster distributed registry. This plug-in also allows users to visualize the history of ontology 
changes. Additionally, this plug-in is in charge of applying changes received from other clients to 
the same ontology after Oyster synchronizes the changes in the distributed environment. Finally, 
this plug-in allows users to request Oyster to start the synchronization process. Specifically it 
provides the following functionalities:  

• Start/Stop Ontology Logging: This functionality is available from the option "Log 
Changes" in the pop-up menu of the ontology objects in the NTK editor. When an ontology 
is being logged, the plug-in performs the following tasks on the background:  

o Capture Ontology Changes: Every change from the NTK editor is captured.  
o Transform Ontology Changes: Every change in the editor is transformed into 

instances of the change representation model (Change Ontology).  
o Register Ontology Changes: The instances of the change ontology are registered 

into Oyster distributed registry.  
• Visualize Ontology Changes: This functionality is available from the "Change Log View" 

provided by the plug-in. From this view, users can visualize the ontologies that are being 
logged and for each of them, the history of changes sorted in chronological order. The list 
of changes is displayed in a table that shows the most relevant information (e.g. author of 
the change, time of the change, type of the change, etc.) and when a change is selected 
the complete information is displayed in the interface.  

• Start Synchronization: This functionality is available from the option "Synchronize" in the 
pop-up menu of the ontology objects in the NTK editor. When this option is selected, the 
plug-in performs the following tasks on the background:  

o Launch Synchronization Process: This task request Oyster to start the 
Synchronization process.  

o Apply Changes Received: After the synchronization finishes, the plug-in applies 
locally (if necessary) changes received from other clients to the same ontology. 
When changes are applied locally, they are reflected in the NTK editor updating the 
local ontology with the changes received.  

Synchronization: Oyster follows a synchronization approach that is a combination of a push and 
pull mechanism. During the synchronization, nodes contact other nodes in the network to 
exchange updated information (pull changes) and optionally they can push their changes to a 
specific node (called the push node) such that if a node goes offline before all other nodes pull the 
new changes, the node changes are not lost. 
 



Page 24 of 109 NeOn Integrated Project EU-IST-027595 

 

3.3.2. User Documentation  
 

How to install it 

• Download the compressed Plugin release from http://ontoware.org/projects/oyster2  
• Extract and copy the Change Capturing Plugin JAR into the plugins directory inside the 

filesystem location where NeOn Toolkit is installed.  

How to use it 
The following figures show the Plug-in functionalities:  

• Start/Stop ontology logging:  

The logging can be started/stopped from the option "Log Changes" in the pop-up menu of the 
ontology objects in the NTK editor. 

 
Figure 11: Starting Change Capturing 

The status bar displays how many ontologies are being logged.  

Visualize ontology changes:  

Changes can be visualized from the "Change Log View" provided by the plug-in (Figure4).  



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 25 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 
Figure 12: Visualizing Changes 

• Start synchronization:  

The synchronization can be started from the option "Synchronize" in the pop-up menu of the 
ontology objects in the NTK editor. 



Page 26 of 109 NeOn Integrated Project EU-IST-027595 

 

 
Figure 13: Change Synchronization 

 

 

3.3.3. Architecture Description of integration with NeOn toolkit  
A high level conceptual architectural diagram of the involved components is shown in Figure6. The 
top layer represents the user related components for editing and visualizing ontologies (and related 
information) which consists of the NTK ontology editor and the "Change Log View" provided by this 
plug-in. The middle layer represents the change capturing component and finally the bottom layer 
consists of Oyster, our implementation of the registry services. The registry is one of the core 
services of the NeOn basic infrastructure layer (e.g. Repository services, Registry services, etc).  



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 27 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 
Figure 14: Architecture of Change Capturing 

 

The following table shows the dependencies and compatibilities of the current version of the plug-
in: 

 

 

Version Compatible with Necessary plugins 

Change Capturing 1.8.1 NeOn Toolkit 1.2 

Org.neontoolkit.registry.api 
Org.neontoolkit.oyster.plugin.menu 
Com.ontoprise.ontostudio.io 
Com.ontoprise.ontostudio.gui 
Com.ontoprise.ontostudio.owl.gui 
Com.ontoprise.ontostudio.datamodel 
Datamodel 
DatamodelBase 
Util 

Org.junit4 

 

3.3.4. Intended use in case study  
Oyster will be used in WP7 to support tasks related to the management of provenance and 
statistics.  

• Motivation of using the change capturing plug-in  

One of the goals of the FAO use case partner is that fisheries ontologies produced within WP7 will 
underpin the Fisheries Stock Depletion Assessment System (FSDAS). However, for such a 



Page 28 of 109 NeOn Integrated Project EU-IST-027595 

 

dynamic domain like fisheries that is continuously evolving, we will need to provide the appropriate 
support for a successful implementation and service delivery of the FSDAS. In particular, for this 
task we need to support a collaborative editorial workflow that will allow Ontology editors to 
consult, validate and modify ontologies keeping track of all changes in a controlled and coherent 
manner. In this scenario, ontology editors are usually developing/maintaining ontologies 
collaboratively in a distributed environment. The change capturing plug-in is crucial component in 
the infrastructure to support the editorial workflow: first, changes have to be monitored and 
captured from the ontology editor. Those changes should be formally represented and stored in 
Oyster. Using the registry functionalities, those changes will be searched and retrieved by the 
change capturing plug-in to show the history of ontology changes. Finally, after the registry 
propagates those changes to the distributed copies of the same ontology, the change capturing 
plug-in updates the local copy of the ontology to reflect changes in the distributed copies.  

• Benefits/Advantages of using the change capturing plug-in  
 

o The change capturing plug-in automatically keeps track of the ontology changes  
o The change capturing plug-in performs the required tasks on the background  
o The change capturing plug-in allows users to check the history of ontology changes  
o The change capturing plug-in applies locally changes received from the distributed 

copies of the same ontology after Oyster performs the synchronization process.  
 

• Data sets  

FSDAS ontologies  

• A usage example aligning to WP7 case study.  

For the use case UC-9.1 this plug-in is in charge of capturing ontology changes and for UC-
9.2, this plug-in allows ontology editors to view the logs about changes to ontology 
elements. The information about each change is represented according to the change 
ontology (see Figure7) and includes among others the following minimum fields:  

o change  
o description  
o operation executed  
o timestamp  
o URI  
o user  

 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 29 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 

Figure 15: Alignment Server: Fetching Alignments 
 

3.3.5. Integration into the NeOn Toolkit 

The Alignment Server plugin creates a view in the NeOn Toolkit which can be invoked via the 
menu bar or the button "Alignment View". This view consists of two parts. The first one is designed 
such that users would enter easily input data and the second one visualizes results.  

• Eclipse Extension Points  
o org.eclipse.ui.views  
o org.eclipse.ui.actionSets  

• Ontostudio extension points  
o com.ontoprise.ontostudio.datamodel  
o com.ontoprise.ontostudio.io  
o com.ontoprise.ontostudio.gui  
o com.ontoprise.ontostudio.ontomap  

 
 

3.3.6. Intended Usage in the Case Studies 
The alignment server is intended to be used in the case studies to identify and manage alignments 
between heterogeneous ontologies.  



Page 30 of 109 NeOn Integrated Project EU-IST-027595 

 

3.4.  

3.5. Cicero 

3.5.1. Functional Description 
The main purpose of the Cicero plugin for the NeOn toolkit is to keep track of discussions between 
the developers and users of an ontology. While the actual discussions are held in the Cicero-Wiki 
on a central server3, the toolkit plugin allows for establishing links between elements in an ontology 
(e.g. classes or properties) and discussions that influenced their design. These discussions are 
then used by the ontology developers for understanding the design rationale of specific ontology 
elements.  

Altogether, the plugin supports the following functionality:  

• Start discussions from within the NeOn toolkit.  
• Establish provenance links between ontology elements and discussions that influenced 

their design.  
• Search discussions that are relevant for understanding the design rationale of specific 

ontology elements.  
• Show details of discussions in an integrated web browser.  

3.5.2. User Documentation 
How to Use in an Ontology Engineering Project 
In general, one can distinguish two different cases in which argumentation plays an important role 
in enabling collaboration between the participants of an ontology engineering project (this includes 
the developers but also the future users of an ontology):  

• First, there are activities during which argumentation data is actively created, e.g. by 
discussions between the participants. In this case, the argumentation framework has the 
role of structuring the discussion process, helping in systematically exploring possible 
solutions and capturing the pro and contra arguments. Argumentation support is then a 
means of having more efficient discussion and decision taking processes.  

• Second, there are activities where previously recorded discussions are used for 
understanding the design rationale of elements in the ontology network. For example, in the 
DILIGENT methodology the argumentation data created during the local adaptation of an 
ontology is used by the control board during the analysis and revision activity. In this case, 
recorded discussions are part of the ontology documentation.  

The most important activities of an ontology engineering project during which discussion data may 
be actively created are the ontology specification, ontology conceptualization, ontology 
formalization and ontology implementation phases. All four activities require reaching a consensus 
between the participants about the requirements of the ontology network and how they should be 
implemented. But the recorded discussions may also be used for understanding the decisions 
made during previous activities (e.g. during ontology formalization one has to understand the 
decisions from the ontology conceptualization activity). Reaching a consensus or explaining 
decisions to collaborators is not only needed during the previously mentioned activities of the 
ontology development process (i.e. during building an ontology from scratch) but it may also be 
needed during reusing or reengineering ontological and non-ontological resources, or during the 
alignment with other ontologies.  

                                                 
3 More details about the Cicero-Wiki are available at http://cicero.uni-koblenz.de 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 31 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

Discussions are an important part of the ontology documentation, which should also refer to 
explanatory comments generated during the entire ontology building process. The recorded 
discussions help in keeping track of the design rationale all the way through the ontology 
engineering process, and keeping the design rationale up to date by amending it with additional 
arguments. It makes also sense that Cicero is used if only a single person is responsible for 
developing an ontology. In that case, the developer documents his/her design rationale either for 
future users of the ontology or for himself/herself if the corresponding part of the ontology has to be 
changed at a later point in time.  

Recording discussions makes it easier to resume a previous activity in the ontology engineering 
process, if it turns out that a decision taken during that activity is underspecified or not appropriate. 
In this case, the discussion that led to the decision may be easily resumed because all 
stakeholders that participated in the decision making process are identified by the recorded 
discussion. Resuming a discussion may additionally be useful during the maintenance phase of an 
ontology, e.g. if there were changes to the requirements that affected the decision.  

In general, supporting the argumentation process is important in each situation where either 
several users collaboratively decide an issue or where a user by himself creates an ontology 
element that should be later used as input for the activity to be developed by another user. In the 
latter case, the collaboration is facilitated by enhanced and more complete ontology 
documentation.  

User Interface 
The Cicero plugin is visible at two different locations in the NeOn toolkit. First, it provides an 
additional subpage for the entity properties of an ontology. The subpage is used for activating the 
Cicero support for that specific ontology. Second, the plugin extents the context menu for all 
elements in an ontology. The context menu can be used for creating new discussions, annotating 
ontology elements with already existing discussions and for showing a list of discussions annotated 
to the current ontology element. More details about the subpage and the context menu are 
available below.  

Property Page of Ontologies  
The Cicero-plugin provides a new (sub-)property page called Argumentation Settings for an (F-
Logic or OWL) ontology element. You get this (sub-)property page by clicking on the label of the 
ontology in the Ontology Navigator (see picture below).  

 
Figure 16: Cicero Configuration 

The property page provides a text field Cicero project URL. Here the user can enter a (valid) URL 
of the project in a Cicero-Wiki-installation in which the currently selected ontology should be 
discussed. The value entered in the text field can then be persistently saved in the datamodel by 
clicking on the "Save"-button.  



Page 32 of 109 NeOn Integrated Project EU-IST-027595 

 

For testing you can enter http://cicero.uni-koblenz.de/wiki/index.php?title=Prj:Testproject as the 
project URL.  

Context Menu for Ontology Elements  
The Cicero plugin extents the context menu of elements in an OWL and/or F-Logic ontology. You 
get the context menu by right-clicking on an ontology element. The context menu allows for 
annotating ontology elements with corresponding discussions and for showing a list of previously 
annotated discussions. Currently, the plugin supports the context menu for classes, individuals, 
object-, data- and annotation-properties (for OWL ontologies) and for concepts, individuals, 
attributes, relations, rules and queries (for F-Logic ontologies). The context menu contains the 
following entries:  

• Annotate with Issue with which the user is able to annotate the selected elements with an 
Issue-URL.  

