

 NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 — “Semantic-based knowledge and content systems”

D5.5.1 NeOn methodology for the development of
large-scale semantic applications

Deliverable Co-ordinator: Óscar Muñoz-García

Deliverable Co-ordinating Institution: UPM

Other Authors: Raúl García-Castro (UPM), Asunción Gómez-Pérez (UPM),
Margherita Sini (FAO)

This deliverable presents the first version of the NeOn methodology for the development of large-
scale semantic applications. The methodology will help application developers to build semantic
applications from scratch or to include semantic components into traditional information systems.
The deliverable presents a characterization of large-scale semantic application, common use
cases that appear when developing this kind of applications and a set of architectural patterns
that can be used for modeling the architecture of a large-scale semantic application. Details are
given for the Requirements Engineering and Design processes.

Document Identifier: NEON/2009/D5.5.1/v1.0 Date due: January 31, 2009
Class Deliverable: NEON EU-IST-2005-027595 Submission date: February 28, 2009
Project start date March 1, 2006 Version: v1.0
Project duration: 4 years State: Final

Distribution: Public

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 2 of 198 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is part of the NeOn research project funded by the IST Programme of the Commission of the
European Communities by the grant number IST-2005-027595. The following partners are involved in the
project:

Open University (OU) – Coordinator Universität Karlsruhe – TH (UKARL)
Knowledge Media Institute – KMi Institut für Angewandte Informatik und Formale
Berrill Building, Walton Hall Beschreibungsverfahren – AIFB
Milton Keynes, MK7 6AA Englerstrasse 11
United Kingdom D-76128 Karlsruhe, Germany
Contact person: Martin Dzbor, Enrico Motta Contact person: Peter Haase
E-mail address: {m.dzbor, e.motta}@open.ac.uk E-mail address: pha@aifb.uni-karlsruhe.de
Universidad Politécnica de Madrid (UPM) Software AG (SAG)
Campus de Montegancedo Uhlandstrasse 12
28660 Boadilla del Monte 64297 Darmstadt
Spain Germany
Contact person: Asunción Gómez Pérez Contact person: Walter Waterfeld
E-mail address: asun@fi.ump.es E-mail address: walter.waterfeld@softwareag.com
Intelligent Software Components S.A. (ISOCO) Institut ‘Jožef Stefan’ (JSI)
Calle de Pedro de Valdivia 10 Jamova 39
28006 Madrid SL–1000 Ljubljana
Spain Slovenia
Contact person: Jesús Contreras Contact person: Marko Grobelnik
E-mail address: jcontreras@isoco.com E-mail address: marko.grobelnik@ijs.si
Institut National de Recherche en Informatique University of Sheffield (USFD)
et en Automatique (INRIA) Dept. of Computer Science
ZIRST – 665 avenue de l’Europe Regent Court
Montbonnot Saint Martin 211 Portobello street
38334 Saint-Ismier, France S14DP Sheffield, United Kingdom
Contact person: Jérôme Euzenat Contact person: Hamish Cunningham
E-mail address: jerome.euzenat@inrialpes.fr E-mail address: hamish@dcs.shef.ac.uk
Universität Kolenz-Landau (UKO-LD) Consiglio Nazionale delle Ricerche (CNR)
Universitätsstrasse 1 Institute of cognitive sciences and technologies
56070 Koblenz Via S. Marino della Battaglia
Germany 44 – 00185 Roma-Lazio Italy
Contact person: Steffen Staab Contact person: Aldo Gangemi
E-mail address: staab@uni-koblenz.de E-mail address: aldo.gangemi@istc.cnr.it
Ontoprise GmbH. (ONTO) Food and Agriculture Organization
Amalienbadstr. 36 of the United Nations (FAO)
(Raumfabrik 29) Viale delle Terme di Caracalla
76227 Karlsruhe 00100 Rome
Germany Italy
Contact person: Jürgen Angele Contact person: Marta Iglesias
E-mail address: angele@ontoprise.de E-mail address: marta.iglesias@fao.org
Atos Origin S.A. (ATOS) Laboratorios KIN, S.A. (KIN)
Calle de Albarracín, 25 C/Ciudad de Granada, 123
28037 Madrid 08018 Barcelona
Spain Spain
Contact person: Tomás Pariente Lobo Contact person: Antonio López
E-mail address: tomas.parientelobo@atosorigin.com E-mail address: alopez@kin.es

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 3 of 198

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this document, even
if they might not have directly contributed to the writing of this document or its parts:

• Universidad Politécnica de Madrid (UPM)

• Food and Agriculture Organization of the United Nations (FAO)

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 4 of 198 NeOn Integrated Project EU-IST-027595

Change Log

Version Date Amended by Changes
0.00 14-05-2008 Óscar Muñoz-García Document preparation
0.01 21-05-2008 Óscar Muñoz-García Table of Contents (added)
0.02 22-05-2008 Óscar Muñoz-García Table of Contents (modified), WP5 Objec-

tives and Main Tasks (added)
0.03 04-06-2008 Óscar Muñoz-García, Asunción

Gómez-Pérez
Table of Contents (modified), State of the
Art (added)

0.04 10-06-2008 Óscar Muñoz-García, Asunción
Gómez-Pérez

Table of Contents (modified), Executive
Summary (added), Introduction (added),
Deliverable Main Goals and Contributions
(added), Deliverable Structure (added),
Relation with the Rest of WPs within the
NeOn Project (added)

0.05 2-07-2008 Óscar Muñoz-García, Asunción
Gómez-Pérez

Table of Contents (modified), Traditional
Knowledge-Based Systems (added), First
Generation of Semantic Web applications
(added), Next Generation of Semantic
Web applications (added), Classification
of Semantic Web applications (added)

0.06 3-07-2008 Óscar Muñoz-García, Asunción
Gómez-Pérez

Traditional Knowledge-Based Systems
(modified), First Generation of Semantic
Web applications (modified), Next Gener-
ation of Semantic Web applications (mod-
ified), Classification of Semantic Web ap-
plications (modified)

0.07 16-07-2008 Óscar Muñoz-García, Asunción
Gómez-Pérez

Classification of Semantic Web applica-
tions (modified)

0.08 17-07-2008 Óscar Muñoz-García, Asunción
Gómez-Pérez

Classification of Semantic Web applica-
tions (modified)

0.09 18-07-2008 Óscar Muñoz-García, Raúl
García-Castro, Asunción
Gómez-Pérez

The Semantic Web Framework (added)

0.10 21-07-2008 Óscar Muñoz-García Component-based development (added),
State of the Art (modified)

0.11 22-07-2008 Óscar Muñoz-García Component-based development (modi-
fied), Table of contents (modified), Agile
Software Development (added)

0.12 31-07-2008 Óscar Muñoz-García Classification of Semantic Web applica-
tions (modified)

0.13 31-07-2008 Óscar Muñoz-García Classification of Semantic Web applica-
tions (modified)

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 5 of 198

0.14 9-08-2008 Raúl García-Castro Revision
0.15 11-08-2008 Asunción Gómez-Pérez Revision
0.16 12-08-2008 Óscar Muñoz-García Executive Summary (modified)
0.17 13-08-2008 Óscar Muñoz-García Introduction (modified)
0.18 14-08-2008 Óscar Muñoz-García Definitions for Methodology, Method,

Technique, Process, Activity and Task
(added)

0.19 15-08-2008 Óscar Muñoz-García Component-based development (modi-
fied)

0.20 25-08-2008 Óscar Muñoz-García Agile software development (modified)
0.21 26-08-2008 Óscar Muñoz-García Characteristics of Semantic Applications

(modified)
0.22 27-08-2008 Óscar Muñoz-García Executive Summary and Introduction

(modified)
0.23 28-08-2008 Óscar Muñoz-García Agile software development (modified)
0.24 29-08-2008 Óscar Muñoz-García Scenarios for building semantic applica-

tions (added)
0.25 1-09-2008 Raúl García-Castro Revision
0.50 1-10-2008 Óscar Muñoz-García Changes with respect to the previous re-

vision
0.51 2-10-2008 Raúl García-Castro Revision
0.52 1-11-2008 Óscar Muñoz-García Changes with respect to the previous re-

vision
0.53 1-12-2008 Asunción Gómez-Pérez Revision
0.60 19-1-2009 Óscar Muñoz-García Changes with respect to the previous re-

vision
0.61 1-2-2009 Óscar Muñoz-García Sent to QA
0.62 28-2-2009 Óscar Muñoz-García Changes after QA
0.63 1-3-2008 Asunción Gómez-Pérez Revision
0.64 10-3-2009 Óscar Muñoz-García Changes with respect to the previous re-

vision
0.65 11-3-2009 Raúl García-Castro Revision
0.64 20-3-2009 Óscar Muñoz-García Changes with respect to the previous re-

vision
0.65 21-3-2008 Asunción Gómez-Pérez Revision
0.99 9-4-2009 Óscar Muñoz-García Changes with respect to the previous re-

vision
1.0 10-4-2008 Asunción Gómez-Pérez Revision

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 6 of 198 NeOn Integrated Project EU-IST-027595

Executive Summary

Software development methodologies are broadly used in Software Engineering (e.g. the Rational Unified
Process [Kru00]) and Knowledge Engineering. For example, the CommonKADS [SAA+00] approach is a
methodology that helps to design and implement knowledge-based systems. In the past several method-
ologies have been developed to support the creation and management as well as the population of single
ontologies. However, the ontology engineering field lacks a methodology for developing applications that
incorporate and use ontologies in what we call semantic applications.

The next generation of semantic applications will need to deal with significant problems associated with
the scale and heterogeneity of the data they must manipulate as well as with the different location of the
resources, the varying degrees of quality of the information contained in them, the multilinguality aspects,
etc. The next generation of semantic applications will produce and consume its own and external data
and will not be bound to a particular domain, selecting the appropriate knowledge from different sources
according to application-dependent criteria such as the quality of the data and, therefore, the knowledge can
be exploited jointly.

The scientific goal of this deliverable is to define the first version of a methodology for the rapid prototyp-
ing and development of large scale semantic applications that, which help application developers to build
semantic applications from scratch or to include semantic components into traditional information systems.

This methodology is based on the state of the art of rapid software development and component-based
software engineering and its aim is to guide the developer through the application development process.

The principles that guide the construction of such a methodology are the following:

1. The methodology should be general enough so that it can help software developers to build large-scale
semantic applications independently of the development platform used.

2. The methodology should define each process and activity precisely, stating clearly its purpose, its
inputs and outputs, the actors involved, when its execution is more convenient its execution, and the
set of methods and techniques to be used for performing the activity. Furthermore, the methodology
should provide prescriptive guidelines for each process or activity.

3. The methodology should be presented in a manner non-oriented to researchers to facilitate a promptly
assimilation by software developers and ontology practitioners. Examples of how to use the methodol-
ogy in different use cases should be provided.

For building this methodology a characterization of semantic applications has been made taking into account
the existing literature on semantic applications and different use cases. With these characteristics, we have
defined a set of scenarios and provided a set of architectural patterns for each scenario. Such patterns will
be extremely useful for developers when designing the semantic applications.

The architectural patterns have been built using the components identified in the Semantic Web Frame-
work [GGMN08], a joint work of partners in the Knowledge Web Project (FP6-507482). The Semantic Web
Framework is defined as a structure in which Semantic Web applications can be organized and developed
[GGMN08].

Since the Semantic Web Framework components are defined at the conceptual level and are decoupled
of the technology that implements such components, the architectural patterns included in this deliverable

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 7 of 198

are not bound to a particular implementation. So, after using this NeOn methodology, the architecture of
the application will remain independent of concrete component implementations. Architecture realizations in
particular settings are out of the scope of this deliverable.

We describe the methodology with a software engineering approach that will permit software developers and
ontology practitioners to speed up the process; we also include examples of how to use the methodology in
the NeOn use cases.

This deliverable does not treat the building of ontologies since this issue is dealt with in the other WP5
deliverables [SAB+07, SAB+08, SFG+08]. Therefore, the scope of this deliverable is limited to the following
topics:

1. The Requirements Engineering process and, concretely, the Requirements Elicitation and Analysis
activity, in which the requirements of a large-scale semantic application are discovered.

2. The Design process, and concretely, the Component Identification activity, in which the component
architecture of the semantic application is designed.

The second version of this deliverable will include the description of the other of the large-scale semantic
applications development processes: Provisioning and Development, Integration and Testing.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 8 of 198 NeOn Integrated Project EU-IST-027595

Contents

1 Introduction 18
1.1 WP5 Goals . 18

1.2 Deliverable Goal . 19

1.3 Deliverable Structure . 20

2 Related Work in Software Engineering 22
2.1 Definitions for Methodology, Method, Technique, Process, Activity and Task 22

2.2 Component Based Development . 22

2.2.1 Requirements . 24

2.2.2 Specification . 25

2.2.3 Provisioning . 25

2.2.4 Assembly . 25

2.2.5 Testing . 25

2.2.6 Deployment . 26

2.3 Agile Software Development . 26

2.3.1 Extreme Programming . 26

2.3.2 SCRUM . 27

2.3.3 The Crystal Methods . 28

2.3.4 Feature Driven Development . 29

2.3.5 Comparison of Presented Methods . 29

2.4 Requirements Engineering Process . 30

2.4.1 Methods . 30

2.4.2 Techniques . 32

2.5 Design Process . 33

2.5.1 Methods . 33

2.5.2 Techniques . 35

2.6 Conclusions . 37

3 Related Work in the Characterisation and Classification of Semantic Applications 38
3.1 Characteristics of Semantic Applications . 38

3.1.1 Traditional Knowledge-Based Systems Characteristics 39

3.1.2 Semantic Web Applications Characteristics . 39

3.1.3 Comparison of the Characteristics Presented . 40

3.2 Scenarios for building Semantic Applications . 41

3.2.1 Classification of Ontology Applications . 41

3.2.2 Classification of Semantic Web Applications . 44

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 9 of 198

3.3 The Semantic Web Framework . 45

3.3.1 Definition and Classification of Components . 45

3.4 Conclusions . 49

4 Research Methodology 50
4.1 General Framework for Describing the Methodology . 50

4.2 Requirements for the NeOn Methodology for Building Large-Scale Semantic Applications . . . 52

4.2.1 Generic requirements . 52

4.2.2 Specific requirements . 54

5 NeOn Methodology for Building Large Scale Semantic Web Applications 55
5.1 Requirements Engineering . 55

5.1.1 Inputs . 56

5.1.2 Outputs . 58

5.2 Design . 58

5.2.1 Inputs . 58

5.2.2 Output . 59

6 Semantic Application Characteristics 60
6.1 Ontologies Dimension . 60

6.2 Data Dimension . 62

6.3 Reasoning Dimension . 62

6.4 Non-functional Characteristics Dimension . 63

7 Use Cases Catalogue 64
7.1 Query Information Use Case . 64

7.2 Search Resources Use Case . 67

7.3 Browse Resources Use Case . 68

7.4 Extract Information Use Case . 70

7.5 Manage Knowledge Use Case . 71

8 System Models Catalogue 74
8.1 Basic Symbols . 74

8.1.1 Resources . 74

8.1.2 Dynamic Resources . 77

8.1.3 Applications and Systems . 78

8.2 Relationships Between Symbols . 79

8.2.1 Conforms To . 79

8.2.2 Aligned With . 80

8.2.3 Annotate . 81

8.3 Basic Templates . 83

8.3.1 Data Sources with Schema . 83

8.3.2 Annotated Resources . 85

8.4 System Models . 88

8.4.1 Query Information System Models . 89

8.4.2 Search Resources System Model . 91

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 10 of 198 NeOn Integrated Project EU-IST-027595

8.4.3 Browse Resources System Models . 92

8.4.4 Extract Information System Model . 93

8.4.5 Manage Knowledge System Models . 93

8.5 Examples . 95

8.5.1 Example 1 . 95

8.5.2 Example 2 . 95

8.5.3 Example 3 . 95

9 Architectural Patterns 98

9.1 Semantic Web Framework Component Interfaces Description 98

9.1.1 Data and Metadata Management . 99

9.1.2 Querying and Reasoning . 103

9.1.3 Ontology Engineering . 105

9.1.4 Ontology Customization . 109

9.1.5 Ontology Instance Generation . 112

9.2 Components Not Defined in the SWF . 114

9.2.1 Non-ontological Resource Discovery and Ranking . 114

9.3 Components associated to Basic System Models Symbols 115

9.3.1 Components Associated to Resources . 115

9.4 Components associated to Relationships Between Symbols in System Models 119

9.4.1 Conforms To . 119

9.4.2 Aligned With . 119

9.4.3 Annotate . 125

9.5 Components Associated to the Basic Templates . 132

9.5.1 Components Associated to Data Sources with Schema 133

9.5.2 Components Associated to Annotated Resources . 136

9.6 Components Associated to System Models . 136

9.6.1 Query Information . 136

9.6.2 Search Resources . 137

9.6.3 Browse Resources . 139

9.6.4 Extract Information . 140

9.6.5 Edit . 142

9.6.6 Populate . 143

9.6.7 Learn . 145

10 Requirements Engineering Process 147

10.1 Proposed Guidelines for Requirements Elicitation and Analysis 147

10.1.1 Task 1. To Identify the Use Cases . 148

10.1.2 Task 2. To Identify the Semantic Characteristics and Ontological Needs 149

10.1.3 Task 3. To Identify System Models . 149

10.1.4 Task 4. To Document Requirements . 150

10.1.5 Task 5. To Estimate Requirements . 150

10.1.6 Task 6. To Prioritize Requirements . 150

11 Design Process 152

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 11 of 198

11.1 Proposed Guidelines for Component Identification . 152

11.1.1 Task 1. To Identify Dialogs and System Facades . 152

11.1.2 Task 2. To Identify Knowledge Sources . 153

11.1.3 Task 3. To Create the Initial Architecture . 155

12 Fictitious Example 156
12.1 Requirements Elicitation and Analysis Activity . 156

12.1.1 Business Requirements . 156

12.1.2 Task 1. To Identify the Use Cases . 157

12.1.3 Task 2. To Identify Application Characteristics and Ontological Needs 164

12.1.4 Task 3. To Identify System Models . 165

12.2 Component Identification Activity . 166

12.2.1 Task 1. To Identify Dialogs and System Facades . 166

12.2.2 Task 2. To Identify Interfaces to Knowledge Sources 166

12.2.3 Task 3. To Create the Initial Architecture . 167

13 Real Example. FAO case study 169
13.1 Requirements Elicitation and Analysis Activity . 169

13.1.1 Business Requirements . 169

13.1.2 Task 1. To Identify the Use Cases . 170

13.1.3 Task 2. To Identify Application Characteristics and Ontological Needs 176

13.1.4 Task 3. To Identify System Models . 177

13.2 Component Identification Activity . 178

13.2.1 Task 1. To Identify Dialogs and System Facades . 179

13.2.2 Task 2. To Identify Interfaces to Knowledge Sources 180

13.2.3 Task 3. To Create the Initial Architecture . 180

14 Conclusions and Future Work 183

A Questionnaires for Identifying the Characteristics of Semantic Applications 185

Bibliography 195

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 12 of 198 NeOn Integrated Project EU-IST-027595

List of Tables

2.1 Prescriptive Characteristics of Agile Methods [CLC03] . 29

3.1 Properties of different kinds of semantic applications . 41

4.1 Template for Process and Activity Filling Card . 52

7.1 Mapping between the scenarios analysed and the use cases obtained 65

7.2 Template for describing use-cases [Lar05] . 65

7.3 Query Information use case template . 67

7.4 Search Resources use case template . 68

7.5 Browse Resources use case template . 70

7.6 Extract Information use case template . 71

7.7 Manage Knowledge use case template . 73

8.1 Symbol 1. Static Ontology . 75

8.2 Symbol 2. Static Instances . 75

8.3 Symbol 3. Static Non-ontological Resource Schema . 76

8.4 Symbol 4. Static Non-ontological Resource Content . 76

8.5 Symbol 5. Static Unstructured Document . 76

8.6 Symbol 6. Dynamic Ontology . 77

8.7 Symbol 7. Dynamic Instances . 77

8.8 Symbol 8. Dynamic Non-ontological Resource Schema . 77

8.9 Symbol 9. Dynamic Non-ontological Resource Content . 78

8.10 Symbol 10. Dynamic Unstructured Document . 78

8.11 Symbol 11. Application . 78

8.12 Symbol 12. System Limit . 79

8.13 Relationship 1. Instances that Conform To a Given Ontology 80

8.14 Relationship 2. Non-ontological Resource Content that Conforms To a Given Schema 80

8.15 Symbol 13. Non-ontological Resource Content that Conforms To a Given Schema Abbreviation 80

8.16 Relationship 3. Two Aligned Ontologies . 81

8.17 Relationship 4. Non-ontological Schema Aligned With an Ontology 81

8.18 Relationship 5. Unstructured Document Annotated by a set of Instances 82

8.19 Relationship 6. Unstructured Document Annotated by Non-ontological Metadata 82

8.20 Relationship 7. Ontology Annotated by a Set of Instances . 82

8.21 Relationship 8. Ontology Annotated by a Non-ontological Metadata 83

8.22 Basic Template 1. Data Sources with schema: ontological resources 84

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 13 of 198

8.23 Basic Template 2. Data Sources with Schema: Non-ontological Resources 84

8.24 Basic Template 3. Data Sources with Schema: Ontological and Non-ontological resources . . 85

8.25 Basic Template 4. Annotated Documents with Ontological Metadata 86

8.26 Basic Template 5. Annotated Documents with Non-ontological Metadata 87

8.27 Basic Template 6. Annotated Ontologies with Ontological Metadata 87

8.28 Basic Template 7. Annotated Ontologies with Non-ontological Metadata 88

8.29 System Model 1. Query information with a Single Ontology/Schema Approach 89

8.30 System Model 2. Query information with a Multiple Ontology Approach 90

8.31 System Model 3. Query information with a Hybrid Ontology Approach 91

8.32 System Model 4. Search Resources . 92

8.33 System Model 5. Browse Annotated Resources . 92

8.34 System Model 6. Browse Ontological Resources . 92

8.35 System Model 7. Extract Information . 93

8.36 System Model 8. Edit Ontological Data Sources . 93

8.37 System Model 9. Edit Annotations . 94

8.38 System Model 10. Populate . 94

8.39 System Model 11. Learn . 94

9.1 Stereotypes used for describing the SWF dimensions . 99

9.2 Interfaces provided and required of the Information Directory Manager component 100

9.3 Interfaces provided and required of the Ontology Repository component 101

9.4 Interfaces provided and required of the Data Repository component 102

9.5 Interfaces provided and required of the Alignment Repository component 102

9.6 Interfaces provided and required of the Metadata Registry component 103

9.7 Interfaces provided and required of the Query Answering component 104

9.8 Interfaces provided and required of the Semantic Query Processor component 105

9.9 Interfaces provided and required of the Semantic Query Editor component 105

9.10 Provided and required interfaces of the Ontology Editor component 106

9.11 Interfaces provided and required of the Ontology Browser component 106

9.12 Interfaces provided and required of the Ontology Matcher component 108

9.13 Interfaces provided and required of the Ontology Learner component 108

9.14 Interfaces provided and required of the Ontology Evaluator component 109

9.15 Interfaces provided and required of the Ontology Localization and Profiling component 110

9.16 Interfaces provided and required of the Ontology Discovery and Ranking component 111

9.17 Provided and required interfaces of the Ontology Adaptation Operators component 111

9.18 Interfaces provided and required of the Ontology View Customization component 112

9.19 Interfaces provided and required of the Manual Annotation component 113

9.20 Interfaces provided and required of the Automatic Annotation component 113

9.21 Provided and required interfaces of the Ontology Populator component 114

9.22 Interfaces provided and required of the Non-ontological Resource Discovery and Ranking
component . 115

9.23 Ontological Resource Access and Management . 116

9.24 Non-ontological Resource Access and Management . 116

9.25 Dynamic Ontological Resource Access . 117

9.26 Dynamic Ontological Resource Access via Federated Discoverers 118

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 14 of 198 NeOn Integrated Project EU-IST-027595

9.27 Dynamic Non-ontological Resource Access . 118

9.28 Alignment between Ontologies Access and Management . 120

9.29 Alignment between Ontology and Non-ontological Resource Schema Access and Management 121

9.30 Alignment between Dynamic Ontology Access and Management 122

9.31 Alignment between a Dynamic Ontology and a Dynamic Non-ontological Resource Access
and Management . 123

9.32 Alignment between a Dynamic Ontology and a Static Non-ontological resource Access and
Management . 124

9.33 Alignment between a Static Ontology and a Dynamic Non-ontological resource Access and
Management . 125

9.34 Annotations within documents Access and Management . 126

9.35 Annotations outside documents Access and Management . 127

9.36 Annotations of discovered documents Access and Management 128

9.37 Annotations of Documents according to a Discovered Ontology Access and Management . . . 129

9.38 Annotations of Discovered Documents according to a discovered Ontology Access and Man-
agement . 130

9.39 Ontologies Annotated with Ontological Metadata Access and Management 131

9.40 Ontologies Annotated with Non-ontological Resource Content Access and Management 132

9.41 Ontological Data Sources Access and Management . 133

9.42 Non-ontological Data Sources Access and Management . 134

9.43 Ontological and Non-ontological Data Sources Access and Management 135

9.44 Query Information . 137

9.45 Search Resources . 139

9.46 Browse Resources . 140

9.47 Extract Information . 142

9.48 Edit . 143

9.49 Populate . 144

9.50 Learn . 146

10.1 General description of the Requirements Elicitation and Analysis activity 148

10.2 The structure of the requirements document . 151

11.1 Component Identification Filling Card . 153

11.2 Mapping between the tasks described in the state of the art and the tasks proposed by the
NeOn methodology for the Component Identification activity 154

12.1 Obtain Optimum Route use case . 161

12.2 Track Shipment use case . 164

12.3 Symbols associated to the resources used by the example application 165

12.4 Relationships between the resources used in the example application 166

12.5 Patterns associated to the repositories used by the example application 168

13.1 Search Concept use case . 173

13.2 Manage Terms use case . 174

13.3 Corpus Analysis use case . 176

13.4 Characteristics of the FAO case study with respect to the dimension of the ontologies. 176

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 15 of 198

13.5 Characteristics of the FAO case study with respect to the data dimension. 176

13.6 Characteristics of the FAO case study with respect to the reasoning dimension. 177

13.7 Characteristics of the FAO case study with respect to the non-functional dimension. 177

13.8 Symbols associated to the resources used by the AGROVOC Concept Server application . . . 178

13.9 Relationships between the resources used by the example application 178

13.10Patterns associated to the repositories used by the FAO application 180

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 16 of 198 NeOn Integrated Project EU-IST-027595

List of Figures

2.1 Process, Activities and Tasks . 23

2.2 The workflow in the overall component development process [CD01] 24

2.3 Scrum life cycle (from http://controlchaos.com/) 28

2.4 The requirements engineering process [Som07] . 30

2.5 Spiral model of requirements engineering process [Som07] 31

2.6 The requirements elicitation and analysis activity [Som07] . 32

2.7 The Component identification activity [CD01] . 34

2.8 Different types of contracts [CD01] . 35

3.1 Common access to information scenario. Data access via shared ontology variation [JU99] . . 43

3.2 Common access to information scenario. Data access via mapped ontologies variation [JU99] 43

3.3 Components of the Semantic Web Framework . 46

3.4 Dependencies of the components in the Ontology engineering dimension 47

4.1 Inputs considered for obtaining the NeOn Methodology and building Large-scale Semantic
Applications . 51

5.1 Overview of the Requirements Engineering and Design Processes 56

6.1 Characteristics of Large-scale Semantic Applications . 60

8.1 Datasources with schema . 83

8.2 Annotated Resources . 85

8.3 Obtain Information system model election criteria . 91

8.4 Obtain Information use case with an example of the single ontology approach 95

8.5 Obtain Information use case with an example of the multiple ontology approach 96

8.6 Obtain Information use case with an example of the hybrid ontology approach 97

9.1 Semantic Web Framework component representation . 99

10.1 Tasks in the Requirements Elicitation and Analysis activity . 149

11.1 The component identification activity . 154

12.1 Identified use cases of the fictitious case study . 157

12.2 System model identified for the fictitious example . 167

12.3 Example Application Architecture . 168

13.1 Use cases identified in the FAO case study . 171

http://controlchaos.com/

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 17 of 198

13.2 Identified system model for the FAO case study . 179

13.3 FAO Application Architecture (Search Concept) . 181

13.4 FAO Application Architecture (Manage Terms) . 181

13.5 FAO Application Architecture (Corpus Analysis) . 182

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 18 of 198 NeOn Integrated Project EU-IST-027595

Chapter 1

Introduction

Software development methodologies are broadly used in Software Engineering (e.g. the Rational Unified
Process [Kru00]) and Knowledge Engineering (e.g. the CommonKADS [SAA+00] approach).

In the past several methodologies have been developed to support the creation and management as well as
the population of single ontologies.

However, the ontology engineering field lacks of a methodology for developing applications that incorporate
and use ontologies in what we call semantic applications.

This deliverable defines the first version of a methodology for the rapid prototyping and development of large-
scale semantic applications that can help application developers to build semantic applications from scratch
or to include semantic components into traditional information systems.

1.1 WP5 Goals

The aim of the NeOn project is to create a service-oriented, open infrastructure, and associated methodol-
ogy to support the overall development life-cycle of a new generation of large-scale and complex semantic
applications. The NeOn infrastructure and methodology will enable the efficient implementation of semantic
applications in open environments, such as the Semantic Web, in support of the automation of Business to
Business relationships, and also in company intranets. Its aim is to extend the state of the art to ensure that
economically viable solutions will come on the market.

In this context, the main objectives of WP5 are

1. To create the NeOn methodology that supports the collaborative aspects of ontology development
and the reuse and dynamic evolution of networked ontologies in distributed environments, in which
contextual information is introduced by developers (domain experts, ontology practitioners) at different
stages of the ontology development process.

2. To create the NeOn methodology for the development of large-scale semantic applications that sup-
ports the reference architecture and the service oriented infrastructure developed in WP6.

3. To provide qualitative and quantitative experimental evidence of how the ontology and system devel-
opments improve by following the two NeOn methodologies.

These objectives will be achieved by investigating the following tasks:

• Task 5.3. Identification and definition of the development process and life cycle for networks of ontolo-
gies. Results of these researches were included in D5.3.1 [SAB+07] and 5.3.2 [SFG+08].

• Task 5.4. To define the NeOn methodology for building collaboratively ontology networks. The method-
ology will include methods, techniques and tools for carrying out the activities identified and defined

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 19 of 198

in the ontology network development process. Results of these researches were included in D5.4.1
[SAB+08] and will be included in D5.4.2 to be delivered in March, 2009.

• Task 5.5. To define the NeOn methodology for developing large-scale semantic applications from the
initial phases (requirement analysis) of the development process to the stage prior to the implemen-
tation. A set of developer-oriented reference specifications will be defined in this document. These
specifications will serve as skeleton for adapting the selected components and for developing new
complex semantic-based software components and semantic applications.

• Task 5.6. Experimentation with NeOn methodologies. In this task experiments, methods, and metrics
are proposed for evaluating the main outcomes produced in this WP. The goal is to provide qualita-
tive and quantitative evidence that ontologies and systems are built faster and better with the NeOn
methodologies.

1.2 Deliverable Goal

A large-scale semantic application is a semantic application that makes use of semantic technologies and
that manipulates huge quantities of heterogeneous decentralised knowledge and semantic data presenting
different degrees of quality. The application produces and consumes its own and external data and retrieves
knowledge automatically by exploring different sources. This, consequently, creates new problems, such as
the need of selecting appropriate knowledge according to a given criteria, or the quality of the data and its
adequacy to the task at hand [AMS+08].

Since the Semantic Web is a particular domain for semantic applications, it is also a large-scale source of
knowledge that requires to design applications in a different fashion than the classic KBS [AMS+08]. The
next generation of Semantic Web applications will need to deal with significant problems associated with
the scale and heterogeneity of the Semantic Web, with the varying degrees of quality of the information
contained in it [AMS+08] and with problems such provenance and others. These problems do not only
appear in Semantic Web applications but also in knowledge management systems or data interpretation
systems that use Semantics.

The main scientific goal of this deliverable is to produce a methodology for the rapid prototyping and de-
velopment of a new generation of practical, large-scale semantic applications by drawing on contextualised
networked ontologies, heterogeneous data and other knowledge-level resources. This methodology will pro-
vide the necessary framework to organise and manage the development of semantic applications à-la NeOn,
thus ensuring an early uptake of NeOn technologies. The methodology will help application developers to
build semantic applications from scratch, or to include semantic components into traditional information sys-
tems. The methodology will be generalized and evaluated in a case study addressed in WP7.

Since the industry and technology move too fast, requirements change at rates that swamp traditional meth-
ods [HOC00]; on the other hand, customers have become increasingly unable to definitively state their needs
in advance while, at the same time, they expect more from their software [CLC03]. Therefore, the state of the
art of Agile Methods will be taken into account since it enables the rapid development of large-scale semantic
applications covered by the methodology presented in this deliverable.