• Create Issue with which the user is able to create a new issue on the Cicero-Wiki from 
within the Ne0n-Toolkit. The created issue is annotated for the selected ontology elements.  

• Show Issues with which the user can access a list of all direct and related issues for the 
currently selected ontology element.  

 
Figure 17: Cicero Context Menu 

  

Annotate with Issue  
After clicking on the Annotate with Issue-menu entry the window shown in the picture below 
appears. It contains a text field in which the user can enter an Issue-URL. For testing, any URL of 
an issue in the Testproject4 might be used.  

                                                 
4 http://cicero.uni-koblenz.de/wiki/index.php?title=Prj:Testproject 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 33 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 
Figure 18: Annotating with an Issue in Cicero 

 
By clicking the OK-button the entered URL is annotated for all currently selected ontology 
elements. A dialog appears with a message that the URL has been successfully added.  

Create Issue  
After selecting the Create Issue-entry, a new window appears in which the user needs to enter his 
valid login data (login name and password) to the Cicero-Wiki. By activating the checkbox 
Remember me login the entered login data is stored in a local text file with encryption for the 
current ontology project. With this the user doesn't need to enter the login data the next time for the 
same ontology project.  

If you are using http://cicero.uni-koblenz.de/wiki/index.php?title=Prj:Testproject as cicero project for 
testing, please use the login data listed in http://cicero.uni-koblenz.de/wiki/index.php/Main_Page.  

 
Figure 19: Creating an Issue 

 
  

After pressing the OK-button a new window opens. It contains two text fields for creating a new 
issue. The user needs to enter an issue title and optionally can also provide an issue 
description. For sending the issue creation-request, the user needs to click on the OK-button.  

Show Issues  
If the user decides to select the Show Issues-entry, the window shown below appears.  



Page 34 of 109 NeOn Integrated Project EU-IST-027595 

 

 
Figure 20: Showing an Issue 

 
It consists of two lists:  

• the first showing all issues directly annotated to the currently selected ontology element and  
• the second showing all related issues which are annotated in ontology elements having a 

certain relation to the currently selected ontology element.  

Whenever a user selects an issue title in one of the lists, the corresponding description is shown in 
the textarea at the bottom. By double-clicking on an issue title in one of the lists, an external 
browser will be opened with the respective URL. Note that if your login data to the Cicero-Wiki is 
not yet known for the current ontology project, a window for entering the login-data will appear 
before the overview window is shown.  

3.5.3. Integration into the NeOn Toolkit 
The following extension points are used within the plugin:  

• Eclipse extension points:  
• org.eclipse.ui.popupMenus  
• org.eclipse.ui.startup  

• NeOn toolkit extension points:  
• org.neontoolkit.gui.entityProperties  

 

The Cicero Plugin for Ne0n-Toolkit consists of three separate plugins:  

• org.neontoolkit.cicero which contains the ontology-independent functionality,  
• org.neontoolkit.cicero.flogic which contains the functionality needed for FLogic-

ontologies and  
• org.neontoolkit.cicero.owl which contains the functionality needed for OWL-ontologies.  

The plugins org.neontoolkit.cicero.flogic and org.neontoolkit.cicero.owl depend both on the 
general plugin org.neontoolkit.cicero.  

 
Since version 1.0.1 the plugins are now available as parts of so called features. The features are:  

• FLogic-feature which contains the plugins org.neontoolkit.cicero and 
org.neontoolkit.cicero.flogic.  

• OWL-feature which contains the plugins org.neontoolkit.cicero and 
org.neontoolkit.cicero.owl.  



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 35 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

3.5.4. Intended Usage in the Case Studies 
The Electronic Invoice Management of the PharmaInnova cluster offers a good domain to test and 
evaluate the Cicero wiki and the Cicero plugin in the context of a collaborative scenario. 
PharmaInnova is a cluster that consists of several Spanish pharmaceutical laboratories. In a 
collaboration process the participants of the PharmaInnova cluster are working to define a common 
invoice model which can be used for exchanging invoices between the different laboratories. Every 
time a new member is joining the cluster, its invoice model has to be integrated into the already 
existing model of the PharmaInnova cluster. A further reason for creating a new version of the 
invoicing ontology may e.g. be changes in legal requirements for invoices.  

Agreeing on a new version of the ontology is a difficult task because the different stakeholders in 
the development process are distributed over multiple locations. There exist many problems like 
organizing and coordinating face-to-face meetings with all stakeholders. One objective of using the 
Cicero wiki and plugin may thus be to reduce the costs and personal effort that are required for 
travelling. An additional benefit of using Cicero may be the improved documentation of the 
resulting ontology. 

3.6. Collaborative Workflow Support 

3.6.1. Functional Description 
The main purpose of the Workflow Support plugin is to track the ontology changes and then 
manipulate these changes according to the role of a user, where the user could log on / out or 
register in a preference page. Specifically,  

For a viewer: 
 Browse the changes in different status which are made by other subject experts or validators.  

For a subject expert: 
 Select the elements in Draft status and sent them to the validator for approval, by changing the 

status of the elements from "Draft" to "To be approved".  

For a validator: 
 Approve elements and thus to move them from the "To be Approved" status to the "Approved" 

status.  

 Reject element proposed to them to review in the "To be approved" status and send them 
back to the "Draft" status for the Subject Expert to check, update or complete.  

 Move back to the "To be approved" status an element already approved, if they consider it 
necessary  

 Reject a proposal for an element’s deletion that are on the "To be deleted" status. In this case 
the element goes back to the "Approved" status  

 Accept the deletion and definitely destroy an element in the "To be deleted" status  

3.6.2. User Documentation 
In this section, we first introduce the preference page for a user to log on / out or do registration. 
Then the workflow support plugin will be demonstrated to show how it works according to different 
roles. Before you follow the steps below, please make sure you have started registry by following 
the steps in NeOn Toolkit: Registry --> Start registry, or you could simply click on the button with 
some blue dots in the tool bar of NeOn Toolkit. 

Collaborative Development Preference: 



Page 36 of 109 NeOn Integrated Project EU-IST-027595 

 

1. You could find this preference page by following these steps in NeOn Toolkit: Window --> 
Preferences -->Collaborative Development Preference. 

2. If you are a new user, you could do registration in the “Register” part by filling in your first name 
and last name and choosing a role for yourself. Then you can click the button of “Register”. If there 
is a person who has the same first name and last name as yours, you need to use a different first 
name or last name. Otherwise, you will be registered and log in automatically. 

3. If you have registered already, you could log in the “Log in /out” area by inputting your first name 
and last name. 

 
Figure 21: Collaborative Development Preferences 

 
Workflow Support: 
1. The four views in this plugin can be found by following these steps: Window --> Show View --> 
Other --> Workflow. 

2. Please log on first in the preference page which have been introduced above and choose an 
OWL ontology to be tracked by right-clicking an OWL ontology in Ontology Navigator in NeOn 
Toolkit and then select "Log changes". We will introduce the four views according to the role you 
have registered.  

3. If you are a viewer, you have no right to make some changes. But you could browse all the 
changes in different states (by clicking on the button of “Refresh Changes List”) which are made by 
the subject experts or validated by the validators. All the changes are shown in grey.  



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 37 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

4. If you are a subject expert, you could make some changes for an OWL ontology in the Ontology 
Navigator in NeOn Toolkit. In the Draft view, you could manipulate these changes by submitting 
some changes to be approved or deleting the changes. See Figure 22: Draft viewas an example. 
Please note that you cannot manage the changes made by other users which are shown in grey. 

 
Figure 22: Draft view 

 

5. If you are a validator, you are able to manipulate To Be Approved View, To Be Deleted View 
and Approved View. Specifically, (1) in To Be Approved View, a validator can decide to accept the 
changes by changing the change status from "to be approved" to "Approved" or reject them by 
changing the status to "draft". (2) In Approved View, the validator can reject the proposes by 
changing the status from "approved" to "to be approved" or propose to delete by changing the 
status from "approved" to "to be deleted". (3) Finally, in To Be Deleted View, the validator can 
delete the changes in "to be deleted" status permanently or reject the proposals by changing the 
status from "to be deleted" to "approved".  

3.6.3. Integration into the NeOn Toolkit 
Workflow support plugin has been developed as a view in NeOn toolkit and it can capture the 
changes in Ontology Navigator.  

• Eclipse extension points  
o org.eclipse.ui  
o org.eclipse.core.runtime  
o org.eclipse.core.resources  



Page 38 of 109 NeOn Integrated Project EU-IST-027595 

 

• NeOn Toolkit extension points  

o com.ontoprise.ontostudio.datamodel  
o com.ontoprise.ontostudio.owl.gui  
o com.ontoprise.ontostudio.owl.model  
o datamodel  
o datamodelBase  
o util  

• Oyster extension points  

o org.neontoolkit.changelogging  
o org.neontoolkit.registry.api  
o org.neontoolkit.oyster.plugin.menu  

3.6.4. Intended Usage in the Case Studies 
The Workflow support plugin can be applied in FAO case study to provide a mean for ontology 
engineers to develop ontologies collaboratively. 

3.7. DIG Interface 

3.7.1. Functional Description 

The purpose of the DIG Plugin is the implementation of the DIG Interface version 1.1. The DIG 
Description Logics Interface Version 1.1 is a specification for defining a new interface for DL 
Systems. It is effectively an XML Schema for a DL concept language along with ask/tell 
functionality. In two words, the DIG interface provides a standardized way to access and query a 
reasoner. The user initially chooses the desired action she is interested in. Then the ontology is 
translated into the DIG interface and sent to the reasoner along with the queries that have been 
posed. After the query processing inside the reasoner has taken place, the reasoner sends back to 
the user the response encoded in the DIG Interface and the user can extract the answer to her 
query. The interested reader is referred to the protocol specification for further information.  

The entire concept language and tell/ask functionality is enough to capture every functionality that 
is usually provided by a reasoner. In the context of the use cases in the NeOn-Project the 
reasoning tasks that are of utmost importance to us are ontology coherency and classification. 
More concretely:  

• Ontology Coherency: The reasoner takes as input the (translated into the DIG protocol) 
ontology and for each concept it returns true or false, depending on whether the 
corresponding concept is satisfiable or unsatisfiable, respectively.  

• Classification: The reasoner takes as input the (translated into the DIG protocol) ontology 
and returns the inferred classification of the various concepts, as opposed to the explicit 
one that the user initially sees. Moreover, for every concept in the inferred hierarchy we get 
whether it is satisfiable or not.  

 

It must be highlighted at this point that the DIG Description Logics Interface that has been partially 
implemented in this plugin does not come bound to any reasoner. Contrary to that, it only provides 
an interface to query any reasoner that supports the DIG Protocol. The motivation behind this is 
that the current plugin is a general-purpose plugin that is intended to be used with different 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 39 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

reasoners, so we found it meaningful not to restrict it to a particular reasoner, but to rather provide 
the user with the flexibility to do that themselves, in full accordance with their needs. 

3.7.2. User Documentation 
In this section, we will show how to use the DIG plugin to achieve the aforementioned 
functionalities.  
 
Specifying the Reasoner Preferences 
 

Independent of the functionality that we are interested in we must first specify the reasoner IP 
address and port, since we do not a priori know where our reasoner is running. Indeed, any 
reasoner that implements the DIG interface 1.1 and additionally provides either of the 
functionalities under consideration can be used for the reasoning task. More specifically, we have:  

1. The user interface for specifying the reasoner is the DIG Reasoner Setting preference 
page under the OWL Preferences in the preference dialog, which is accessible via the 
Window->Preferences menu group.  

2. Setting the preferences: After invoking the view we specify the host name and he port of 
the reasoner and we then click the OK button, as depicted in Figure 23: Setting the Reasoner 
Preferences.  

 
Figure 23: Setting the Reasoner Preferences 

 
How to use Ontology Coherency  

1. The user interface for checking an ontology for coherency is a view of Coherency/Satisfiability.  



Page 40 of 109 NeOn Integrated Project EU-IST-027595 

 

2. How to invoke our view? To check an ontology for coherency, right-click the ontology in the 
Ontology Navigator in NeOn Toolkit and then select the item of Check ontology coherency. The 
view of Coherency/Satisfiability will be activated. At the same time, the logical and physical URIs 
of this ontology will be shown. Besides, we also show some information about the number of 
concepts and how many among them are unsatisfiable.  