Recently a popular approach to software development [Obe06] has emerged; it consists in constructing
applications from a collection of reusable components and frameworks. Both elements offer a number of
benefits since they simplify application development and maintenance, allowing systems to be more adaptive
and to respond rapidly to changing requirements [Obe06]. An approach that describes reusable components
for semantic applications is the Semantic Web Framework (SWF) [GGMN08]. The SWF has been developed
within the Knowledge Web Project (FP6-507482); it describes the software used to build Semantic Web
applications as reusable components. Besides using the Semantic Web Framework as a starting point, the
NeOn methodology for building large-scale Semantic applications will take advantage of the methods existing
for building component-based software.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 20 of 198 NeOn Integrated Project EU-IST-027595

The principles that guide the construction of such a methodology are the following:

1. The methodology should be general enough so that it can help software developers to build large-scale
semantic applications independently of the development platform used.

2. The methodology should define each process and activity precisely, stating clearly its purpose, its
inputs and outputs, the actors involved, when its execution is more convenient its execution, and the
set of methods and techniques to be used for performing the activity. Furthermore, the methodology
should provide prescriptive guidelines for each process or activity.

3. The methodology should be presented in a manner non-oriented to researchers to facilitate a promptly
assimilation by software developers and ontology practitioners. Examples of how to use the methodol-
ogy in different use cases should be provided.

For building this methodology a characterization of semantic applications has been made taking into account
the existing literature on semantic applications and different use cases. With these characteristics, we have
defined a set of scenarios and provided a set of architectural patterns for each scenario. Such patterns will
be extremely useful for developers when designing the semantic applications.

The architectural patterns have been built using the components identified in the Semantic Web Frame-
work [GGMN08], a joint work of partners in the Knowledge Web Project (FP6-507482). The Semantic Web
Framework is defined as a structure in which Semantic Web applications can be organized and developed
[GGMN08].

Since the Semantic Web Framework components are defined at the conceptual level and are decoupled
of the technology that implements such components, the architectural patterns included in this deliverable
are not bound to a particular implementation. So, after using this NeOn methodology, the architecture of
the application will remain independent of concrete component implementations. Architecture realizations in
particular settings are out of the scope of this deliverable.

We describe the methodology with a software engineering approach that will permit software developers and
ontology practitioners to speed up the process; we also include examples of how to use the methodology in
the NeOn use cases.

This deliverable does not treat the building of ontologies since this issue is dealt with in the other WP5
deliverables [SAB+07, SAB+08, SFG+08]. Therefore, the scope of this deliverable is limited to the following
topics:

1. The Requirements Engineering process and, concretely, the Requirements Elicitation and Analysis
activity, in which the requirements of a large-scale semantic application are discovered.

2. The Design process, and concretely, the Component Identification activity, in which the component
architecture of the semantic application is designed.

The second version of this deliverable will include the description of the other of the large-scale semantic
applications development processes: Provisioning and Development, Integration and Testing.

1.3 Deliverable Structure

The deliverable is structured as follows:

• Chapter 2 presents some related work in Software Engineering and, concretely, agile methods for rapid
software engineering and component-based software engineering.

• Chapter 3 analyses the state of the art of characterizations and classifications of semantic applications
and different scenarios where semantic applications can be applied. This chapter also summarizes the

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 21 of 198

Semantic Web Framework, a component-based framework that describes the software components
involved in the architecture of semantic applications.

• Chapter 4 presents the research methodology used to build the NeOn methodology for the develop-
ment of large-scale semantic applications.

• Chapter 5 introduces the global vision of the methodology presented in this deliverable summarizing
the processes here treated.

• Chapter 6 identifies a set of characteristics of large-scale semantic applications.

• Chapter 7 introduces a set of use case templates that can be adapted to describe the scenarios to be
solved by the semantic application.

• Chapter 8 presents the catalogue of system model templates used for modeling the structure of a
semantic application in a graphical fashion.

• Chapter 9 deals with a set of architectural patterns that can be applied to model the architecture of a
large-scale semantic application.

• Chapter 10 describes the Requirements Engineering process and proposes a set of guidelines for
carrying out the Requirements Elicitation and Analysis activity.

• Chapter 11 describes the Design process and proposes a set of guidelines for carrying out the Com-
ponent Identification activity.

• Chapter 12 introduces an example showing how to carry out the Requirements Elicitation and Analysis
and Component Identification activities, given a fictitious case study.

• Chapter 13 presents an example showing how the Requirements Elicitation and Analysis and Com-
ponent Identification activities for the AGROVOC Concept Server Workbench 3.0 have been carried
out. The AGROVOC Concept Server Workbench 3.0 is a web-based distributed collaborative tool for
managing multilingual ontologies about agriculture.

• Chapter 14 presents the conclusions to this deliverable and proposes future work.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 22 of 198 NeOn Integrated Project EU-IST-027595

Chapter 2

Related Work in Software Engineering

With respect to Software Engineering, the methodology for the development of large-scale semantic applica-
tions is based on the following pillars: agile methods for rapid software development and component-based
software engineering. This chapter covers the state of the art in both topics.

2.1 Definitions for Methodology, Method, Technique, Process, Activity and
Task

Throughout literature, the terms methodology, method, technique, process, activity, etc. are used indistinc-
tively. To make a clear use of these terms, we have adopted several IEEE 1 definitions in this deliverable,
which are described in detail in [IEE95a, Som07, IEE90, IEE97, IEE95b].

• Methodology. A comprehensive, integrated series of techniques or methods that create a general
system theory of how a class of thought-intensive work ought to be performed [IEE95a].

• Method. Methods are parts of methodologies. A method is a set of “orderly processes or procedures
used in the engineering of a product or in performing a service" [Som07]. Methods are composed of
processes.

• Technique. Techniques are parts of methodologies. Techniques are “the application of accumulated
technical or management skills and methods in the creation of a product or in performing a service"
[IEE90]. Techniques detail methods.

• Process. A set of activities whose goal is the development or the evolution of software [Som07].

• Activity. A defined body of work to be performed, including its required input and output information
[IEE97]. Activities can be divided into zero or more tasks.

• Task. The smallest unit of work subject to management accountability. A task is a well-defined work
assignment for one or more project members. Related tasks are usually grouped to form activities
[IEE95b].

Within this deliverable we use this terminology, which is also shown in Figure 2.1.

2.2 Component Based Development

Reuse-based software engineering is becoming the main development approach for business and commer-
cial systems [Som07]. One of this reuse-based approaches is Component-Based Software Engineering

1http://www.ieee.org

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 23 of 198

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 29 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Thus, the NeOn methodology for building ontology networks is based on a set of 9 scenarios,
which can be combined between them. Eight out of nine were described in D5.3.1 [111]. A new
scenario for building ontology networks by reusing ontology design patterns has been identified
here. Each scenario is also decomposed in different processes or activities, and for each process
or activity detailed methodological guidelines are provided. In this sense, the deliverable is written
with a process or an activity centric approach, and in a more prescriptive way than prescriptive
one.

Processes and activities included in this deliverable cover in a complete way, scenarios 2, 3 and 7,
and in a partial manner scenario 1.

In this deliverable, we include a set of chapters describing methodological guidelines for carrying
out different processes or activities in a subset of the identified scenarios. The activities included
here are: ontology specification, non ontological resource reuse, non ontological resource
reengineering, ontological resource reuse, and ontology design patterns reuse. In the case of non
ontological resource reuse and reengineering, we describe them in a unique chapter because of
non ontological resource reengineering can not occur without the non ontological resource reuse.

It is important to mention here, that based on the terminology included in section 2.1, some
activities included in the NeOn Glossary [111] can be considered as processes composed of
activities. This is the case of non ontological resource reuse, non ontological resource
reengineering, and ontological resource reuse, which are now processes composed of a set of
activities4. Activities can be divided into cero or more tasks. Tasks, which are the smallest unit of
works, are used to decompose activities and provide more detailed information about the activities.
Within this deliverable, we use this terminology, which is also shown in Figure 7.

Figure 7. Process, Activities and Tasks

For describing each process and activity included in the NeOn methodology presented here, we
use the following template:

 Introduction.

4 The next version of the NeOn Glossary of Activities will be called NeOn Glossary of Processes and Activities.

Figure 2.1: Process, Activities and Tasks

(CBSE), which is the process of defining, implementing and integrating or composing loosely coupled inde-
pendent components into systems.

The CBSE approach is based on the existence of a significant number of reusable components. The ap-
plication development process is focused on integrating these components into a application rather than on
developing them from scratch [Som07].

CBSE is used as an attempt to reduce development costs by incorporating code and previously proven
designs in new software products. The basic premise behind this model is that systems should be built with
existing components, as opposed to custom-building new components. The net effect of reusing components
would be shorter development schedules and more reliable software since the developer uses components
that have been previously “shaken down".

This model relies on [Som07]

1. Independent components that are completely specified by their interfaces.

2. Component standards that facilitate the integration of components.

3. Middleware that provides software support for component integration.

4. A development process that is geared to CBSE.

If it is possible to find and use a software component that fulfills the requirements at hand, this will be
in general cheaper and include more functionalities than an in-house component would. Furthermore, its
quality is known and it is immediately available. With this approach the amount of software to be developed
is reduced and so are cost and risks. This reduction usually leads leads to faster delivery of the software.

Component-based frameworks [Joh97] provide the features that facilitate software reuse [Kru92]: abstraction,
to reduce and factor out details; selection, to help developers locate, compare and select reusable software
artifacts; specialization, to allow specializing generic artifacts; and integration, to combine a collection of
artifacts.

Several approaches to developing component-based software have been described throughly in literature
(e.g., see [Som07, SW99, CD01]). The process for developing component-based software described in
[CD01] has been selected because of its simplicity and completeness. This process is shown in Figure 2.2.
In the figure the boxes represent workflows2, and the thin arrows represent the flow of artifacts – deliverables

2According this deliverable terminology, the term workflow correspond to the term process.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 24 of 198 NeOn Integrated Project EU-IST-027595

that carry information between workflows3. Next, each of the workflows and the artifacts produced during
each workflow execution are described.

Requirements

Specification Provisioning

Business
requirements

Existing
assets

Technical
constraints

Business
concept models

Use Case
models

Deployment

Component specs
& architectures

Components

Use case
models

Assembly

Test

Applications

Tested
applications

Figure 2.2: The workflow in the overall component development process [CD01]

The initial artifacts are the input to the method described in this section and, therefore, must be present
before starting it. They are the following:

• Business Requirements. They enumerate the user requirements over what features the system is
expected to provide. Requirements should be described in an understandable manner to those system
users who do not have specific technical knowledge. They should only specify the external behaviour
of the system and avoid, as far as possible, system design characteristics. Business requirements
should be written in a natural language, with simple tables and forms and intuitive diagrams [Som07].

• Existing assets. Business existing and project useful assets such as legacy systems (software pack-
ages, data bases, etc.). Legacy systems are socio-technical computer-based systems that have been
developed in the past, often with older or obsolete technology. Legacy systems are often business-
critical systems, which are maintained because it is too risky to replace them [Som07].

• Technical constraints. Constraints on the system such as data representations used in system inter-
faces or the use of particular programming languages, frameworks, tools, etc.

2.2.1 Requirements

This workflow corresponds to the Requirements Engineering software engineering process. Requirements
Engineering is the process of finding out, analyzing, documenting and checking the requirements of an
application. The requirements are the descriptions of the functionalities provided by the application and
its operational constraints and reflect the needs of customer for a system that helps solve some problem
[Som07].

The requirements workflow provides the Business Concept Model and the Use Case Model artifacts that are
described next.

3Inputs and outputs for each activity.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 25 of 198

• Business Concept Models. The business concept model is a conceptual model4. The main purpose of
this model is to capture concepts and identify the relationships between them.

• Use Case Models. This type of model clarifies the system scope by identifying the actors that interact
within the systems and the concrete interactions.

2.2.2 Specification

This workflow corresponds to the Design software engineering process. Design is the process of describing
the structure of the software to be implemented, the data wich is part of the system, the interfaces between
system components and, sometimes the algorithms used [Som07].

The artifacts produced by the Specification workflow are the Components Specifications and Architectures.
These artifacts consist of a set of components and interfaces specifications, interrelated by a component
architecture. Component specifications are composed of a set of interface specifications and a number of
constraints about how the interfaces must be implemented, that is, the contracts.

2.2.3 Provisioning

This workflow ensures that all the components needed by the application are obtained by

• developing them from scratch,

• acquiring them from a provider,

• reusing, integrating or modifying an existing component or other kind of software.

The Provisioning workflow includes the unitary testing of every component before going to the Assembly
workflow.

The input of this workflow is the Component Specification and Architecture document. The outputs of this
workflow are the implementation of the Components that will conform the application.

2.2.4 Assembly

This workflow correspond to the Integration software engineering process. Integration is the process of
assembling all the components creating an application that satisfies the requirements selected for the current
release.

This workflow takes all the components and puts them together with the existing assets and user interfaces
in order to build an application that satisfies the business requirements. The output coming from the Specifi-
cation workflow is used within the Assembly workflow to guide the right component integration.

The artifacts produced by this workflow are the Applications generated by assembling components, existing
assets and user interfaces.

2.2.5 Testing

Testing here consists in checking that the current release of the application meets its specification and does
what the customer wants. In this process the application is verified. The verification responds to the following
question: Are we building the product correctly? [Boh79].

During this workflow the applications developed are tested. The artifacts produced by this workflow are the
Tested Applications, which are the applications verified.

4The business concept model is not a model of software but a model of the information that exists in the problem domain. In
software engineering the business concept model is often represented by a UML class diagram (http://www.uml.org/).

2006–2009 c© Copyright lies with the respective authors and their institutions.

http://www.uml.org/

Page 26 of 198 NeOn Integrated Project EU-IST-027595

2.2.6 Deployment

During this workflow the application is deployed in the environment where it will be executed.

2.3 Agile Software Development

Since the industry and technology move too fast, requirements change at rates that swamp traditional meth-
ods [HOC00], and customers have become increasingly unable to definitively state their needs in advance
while, at the same time, they expect more from their software [CLC03]. Therefore the state of the art of
Agile Methods is taken into account for enabling the rapid development of large-scale semantic applications
covered by the methodology presented in this deliverable.

In the implementation of traditional software engineering methods, work begins with the elicitation and doc-
umentation of a complete set of requirements, followed by architectural and high-level design, development
and inspection [CLC03]. Agile Methods are a reaction against traditional methods of developing software
and an acknowledgement the need to have an alternative to documentation driven, heavyweight software
development processes [BBB+01].

Beginning in the mid-1990s, some practitioners have found that following exhaustively traditional methods
is frustrating and, perhaps, impossible [Hig02]. As a result, several consultants have independently devel-
oped methods and practices to respond to the inevitable changes they expected [CLC03]. The goal of Agile
Methods is to allow an organization to be agile when producing software, that is, to be able to deliver quickly,
change quickly and change often [HOC00]. These Agile Methods are actually a collection of different tech-
niques (or practices) that share the same values and basic principles gathered in a manifesto that reads as
follows [BBB+01]:

“We are uncovering better ways of developing software by doing it and helping others do it.
Through this work we have come to value

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more."

While Agile techniques vary in practices and emphasis, they share common characteristics, including
[CLC03]:

• Iterative development and focused interaction. This allows the development team to adapt themselves
quickly to the changing requirements.

• Working in close location and focusing on communication. It allows teams to make decisions and act
on them immediately, rather that wait correspondence.

• Reduction of resource-intensive intermediate artifacts when they not add value to the final deliverable.
It allows to devote more resources to the development of the product itself so it can be completed
sooner.

Next, a selection of several Agile Methods, taken from [CLC03], is presented.

2.3.1 Extreme Programming

Extreme Programming (XP) [Bec99b] is an agile method that consists of the following 12 rules:

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 27 of 198

• The planning game. At the start of each iteration, customers, managers, and developers meet to
flesh out, estimate, and prioritize requirements for the next release. The requirements are called user
stories and are captured on story cards in a language understandable to all parties.

• Small Releases. An initial version of the system is put into production after the first few iterations.
Subsequently, working versions are put into production anywhere at intervals of few days or few weeks.

• Metaphor. Customers, managers, and developers construct a metaphor, or a set of metaphors after
which to model the system.

• Simple design. Developers are urged to keep design as simple as possible and to say everything
once and only once [Bec99a].

• Tests. Developers work test-first; that is, they write acceptance tests for their code before they write
the code itself. Customers write functional tests for each iteration, and at the end of each iteration all
tests should run.

• Refactoring. As developers work, the design should evolve to keep it as simple as possible.

• Pair programming. Two developers sitting at the same machine write all code.

• Continuous integration. Developers integrate new code into the system as often as possible. All
functional tests must still pass after the integration or after the new code is discarded.

• Collective ownership. The code is owned by all developers, who may make changes anywhere in the
code at anytime they feel necessary.

• On-site customer. A customer works with the development team at all times to answer questions,
perform acceptance tests, and ensure that the development is progressing as expected.

• 40-hour weeks. Requirements should be selected for each iteration so that developers do not need
to put in overtime.

• Open workspace. Developers work in a common workspace set up with individual workstations on
the periphery and common development machines in the center.

Practitioners tend to agree that the strength of XP does not result from each of the 12 practices alone, but
from the emergent properties resulting from their combination. There are five key principles of XP all of which
enhanced by its practices: communication, simplicity, feedback, courage, and quality work [Hig02].

2.3.2 SCRUM

Scrum [Sch01], along with XP, is one of the most widely used Agile Methods [CLC03]. Scrum is a process
that accepts that the development process is unpredictable, formalizing the do what it takes mentality. This
method and has achieved great success with numerous independent software vendors [CLC03]. Figure 2.3
depicts the Scrum life cycle. Scrum projects are split into iterations (sprints) consisting of the following:

• Pre-sprint planning. All work to be done on the system is kept in what is called the release backlog.
During the pre-sprint planning, functionality and features are selected from the release backlog and
placed into the sprint backlog, or a prioritized collection of tasks to be completed during the next sprint.
Since the tasks in the backlog are generally at a higher level of abstraction, pre-sprint planning also
identifies a Sprint Goal that reminds developers why the tasks are being performed and at which level
of detail are to be implemented [Hig02].

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 28 of 198 NeOn Integrated Project EU-IST-027595

Figure 2.3: Scrum life cycle (from http://controlchaos.com/)

• Sprint. Upon completion of the pre-sprint planning, teams are handed their sprint backlog and told
to sprint to achieve their objectives [Sch01]. At this point, tasks in the sprint backlog are frozen and
remain unchangeable for the duration of the sprint. Team members choose the tasks they want to
work on and begin development. Short daily meetings are critical to the success of Scrum. Scrum
meetings should be held every morning to enhance communication and inform customers, developers,
and managers on the status of the project, identify any problems encountered, and keep the entire
team focused on a common goal.

• Post-sprint meeting. After every sprint, a post-sprint meeting should be held to analyze project
progress and demonstrate the current system.

The key principles of Scrum are [Sch01]

• Small working teams that maximise communication, minimise overhead, and maximise sharing of tacit,
informal knowledge.

• Adaptability to technical or marketplace (user/customer) changes to ensure the best possible product
is produced.

• Frequent builds, or construction of executables, that can be inspected, adjusted, tested, documented,
and built on.

• Partitioning of work and team assignments into clean, low coupling partitions or packets.

• Constant testing and documentation of a product as it is built.

• Ability to declare a product done whenever required (because the competition just shipped, because
the company needs the cash, or because the user/customer needs the functions).

2.3.3 The Crystal Methods

The Crystal Methods [Coc00] were modelled to address the need of solving one of the major obstacles facing
product development: poor communication. Since written documentation can be replaced with face-to-face
interactions, the reliance on written work products can also be reduced and thus the likelihood of delivering

http://controlchaos.com/

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 29 of 198

the system increases. The more frequently you can deliver running, tested slices of the system, the more
you can reduce the reliance on written promissory notes and improve the likelihood of delivering the system
[HOC00]. The Crystal methods focus on people, interaction, community, skills, talents, and communication
as first order effects on performance. Process remains important, but in a secondary place [Hig02].

The Crystal Methods are a set of versions of the same process, arranged around an identical core [Hig02].
As such, the different methods are assigned colours arranged in ascending opacity. The most Agile version
is Crystal Clear, followed by Crystal Yellow, Crystal Orange, Crystal Red, etc. The version of Crystal you
use depends on the number of people involved, which translates into a different degree of emphasis on
communication. As you add people to the project, you move to more opaque versions of Crystal. As the
project criticality increases, the methods harden. The methods can also be altered to fit other priorities, such
as productivity or legal liability.

All Crystal Methods begin with a core set of roles, work products, techniques, and notations, and this initial
set is expanded as the team grows or the method hardens. As a necessary effect, more restraints leads to a
less agile method.

2.3.4 Feature Driven Development

Feature Driven Development (FDD) [PF02] is a simple, well-defined process based on short, iterative feature-
driven life cycle with the following stages:

• Stage 1. Develop an overall model. The FDD process begins with the development of a model.
Team members and experts work together to create a walkthrough version of the system.

• Stage 2. Build a features list. Next, the team identifies a collection of features representing the
system. Features are small items useful in the eyes of the client. They are similar to XP story cards
written in a language understandable to all parties. Features should take up to 10 days to develop
[Hig02]. Those features requiring more than 10 days are broken down into sub features.

• Stage 3. Plan by feature. The collected feature list is then prioritized into subsections called de-
sign packages. The design packages are assigned to a chief programmer, who in turn assigns class
ownership and responsibility to the other developers.

• Stage 4. Design by feature and build by feature. After design packages are assigned, the iterative
portion of the process begins. The chief programmer chooses a subset of features that will take 1 to 2
weeks to implement. These features are then planned in more detail, built, tested, and integrated.

2.3.5 Comparison of Presented Methods

Table 2.1 presents a set of prescriptive characteristics of Agile Methods that state under which conditions
the different models works and do not work. These characteristics are team size, iteration length, support for
distributed teams and system criticality. More details can be found in [CLC03].

XP Scrum Crystal FDD
Team Size 2-10 1-7 Variable Variable
Iteration Length 2 weeks 4 weeks < 4 months < 2 weeks
Distributed Support No Adaptable Yes Adaptable
System Criticality Adaptable Adaptable All types Adaptable

Table 2.1: Prescriptive Characteristics of Agile Methods [CLC03]

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 30 of 198 NeOn Integrated Project EU-IST-027595

2.4 Requirements Engineering Process

In this section we present a brief introduction to the existing methods and techniques for carrying out the
Requirements Engineering process.

2.4.1 Methods

Sommerville [Som07] describes the following activities for obtaining the so-called requirements document
and shown in Figure 2.4:

1. Feasibility study. The results of the feasibility study should be a report that recommends whether or
not it is worth carrying on with the requirements engineering and system development processes.

2. Requirements elicitation and analysis. The goal of the requirements elicitation and analysis activity
is to state what the system developers should implement and when it should be done. This is reflected
in the software requirements document and in the release planing respectively. Agile development
methods argue that requirements change so rapidly that a requirements document is out of date as
soon as it is written, so the effort spent in writing a very formal and sound requirements document
is largely wasted [Som07]. In this activity, software engineers work with customers and system end-
users to find out about the application domain, what features the system should provide, the required
performance of the system, and so on. This activity generates the System models. These models are
graphical representations that describe business processes, the problem to be solved and the system
that is to be developed. System models are an important bridge between the requirements engineering
and the design processes [Som07].

3. Requirements specification. In this activity the User and system requirements are specified.

4. Requirements validation. This activity is concerned with showing that the requirements actually
define the system that the customer wants. In this activity the final Requirements document is output.

Feasibility Study

Feasibility report

Requirements elicitation and anlaysis

System models

Requirements specification

Requirements validation

User and system requirements

Requirements document

Requirements specification

Requirements elicitation

Requirements validation

Bussiness requirements
specification

User requirements
specification

System requirements
specification and modeling

Feasibility
study

Prototyping

Reviews

User
requirements

elicitation

System
requirements

elicitation

System requirements
document

Figure 2.4: The requirements engineering process [Som07]

An alternative perspective on the requirements engineering process is presented in Figure 2.5. This presents
the process as a three-stage activity where the activities are organised as an iterative process around a spiral.
The spiral process accommodates approaches to development in wich the requirements are developed to
different levels of detail. The number of iterations around the spiral can vary, so the spiral can be exited after
some or all of the user requirements have been elicited [Som07]. Agile methods, as an approach to iterative
development, follow this alternative perspective of the requirements engineering process.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 31 of 198

Feasibility Study

Feasibility report

Requirements elicitation and anlaysis

System models

Requirements specification

Requirements validation

User and system requirements

Requirements document

Requirements specification

Requirements elicitation

Requirements validation

Bussiness requirements
specification

User requirements
specification

System requirements
specification and modeling

Feasibility
study

Prototyping

Reviews

User
requirements

elicitation

System
requirements

elicitation

System requirements
document

Figure 2.5: Spiral model of requirements engineering process [Som07]

Requirements Elicitation and Analysis

A very general workflow of the Requirements elicitation and analysis activity is shown in Figure 2.6. The
tasks of this activity are organised within a spiral so that the tasks are interleaved as the process proceeds
from the inner to the outer rings of the spiral [Som07].

The tasks within the requirements elicitation and analysis activity are [Som07]

1. Requirements discovery. This is the process of interacting with stakeholders in the system to collect
their requirements.

2. Requirements classification and organisation. This activity takes the unstructured collection of require-
ments, groups related requirements and organises them into coherent clusters.

3. Requirements prioritisation and negotiation. This activity is concerned with prioritizing requirements,
and finding and resolving requirements conflicts through negotiation.

4. Requirements documentation. The requirements are documented and input into the next round of the
spiral. Formal or informal requirements documents may be produced.

Agile Methods implement the requirements elicitation and analysis activity in the following ways:

• In Extreme Programming [Bec99b] all requirements are expressed as scenarios (called user stories),
which are implemented directly as a series of tasks in small releases. Thus during the requirements
engineering process, the requirements are specified as user stories that are selected for the next
release and broken down to tasks. Once the tasks are identified, the development team estimates the
effort and resources required for implementing each task, and then the customer prioritizes the stories
for implementation, choosing those stories that can be used immediately to deliver useful business
support. Finally, when the current release is finished, the workflow starts again.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 32 of 198 NeOn Integrated Project EU-IST-027595

Requirements
classification and

organisation

Requirements
prioritization and

negotiation

Requirements
documentation

Requirements
discovery

Figure 2.6: The requirements elicitation and analysis activity [Som07]

• According to Scrum [Sch01], all the application requirements are kept in the release backlog. During
the pre-sprint planning, requirements are selected from the release backlog and placed into the sprint
backlog in order to be completed during the next sprint. Upon completion of the pre-sprint planning,
teams are handed their sprint backlog and they implement the selected requirements. Upon completion
of the implementation (after the post-sprint meeting), the workflow starts again.

• According to Feature Driven Development [PF02] the team identifies requirements as a collection of
features useful in the eyes of the client representing the system. These requirements are similar to XP
story cards. The collected feature list is then prioritized into design packages and finally the iterative
portion of the process begins assigning, implementing, testing and integrating such features.

2.4.2 Techniques

There are different techniques that can be applied for discovering requirements. Examples of these tech-
niques are viewpoints, interviewing, scenarios and use cases.

• Viewpoints [FKN+92] can be used as a way of classifying stakeholders and other sources of require-
ments. The three generic types of viewpoint are interactor, indirect and domain viewpoints. Interactor
viewpoints provide detailed system requirements covering the system features and interfaces. Indirect
viewpoints are more likely to provide higher-level organisational requirements and constraints. Domain
viewpoints normally provide domain constraints that apply to the system. A key strength of viewpoint-
oriented analysis is that it recognises multiple perspectives and provides a framework for discovering
conflicts in the requirements proposed by different stakeholders [Som07].

• Formal or informal interviews with system stakeholders are part of most requirements engineering pro-
cess methods. Requirements are derived from the answer to the questions formulated in the interview.
Interviews may be of two types: closed interviews where the stakeholder answers a predefined set of
questions and open interviews where there is no predefined agenda [Som07].

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 33 of 198

• Scenarios are descriptions of example interaction sessions. Each scenario covers one or more pos-
sible interactions. Several forms of scenarios have been developed, each of wich provides different
types of information at different levels of detail about the system. Using scenarios to describe require-
ments is an integral part of agile methods, such as extreme programming. Scenario-based elicitation
can be carried out informally, where the requirements engineer works with stakeholders to identify sce-
narios and to capture details of these scenarios. Scenarios may be written as text, supplemented by
diagrams, screen shots and so on [Som07].

• Use-cases [Jac92] are a scenario-based technique for requirements elicitation. They have become a
fundamental feature of the UML notation for describing object-oriented scenarios. Use-cases identify
the individual interactions between the system and the actors that interact with it. The set of use-cases
represents all of the possible interactions to be represented in the application requirements. However,
because they focus on interactions, they are not as effective for eliciting constraints or high level and
non-functional requirements from indirect viewpoints or for discovering domain requirements [Som07].

2.5 Design Process

In this section we present a brief introduction to the existing methods and techniques for carrying out the
Design process.

2.5.1 Methods

The design process may involve developing several models of the system at different levels of abstraction.
As a design is decomposed, errors and omissions in early stages are discovered. These feed back to allow
earlier design models to be improved [Som07].

The specific design activities are [Som07]:

1. Architectural Design. The sub-systems making up the system and their relationships are identified
and documented.

2. Abstract specification. For each sub-system, an abstract specification of its services and the con-
straints under which it must operate is produced.

3. Interface design. For each sub-system, its interface with other sub-systems is designed and doc-
umented. This interface specification must be unambiguous as it allows the sub-system to be used
without knowledge of the sub-system operation.

4. Component design. Services are allocated to components and the interfaces of these components
are designed.

5. Data structure design. The data structures used in the system implementation are designed in detail
and specified.

6. Algorithm design. The algorithms used to provide services are designed in detail and specified.

This is a general model of the design process and real, practical processes may adapt it in different ways
[Som07]. In [CD01] there is a description of a component-based Design process through the description of
the following activities:

1. Component Identification. This is the first activity of the Design process. It makes use of the artifacts
produced by the Requirements process. The goal of this activity is to create an initial component
and architecture specification by elaborating a draft that will be refined during the next specification
activities.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 34 of 198 NeOn Integrated Project EU-IST-027595

The emphasis at this activity is on discovery what information needs to be managed, what interfaces
are needed to manage it, what components are needed to provide that functionality, and how they will fit
together. During this activity several decisions are taken, as for example, the system structuration into
different layers (e.g., system services layer and business services layer) and the identified interfaces
within each layer. Also, during this activity we must take into account the existing assets to be integrated
into the system through an interface or by means of adapting them.

The tasks proposed in [CD01] for carrying out the activity (shown in Figure 2.7) are the following
[CD01]:

Figure 2.7: The Component identification activity [CD01]

Task 1. Develop Business Type Model. The business types describe the data structure that the ap-
plication needs to manage.

Task 2. Identify Business Interfaces. The business interfaces are abstractions of the information
that must be managed by the system.

Task 3. Identify System Interfaces and Operations. In this task two components are defined for
each identified use case: one Dialog component and one System Facade. The Dialog com-
ponent will be in charge of managing the dialog with the application user and the System Facade
will be in charge of providing operations for every step within a use case.

Task 4. Create Initial Component Specifications and Architecture. Within this task the architec-
ture of the application is drawn by taking into account the components defined in the previous
tasks as well as architectural patterns.

2. Component Interaction. Within this activity it is decided how will the components work together to
provide the desired functionality. This is done by defining the interactions that will take place between
the system components as well as identifying how will be used the component interfaces by other
components.

During this activity several decisions such patterns adaptation and operations identification are taken,
and the dependencies between the component interfaces are fully understood. Thus, at this activity
the defined interfaces identified in the previous activity (Component Identification) are refined because
new interfaces and operations are discovered.

3. Component Specification. This is the final activity of the Design process. During this activity con-
tracts are specified. A contract is a formal agreement between two or more parties. It describes (or

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 35 of 198

specifies) the detail of the agreement in an unambiguous form. This involves stating the responsibili-
ties or obligations of each party (what each component will provide the other components). It does not
state how the components will do it, it simply states that they will. We distinguish two different types of
contracts (see Figure 2.8):

CHAPTER 1 COMPONENT SYSTEMS18

interactions but it does not specify how they happen. Other parts of the
component specification do this.

The primary reason for keeping these things separate is to facilitate
change: A change to the realization constraints does not constitute a
change to the usage contract, and hence does not affect clients. This is
important because it gives us the ability to change specifications that affect
realization without having to revalidate all client usage.

1.5.1 Usage Contracts
A Usage Contract (see Figure 1.11) describes the relationship between a
component object’s interface and a client, and is specified in the form of an
interface. The client is left unspecified because we can’t predict who will
use an interface in the future. The specification of an interface includes the
following:

• Operations—a list of operations that the interface provides, includ-
ing their signatures and definitions

Component
Spec

Interface
Client

Component
Implementation

realization

usage

Interface

Figure 1.10 Different types of contracts

Interface
Component

Spec usage
Client

Figure 1.11 Usage contract

4504_CH01 Page 18 Friday, September 15, 2000 2:22 PM

Figure 2.8: Different types of contracts [CD01]

• Usage Contract. A Usage Contract describes the relationship between a component interface
and a client, and is specified in the form of an interface.

• Realisation Contract. The contract between a component specification and its implementa-
tion(s), and must be adhered to by the person who is creating the implementation.

2.5.2 Techniques

There are different techniques that can be applied for designing an application. Different structures that can
be used when designing an application are explained next [Som07].

Architectural design

A system architecture model is a compact, manageable description of how a system is organised and how
the components interoperate. It identifies the sub-systems that provide some related set of services and com-
pose the whole system. Three advantages of explicitly designing and documenting a software architectures
are [BCKB03]

• Stakeholder communication. The architecture is a high-level presentation of the system that may be
used as a focus for discussion by a range of different stake-holders.

• System analysis. Making the system architecture explicit at an early stage in the system development
requires some analysis.

• Large-scale reuse. The system architecture is often the same for systems with similar requirements
and so it can support large-scale software reuse.

Distributed systems architectures

A distributed system is a system where the information processing is distributed over several computers
rather than confined to a single machine. Obviously, the engineering of distributed systems has a great deal
in common with the engineering of any other software, but there are specific issues that have to be taken into
account when designing this type of systems, such as complexity, security, manageability and unpredictability
[Som07].

The architecture of distributed systems is characterized by the inclusion of middleware, that is, software that
can manage diverse parts and ensure that they can communicate and exchange data [Som07].

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 36 of 198 NeOn Integrated Project EU-IST-027595

Two generic types of distributed system architecture are [Som07]

• Client-server architectures. In this approach, the system may be thought of a set of services that are
provided to clients that make use of these services. Servers and clients are treated differently in these
systems.

• Distributed object architectures. In this case, there is no distinction between servers and clients, and
the system may be thought of as a set of interacting objects whose location is irrelevant. There is no
distinction between a service provider and a user of these services.

Generic application architectures

Generic application architectures are generic structural models of a given kind of application. Usually, sys-
tems of the same type have similar architectures, and the differences between these systems are in the
detailed functionality that is provided. This can be illustrated by the growth of Enterprise Resource Plan-
ning (ERP) systems and vertical software packages for particular applications [Som07]. Generic application
architectures can be used in a number of ways [Som07]:

1. As a starting point for the architectural design process. If someone is unfamiliar with a given type of
application, he can base his initial designs on the generic architectures.

2. As a design checklist. A given architectural design can be checked against the generic application
architecture to see whether any important design component is missed .

3. As a way of organising the work of the development team. The generic application architecture identi-
fies stable structural features of the system architectures and, in many cases, it is possible to develop
these in parallel.

4. As a means of assessing components for reuse. If there exists components then they might be able to
be reused and compared to the generic structures to see whether reuse is likely in the application that
is being developed.

5. As a vocabulary for talking about types of applications. Generic application architectures facilitates
the comparison between applications of the same time and the discussion about them. The concepts
identified in the generic architectures can be used to talk about the applications.

Object oriented design

Object oriented design is concerned with developing an object-oriented model of a software system to imple-
ment the identified requirements. The objects in an object-oriented design are related to the solution to the
problem. [Som07].

Object oriented design is part of object-oriented development where an object-oriented strategy is used
throughout the development process.

Real-time software design

Real-time software design concerns the design of real-time systems. A real-time system is a software where
the correct functioning of the system depends on the results produced by the system and the time at which
these results are produced [Som07].

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 37 of 198

User interface design

Careful user interface design is an essential part of the overall software design process. If a software sys-
tem is to achieve its full potential, it is essential that its user interface should be designed to match the
skills, experience and expectations of its anticipated users. Good user interface design is critical for system
dependability.

2.6 Conclusions

Component Based Software Engineering (CBSE) is used as an attempt to reduce development costs by
incorporating previously proven designs and code in new applications. A net effect of component reuse
would be shorter development schedules and more reliable applications since the developer uses compo-
nents that have been previously “shaken down". In addition, agile methods enable the rapid development of
applications.

During the whole application life-cycle requirements change continuously because customers are unable
to definitively state their needs in advance while and because the industry and technology move too fast
[HOC00]. In order to deal with this situation the requirements engineering process has to be carried out
according to an iterative life-cycle approach. Agile methods provide the aforementioned iterative life-cycle
approach.

Scenario-based elicitation and, specifically, use-cases are an appropriate approach to the requirements en-
gineering process when implementing an agile method. In addition, use-cases are increasingly used for
requirements elicitation and are a fundamental feature of the UML standard [Som07]. However use-cases
are not as effective for eliciting constraints or high-level and non-functional requirements as, for example,
those related to the characteristics presented in Subsection 3.1.

User requirements should be written in natural language because they have to be understood by people who
are not technical experts. These statements in natural language can be complemented with diagrams when
graphical representations help to understand better the application needs. As a graphical representation,
system models are often more understandable than detailed natural language descriptions of the system
requirements [Som07].

The essence of software design is to make decisions about the logical organisation of the software. There is
no right or wrong way to design software and nor is there a universal recipe for software designs [Som07].

During the Component Identification activity an initial architecture design is created. However, a design rarely
starts from scratch when making decisions about the software organization since it is based on previous
design experiences [Som07].

The same benefits provided by CBSE and agile methods to software development are supposed to be ob-
tained when applying these approaches to the development of semantic applications.

However, for applying CBSE to large-scale semantic applications, we need to define the following elements

1. Independent components commonly used in semantic applications that should be completely specified
by their interfaces.

2. Component standards related to semantic technologies that facilitate the integration of those compo-
nents.

3. Middleware that provides software support for integrating components related to semantics.

4. A development process that is geared to CBSE and adapted for the development of large-scale se-
mantic applications.

Finally, agile methods should be adapted within the processes and activities that the methodology covers, in
order to enable the rapid development of large-scale semantic applications.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 38 of 198 NeOn Integrated Project EU-IST-027595

Chapter 3

Related Work in the Characterisation and
Classification of Semantic Applications

This chapter presents the state of the art of the characterization and classification of semantic applications
as well as different scenarios where semantic applications can be applied. Finally, the Semantic Web Frame-
work, a component-based framework that describes the software components involved in the architecture of
semantic applications, is summarized.

Although semantic Web applications is a subset of the semantic applications, the features of the former are
a superset of the characteristics of the latter. It is important to point out that most of the characteristics and
classifications analyzed were obtained from different studies of semantic Web applications and not from the
study of semantic applications in general. However we assume that the characteristics and classifications
of semantic Web applications can be used to characterize and classify large-scale semantic applications in
general due to the following assumptions:

• Semantic Web applications are large-scale semantic applications that run on the Internet, whereas
other large-scale semantic applications not using ontologies and data from the Web usually run in
intranets. Thus the amount of information contained in the semantic Web will always be bigger than
the information contained in any intranet.

• Due to the previous reason, a large-scale semantic application non oriented to the Semantic Web will
require less degree of scalability than a Semantic Web application.

• The open world, which characterizes the semantic Web, is a superset of the closed world, typical of
other kinds of semantic applications that do not run in the Web.

• Most of semantic technologies have been developed in the context of the Semantic Web research field,
but they can be applied to any kind of large-scale semantic application.

• Because of the reasons abovementioned, it could be considered that semantic Web applications tech-
nologically subsume other kinds of large-scale semantic applications.

3.1 Characteristics of Semantic Applications

This section analyzes the state of the art of the characterisation of semantic applications. In the literature
there are a number of characteristics of semantic applications that permit analyzing the evolution of the se-
mantic applications from traditional knowledge-based systems to next generation semantic Web applications
[AMS+08].

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 39 of 198

3.1.1 Traditional Knowledge-Based Systems Characteristics

A “knowledge-based system” (KBS) is a computer system that relies, on the one hand, on knowledge formal-
ized in a knowledge representation language and, on the other hand, on reasoning mechanisms for problem
solving. Traditional knowledge-based applications present the following characteristics [AMS+08]:

• Closeness. Traditional knowledge-based applications produce and consume their own data. They
operate in a closed domain.

• Centralisation. Classic knowledge bases were built in a a centralised fashion, normally by a small
team of knowledge engineers. Their data is centrally managed, so trust is not a key issue.

• Lack of Scalability. The size of the knowledge these systems contain is small in comparison to the
size of the Semantic Web.

• Heavyweight Reasoning. They tend to use reusable models (ontologies) as knowledge bases [Gru93]
and reasoning components (problem solving methods) [Mot99, SAA+00]. The sophisticated reasoning
mechanisms are enabled by combining high quality knowledge bases with powerful models of generic
tasks, such planing, diagnosis, scheduling, etc.

• Homogeneity. The ontologies these systems use are selected, designed and integrated manually and
carefully [AMS+08]. They present homogeneity in dimensions such the encoding of the ontologies,
their expressivity, their quality, etc., usually exhibiting a high degree of quality.

• Use of a small quantity of ontologies. They use a small quantity of ontologies, very often just one.

3.1.2 Semantic Web Applications Characteristics

In [MS06] there is a distinction between the first and the next generation of Semantic Web Applications. First
generation of Semantic Web applications present the following characteristics:

• Closeness. Most Semantic Web applications built to date tend to produce and consume their own
data much like traditional knowledge-based applications [MS06].

• Decentralisation. They make use of distributed knowledge, using data from multiple sources
[AMS+08].

• Staticity. Knowledge is gathered and engineered at design-time. The selection of the data resources
used is made also at design time and the integrated data is typically scraped together using ad hoc
mechanisms [MS06].

• Scalability. Semantic Web applications exploit semantic information on a large scale. The Semantic
Web already contains millions of documents and billions of triples. Even though the first generation of
Semantic Web Applications normally focuses on specific subsets of the Semantic Web, the applications
must locate and process relevant information more efficiently than usual KBS [AMS+08].

• Lightweight Reasoning. Logical reasoning becomes less important than in KBS since scale and data
integration become here key issues. They integrate different reasoning techniques such as machine
learning and linguistic or statistical techniques [AMS+08].

• Heterogeneity. Semantic Web applications are characterized by their heterogeneity in several dimen-
sions such as the encoding of the ontologies, quality, complexity, modeling, views, etc. When they
use data from multiple sources the integration effort is non-trivial. They may make use of information
stored-held in the Semantic Web and originated from a large variety of sources that exhibit differences
in quality, so trust becomes a key issue. Semantic Web applications usually integrate non-semantic
data [AMS+08].

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 40 of 198 NeOn Integrated Project EU-IST-027595

• Use of a small quantity of ontologies. Semantic Web applications are usually based on a single
ontology whose role is to support the retrieval, integration and processing of the available data [MS06].

The characteristics of the first generation of Semantic Web applications have enabled the development of
Corporate Semantic Webs1 that in many cases provide perfectly adequate solutions to a company’s need
[AMS+08].

In the next generation, Semantic Web applications will dynamically exploit the potential of the Semantic Web
as a large scale source of distributed knowledge [AMS+08]. According to [AMS+08, DF08, KSF08] for the
next generation of Semantic Web applications, the following characteristics can be extracted:

• Openness. They exploit the Semantic Web as a large-scale source of information producing and
consuming its own and foreign data. The application is not bound to a particular domain [AMS+08]. In
principle, anybody can contribute as a provider or consumer of information [DF08].

• Interoperability. Interoperability should be provided through the integration of heterogeneous propri-
etary and legacy solutions through a common interface [DF08].

• Decentralisation. The provision and management of information and services is under the control of
distributed entities, rather than of a central authority [KSF08]. The next generation of Semantic Web
applications will retrieve knowledge automatically by exploring the web [AMS+08].

• Dynamicity. Services and content are constantly moving, changing, appearing or disappearing in
highly ad hoc manners [KSF08]. After knowledge retrieval, the appropriate knowledge has to be se-
lected according to application-dependent criteria, for example, the quality of the data and its adequacy
to the task at hand. Therefore, the relevance of a particular resource to a problem-solving need cannot
be judged at design time. [AMS+08].

• Scalability. Like it happened to the first generation of Semantic Web applications, second generation
applications will have to deal with the scale of the Semantic Web [AMS+08].

• Hybrid Reasoning. Selected Heterogeneous knowledge sources are exploited in a way that no as-
sumption can be made on the ontological nature of the elements manipulated. Hence the process that
exploit knowledge needs to be generic enough so that it can make use of any semantic resource online
[AMS+08].

• Heterogeneity. As happened to the first generation of Semantic Web applications, second generation
applications will have to deal with the heterogeneity of the Semantic Web [AMS+08].

• Use of a big quantity of ontologies. Second generation applications use a big quantity of ontologies
combined from different sources, so that they can be exploited jointly [AMS+08].

3.1.3 Comparison of the Characteristics Presented

A comparison can be made of the characteristics of the aforementioned different kinds of applications afore-
mentioned: knowledge based systems, the first generation of Semantic Web applications and the second
generation of Semantic Web Applications. Table 3.1 shows the result of the comparison.

This comparison has been made according to the following application properties:

• Domain Openness. This property specifies wether the information used by the application (ontologies
and instances) is bound to a particular domain or, on the contrary, the application permits the execution
in multiple domains.

1http://www.gartner.com/it/page.jsp?id=495475

http://www.gartner.com/it/page.jsp?id=495475

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 41 of 198

• Interoperability. This property specifies if the application integrates heterogeneous proprietary and
legacy solutions.

• Knowledge Distribution This property determines whether the knowledge (ontologies and instances)
is centralized in a single resource or distributed using data from multiple sources.

• Dynamicity. This property specifies if services and content are constantly moving, changing, ap-
pearing or disappearing in highly ad hoc manners, or, on the contrary, knowledge is gathered and
engineered at design-time.

• Scale. This property specifies if the application can or cannot operate at scale in a context such as the
Semantic Web, which is estimated to contain a few millions of documents describing millions of entities
through billions of statements.

• Reasoning. This property determines if the application will use heavyweight, lightweight or hybrid
reasoning mechanisms.

• Heterogeneity. This property specifies whether the application is characterised by the heterogeneity
along several dimensions (encoding of the ontologies, quality, complexity, modeling, views, etc.) or,
on the contrary, it is characterised by the use of ontologies that are selected, designed and integrated
manually and carefully (homogeneity).

• Number of Ontologies. This property refers to whether the application is based on a single ontology
or it makes use of several ontologies organised in a network.

KBS 1st generation SWA 2nd generation SWA
Domain Openness No No Yes
Interoperability Not common Not common Yes
Knowledge Distribution Centralisation Decentralisation Decentralisation
Dinamicity No No Yes
Scale Lack of Scalability Lack of Scalability Scalability
Reasoning Heavyweight Lightweight Hybrid
Heterogeneity No Yes Yes
Number of Ontologies Single ontology Small networks of ontologies Big networks of ontologies

Table 3.1: Properties of different kinds of semantic applications

3.2 Scenarios for building Semantic Applications

This subsection explains the related work that provides understanding and a classification of Semantic Ap-
plications through the description of different scenarios where semantics can be applied.

3.2.1 Classification of Ontology Applications

In [JU99] a set of scenarios for applying ontologies to achieve one or more purposes is presented. These
scenarios are abstractions of specific applications of ontologies and have been taken from industry or-and
research. Each scenario involves a set of actors. The following list describes the actors involved in the
aforementioned scenarios:

• Ontology Author (OA). The role of the author of an ontology. This role is usually played by a person
(or a team).

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 42 of 198 NeOn Integrated Project EU-IST-027595

• (Operational) Data Author (DA). The role of the author of operational data in the language used or
defined in terms of the vocabulary of the ontology.

• Application Developer (AD). The role of the developer of the application.

• Application User (AU). The role of the user of the application.

• Knowledge Worker (KW). The role of the the person who makes use of the knowledge.

In addition, information can play three different roles in each scenario:

• Operational Data. A role that information plays whereby the information is consumed and produced
by applications during runtime.

• Ontology. A role that information plays, whereby the information specifies terms and definitions for
important concepts in some domain.

• Ontology Representation Language. A role that information plays whereby the information is used
by ontology authors or application developers, during the development process, to write ontologies.

Next the scenarios [JU99] and the list of possible variations that each scenario can present are described.

1. Neutral Authoring

In this scenario, an information artifact is authored in a single language and converted into a differ-
ent form for use in multiple target systems. The benefits of this approach include knowledge reuse,
improved maintainability and long term knowledge retention. An important distinction to be made is
whether the authored artifact requiring translation is an ontology or operational data. This distinction is
specified through the specification of two variations of the Neutral authoring scenario:

• Authoring Ontologies. The motivation behind authoring neutral ontologies is to decrease cost of
reuse and maintenance of knowledge. To accomplish this, the actors should develop an ontology,
which is then translated and used in multiple operational target systems. The principle actors are
the ontology author and the application user.

• Authoring Operational Data. The motivation behind authoring neutral operational data is to
improve the maintainability and transportability of the operational data. To accomplish this, an
ontology author (secondary actor) must develop an ontology that defines the neutral format used
by the primary actor when authoring the operational data. Tools can then translate this into
operational data used by an application.

2. Ontology as Specification

In this scenario, an ontology of a given domain is created and used as a basis for the specification and
development of some software. The benefits of this approach include documentation, maintenance,
reliability and knowledge (re)use.

3. Common access to Information

In this scenario, information can be required by one or more persons or by computer applications, but
it is expressed using unfamiliar vocabulary or in an inaccessible format. The ontology helps render the
information intelligible by providing a shared understanding of the terms, or by mapping between sets
of terms. The benefits of this approach include inter-operability, and a more effective use and reuse of
knowledge resources. This scenario has four possible variations:

• Human Communication. In this scenario, the ontology authors create an ontology which knowl-
edge workers reference in their work.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 43 of 198

• Data Access via Shared Ontology. The motivation behind data access via a shared ontology is
to reduce the cost of multiple applications that have common access to data. This kind of access
may, in turn, facilitate inter-operability. Inter-operability is accomplished through the agreement
of developers on a shared ontology that defines a common language for exchanging or sharing
operational data. The principle actors are ontology authors and application developers. Figure
3.1 illustrates this scenario.

• Data Access via Mapped Ontologies. The motivation behind this scenario is the same as
the previous one. The key difference is that here, there is no explicit shared ontology; instead,
mapping rules are used to define what a term in one ontology means in another ontology. A
mediator uses these rules at runtime so that applications can access each otherŠs data. The
principle actors here are ontology authors and application developers. Figure 3.2 illustrates this
scenario.

• Shared Services. The motivation behind shared services is neutrality (i.e., language, machine,
operating system, location). Developers achieve this by agreeing on a shared ontology, which
defines interfaces in multiple target languages. This is very similar to data access via shared
ontologies, except for the focus of what is being shared. The principal actors here are ontology
authors and application developers.

Ontology
�

specifies specifies

Application nApplication 1

OA
�

Operational
�

Data TnT1

Application 2

T2

conforms to

builds
translators

AD

Thisscenarioindicateshowanontology canbeusedasan interchange format,to enablecommonaccessto operational data.

FIGURE5: DataAccessvia SharedOntology

6.2 Data Accessvia Shared Ontology

6.2.1 Overview

Themotivationbehinddataaccessvia a sharedontologyis reducingthecostof multiple applicationshaving common
accessto data. This may in turn, facilitate inter-operability. This is accomplishedthroughdevelopersagreeingon
a sharedontology, which definesa commonlanguagefor exchangingor sharingoperationaldata. Supportingtech-
nologiesincludetranslators,parsergeneratorsandprinters.Theprincipleactorsareontologyauthorsandapplication
developers.

In this scenario,an ontologyauthorcreatesan ontology, which differentapplicationdevelopersagreeto use. This
definesaninterchangeformatfor which two-way translationis requiredbetweenit andtheapplicationformats.Each
pair of translators,for a givenapplication,in effect,definesanapplicationinterfacethatcanbeusedto readandwrite
data. Translatorsare [almost?] alwaysmanuallycreated,althoughin somecases,the API for readingandwriting
from/to a new formatmaybeautomaticallygeneratedusingparsergeneratorsandprinters(seevariationbelow). This
helps,but the bulk of the work is decidingwhat calls to the API arerequiredto translatea given dataitem stored
internaldatastructures– this remainsa challengingmanualeffort. Inter-operationbetweenthemultiple applications
is madepossibleby allowing themto accessthesameinformation.

6.2.2 Examples
A teamof ontologyauthorscreatedthe ProcessInterchangeFormat(PIF). The ideais to make a library of process
modelsthatareexpressedin variousapplication-specificformatsavailableto eachof theapplications.Currently, they
areworking on two formats,(IDEF3andILOG). This is ongoingresearch.

EcoCyc(Karp et al., 1996)is a commercialproductthat usesa sharedontologyto make possibleaccessto various
heterogeneousdatabasesin thefield of molecularbiology. Theontologyis a conceptualschemathat is anintegration
of theconceptualschemasfor eachof theseparatedatabases.

6.2.3 Variations
Figure4 depictsthenaturalway to view thesituationwhenthereis anexplicit linear formatthat theapplicationuses
for saving andloadingoperationaldata. The translatorsarelogically separatefrom theapplicationsandcanoperate
independently. A variationof this is thecasewherethereis no suchformat; insteadtheinternaldatastructuresof the

13

Figure 3.1: Common access to information scenario. Data access via shared ontology variation [JU99]

Although EXPRESSmay be usedto stateimportantconstraintsas rules, theserules are not themselvessharedor
exchangedandthusdo not have to be translated.Instead,they areusedto maintainintegrity of the data. In the PIF
effort, the specificationof operationalbehaviour is intendedto be shared. Fully generaltechniquesfor translating
behavioural specificationsis beyond the currentstateof the art. Although not beingaddressedat this time, this is
includedin thelong termvision for STEP.

It mustalsobepointedout thatcompliancewith theSTEPstandarddoesnot imply completeanderror-freemovement
of databetweenvendorapplications.Many problemsstill remain.

The representationsbeing usedby the PIF communitycontainare further from the implementation,and therefore
requiremoremanualeffort to implement.In contrast,EXPRESSis closerto theimplementationandtherefore,much
of themanualeffort is reducedat theexpenseof flexibility in implementation.

6.3 Data Accessvia Mapped Ontologies

Ontology 2
�

reader

writer

writer

reader

generates�generated�
from

Application 1Application 2

OA
�

mediator

Mapping
Ontology 1
�

generated�
from

OA
�

FIGURE7: DataAccessvia MappedOntologies

6.3.1 Overview

The motivationbehindthis scenariois the sameasthe last one. The key differenceis that here,thereis no explicit
sharedontology;instead,mappingrulesareusedto definewhata termin oneontologymeansin anotherontology. A
mediatorusestheserulesat runtimesothatapplicationscanaccesseachother’sdata.Thisapproachhastheadvantage
of not requiringtheapplicationdevelopersto explicitly agreeon a sharedontology. Supportingtechnologiesinclude
parsergenerators,printers,andmediators.Theprincipleactorsareontologyauthorsandapplicationdevelopers.

In this scenario,eachapplicationwishingto exchangedatahasit’s own local ontology. Applicationdeveloperscoop-
erateto createasharedmappingthatrelatestermsin differentontologies.Thismappingis usedto generateamediator,
which mapsoperationaldataexpressedin the terminologyof oneontologyinto operationaldataexpressedtheother
ontology.

6.3.2 Example

A developerof an application(e.g., electricalpower suppliers)wantsto sharedatawith anotherapplication(e.g.,
schematicviewer). Eachapplicationhasits own ontologycreatedin EXPRESS.Thedevelopersagreeon a mapping
(e.g., representedin EXPRESS-X),which relatestermsin the power supplyapplicationwith electricalschematics.
Themappingis usedto generateamediatorthatmapsthoseportionsof theelectricalpowersupplydatainto schematic
data.

15

Figure 3.2: Common access to information scenario. Data access via mapped ontologies variation [JU99]

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 44 of 198 NeOn Integrated Project EU-IST-027595

4. Ontology-based search.

In this scenario, an ontology is used to search an information repository for wanted resources (e.g.,
documents, web pages, names of experts). The chief benefit of this approach is faster access to im-
portant information resources, which leads to a more effective use and reuse of knowledge resources.

3.2.2 Classification of Semantic Web Applications

From the classification of types of ontology usage for Semantic Web applications in [KHS+08], several sce-
narios for building semantic applications can be derived. The categories there found and presented in this
work are the following:

1. Usage as a Common Vocabulary. This type of application uses ontologies as a common vocabulary
to enhance inter-operability of knowledge content. Applications in which ontologies play mainly a role
to unify the vocabulary are categorised here. This is the most fundamental and common usage for the
2 to 9 categories.

2. Usage for Search. Any application whose main goal is to search will be categorised here. This kind
of search systems use semantic information for searching.

3. Usage as an Index. An application that uses ontologies as indexes for knowledge resources belongs
to this category. The difference between this category and categories 1 and 2 is that the applications
of this category utilize not only the index vocabulary, but also its structural information explicitly when
accessing the knowledge resources.

4. Usage as a Data Schema. Applications of this category use ontologies as a data schema to specify
data structures and values for target databases.

5. Usage as a Media for Knowledge Sharing. Applications of this category aim to share knowledge
among systems, between people and systems, or among people using ontologies and instance models
of the target knowledge. This category includes such applications for knowledge alignment, systems
for knowledge mapping, communication systems among agents, support systems for communication,
and others.

6. Usage for a Semantic Analysis. Applications of this category analyze contents annotated by meta-
data. One of the most typical methods for such an analysis is the automatic classification of concepts
definitions using inference engines.

7. Usage for Information Extraction. Applications which aim to extract meaningful information from the
search result are categorized here. In comparison with other categories, applications in category 2
just output search results without modifications. Applications of category 6 add some analysis to the
output of 2, while those of category 7 extract meaningful information before outputting it for users.

8. Usage as a Rule Set for Knowledge Models. Applications in this category use instance models built
upon definitions of classes in ontologies as knowledge models of the target world. In other words, they
use ontologies as meta-models that rule the knowledge (instance) models. Compared to category 4,
knowledge models in category 8 need more flexible descriptions in terms of meaning of the contents. A
heavy-weight ontology that models the world appropriately with deep semantics helps both the knowl-
edge modeling and the reasoning at a deeper level. On the other hand, when the target world is large,
light-weight ontologies are useful enough for reasoning and efficient processing.

9. Usage for Systematising Knowledge. Applications in this category organise concepts of the target
world by putting ontologies as the core conceptual structure. Typical applications of this category
include integrated knowledge systems of categories 1 to 8, such as knowledge management systems
and content management systems.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 45 of 198

3.3 The Semantic Web Framework

As it has been expounded in Subsection 2.2, the essentials of the component-based software engineering
are independent components that are completely specified by their interfaces, component standards that
facilitate the integration of components, middleware that provides software support for component integration,
and a development process that is geared to CBSE.

The Semantic Web Framework (SWF) [GGMN08] provides the skeleton for a specification of the independent
components needed for the CBSE of semantic Web applications. The SWF is a component-based framework
from which semantic Web applications can be organized and developed describing the functionalities that the
components that semantic Web applications provides and those that they use. The SWF also classifies its
components and identifies the main dependences between them. The current version of the SWF [GMG+07]
does not define the concrete specification of the component interfaces and contracts, which should be defined
in future work, nor does it define the different patterns that can be used when developing Semantic Web
applications, such patterns are dealt in with the methodology presented in this deliverable.

3.3.1 Definition and Classification of Components

The SWF follows the definition of component given by Szyperski [Szy98]. A Semantic Web Framework
component is an autonomous and modular unit with well defined interfaces2 that describes a service that
performs a specific functionality. Such components can be used either independently or grouped together
to develop applications for the Semantic Web. This kind of components can be divided into three types:
services, program libraries and applications.

The components of the SWF have been classified into an architecture according to several dimensions
as the major properties of the problem space that have significant variation over the systems of concern.
The dimensions are in other words, the groups of components that provide some specific support to the
architecture. These dimensions are subjective; in the Semantic Web Framework the different components
have been classified according to the main functionalities they provide. Furthermore, these dimensions are
not exhaustive. In Figure 3.3, each dimension of the architecture is represented as a column. The order of
the components or of the dimensions does not imply any precedence or relation between them. The basic
dependencies of the components in an example dimension are shown in Figure 3.4.

Figure 3.3 presents the components of the Semantic Web Framework that have been identified from software
currently available or under construction. The enumeration of components is neither exhaustive nor complete,
and is open to improvements and extensions. The complete description of the components can be found in
[GMG+07]. A list of the implementations of the components have been identified in the same deliverable.

Next, we provide a description of the dimensions of the Semantic Web Framework and of the components
included in each dimension.

Data and metadata management

This dimension includes those components that manage knowledge and data sources.

• Information directory manager component. This component provides functionalities to handle query
distribution, to manage a content provider directory, to identify information providers from a query, and
to handle the storage and access to distributed ontologies and data.

• Ontology repository component. This component provides functionalities to locally store and access
ontologies and ontology instances.

• Data repository component. This component provides functionalities to locally store and access data
and ontology annotated data.

2Note that different component implementations can have different interfaces (API, service description, etc.) because no suc-
cessful standardization efforts have been made for providing common interfaces to the same component.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 46 of 198 NeOn Integrated Project EU-IST-027595

Data repository

Ontology
learner

Alignment
repository

Ontology
discovery and

ranking

Ontology
evaluator

Ontology
editor

Ontology
browser

Ontology
adaptation
operators

ONTOLOGY
ENGINEERING

ONTOLOGY
CUSTOMIZATION

SEMANTIC
WEB

SERVICES

Manual
annotation

Ontology
populator

Query
answering

Instance
editor

ONTOLOGY
INSTANCE

GENERATION

QUERYING
AND

REASONING

ONTOLOGY
EVOLUTION

Ontology view
customization

Ontology
localization and

profiling

Ontology
matcher

Semantic
query

processor

Semantic
query
editor

Ontology
repository

Information
directory
manager

Automatic
annotation

Metadata
registry

Web Service
discoverer

Web Service
selector

Web Service
composer

Web Service
choreography

engine

Web Service
process
mediator

Web Service
grounding

Web Service
profiling

DATA & METADATA
MANAGEMENT

Ontology
versioner

Ontology
evolution
manager

Ontology
evolution
visualizer

Web Service
registry

Figure 3.3: Components of the Semantic Web Framework

• Alignment repository component. This component provides functionalities to handle the storage and
access to distributed alignments.

• Metadata registry component. This component provides functionalities to locally store and access
metadata information.

Querying and reasoning

This dimension includes those components that generate and process queries.

• Query answering component. This component takes care of all the issues related to the logical pro-
cessing of a query by providing reasoning functionalities to search results from a knowledge base.

• Semantic query processor component. This component takes care of all issues related to the phys-
ical processing of a query by providing functionalities to manage query answering over ontologies in
distributed sources.

• Semantic query editor component. This component takes care of all the issues related to the user
interface.

Ontology engineering

This dimension includes those components that provide functionalities to develop and manage ontologies.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 47 of 198

Figure 3.4: Dependencies of the components in the Ontology engineering dimension

• Ontology editor component. This component provides functionalities to create and modify ontologies,
ontology elements, and ontology documentation. These functionalities include a single element edition
or a more advanced edition, such as ontology pruning, extension or specialization.

• Ontology browser component. This component provides functionalities to visually browse an ontology.

• Ontology evaluator component. This component provides functionalities to evaluate ontologies, either
their formal model or their content, in the different phases of the ontology life cycle.

• Ontology learner component. This component provides functionalities to acquire knowledge and gen-
erate ontologies of a given domain through some kind of (semi)-automatic process.

• Ontology matcher component. This component provides functionalities to match two ontologies and
output some alignments. We can distinguish two types of such systems: those that generate matchings
and those that use matchings for other tasks (merging, mediating, etc.).

Ontology customization

This dimension includes the components that customize and tailor ontologies.

• Ontology localization and profiling component. This component provides functionalities to adapt an
ontology according to some context or some user profile.

• Ontology discovery and ranking component. This component provides functionalities to find appropri-
ate views, versions or sub-sets of ontologies, and then to rank them according to some criterion.

• Ontology adaptation operators component. This component is in charge of applying appropriate op-
erators to the ontology in question, the result of which is an ontology customized according to some
criterion.

• Ontology view customisation component. This component is responsible for enabling the user to
change or amend a view on a particular ontology that fits a particular purpose.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 48 of 198 NeOn Integrated Project EU-IST-027595

Ontology evolution

This dimension includes those components that manage the ontology evolution.

• Ontology versioner component. It maintains, stores and manages different versions of an ontology.

• Ontology evolution visualizer component. This component allows visualizing different versions of an
ontology.

• Ontology evolution manager component. It is in charge of the timely adaptation of an ontology to the
changes undergone and of the propagation of such changes to dependent artifacts.

Ontology instance generation

This dimension includes those components that generate ontology instances.

• Instance editor component. This component provides functionalities to manually create and modify
instances of concepts and of the relations between them in existing ontologies.

• Manual annotation component. This component is in charge of the manual and semi-automatic anno-
tation of digital content documents (e.g., web pages) with concepts in the ontology. This annotation
process may be assisted or guided by a machine (semi-automatic annotation).

• Automatic annotation component. This component is in charge of the automatic annotation of digital
content (e.g., web pages) with concepts in the ontology. Occurrences in the considered content of
instances of concepts in the ontology are automatically detected and subsequently annotated.

• Ontology populator component. This component provides functionalities to automatically generate new
instances in a given ontology from a data source.

Semantic web services

This dimension includes those components that discover, adapt/select, mediate, compose, choreograph,
ground, and profile semantic web services.

• Web service discoverer component. This component provides functionalities to publish and search
service registries, to control access to registries, and to distribute and delegate requests to other
registries.

• Web service selector component. After discovering a set of potentially useful services, this compo-
nent needs to check whether the services can actually fulfill the user’s concrete goal and under what
conditions.