 
Figure 24: Invoking the coherency view 

 

3. Getting back the results: In the end, we get back the results of the coherency check. In case 
the ontology is not coherent, the "Unsatisfiable Concepts" button will be activated and by clicking 
on it we will get all unsatisfiable concepts in a table. 

 
Figure 25: Getting back the results 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 41 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 

How to use Ontology Classification  

1. The user interface for ontology classification is a view of Entailed Subsumption Hierarchy.  

2. How to invoke our view? To produce the classification, right-click the ontology in the Ontology 
Navigator in NeOn Toolkit and then select the item of Produce Classification. The view of 
Entailed Subsumption Hierarchy will be activated. At the same time, the name of the project 
where the ontology belongs to and the logical URI of this ontology will be shown.  

3. Getting back the results: In the end, we get back the results of the classification. The inferred 
hierarchy contains the taxonomies and additionally for each concept in the classification extra 
information on whether the concept is satisfiable or not, according to the image next to it, as shown 
in Figure 26.  

 
Figure 26: A classification example 

 

3.7.3. Integration into the NeOn Toolkit 
The DIG plugin provides reasoning services through the reasoning protocol and it could thus be 
characterized as a reasoning/engineering component. Of course, it comes along with a practical 
user interface, as depicted in the User Documentation Section. 

The plugins (other than the eclipse plugins) upon which it is dependent are: 

• com.ontoprise.ontostudio.datamodel 

• com.ontoprise.ontostudio.gui 

• com.ontoprise.ontostudio.owl.gui 

• org.neontoolkit.gui. 



Page 42 of 109 NeOn Integrated Project EU-IST-027595 

 

Also, the extensions it uses are the following: 

• org.eclipse.ui.views: this extension is used for defining the Ontology Coherency and 
Classification views for giving back to the user the results. 

• org.eclipse.ui.popupMenus: this extension is used for defining the Ontology Coherency and 
Classification options in the pop-up menu, as explained in the previous section. 

• org.eclipse.ui.preferencePages: this extension is used for defining the Reasoner Preference 
page in the Reasoner Preferences Section, as was also shown in the previous section. 

• org.eclipse.help.toc: this extension is used for defining the online help. In the case of the 
DIG plugin, the help consists of the introduction section and the User Documentation 
section. 

Last, it currently doesn’t provide an extension point to other plugins and no other plugin is currently 
dependent upon it (though that could change, when the OBDA functionality is integrated in the 
NeOn toolkit as discussed in the next section). 

3.7.4. Intended Usage in the Case Studies 
The DIG plugin is concentrated on two prominent reasoning tasks, namely ontology coherency and 
classification, which means that it can be used in a wide variety of contexts, where these tasks are 
needed. The fact that the DIG interface is not attached to any particular reasoner but it rather 
presents a general protocol specification for a reasoning interface makes it very flexible. 

As far as future intended cases are concerned, we have mainly developed the DIG plugin and 
extended it with the OBDA functionality, to make use of the QuOnto reasoner’s reasoning services. 
We find that such functionality is at least promising and potentially very useful for the NeOn use 
cases, where ontology schemata are expected to be rather simple, whereas most concern is 
placed on data.  

3.8. LabelTranslator  

3.8.1. Functional Description 
Multilinguality in ontologies is nowadays demanded by institutions worldwide with a huge number 
of resources available in different languages. To solve this problem we propose LabelTranslator, a 
plugin that automatically localizes ontologies. LabelTranslator takes as input an ontology whose 
labels are described in a source natural language and obtains the most probable translation into a 
target natural language of each ontology label. 

Altogether, the plugin supports the following functionalities 

• Obtains the most probable translation for each ontology label.  

LabelTranslator relies on two advanced modules for this task. The first, the so-called translation 
service, automatically obtains the different possible translations of an ontology label by 
accessing different linguistic resources. This service also uses a compositional method in order 
to translate compound labels (multi-word labels). The second module, the translation ranking, 
sorts the different translations according to the similarity with its lexical and semantic context. 
The method relies on a relatedness measure based on glosses to disambiguate the 
translations. This is done by comparing the senses associated to each possible translation and 
their context. 

• Captures all the linguistic information associated with concepts using a linguistic model 
repository (LIR).   



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 43 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

The LIR, Linguistic Information Repository, is a portable model that can be associated to any 
term of an OWL ontology by means of an OWL meta-ontology. The main classes that compose 
the LIR (Lexicalization, Sense, Definition, UsageContext, Note and Source) are organized 
around the LexicalEntry class, which is related to any ontology term (by means of the 
hasLexicalEntry relation). The set of LIR concepts enables a complete description in natural 
language of the ontology term it is associated to. Additionally, by means of typical lexical 
relations either in the same language (e.g. hasSynonym) or across languages (hasTranslation), 
the LIR organizes linguistic information within the same natural language and among different 
languages in order to provide a multilingual set of information that enables ontology 
localization. 

• Uses a synchronization mechanism to maintain the ontology and linguistic information 
synchronized 

Addition of new terms in the ontology or deletion of existing terms is controlled using the 
advanced change tracking (based on Resource Delta5) used in NeOn toolkit. This mechanism 
is able to capture changes even when ontological terms have changed their position within the 
ontology model. By adopting this feature, LabelTranslator can accurately identify the minimal 
set of changes needed to adjust the structure of the linguistic model, a critical step to ensure 
that a matching change is made in the localized ontology. 

3.8.2. User Documentation 
The LabelTranslator plug-in is visible at two different locations in the NeOn toolkit. First, it provides 
an additional subpage for the linguistic information associated to each element of an ontology 
(classes, object properties and data properties). Secondly, the plug-in extents the context menu for 
all elements in the ontology. The context menu can be used for translating the current ontology 
element from a source language to a target language.  

Additionally, LabelTranslator uses some views of the NeOn toolkit to load the ontology and store 
the multilingual results. More details about the subpage, the context menu and other functionalities 
of LabelTranslator are available below. 

 
Initializing Linguistic Information of an Ontology 
When the ontology editor user imports/creates a new OWL ontology in NeOn, then the 
LabelTranslator plug-in automatically builds an empty linguistic model associated to the ontology 
under consideration. This model is used by our plug-in to store the linguistic information associated 
with each ontology label. In order to show the linguistic subpage, the user has to select an ontology 
element (class or property, for example) in the Ontology Navigator. 

Then (s)he chooses the Linguistic Information page shown in the Entity Properties View. All fields 
and tables that show linguistic information correspond to the LIR model. 

                                                 
5 A resource delta represents changes in the state of a resource tree between two discrete points 
in time. 



Page 44 of 109 NeOn Integrated Project EU-IST-027595 

 

 
Figure 27: Linguistic Information Page 

 
Localizing an Ontology Label 
By right-clicking on an OWL ontology element, the user can access the menu "Translate" added by 
the LabelTranslator plug-in. 

 
Figure 28: Label Translation Context Menu 

Then, a user interface shows the ranked translations generated by LabelTranslator plug-in. The 
system proposes the most relevant translation to be selected, but the user can change this default 
selection. 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 45 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 
Figure 29: Label Translation 

 

Finally in the Linguistic Information page, the plug-in fills in runtime the fields that show linguistic 
information, according to the translations selected by the user. These fields represent the link 
between the conceptual knowledge and the discovered linguistic information. 

 
Updating the Linguistic Information Repository (LIR) 
The Linguistic Information page shows five sections that correspond to the lexical entries 
associated to the selected ontology element (“Person” in our example) and the corresponding 
linguistic information related to each lexical entry: lexicalizations, senses, usage contexts and 
sources. For instance, in this case the concept “Person” has two lexical entries, one in English and 
one in Spanish. The Lexical Entrie’s section represents the master (in a master/detail model) from 
which it is possible to deploy the related information. The information shown in the different lexical 
entry sections depends on the selected lexical entry (“LexicalEntry-1” in our case). 



Page 46 of 109 NeOn Integrated Project EU-IST-027595 

 

 
Figure 30: Updating the Linguistic Information Repository 

Of course, every time that the user chooses a new entry, the interface automatically displays the 
information correlated in the different sections. For example, next figure shows the lexicalizations 
associated with the selected lexical entry shown in the previous figure. 

 
Figure 31: Lexicalizations associated with a lexical entry 

 
Synchronizing Ontology and Linguistic Model 
LabelTranslator provides a model where sets of ontology terms and their associated linguistic 
information (in different languages) are separately stored. In the NeOn Toolkit, an advanced 
change tracking is able to capture changes even when ontological terms have changed their 
position within the ontology model.  



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 47 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

By adopting this feature, our system can accurately identify the minimal set of changes needed to 
adjust the structure of the linguistic model. This task is transparent to the user. Thus, for instance, 
when the user adds an element in the ontology, then, automatically, LabelTranslator performs the 
corresponding action in the linguistic model. 

3.8.3. Integration into the NeOn Toolkit 
In order to compare and contrast the two versions of the LabelTranslator plug-in, we use the three 
layered architecture used in NeOn. In the Figure below, the high level architecture of both versions 
is shown. The left part of the figure shows the components of the first version of LabelTranslator, 
while the representation on the right corresponds to the enhanced architecture of its second 
version. 

• The first layer encapsulates the graphical user interface that enabled user interaction. While 
the first version uses the current NeOn Toolkit for storing the multilingual information 
related to a specific ontology label, the second version of LabelTranslator adds support to 
the new linguistic information model (LIR). Moreover, we have implemented a 
LinguisticView (“LinguisticReposService” in figure), which contains a set of fields for editing 
the linguistic information associated now to each ontology element. 

• In the second layer, i.e. the one that represents the business functionality of the system, the 
second version of the prototype adds a new algorithm used to support semi-automatic 
translations of ontology elements and applying the characteristics of the LIR. 

• Finally, in the third layer, which is used to store the multilingual information, the new 
prototype adds a new repository (LinguisticReposService) to store the linguistic information 
associated to each ontology element, unlike the previous version. Consequently, the 
linguistic information is stored in two places at the same time. 

 

 
Figure 32: Architecture of LabelTranslator 

The following extension points are used within the plug-in:  

• Eclipse extension points:  

o org.eclipse.ui.popupMenus 



Page 48 of 109 NeOn Integrated Project EU-IST-027595 

 

o org.eclipse.ui.startup 

o org.eclipse.ui.importWizards  

• NeOn toolkit extension points: 

o org.neontoolkit.gui.entityProperties  

Additionally, LabelTranslator has dependencies with other plugins: 

• com.ontoprise.ontostudio.datamodel 

• com.ontoprise.ontostudio.owl.gui 

• com.ontoprise.ontostudio.owl.model 

• com.ontoprise.ontstudio.gui 
 

3.8.4. Intended Usage in the Case Studies 
 

LabelTranslator will be used in WP7  

• Motivation of using LabelTranslator  

Within WP7, ontology engineers and ontology editors manage the multilingual aspect of ontologies. 
In particular, engineers specify which elements of the ontology should be multilingual (classes, 
object properties, data properties or the entire ontology). LabelTranslator provides ontology 
engineers and editors a tool to enrich an existing ontology with terms in different languages.  

• Benefits/Advantages of using LabelTranslator  

LabelTranslator supports the translation of ontological labels using relevant information obtained 
from different lexical resources. Depending on the needs of ontology engineers and ontology 
editors, LabelTranslator can be used in two different ways:  

• As a computer-assisted translation (CAT) tool that helps users understand ontology labels 
described in foreign languages.  

• As a tool for automatic multilingual enrichment of the different components of an ontology.  

In both modes of operation, LabelTranslator proposes the most relevant translation to be selected. 
However, the user can change this default selection. This potential user intervention is justified 
because the context may not be enough to translate an ontology label according to the user’s 
interpretation.  

• Data sets  

LabelTranslator works with lexical databases, bilingual dictionaries and terminologies (as linguistic 
resources) to translate an ontology label. Also, the tool uses some views of the NeOn Toolkit as 
repository of the multilingual information.  

 

3.9. LeDA 

3.9.1. Functional Description 

LeDA is a tool for the automatic generation of disjointness axioms based on machine learning 
classification. The classifier, that determines disjointness for any given pair of classes, is trained 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 49 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

based on a gold standard of manually created disjointness axioms. Each axiom of the gold 
standard is represented by a pair of classes associated with a label - disjoint or not disjoint - and a 
vector of feature values. As in our earlier experiments, we used a variety of lexical and logical 
features, which we believe to provide a solid basis for learning disjointness. These features are 
used to build an overall classification model on whose basis the classifier can predict disjointness 
for previously unseen pairs of classes.  