• Web service composer component. This component is in charge of the automatic composition of the
web services in order to provide new value-added web services.

• Web service choreography engine component. This component provides functionalities to use the
choreography descriptions of both the service requester and the service provider to drive the conver-
sation between them.

• Web service process mediator component. This component provides functionalities to reconcile the
public process heterogeneity that can appear during the invocation of web services.

• Web service grounding component. This component is responsible for the communication between
web services.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 49 of 198

• Web service profiling component. This component provides functionalities to create web service pro-
files based on their execution history.

• Web service registry component. This component provides functionalities to register semantic web
services.

3.4 Conclusions

The analysis made in [MS06] and [AMS+08] provides a set of characteristics of semantic Web applications.
These characteristics are useful to determine the behavior of a given application according to factors such
as the nature of the resources that the application will deal with, or the kind of reasoning that the application
will use. Analyzing the values for these characteristics during the Requirements Engineering process will
help to understand better the semantic application beforehand. Therefore, it will be helpful to provide a
catalogue of common characteristics of semantic application in order to facilitate the identification of its
semantic requirements.

A set of scenarios for applying semantic applications have been identified in the state of the art [JU99,
KHS+08]. The work presented in [KHS+08] synthesizes the scenarios by exhaustively studying a big num-
ber of case studies (those published in the ISWC, ESWC and ASWC conferences). However, these works
describe the scenarios in a researcher-oriented fashion that could be difficult to understand for a software en-
gineer non-expert in semantic technologies, or for the customer that orders the development of an application.
Thus, an effort should be made to explain these scenarios from a user-goal perspective using techniques
that software engineers are accustomed to, avoiding, when possible, to use the complex terminology related
to semantic technologies.

As it has been treated in Section 2.6, in order to apply Component Based Software Engineering to large-scale
semantic applications it is necessary to define, among others, a set of independent components commonly
used in semantic applications that should be completely specified by their interfaces. The Semantic Web
Framework identifies and describes those components. However, the interfaces that the components of the
SWF provide and require are not identified. In consequence, the interface identification should be made.
Also, it should be helpful to provide architectural patterns that describe typical organizations of these com-
ponents within the architecture of a large-scale semantic application. Out of the scope is the identification of
particular technologies that support such component implementations.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 50 of 198 NeOn Integrated Project EU-IST-027595

Chapter 4

Research Methodology

In this chapter, we present the research methodology used for building the NeOn methodology for the devel-
opment of large-scale semantic applications and of the main requirements that guide its development.

4.1 General Framework for Describing the Methodology

For building the methodology we used a “divide and conquer” strategy, that is, we decomposed the general
problem to be solved in different subproblems.

For each subproblem, we provided different strategies and alternatives to find the solution. To obtain the
solution to the general problem, that is, the development of a large-scale semantic application, the solutions
to the different subproblems were combined.

In our case, the subproblems were the Requirements Engineering and Design processes. For the Require-
ments Engineering process we provided the application characteristics, use cases, system models described
in chapters 6, 7 and 8 respectively as solutions for this subproblem. For the Design Process we provided the
patterns described in 9 as a solution for this subproblem.

The Requirements Engineering and Design processes and their associated activities are described in chap-
ters 10 and 11.

To obtain the methodological guidelines for building large-scale semantic applications, we grounded in the
following approaches, as presented graphically in Figure 4.1.

• Existing methodologies and methods. In this case, we used Component-based Software Engineering
and several agile methods that provide guidelines for carrying out a process or an activity. This is
the case of the Requirements Elicitation and Analysis activity that had as a starting point the idea of
iterative development proposed by Agile Methods.

• Existing practices and previous experiences. NeOn consortium members had built a lot of semantic
applications in different domains across several European and national funded projects. Therefore,
we made a retrospective analysis of the processes or activities performed within such projects to get
a preliminary set of informal steps. As an example, we can mention the different use cases being
described in the Knowledge Web project (FP6-507482) [GMG+07], whose application architectures
have inspired the architectural patterns proposed in this deliverable.

• The Semantic Web Framework. The SWF has been elaborated in the Knowledge Web Project and
describes the software used to build Semantic Web applications as reusable components. The com-
ponents contained in the architectural patterns and gathered in this deliverable were extracted from
this input.

• Existing categorizations and scenarios of semantic applications. In this case, we have extracted from
[AMS+08, Mot99, DF08, KSF08] different characteristics of large-scale semantic applications; and

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 51 of 198

from [JU99, KHS+08] different use cases applied to semantic applications.

NeOn Methodology for Building Large-Scale Semantic Applications

Empirical Inputs

Existing Practices Previous Experiences

Semantic Web Framework
Existing Categorizations

and Classifications of
Semantic Applications

Methodological Inputs

Component-based
Software Engineering Agile Methods

Figure 4.1: Inputs considered for obtaining the NeOn Methodology and building Large-scale Semantic Appli-
cations

Thus, the current version of NeOn methodology for building large-scale semantic applications describes the
Requirements Engineering and Design processes, a set of 32 characteristics, 11 system models, 5 use
cases and 28 architectural patterns which can be combined between them. Each process is decomposed
in a set of activities, which, in turn, are provided with detailed methodological guidelines. In this sense, the
deliverable is written with a process- or an activity- centric approach, and in a prescriptive way rather than a
descriptive one.

For describing each process and activity included in the NeOn methodology here presented, we use the
following template:

• Introduction.

• State of the art, with methods, techniques, and conclusion about related works.

• Detailed guidelines proposed for carrying out the process or the activity, including:

– Definition.

– Goal, explaining the main objective intended to achieve by the process or the activity.

– Input, which includes the resources needed for carrying out the process or the activity.

– Output, which includes the results obtained after carrying out the process or the activity.

– Who, for identifying people or teams involved in the process or the activity.

– When, for explaining in which moment the process or the activity had to be carried out.

– How, which included details for carrying out the process or the activity in a prescriptive manner.
A graphical workflow on how the process or the activity should be carried out is also included,
with inputs, outputs and actors involved. The workflow will be represented using UML 2.01 ac-
tivity diagrams. Additionally, methods and techniques supporting the process or the activity were
proposed.

– Why, for explaining the motivation behind performing the process or activity.

– Where, for identifying the context in which the process or activity had to be carried out.

For each process and activity included in this deliverable, we provide a filling card including all the
aforementioned information, except for the “how”. The use of such filling cards has allowed us to
explain the information of NeOn methodology in a practical and easy way. Each filling card follows the
filling card template shown in Table 4.1.

1http://www.uml.org

2006–2009 c© Copyright lies with the respective authors and their institutions.

http://www.uml.org

Page 52 of 198 NeOn Integrated Project EU-IST-027595

• Examples explaining the proposed guidelines using previous experiences and/or NeOn use cases,
whenever it has been possible.

Table 4.1: Template for Process and Activity Filling Card

Process or Activity Name
Definition

Goal

Input Output

Who

When

Why

Where

4.2 Requirements for the NeOn Methodology for Building Large-Scale Se-
mantic Applications

The methodology presented in this deliverable must fulfill a set of requirements that can be grouped into
two main types, namely, the generic requirements and the specific requirements (those that depend on the
specific goals of the methodology). The generic requirements are those that any methodology must fulfill.
The specific requirements of a given methodology are determined by factors such as the domain where the
methodology is applied, cases, situations or problems it deals with, characteristics of the material (economic,
technological, etc.), human or temporal resources, etc.

In this section we present the generic and specific requirements considered in the development of the NeOn
methodology for building large-scale semantic applications. We have based our requirements on Paradela’s
conditions [Par01], having adapted them whenever it was necessary.

4.2.1 Generic requirements

• Generality. A methodology should be general enough and should not be driven to solve ad-hoc cases
or problems.

In our case, the methodology here presented tackles the development of large-scale semantic appli-
cations in general, by means of proposing common semantic application characteristics; general use
cases that appear in large-scale semantic applications; and different architectural patterns expressed
with components of semantic applications and described in a conceptual level, which means that spe-
cific implementations of those components are not considered.

• Completeness. A methodology must consider all the cases presented and propose solutions to all of
them.

In our case, the first version of the NeOn methodology deals with the Requirements Engineering and
Design Process as subproblems of the general problem of building a large-scale semantic application

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 53 of 198

and provides a number of 32 characteristics, 5 use cases, 11 system models, and 28 architectural
patterns as solutions of these subproblems. The second version will include the definition of the Provi-
sioning, Integration and Testing processes and solutions for these subproblems.

• Effectiveness. A methodology should solve adequately the proposed cases that have a solution,
with independence of the person that uses it. So, the methodology should be more prescriptive than
descriptive.

In our case, we describe the methodology in a simple way, and any software developer with knowledge
on semantic technologies will able to understand and use it with no special effort.

• Efficiency. A methodology must be efficient, that is, be able to achieve its objective/goal. This means
that the methodology should allow the construction of large-scale semantic applications with fewer
resources (time, money, etc.) and better quality than before.

In our case, whenever it is possible, we use the methodology to describe and carry out experiments
that confirm its efficiency.

• Consistency. A methodology must produce the same set of results for the same problem, indepen-
dently of who carries it out.

In our case, the presented methodology presented identifies the outputs of the different activities in-
volved in the development of large-scale semantic applications. The same set of outputs will be ob-
tained after applying the methodology for a given case.

• Finiteness. Both the number of the elements composing a methodology and the number of activities
must be finite, i.e., consuming a reasonable period of time.

In our case, the processes and activities presented in this deliverable include the initial and finite set
of processes and the activities involved in the methodology. The number of elements used to describe
the processes or the activities is also finite.

• Discernment. A methodology must be composed of a small set of structural, functional and represen-
tational components.

In our case

– With respect to structural components, our methodology provides a set of characteristics, use
cases, system models and architectural patterns for building large-scale semantic applications.

– With respect to functional components, our methodology includes processes, activities, tasks,
inputs, outputs and restrictions.

– With respect to representational components, the methodology provides textual and graphical
representations for describing each process or activity, for the characteristics of large-scale se-
mantic applications; and for the templates and patterns provided in this deliverable.

• Environment. Methodologies can be classified into scientific and technological. In scientific method-
ologies ideas are validated, whereas in technological ones artifacts are built. A technological method-
ology must consider the life cycle of the product guiding its development.

The NeOn methodology for building large-scale semantic applications can be considered as a technical
methodology, because the main result after applying it should be a technological product, that is,
a large-scale semantic application. Thus, it is needed to establish the life cycle for the semantic
application. We will base the life cycle on the state of the art of Agile Methods (see Section 2.3).

• Transparency. A methodology must be like a white box, allowing to know in every moment the active
processes or activities that are being performed, who is performing them, etc.

In our case, we explicitly define the actors, inputs, and outputs of each activity covered by the method-
ology.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 54 of 198 NeOn Integrated Project EU-IST-027595

• Essential Questions. The following six questions: “what”, “who”, “why”, “when”, “where”, and “how”
must be considered for each activity included in the methodology.

In our case, the processes and activities described in this deliverable explains “what” each activity or
process involved in the methodology refers to. The methodological guidelines for the processes or
activities included in this deliverable answer the rest of the covered questions.

4.2.2 Specific requirements

• Domain or Scope. The presented methodology is for developing large-scale semantic applications.

• Perspectives. A methodology must facilitate its application following different approaches.

In our case, the methodology provides

– A set of use cases that let analyze the types of large-scale semantic applications from a func-
tional external perspective, reflecting the interactions between the application and its users, and
between the application and other external systems,

– A set of system models that let analyze the applications from an structural external perspective,
reflecting the relationships between the semantic application and the resources that the applica-
tion will deal with and the systems in which these resources are bound,

– A set of architectural patterns that let analyze the application from an structural internal per-
spective, reflecting the structure of the application as the components involved in the semantic
application architecture.

• Understanding. A methodology must be ease to understand and learn in order to facilitate its gener-
alized use and to achieve success.

The NeOn methodology for building large-scale semantic applications is being explained with simple
descriptions and graphical representations to be easily understood by software developers in general.

• Usability. The degree of difficulty in using the methodology must be minimal.

The methodology is presented using a software engineering approach with different levels of complex-
ity to facilitate a promptly assimilation.

• Grounded in existing practices. The methodology is grounded in existing methodologies of the
Software Engineering field such Component Based Software Engineering and Agile Methods, as well
as the previous experience in the development of semantic applications.

• Flexibility. The methodology can be adapted to concrete needs and users and permits the inclusion of
new characteristics, use cases, system models and architectural patterns involved in the development
of large-scale semantic applications.

• Tool independence. A methodology must be independent of the existing technology.

The methodology is being developed with the aim of being technology independent.

• Reuse orientation. The methodology will be highly oriented to software reuse.

• Agility. The methodology will enable the rapid development of large-scale semantic applications and
permit the development team to adapt quickly to changing requirements.

• Team size independence. The methodology will allow different sizes of development team.

• Distributed support. The methodology will allow the development team to be distributed.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 55 of 198

Chapter 5

NeOn Methodology for Building Large Scale
Semantic Web Applications

A large-scale semantic application can be pure semantic or it can consist on a set of semantic components
included in traditional IT systems.

In pure semantic applications the whole system is oriented to provide semantic functionalities and most of
the components that conform its architecture are built upon semantic technologies and standards.

In IT systems that include semantic components not all the functionalities provided by the system are se-
mantic. Within this kind of applications there exists a number of semantic modules oriented to provide a set
of semantic functionalities among other non-semantic components.

The first version of the NeOn methodology for building large-scale semantic applications has as the main
objective to guide the application developers to describe the architecture of pure large-scale semantic appli-
cations, or the semantic part of the IT systems that include semantic components starting from the application
requirements.

In order to do so, according to the phases identified in Section 2.2 and taking into account the agile methods
presented in Section 2.3, in this deliverable we only describe the Requirements Engineering and Design
processes.

Figure 5.1 shows an overview of the Requirements Engineering and Design processes. Next, each of the
processes is explained.

5.1 Requirements Engineering

During the Requirements Engineering process the requirements of the application must be found out, an-
alyzed and documented. In order to facilitate the requirement analysis, the NeOn methodology for building
large-scale semantic applications proposes to divide the requirements in three different categories:

• Non-semantic Requirements. This group gathers the application requirements that are no related
to semantic functionalities. Any software engineering methodology supports the discovery of these
requirements in many different ways (e.g. the Rational Unified Process [Kru00] or the agile methods
presented in Section 2.3). The identification of non-semantic functionalities is out of the scope of this
deliverable.

• Semantic Application Requirements. This group brings together the software requirements that
gather the semantic functionalities of the application.

• Set of Ontological Needs. This group reflects the set of requirements to be taken into account in the
development of the ontologies required by the semantic application. The ontologies required can be

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 56 of 198 NeOn Integrated Project EU-IST-027595

Semantic Application
Architecture Document

System Models
Catalogue

Design ProcessRequirements Engineering Process

Obtain Semantic
Application

Requirements

Obtain Ontological
Needs

Obtain
Non-Semantic
Requirements

Existing
Software Engineering

Methodologies

Semmantic Application
Requirements

Document

Components
Identification

Semantic Application
Questionnaires

Set of Ontological Needs

Ontology Development
Process

NeOn Methodology
for Building

Contextualized Ontology Networks

Architectural Patterns
Catalogue

Use Cases
Catalogue

Ontology
Network

Figure 5.1: Overview of the Requirements Engineering and Design Processes

constructed under many different scenarios and following the guidelines given by the NeOn Methodol-
ogy for Building Contextualized Ontology Networks [GS08]. The construction of the ontologies is out
of scope of this deliverable.

5.1.1 Inputs

In this methodology, we provide the following inputs to facilitate the Requirements Engineering process:
Semantic Application Questionnaires to help detecting the semantic application characteristics; and the Use
Cases Catalogue and System Models Catalogue to facilitate the description of the different scenarios in
which the application will operate.

Next, each of the inputs is presented.

Semantic Application Questionnaires

The NeOn methodology for building large-scale semantic applications provides a set of questions that can
be used by the application developers for identifying the semantic characteristics of a given semantic appli-
cation with respect to: the ontologies and data that the application will use, the reasoning features that the
application will need, and other non-functional characteristics such interoperability with other applications.
Additionally, the questions are also valid for identifying the set of ontological needs, and the data sets that
the application will deal with.

The questions are grouped into the following questionnaires:

• Questionnaire about Ontologies. This questionnaire will help the application developers to determine
the characteristics of the ontologies that the application will make use of. It will also help the appli-

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 57 of 198

cation developers to promptly advance possible ontological needs such as the need of performing an
ontological resource reengineering, or of creating an ontology from scratch.

• Questionnaire about Data. Data can take two possible forms: semantic (e.g., in form of RDF instances)
or non-semantic (e.g., data stored in a data base). This questionnaire will help the application devel-
opers to determine the characteristics of the data that the application will use and its relation with the
ontologies which the data conform to. It will also help application developers to detect several ontolog-
ical needs such, as the need of performing a non-ontological resource reengineering with the purpose
of converting the non-ontological data to an ontological format, or if on the contrary, non-ontological
data will be kept in the original sources and used at run-time by the application.

• Questionnaire about Reasoning. It will help application developers to determine the characteristics of
the reasoning that the application will apply to ontology and data resources.

• Questionnaire about Non-functional Characteristics. This questionnaire will determine other non-
functional characteristics, for example, the characteristics of interoperability of the application being
built with other applications.

These questionnaires will be used by the application developers during the interviews with the application
customers. The questionnaires are provided in Appendix 14.

Use Cases Catalogue

The methodology provides the application developers with a catalogue of use cases templates that de-
scribe the scenarios commonly appearing in semantic applications, such Ontology-based Search or Seman-
tic Browsing. The catalogue have been obtained by analyzing the scenarios presented in Section 3.2.

These use cases templates can be selected, adapted and appended to the semantic application require-
ments by application developers.

The use cases catalogue is described in Chapter 7. The catalogue will be used during the Requirements
Engineering process.

System Models Catalogue

As another methodological input, the methodology also provides a catalogue of system models. These sys-
tem models are graphical representations that let application developers to preliminarily specify the system
from the following perspectives:

• An external perspective, where the context or environment of the application is modeled by showing
the limits of the application and the external systems or applications that will interoperate with the
large-scale semantic application.

• A structural perspective, where the structure of the ontologies and the data processed by the applica-
tion is modeled. The system models catalogue provides a set of symbols (e.g. ontological and non
ontological resources, applications, etc.) and the relationships between these symbols that reflect the
aforementioned structural perspective of the system.

The system models will reflect the scenarios identified during the use-case identification task constrained by
the application characteristics, so the templates in the system model catalogue can be selected by taking
into account the responses to the Semantic Application Questionnaires as well as the use cases selected
from the Use cases Catalogue.

The system model catalogue is detailed and described in Chapter 8. This catalogue will be used during the
Requirements Engineering process.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 58 of 198 NeOn Integrated Project EU-IST-027595

5.1.2 Outputs

Semantic Application Requirements Document

This output describes the semantic requirements of the application. The document contains the following:

• The semantic characteristics of the large-scale semantic application obtained after applying the Se-
mantic Application Questionnaires.

• Identification of the data sets that the application will use at run-time and their associated characteris-
tics. These data sets will be obtained from the answers to the Semantic Application Questionnaires.

• The applications or systems that the semantic application will interact with. These systems or applica-
tions will be obtained from the answers to the Semantic Application Questionnaires.

• The scenarios to be implemented by the application expressed in the form of use cases. These use
cases will be obtained by adapting the use case templates included within the Use Cases Catalogue.

• A graphical representation of the system structure in the form of system models. These system models
will be obtained by adapting the system models templates included within the System Models Cata-
logue.

The content of this document will be detailed in Chapter 10.

Set of Ontological Needs

This document describes the ontology development needs1 in the form of a list of ontological needs. These
needs identify a set of preliminary ontologies that should be developed for being integrated later within the
application. The list contains the following entries:

• Ontologies that should be developed from scratch, if they are known at this stage.

• Ontologies that should be reused as they are of after a reengineering process.

• Ontologies that should be developed after applying a non-ontological resource reengineering process.
In this case the non-ontological resources from which the reuse is performed should be specified.

These preliminary ontological needs will be obtained after applying the Semantic Application Questionnaires.

5.2 Design

Design is the process of describing the structure of the software to be implemented, the data which is part
of the system, the interfaces between system components and, sometimes the algorithms used [Som07].

This deliverable is focused on the activity of obtaining the architecture of the large-scale semantic application.

5.2.1 Inputs

The inputs of the Design process are the following:

• Semantic Application Requirements Document.

1The set of ontological needs are the input to the Ontology Specification activity described in the NeOn Methodology for Building
Contextualized Ontology Networks [SAB+08]. Thus the Set of Ontological Needs input is different from the Ontology Requirements
Specification Document, which is the output of the Ontology Specification activity.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 59 of 198

• A catalogue of architectural Patterns.

The Semantic Application Requirements Document is an output of the Requirements Engineering Process
and has been described in the previous section.

The Architectural Patterns are a methodological input to the Design process. These patterns reflect common
organizations of semantic-related software components in large-scale semantic applications. They will be
give support to the application developers during the Design process.

The components in the architectural patterns are those described in the Semantic Web Framework
[GGMN08] (see Section 3.3).

5.2.2 Output

The output of the Design process is the Semantic Application Architecture document.

The architecture will be obtained with the support of the Architectural Patterns.

The Semantic Application Architecture document defines the architecture of the large-scale semantic appli-
cation. The document contains the components, interfaces and relationships between them that will conform
the application architecture.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 60 of 198 NeOn Integrated Project EU-IST-027595

Chapter 6

Semantic Application Characteristics

This chapter describes the main features that characterize large-scale semantic applications.

Appendix 14 describes a set of questionnaires that will help the ontology developer to identify the charac-
teristics during the Requirements Elicitation and Analysis activity. These questionnaires can be used by the
application developers during the interviews with the application customer.

We cluster the features according to the dimensions shown in Figure 6.1.

(1) Use of a single ontology or a network of ontologies
(2) Design-time or run-time ontology selection
(3) Use of generic or domain-specific ontologies
(4) Generation of new ontologies
(5) Use of internal or external ontologies
(6) Ontologies reuse and reengineering
(7) Non-ontological resources reengineering
(8) Ontologies dynamicity
(9) Centralization or distribution of ontologies
(10) Scalabitlity regarding the number of ontologies
(11) Scalability regarding the number of ontology elements
(12) Ontologies encoding heterogeneity
(13) Ability to resolve conceptual heterogeneity in ontologies

(14) Data domain dependence
(15) Data Generation
(16) Use of internal or external data sources
(17) Use of linked data
(18) Data distribution
(19) Data dynamicity
(20) Design-time or run-time data selection
(21) Data scalability
(22) Use of non-semantic data
(23) Data encoding heterogeneity

(24) Kind of semantic reasoning
(25) Sound reasoning
(26) Complete reasoning
(27) Hybrid reasoning
(28) Reasoning with contradictory data
(29) Reasoning with incomplete data
(30) Reasoning with uncertainty
(31) Distributed reasoning

(32) Interoperability with other applications

Ontologies Data

Reasoning Non-functional

Figure 6.1: Characteristics of Large-scale Semantic Applications

Next, the characteristics in each dimension are explained.

6.1 Ontologies Dimension

The following characteristics describe the nature of the ontologies that the application will use.

Characteristic 1 – Use of a single ontology or a network of ontologies
It determines if the application will use a single ontology or a network of ontologies.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 61 of 198

Characteristic 2 – Design-time or run-time ontology selection
It states if the ontologies will be selected at design-time by the ontology developer or at run-time by the
application using some kind of criteria such as ontology quality, ontology complexity, ontology richness,
user’s evaluation, etc.

Characteristic 3 – Use of generic or domain-specific ontologies
It specifies if the ontologies used by the application will be bound to a particular domain or not.

Characteristic 4 – Generation of new ontologies
It determines if the application will produce ontologies.

Characteristic 5 – Use of internal or external ontologies
It determines if the application will use its own ontologies or, if the application will take ontologies from
external sources, or a combination of both.

Characteristic 6 – Ontologies reuse and reengineering
It determines if the ontologies that the application uses will have been obtained by reusing or reengineering
other existing ontologies.

Characteristic 7 – Non-ontological resources reengineering
It determines whether the ontologies that the application uses will have been obtained by reengineering other
existing non-ontological resources.

Characteristic 8 – Ontologies dynamicity
It specifies the degree on which a part or the whole set of ontologies will constantly change during the
application execution time or if they will not experiment any change during the execution time.

Characteristic 9 – Centralization or distribution of ontologies
It determines whether the ontologies used will be available in a centralized resource or distributed among
different resources.

Characteristic 10 – Scalability with respect to the number of ontologies
It specifies if the application will operate at scale with a huge number of ontologies.

Characteristic 11 – Scalability with respect to the number of ontology elements
It specifies if the application can operate at scale with ontologies containing a huge number of ontology
elements.

Characteristic 12 – Ontologies encoding heterogeneity
It states if the application will make use of ontologies formalized in different ontology languages (e.g.
RDF(S)1, OWL2, etc.).

Characteristic 13 – Ability to resolve conceptual heterogeneity in ontologies
It defines whether the application will make use of mappings between ontologies. In that case it is important
to know if the alignments can be discovered at design-time or at run-time.

1http://www.w3.org/TR/rdf-schema/
2http://www.w3.org/TR/owl-features/

2006–2009 c© Copyright lies with the respective authors and their institutions.

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-features/

Page 62 of 198 NeOn Integrated Project EU-IST-027595

6.2 Data Dimension

The following characteristics describe the nature of the data that the application will use. Data could be
expressed in RDF, XML, structured according to a relational schema or in other means.

Characteristic 14 – Data domain dependence
It specifies whether the data used by the application will be bound to a particular domain or not.

Characteristic 15 – Data generation
It determines whether the application will generate new data.

Characteristic 16 – Use of internal or external data sources
It determines whether the application will use only its own data, or if the application will take data from
external sources.

Characteristic 17 – Use of linked data
It determines whether the application will use and/or generate linked data, e.g. resources from across the
Open Linked Data community3. It is a particular case of Characteristic 16 when using external data sources.

Characteristic 18 – Data distribution
It determines whether data would be centralized in a single resource or distributed in multiple resources.

Characteristic 19 – Data dynamicity
It specifies if data would be changing during the application execution time, or if, on the contrary, they will not
experiment any change during execution time.

Characteristic 20 – Design-time or run-time data selection
It states when the data sources will be selected. If the selection is done at run-time, then they has to be
selected according to one criterion for giving preferences to the gathered data. The criteria for selecting data
are the following: data quality, data richness, user’s evaluation, etc.

Characteristic 21 – Data scalability
It specifies if the application can operate at scale with a huge size of data.

Characteristic 22 – Use of non-semantic data
It defines if the application will use non-semantic data, ranging from unstructured data (e.g. a corpora), to
non-semantic structured resources (e.g. relational data bases, XML resources, etc.).

Characteristic 23 – Data encoding heterogeneity
It defines if the application will use data encoded in different formats (e.g. triples in RDF/XML4, or in N35,
etc.).

6.3 Reasoning Dimension

The application can apply different reasoning mechanisms to the ontologies and the data. Next some different
characteristics regarding to reasoning are explained.

3http://linkeddata.org/
4http://www.w3.org/TR/rdf-syntax-grammar/
5http://www.w3.org/DesignIssues/Notation3

http://linkeddata.org/
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/DesignIssues/Notation3

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 63 of 198

Characteristic 24 – Kind of semantic reasoning
It defines the kinds of semantic reasoning that the application will apply. These kinds of semantic reasoning
can be: consistency checking, inference of new data, automatic classification, instances classification and
subsumption reasoning.

Characteristic 25 – Sound reasoning
It defines if the application will apply a sound reasoning.

Characteristic 26 – Complete reasoning
It defines if the application will apply a complete reasoning.

Characteristic 27 – Hybrid reasoning
It specifies if the application will have to reason simultaneously with knowledge sources with non-ontological
nature and with ontological sources. It is also important to identify if the application will need to use tech-
niques such as:

• Machine learning techniques like instance classification algorithms, approximate inference techniques,
etc.

• Linguistic techniques for processing unstructured text resources, for localising ontologies, for learning
ontologies or for populating ontologies.

• Statistical techniques.

• Graph matching.

Characteristic 28 – Reasoning with contradictory data
It defines the capability of the application to deal with contradictory data.

Characteristic 29 – Reasoning with incomplete data
It defines the capability of the application to deal with incomplete data. If the semantic application deals with
incomplete data, then the Open World Assumption is chosen; otherwise, the semantic application will reason
with the Closed World Assumption.

Characteristic 30 – Reasoning with uncertainty
It defines if the application will take into account uncertainty for reasoning.

Characteristic 31 – Distributed reasoning
It defines if the application will distribute the reasoning among different nodes.

6.4 Non-functional Characteristics Dimension

Additionally to the characteristics presented before, the application can present different non-functional ones.

Characteristic 32 – Interoperability with other applications
This specifies if the application will interoperate with other external applications, as for example, heteroge-
neous proprietary and legacy solutions. This interoperability in a programatically level can be achieved by
consuming and/or providing different kind of interfaces such Application Programming Interfaces, (Web) ser-
vices, etc. If the application interoperates by consuming and/or providing Web Services, these can have
associated semantics by applying technologies such as Semantic Web Services [FM01] (e.g., WSMO6).

6http://www.wsmo.org

2006–2009 c© Copyright lies with the respective authors and their institutions.

http://www.wsmo.org

Page 64 of 198 NeOn Integrated Project EU-IST-027595

Chapter 7

Use Cases Catalogue

This chapter presents a set of general purpose use cases that commonly appear in semantic applications
obtained by analyzing the scenarios presented in Section 3.2 from the view point of the system user’s goals.

The use cases identified are the following:

• Query Information, where the user’s goal is to obtain integrated information from several resources
given a query.

• Search Resources, where the user’s goal is to find resources (annotated with the corresponding meta-
data) related to a given query. The difference with the previous use case is that while in the previous
approach the results consist in information integrated from different resources, in this use case, the
results consist in a set of documents located by using semantic information for searching.

• Browse Resources, where the user’s goal is to navigate through categorised resources. Within this
use case users navigate through the resources utilizing ontologies as indexes.

• Extract Information, where the user’s goal is to extract meaningful information from a set of resources
obtained after performing a search.

• Manage Knowledge where the user’s goal is to collaboratively construct and evolve shared knowledge
(e.g. knowledge management systems and contents management systems).

The scenarios for building semantic applications analyzed in the state of the art have been adapted by
explaining them from a user-goal perspective (more likely as it is done in Software Engineering) in order to
be clearly understood by software engineers and final application customers. Table 7.1 shows the mapping
between the use cases obtained and the scenarios analyzed in the state of the art.

Next, all the use cases are explained and described. The use-cases will be graphically represented according
to UML 2.0 notation and detailed with some of the information expressed in Table 7.2 (obtained from [Lar05]).

7.1 Query Information Use Case

In the Query Information use case a person or system requests the application to deliver some integrated
information. Then the system returns the information to the actor that has requested it.

As happens with the category presented un Section 3.2 (Usage as a Media for Knowledge Sharing), this
use case aims at knowledge sharing among systems, between people and systems, or among people using
ontologies and instance models about the target knowledge [KHS+08]. This use case also corresponds to
the scenario Common Access to Information and to the categories Usage as a Data Schema and Usage as
a Media for Knowledge Sharing (see Section 3.2).

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 65 of 198

State of the art scenarios
Use case Scenario in [JU99] Scenario in [KHS+08]
1. Query Information 3. Common access to

Information
4. Usage as a Data Schema
5. Usage as a Media for
Knowledge Sharing

2. Search Resources 4. Ontology Based Search 2. Usage for Search
3. Browse Resources 3. Usage as an Index
4. Extract Information 7. Usage for Information

Extraction
6. Usage for a Semantic
Analysis

5. Manage Knowledge 1. Neutral Authoring
2. Ontology as Specification

1. Usage as a Common
Vocabulary
8. Usage as a Rule Set for
Knowledge Models
9. Usage for Systematising
Knowledge

Table 7.1: Mapping between the scenarios analysed and the use cases obtained

Use-case Section Comment
Use-case name The name of the use-case. It should start with a verb.
Scope The system under design.
Level This section states whether the use case is an “user-goal” or a “sub-

function”, which is a part that is repeated in some use cases and thus
its description can be reused.

Primary actor The primary actor that calls on the system to deliver its services.
Stakeholders and
interests

Who care about this use case, and what they want.

Preconditions What must be true from the start, and worth telling the reader.
Success
guarantee

What must be true on successful completion, and worth telling the
reader.

Main success
scenario

A typical, unconditional happy path scenario of success.

Extensions Alternate scenarios of success or failure.
Special
requirements

Related non-functional requirements.

Technology and
data variations list

Varying I/O methods and data formats.

Frequency of
occurrence

Influences investigation, testing, and timing of implementation.

Miscellaneous Miscellaneous information such as open issues.

Table 7.2: Template for describing use-cases [Lar05]

In order to achieve the use case goal, ontologies can be used as common vocabularies or data schemas,
and often the application will use alignments between ontologies or between ontologies and non-ontological
resources schemas. This issue is treated in Chapter 8.

Table 7.3 shows the template of this use case.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 66 of 198 NeOn Integrated Project EU-IST-027595

Use Case Template UCT1: Query Information
UML Diagram

System

Primary Actor

Query Information

Information Provider 1

Information Provider N

System

Primary Actor

Search Resources

Resources Provider 1

Resources Provider N

System

Primary Actor

Browse Resources

Resources Provider 1

Resources Provider N

System

Primary Actor

Search Resources

Resources Provider 1

Resources Provider N

Extract Information

<<includes>>

Primary Actor
The person or system who requests the System under development to deliver some infor-
mation.
Stakeholders and Interests

• The Primary Actor requires some information that the System must gather and inte-
grate from other Information Providers.

• The Information Providers provide the System with the information to be integrated.

Preconditions

• The Primary Actor can access the System.

Success Guarantee (or Postconditions)
The System returns to the required information to the Primary Actor after integrating cor-
rectly the information obtained from the Information Providers if these exist.
Main Success Scenario (or Basic Flow)

1. The Primary Actor requests the System to deliver some integrated information.

2. The System requests an Information Provider the information that requires from it.

3. The Information Provider responds to the System with the requested information.

Steps 2-3 are repeated until there are no more Information Providers to be requested.

4. The System integrates the gathered information and returns the Primary Actor the
required information.

(continues on next page)

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 67 of 198

(comes from previous page)

Extensions (or Alternative Flows)
*a. At any time, System fails:

1. The System informs the Primary Actor about the failure.

2-3a. No Information Providers are required to provide the requested information.

1. System obtains the requested information from its own resources continuing in step
4.

2-3b. At any time, the communication with the Information Provider fails.

1. System keeps requesting other Information Providers continuing in step 2.
1a. The information requested to the Information Provider is mandatory; so the
Information Provider should give a correct response to the Primary Actor.

1. The System informs the Primary Actor about the failure.
Table 7.3: Query Information use case template

7.2 Search Resources Use Case

Within the Search Resources use case a person or system request the application to make a search by using
semantic information for it.

This use case corresponds to with the category Usage for Search and to the scenario Ontology-based
Search, presented in Section 3.2.

Table 7.4 shows the template of this use case.

Use Case Template UCT2: Search Resources
UML Diagram

System

Primary Actor

Query Information

Information Provider 1

Information Provider N

System

Primary Actor

Search Resources

Resources Provider 1

Resources Provider N

System

Primary Actor

Browse Resources

Resources Provider 1

Resources Provider N

System

Primary Actor

Search Resources

Resources Provider 1

Resources Provider N

Extract Information

<<includes>>

Primary Actor
The person or system who requests the System under development to deliver some re-
sources according to a given search.
Stakeholders and Interests

• The Primary Actor requires some resources that the System must return after
searching them in external providers.

• The Resources Providers provide the System with the resources found.

(continues on next page)

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 68 of 198 NeOn Integrated Project EU-IST-027595

(comes from previous page)

Preconditions

• The Primary Actor can access the System.

Success Guarantee (or Postconditions)
The System returns the Primary Actor the resources found after searching for them in the
External Providers if they exist.
Main Success Scenario (or Basic Flow)

1. The Primary Actor requests the System to deliver some resources according to a
given search.

2. The System requests a Resources Provider the resources that fulfil the search.

3. The Resources Provider responds to the System with the requested resources.

Steps 2-3 are repeated until there are no more Resources Providers to be requested.

4. The System returns to the Primary Actor the resources found among all the Re-
sources Providers.

Extensions (or Alternative Flows)
*a. At any time, System fails:

1. The System informs the Primary Actor about the failure.

2-3a. No Resources Providers are required to provide the resources to be found.

1. The System obtains the requested resources by itself and continues in step 4.

2-3b. At any time the communication with the Resources Providers fails.

1. The System keeps requesting other Resources Providers and continues in step 2.

Table 7.4: Search Resources use case template

7.3 Browse Resources Use Case

Within the Browse Resources use case a person uses the application to navigate through a set of resources,
distributed among a set of resource providers, for accessing their contents or descriptions.

This use case corresponds to the category Usage as an Index presented in Section 3.2. This is so because
this use case utilizes the structure of an ontology for browsing the resources.

Table 7.5 shows the template of this use case.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 69 of 198

Use Case Template UCT3: Browse Resources
UML Diagram

System

Primary Actor

Query Information

Information Provider 1

Information Provider N

System

Primary Actor

Search Resources

Resources Provider 1

Resources Provider N

System

Primary Actor

Browse Resources

Resources Provider 1

Resources Provider N

System

Primary Actor

Search Resources

Resources Provider 1

Resources Provider N

Extract Information

<<includes>>

Primary Actor
The person who navigates through a set of resources for accessing their contents or de-
scriptions.
Stakeholders and Interests

• The Primary Actor, who navigates through a set of resources until selecting the
desired one for accessing its content or description.

• The Resources Providers provide the System with the selected resource.

Preconditions

• The Primary Actor can access the System.

Success Guarantee (or Postconditions)
The System returns the selected resource to the Primary Actor after obtaining it from the
correspondent Resources Provider if this exists.
Main Success Scenario (or Basic Flow)

1. The Primary Actor navigates through a resource and requests the System to return
it.

2. The System requests the resource to the Resources Provider, who owns the re-
quested resource.

3. The Resources Provider responds to the System with the requested resource.

4. The System returns to the requested resource to the Primary Actor.

(continues on next page)

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 70 of 198 NeOn Integrated Project EU-IST-027595

(comes from previous page)

Extensions (or Alternative Flows)
*a. At any time, System fails:

1. The System informs the Primary Actor about the failure.

2-3a. The resource is located at the System itself.

1. The System continues in step 4.

2-3b. At any time the communication with the Resources Provider fails.

1. The System informs the Primary Actor about the failure.

Table 7.5: Browse Resources use case template

7.4 Extract Information Use Case

Within the Extract Information use case a person or system requests the application to make a search using
semantic information for it. After the search is performed, the system returns meaningful information about
the resources found. The information returned can be obtained after performing some analysis to the search
results.

This use case correspond to the category Usage for Information Extraction presented in Section 3.2. The use
case includes the Search Resources use case in the sense that the applications implementing the Extract
Information use case extract semantic information from the resources found.

Table 7.6 shows the template of this use case.

Use Case Template UCT4: Extract Information
UML Diagram

System

Primary Actor

Query Information

Information Provider 1

Information Provider N

System

Primary Actor

Search Resources

Resources Provider 1

Resources Provider N

System

Primary Actor

Browse Resources

Resources Provider 1

Resources Provider N

System

Primary Actor

Search Resources

Resources Provider 1

Resources Provider N

Extract Information

<<includes>>

Primary Actor
The person or system who requests the System under development to extract information
about some resources found after a search.

(continues on next page)

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 71 of 198

(comes from previous page)

Stakeholders and Interests

• The Primary Actor requires information about some resources that the System must
return.

• The Resources Providers provide the System with the resources from where extract
the information.

Preconditions

• The Primary Actor can access the System.

Success Guarantee (or Postconditions)
The System returns the Primary Actor the information about the resources found after
searching those resources in the External Providers if these exist.
Main Success Scenario (or Basic Flow)

1. Find resources: Includes Search Resources in External Providers (UCT2).

2. The System obtains the information associated to the documents found and returns
it to the Primary Actor.

Extensions (or Alternative Flows)
*a. At any time, System fails:

1. The System informs the Primary Actor about the failure.

Table 7.6: Extract Information use case template

7.5 Manage Knowledge Use Case

Within the Manage Knowledge use case a person or system manages a network of ontologies. The goal of
this use case can be achieved in the following ways:

• By manually managing elements within an ontology (classes, properties, etc.).

• By manually managing instances or annotations.

• By learning an ontology, that is, creating or enriching an ontology by processing a given document
corpora.

• By managing mappings between elements inside different ontologies, or between an element of a
given ontology and a non-ontological resource schema. Any mapping can be either created in a totally
manual way or in a semi-automatic way.

• By populating an ontology after processing any kind of non-ontological resource content.

This use case is related to the scenarios Neutral Authoring, Ontology as Specification and to the categories
Usage as a Common Vocabulary, Usage as a Rule Set for Knowledge Sharing and Usage for Systematizing
Knowledge presented in Section 3.2.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 72 of 198 NeOn Integrated Project EU-IST-027595

Table 7.7 shows the template of this use case.

Use Case Template UCT5: Manage Knowledge
UML Diagram

System

Primary Actor

Manage Knowledge

Primary Actor
The person who manages a network of ontologies (and associated instances).
Stakeholders and Interests

• The Primary Actor manages a network of ontologies (and associated instances).

Preconditions

• The Primary Actor can access the System.

Success Guarantee (or Postconditions)
The System commit the changes made in the ontology network by the Primary Actor.
Main Success Scenario (or Basic Flow)

1. The Primary Actor request the System to add a given ontology element (class, in-
stance, property, etc.).

2. The System commits the changes sent by the Primary actor.

Extensions (or Alternative Flows)
(continues on next page)

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 73 of 198

(comes from previous page)

*a. At any time, System fails:

1. The System informs the Primary Actor about the failure.

1a. The Primary Actor wants to modify a given ontology element (class, instance, property,
etc.).

1. The Primary Actor sends the System the modifications.

2. The System continues in Step 2.

1b. The Primary Actor wants to remove a given ontology element (class, instance, prop-
erty, etc.)

1. The Primary Actor sends the System the ontology element to be deleted.

2. The System continues in Step 2.

1c. The Primary Actor wants to learn an ontology from a given document corpora.

1. The Primary Actor sends the system the location of the corpora.

2. The System generates the ontology and continues in Step 2.

1d. The Primary Actor wants to create manually a mapping .

1. The Primary Actor sends the system the two elements to be mapped.

2. The System generates the mapping and continues in Step 2.

1e. The Primary Actor wants to modify a mapping.

1. The Primary Actor sends the system the mapping to be modified.

2. The System modifies the mapping and continues in Step 2.

1f. The Primary Actor wants to delete a mapping.

1. The Primary Actor sends the system the mapping to be deleted.

2. The System removes the mapping and continues in Step 2.

1g. The Primary Actor wants to automatically generate an alignment.

1. The Primary Actor sends the system the ontologies and/or structured non-
ontological resources schemas to be mapped.

2. The System creates the alignment and continues in Step 2.

1h. The Primary Actor wants to populate an ontology.

1. The Primary Actor sends the system the ontology to be populated and the non-
ontological resource from where to generate the instances.

2. The System creates the instances and continues in Step 2.

Table 7.7: Manage Knowledge use case template

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 74 of 198 NeOn Integrated Project EU-IST-027595

Chapter 8

System Models Catalogue

System models provide the following information about resources:

• The nature of the knowledge resource, that is ontological or non-ontological.

• The system where the knowledge resource is located. The resource is bound within a system limit.

• The dynamic nature of the repository, that is, if resources are engineered at design-time or, on the
contrary, they are gathered and selected at run-time.

This chapter presents the catalogue of system models associated to the use cases provided in Chapter 7
and constrained by the semantic characteristics presented in Chapter 6.

The chapter is structured as follows.

• First, a set of basic symbols that will appear in the system models is provided.

• Then, the possible relationships between the basic symbols are described.

• Afterwards, a set of basic templates that include various symbols and relationships are specified.

• Finally, the catalogue of system models associated to the use cases are provided.

8.1 Basic Symbols

8.1.1 Resources

The methodology proposes to draw resources on system models with an identifier, as well as with a symbol
that represent aspects such as the ontological or non-ontological nature of the resource (e.g., ontology,
instances, schema, data, etc.). Next, the symbols used for representing ontological and non-ontological
resources are introduced.

Static Ontological Resources

Tables 8.1 and 8.2 describe the symbols used when representing either static ontologies or static instances
(ontologies or instances selected at design-time) within system models.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 75 of 198

Symbol 1
Name Static Ontology

Representation

Application

Ontology

System Limit

Non-ontological

resource

Non-ontological

resource content

interaction

Non-ontological

resource schema

Unstructured

document
Instances

Ontology Instances
Non-ontological

resource schema

Unstructured

document

Non-ontological

resource content

Ontology Instances
Non-ontological

resource schema

Non-ontological

resource content
Unstructured

document

Associated Characteristics
2 Ontology selected at design-time.

Table 8.1: Symbol 1. Static Ontology

Symbol 2
Name Static Instances

Representation

Application

Ontology

System Limit

Non-ontological

resource

Non-ontological

resource content

interaction

Non-ontological

resource schema

Unstructured

document
Instances

Ontology Instances
Non-ontological

resource schema

Unstructured

document

Non-ontological

resource content

Ontology Instances
Non-ontological

resource schema

Non-ontological

resource content
Unstructured

document

Associated Characteristics
20 Instances selected at design-time.

Table 8.2: Symbol 2. Static Instances

Static Non-ontological Resources

Non Ontological Resources are existing knowledge-aware resources whose semantics have not been for-
malised yet by an ontology [SAB+08]. These resources present the form of free texts, textual corpora, web
pages, standards, catalogues, web directories, classifications, thesauri, lexicons and folksonomies, among
others [SAB+08].

Sabou et al. [SAA+07] classify non ontological resources into unstructured (e.g., corpora), semi-structured
(e.g., folksonomies, html pages, etc.), and structured (e.g., databases, XML, etc.) resources. With the
purpose of drawing system models, this deliverable makes a distinction between structured and unstructured
non-ontological resources. Unstructured resources includes semi-structures resources.

Non-ontological resources symbols are described in Tables 8.3, 8.4 and 8.5. The first symbol is used for
representing the schema of the structured non-ontological resource, while the second symbol represents the
data that contains the structured non-ontological resource. Finally the last symbol represents a collection of
unstructured resources.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 76 of 198 NeOn Integrated Project EU-IST-027595

Symbol 3
Name Static Non-ontological Resource Schema

Representation

Application

Ontology

System Limit

Non-ontological

resource
Non-ontological

resource content

interaction

Non-ontological

resource schema

Unstructured

document

Instances

Ontology Instances
Non-ontological

resource schema

Unstructured

document

Non-ontological

resource content

Ontology Instances
Non-ontological

resource schema

Non-ontological

resource content
Unstructured

document

Associated Characteristics
20 Data selected at design-time.
22 Use of non-semantic data.

Table 8.3: Symbol 3. Static Non-ontological Resource Schema

Symbol 4
Name Static Non-ontological Resource Content

Representation

Application

Ontology

System Limit

Non-ontological

resource
Non-ontological

resource content

interaction

Non-ontological

resource schema

Unstructured

document

Instances

Ontology Instances
Non-ontological

resource schema

Unstructured

document

Non-ontological

resource content

Ontology Instances
Non-ontological

resource schema

Non-ontological

resource content
Unstructured

document

Associated Characteristics
20 Data selected at design-time.
22 Use of non-semantic data.

Table 8.4: Symbol 4. Static Non-ontological Resource Content

Symbol 5
Name Static Unstructured Document

Representation

Application

Ontology

System Limit

Non-ontological

resource
Non-ontological

resource content

interaction

Non-ontological

resource schema

Unstructured

document

Instances

Ontology Instances
Non-ontological

resource schema

Unstructured

document

Non-ontological

resource content

Ontology Instances
Non-ontological

resource schema

Non-ontological

resource content
Unstructured

document

Associated Characteristics
20 Data selected at design-time.
22 Use of non-semantic data.

Table 8.5: Symbol 5. Static Unstructured Document

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 77 of 198

8.1.2 Dynamic Resources

As it have be observed in the previous subsection, resources must be identified with a name. This is useful
when the resources are gathered or engineered at design-time. However in certain applications, any kind
of resource can be obtained at run-time as it reflects characteristics 2 (Design-time or run-time ontology
selection) and 20 (Design-time or run-time data selection). The symbols used for representing one or more
of these dynamic run-time identified resources can be seen in Tables 8.6, 8.7, 8.8, 8.9 and 8.10.

Symbol 6
Name Dynamic Ontology

Representation

Application

Ontology

System Limit

Non-ontological

resource

Non-ontological

resource content

interaction

Non-ontological

resource schema

Unstructured

document
Instances

Ontology Instances
Non-ontological

resource schema

Unstructured

document

Non-ontological

resource content

Ontology Instances
Non-ontological

resource schema

Non-ontological

resource content
Unstructured

document

Associated Characteristics
2 Ontology discovered at run-time.

Table 8.6: Symbol 6. Dynamic Ontology

Symbol 7
Name Dynamic Instances

Representation

Application

Ontology

System Limit

Non-ontological

resource

Non-ontological

resource content

interaction

Non-ontological

resource schema

Unstructured

document
Instances

Ontology Instances
Non-ontological

resource schema

Unstructured

document

Non-ontological

resource content

Ontology Instances
Non-ontological

resource schema

Non-ontological

resource content
Unstructured

document

Associated Characteristics
20 Instances discovered at run-time.

Table 8.7: Symbol 7. Dynamic Instances

Symbol 8
Name Dynamic Non-ontological Resource Schema

Representation

Application

Ontology

System Limit

Non-ontological

resource

Non-ontological

resource content

interaction

Non-ontological

resource schema

Unstructured

document
Instances

Ontology Instances
Non-ontological

resource schema

Unstructured

document

Non-ontological

resource content

Ontology Instances
Non-ontological

resource schema

Non-ontological

resource content
Unstructured

document

Associated Characteristics
20 Data discovered at run-time.
22 Use of non-semantic data.

Table 8.8: Symbol 8. Dynamic Non-ontological Resource Schema

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 78 of 198 NeOn Integrated Project EU-IST-027595

Symbol 9
Name Dynamic Non-ontological Resource Content

Representation

Application

Ontology

System Limit

Non-ontological

resource

Non-ontological

resource content

interaction

Non-ontological

resource schema

Unstructured

document
Instances

Ontology Instances
Non-ontological

resource schema

Unstructured

document

Non-ontological

resource content

Ontology Instances
Non-ontological

resource schema

Non-ontological

resource content
Unstructured

document

Associated Characteristics
20 Data discovered at run-time.
22 Use of non-semantic data.

Table 8.9: Symbol 9. Dynamic Non-ontological Resource Content

Symbol 10
Name Dynamic Unstructured Document

Representation

Application

Ontology

System Limit

Non-ontological

resource

Non-ontological

resource content

interaction

Non-ontological

resource schema

Unstructured

document
Instances

Ontology Instances
Non-ontological

resource schema

Unstructured

document

Non-ontological

resource content

Ontology Instances
Non-ontological

resource schema

Non-ontological

resource content
Unstructured

document

Associated Characteristics
20 Data discovered at run-time.
22 Use of non-semantic data.

Table 8.10: Symbol 10. Dynamic Unstructured Document

8.1.3 Applications and Systems

The system models will reflect the applications that manage the aforementioned resources. Application will
be represented with the symbol shown in Table8.11. At least the application being developed must appear in
a system model. However other existing or future applications can appear if they are somehow related to the
application being developed.

Symbol 11
Name Application

Representation

Application

InstancesOntology

System Limit

Non-ontological
resource

Non-ontological
resource content

Non-ontological
resource schema

Unstructured
document

Interaction

Table 8.11: Symbol 11. Application

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 79 of 198

Resources and applications will be always bounded within a system. The symbol presented in Table 8.12
will be used to surround resources and applications. At least one system limit must appear within a system
model surrounding the application being developed.

Symbol 12
Name System Limit

Representation

Application

Ontology

System Limit

Non-ontological
resource

Non-ontological
resource content

interaction

Non-ontological
resource schema

Unstructured
document

Instances

Ontology Instances Non-ontological
resource schema

Unstructured
document

Non-ontological
resource content

Ontology Instances
Non-ontological

resource schema

Non-ontological
resource content

Unstructured
document

Associated Characteristics
32 If there exists interoperability with external systems then more than one system

limit will appear in the system model.
5 If external ontologies are present then there will appear ontologies bound within

one or more system limit different than the system limit of the application itself.
16 If external ontologies are present then there will appear data sources bound

within one or more system limit different than the system limit of the application
itself.

Table 8.12: Symbol 12. System Limit

System limits will determine the responsibilities of the development team in the development and manage-
ment of the resources and applications comprised in the system to develop. Resources and applications
bound by other systems should be managed and developed by other stakeholders (e.g. the customer).

8.2 Relationships Between Symbols

This section enumerates the possible relationships between the basic symbols presented that can appear in
the proposed system models.

8.2.1 Conforms To

The relationship Conforms To represents either instances that conforms to an specific ontology (see Table
8.13) or a structured non-ontological content that is expressed according to a given schema (see Table 8.14).

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 80 of 198 NeOn Integrated Project EU-IST-027595

Relationship 1
Name Instances that Conform To a Given Ontology

Representation

Ontology Instances
conforms to

conforms toNon-ontological

resource schema
Non-ontological

resource content

Non-ontological

resource

Ontology Ontology

aligned with

Ontology

aligned with
Non-ontological

resource schema

Table 8.13: Relationship 1. Instances that Conform To a Given Ontology

Relationship 2
Name Non-ontological Resource Content that Conforms To a Given Schema

Representation
Ontology Instances

conforms to

conforms toNon-ontological

resource schema
Non-ontological

resource content

Non-ontological

resource

Ontology Ontology

aligned with

Ontology

aligned with
Non-ontological

resource schema

Table 8.14: Relationship 2. Non-ontological Resource Content that Conforms To a Given Schema

The dynamic resources shown in Subsection 8.1.2 can also participate in this relationship.

Optionally, a structured non-ontological content together with the schema it conforms to can be abbreviated
with the symbol shown in Table 8.15.

Symbol 13
Name Non-ontological Resource Content that Conforms To a Given Schema Abbre-

viation
Representation

Application

InstancesOntology

System Limit

Non-ontological
resource

Non-ontological
resource content

Non-ontological
resource schema

Unstructured
document

Interaction

Table 8.15: Symbol 13. Non-ontological Resource Content that Conforms To a Given Schema Abbreviation

8.2.2 Aligned With

The relationship Aligned with represents both an ontology aligned with other ontology (see Table 8.16) and
an ontology aligned with a structured non-ontological schema (see Table 8.17).

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 81 of 198

Relationship 3
Name Two Aligned Ontologies

Representation

Ontology Instances
conforms to

conforms toNon-ontological

resource schema
Non-ontological

resource content

Non-ontological

resource

Ontology Ontology

aligned with

Ontology

aligned with
Non-ontological

resource schema

Associated Characteristics
13 Ability to resolve conceptual heterogeneity in ontologies.

Table 8.16: Relationship 3. Two Aligned Ontologies

Relationship 4
Name Non-ontological Schema Aligned With an Ontology

Representation

Ontology Instances
conforms to

conforms toNon-ontological

resource schema
Non-ontological

resource content

Non-ontological

resource

Ontology Ontology

aligned with

Ontology

aligned with
Non-ontological

resource schema

22 Use of non-semantic data.
Table 8.17: Relationship 4. Non-ontological Schema Aligned With an Ontology

The dynamic (multiple) resources shown in Subsection 8.1.2 can also participate in this relationship.

8.2.3 Annotate

The relationship Annotate can represent

• An unstructured document annotated by a set of instances.

• An unstructured document annotated by the content of a non-ontological resource.

• An ontology annotated by a set of instances.

• An ontology annotated by the content of a non-ontological resource.

Table 8.18 represents an unstructured document that is annotated by a set of instances. The instances that
annotate the document generally conform to a given ontology.

The dynamic (multiple) resources shown in Subsection 8.1.2 can also participate in this relationship, which
is

• documents can be discovered at run-time and annotated with dynamically generated instances, or

• a suitable ontology for annotating a set of given documents can be discovered at run-time, or

• both ontology and documents can be discovered at run-time.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 82 of 198 NeOn Integrated Project EU-IST-027595

Relationship 5
Name Unstructured Document Annotated by a set of Instances

Representation

Ontology Instances
conforms to

conforms toNon-ontological

resource schema
Non-ontological

resource content

Non-ontological

resource

Ontology Ontology

aligned with

Ontology

aligned with
Non-ontological

resource schema

Instances
Unstructured

document

annotate

Table 8.18: Relationship 5. Unstructured Document Annotated by a set of Instances

Table 8.19 represents an unstructured document annotated by the content of a non-ontological resource.
The metadata that annotates the document generally conforms to a non-ontological resource schema.

Relationship 6
Name Unstructured Document Annotated by Non-ontological Metadata

Representation

Ontology Instances
conforms to

conforms toNon-ontological
resource schema

Non-ontological
resource content

Non-ontological
resource

Ontology Ontology
aligned with

Ontology
aligned with

Non-ontological
resource schema

Instances
Unstructured

document

annotate

Instances
annotate

Ontology

annotate
Ontology

Non-ontological
resource content

Unstructured
document

annotate
Non-ontological
resource content

Table 8.19: Relationship 6. Unstructured Document Annotated by Non-ontological Metadata

Table 8.20 represents an ontology annotated by a set of instances. The metadata that annotates the ontology
generally conforms to another ontology.

Relationship 7
Name Ontology Annotated by a Set of Instances

Representation

Ontology Instances
conforms to

conforms toNon-ontological
resource schema

Non-ontological
resource content

Non-ontological
resource

Ontology Ontology
aligned with

Ontology
aligned with

Non-ontological
resource schema

Instances
Unstructured

document

annotate

Instances
annotate

Ontology

annotate
Ontology

Non-ontological
resource content

Unstructured
document

annotate
Non-ontological
resource content

Table 8.20: Relationship 7. Ontology Annotated by a Set of Instances

Table 8.21 represents an ontology annotated by a non-ontological resource. The metadata that annotates
the ontology generally conforms to a given non-ontological resource schema.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 83 of 198

Relationship 8
Name Ontology Annotated by a Non-ontological Metadata

Representation

Ontology Instances
conforms to

conforms toNon-ontological
resource schema

Non-ontological
resource content

Non-ontological
resource

Ontology Ontology
aligned with

Ontology
aligned with

Non-ontological
resource schema

Instances
Unstructured

document

annotate

Instances
annotate

Ontology

annotate
Ontology

Non-ontological
resource content

Unstructured
document

annotate
Non-ontological
resource content

Table 8.21: Relationship 8. Ontology Annotated by a Non-ontological Metadata

8.3 Basic Templates

This section shows several basic templates that will be used in the catalogue of system models presented in
Section 8.4. This templates represent common organizations of symbols and relationships.

8.3.1 Data Sources with Schema

Ontological and structured non-ontological data sources(or a combination of them) that conform to a given
schema can be represented under three different basic templates. Whenever the symbol shown in Figure
8.1 appears in a system model template it can be expanded by using one of the following basic templates.Application

queries

Ontology

Instances 1

conforms to

conforms to

Instances N

conforms to

conforms to

Non-ontological

resource schema

Non-ontological

res. content 1

Non-ontological

res. content N

Datasources with schema: ontological resourcesDatasources with schema: non ontological resources

Global ontology

aligned with

aligned with

Instances 1 Instances N

conforms to
conforms to

Datasources with

schema

Non ontological

resources 1

Datasources with

schema

Non ontological

resources M

System

Application

Global ontology

aligned with

aligned with

Non-ontological

res. schema 1

Non-ontological

res. schema M

Non-ontological

res. Content 1

conforms to conforms to

Instances 1 Instances N

conforms to
conforms to

queries

Non-ontological

res. Content M

Datasources with schema: ontogical and non ontological resources

Datasources with

schema

Datasources with

schema

Figure 8.1: Datasources with schema

Data Sources with Schema: Ontological Resources

This template represents several ontological data sources (instances) that conform to a given ontology (see
Table 8.22).

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 84 of 198 NeOn Integrated Project EU-IST-027595

Basic Template 1
Name Data Sources with schema: ontological resources

Representation

Application
queries

Ontology

Instances 1

conforms to

conforms to

Instances N

conforms to

conforms to

Non-ontological

resource schema

Non-ontological

res. content 1

Non-ontological

res. content N

Datasources with schema: ontological resourcesDatasources with schema: non ontological resources

Global ontology

aligned with

aligned with

Instances 1 Instances N

conforms to
conforms to

Datasources with

schema

Non ontological

resources 1

Datasources with

schema

Non ontological

resources M

System

Application

Global ontology

aligned with

aligned with

Non-ontological

res. schema 1

Non-ontological

res. schema M

Non-ontological

res. Content 1

conforms to conforms to

Instances 1 Instances N

conforms to
conforms to

queries

Non-ontological

res. Content M

Datasources with schema: ontogical and non ontological resources

Datasources with

schema

Datasources with

schema

Table 8.22: Basic Template 1. Data Sources with schema: ontological resources

Data Sources with Schema: Non-ontological Resources

This template represents several structured non-ontological data sources that conform to a given non-
ontological resource schema (see Table 8.23).

Basic Template 2
Name Data Sources with Schema: Non-ontological Resources

Representation

Application
queries

Ontology

Instances 1

conforms to

conforms to

Instances N

conforms to

conforms to

Non-ontological

resource schema

Non-ontological

res. content 1

Non-ontological

res. content N

Datasources with schema: ontological resourcesDatasources with schema: non ontological resources

Global ontology

aligned with

aligned with

Instances 1 Instances N

conforms to
conforms to

Datasources with

schema

Non ontological

resources 1

Datasources with

schema

Non ontological

resources M

System

Application

Global ontology

aligned with

aligned with

Non-ontological

res. schema 1

Non-ontological

res. schema M

Non-ontological

res. Content 1

conforms to conforms to

Instances 1 Instances N

conforms to
conforms to

queries

Non-ontological

res. Content M

Datasources with schema: ontogical and non ontological resources

Datasources with

schema

Datasources with

schema

Table 8.23: Basic Template 2. Data Sources with Schema: Non-ontological Resources

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 85 of 198

Data Sources with Schema: Ontological and Non-ontological resources

This template represents several structured ontological and non-ontological data sources that conform to a
given ontology.

As can be seen in Table 8.24, the schemas of the non-ontological data sources are aligned with an ontology.

Basic Template 3
Name Data Sources with Schema: Ontological and Non-ontological resources

Representation

Application
queries

Ontology

Instances 1

conforms to

conforms to

Instances N

conforms to

conforms to

Non-ontological

resource schema

Non-ontological

res. content 1

Non-ontological

res. content N

Datasources with schema: ontological resourcesDatasources with schema: non ontological resources

Global ontology

aligned with

aligned with

Instances 1 Instances N

conforms to
conforms to

Datasources with

schema

Non ontological

resources 1

Datasources with

schema

Non ontological

resources M

System

Application

Global ontology

aligned with

aligned with

Non-ontological

res. schema 1

Non-ontological

res. schema M

Non-ontological

res. Content 1

conforms to conforms to

Instances 1 Instances N

conforms to
conforms to

queries

Non-ontological

res. Content M

Datasources with schema: ontogical and non ontological resources

Datasources with

schema

Datasources with

schema

Table 8.24: Basic Template 3. Data Sources with Schema: Ontological and Non-ontological resources

In this case the main schema is considered to be the ontology because the other schemas will not be used
for accessing the data directly by the application.

8.3.2 Annotated Resources

Annotated ontological or non-ontological resources whose annotations conform to a given ontological or non-
ontological schema can be represented by four different templates. Whenever the symbol shown in Figure
8.2 appears in a system model template it can be expanded by using one of the following basic templates.

Metadata Ontology

conforms to

conforms to

Unstructured
documents 1

Unstructured
documents M

annotate

annotate
Instances N

annotate

annotate

Instances 1 Annotated
Resources

Annotated Resources: documents annotated by ontological metadata

conforms to

conforms to

Unstructured
documents 1

Unstructured
documents M

annotate

annotate

annotate

annotate

Annotated Resources: documents annotated by non-ontological metadata

Metadata 1

Metadata N

Metadata Schema

Metadata Ontology

conforms to

conforms to

annotate

annotate
Instances N

annotate

annotate

Instances 1

Annotated Resources: ontolologies annotated by ontological metadata

Ontology 1

Ontology M

conforms to

conforms to

annotate

annotate

annotate

annotate

Annotated Resources: ontologies annotated by non-ontological metadata

Metadata 1

Metadata N

Metadata schema

Ontology 1

Ontology M

Figure 8.2: Annotated Resources

Annotated Documents with Ontological Metadata

This template represents one or more unstructured document collections annotated by one or more instances
resources that conform to a given ontology. Table 8.25 shows the representation of this template.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 86 of 198 NeOn Integrated Project EU-IST-027595

Basic Template 4
Name Annotated Documents with Ontological Metadata

Representation

Metadata Ontology

conforms to

conforms to

Unstructured
documents 1

Unstructured
documents M

annotate

annotate
Instances N

annotate

annotate

Instances 1 Annotated
Resources

Annotated Resources: documents annotated by ontological metadata

conforms to

conforms to

Unstructured
documents 1

Unstructured
documents M

annotate

annotate

annotate

annotate

Annotated Resources: documents annotated by non-ontological metadata

Metadata 1

Metadata N

Metadata Schema

Metadata Ontology

conforms to

conforms to

annotate

annotate
Instances N

annotate

annotate

Instances 1

Annotated Resources: ontolologies annotated by ontological metadata

Ontology 1

Ontology M

conforms to

conforms to

annotate

annotate

annotate

annotate

Annotated Resources: ontologies annotated by non-ontological metadata

Metadata 1

Metadata N

Metadata schema

Ontology 1

Ontology M

Table 8.25: Basic Template 4. Annotated Documents with Ontological Metadata

The ontology, according to which the instances (or annotations) it will conform to, can be selected at design-
time or can be dynamic as explained in Subsection 8.1.2. In [Man07] when the metadata of documents
explicitly refers to concepts of a specific ontology, it is considered a tightly coupled approach, while if docu-
ments are not committed to any predefined ontology, it is considered a a loosely coupled approach. In this
last case an appropriate ontology for a given domain may be chosen at run-time.