For performance and usability reasons the LeDA plugin works with the following reduced set of 
features. The full feature set as described in D3.8.1 is so far only available in the standalone 
version of LeDA (http://ontoware.org/projects/leda/).  

leda.features.LabelSimilarity_JaroWinkler  
leda.features.LabelSimilarity_Levenshtein  
leda.features.LabelSimilarity_QGrams  
leda.features.Ontology_Subsumption  
leda.features.Ontology_Similarity  
leda.features.Ontology_ObjectProperties  
leda.features.TaxonomicOverlap_Subclasses  
leda.features.TaxonomicOverlap_Instances  

3.9.2. User Documentation 
LeDA View  

 
Figure 33: LeDA User Interface 

 



Page 50 of 109 NeOn Integrated Project EU-IST-027595 

 

This screenshots shows the main view of LeDA. A training or classification process can be 
triggered by means of a context menu, that is accessible by clicking on an OWL ontology in the 
navigator view on the left ("Learn Disjointness"), or by selecting "Run LeDA" from the main "LeDA" 
menu.  

Preferences  

 
Figure 34: LeDA Preferences 

 

The preference page is accessible from the main menu of Eclipse ("Window" -> "Preferences..." -> 
"LeDA Preferences"). It allows for setting a variety of parameters for both training and 
classification:  

• Training or classification  
• Classifier: The Weka (http://www.cs.waikato.ac.nz/~ml/weka/) classifier to be used by 

LeDA.  

• Training  
o Training ARFF: This ARFF file will be generated automatically at the end of the 

training phase. At this point, it will contain all the necessary information for creating 
a classification model.  

o Training file: This is an optional, but recommended parameter. If no training file is 
specified, positive and negative examples will need to be generated from the 
training ontology - a process that is very time-consuming.  

o Training ontology: This has to be an ontology, which contains a complete set of 
manually created disjointness axioms.  

o Background ontology: The background ontology serves as additional background 
knowledge. This parameter is optional and will only be used in case appropriate 
features have been selected for the classification model.  

• Classification  



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 51 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

o Training ARFF: The training ARFF file must have been generated in a preceding 
training phase.  

o Classification ARFF: This file will be generated automatically as soon as the 
classification phase is finished and mainly serves debugging purposes.  

o Background ontology: See training phase.  
o Input ontology: This parameter specifies the ontology, which is to be enriched by 

disjointness axioms.  

More information with regards to this plugin can be found in NeOn D3.8.1.  

3.9.3. Integration into the NeOn Toolkit 

The tightly coupled GUI plugin serves as a graphical frontend for the original version of LeDA. It 
has been implemented as a single view with associated main menu and preference page.  

• relies or depends on the following plugins  
o none  

• Eclipse Extension Points  
o org.eclipse.ui.perspectives  
o org.eclipse.ui.views  
o org.eclipse.ui.actionSets  
o org.eclipse.core.runtime.preferences  
o org.eclipse.ui.preferencePages  

3.9.4. Intended Usage in the Case Studies 
 

The LeDA plugin is to be used in WP7 for ontology learning experiments. 

3.10. Modules Plugin 

3.10.1. Functional Description 
The Modules Plugin provides the functionality to extract modules and the operators to manipulate 
and combine modules. Specifically, this Plugin offers the following functionalities:  

 Modify the Export Interface elements for a module M and the Import Interface elements for 
those modules imported by M.  

 Compute the union between two modules by considering or ignoring namespace  

 Calculate the intersection between two modules by considering or ignoring namespace  

 Compute the difference between two modules by considering or ignoring namespace  

 Provide alignment between two modules  

3.10.2. User Documentation 
In this section, we first introduce the view of Module Composition and then the view of Module 
Interface. 

Module Composition 
1. Open the view of module composition: In the menu of "Windows", please choose Show view / 
Other / Module Composition. 



Page 52 of 109 NeOn Integrated Project EU-IST-027595 

 

2. Manipulate two modules: First of all, choose the two modules in any projects by using the 
corresponding "Refresh" button. Then, one could choose one of the operations (e.g. union, 
intersection or difference) and do a simple configuration to decide whether considering the 
namespace or not when executing the operation. After this, press "Execute Operation" to execute 
the chosen operation and the results will be shown in the text area. The following figure gives an 
example of the operations. 

 
Figure 35: The result of union operator 

 

3. Align two modules: Given two modules, the alignment between two modules is computed 
using FOAM, an ontology alignment tool. See the following figure as an example. 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 53 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 
Figure 36: The alignment between two modules 

  

4. Save results: This corresponds to the "Save Results" part in the view. For the union, 
intersection and difference operators, one can save the resulting module into an existing project. 
To do so, please "Refresh" the project list in "Save Results" part and then click "Export Result". 
The resulting module will be exported to the chosen project. While for alignment operation, the 
found alignment can be saved to a local file by simply clicking the button of "Export Result" and 
then choosing a directory.  

 
 
Module Interface  
1. Open the view of Module Interface: In the menu of "Windows", please choose Show view / 
Entity Properties. Then you can find the view of Module Interface as a tab in the Entity Properties 
page. This view can be seen when an OWL ontology in the Ontology Navigator is chosen. 

2. Modify Export Interface elements: When the view of Module Interface is visible, you can see 
the URI and physical location about the ontology you have chosen in the Ontology Navigator on 
the top of the view. Besides, all the elements including classes and properties are shown 
automatically in the list of All Elements in the Ontology. If this ontology already has defined some 
Export Interface elements, they will be shown as well. Then you can modify the Export Interface 
elements by choosing more elements in the ontology or remove some elements in the Export 
Interface elements. 

3. Modify Import Interface elements: The list of Imported Modules will be initialized when the 
view is first visible. Then you need to manually refresh the list by clicking the Refresh button right 
below the list if the imported modules have been changed in the tab of Imports and Namespaces 



Page 54 of 109 NeOn Integrated Project EU-IST-027595 

 

in the Entity Properties page. Then you could choose one of the imported modules and modify the 
Import Interface elements in this module which is similar to the functionality to modify the Export 
Interface elements above.  

 

Figure 37: Module Specification 
4. Export results: This corresponds to the "Export Results" group in the view. (1) If it is the first 
time to create a module for the ontology, the URI in this part will be editable and an initial value is 
given which can be changed by the user. If the button of Export Results is pressed, a new module 
will be inserted to the ontology project where the ontology is stored with the value in URI area as 
the default namespace of the module. (2) If the module for the ontology has been created already, 
the URI area will not be editable with the value of the module's default namespace. If the Export 
Interface elements or Import Interface elements have been changed, the user could press the 
button of Export Results to save the changes.  

3.10.3. Integration into the NeOn Toolkit 
Modules plugin consists of several views in the NeOn Toolkit. One is developed as a tab of 
"Module Interface" for entity properties. Another one is the view of "Module Composition" which 
can be operated on the ontologies which have been loaded or created in Ontology Navigator in 
NeOn Toolkit.  

• Eclipse extension points  



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 55 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

o org.eclipse.ui  
o org.eclipse.core.runtime  
o org.eclipse.core.resources  

• NeOn Toolkit extension points  

o com.ontoprise.ontostudio.datamodel  
o com.ontoprise.ontostudio.owl.gui  
o com.ontoprise.ontostudio.owl.model  
o datamodel  
o datamodelBase  
o util  

3.10.4. Intended Usage in the Case Studies 
The Modules plugin can be applied in FAO case study to provide a mean for ontology engineers to 
develop ontologies in a modular way, specifying the behaviour and role of the ontology modules 
involved in this development. This has been mentioned as examples in NeOn deliverable 1.1.3. 

3.11. ODEMapster 

3.11.1. Functional Description 
ODEMapster plugin allows users to create graphically mappings (expressed in R2O language), 
execute and query the mappings. This plugin just supports a subset of the R2O language, this 
subset includes the most used R2O primitives. This plugin works with OWL/RDF(S) ontologies and 
with MySQL databases. Currently only one R2O mapping per ontology can be created. 

ODEMapster is the processor in charge of carrying out the exploitation of the mappings defined 
using R2O, performing both massive and query driven data upgrade. 

• Query driven upgrade (on-the-fly query translation) each real object stays in the data 
sources themselves. At the run-time, the mapping converts the ontology-based query into a 
data source-based query to provide a variety of activities for retrieving instances. 

• Massive upgrade batch process that generates all possible Semantic Web individuals from 
the data repository. Each real object in the data sources is migrated into the ontologies as a 
formal instance. 

 

R2O Language 
Mappings are expressed in R2O language and they are stored in the file system, within the NeOn 
Toolkit Workspace. R2O is an extensible and declarative language to describe mappings between 
relational database (DB) schemas and ontologies. For a complete reference of the R2O language 
we refer to the online documentation. 

Queries 
After you have created several R2O mappings you are ready to query the ontology (using the R2O 
mapping) to get the RDF data from the SQL database. To this end, this plugin has a GUI for 
querying the ontology. 



Page 56 of 109 NeOn Integrated Project EU-IST-027595 

 

 
 

3.11.2. User Documentation 
 

How to install it 

• Download the plugin release from 
http://droz.dia.fi.upm.es/plugin/org.neontoolkit.upm.odemapster_1.0.0.jar 

• Copy the plugin JAR into the plugins directory inside the file system location where NeOn 
Toolkit is installed. 

How to use it 

• Switch to R2OMapping perspective 
Choose the R2O Mapping Perspective and click on the ok button (Figure 2). 

 
Figure 38: Open R2O Mapping Perspective 

 

This R2OMapping perspective has the following areas: 

1. View mappings area. In this area the user filters the type of mappings she/he wants to 
visualize. 

2. Attribute operations area. In this area the user selects the type of attribute operations 
she/he wants to work with. These operations have as target an attribute. These operations 
cannot be combined with relation operations. 

3. Relation operations area. In this area the user selects the type of relation operations she/he 
wants to work with. These operations have as target a relation. These operations cannot be 
combined with attribute operations. 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 57 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

4. Information area. In this area the information of the selected operations (attribute or 
relations) is displayed. 

5. Database area. In this area the database schema information is shown. It contains the 
Expand all, Collapse all, and filter buttons. 

6. Ontology area. In this area the ontology schema information is shown. It contains the 
Expand all, Collapse all, and filter buttons. 

7. Mapping area. In this area the mappings are displayed. 

 
Figure 39: R2O Mapping perspective sections 

 
Ontology schema visualization 
In ontology area, the ontology schema information is shown. At the first level all the root classes 
are displayed. In the next level all the subClasses, of a given root class are shown; and in the next 
level for each subClass, the attributes and relations are displayed. At the end, after the all 
subClasses, the properties and relations of the root class are shown. In this particular case, there 
is only one root Location class, which has the following subClasses: Region, Country, and 
Continent. The Location class has the following attributes: area, code and name. These attributes 
are inherited to the Location subClasses (i.e. Region, Country and Continent). 



Page 58 of 109 NeOn Integrated Project EU-IST-027595 

 

 
Figure 40: Ontology visualization 

Create the R2O Mapping 
Right click on the R2O Mapping folder and select New R2O Mapping. 

 
Figure 41: New R2O Mapping item 

The New R2O mapping wizard opens where you have to select a database. Click on the New 
database to create a new one. 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 59 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 
Figure 42: Create a new R2O mapping window 

A dialog opens where you can enter the details of the database. That is the database name, the 
host address, the port, the username and the password. Currently the graphical user interface 
allows users to work with MySQL databases. 

 
Figure 43: Create a database window 

When you have entered all details click on the Ok button. 

The newly created database appears in the list and you can now test if it works correctly. Therefore 
first select the database. Click on test connection to see if everything works fine. If not, you might 
probably have an error in the connection details, select the database and click edit to correct them. 
If it still doesn’t work, your MySQL server might not have been started correctly. If everything was 
ok, click on finish to finalize the mapping creation. 



Page 60 of 109 NeOn Integrated Project EU-IST-027595 

 

The mapping editor will open with you database on the left and the ontology on the right hand side. 
You can now start to create the R2O mappings. 

 
Figure 44: R2O Mapping perspective 

Create a constant mapping 
You can start now to create a constant mapping. Start by searching for a table column in the 
database tree on the left side. Each table column has an icon for its type, PK for primary key, FK 
for foreign key and F for a simple Field. Select a table column by clicking on it. Now start dragging 
the table column to the ontology tree on the right. Then drop it to an attribute of a concept, 
described by an orange icon. The red icons describe relations. As you can see the first mapping is 
established and you see a line from the database column going to the attribute of the concept. 
Save the mapping by clicking on the save icon of the NeOn Toolkit on the upper left. 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 61 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 
Figure 45: Constant mapping 

The R2O Mapping Editor allows you to see the R2O code in which the mappings are described. To 
see it, click on the R2O source tab in the bottom bar and the R2O source code is displayed. Click 
on the Mapping tab to switch back to the Mapping view. 