Annotated Documents with Non-ontological Metadata

This template represents one or more unstructured document collections annotated by metadata that con-
forms to a given non-ontological resource schema. Table 8.26 shows the representation of this template.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 87 of 198

Basic Template 5
Name Annotated Documents with Non-ontological Metadata

Representation

Metadata Ontology

conforms to

conforms to

Unstructured
documents 1

Unstructured
documents M

annotate

annotate
Instances N

annotate

annotate

Instances 1 Annotated
Resources

Annotated Resources: documents annotated by ontological metadata

conforms to

conforms to

Unstructured
documents 1

Unstructured
documents M

annotate

annotate

annotate

annotate

Annotated Resources: documents annotated by non-ontological metadata

Metadata 1

Metadata N

Metadata Schema

Metadata Ontology

conforms to

conforms to

annotate

annotate
Instances N

annotate

annotate

Instances 1

Annotated Resources: ontolologies annotated by ontological metadata

Ontology 1

Ontology M

conforms to

conforms to

annotate

annotate

annotate

annotate

Annotated Resources: ontologies annotated by non-ontological metadata

Metadata 1

Metadata N

Metadata schema

Ontology 1

Ontology M

Table 8.26: Basic Template 5. Annotated Documents with Non-ontological Metadata

Annotated Ontologies with Ontological Metadata

This template represents one or more ontologies annotated with metadata instances that conform to a ontol-
ogy. Table 8.27 shows the representation of this template.

Basic Template 6
Name Annotated Ontologies with Ontological Metadata

Representation

Metadata Ontology

conforms to

conforms to

Unstructured
documents 1

Unstructured
documents M

annotate

annotate
Instances N

annotate

annotate

Instances 1 Annotated
Resources

Annotated Resources: documents annotated by ontological metadata

conforms to

conforms to

Unstructured
documents 1

Unstructured
documents M

annotate

annotate

annotate

annotate

Annotated Resources: documents annotated by non-ontological metadata

Metadata 1

Metadata N

Metadata Schema

Metadata Ontology

conforms to

conforms to

annotate

annotate
Instances N

annotate

annotate

Instances 1

Annotated Resources: ontolologies annotated by ontological metadata

Ontology 1

Ontology M

conforms to

conforms to

annotate

annotate

annotate

annotate

Annotated Resources: ontologies annotated by non-ontological metadata

Metadata 1

Metadata N

Metadata schema

Ontology 1

Ontology M

Table 8.27: Basic Template 6. Annotated Ontologies with Ontological Metadata

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 88 of 198 NeOn Integrated Project EU-IST-027595

Annotated Ontologies with Non-ontological Metadata

This template represents one or more ontologies annotated by metadata that conforms to a given non-
ontological resource schema. Table 8.28 shows the representation of this template.

Basic Template 7
Name Annotated Ontologies with Non-ontological Metadata

Representation

Metadata Ontology

conforms to

conforms to

Unstructured
documents 1

Unstructured
documents M

annotate

annotate
Instances N

annotate

annotate

Instances 1 Annotated
Resources

Annotated Resources: documents annotated by ontological metadata

conforms to

conforms to

Unstructured
documents 1

Unstructured
documents M

annotate

annotate

annotate

annotate

Annotated Resources: documents annotated by non-ontological metadata

Metadata 1

Metadata N

Metadata Schema

Metadata Ontology

conforms to

conforms to

annotate

annotate
Instances N

annotate

annotate

Instances 1

Annotated Resources: ontolologies annotated by ontological metadata

Ontology 1

Ontology M

conforms to

conforms to

annotate

annotate

annotate

annotate

Annotated Resources: ontologies annotated by non-ontological metadata

Metadata 1

Metadata N

Metadata schema

Ontology 1

Ontology M

Table 8.28: Basic Template 7. Annotated Ontologies with Non-ontological Metadata

8.4 System Models

This section provides a catalogue of system models for the use cases provided in Chapter 7 and constrained
by the semantic characteristics presented in Chapter 6.

Next, the system models presented in this section are enumerated and grouped according to the associated
use case template.

• UCT1: Query Information.

– System Model 1. Query Information with a Single Ontology/Schema Approach.

– System Model 2. Query information with a Multiple Ontologies Approach.

– System Model 3. Query information with a Hybrid Ontologies Approach.

• UCT2: Search Resources.

– System Model 4. Search Resources.

• UCT3: Browse Resources.

– System Model 5. Browse Annotated Resources.

– System Model 6. Browse Ontological Resources.

• UCT4: Extract Information.

– System Model 7. Extract Information.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 89 of 198

• UCT5: Manage Knowledge.

– System Model 8. Edit Datasources.

– System Model 9. Edit Annotations.

– System Model 10. Populate.

– System Model 11. Learn.

8.4.1 Query Information System Models

The system models presented in this subsection correspond to the use case enumerated in Section 7.1.
We have described the following models according to the state of the art of ontology based integration of
information [WVV+01].

Query information with a Single Ontology/Schema Approach

This system model has to be used when the application queries data sources that conform to a given schema.
Table 8.29 shows and application that queries data sources that conforms the given schema.

System Model 1
Name Query information with a Single Ontology/Schema Approach

Representation

Application
queries

Ontology

Instances 1

conforms to

conforms to

Instances N

conforms to

conforms to

Non-ontological

resource schema

Non-ontological

res. content 1

Non-ontological

res. content N

Datasources with schema: ontological resourcesDatasources with schema: non ontological resources

Global ontology

aligned with

aligned with

Instances 1 Instances N

conforms to
conforms to

Datasources with

schema

Non ontological

resources 1

Datasources with

schema

Non ontological

resources M

System

Application

Global ontology

aligned with

aligned with

Non-ontological

res. schema 1

Non-ontological

res. schema M

Non-ontological

res. Content 1

conforms to conforms to

Instances 1 Instances N

conforms to
conforms to

queries

Non-ontological

res. Content M

Datasources with schema: ontogical and non ontological resources

Datasources with

schema

Datasources with

schema
Use Case UCT1: Query Information

Associated Characteristics
1 Single ontology typology.

Table 8.29: System Model 1. Query information with a Single Ontology/Schema Approach

Query Information with a Multiple Ontologies Approach

This system model has to be used when the application queries data sources that are expressed according
to multiple aligned schemas. Table 8.30 shows an application that queries data sources that conform the
given aligned schemas. Each of them can be any data source with a schema presented in Subsection 8.3.1.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 90 of 198 NeOn Integrated Project EU-IST-027595

System Model 2
Name Query information with a Multiple Ontology Approach

Representation

External System MExternal System N+1

Non-ontological
res. schema 1

External System 2External System 1

Application
queries

System

Application

aligned withaligned with

Non-ontological
res. Content 1

conforms to

Non-ontological
res. Content 1

conforms to

Instances 1 Instances N

conforms toconforms to

Local ontology 1 Local ontology N+1 Local ontology
N+M

queries

queries

queries queries

aligned with
Local ontology N

aligned with aligned with

Non-ontological
res. schema M

aligned with

Datasources with aligned schemas

Datasources with
schema

1

Datasources with
schema

N

Datasources with
schema

2

aligned with

aligned with

Use Case UCT1: Query Information
Associated Characteristics

1 Network of ontologies typology.
13 Existence of ontologies’ conceptual heterogeneity.

Table 8.30: System Model 2. Query information with a Multiple Ontology Approach

Query Information with a Hybrid Ontology Approach

This system model has to be used when the application queries data sources that are expressed according
to multiple schemas aligned with a shared vocabulary. Table 8.31 shows and application that queries data
sources aligned with the shared vocabulary. Each of them can be any data source with a schema presented
in Subsection 8.3.1.

System Model 3
Name Query information with a Hybrid Ontology Approach

Representation

Semantic Web System

Application

aligned with

Instances 1

conforms toconforms to

Local ontology 2

queries

Local ontology 1

Shared vocabulary
aligned with

aligned with aligned with

Application
queries

Datasources with shared vocabulary

aligned with aligned with

Datasources with
schema

1

Datasources with
schema

N

Shared vocabulary

Dynamic
Ontologies

Dynamic
Instances

Non-ontological
resource

Use Case UCT1: Query Information
(continues on next page)

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 91 of 198

(comes from previous page)

Associated Characteristics
1 Multiple Ontology Typology.
13 Ability to resolve conceptual heterogeneity in ontologies.

Table 8.31: System Model 3. Query information with a Hybrid Ontology Approach

Criteria for selecting the appropriate approach

The single ontology approach can be applied when the application is based on a single ontology typology
(characteristic 1), so there is not conceptual heterogeneity (characteristic 13). According to [WVV+01], the
implementation effort of this approach is straight-forward, but adding sources or removing them from the
application requires some adaptation in the global ontology.

Both the multiple ontology and hybrid ontology approaches can be applied when the application is based on
a network of ontologies typology (characteristic 1).

Figure 8.3 shows the criteria used for selecting the appropriate system model according to the elicited se-
mantic application characteristics.

Wich is the ontologies
typology?

Single Ontology Multiple Ontologies with
conceptual heterogeneity

Single Ontology Approach Multiple Ontologies Approach
or Hybrid Ontologies Approach

Figure 8.3: Obtain Information system model election criteria

If the ontologies typology is a network of ontologies, then for selecting the appropriate system model the se-
lection between the multiple ontology and hybrid ontology approaches has to be made according to design
decisions that regard factors such the implementation effort. According to [WVV+01], the implementation
effort of the single ontology approach is costly because adding new resources requires to provide a new
source ontology related to other ontologies, whereas the implementation effort of the multiple ontology ap-
proach is reasonable because adding new resources requires to provide a new source ontology aligned with
the shared vocabulary.

8.4.2 Search Resources System Model

The system model presented in this subsection corresponds to the use case enumerated in Section 7.2.

Table 8.32 shows the system model associated to the use case Search Resources. The figure represents
an application that searches resources annotated according to the Annotated Documents basic template
explained in Subsection 8.3.2.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 92 of 198 NeOn Integrated Project EU-IST-027595

System Model 4
Name Search Resources

Representation

Application
search

Application
browse

Application
extract

information
from

Application
browse

Datasources with
schema

Application

populate

Application
edit

Datasources with
schema

Application

learn

Ontology Corpora

Annotated
Resources

Annotated
Resources

Annotated
Resources

Annotated
Resources

Use Case UCT2: Search Resources
Table 8.32: System Model 4. Search Resources

8.4.3 Browse Resources System Models

The system model templates presented in this subsection correspond to the use case described in Section
7.3.

Table 8.33 shows the system model template associated to the use case Browse Resources when the
browsed resources consist of a set of annotated resources. The figure represents an application that browses
resources annotated according to the Annotated Resources basic template explained in Subsection 8.3.2.

System Model 5
Name Browse Annotated Resources

Representation

Application
search

Application
browse

Application
extract

information
from

Application
browse

Datasources with
schema

Application

populate

Application
edit

Datasources with
schema

Application

learn

Ontology Corpora

Annotated
Resources

Annotated
Resources

Annotated
Resources

Annotated
Resources

Use Case UCT3: Browse Resources
Table 8.33: System Model 5. Browse Annotated Resources

Table 8.34 shows the system model template associated to the use case Browse Resources when the
browsed resources consist of a set of ontological resources elements. The figure represents an applica-
tion that navigates through ontological information expressed according to the Data Sources with Schema
basic template explained in Subsection 8.3.1.

System Model 6
Name Browse Ontological Resources

Representation

Application
search

Application
browse

Application
extract

information
from

Application
browse

Datasources with
schema:

Application

populate

Application
edit

Datasources with
schema

Application

learn

Ontology Corpora

Annotated
Resources

Annotated
Resources

Annotated
Resources

Annotated
Resources

Application
edit

Annotated
Resources

Ontological
Resources

Use Case UCT3: Browse Resources
Table 8.34: System Model 6. Browse Ontological Resources

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 93 of 198

8.4.4 Extract Information System Model

Table 8.35 shows the system model template associated to the use case Extract Information (described
in Section 7.4). The figure represents an application that extracts meaningful information from resources
annotated according to the Annotated Documents basic template explained in Subsection 8.3.2.

System Model 7
Name Extract Information

Representation

Application
search

Application
browse

Application
extract

information
from

Application
browse

Datasources with
schema

Application

populate

Application
edit

Datasources with
schema

Application

learn

Ontology Corpora

Annotated
Resources

Annotated
Resources

Annotated
Resources

Annotated
Resources

Use Case UCT4: Extract Information
Table 8.35: System Model 7. Extract Information

8.4.5 Manage Knowledge System Models

This subsection presents the system models associated to the use case described in Section 7.5.

Table 8.36 shows the system model template associated to the use case Manage Knowledge when edit-
ing ontology elements, instances, and alignments of resources that are organized according to one of the
Datasources with Schema templates.

System Model 8
Name Edit Ontological Data Sources

Representation

Application
search

Application
browse

Application
extract

information
from

Application
browse

Application

populate

Application
edit

Application

learn

Ontology Corpora

Annotated
Resources

Annotated
Resources

Annotated
Resources

Annotated
Resources

Application
edit

Annotated
Resources

Datasources with
schema:

Ontological
Resources

Datasources with
schema:

Ontological
Resources

Use Case UCT5: Manage Knowledge
Table 8.36: System Model 8. Edit Ontological Data Sources

Table 8.37 shows the system model template associated to the use case Manage Knowledge when edit-
ing annotation metadata and associated schemas that are organized according to one of the Annotated
Resources templates.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 94 of 198 NeOn Integrated Project EU-IST-027595

System Model 9
Name Edit Annotations

Representation

Application
search

Application
browse

Application
extract

information
from

Application
browse

Datasources with
schema

Application

populate

Application
edit

Datasources with
schema

Application

learn

Ontology Corpora

Annotated
Resources

Annotated
Resources

Annotated
Resources

Annotated
Resources

Application
edit

Annotated
Resources

Use Case UCT5: Manage Knowledge
Table 8.37: System Model 9. Edit Annotations

Table 8.38 shows the system model template associated to the use case Manage Knowledge when populat-
ing a an ontology.

System Model 10
Name Populate

Representation

Application
search

Application
browse

Application
extract

information
from

Application
browse

Datasources with
schema

Application

populate

Application
edit

Datasources with
schema

Application

learn

Ontology Corpora

Annotated
Resources

Annotated
Resources

Annotated
Resources

Annotated
Resources

Use Case UCT5: Manage Knowledge
Table 8.38: System Model 10. Populate

Table 8.39 shows the system model template associated to the use case Manage Knowledge when learning
a an ontology from a document corpora.

System Model 11
Name Learn

Representation

Application
search

Annotated
Documents

Application
browse

Annotated
Documents

Application
extract

information
from

Annotated
Documents

Application
browse

Datasources with
schema

Application

populate

Annotated
Documents

Application
edit

Datasources with
schema

Application

learn

Ontology Corpora

Use Case UCT5: Manage Knowledge
Table 8.39: System Model 11. Learn

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 95 of 198

8.5 Examples

This section include three examples of system models showing the final result after applying some symbols,
templates and models presented in the chapter.

8.5.1 Example 1

Figure 8.4 illustrates an example of the single ontology approach where the information integrated is either
ontological or non-ontological. In the example all the resources belong to the same system where the ap-
plication is executed, that is, the application consumes its own ontologies and data; hence, this example is
characterized by the use of internal ontologies and data sources (characteristics 5 and 16).

Application
Datasources with

schemaqueries

Ontology

Instances 1

conforms to

conforms to

Instances N

conforms to

conforms to

Non-ontological
resource schema

Non-ontological
res. content 1

Non-ontological
res. content N

Datasources with schema: ontological resources

Datasources with schema: non ontological resources

Global ontology

aligned with
aligned with

Instances 1 Instances N

conforms to
conforms to

Datasources with
schema

Non ontological
resources 1

Datasources with
schema

Non ontological
resources M

System

Application

Global ontology

aligned with
aligned with

Non-ontological
res. schema 1

Non-ontological
res. schema M

Non-ontological
res. Content 1

conforms to conforms to

Instances 1 Instances N

conforms to
conforms to

queries

Non-ontological
res. Content M

Datasources with schema: ontogical and non ontological resources

Figure 8.4: Obtain Information use case with an example of the single ontology approach

8.5.2 Example 2

Figure 8.5 illustrates an example of the multiple ontology approach where the information integrated is either
ontological or non-ontological. In this example, the resources to be integrated belong to various systems
different to the system where the application is executed, although different ontologies have to be created for
integrating the non-ontological resources. Also, in the example, the application consumes own and foreign
ontologies and data; hence this example is characterized by dealing with internal and external ontologies
and external data sources (characteristics 5 and 16).

8.5.3 Example 3

Figure 8.6 illustrates an example of the hybrid ontology approach where the information integrated is either
ontological or non-ontological. In this example, two resources belong to the system in which the application
is executed. The resources have either ontological or non-ontological nature. Also, in the example, different
ontological resources available in an external system are integrated. These ontologies and instances are not

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 96 of 198 NeOn Integrated Project EU-IST-027595

External System N+MExternal System N+1

Non-ontological
res. schema 1

External System NExternal System 1

Application
queries

System

Application

aligned withaligned with

Non-ontological
res. Content 1

conforms to

Non-ontological
res. Content M

conforms to

Instances 1 Instances N

conforms toconforms to

Local ontology 1 Local ontology N+1 Local ontology
N+M

queries

queries

queries queries

aligned with
Local ontology N

aligned with aligned with

Non-ontological
res. schema M

aligned with

Datasources with aligned schemas

Datasources with
schema

1

Datasources with
schema

N

Datasources with
schema

2

aligned with

aligned with

Figure 8.5: Obtain Information use case with an example of the multiple ontology approach

known in design-time, so symbols that represent dynamic resources (see Section 8.1.2) are used to model
this situation. In the example, the application consumes own and foreign ontologies and data, thus this
example is characterized by dealing with internal and external ontologies and data sources (characteristics
5 and 16). This example is also characterized by selecting ontologies and data either at design-time and at
run-time (characteristics 2 and 20).

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 97 of 198

External System System

Application

aligned with

Instances 1

conforms toconforms to

Local ontology 2

queries

Local ontology 1

Shared vocabulary
aligned with

aligned with aligned with

Application
queries

Datasources with shared vocabulary

aligned with aligned with

Datasources with
schema

1

Datasources with
schema

N

Shared vocabulary

Dynamic
Ontologies

Dynamic
Instances

Non-ontological
resource

Figure 8.6: Obtain Information use case with an example of the hybrid ontology approach

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 98 of 198 NeOn Integrated Project EU-IST-027595

Chapter 9

Architectural Patterns

This chapter describes the architectural patterns associated to the system models presented in the previous
chapter. The components involved in the patterns presented in this chapter are those components defined
in the Semantic Web Framework (see Section 3.3) plus other component, the Non-ontological Resource
Discovery and Ranking component, which is not catalogued in the SWF because of its non-ontological
nature.

Each of the patterns presented in this section can be selected taking into account the basic symbols, rela-
tionships and templates present in the system models.

The chapter is structured as follows:

• Section 9.1 describes the interfaces provided and required by the components of the SWF.

• Section 9.2 presents other components that will be used in the patterns and that are not described in
the SWF.

• Section 9.3 describes the components involved in the architecture of an application and associated to
the basic symbols in system models.

• Section 9.4 enumerates the components involved in the architecture of an application and associated
to the relationships between symbols in system models.

• Section 9.5 describes the architectural patterns associated to the basic system model templates.

• Section 9.6 describes the architectural patterns associated to the system models.

9.1 Semantic Web Framework Component Interfaces Description

In order to facilitate the composition of the components their interfaces have to be explicitly named so a
component that requires an interface must be attached to a component that provides the same interface.
Currently the SWF enumerates the functionalities that each of the components provides as well as the de-
pendencies between components. These functionalities describe the behavior and responsibilities of the
components and the interface that the components provide to other components or consume from them.
However the SWF does not explicitly name the interfaces that the components provide or require.

This section extends the definition of the components of the SWF that will be used in the presented archi-
tectural patterns by defining the interfaces that those components provide. The component descriptions are
organized according to the SWF dimension to which they belong.

The components in the architectural patterns will be represented according to the UML 2.0 Component
Diagram specification1.

1http://www.uml.org

http://www.uml.org

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 99 of 198

Figure 9.1 shows the symbol used for representing components. As shown in the figure, these compo-
nents will be annotated according to an UML stereotype that represents the SWF dimension to which the
component belongs to. Table 9.1 shows the stereotypes used for identifying the SWF dimensions.

<<SWF_[Dimension]>>
[Component Name]

Figure 9.1: Semantic Web Framework component representation

Stereotype Dimension
SWF_DMM Data and metadata management
SWF_QER Query and reasoning
SWF_OEN Ontology Engineering
SWF_OCU Ontology Customization
SWF_OEV Ontology Evolution
SWF_OIG Ontology Instance Generation
SWF_SWS Semantic Web Services

Table 9.1: Stereotypes used for describing the SWF dimensions

9.1.1 Data and Metadata Management

Information Directory Manager

According to its definition in the SWF, the Information Directory Manager component provides functionalities
for handling the distribution of a given query among the data providers, managing a content provider directory,
identifying relevant information providers from a query and identifying provider self-descriptions, and handling
the storage of and access to distributed ontologies and data, independent of the particular representation
formalism [GMG+07].

Table 9.2 shows the representation of the Information Directory Manager component as well as its provided
and required interfaces.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 100 of 198 NeOn Integrated Project EU-IST-027595

Information Directory Manager component
UML Diagram

<<SWF_[Dimension]>>
[Component Name]

<<SWF_DMM>>
Ontology Repository

<<SWF_DMM>>
Data Repository

<<SWF_OCU>>
Ontology Discovery and

Ranking

OntAndInstMng

OntAccess

DataAccess

OntAccess
RankingAccess

InformationMng

InfoAccess

InfoAccess

DataManagement InformationMng

<<SWF_DMM>>
Alignment RepositoryAlignmentsAccess AlignmentMng

<<SWF_DMM>>
Information Directory

Manager

OntAccess
DataAccess

O
ntAndInstM

ng

D
ataM

anagem
ent

AlignmentAccess

Alignm
entM

ng

InfoAccess

InformationMng

D
at

aT
ra

ns
la

to
r

M
et

ad
at

aA
cc

es
s

M
et

ad
at

aM
ng

<<SWF_DMM>>
Metadata Registry

MetadataAccess InfoAccess

MetadataMng InformationMng

<<SWF_QER>>
Query AnsweringQueryAnswerer

InfoAccess

OntAccess

DataAccess

QueryProcessor

<<SWF_QER>>
Semantic Query

Processor
QueryProcessor

InfoAccess

OntAccess

QueryAnswerer

<<SWF_QER>>
Semantic Query Editor QueryProcessorQueryEditor

<<SWF_OEN>>
Ontology Editor

QueryProcessor

OntEditor
OntAccess
OntAndInstMng

OntBrowser

<<SWF_OEN>>
Ontology Browser

ViewCustomizer

OntBrowser

OntAccess

<<SWF_OEN>>
Ontology Matcher

Matcher
AlignmentsAccess

AlignmentMng

A
lignE

ditor

Transform
er

M
erger

DataTranslator

M
ediator

O
ntEditor

V
iew

C
ustom

izer

QueryProcessor

OntAccess
DataAccess

AlignmentsAccess<<SWF_OCU>>
Ontology Localization

and Profiling
Profiler OntAccess

OntAccess

Q
ue

ry
E

di
to

r

Q
ue

ry
An

sw
er

er

Q
ue

ry
P

ro
ce

ss
or

OntBrowser

<<SWF_OCU>>
Ontology Adaptation

Operators
Adapter

Profiler

OntAccess

<<SWF_OCU>>
Ontology View
Customization

ViewCustomizer
Adapter

OntAccess

M
at

ch
er

Interfaces Provided
InfoAccess Acronym of Information Access. This interface supplies a unique mech-

anism for accessing different repositories that contain ontological and
non ontological information. It supplies a layer for distributed query
answering

InformationMng Acronym of Information Management. This interface allows manage-
ment (edition) of ontologies and ontology instances.

Interfaces Required
OntAccess Acronym of Ontologies Access. This interface is required to get query

access to the local descriptions of ontologies and instances.
DataAccess This interface is required to get access to the local data and annotated

data sources.
AlignmentAccess This interface is required to get access to the local alignments.
MetadataAccess This interface is required to get access to the local metadata reposito-

ries.
OntAndInstMng Acronym of Ontologies and Instances Management. This interface is

required to provide access to local ontologies and ontology instances
for normal management functions.

DataManagement This interface is required to provide access to local data and annotated
data for normal management functions.

AlignmentMng Acronym of Alignment Management. This interface is required to pro-
vide access to local alignments for normal management functions.

MetadataMng This interface is required to provide access to local metadata reposito-
ries for normal management functions.

DataTranslator This interface is required to perform data translation.
Matcher This interface is required to perform alignments between ontologies.
Table 9.2: Interfaces provided and required of the Information Directory Manager component

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 101 of 198

Ontology Repository

According to its definition in the SWF, the Ontology Repository component provides functionalities to store
and access ontologies and ontology instances locally. Optionally, the ontology repository can be distributed
and, therefore, it will provide transparent access to ontologies and ontology instances logically and physically
distributed [GMG+07].

Table 9.3 shows the representation of the Ontology Repository component as well as its interfaces provided
and required.

Ontology Repository component
UML Diagram

<<SWF_[Dimension]>>

[Component Name]

<<SWF_DMM>>

Ontology Repository

<<SWF_DMM>>

Data Repository

<<SWF_OCU>>

Ontology Discovery and

Ranking

OntAndInstMng

OntAccess

DataAccess

OntAccess

RankingAccess

InformationMng

InfoAccess

InfoAccess

DataManagement InformationMng

<<SWF_DMM>>

Alignment Repository
AlignmentsAccess AlignmentMng

<<SWF_DMM>>

Information Directory

Manager

OntAccess

DataAccess

O
n
tA
n
d
In
s
tM
n
g

D
a
ta
M
a
n
a
g
e
m
e
n
t

AlignmentAccess

A
lig
n
m
e
n
tM
n
g

InfoAccess

InformationMng

D
a
ta
T
ra
n
s
la
to
r

M
e
ta
d
a
ta
A
c
c
e
s
s

M
e
ta
d
a
ta
M
n
g

<<SWF_DMM>>

Metadata Registry

MetadataAccess InfoAccess

MetadataMng InformationMng

<<SWF_QER>>

Query Answering
QueryAnswerer

InfoAccess

OntAccess

DataAccess

QueryProcessor

<<SWF_QER>>

Semantic Query

Processor

QueryProcessor

InfoAccess

OntAccess

QueryAnswerer

<<SWF_QER>>

Semantic Query Editor
QueryProcessorQueryEditor

<<SWF_OEN>>

Ontology Editor
QueryProcessor

OntEditor

OntAccess

OntAndInstMng

OntBrowser

<<SWF_OEN>>

Ontology Browser
ViewCustomizer

OntBrowser

OntAccess

<<SWF_OEN>>

Ontology Matcher

Matcher

AlignmentsAccess

AlignmentMng

A
lig
n
E
d
ito
r

T
ra
n
s
fo
rm
e
r

M
e
rg
e
r

DataTranslator

M
e
d
ia
to
r

O
n
tE
d
ito
r

V
ie
w
C
u
s
to
m
iz
e
r

QueryProcessor

OntAccess

DataAccess

AlignmentsAccess<<SWF_OCU>>

Ontology Localization

and Profiling

Profiler OntAccess

OntAccess

Q
u
e
ry
E
d
it
o
r

Q
u
e
ry
A
n
s
w
e
re
r

Q
u
e
ry
P
ro
c
e
s
s
o
r

OntBrowser

<<SWF_OCU>>

Ontology Adaptation

Operators

Adapter
Profiler

OntAccess

<<SWF_OCU>>

Ontology View

Customization
ViewCustomizer

Adapter

OntAccess

Interfaces Provided
OntAccess Acronym for Ontologies Access. This interface provides a defined pro-

tocol to provide query access to ontologies and instances and supports
standard ontology query languages.

OntAndnstMng Acronym for Ontologies and Instances Management. This interface
allows access management to ontologies and ontology instances.

Interfaces Required
InfoAccess Acronym for Information Access. This interface is required to allow

query access to ontologies and ontology instances located in other
repositories or nodes through an Information Directory Manager. It can
be required to provide fault tolerance mechanisms by ensuring query
access to the system, regardless of whether any node of the distributed
repository is temporarily unavailable.

InformationMng Acronym for Information Management. This interface is required to pro-
vide access management to ontologies and ontology instances located
in other repositories or nodes through an Information Directory Man-
ager. It can be required to manage change propagation automatically
when an ontology is updated, to provide high availability of ontologies
and ontology instances by automatically distributing replicas, or to pro-
vide fault tolerance mechanisms by ensuring access management to
the system regardless of whether any node of the distributed reposi-
tory is temporarily unavailable.

Table 9.3: Interfaces provided and required of the Ontology Repository component

Data Repository

According to its definition in the SWF, the Data Repository component provides functionalities to locally store
and access any type of data (text, images, etc.) and ontology annotated data locally. Optionally, the data
repository can be distributed and, therefore, it will provide transparent access to data and annotated data
logically and physically distributed [GMG+07].

Table 9.4 shows the representation of the Data Repository component as well as its interfaces provided and

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 102 of 198 NeOn Integrated Project EU-IST-027595

required.

Data Repository component
UML Diagram

<<SWF_[Dimension]>>

[Component Name]

<<SWF_DMM>>

Ontology Repository

<<SWF_DMM>>

Data Repository

<<SWF_OCU>>

Ontology Discovery and

Ranking

OntAndInstMng

OntAccess

DataAccess

OntAccess

RankingAccess

InformationMng

InfoAccess

InfoAccess

DataManagement InformationMng

<<SWF_DMM>>

Alignment Repository
AlignmentsAccess AlignmentMng

<<SWF_DMM>>

Information Directory

Manager

OntAccess

DataAccess

O
n
tA
n
d
In
s
tM
n
g

D
a
ta
M
a
n
a
g
e
m
e
n
t

AlignmentAccess

A
lig
n
m
e
n
tM
n
g

InfoAccess

InformationMng

D
a
ta
T
ra
n
s
la
to
r

M
e
ta
d
a
ta
A
c
c
e
s
s

M
e
ta
d
a
ta
M
n
g

<<SWF_DMM>>

Metadata Registry

MetadataAccess InfoAccess

MetadataMng InformationMng

<<SWF_QER>>

Query Answering
QueryAnswerer

InfoAccess

OntAccess

DataAccess

QueryProcessor

<<SWF_QER>>

Semantic Query

Processor

QueryProcessor

InfoAccess

OntAccess

QueryAnswerer

<<SWF_QER>>

Semantic Query Editor
QueryProcessorQueryEditor

<<SWF_OEN>>

Ontology Editor
QueryProcessor

OntEditor

OntAccess

OntAndInstMng

OntBrowser

<<SWF_OEN>>

Ontology Browser
ViewCustomizer

OntBrowser

OntAccess

<<SWF_OEN>>

Ontology Matcher

Matcher

AlignmentsAccess

AlignmentMng

A
lig
n
E
d
ito
r

T
ra
n
s
fo
rm
e
r

M
e
rg
e
r

DataTranslator

M
e
d
ia
to
r

O
n
tE
d
ito
r

V
ie
w
C
u
s
to
m
iz
e
r

QueryProcessor

OntAccess

DataAccess

AlignmentsAccess<<SWF_OCU>>

Ontology Localization

and Profiling

Profiler OntAccess

OntAccess

Q
u
e
ry
E
d
it
o
r

Q
u
e
ry
A
n
s
w
e
re
r

Q
u
e
ry
P
ro
c
e
s
s
o
r

OntBrowser

<<SWF_OCU>>

Ontology Adaptation

Operators

Adapter
Profiler

OntAccess

<<SWF_OCU>>

Ontology View

Customization
ViewCustomizer

Adapter

OntAccess

Interfaces Provided
DataAccess This interface provides a defined protocol to access data resources.
DataManagement This interface allows the management of data resources.

Interfaces Required
InfoAccess Acronym for Information Access. This interface is required to allow

access to data and data annotation resources located in other repos-
itories or nodes through an Information Directory Manager. It can be
required to provide fault tolerance mechanisms by ensuring access to
the system regardless of whether any node of the distributed repository
is temporarily unavailable.

InformantionMng Acronym for Information Management. This interface is required to pro-
vide management of data and data annotations located in other repos-
itories through an Information Directory Manager. It can be required to
provide high availability of data and data annotations by automatically
distributing replicas, or to provide fault tolerance mechanisms by en-
suring access management to the system regardless of whether any
node of the distributed repository is temporarily unavailable.

Table 9.4: Interfaces provided and required of the Data Repository component

Alignment Repository

According to its definition in the SWF, the Alignment Repository component provides functionalities for han-
dling the storage of and access to distributed alignments [GMG+07].

Table 9.5 shows the representation of the Alignment Repository component as well as its interfaces provided
and required.

Alignment Repository component
UML Diagram

<<SWF_[Dimension]>>
[Component Name]

<<SWF_DMM>>
Ontology Repository

<<SWF_DMM>>
Data Repository

<<SWF_OCU>>
Ontology Discovery and

Ranking

OntAndInstMng

OntAccess

DataAccess

OntAccess
RankingAccess

InformationMng

InfoAccess

InfoAccess

DataManagement InformationMng

<<SWF_DMM>>
Alignment RepositoryAlignmentAccess AlignmentMng

<<SWF_DMM>>
Information Directory

Manager

OntAccess
DataAccess

O
ntAndInstM

ng

D
ataM

anagem
ent

AlignmentAccess

Alignm
entM

ng

InfoAccess

InformationMng

D
at

aT
ra

ns
la

to
r

M
et

ad
at

aA
cc

es
s

M
et

ad
at

aM
ng

<<SWF_DMM>>
Metadata Registry

MetadataAccess InfoAccess

MetadataMng InformationMng

<<SWF_QER>>
Query AnsweringQueryAnswerer

InfoAccess

OntAccess

DataAccess

QueryProcessor

<<SWF_QER>>
Semantic Query

Processor
QueryProcessor

InfoAccess

OntAccess

QueryAnswerer

<<SWF_QER>>
Semantic Query Editor QueryProcessorQueryEditor

<<SWF_OEN>>
Ontology Editor

QueryProcessor

OntEditor
OntAccess
OntAndInstMng

OntBrowser

<<SWF_OEN>>
Ontology Browser

ViewCustomizer

OntBrowser

OntAccess

<<SWF_OEN>>
Ontology Matcher

Matcher
AlignmentsAccess

AlignmentMng

A
lignE

ditor

Transform
er

M
erger

DataTranslator

M
ediator

O
ntEditor

V
iew

C
ustom

izer

QueryProcessor

OntAccess
DataAccess

AlignmentsAccess<<SWF_OCU>>
Ontology Localization

and Profiling
Profiler OntAccess

OntAccess

Q
ue

ry
E

di
to

r

Q
ue

ry
An

sw
er

er

Q
ue

ry
P

ro
ce

ss
or

OntBrowser

<<SWF_OCU>>
Ontology Adaptation

Operators
Adapter

Profiler

OntAccess

<<SWF_OCU>>
Ontology View
Customization

ViewCustomizer
Adapter

OntAccess

M
at

ch
er

Interfaces Provided
AlignmentAccess This interface provides access, via protocol, to different alignments.
AlignmentMng Acronym for Alignment Management. This interface allows the different

alignments to be published and unpublished into the repository.
Table 9.5: Interfaces provided and required of the Alignment Repository component

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 103 of 198

Metadata Registry

According to its definition in the SWF, the Metadata Registry component provides functionalities to store
and access any metadata information (ontology metadata) locally. Optionally, the registry can be distributed
and, therefore, it will provide transparent access to metadata information logically and physically distributed
[GMG+07].

Table 9.6 shows the representation of the Metadata Registry component as well as its interfaces provided
and required.

Metadata Registry component
UML Diagram

<<SWF_[Dimension]>>

[Component Name]

<<SWF_DMM>>

Ontology Repository

<<SWF_DMM>>

Data Repository

<<SWF_OCU>>

Ontology Discovery and

Ranking

OntAndInstMng

OntAccess

DataAccess

OntAccess

RankingAccess

InformationMng

InfoAccess

InfoAccess

DataManagement InformationMng

<<SWF_DMM>>

Alignment Repository
AlignmentsAccess AlignmentMng

<<SWF_DMM>>

Information Directory

Manager

OntAccess

DataAccess

O
n
tA
n
d
In
s
tM
n
g

D
a
ta
M
a
n
a
g
e
m
e
n
t

AlignmentAccess

A
lig
n
m
e
n
tM
n
g

InfoAccess

InformationMng

D
a
ta
T
ra
n
s
la
to
r

M
e
ta
d
a
ta
A
c
c
e
s
s

M
e
ta
d
a
ta
M
n
g

<<SWF_DMM>>

Metadata Registry

MetadataAccess InfoAccess

MetadataMng InformationMng

<<SWF_QER>>

Query Answering
QueryAnswerer

InfoAccess

OntAccess

DataAccess

QueryProcessor

<<SWF_QER>>

Semantic Query

Processor

QueryProcessor

InfoAccess

OntAccess

QueryAnswerer

<<SWF_QER>>

Semantic Query Editor
QueryProcessorQueryEditor

<<SWF_OEN>>

Ontology Editor
QueryProcessor

OntEditor

OntAccess

OntAndInstMng

OntBrowser

<<SWF_OEN>>

Ontology Browser
ViewCustomizer

OntBrowser

OntAccess

<<SWF_OEN>>

Ontology Matcher

Matcher

AlignmentsAccess

AlignmentMng

A
lig
n
E
d
ito
r

T
ra
n
s
fo
rm
e
r

M
e
rg
e
r

DataTranslator

M
e
d
ia
to
r

O
n
tE
d
ito
r

V
ie
w
C
u
s
to
m
iz
e
r

QueryProcessor

OntAccess

DataAccess

AlignmentsAccess<<SWF_OCU>>

Ontology Localization

and Profiling

Profiler OntAccess

OntAccess

Q
u
e
ry
E
d
it
o
r

Q
u
e
ry
A
n
s
w
e
re
r

Q
u
e
ry
P
ro
c
e
s
s
o
r

OntBrowser

<<SWF_OCU>>

Ontology Adaptation

Operators

Adapter
Profiler

OntAccess

<<SWF_OCU>>

Ontology View

Customization
ViewCustomizer

Adapter

OntAccess

Interfaces Provided
MetadataAccess This interface provides a defined protocol to access metadata informa-

tion.
MetadataMng This interface allows the management of metadata information.

Interfaces Required
InfoAccess Acronym for Information Access. This interface is required to allow

access to metadata information located in other registries or nodes
through an Information Directory Manager. It can be required to pro-
vide fault tolerance mechanisms by ensuring access to the system re-
gardless of whether any node of the distributed registry is temporarily
unavailable.

InformantionMng Acronym for Information Management. This interface is required to pro-
vide access management to metadata information located in other reg-
istries through an Information Directory Manager. It can be required to
manage change propagation automatically when a metadata element
is updated (i.e. to ensure consistency of dependent artifacts e.g. re-
lated ontologies.).

Table 9.6: Interfaces provided and required of the Metadata Registry component

9.1.2 Querying and Reasoning

Query Answering

According to its definition in the SWF, the Query Answering component takes care of all the issues related
to the logical processing of a query by providing reasoning functionalities to search results in a knowledge
base [GMG+07].

Table 9.7 shows the representation of the Query Answering component as well as its interfaces provided and
required.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 104 of 198 NeOn Integrated Project EU-IST-027595

Query Answering component
UML Diagram

<<SWF_[Dimension]>>

[Component Name]

<<SWF_DMM>>

Ontology Repository

<<SWF_DMM>>

Data Repository

<<SWF_OCU>>

Ontology Discovery and

Ranking

OntAndInstMng

OntAccess

DataAccess

OntAccess

RankingAccess

InformationMng

InfoAccess

InfoAccess

DataManagement InformationMng

<<SWF_DMM>>

Alignment Repository
AlignmentsAccess AlignmentMng

<<SWF_DMM>>

Information Directory

Manager

OntAccess

DataAccess

O
n
tA
n
d
In
s
tM
n
g

D
a
ta
M
a
n
a
g
e
m
e
n
t

AlignmentAccess

A
lig
n
m
e
n
tM
n
g

InfoAccess

InformationMng

D
a
ta
T
ra
n
s
la
to
r

M
e
ta
d
a
ta
A
c
c
e
s
s

M
e
ta
d
a
ta
M
n
g

<<SWF_DMM>>

Metadata Registry

MetadataAccess InfoAccess

MetadataMng InformationMng

<<SWF_QER>>

Query Answering
QueryAnswerer

InfoAccess

OntAccess

DataAccess

QueryProcessor

<<SWF_QER>>

Semantic Query

Processor

QueryProcessor

InfoAccess

OntAccess

QueryAnswerer

<<SWF_QER>>

Semantic Query Editor
QueryProcessorQueryEditor

<<SWF_OEN>>

Ontology Editor
QueryProcessor

OntEditor

OntAccess

OntAndInstMng

OntBrowser

<<SWF_OEN>>

Ontology Browser
ViewCustomizer

OntBrowser

OntAccess

<<SWF_OEN>>

Ontology Matcher

Matcher

AlignmentsAccess

AlignmentMng

A
lig
n
E
d
ito
r

T
ra
n
s
fo
rm
e
r

M
e
rg
e
r

DataTranslator

M
e
d
ia
to
r

O
n
tE
d
ito
r

V
ie
w
C
u
s
to
m
iz
e
r

QueryProcessor

OntAccess

DataAccess

AlignmentsAccess<<SWF_OCU>>

Ontology Localization

and Profiling

Profiler OntAccess

OntAccess

Q
u
e
ry
E
d
it
o
r

Q
u
e
ry
A
n
s
w
e
re
r

Q
u
e
ry
P
ro
c
e
s
s
o
r

OntBrowser

<<SWF_OCU>>

Ontology Adaptation

Operators

Adapter

Profiler

OntAccess

<<SWF_OCU>>

Ontology View

Customization
ViewCustomizer

Adapter

OntAccess

Interfaces Provided
QueryAnswerer This interface provides the logical processing of a given query.

Interfaces Required
QueryProcessor This interface is required to perform the physical processing of a query.
InfoAccess This interface is required as a mediator for accessing various reposito-

ries.
OntAccess This interface is required to get access to local ontologies and in-

stances.
DataAccess This interface is required to get access to the local data and annotated

data sources.
Table 9.7: Interfaces provided and required of the Query Answering component

Semantic Query Processor

According to its definition in the SWF, the Semantic Query Processor component takes care of all the issues
related to the physical processing of a query by providing reasoning functionalities to manage query answer-
ing over ontologies in distributed sources. This involves (among other functions) translating queries and their
results from one ontology to another. It also involves merging results from different information sources into
a consistent unified result which can be presented to the end user [GMG+07].

Table 9.7 shows the representation of the Query Answering component as well as its interfaces provided and
required.

Semantic Query Processor component
UML Diagram

<<SWF_[Dimension]>>

[Component Name]

<<SWF_DMM>>

Ontology Repository

<<SWF_DMM>>

Data Repository

<<SWF_OCU>>

Ontology Discovery and

Ranking

OntAndInstMng

OntAccess

DataAccess

OntAccess

RankingAccess

InformationMng

InfoAccess

InfoAccess

DataManagement InformationMng

<<SWF_DMM>>

Alignment Repository
AlignmentsAccess AlignmentMng

<<SWF_DMM>>

Information Directory

Manager

OntAccess

DataAccess

O
n
tA
n
d
In
s
tM
n
g

D
a
ta
M
a
n
a
g
e
m
e
n
t

AlignmentAccess

A
lig
n
m
e
n
tM
n
g

InfoAccess

InformationMng

D
a
ta
T
ra
n
s
la
to
r

M
e
ta
d
a
ta
A
c
c
e
s
s

M
e
ta
d
a
ta
M
n
g

<<SWF_DMM>>

Metadata Registry

MetadataAccess InfoAccess

MetadataMng InformationMng

<<SWF_QER>>

Query Answering
QueryAnswerer

InfoAccess

OntAccess

DataAccess

QueryProcessor

<<SWF_QER>>

Semantic Query

Processor

QueryProcessor

InfoAccess

OntAccess

QueryAnswerer

<<SWF_QER>>

Semantic Query Editor
QueryProcessorQueryEditor

<<SWF_OEN>>

Ontology Editor
QueryProcessor

OntEditor

OntAccess

OntAndInstMng

OntBrowser

<<SWF_OEN>>

Ontology Browser
ViewCustomizer

OntBrowser

OntAccess

<<SWF_OEN>>

Ontology Matcher

Matcher

AlignmentsAccess

AlignmentMng

A
lig
n
E
d
ito
r

T
ra
n
s
fo
rm
e
r

M
e
rg
e
r

DataTranslator

M
e
d
ia
to
r

O
n
tE
d
ito
r

V
ie
w
C
u
s
to
m
iz
e
r

QueryProcessor

OntAccess

DataAccess

AlignmentsAccess<<SWF_OCU>>

Ontology Localization

and Profiling

Profiler OntAccess

OntAccess

Q
u
e
ry
E
d
it
o
r

Q
u
e
ry
A
n
s
w
e
re
r

Q
u
e
ry
P
ro
c
e
s
s
o
r

OntBrowser

<<SWF_OCU>>

Ontology Adaptation

Operators

Adapter

Profiler

OntAccess

<<SWF_OCU>>

Ontology View

Customization
ViewCustomizer

Adapter

OntAccess

Interfaces Provided
QueryProcessor This interface provides the physical processing of a given query.

(continues on next page)

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 105 of 198

(comes from previous page)

Interfaces Required
QueryAnswerer This interface is required to translate queries to the ontologies used by

distributed resources, to initiate query execution in remote sources and
to obtain query results.

InfoAccess This interface is required to answer queries over ontologies and in-
stances in distributed sources.

OntAccess This interface is required to get access to local ontologies and in-
stances.

Table 9.8: Interfaces provided and required of the Semantic Query Processor component

Semantic Query Editor

According to its definition in the SWF, the Semantic Query Editor component takes care of all the issues
related to interfacing with the user, and accomplish this by supporting user in formulating a query [GMG+07].

Table 9.9 shows the representation of the Semantic Query Editor component as well as its interfaces provided
and required.

Semantic Query Editor component
UML Diagram

<<SWF_[Dimension]>>

[Component Name]

<<SWF_DMM>>

Ontology Repository

<<SWF_DMM>>

Data Repository

<<SWF_OCU>>

Ontology Discovery and

Ranking

OntAndInstMng

OntAccess

DataAccess

OntAccess

RankingAccess

InformationMng

InfoAccess

InfoAccess

DataManagement InformationMng

<<SWF_DMM>>

Alignment Repository
AlignmentsAccess AlignmentMng

<<SWF_DMM>>

Information Directory

Manager

OntAccess

DataAccess

O
n
tA
n
d
In
s
tM
n
g

D
a
ta
M
a
n
a
g
e
m
e
n
t

AlignmentAccess
A
lig
n
m
e
n
tM
n
g

InfoAccess

InformationMng

D
a
ta
T
ra
n
s
la
to
r

M
e
ta
d
a
ta
A
c
c
e
s
s

M
e
ta
d
a
ta
M
n
g

<<SWF_DMM>>

Metadata Registry

MetadataAccess InfoAccess

MetadataMng InformationMng

<<SWF_QER>>

Query Answering
QueryAnswerer

InfoAccess

OntAccess

DataAccess

QueryProcessor

<<SWF_QER>>

Semantic Query

Processor

QueryProcessor

InfoAccess

OntAccess

QueryAnswerer

<<SWF_QER>>

Semantic Query Editor
QueryProcessorQueryEditor

<<SWF_OEN>>

Ontology Editor
QueryProcessor

OntEditor

OntAccess

OntAndInstMng

OntBrowser

<<SWF_OEN>>

Ontology Browser
ViewCustomizer

OntBrowser

OntAccess

<<SWF_OEN>>

Ontology Matcher

Matcher

AlignmentsAccess

AlignmentMng

A
lig
n
E
d
ito
r

T
ra
n
s
fo
rm
e
r

M
e
rg
e
r

DataTranslator

M
e
d
ia
to
r

O
n
tE
d
ito
r

V
ie
w
C
u
s
to
m
iz
e
r

QueryProcessor

OntAccess

DataAccess

AlignmentsAccess<<SWF_OCU>>

Ontology Localization

and Profiling

Profiler OntAccess

OntAccess

Q
u
e
ry
E
d
it
o
r

Q
u
e
ry
A
n
s
w
e
re
r

Q
u
e
ry
P
ro
c
e
s
s
o
r

OntBrowser

<<SWF_OCU>>

Ontology Adaptation

Operators

Adapter

Profiler

OntAccess

<<SWF_OCU>>

Ontology View

Customization
ViewCustomizer

Adapter

OntAccess

Interfaces Provided
QueryEditor This interface provides access to all the issues related to the user in-

terface.
Interfaces Required

QueryProcessor This interface is required to translate queries and their results from the
user-friendly format to other formats and back again.

Table 9.9: Interfaces provided and required of the Semantic Query Editor component

9.1.3 Ontology Engineering

Ontology Editor

According to its definition in the SWF, the Ontology Editor component provides functionalities to create and
modify ontologies, ontology elements, and ontology documentation [GMG+07].

Table 9.10 shows the representation of the Ontology Editor component as well as its interfaces provided and
required.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 106 of 198 NeOn Integrated Project EU-IST-027595

Ontology Editor component
UML Diagram

<<SWF_[Dimension]>>

[Component Name]

<<SWF_DMM>>

Ontology Repository

<<SWF_DMM>>

Data Repository

<<SWF_OCU>>

Ontology Discovery and

Ranking

OntAndInstMng

OntAccess

DataAccess

OntAccess

RankingAccess

InformationMng

InfoAccess

InfoAccess

DataManagement InformationMng

<<SWF_DMM>>

Alignment Repository
AlignmentsAccess AlignmentMng

<<SWF_DMM>>

Information Directory

Manager

OntAccess

DataAccess

O
n
tA
n
d
In
s
tM
n
g

D
a
ta
M
a
n
a
g
e
m
e
n
t

AlignmentAccess

A
lig
n
m
e
n
tM
n
g

InfoAccess

InformationMng

D
a
ta
T
ra
n
s
la
to
r

M
e
ta
d
a
ta
A
c
c
e
s
s

M
e
ta
d
a
ta
M
n
g

<<SWF_DMM>>

Metadata Registry

MetadataAccess InfoAccess

MetadataMng InformationMng

<<SWF_QER>>

Query Answering
QueryAnswerer

InfoAccess

OntAccess

DataAccess

QueryProcessor

<<SWF_QER>>

Semantic Query

Processor

QueryProcessor

InfoAccess

OntAccess

QueryAnswerer

<<SWF_QER>>

Semantic Query Editor
QueryProcessorQueryEditor

<<SWF_OEN>>

Ontology Editor
QueryProcessor

OntEditor

OntAccess

OntAndInstMng

OntBrowser

<<SWF_OEN>>

Ontology Browser
ViewCustomizer

OntBrowser

OntAccess

<<SWF_OEN>>

Ontology Matcher

Matcher

AlignmentsAccess

AlignmentMng

A
lig
n
E
d
ito
r

T
ra
n
s
fo
rm
e
r

M
e
rg
e
r

DataTranslator
M
e
d
ia
to
r

O
n
tE
d
ito
r

V
ie
w
C
u
s
to
m
iz
e
r

QueryProcessor

OntAccess

DataAccess

AlignmentsAccess<<SWF_OCU>>

Ontology Localization

and Profiling

Profiler OntAccess

OntAccess

Q
u
e
ry
E
d
it
o
r

Q
u
e
ry
A
n
s
w
e
re
r

Q
u
e
ry
P
ro
c
e
s
s
o
r

OntBrowser

<<SWF_OCU>>

Ontology Adaptation

Operators

Adapter

Profiler

OntAccess

<<SWF_OCU>>

Ontology View

Customization
ViewCustomizer

Adapter

OntAccess

Interfaces Provided
OntEditor This interface provides the functionalities to edit the ontology elements.

Interfaces Required
OntAccess This interface is required to get access to ontologies and ontology ele-

ments.
OntAndInstMng This interface is required to store ontologies and ontology elements.
QueryProcessor This interface is required to check if an ontology is satisfiable after per-

forming changes.
OntBrowser This interface is required to navigate through an ontology to insert,

modify, or document its elements.
Table 9.10: Provided and required interfaces of the Ontology Editor component

Ontology Browser

According to its definition in the SWF, the Ontology Browser component provides functionalities to visually
browse an ontology [GMG+07].

Table 9.11 shows the representation of the Ontology Browser component as well as its interfaces provided
and required.

Ontology Browser component
UML Diagram

<<SWF_[Dimension]>>

[Component Name]

<<SWF_DMM>>

Ontology Repository

<<SWF_DMM>>

Data Repository

<<SWF_OCU>>

Ontology Discovery and

Ranking

OntAndInstMng

OntAccess

DataAccess

OntAccess

RankingAccess

InformationMng

InfoAccess

InfoAccess

DataManagement InformationMng

<<SWF_DMM>>

Alignment Repository
AlignmentsAccess AlignmentMng

<<SWF_DMM>>

Information Directory

Manager

OntAccess

DataAccess
O
n
tA
n
d
In
s
tM
n
g

D
a
ta
M
a
n
a
g
e
m
e
n
t

AlignmentAccess

A
lig
n
m
e
n
tM
n
g

InfoAccess

InformationMng

D
a
ta
T
ra
n
s
la
to
r

M
e
ta
d
a
ta
A
c
c
e
s
s

M
e
ta
d
a
ta
M
n
g

<<SWF_DMM>>

Metadata Registry

MetadataAccess InfoAccess

MetadataMng InformationMng

<<SWF_QER>>

Query Answering
QueryAnswerer

InfoAccess

OntAccess

DataAccess

QueryProcessor

<<SWF_QER>>

Semantic Query

Processor

QueryProcessor

InfoAccess

OntAccess

QueryAnswerer

<<SWF_QER>>

Semantic Query Editor
QueryProcessorQueryEditor

<<SWF_OEN>>

Ontology Editor
QueryProcessor

OntEditor

OntAccess

OntAndInstMng

OntBrowser

<<SWF_OEN>>

Ontology Browser
ViewCustomizer

OntBrowser

OntAccess

<<SWF_OEN>>

Ontology Matcher

Matcher

AlignmentsAccess

AlignmentMng

A
lig
n
E
d
ito
r

T
ra
n
s
fo
rm
e
r

M
e
rg
e
r

DataTranslator

M
e
d
ia
to
r

O
n
tE
d
ito
r

V
ie
w
C
u
s
to
m
iz
e
r

QueryProcessor

OntAccess

DataAccess

AlignmentsAccess<<SWF_OCU>>

Ontology Localization

and Profiling

Profiler OntAccess

OntAccess

Q
u
e
ry
E
d
it
o
r

Q
u
e
ry
A
n
s
w
e
re
r

Q
u
e
ry
P
ro
c
e
s
s
o
r

OntBrowser

<<SWF_OCU>>

Ontology Adaptation

Operators

Adapter

Profiler

OntAccess

<<SWF_OCU>>

Ontology View

Customization
ViewCustomizer

Adapter

OntAccess

Interfaces Provided
OntBrowser This interface provides functionalities to visually browse an ontology.

Interfaces Required
OntAccess This interface is required to get access to ontologies.
ViewCustomizer This interface is required to visualize the ontology to be browsed in a

customized fashion.
Table 9.11: Interfaces provided and required of the Ontology Browser component

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 107 of 198

Ontology Matcher

According to its definition in the SWF, the Ontology Matcher component provides functionalities to match two
ontologies and output some alignments. We can distinguish two main types of such components: those that
provide only matching and those that directly use matching for processing another task (merging, mediating,
etc.) [GMG+07].

Table 9.12 shows the representation of the Ontology Matcher component as well as its interfaces provided
and required.

Ontology Matcher component
UML Diagram

<<SWF_[Dimension]>>

[Component Name]

<<SWF_DMM>>

Ontology Repository

<<SWF_DMM>>

Data Repository

<<SWF_OCU>>

Ontology Discovery and

Ranking

OntAndInstMng

OntAccess

DataAccess

OntAccess

RankingAccess

InformationMng

InfoAccess

InfoAccess

DataManagement InformationMng

<<SWF_DMM>>

Alignment Repository
AlignmentsAccess AlignmentMng

<<SWF_DMM>>

Information Directory

Manager

OntAccess

DataAccess

O
n
tA
n
d
In
s
tM
n
g

D
a
ta
M
a
n
a
g
e
m
e
n
t

AlignmentAccess

A
lig
n
m
e
n
tM
n
g

InfoAccess

InformationMng

D
a
ta
T
ra
n
s
la
to
r

M
e
ta
d
a
ta
A
c
c
e
s
s

M
e
ta
d
a
ta
M
n
g

<<SWF_DMM>>

Metadata Registry

MetadataAccess InfoAccess

MetadataMng InformationMng

<<SWF_QER>>

Query Answering
QueryAnswerer

InfoAccess

OntAccess

DataAccess

QueryProcessor

<<SWF_QER>>

Semantic Query

Processor

QueryProcessor

InfoAccess

OntAccess

QueryAnswerer

<<SWF_QER>>

Semantic Query Editor
QueryProcessorQueryEditor

<<SWF_OEN>>

Ontology Editor
QueryProcessor

OntEditor

OntAccess

OntAndInstMng

OntBrowser

<<SWF_OEN>>

Ontology Browser
ViewCustomizer

OntBrowser

OntAccess

<<SWF_OEN>>

Ontology Matcher

Matcher

AlignmentsAccess

AlignmentMng

A
lig
n
E
d
ito
r

T
ra
n
s
fo
rm
e
r

M
e
rg
e
r

DataTranslator

M
e
d
ia
to
r

O
n
tE
d
ito
r

V
ie
w
C
u
s
to
m
iz
e
r

QueryProcessor

OntAccess

DataAccess

AlignmentsAccess<<SWF_OCU>>

Ontology Localization

and Profiling

Profiler OntAccess

OntAccess

Q
u
e
ry
E
d
it
o
r

Q
u
e
ry
A
n
s
w
e
re
r

Q
u
e
ry
P
ro
c
e
s
s
o
r

OntBrowser

<<SWF_OCU>>

Ontology Adaptation

Operators

Adapter

Profiler

OntAccess

<<SWF_OCU>>

Ontology View

Customization
ViewCustomizer

Adapter

OntAccess

Interfaces Provided
Matcher This interface provides an alignment (set of correspondences) from a

list of two or more ontologies.
AlignmentAccess This interface provides access, via protocol, to different alignments.
AlignmentMng Acronym for Alignment Management. This interface allows the different

alignments to be published and unpublished into the repository.
AlignEditor Acronym for Alignment Editor. This interface provides the graphic rep-

resentation and manipulation of the alignments.
Transformer This interface is used for generating an ontology in a given language

from one ontology written in another particular ontology language.
Merger This interface is used for generating an ontology that contains the enti-

ties of two aligned ontologies.
DataTranslator This interface is used for performing the translation of data according to

an alignment between a source ontology or data source with regard to
which the data is expressed and a target ontology to which it is trans-
lated.

Mediator This interface is used to transform queries from one ontology or a data
source into another ontology according to an alignment between them,
and to transform the answers to the query with respect to the same
alignment.

(continues on next page)

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 108 of 198 NeOn Integrated Project EU-IST-027595

(comes from previous page)

Interfaces Required
OntAccess This interface is required to get access to ontologies and instances.
DataAccess This interface is required to get access to data and data anotations.
AlignmentsAccess This interface is required to get access to alignments stored in other

components.
QueryProcessor This interface is required to perform various kinds of queries (contain-

ment, answering, consistency, etc.). This is particularly useful for pro-
viding semantic matching.

ViewCustomizer This interface is required to perform alignments between views of on-
tologies.

OntEditor This interface is required to perform the visual editing of alignments.
Table 9.12: Interfaces provided and required of the Ontology Matcher component

Ontology Learner

According to its definition in the SWF, the Ontology Learner component provides functionalities to acquire
knowledge and generate ontologies of a given domain through some kind of (semi)-automatic process
[GMG+07].

Table 9.13 shows the representation of the Ontology Learner component as well as its interfaces provided
and required.

Ontology Learner component
UML Diagram

<<component>>

Non-ontological

Resource Discovery and

RankingDataAccess

RankingAccess

DataAccess

<<SWF_OIG>>

Manual Annotation
ManualAnnotator

OntAccess

DataAccess

DataManagement

<<SWF_OIG>>

Automatic Annotation
AutoAnnotator

OntAccess

DataAccess

DataManagement

ManualAnnotator

<<SWF_OIG>>

Ontology Populator
OntPopulator

OntAccess

DataAccess

ManualAnnotator

OntAndInstMng

<<SWF_OEN>>

Ontology Learner
OntLearner

OntAndInstMng

DataAccess

Interfaces Provided
OntLearner This interface is used to derive ontologies (semi)-automatically from

natural language texts as well as semi-structured sources and
databases.

Interfaces Required
OntAndInstMng This interface is required to create or modify the ontologies learned.
DataAccess This interface is required to get access to data sources.

Table 9.13: Interfaces provided and required of the Ontology Learner component

Ontology Evaluator

According to its definition in the SWF, the Ontology Evaluator component provides functionalities to evalu-
ate ontologies, either their formal model or their content, in the different phases of the ontology life cycle
[GMG+07].

Table 9.14 shows the representation of the Ontology Evaluator component as well as its interfaces provided

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 109 of 198

and required.

Ontology Evaluator component
UML Diagram

<<component>>

Non-ontological

Resource Discovery and

RankingDataAccess

RankingAccess

DataAccess

<<SWF_OIG>>

Manual Annotation
ManualAnnotator

OntAccess

DataAccess

DataManagement

<<SWF_OIG>>

Automatic Annotation
AutoAnnotator

OntAccess

DataAccess

DataManagement

ManualAnnotator

<<SWF_OIG>>

Ontology Populator
OntPopulator

OntAccess

DataAccess

ManualAnnotator

OntAndInstMng

<<SWF_OEN>>

Ontology Learner
OntLearner

OntAndInstMng

DataAccess

<<SWF_OEN>>

Ontology Evaluator

OntAsseser

OntAccess

DataAccessOntDiagnoser

O
n
tE
v
a
lu
a
to
r

O
n
tV
e
ri
fi
e
r

O
n
tV
a
lid
a
to
r

QueryProcessor

Interfaces Provided
OntEvaluator This interface is used to make a technical judgment of the ontologies,

their associated software environments and documentation with regard
to a frame of reference during each phase and between phases of their
life cycle.

OntVerifier This interface is used to ensure that the ontology implements correctly
the ontology requirements and competency questions, or that functions
correctly in the real world.

OntValidator This interface is used to prove that the world model (if it exists and is
known) is compliant with the world modeled formally in the ontology.

OntAsseser This interface is used to judge the understanding, usability, usefulness,
abstraction, quality and portability of the ontology from the user’s point
of view.

OntDiagnoser This interface is used to identify the causes of errors in an ontology.
Interfaces Required

QueryProcessor This interface is required to decide whether a concept is more general
than another, to build concept hierarchies and to check if an ontology
is satisfiable.

OntAccess This interface is required to access ontologies.
DataAccess This interface is required to access other resources such a linguistic

resources to help in the ontology evaluation.
Table 9.14: Interfaces provided and required of the Ontology Evaluator component

9.1.4 Ontology Customization

Ontology Localization and Profiling

According to the definition in the SWF, the Ontology Localization and Profiling component is in charge of
providing functionalities that adapt an ontology according to some context (e.g. communal or individual
preferences, language, expertise, etc.) or some user profile [GMG+07].

Table 9.15 shows the representation of the Ontology Localization and Profiling component as well as its
interfaces provided and required.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 110 of 198 NeOn Integrated Project EU-IST-027595

Ontology Localization and Profiling component
UML Diagram

<<SWF_[Dimension]>>

[Component Name]

<<SWF_DMM>>

Ontology Repository

<<SWF_DMM>>

Data Repository

<<SWF_OCU>>

Ontology Discovery and

Ranking

OntAndInstMng

OntAccess

DataAccess

OntAccess

RankingAccess

InformationMng

InfoAccess

InfoAccess

DataManagement InformationMng

<<SWF_DMM>>

Alignment Repository
AlignmentsAccess AlignmentMng

<<SWF_DMM>>

Information Directory

Manager

OntAccess

DataAccess

O
n
tA
n
d
In
s
tM
n
g

D
a
ta
M
a
n
a
g
e
m
e
n
t

AlignmentAccess

A
lig
n
m
e
n
tM
n
g

InfoAccess

InformationMng

D
a
ta
T
ra
n
s
la
to
r

M
e
ta
d
a
ta
A
c
c
e
s
s

M
e
ta
d
a
ta
M
n
g

<<SWF_DMM>>

Metadata Registry

MetadataAccess InfoAccess

MetadataMng InformationMng

<<SWF_QER>>

Query Answering
QueryAnswerer

InfoAccess

OntAccess

DataAccess

QueryProcessor

<<SWF_QER>>

Semantic Query

Processor

QueryProcessor

InfoAccess

OntAccess

QueryAnswerer

<<SWF_QER>>

Semantic Query Editor
QueryProcessorQueryEditor

<<SWF_OEN>>

Ontology Editor
QueryProcessor

OntEditor

OntAccess

OntAndInstMng

OntBrowser

<<SWF_OEN>>

Ontology Browser
ViewCustomizer

OntBrowser

OntAccess

<<SWF_OEN>>

Ontology Matcher

Matcher

AlignmentsAccess

AlignmentMng

A
lig
n
E
d
ito
r

T
ra
n
s
fo
rm
e
r

M
e
rg
e
r

DataTranslator

M
e
d
ia
to
r

O
n
tE
d
ito
r

V
ie
w
C
u
s
to
m
iz
e
r

QueryProcessor

OntAccess

DataAccess

AlignmentsAccess<<SWF_OCU>>

Ontology Localization

and Profiling

Profiler OntAccess

OntAccess

Q
u
e
ry
E
d
it
o
r

Q
u
e
ry
A
n
s
w
e
re
r

Q
u
e
ry
P
ro
c
e
s
s
o
r

OntBrowser

<<SWF_OCU>>

Ontology Adaptation

Operators

Adapter

Profiler

OntAccess

<<SWF_OCU>>

Ontology View

Customization
ViewCustomizer

Adapter

OntAccess

Interfaces Provided
Profiler This interface provides the manual construction and activation, the

semi-automated construction and adaptation, and the automated ac-
quisition and management of user profiles.