 
Figure 46: R2O Code 

 

Click on the Mapping tab to switch back to the mapping view. 

 



Page 62 of 109 NeOn Integrated Project EU-IST-027595 

 

 

Create a concat mapping 
In the top of the mapping editor you can see a set of buttons called attribute operations. Click on 
the Concat button. That way you change the mappings from a constant mapping, that is one 
database column to one attribute to a concatenation of two database columns to one attribute. 
Now start by selecting the first column in the database table you want to map. Then, hold down the 
ctrl key and select the second column. The two selected columns are highlighted. Then, release 
the ctrl key. Next, start dragging the two columns to the ontology tree and drop them at an 
attribute. The newly established mapping is shown, with another icon for showing that it is a 
concatenation. On the left side next to the database tree you can see two circles, indicating the 
order of the concatenation. 

 
Figure 47: Concat mapping 

 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 63 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 
Create a getDelimited (subString) mapping 
In the top of the mapping editor you can see a set of buttons called attribute operations. Click on 
the Get delimited button. This mapping extracts 'length' characters of 'string' starting from 'start-
delim' and set the result to one attribute. 

Select the first column (which holds the source 'string') in the database tree, then hold down ctrl 
and select the second (which holds the 'start-delim') and then the third column (which holds the 
'length') in the tree. Now release ctrl and drag the columns to the attribute. The newly established 
mapping is shown, with another icon for showing that it is a getDelimited operation. On the left side 
next to the database tree you can see three circles, indicating the order of the concatenation. 

 
Figure 48: getDelimited mapping 



Page 64 of 109 NeOn Integrated Project EU-IST-027595 

 

 
Show and hide mappings 
The ODEMAPSTER plug-in allows you to show and hide different types of mapping, to get a better 
overview when you have a lot of mappings. In the top menu you can see a set of checkboxes 
under the name View mappings. Click on the checkbox Constant. 

The Constant checkbox now is unchecked. As the result you can see that all constant mappings 
disappear from the view. Check the Constant checkbox again to make it reappear. 

 
Figure 49: Show and hide mappings 

 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 65 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 
Filter items in the database tree 
If you have a large database schema you might want to filter the items to get a better overview of 
the schema. Click on the filter button above the database tree. A popup menu will appear. Click on 
Simple columns. As a result you can see that all simple columns are filtered out and only the 
primary keys and foreign keys are visible. Click on the filter button and deselect the Simple 
columns entry again to make them reappear again. 

 
Figure 50: Filter database items 

 

You also have the possibility to filter the database columns by name. Therefore click in the text box 
above the tree and type some letters. We typed are in the text box, and as the result you can see 
that only columns that begin with the letters are visible and all others are filtered out. Click on the 
button right of the text box to clear it and reset the filter to the normal view. 



Page 66 of 109 NeOn Integrated Project EU-IST-027595 

 

 
Filter items in the ontology tree 
As with the database, you can also filter items out of the ontology tree. Click on the filter button 
above the ontology tree and click in the appearing popup menu on attributes. You can see that all 
attributes disappear from the ontology tree. 

 
Figure 51: Filter ontology items 

 

You also have the possibility to filter the ontology elements by name. Therefore click in the text box 
above the tree and type some letters. We typed cod in the text box, and as the result you can see 
that only ontology elements that begin with the letters cod are visible and all others are filtered out. 
Click on the button right of the text box to clear it and reset the filter to the normal view. 

 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 67 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 
Expand and collapse the ontology tree 
As the ontology can build up a very deep hierarchy, the editor allows you to collapse the tree to get 
a better view of the hierarchy. One can collapse the tree to every level in the hierarchy, making 
every element below that level invisible. Click on a concept in the ontology hierarchy. Now click on 
the collapse all button. The concept will collapse, and all its sub elements will disappear. The same 
happens for all other concepts on the same level. 

 
Figure 52: Expand and collapse the database tree. 



Page 68 of 109 NeOn Integrated Project EU-IST-027595 

 

 
Remove a mapping 
If you do not want a mapping anymore, you can easily remove it. Select the mapping that you want 
to remove in the ontology tree. Then click on the delete mapping button. The mapping is then 
removed. 

 
Figure 53: Remove a mapping 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 69 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 
Query a mapping 
After you have created several mappings you are now ready to query the mapping to get the RDF 
data from the SQL database. First of all you should save your mapping by clicking on the save icon 
in the top left corner of the NeOn Toolkit. In the NeOn ontology navigator click on the plus to 
extend the R2O mappings. Now you can see your mapping. Select it and right click on it to get the 
popup menu. Click on Query R2O Mapping to open the query editor. 

 
Figure 54: Query mapping menu item 

 

The query editor opens and lets you select all the concepts with its attributes and relations, for 
which you have created a mapping. In the concepts tree select one of the concepts. All attributes 
and relations that have a mapping and can be selected appear now on the right side. You can 
manually select the attributes or choose predefined operations like e.g. Instances with attributes. 
This automatically selects all attributes of that concept. Now you are ready to start the processor. 
Click on Execute query to start the RDF creation. The RDF instances are created and you can see 
them on the right side of the query editor. This can usually take some time. You can stop the 
execution at any point by clicking the Stop execution button. 



Page 70 of 109 NeOn Integrated Project EU-IST-027595 

 

 
Figure 55: Query mapping window 

3.11.3. Integration into the NeOn Toolkit 
In this section we present the set of components according to the architecture proposed in WP6. 
The following figure depicts the proposed architecture. 

 
Figure 56: ODEMapster component within NeOn Toolkit. 

3.11.4. Intended Usage in the Case Studies 
 

ODEMapster is being used within WP7 and WP8. 

 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 71 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

• Motivation of using ODEMapster:  

Within WP7, ontology engineers perform the ontology population, annotation or aggregation from 
unstructured information sources activities with various manual or (semi)automatic methods to 
transform unstructured, semi-structured and/or structured data sources into ontology instances. In 
the fisheries domain, this process consists mainly of converting semi-structured data sources 
(fishery fact sheets in XML format) and structured data source (from RTMS relational database) 
into corresponding instances in the conceptualized fisheries ontology. 

• Benefits/Advantages of using ODEMapster:  

As it was mentioned before, ODEMapster is an engine that executes mappings between an 
ontology model and a database by means of a declarative language, R2O. FAO, and ATOS are 
already using this plug-in; and they will use it for ontology population following the two approaches 
mentioned in the WP7 and WP8 deliverables: - Population based on lifting/upgrading/migration. - 
Population based on query driven. 

• Data sets:  

By now, ODEMapster works with MySQL and ORACLE databases, although graphical user 
interface allows users to work with MySQL database. ODEMapster works with OWL/RDF(S) 
ontologies. 

• An usage example aligning to WP7 case study.  

So far, FAO used ODEMapster to automatically populated the following ontologies (see figure): 
Land areas - Fishing areas - Biological entities - Fisheries commodities - Vessel types and size - 
Gear types. 

For each ontology they created an R2O document (that describes the correspondences between 
FIGIS DB and each ontology). Then, they ran the ODEMapster processor to populated the 
ontologies. These populated ontologies are available at http://www.fao.org/aims/aos/fi/ . FIGIS DB 
is stored in a MySQL database and the ontologies are expressed in OWL (Figure 57). 

 
Figure 57: FAO Databases



Page 72 of 109 NeOn Integrated Project EU-IST-027595 

 

 

3.12. OntoModel 

3.12.1. Functional Description 
OntoModel is a UML-based editor that works with OWL ontologies. The usage of the UML 
extension mechanism makes it possible to develop and maintains OWL ontologies with MDA 
technologies. In order to work with large ontologies it is possible to use several diagrams for a 
single ontology. 

Over a module extraction mechanism it is possible to separate a part of an existing ontology into a 
module. 

Provide a description of what the plugin does from a functional perspective. Specify which lifecycle 
activities are supported by the plugin. 

 

3.12.2. User Documentation 
After the installation process with the NeOn Toolkit update mechanism, a new node called 
"diagram" will appear in the Ontology Navigator, as a subnode of the ontology. 

 
Create a new Diagram 
To create a new diagram use the context menu of the "diagram" node in the Ontology Navigator 
and choose "Add View". 

 
Figure 58: Adding a view 

 

This will open the diagram perspective and show a blank diagram. To visualize elements in this 
diagram, drag and drop the element you want to show from the Ontology Navigator into the 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 73 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

diagram. It is also possible to drag and drop a selection of elements. Connections between 
dropped elements and existing ones in this diagram will appear immediately. 

 
Figure 59: Ontology diagram 

 

Over the "Add View" action you can add multiple views of the same ontology. Every time this 
action is invoked it will create a new blank diagram, which can be filled by the already described 
drag and drop mechanism with any element from the ontology. With this mechanism you can 
display and edit the same element in different diagrams. If you change a property of an element, 
this change will be synchronized immediately with other diagrams that show this element and with 
the Ontology Navigator. These diagrams will be saved in the project directory. To open an existing 
diagram, expand the diagram node and choose the diagram you want to show. 

 

Changing a Ontology in the Diagram 
With the tool box on the right it is possible to create the most common constructs for classes, 
individuals and properties. This new elements will also be created in the ontology and shown in the 
Ontology Navigator. 

 

Extract a Module 
OntoModel includes also a module extraction mechanism. You can split elements from an existing 
ontology into a self standing module. This mechanism will help you to keep the correctness of the 
separate elements. 



Page 74 of 109 NeOn Integrated Project EU-IST-027595 

 

To create a new module from an existing ontology, select the classes or individuals and properties 
you want to separate in the Ontology Navigator or in the diagram and choose "`Create New 
Module"' from the context menu. With the selection of some or all Object Properties you can 
configure the connections, which will be followed for one step if one included concept is in the 
domain of one of the selected Object Property. This means, that if an included class or the class of 
an included individual is in the domain of a selected Object Property, the property and the class in 
the range of this property will also be included in the new module. This assures, that each included 
property has a correct domain and range regarding to the included elements in the module. 

 
Figure 60: Module Parameters 

In the displayed dialog you can configure the module extraction. You can choose the target project 
and set the namespace of the new module. Through the checkboxes it is possible to include more 
corresponding elements:  

• Include Individuals:  
This includes all individuals of all included classes  

• Include Super Classes:  
If an included class has a super class, this class will be recursively added to the module  

• Include Super Properties:  
This includes the super properties of Data and Object Properties like the super classes  

• Include Restriction:  
This will include restriction and the classes in a restriction of a included class, if the 
corresponding property is selected  

 
The click on "OK" will start the extraction process. This can take a few seconds.  

 

Add Elements to an existing Module 
If you want to add elements from an ontology to an existing module, select the elements in the 
Ontology Navigator and drag and drop them into a diagram of the target module. This brings on the 
same dialog as described above. Except the target project and the namespace, you have exactly 
the same configuration options with the result, that the extracted elements will be added to the 
target module. 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 75 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

3.12.3. Integration into the NeOn Toolkit 
OntoModel provides a new Eclipse perspective within the NeOn Toolkit.  

In addition, it makes use of the EMF, GEF and GMF Frameworks. 

 

 
Figure 61: OntoModel Architecture 

 

The Figure shows how OntoModel builds on Eclipse and some of its available plug-ins: it builds on 
the Graphical Modeling Framework (GMF6), which in turn builds on the Graphical Editing 
Framework (GEF7) and the Eclipse Modeling Framework (EMF8). 

EMF is a code generation facility for building applications based on a structured model. It helps to 
turn models into efficient, correct, and easily customizable Java code. Out of our Ecore 
metamodel, we created a corresponding set of Java classes using the EMF generator. The 
generated classes can be edited and the code is unaffected by model changes and regeneration. 
Only when the edited code depends on something that changed in the model, that code has to be 
adapted to reflect these changes. 

EMF consists of two fundamental frameworks: the core framework and EMF.Edit. The core 
framework provides basic generation and runtime support to create Java classes for a model, 
whereas EMF.Edit extends and builds on the core framework, adding support for generating a 
basic working model editor as well as adapter classes that enable viewing and editing of a model. 

EMF started out as an implementation of the MOF specification. It can be thought of as a highly 
efficient Java implementation of MOF, and its MOF-like metamodel is called Ecore. 

The EMF adapter listens for model changes. When an object changes its state, GEF becomes 
aware of the change, and performs the appropriate action, such as redrawing a figure due to a 
move request. GEF provides the basic graphical functionality for GMF. 

                                                 
6 http://www.eclipse.org/gmf/ 
7 http://www.eclipse.org/gef/ 
8 http://www.eclipse.org/modeling/emf/ 



Page 76 of 109 NeOn Integrated Project EU-IST-027595 

 

GMF is the layer connecting OntoModel with GEF and EMF. It defines and implements many 
functionalities of GEF to be used directly in an application and complements the standard EMF 
generated editor. 

The Module Extraction component is build separately from the EMF data model. It’s operates with 
the KAON2 API of the NeOn Toolkit.  The synchronisation functionality keeps the EMF and KAON2 
data models in synch.   

 

3.12.4. Intended Usage in the Case Studies 
The OntoModel system has already been applied in the pharmaceutical case study.  

With OntoModel, we addressed the uses case of building, adapting and visualizing the common 
Pharmainnova ontology as well as the partners' ontologies.  

As the typical end user in this scenario is not experienced in modeling ontologies, we provided the 
user with the Pharmainnova ontology. The user can adapt this ontology until it reflects the partner's 
invoice structure, instead of modeling the ontology from scratch themselves.  

Thus, the demanded input from the end users is expected to be considerably lower. When the user 
finished adapting the ontology, he specifies which elements of both ontologies (the Pharmainnova 
ontology and the own ontology) can be mapped to each other, for example using an equivalence 
relation.  

3.13. OWLDoc 

3.13.1. Functional Description 
The OWLDoc plugin adds to the NeOn Toolkit an option to export an OWL-DL ontology as an 
HTML Documentation. This plugin uses the KAON2 datamodel API to extract information from the 
OWL Ontology and creates an output that contains an organized set of HTML files that provide the 
documentation about the ontology and all its resources. 

3.13.2. User Documentation 
To use the OWLDoc plugin, simply select the Export option in the File Menu or after right-clicking 
in the explorer. In the Export menu, select the OWLDoc Export Wizard in the NeOn Toolkit 
category. In the OWLDoc menu, select the project and the ontology you want to export. Select the 
directory where the HTML files of the documentation should be stored, and click Finish.  



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 77 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 

Figure 62: OWLDoc Export 

3.13.3. Integration into the NeOn Toolkit 

The OWLDoc plugin basically creates a new option in the export menu of the NeOn toolkit, to 
export an ontology into an HTML Documentation. The plugin extracts the ontology from the NeOn 
toolkit in an OWL model, with the use of the KAON2 API.  

• Eclipse Extension Points  
o org.eclipse.ui  
o org.eclipse.core.runtime  
o org.eclipse.core.resources  
o org.eclipse.ui.views  

• NeOn Toolkit extension points  
o com.ontoprise.ontostudio.gui  
o com.ontoprise.ontostudio.datamodel  
o org.neointoolkit.gui  
o com.ontoprise.ontostudio.io  
o dependencies  
o util  
o datamodel  
o datamodelBase  

3.13.4. Intended Usage in the Case Studies 
The OWLDoc plugin will be applied in the WP7 FAO case study in the context of OWL ontologies 
documentation. Continuous feedback from use case is obtained in order to improve OWLDoc. 



Page 78 of 109 NeOn Integrated Project EU-IST-027595 

 

3.14. Oyster Registry 

Oyster is a distributed registry that exploits semantic web techniques in order to provide a solution 
for exchanging and re-using ontologies and related entities. As an ontology registry, it provides 
services for storage, cataloguing, discovery, management, and retrieval of ontology (and related 
entities) metadata definitions. To achieve these goals, Oyster implements the proposal for 
metadata standard OMV (http://omv.ontoware.org) as the way to describe ontologies and related 
entities, supporting advanced semantic searches of the registered objects and providing services 
to support the management and evolution of ontologies in distributed environments. Hence, Oyster 
provides services for the propagation of ontology changes to distributed copies of the ontology 
metadata using a synchronization mechanism. For more information we refer the reader to 
http://oyster.ontoware.org. 

Synchronization: Oyster follows a synchronization approach that is a combination of a push and 
pull mechanism. During the synchronization, nodes contact other nodes in the network to 
exchange updated information (pull changes) and optionally they can push their changes to a 
specific node (called the push node) such that if a node goes offline before all other nodes pull the 
new changes, the node changes are not lost. 

3.14.1. Functional Description  
The Oyster Registry feature consists of a number of individual plugins which provide the following 
functionality: 

Configuration/management of the registry 

• Start/Stop the Ontology Registry: This functionality is available from the Registry menu 
and/or from the action associated to the Oyster icon in the main toolbar;  

• Configure the initialization parameters: This functionality is available from the Oyster 
storage preference page. It provides the following configuration options:  

o Super Node IP: This option allows to configure the IP address of a "super" node 
that will be used by the registry to store/retrieve the metadata. Any node in the 
network running Oyster can be configured as the "super" node, however in general 
this is a node running Oyster in server mode. Usually this option is configured when 
the user will be working with a NTK collaboration server;  

o Push Node IP: This option allows configuring the IP address of a specific node in 
the network to which changes will be push propagated every time the 
Synchronization process is invoked. Usually this option is configured when users 
are working collaborative on the development of ontologies in a totally distributed 
environment (i.e. users are working with local copies of the same ontology and there 
is no NTK collaboration server) to ensure that every node in the network interested 
in the same ontology will be able to pull propagate changes from other nodes even 
if the nodes go offline;  

o Read ontologies locally: This option allows to specify that the ontologies 
necessary to start the registry (e.g. OMV and related) are loaded from the local 
filesystem. By default ontologies are loaded from the internet and therefore it takes 
a little bit longer to start the registry. If this option is selected, the user should ensure 
that the required ontologies are available in the O2ServerFiles directory within the 
NTK working directory (i.e. where the NeOn_Toolkit.exe file is located). Users can 
download the pack of ontologies from http://oyster2.ontoware.org/ontologiesPack.  

o Reset Oyster: This option allows the user to reset Oyster i.e. delete the current 
information and settings. To apply this action, the user should ensure that the 
registry is not running.  



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 79 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 

 Registry GUI 

The registry GUI is an interface integrated into the NeOn Toolkit that allows to access Oyster P2P 
network through any available node running Oyster Web Service (aka Oyster server). 

Main Features: 

• Submit new OMV instances to an Oyster server.  
• Update already existing OMV instances at an Oyster server.  
• Remove OMV instances from an Oyster server.  
• Import ontologies which metadata is retrieved from an Oyster server.  
• Look for OMV instances in an Oyster server. 

3.14.2. User Documentation  
How to install it 

• Download the compressed Plugin release from http://ontoware.org/projects/oyster2  
• Extract and copy the JARs files into the plugins directory inside the filesystem location 

where NeOn Toolkit is installed.  
• If the user wants the registry to read locally the ontologies required to start (see above), he 

should ensure that the required ontologies are available in the O2ServerFiles directory 
within the NTK working directory (i.e. where the NeOn_Toolkit.exe file is located). Users 
can download the pack of ontologies from http://oyster2.ontoware.org/ontologiesPack.  

How to use it 
The following figures show the Oyster Registry feature functionalities:  

Configure/Manage the registry 

a) Start the registry:  

The registry can be started from the Registry menu and/or from the action associated to the Oyster 
icon in the main toolbar. 



Page 80 of 109 NeOn Integrated Project EU-IST-027595 

 

 
Figure 63: Starting Oyster 

 

Starting the registry usually takes some time, depending whether the ontologies are read locally or 
from the internet. In any case, the process is associated to a progress bar that can be run in the 
background. 

The user can easily tell if the registry is running by checking the icon or by checking in the registry 
menu: when it is running, the icon is pushed and the registry menu only shows the option to stop 
the registry (and vice versa when it is not running).  

b) Stop the registry  

Similar to the start functionality, the registry can be stopped from the Registry menu and/or from 
the action associated to the Oyster icon in the main toolbar.  



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 81 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 
Figure 64: Stopping Oyster 

 

c) Configure initialization parameters  

The configuration of the startup parameters of the registry can be done from the Oyster storage 
preference page:  



Page 82 of 109 NeOn Integrated Project EU-IST-027595 

 

 
Figure 65: Oyster Preferences 

 

Registry GUI 
 

Server selection  
The NeOn Toolkit Oyster GUI connects to a server to perform almost any operation. These are 
submit metadata, update metadata, delete metadata and query for instances of OMV classes.  

When performing any operation that needs to connect to a server, there will be always the chance 
to select it, or to edit the list of servers. This page presents two examples, and the same 
composites are used for every feature, so it's always the same.  

There will be always a combo holding the list of known servers, like this one:  

 

Figure 66: Server selection combo 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 83 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

To select the server just click on it and a complete list of all known servers will be shown.  

 
Figure 67: Server list shown by the server selection combo 

 
At any time when the server selection combo is displayed, there will be also an edit button, to let 
you change the known servers list. Clicking on it will show the following dialog:  



Page 84 of 109 NeOn Integrated Project EU-IST-027595 

 

 

 

Figure 68: Server list dialog 
 
This dialog lets the user type a new URL in the text box (in the top of the dialog) and add it to the 
list using the add button, and select a server of the list and remove it using the remove button.  

Searching OMV Instances  
The search feature can be used from the Oyster perspective, using the search view. It will make 
use of at least another view (the search results view), so although it's possible to open the search 
view from any perspective it's recommended to use it while in the Oyster perspective, to avoid 
cluttering the NeOn Toolkit interface with too many views.  

 
The search view has to sections:  

• The configuration section. This section allows the user to select the target server that will 
receive the queries, the OMV class which instances you are looking for, and select the 
attributes used to perform the query  

• The parameters section. This section is meant to receive the query parameters. These 
parameters are property values that must be present in the instances returned by the 
query.  



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 85 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 

 

Figure 69: The search view 
The configuration section 

 
Figure 70: The configuration section 

  



Page 86 of 109 NeOn Integrated Project EU-IST-027595 

 

The configuration section  

As it was said earlier, here are the following controls:  

1. Server selection combo (see server selection). 
2. Server selection list edition button. 
3. OMV class selection combo. It allows to select the class of the instances to be looked for. 
4. Attribute selection button. This allows to select which attributes from the OMV class are to 

be used in the query. 
5. Start button. This starts the search with the given query parameters. 

Selecting query parameters 
Once the OMV class is selected, the "select attributes" button will show a list of the attributes of the 
selected class.  

 

Figure 71: Properties selection dialog 
 

The main controls of the attribute selection dialog are:  

• Template selection combo. Lets the user select between a predefined list of templates. 
Selecting a template will check the attributes of the template, and uncheck others.  

• Select all and Deselect all buttons. They mark every property as selected or clear the 
selection, respectively.  

• The attributes section. Lets the user check or uncheck properties individually.  

Once the property selection has been changed by pressing the "Ok" button in the attribute 
selection dialog, the changes will be reflected instantly in the fields section of the search view.  



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 87 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

The fields section 
Within the fields section are located the different input controls to allow the user specify query 
parameters. Depending on the type of parameter there will be a different control, with its own way 
of accepting such parameters.  

The search results view 
When the results are returned they are shown in the Search Results View. If there are no results at 
all, it will only display a message saying that no results were found. On the other hand, if there are 
any results, they will be displayed in a table, where each row is an instance of the class, and each 
column a property.  

 

Figure 72: The search results view 
Once the results are shown, the user may take any of the following actions:  

• See the details of any instance on another view. If the user clicks twice on any result other 
view will show RDF text describing the selected result.  

• In the context menu (brought up by using the right mouse button over any result) the user 
may choose to update it.  

• The user may also select to delete the selected result.  
• When the results are ontologies, the context menu allows the user to import an ontology 

into an existing project.  

The import feature  
The NeOn Toolkit Oyster GUI is able to import ontologies into NeOn Projects. To do so, these 
must be in the lists of results obtained from an Oyster server, and the project must already exist. 
The other requisite is that the ontologies must be accessible by http or ftp protocols. The first step 
is to make a search that will return ontologies. Once the list of ontologies is shown, the user can 
choose to import any one of them. To do so, select a result and use the right button of the mouse 
to bring up the context menu where it will allow you to choose to download an ontology.  

 



Page 88 of 109 NeOn Integrated Project EU-IST-027595 

 

 

Figure 73: The import ontology entry in the context menu 
 
Once you have done so, a new dialog will appear. It will show the selected ontologies that are 
about to be imported, and a list of existing projects. At this point the only choice is to select the 
project where the ontology will get imported into. All ontologies in the dialog will be imported, 
regardless of the selection of them the user makes here (thus the user must be careful selecting 
from the results view).  

 

 
Figure 74: The import ontology dialog 

 
When the user presses the OK button the importation process begins. Bear in mind it may take a 
while, since the ontologies must be got from web and ftp servers, which in turn may be busy or 
even not working anymore.  



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 89 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

The submit metadata feature  
The NeOn Toolkit Oyster plugin comes with the capability of submitting new instances of OMV 
classes to an Oyster server. This feature is always accessible through a button on the toolbar, as 
depicted in the following picture:  

 

Figure 75: Toolbar detail with the submit metadata button on the top right corner 
 
Once the dialog has been brought up, the user has the choice to  

• Select the server to receive the metadata.  
• Select the class of the OMV instance that is going to be submitted.  
• Select the properties that will have a value in the instance.  

 

Figure 76: The submit dialog 
Selecting the OMV Class  



Page 90 of 109 NeOn Integrated Project EU-IST-027595 

 

The first step is to choose the OMV Class to make the instance from. Currently almost all OMV 
Core classes are supported, with the exception of "Location", which is not supported by the Oyster 
server, thus the client does not make use of it.  

Selecting the properties  
OMV classes have required and optional properties, and because of that the user is not forced to 
supply values for every property of the class. When the user pushes the Select attributes button, a 
new dialog will appear, allowing the user to select which properties will get a value. On the top of 
this dialog there is a combo box that will let the user choose between templates, so if the class has 
many properties (such as Ontology) the user may start with a predefined set of properties selected. 
Note that there may be no more than a single template when the class has too few properties.  

Providing values for the properties  
Once the user has selected the properties that will have a value, he must start filling the input 
controls. Depending on the kind of value the property accepts, the control will be different to help 
the user with his task.  

Here is a list of available The update metadata feature  

In addition to submit metadata (OMV class instances) the user may want to update existing 
metadata about a concept. To do so the user must perform a search first, so the NeOn Toolkit 
Oyster GUI will populate the update dialog with the current property values of the instance.  

The first step, assuming the user has at least a result displayed in the search results view, is to 
open the context menu using the mouse right button to click on the result to be updated. In this 
menu, choose the update option. 

 
Figure 77: The update entry in the context menu 

 

The dialog shown to the user is exactly the same as the one from the submit metadata feature, but 
values are already assigned. There are two things the user has to bear in mind regarding this 
dialog:  

The properties with party values are not filled. The user must provide the values if he wants them 
to have any values at all. This is because the server won't specify which kind of party are the 
returned values, and the query for parties are not currently supported, so the NeOn Toolkit 
Interface has no means to know about party types.  

If the user uses the Select attributes button to hide properties, they will lose their values in the 
update process, so they must not be hidden if they are to get a value or preserve it.  



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 91 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 
The controls found in this dialog are the same as in the dialog of the submit feature.  

The delete metadata feature  
In addition to the submit and update metadata features, the NeOn Toolkit Oyster GUI has the 
capability of removing metadata from the Oyster server (in other words, removing instances of 
OMV classes from the registry).  

To remove an OMV instance, the user needs to retrieve the OMV instance to be deleted using the 
search feature. When the results view shows the instance the user must select it and bring up the 
context menu to select the delete entry.  

3.14.3. Architecture Description of integration with NeOn toolkit  
The NeOn basic infrastructure layer consists of a set of core services (e.g. Repository services, 
Registry services, etc). Oyster is an implementation of the registry services. As it is required, it is 
based on the OMV ontology meta model. Further, it provides an API and a Web Service interface 
to query, create, and manipulate ontology metadata information according to the OMV model. The 
web service provides a loosely couple service at the Engineering components layer. Additionally, 
Oyster provides additional services to support engineering components that rely on the registry 
services (e.g. Change Capturing). Finally, Oyster also provides GUI components (i.e. plugins) that 
implement user interfaces to the registry services.  

 
Figure 78: Oyster architecture 

 

The following table shows the dependencies and compatibilities of the current versions of the 
individual plug-ins: 

 

Version Compatible with Necessary plugins 

Oyster-API   2.3.1 ------- --------- 

Oyster-menu 1.8.1 NeOn Toolkit 1.2 
org.neontoolkit.registry.api 
com.ontoprise.ontostudio.gui 

org.junit4 

Oyster-GUI   1.03 NeOn Toolkit 1.2 

org.eclipse.ui 

org.eclipse.core.runtime 

org.eclipse.ui.forms 

org.eclipse.core.resources 



Page 92 of 109 NeOn Integrated Project EU-IST-027595 

 

com.ontoprise.ontostudio.gui 

com.ontoprise.ontostudio.io 

com.ontoprise.ontostudio.datamodel 

datamodel 

datamodelBase 

util 

org.neontoolkit.registry.api 

org.junit4 

3.14.4. Intended use in case study  
This component will be used in WP7 to access the ontology registry.  

Motivation of using Oyster  
One of the goals of the FAO use case partner is that fisheries ontologies produced within WP7 will 
underpin the Fisheries Stock Depletion Assessment System (FSDAS). However, for such a 
dynamic domain like fisheries that is continuously evolving, we will need to provide the appropriate 
support for a successful implementation and service delivery of the FSDAS. In particular, for this 
task we need to support a collaborative editorial workflow that will allow Ontology editors to 
consult, validate and modify ontologies keeping track of all changes in a controlled and coherent 
manner. In this scenario, ontology editors are usually developing/maintaining ontologies 
collaboratively in a distributed environment. Additionally, ontology editors will have to perform 
many different tasks (e.g. create mappings, populate ontologies) that require to select the 
appropriate ontology. The registry is crucial component in the infrastructure to aid in the selection 
of appropriate ontologies and to support the editorial workflow: first, changes have to be monitored 
and captured from the ontology editor. Those changes should be formally represented and stored 
in Oyster which is in charge of the management of the different versions of the ontology. Also, 
using the registry functionalities, those changes will be searched and retrieved by the visualization 
components to show e.g. the differences between versions of the ontology and also to provide 
different views to ontology editors (depending on their role) where they can see the state of those 
changes. Finally, the registry will be in charge of the propagation of those changes to the 
distributed copies of the same ontology. This Plug-in provides access to the required registry 
services.  

Benefits/Advantages of using Oyster  

o Oyster provides a shared access to the registry services.  
o Oyster allows users to customize the behaviour of the registry.  

Data sets  

FSDAS ontologies.  

A usage example aligning to WP7 case study.  
For the management of ontologies provenance and statistics (UC-9) this component will provide 
access to ontologies information including changes, use statistics and ontology statistics.  



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 93 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

3.15. RaDON Plugin 

3.15.1. Functional Description 

The purpose of the RaDON plug-ins is to deal with inconsistency and incoherence occurring in 
networked ontologies. Specifically, RaDON provides two plugins to deal with a single ontology or 
an ontology network. In the plugin of "Repair a Single Ontology", the following specific 
functionalities are provided:  

• Handle incoherence: This functionality corresponds to the button of "Handle Incoherence" 
which can be activated if the ontology is incoherent. That is, there is at least one 
unsatisfiable concept in the ontology. All the minimal unsatisfiability-preserving subsets 
(MUPS) can be computed for each unsatisfiable concept;  

• Handle inconsistency: This corresponds to the button of "Handle Inconsistency" which is 
activated if the ontology is inconsistent. That is, there is no model for the ontology. All the 
minimal inconsistent subsets(MIS) can be calculated;  

• Repair automatically: This corresponds to the button of "Repair Automatically". If the 
button of "Repair Automatically" in this section is pressed, our algorithm will provide some 
axioms to be removed to keep the coherence of the ontology. This is based on the found 
MUPS or MIS. If some MUPS have been found, the minimal incoherence-preserving 
subsets (MIPS) will be computed automatically;  

• Repair manually: This corresponds to the button of "Repair Manually". If this button is 
activated, a new dialog will be shown with the information of MIPS or MIS. The user could 
choose the axioms to be removed by them.  

In the plugin of "Repair and Diagnose Ontology Network", the similar functionalities in the plugin 
above are given. The main difference is that this plugin is to repair and diagnose a mapping 
between two ontologies by assuming the two source ontologies are more reliable than the mapping 
itself.  

3.15.2. User Documentation 
In this section, we will show how to use the plug-ins of "Repair a Single Ontology" and "Repair and 
Diagnose Ontology Network". You can find some data sets for testing from the website of 
http://radon.ontoware.org/downloads/debugDatasets.zip.  

How to use the plug-in of "Repair a Single Ontology"  
1. The user interface for debugging and repairing a single ontology is a view of "Repair a Single 
Ontology".  

2. How to invoke our view? To debug or repair an ontology, please right-click the ontology in the 
Ontology Navigator in NeOn Toolkit and then select the item of "Debug and Repair...". The view of 
"Repair a Single Ontology" will be activated. At the same time, the logical and physical URIs of this 
ontology will be shown. Besides, we also show some information about whether this ontology is 
inconsistent or incoherent and how many axioms and unsatisfiable concepts (see Fig. 1).  



Page 94 of 109 NeOn Integrated Project EU-IST-027595 

 

 

Figure 79: Invoking Diagnosis and Repair 
 

3. To handle incoherence. If the test ontology is incoherent, all the unsatisfiable concepts will be 
listed when "Handle Incoherence" button is pressed. A user can compute all justifications for an 
unsatisfiable concept by pressing "＋" before the concept (see Fig. 2). When the ontology is 
inconsistent, all the minimal inconsistent subsets will be computed if "Handle Inconsistency" is 
pressed.  



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 95 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 

Figure 80: Handling incoherence 
 

4. To repair an ontology automatically. A user can repair the ontology automatically by clicking 
the corresponding button. The proposed axioms to be removed to keep the coherence or 
consistency of the ontology will be shown in a new dialog. In this new dialog, the proposed axioms 
will be removed from the test ontology if the button of "OK" is pressed. Otherwise, no action is 
performed.  



Page 96 of 109 NeOn Integrated Project EU-IST-027595 

 

 

Figure 81: To repair an ontology automatically 
 

5. To repair an ontology manually. If the button of "Repair Manually" is pressed, a new dialog will 
be displayed to the user. In this new dialog, the MIPS or MIS will be shown. The user could choose 
the axioms in the removable part to remove by clicking on the axiom. The selected axioms will be 
shown in the area of "Axioms to be removed". Also, the user could withdraw his/her decision by 
clicking "Unremove" label. After deciding the axioms to remove, the user can confirm his/her 
decision by clicking the button of "Confirm Removing" which will physically remove the selected 
axioms from the test ontology.  



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 97 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 
Figure 82: To repair an ontology manually 

 

How to use the plugin of "Repair and Diagnose Ontology Network"  

1. How to invoke the view. In NTK, Windows --> Show View --> Other... --> RaDON --> Repair and 
Diagnose Ontology Network.  

2. Input. The input for this view includes: two source ontologies and the mapping between them, 
which consist of an ontology network. If the network is incoherent or inconsistent, the 
corresponding buttons to handle incoherence or inconsistency will be ready for use. Currently, we 
support the alignment format like INRIA format (example), Notation3 (example), Karlsruhe format 
(example) and Manheim format (example).  



Page 98 of 109 NeOn Integrated Project EU-IST-027595 

 

 
Figure 83: The input for an ontology network 

 

3. Handle incoherence / inconsistency. Similar to the corresponding functionalities to deal with a 
single ontology.  



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 99 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 
Figure 84: Compute the justifications for an ontology network 

 

4. Repair an ontology network automatically or manually. This is quite similar to the 
corresponding functionalities when repairing a single ontology. The main difference is that the 
axioms in the unremovable part are in the two source ontologies and the axioms in the removable 
part belong to the mapping between the source ontologies. Additionally, the confidence values for 
each correspondence in the mapping will be shown.  



Page 100 of 109 NeOn Integrated Project EU-IST-027595 

 

 
Figure 85: Repair an ontology network manually 

3.15.3. Integration into the NeOn Toolkit 
RaDON plugin is a view in the NeOn Toolkit and can be invoked by right click an ontology in the 
tree-like ontology navigator and choosing "Debug and Repair ... ". This view includes three parts:  

• Ontology information part: This part provides information about ontology URI, size of this 
ontology, whether this ontology is incoherent or inconsistent, etc.  

• Debugging part: Here one can debug the ontology if it is inconsistent or incoherent.  
• Repair part: User could repair the inconsistent or incoherent ontology automatically or 

manually according to the debugging results.  

• Eclipse Extension Points  
o org.eclipse.ui  
o org.eclipse.core.runtime  
o org.eclipse.ui.forms  
o org.eclipse.ui.ide  

• NeOn Toolkit extension points  
o com.ontoprise.ontostudio.gui  
o com.ontoprise.ontostudio.owl.gui  
o com.ontoprise.ontostudio.datamodel  
o datamodelBase  
o datamodel  
o util  



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 101 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

3.15.4. Intended Usage in the Case Studies 
The RaDON plugin has already been applied in the WP7 FAO case study in the context of 
diagnosing and repairing automatically learned/extracted ontologies. Results of these applications 
have been reported in NeOn Deliverable D1.2.2. 

3.16. SPARQL Plugin 

3.16.1. Functional Description 
The SPARQL Plugin allows a user to do conjunctive queries. It receives an OWL ontology and a 
query expressed using SPARQL syntax as inputs and outputs the answers in a table. This 
reasoning task is performed using the inference engine in KAON2. 

3.16.2. User Documentation 
1. Open the view of "SPARQL Query": In the menu of "Windows", please choose Show view / 
Other / SPARQL Query.  

2. How to use it: First of all, choose a project and an ontology in the project. The default 
namespace of this ontology will be shown automatically. Then the user can input a SPARQL query 
in the text area. Take the following as an example:  

 
PREFIX wine: <http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#>  

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 

SELECT ?x  

WHERE { ?x wine:hasFlavor wine:Strong .  ?x wine:locatedIn wine:NewZealandRegion .   

?x wine:hasSugar wine:Dry } 

After pressing "Execute Query", the result of the query will be shown in the table if the syntax of the 
input query is correct. Otherwise, a warning dialog will be shown to the user. Finally, the user could 
save the query results to a local file.  



Page 102 of 109 NeOn Integrated Project EU-IST-027595 

 

 

Figure 86: SPARQL Query View 

3.16.3. Integration into the NeOn Toolkit 
SPARQL query has been integrated with NeOn toolkit as a separate view to do queries about 
those OWL ontologies in the Ontology Navigator.  

• Eclipse Extension Points  
o org.eclipse.ui  
o org.eclipse.core.runtime  
o org.eclipse.ui.forms  
o org.eclipse.ui.ide  

• NeOn Toolkit extension points  
o com.ontoprise.ontostudio.gui  
o com.ontoprise.ontostudio.owl.gui  
o com.ontoprise.ontostudio.datamodel  
o datamodelBase  
o datamodel  
o util  

3.16.4. Intended Usage in the Case Studies 
The SPARQL plugin can be applied in the FAO case study to do queries. 

 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 103 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

3.17. Text2Onto 

3.17.1. Functional Description 
Text2Onto is an ontology learning framework which has been developed to support the acquisition 
of ontologies from textual documents. Like its predecessor, TextToOnto, it provides an extensible 
set of methods for learning atomic classes, class subsumption and instantiation as well as object 
properties and disjointness axioms. 

3.17.2. User Documentation 

Technical reports, papers, presentations and demo videos for the standard version of Text2Onto 
are available from http://www.aifb.uni-karlsruhe.de/WBS/jvo/text2onto/. Detailed information with 
regards to this plugin can be found in NeOn D3.8.1.  

 
Figure 87: Text2Onto User Interface 

The graphical user interface of the plugin is composed of different views for the configuration of the 
ontology learning process and the presentation of the results.  

Workflow view  

The upper left corner contains the workflow view, which is used to set up the ontology learning 
workflow. By right-clicking on the individual ontology learning tasks (e.g. "Concept" for concept 
extraction), the user can select one or more methods for each type of ontology element she wants 
to extract from the corpus.  



Page 104 of 109 NeOn Integrated Project EU-IST-027595 

 

Corpus view  
In the bottom left corner, the user will find a corpus view, which allows her to set up a corpus that is 
a collection of text documents from which the ontology will be generated. The doc view (see hidden 
tab on the right) is used to display previews of selected documents. Text2Onto is able to analyse 
documents in plain text, PDF (Windows only) and HTML format. However, a manual conversion 
into purely textual format is highly recommended for efficiency reasons.  

POM view  
The POM view on the right shows the results of the most recently initiated ontology learning 
process. The view contains several tabs -- one for each type of ontology element that was 
extracted from the corpus -- showing a tabular listing of individual results. By clicking on the 
column headers the user can sort the ontology elements according to their associated labels or 
confidence values.  

Preferences 

 
Figure 88: Text2Onto Preferences 

 

The preference page, which is accessible from the main menu of on the top of the Text2Onto 
perspective ("Window" -> "Preferences..." -> "Text2Onto Preferences") replaces the original 
configuration file of Text2Onto's API. It allows for setting the following parameters:  

• Language: The language of the documents to be analysed. Text2Onto provides full 
support for learning ontologies from English and Spanish corpora as well as partial support 
for ontology extraction from German texts. For details with respect to the Spanish version of 
Text2Onto please refer to SEKT D3.3.3.  

• Normalization: If this parameter is selected Text2Onto will normalize all confidence values 
to an interval of 0.0 to 1.0.  



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 105 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

• Default corpus: The default directory for populating the ontology learning corpus.  

• Spanish tagger directory: The part-of-speech tagger to be used for the analysis of 
Spanish documents. In the current version of Text2Onto this parameter is expected to point 
to the TreeTagger (http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/) installation 
directory.  

• Spanish WordNet directory: In case the language is set to Spanish, this path should refer 
to a licensed version of Spanish WordNet (http://www.lsi.upc.edu/»nlp/web/index.php).  

3.17.3. Integration into the NeOn Toolkit 
 

Eclipse Extension Points  

• org.eclipse.ui.perspectives  
• org.eclipse.ui.views  
• org.eclipse.ui.actionSets  
• org.eclipse.core.runtime.preferences  
• org.eclipse.ui.preferencePages  

3.17.4. Intended Usage in the Case Studies 

3.18. Watson 

The Text2Onto plugin is to be used in WP7 for ontology learning experiments. 

The Watson plugin for knowledge reuse allows the developer of an ontology to query Watson to 
find existing descriptions of selected entities in the edited ontology, and to reuse (i.e. integrate) 
these descriptions into the currently edited ontology. It is an easy and integrated way to reuse 
knowledge that has been published on the (Semantic) Web.  

The Watson plugin is a tool that aims to facilitate large scale knowledge reuse by extending an 
ontology editor with the features of the Watson Semantic Web search engine. With this plugin, it is 
possible to discover, inspect and reuse ontology statements originating from various online 
ontologies directly in the ontology engineering environment. This document quickly describes the 
usage of the Watson plugin to build or extend an ontology within the NeOn toolkit ontology editor. 

The two demo videos available at http://watson.kmi.open.ac.uk/editor_plugins.html provide useful 
additions to this guide. 

3.18.1. User Documentation 
Installing the Watson Plugin: As for most of the NeOn Toolkit plugins, the Watson plugin can be 
installed using the automatic software update feature of the Toolkit (Menu Help, Software Updates, 
Find and Install). You can then "Search for new features to install" using the NeOn toolkit update 
site. The Watson Plugin can be found under the "Knowledge Reuse" category. 

Alternatively, if you encounter problems with the above procedure, you can also install the Watson 
plugin by copying the corresponding jar files (downloadable from 
http://watson.kmi.open.ac.uk/editor_plugins.html) in the Plugin directory of your NeOn Toolkit 
installation. 
Basics: The NeOn toolkit is able to consider ontologies in two different formats, F-Logic and OWL. 
A version of the Watson Plugin exists for both languages, but only the OWL version is maintained. 



Page 106 of 109 NeOn Integrated Project EU-IST-027595 

 

The Watson plugin works in the context of an existing ontology. First, a new OWL project has to be 
created ("New Project"), and a new ontology should be added to the project ("New Ontology" or 
import an existing one). Essentially, the Watson plugin is a feature integrated within the NeOn 
toolkit that can be asked for information about a particular entity (statements) from any other 
ontology of the Semantic Web. It can be triggered through the "right-click" menu of a particular 
entity. 

 

 
Figure 89: Watson Search 

 

For example, in the figure above, a class Researcher has been created. Clicking on the ``Watson 
Search" item of its right-click menu will trigger a search for any statement on the semantic web 
concerning a class named researcher. The result of the search for a particular entity is displayed in 
a separate view. The list of entities that have been found is shown, with for each entity, the 
statements they are associated with.  n the example of the figure, several classes Researcher have 
been found in various semantic web ontologies. Among these classes, one is a subclass of Person, 
has for subclass Computer_Science_Researcher, has for label Researcher, is the domain of the 
property listed_author_in, etc. Each of the statements retrieved thanks to Watson can be imported 
into the ontology using the button next to it. The statement will then be attached to the original 
entity (the one that triggered the search) in the currently built ontology. In our example, clicking on 
the button "Add relation from Researcher" next to the statement "subClassOf Person" will: 1- 
create the class Person in the current ontology if it does not already exist and 2- make Researcher a 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 107 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

subclass of Person. In the same way, importing the statement "listed_author_in domain" will create 
the relation listed_author_in with Researcher as domain. 

3.18.2. Integration into the NeOn Toolkit 
The Watson plugin can be considered as both a GUI component (provides a view) and an 
engineering component (provides ways to create ontologies by reuse) for the NeOn toolkit, and 
which relies on the infrastructure component provided by Watson. It makes use of two main 
extension points from the eclipse GUI components, one for creating the item on the right-click 
menu of entities (org.eclipse.ui.popupMenus) and one for creating the view to display the results 
(org.eclipse.ui.views). It heavily relies on the NeOn Toolkit datamodel component, as well as on 
the Watson client API (see http://watson.kmi.open.ac.uk/-WS_and_API.html). 

3.18.3. Intended Usage in the Case Studies 
The Watson plugin is useful in any scenario where an ontology is being created or extended, and 
where the reuse of other existing ontologies is desirable. 



Page 108 of 109 NeOn Integrated Project EU-IST-027595 

 

 
 

4. Conclusions and Future Work 

In this deliverable we have described the second set of plugins developed for the NeOn Toolkit by 
the partners of the NeOn project. Existing plugins have been updated to be compatible with the 
latest version of the NeOn Toolkit and extended with new functionalities. New plugins have been 
developed to address previously unaddressed ontology lifecycle activities. Further, the new plugins 
have been developed with an improved Quality Assurance process and include user 
documentation integrated into the NeOn Toolkit using the Eclipse help infrastructure.  

Based on observations in the case studies, there is still need for functionalities that are currently 
not yet provided. Therefore, on the one hand we will develop updated and improved versions of the 
existing plugins. On the other hand, a number of new plugins are already planned. These include 
for in particular plugins to support the methodology (such as the gOntt plugin), collaboration, and 
runtime-oriented plugins, e.g. to provide end-user oriented search.  The deliverable describing the 
available plugins will be updated again in the final year of the project. 



D6.10.2 Realization of core engineering components for the  
NeOn Toolkit, v2 Page 109 of 109 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 
 

5. References 

NeOnD531 Mari Carmen Suárez-Figueroa et al: D5.3.1 NeOn Development 
Process and Ontology Life Cycle, NeOn project deliverable, August 
2007. 

NeOnD532 Mari Carmen Suárez-Figueroa et al: D5.3.2 Revision and Extension of 
the NeOn Development Process and Ontology Life Cycle, NeOn 
project deliverable, December 2008. 

NeOnD621 Walter Waterfeld et al:  D6.2.1: Specification of NeOn reference 
architecture & NeOn APIs, NeOn project deliverable, February 2007. 

NeOnD613 Jose Manuel Gómez-Pérez et al.: D6.3.2 Evaluation of NeOn 
Components against Requirements, NeOn project deliverable, January 
2008. 

NeOnD6101 Peter Haase et al:  D6.10.1: D6.10.1 Realization of core engineering 
components for the NeOn toolkit, NeOn project deliverable, February 
2008. 

NeOnD742 Yimin Wang, et al.:  D 7.4.2 Prototype System for Managing the Fishery 
Ontologies Lifecycle, NeOn project deliverable, February 2008. 

NeOnD821 Jose Manuel Gómez-Pérez: D 8.2.1 Software architecture for the NeOn 
pharmaceutical case studies, NeOn project deliverable, February 2007. 

 