Interfaces Required
OntAccess This interface is required to get access to ontologies and instances.

Table 9.15: Interfaces provided and required of the Ontology Localization and Profiling component

Ontology Discovery and Ranking

According to its definition in the SWF, the Ontology Discovery and Ranking component is in charge of pro-
viding functionalities that find appropriate views, versions or sub-sets of ontologies, and then to rank them
according to some criterion[GMG+07].

Table 9.16 shows the representation of the Ontology Discovery and Ranking component as well as its inter-
faces provided and required.

Ontology Discovery and Ranking component
UML Diagram

<<SWF_[Dimension]>>

[Component Name]

<<SWF_DMM>>

Ontology Repository

<<SWF_DMM>>

Data Repository

<<SWF_OCU>>

Ontology Discovery and

Ranking

OntAndInstMng

OntAccess

DataAccess

OntAccess

RankingAccess

InformationMng

InfoAccess

InfoAccess

DataManagement InformationMng

<<SWF_DMM>>

Alignment Repository
AlignmentsAccess AlignmentMng

<<SWF_DMM>>

Information Directory

Manager

OntAccess

DataAccess

O
n
tA
n
d
In
s
tM
n
g

D
a
ta
M
a
n
a
g
e
m
e
n
t

AlignmentAccess

A
lig
n
m
e
n
tM
n
g

InfoAccess

InformationMng

D
a
ta
T
ra
n
s
la
to
r

M
e
ta
d
a
ta
A
c
c
e
s
s

M
e
ta
d
a
ta
M
n
g

<<SWF_DMM>>

Metadata Registry

MetadataAccess InfoAccess

MetadataMng InformationMng

<<SWF_QER>>

Query Answering
QueryAnswerer

InfoAccess

OntAccess

DataAccess

QueryProcessor

<<SWF_QER>>

Semantic Query

Processor

QueryProcessor

InfoAccess

OntAccess

QueryAnswerer

<<SWF_QER>>

Semantic Query Editor
QueryProcessorQueryEditor

<<SWF_OEN>>

Ontology Editor
QueryProcessor

OntEditor

OntAccess

OntAndInstMng

OntBrowser

<<SWF_OEN>>

Ontology Browser
ViewCustomizer

OntBrowser

OntAccess

<<SWF_OEN>>

Ontology Matcher

Matcher

AlignmentsAccess

AlignmentMng

A
lig
n
E
d
ito
r

T
ra
n
s
fo
rm
e
r

M
e
rg
e
r

DataTranslator

M
e
d
ia
to
r

O
n
tE
d
ito
r

V
ie
w
C
u
s
to
m
iz
e
r

QueryProcessor

OntAccess

DataAccess

AlignmentsAccess<<SWF_OCU>>

Ontology Localization

and Profiling

Profiler OntAccess

OntAccess

Q
u
e
ry
E
d
it
o
r

Q
u
e
ry
A
n
s
w
e
re
r

Q
u
e
ry
P
ro
c
e
s
s
o
r

OntBrowser

<<SWF_OCU>>

Ontology Adaptation

Operators

Adapter

Profiler

OntAccess

<<SWF_OCU>>

Ontology View

Customization
ViewCustomizer

Adapter

OntAccess

(continues on next page)

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 111 of 198

(comes from previous page)

Interfaces Provided
RankingAccess This interface provides a range of calculated quality measures about

crawled ontologies.
OntAccess This interface provides access to the ontologies discovered.
OntBrowser This interface provides exploratory navigation through the ontologies

discovered.
QueryEditor This interface provides user-level (human-centric) queries (e.g. web

forms).
QueryProcessor This interface provides keyword/term level queries.
QueryAnswerer This interface provides machine-level (content-centric) queries (e.g.

SPARQL).
Interfaces Required

OntAccess This interface is required to get access to crawled ontologies and in-
stances.

Table 9.16: Interfaces provided and required of the Ontology Discovery and Ranking component

Ontology Adaptation Operators

According to its definition in the SWF, the Ontology Adaptation Operators component is in charge of applying
appropriate operators to the ontology in question, the result of which is an ontology customized according to
some criterion (e.g. levels of trust or group preferences) [GMG+07].

Table 9.17 shows the representation of the Ontology Adaptation Operators component as well as the inter-
faces provided and required.

Ontology Adaptation Operators component
UML Diagram

<<SWF_[Dimension]>>

[Component Name]

<<SWF_DMM>>

Ontology Repository

<<SWF_DMM>>

Data Repository

<<SWF_OCU>>

Ontology Discovery and

Ranking

OntAndInstMng

OntAccess

DataAccess

OntAccess

RankingAccess

InformationMng

InfoAccess

InfoAccess

DataManagement InformationMng

<<SWF_DMM>>

Alignment Repository
AlignmentsAccess AlignmentMng

<<SWF_DMM>>

Information Directory

Manager

OntAccess

DataAccess

O
n
tA
n
d
In
s
tM
n
g

D
a
ta
M
a
n
a
g
e
m
e
n
t

AlignmentAccess

A
lig
n
m
e
n
tM
n
g

InfoAccess

InformationMng

D
a
ta
T
ra
n
s
la
to
r

M
e
ta
d
a
ta
A
c
c
e
s
s

M
e
ta
d
a
ta
M
n
g

<<SWF_DMM>>

Metadata Registry

MetadataAccess InfoAccess

MetadataMng InformationMng

<<SWF_QER>>

Query Answering
QueryAnswerer

InfoAccess

OntAccess

DataAccess

QueryProcessor

<<SWF_QER>>

Semantic Query

Processor

QueryProcessor

InfoAccess

OntAccess

QueryAnswerer

<<SWF_QER>>

Semantic Query Editor
QueryProcessorQueryEditor

<<SWF_OEN>>

Ontology Editor
QueryProcessor

OntEditor

OntAccess

OntAndInstMng

OntBrowser

<<SWF_OEN>>

Ontology Browser
ViewCustomizer

OntBrowser

OntAccess

<<SWF_OEN>>

Ontology Matcher

Matcher

AlignmentsAccess

AlignmentMng

A
lig
n
E
d
ito
r

T
ra
n
s
fo
rm
e
r

M
e
rg
e
r

DataTranslator

M
e
d
ia
to
r

O
n
tE
d
ito
r

V
ie
w
C
u
s
to
m
iz
e
r

QueryProcessor

OntAccess

DataAccess

AlignmentsAccess<<SWF_OCU>>

Ontology Localization

and Profiling

Profiler OntAccess

OntAccess

Q
u
e
ry
E
d
it
o
r

Q
u
e
ry
A
n
s
w
e
re
r

Q
u
e
ry
P
ro
c
e
s
s
o
r

OntBrowser

<<SWF_OCU>>

Ontology Adaptation

Operators

Adapter

Profiler

OntAccess

<<SWF_OCU>>

Ontology View

Customization
ViewCustomizer

Adapter

OntAccess

Interfaces Provided
Adapter This interface is in charge of providing a customized ontology after ap-

plying the appropriate operators.
Interfaces Required

Profiler This interface is required to obtain the user profiles.
OntAccess This interface is required to get access to ontologies and instances.

Table 9.17: Provided and required interfaces of the Ontology Adaptation Operators component

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 112 of 198 NeOn Integrated Project EU-IST-027595

Ontology View Customization

According to its definition in the SWF, the View Customization component is responsible for enabling the user
to change or amend a view on a particular ontology to fit a particular purpose (e.g. previewing, content-based
view, topography, etc.) [GMG+07].

Table 9.18 shows the representation of the Ontology View Customization component as well as the interfaces
provided and required.

Ontology View Customization component
UML Diagram

<<SWF_[Dimension]>>

[Component Name]

<<SWF_DMM>>

Ontology Repository

<<SWF_DMM>>

Data Repository

<<SWF_OCU>>

Ontology Discovery and

Ranking

OntAndInstMng

OntAccess

DataAccess

OntAccess

RankingAccess

InformationMng

InfoAccess

InfoAccess

DataManagement InformationMng

<<SWF_DMM>>

Alignment Repository
AlignmentsAccess AlignmentMng

<<SWF_DMM>>

Information Directory

Manager

OntAccess

DataAccess

O
n
tA
n
d
In
s
tM
n
g

D
a
ta
M
a
n
a
g
e
m
e
n
t

AlignmentAccess

A
lig
n
m
e
n
tM
n
g

InfoAccess

InformationMng

D
a
ta
T
ra
n
s
la
to
r

M
e
ta
d
a
ta
A
c
c
e
s
s

M
e
ta
d
a
ta
M
n
g

<<SWF_DMM>>

Metadata Registry

MetadataAccess InfoAccess

MetadataMng InformationMng

<<SWF_QER>>

Query Answering
QueryAnswerer

InfoAccess

OntAccess

DataAccess

QueryProcessor

<<SWF_QER>>

Semantic Query

Processor

QueryProcessor

InfoAccess

OntAccess

QueryAnswerer

<<SWF_QER>>

Semantic Query Editor
QueryProcessorQueryEditor

<<SWF_OEN>>

Ontology Editor
QueryProcessor

OntEditor

OntAccess

OntAndInstMng

OntBrowser

<<SWF_OEN>>

Ontology Browser
ViewCustomizer

OntBrowser

OntAccess

<<SWF_OEN>>

Ontology Matcher

Matcher

AlignmentsAccess

AlignmentMng

A
lig
n
E
d
ito
r

T
ra
n
s
fo
rm
e
r

M
e
rg
e
r

DataTranslator

M
e
d
ia
to
r

O
n
tE
d
ito
r

V
ie
w
C
u
s
to
m
iz
e
r

QueryProcessor

OntAccess

DataAccess

AlignmentsAccess<<SWF_OCU>>

Ontology Localization

and Profiling

Profiler OntAccess

OntAccess

Q
u
e
ry
E
d
it
o
r

Q
u
e
ry
A
n
s
w
e
re
r

Q
u
e
ry
P
ro
c
e
s
s
o
r

OntBrowser

<<SWF_OCU>>

Ontology Adaptation

Operators

Adapter

Profiler

OntAccess

<<SWF_OCU>>

Ontology View

Customization
ViewCustomizer

Adapter

OntAccess

Interfaces Provided
ViewCustomizer This interface is in charge of providing a customized view of an ontol-

ogy.
Interfaces Required

Adapter This interface is required to obtain a customized ontology.
OntAccess This interface is required to get access to ontologies and instances.
Table 9.18: Interfaces provided and required of the Ontology View Customization component

9.1.5 Ontology Instance Generation

Manual Annotation

According to the definition in the SWF, the Manual Annotation component is in charge of the manual and
semi-automatic annotation of digital content documents (e.g. web pages) with concepts in the ontology.
With respect to textual data, mentions of instances in the text which correspond to concepts in the ontology
are annotated manually in the document. Similarly, for non-textual data (e.g. visual, audio and audiovisual
sources), the concepts in the ontology, reflecting the meaning conveyed, are associated with the media
content item [GMG+07].

Table 9.19 shows the representation of the Manual Annotation component as well as its interfaces provided
and required.

Manual Annotation component
UML Diagram

<<component>>

Non-ontological

Resource Discovery and

RankingDataAccess

RankingAccess

DataAccess

<<SWF_OIG>>

Manual Annotation
ManualAnnotator

OntAccess

DataAccess

DataManagement

<<SWF_OIG>>

Automatic Annotation
AutoAnnotator

OntAccess

DataAccess

DataManagement

ManualAnnotator

<<SWF_OIG>>

Ontology Populator
OntPopulator

OntAccess

DataAccess

ManualAnnotator

Interfaces Provided
ManualAnnotator This interface provides the manual and semi-automaic annotation of

digital content documents.
(continues on next page)

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 113 of 198

(comes from previous page)

Interfaces Required
OntAccess This interface is required to obtain ontology information and for collab-

orative annotation.
DataAccess This interface is required to access information in the content sources.
DataManagement This interface is required to insert annotations into the content sources.

Table 9.19: Interfaces provided and required of the Manual Annotation component

Automatic Annotation

According to its definition in the SWF, the Automatic Annotation component is in charge of automatically
annotating digital content documents (e.g. web pages) with concepts in the ontology. Occurrences in the
content of instances of concepts in the ontology are automatically detected and subsequently annotated
[GMG+07].

Table 9.20 shows the representation of the Automatic Annotation component as well as its interfaces provided
and required.

Automatic Annotation component
UML Diagram

<<component>>

Non-ontological

Resource Discovery and

RankingDataAccess

RankingAccess

DataAccess

<<SWF_OIG>>

Manual Annotation
ManualAnnotator

OntAccess

DataAccess

DataManagement

<<SWF_OIG>>

Automatic Annotation
AutoAnnotator

OntAccess

DataAccess

DataManagement

ManualAnnotator

<<SWF_OIG>>

Ontology Populator
OntPopulator

OntAccess

DataAccess

ManualAnnotator

Interfaces Provided
AutoAnnotator Acronym of Automatic Annotator. This interface provides the automatic

annotation of digital content documents.
Interfaces Required

OntAccess This interface is required to obtain ontology information and for collab-
orative annotation.

DataAccess This interface is required to access information in the content sources.
DataManagement This interface is required to insert annotations into the content sources.
ManualAnnotator This interface is required to bootstrap learning.

Table 9.20: Interfaces provided and required of the Automatic Annotation component

Ontology Populator

According to its definition in the SWF, the Ontology Populator component is in charge of providing func-
tionalities to automatically generate new instances in a given ontology from a data source. It links unique
occurrences of instances in the content to instances of concepts in the ontology. Compared to the Mannual
Annotation component, this component will only create one instance in the ontology for a given occurrence,
no matter how many times this is mentioned in the text. Compared to the Automatic Annotation component,

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 114 of 198 NeOn Integrated Project EU-IST-027595

this component does not only disambiguate instances but also identifies co-referring instances [GMG+07].

Table 9.21 shows the representation of the Ontology Populator component as well as the interfaces provided
and required.

Ontology Populator component
UML Diagram

<<component>>

Non-ontological

Resource Discovery and

RankingDataAccess

RankingAccess

DataAccess

<<SWF_OIG>>

Manual Annotation
ManualAnnotator

OntAccess

DataAccess

DataManagement

<<SWF_OIG>>

Automatic Annotation
AutoAnnotator

OntAccess

DataAccess

DataManagement

ManualAnnotator

<<SWF_OIG>>

Ontology Populator
OntPopulator

OntAccess

DataAccess

ManualAnnotator

OntAndInstMng

Interfaces Provided
OntPopulator Acronym for Ontology Populator. This interface provides the automatic

generation of instances.
Interfaces Required

OntAccess This interface is required to obtain ontology and instances information.
DataAccess This interface is required to obtain information from the content

sources.
OntAndInstMng This interface is required to insert the generated instances.
ManualAnnotator This interface is required to bootstrap learning.

Table 9.21: Provided and required interfaces of the Ontology Populator component

9.2 Components Not Defined in the SWF

This subsection presents other components that will also be used in the patterns not described in the SWF.

9.2.1 Non-ontological Resource Discovery and Ranking

The Non-ontological Resource Discovery and Ranking component is in charge of providing functionalities
to find appropriate non-ontological resources, and then to rank them according to some criterion. This
component is not cataloged in the SWF because of its non-semantic nature.

Examples of the implementations of this component are Google2 or Yahoo!3.

Table 9.22 shows the representation of the Non-ontological Resource Discovery and Ranking component as
well as its interfaces provided and required.

2http://www.google.com
3http://www.yahoo.com

http://www.google.com
http://www.yahoo.com

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 115 of 198

Non-ontological Resource Discovery and Ranking component
UML Diagram

<<component>>
Non-ontological

Resource Discovery and
RankingDataAccess

RankingAccess
DataAccess

Interfaces Provided
RankingAccess This interface provides a range of calculated quality measures about

crawled resources.
DataAccess This interface provides access to resources discovered.

Interfaces Required
DataAccess This interface is required to get access to crawled resources (e.g. for

accessing the structure or elements contained in a given XML resource
or database).

Table 9.22: Interfaces provided and required of the Non-ontological Resource Discovery and Ranking com-
ponent

9.3 Components associated to Basic System Models Symbols

This section illustrates the components involved in the architecture of a large-scale semantic application and
associated to the basic symbols in system models.

The differentiation between the types of resources has been explained in Subsection 8.1.1.

In the case of applications symbol, a number of components that make use of the interfaces provided by the
patterns described in this chapter will be included in the architecture depending on their needs. At list of the
System Dialogs and Facades described in Subsection 11.1.1 should also be included.

The presence of system limits can introduce different implementations of the same component in the ar-
chitecture such, for example, data and ontology repositories, when the resources are stored in different
repositories and each of them is comprised in a system limit.

9.3.1 Components Associated to Resources

This subsection describes the components involved in the architecture of a semantic application and associ-
ated to the basic symbols that represent resources in system models.

Components Associated to Ontological Resources

The Ontology Repository component will be used in the application whenever an ontological resource is
present in a system model.

Table 9.23 shows the representation of the Ontological Resource Access and Management pattern.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 116 of 198 NeOn Integrated Project EU-IST-027595

Pattern 1
Name Ontological Resource Access and Management

UML Diagram

<<SWF_OCU>>

Ontology Discovery and

RankingOntAccess

RankingAccess

OntAccess

<<SWF_OCU>>

Ontology Discovery and

Ranking
OntAccess

<<SWF_OCU>>

Ontology Discovery and

RankingOntAccess

RankingAccess

OntAccess

<<SWF_DMM>>

Ontology Repository

<<SWF_DMM>>

Ontology Repository

<<SWF_DMM>>

Data Repository

OntAndInstMng

OntAccess DataAccess

DataManagement

<<SWF_DMM>>

Ontology Repository...

<<component>>

Non-ontological

Resource Discovery and

RankingDataAccess

RankingAccess

DataAccess

<<SWF_DMM>>

Data Repository

Basic Symbols
Associated

1 and 2.

Selection Criterion Presence of a static ontological resources symbol.
Roles of the Components

Ontology
Repository

Provides access, management and storage of the ontology or the in-
stances.

Roles of the Interfaces
OntAccess Provides access to the ontology or the instances.
OntAndInstMng Provides management of the ontology or the instances.

Table 9.23: Ontological Resource Access and Management

Components Associated to Non-ontological Resources

When a non-ontological resource is present in a system model, the component involved in the application
architecture is the Data Repository component, which provides functionalities to store and access any type
of data (structured or non-structured).

Table 9.24 shows the representation of the Non-ontological Resource Access and Management pattern.

Pattern 2
Name Non-ontological Resource Access and Management

UML Diagram

<<SWF_OCU>>

Ontology Discovery and

RankingOntAccess

RankingAccess

OntAccess

<<SWF_OCU>>

Ontology Discovery and

Ranking
OntAccess

<<SWF_OCU>>

Ontology Discovery and

RankingOntAccess

RankingAccess

OntAccess

<<SWF_DMM>>

Ontology Repository

<<SWF_DMM>>

Ontology Repository

<<SWF_DMM>>

Data Repository

OntAndInstMng

OntAccess DataAccess

DataManagement

<<SWF_DMM>>

Ontology Repository...

<<component>>

Non-ontological

Resource Discovery and

RankingDataAccess

RankingAccess

DataAccess

<<SWF_DMM>>

Data Repository

Basic Symbols
Associated

3, 4 and 5.

Selection Criterion Presence of a static non-ontological resource symbol.
Roles of the Components

Data Repository Provides access, management and storage of the non-ontological re-
source.

Roles of the Interfaces
DataAccess Provides access to the non-ontological resource.
DataManagement Provides management of the non-ontological resource.

Table 9.24: Non-ontological Resource Access and Management

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 117 of 198

Components Associated to Dynamic Resources

In the case that dynamic resources is present within a given system model, then a component used for
the discovery of such dynamic resources have to be used. These dynamic resources can be ontological or
non-ontological.

1. When dynamic ontological resources are present in a system model, then the Ontology Discovery and
Ranking component has to be included in the application architecture.

The architecture associated to dynamic ontological resources access can take two possible forms. In
the pattern shown in Table 9.25, the Ontology Discovery and Ranking component is directly connected
to the Ontology Repository component. As shown in the figure, the Ontology Discovery and Ranking
component depends on the Ontology Repository component to access ontologies. In the second
approach, shown in Table 9.26, a set of Ontology Discovery and Ranking components are federated
in a graph to provide access to the ontologies and instances discovered. In this case, the outer nodes
of the graph must be Ontology Repository components.

Pattern 3
Name Dynamic Ontological Resource Access

UML Diagram

<<SWF_OCU>>
Ontology Discovery and

RankingOntAccess

RankingAccess

OntAccess

<<SWF_OCU>>
Ontology Discovery and

Ranking
OntAccess

<<SWF_OCU>>
Ontology Discovery and

RankingOntAccess

RankingAccess

OntAccess

<<SWF_DMM>>
Ontology Repository

<<SWF_DMM>>
Ontology Repository

<<SWF_DMM>>
Data Repository

OntAndInstMng

OntAccess DataAccess

InformationMng

InfoAccess InfoAccess

DataManagement InformationMng

<<SWF_DMM>>
Ontology Repository...

<<component>>
Non-ontological

Resource Discovery and
RankingDataAccess

RankingAccess

DataAccess

<<SWF_DMM>>
Data Repository

Basic Symbols
Associated

6 and 7.

Selection Criterion Presence of a dynamic ontological resource symbol.
Roles of the Components

Ontology
Discovery and
Ranking

Permits discovering and ranking dynamic ontology or dynamic in-
stances.

Ontology
Repository

Provides the access to and storage of the ontology or the instances.

Roles of the Interfaces
OntAccess Provides access to ontology or the instances.
RankingAccess Provides the ranking of ontological resources discovered.

Table 9.25: Dynamic Ontological Resource Access

Pattern 4
Name Dynamic Ontological Resource Access via Federated Discoverers

UML Diagram

<<SWF_OCU>>
Ontology Discovery and

RankingOntAccess

RankingAccess

OntAccess

<<SWF_OCU>>
Ontology Discovery and

Ranking
OntAccess

<<SWF_OCU>>
Ontology Discovery and

RankingOntAccess

RankingAccess

OntAccess

<<SWF_DMM>>
Ontology Repository

<<SWF_DMM>>
Ontology Repository

<<SWF_DMM>>
Data Repository

OntAndInstMng

OntAccess DataAccess

InformationMng

InfoAccess InfoAccess

DataManagement InformationMng

<<SWF_DMM>>
Ontology Repository...

<<component>>
Non-ontological

Resource Discovery and
RankingDataAccess

RankingAccess

DataAccess

<<SWF_DMM>>
Data Repository

Basic Symbols
Associated

6 and 7.

(continues on next page)

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 118 of 198 NeOn Integrated Project EU-IST-027595

(comes from previous page)

Selection Criterion Presence of a dynamic ontological resource symbol.
Roles of the Components

Ontology
Discovery and
Ranking

Provides the discovery and ranking of the dynamic ontology or the in-
stances.

Ontology
Repository

Provides the access to and storage of the ontology or instances

Roles of the Interfaces
OntAccess Provides access to the ontology or instances.
RankingAccess Provides rankings of the ontological resources discovered.

Table 9.26: Dynamic Ontological Resource Access via Federated Discoverers

2. Whenever dynamic non-ontological resources are present within a system model, then an Non-
ontological Resource Discovery and Ranking component should be included in the application ar-
chitecture.

Table 9.27 shows the representation of the pattern of Dynamic Non-ontological Resource Access.

Pattern 5
Name Dynamic Non-ontological Resource Access

UML Diagram

<<SWF_OCU>>
Ontology Discovery and

RankingOntAccess

RankingAccess

OntAccess

<<SWF_OCU>>
Ontology Discovery and

Ranking
OntAccess

<<SWF_OCU>>
Ontology Discovery and

RankingOntAccess

RankingAccess

OntAccess

<<SWF_DMM>>
Ontology Repository

<<SWF_DMM>>
Ontology Repository

<<SWF_DMM>>
Data Repository

OntAndInstMng

OntAccess DataAccess

InformationMng

InfoAccess InfoAccess

DataManagement InformationMng

<<SWF_DMM>>
Ontology Repository...

<<component>>
Non-ontological

Resource Discovery and
RankingDataAccess

RankingAccess

DataAccess

<<SWF_DMM>>
Data Repository

Basic Symbols
Associated

Dynamic non-ontological resources basic symbols.

Selection Criterion 8, 9 and 10.
Roles of the Components

Non-ontological
Resource
Discovery and
Ranking

Provides the discovery and ranking of the dynamic non-ontological re-
source.

Data Repository Provides access to and storage of the non-ontological resource.
Roles of the Interfaces

DataAccess Provides access to the non-ontological resource.
RankingAccess Provides rankings about discovered non-ontological resources.

Table 9.27: Dynamic Non-ontological Resource Access

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 119 of 198

9.4 Components associated to Relationships Between Symbols in System
Models

This section enumerates the components involved in the architecture of an application and associated to the
relationships between symbols in system models.

9.4.1 Conforms To

Since the Ontology Repository component permits access to and stores ontologies and instances, the Con-
forms To relationship does not introduce more components in the architecture apart from the Ontology
Repository in the case of ontological resources.

An analogous situation occurs with non-ontological resources. The Data Repository will store both the
schema and content of non-ontological resources.

In the case that the ontologies or schemas are separated from the data (e.g. stored within different system
limits) then multiple repositories can be included within the application architecture.

9.4.2 Aligned With

When there is an alignment between two ontologies the Ontology Repository component stores and provides
access to them and the Alignment Repository component handles the storage of the mappings that compose
the alignment. The Information Directory component provides access to and management of the mappings
that compose the alignment.

Table 9.28 shows the representation of the pattern of the Alignment between Ontologies Access and Man-
agement.

Pattern 6
Name Alignment between Ontologies Access and Management

UML Diagram

<<SWF_DMM>>
Information Directory

Manager

OntAccess

AlignmentAccess

AlignmentMng

InfoAccess

InformationMng

<<SWF_DMM>>
Alignment Repository

<<SWF_DMM>>
Ontology Repository

<<SWF_DMM>>
Information Directory

Manager

OntAccess

AlignmentAccess

AlignmentMng

InfoAccess

InformationMng

<<SWF_DMM>>
Alignment Repository

<<SWF_DMM>>
Ontology Repository

<<SWF_DMM>>
Data Repository

DataAccess

<<SWF_DMM>>
Information Directory

Manager

OntAccess

AlignmentAccessInfoAccess

InformationMng

DataAccess

AlignmentMng

<<SWF_OCU>>
Ontology Discovery and

Ranking
RankingAccess

OntAccess

<<SWF_OEN>>
Ontology Matcher

Matcher

AlignmentAccess

QueryProcessorOntAccess

AlignmentAccess
DataAccess

<<SWF_OCU>>
Ontology Discovery and

Ranking
RankingAccess

OntAccess

<<SWF_OEN>>
Ontology Matcher

Matcher

AlignmentAccess

QueryProcessorOntAccess

AlignmentAccess

<<component>>
Non-ontological

Resource Discovery and
Ranking

RankingAccess DataAccess

AlignmentMng

AlignmentMng

AlignmentMng

AlignmentMng

Relationship
Associated

3 (both static).

Selection Criterion Presence of an alignment between two static ontologies.
(continues on next page)

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 120 of 198 NeOn Integrated Project EU-IST-027595

(comes from previous page)

Roles of the Components
Information
Directory Manager

Provides uniform access to ontologies and alignments and manage-
ment of alignments.

Ontology
Repository

Provides access to, management and storage of ontologies.

Alignment
Repository

Provides access to, management and storage of the alignment.

Roles of the Interfaces
OntAccess Provides access to ontologies.
AlignmentAccess Provides access to the alignments
AlignmentMng Provides management of the alignment.
InfoAccess Provides uniform access to the ontologies and the alignment.
InformationMng Provides management of the alignment.

Table 9.28: Alignment between Ontologies Access and Management

When there is an alignment between an ontology and a non-ontological resource schema, the Ontology
Repository component stores and permits access to the ontology, and the Data Repository component per-
mits access to the data schema. The Alignment Repository component handles the storage of the mappings
that compose the alignment. The Information Directory component provides access to and management of
the mappings that compose the alignment.

Table 9.29 shows the representation of the pattern of Alignment between an Ontology and a Non-ontological
Resource Access and Management.

Pattern 7
Name Alignment between Ontology and Non-ontological Resource Schema

Access and Management
UML Diagram

<<SWF_DMM>>
Information Directory

Manager

OntAccess

AlignmentAccess

AlignmentMng

InfoAccess

InformationMng

<<SWF_DMM>>
Alignment Repository

<<SWF_DMM>>
Ontology Repository

<<SWF_DMM>>
Information Directory

Manager

OntAccess

AlignmentAccess

AlignmentMng

InfoAccess

InformationMng

<<SWF_DMM>>
Alignment Repository

<<SWF_DMM>>
Ontology Repository

<<SWF_DMM>>
Data Repository

DataAccess

<<SWF_DMM>>
Information Directory

Manager

OntAccess

AlignmentAccessInfoAccess

InformationMng

DataAccess

AlignmentMng

<<SWF_OCU>>
Ontology Discovery and

Ranking
RankingAccess

OntAccess

<<SWF_OEN>>
Ontology Matcher

Matcher

AlignmentAccess

QueryProcessorOntAccess

AlignmentAccess
DataAccess

<<SWF_OCU>>
Ontology Discovery and

Ranking
RankingAccess

OntAccess

<<SWF_OEN>>
Ontology Matcher

Matcher

AlignmentAccess

QueryProcessorOntAccess

AlignmentAccess

<<component>>
Non-ontological

Resource Discovery and
Ranking

RankingAccess DataAccess

AlignmentMng

AlignmentMng

AlignmentMng

AlignmentMng

(continues on next page)

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 121 of 198

(comes from previous page)

Relationship
Associated

4 (both static).

Selection Criterion Presence of an alignment between a static ontology and a static non-
ontological resource.

Roles of the Components
Information
Directory Manager

Provides uniform access to the ontology, the non-ontological resource
schema and the alignment, and to the management of the alignment.

Ontology
Repository

Provides access to and management and storage of the ontology.

Data Repository Provides access to and storage of the non-ontological resource
schema.

Alignment
Repository

Provides access to and management and storage of the alignment.

Roles of the Interfaces
OntAccess Provides access to the ontology.
DataAccess Provides access to the non-ontological resources schema.
AlignmentAccess Provides access to the alignment.
AlignmentMng Provides management of alignment.
InfoAccess Provides uniform access to the ontology, the non-ontological resource

schema and the alignment.
InformationMng Provides management of the alignment.

Table 9.29: Alignment between Ontology and Non-ontological Resource Schema Access and Management

If there is an alignment between two dynamic ontologies, the Ontology Discovery and Ranking component
permits discovering the ontologies and the Ontology Matcher component handles the run-time generation of
the alignment as well as the access to and management of the mappings that compose the alignment.

Table 9.30 shows the representation of the pattern of the Alignment between Dynamic Ontology Access and
Management.

Pattern 8
Name Alignment between Dynamic Ontology Access and Management

UML Diagram

<<SWF_DMM>>
Information Directory

Manager

OntAccess

AlignmentAccess

AlignmentMng

InfoAccess

InformationMng

<<SWF_DMM>>
Alignment Repository

<<SWF_DMM>>
Ontology Repository

<<SWF_DMM>>
Information Directory

Manager

OntAccess

AlignmentAccess

AlignmentMng

InfoAccess

InformationMng

<<SWF_DMM>>
Alignment Repository

<<SWF_DMM>>
Ontology Repository

<<SWF_DMM>>
Data Repository

DataAccess

<<SWF_DMM>>
Information Directory

Manager

OntAccess

AlignmentAccessInfoAccess

InformationMng

DataAccess

AlignmentMng

<<SWF_OCU>>
Ontology Discovery and

Ranking
RankingAccess

OntAccess

<<SWF_OEN>>
Ontology Matcher

Matcher

AlignmentAccess

QueryProcessorOntAccess

AlignmentAccess
DataAccess

<<SWF_OCU>>
Ontology Discovery and

Ranking
RankingAccess

OntAccess

<<SWF_OEN>>
Ontology Matcher

Matcher

AlignmentAccess

QueryProcessorOntAccess

AlignmentAccess

<<component>>
Non-ontological

Resource Discovery and
Ranking

RankingAccess DataAccess

AlignmentMng

AlignmentMng

AlignmentMng

AlignmentMng

Relationship
Associated

3 (both dynamic).

(continues on next page)

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 122 of 198 NeOn Integrated Project EU-IST-027595

(comes from previous page)

Selection Criterion Presence of an alignment between two dynamic ontologies.
Roles of the Components

Ontology
Discovery and
Ranking

Provides the discovery and ranking of dynamic ontologies.

Ontology Matcher Provides the automatic matching of ontologies discovered.
Roles of the Interfaces

Matcher Launches the matching of dynamic ontologies discovered.
AlignmentAccess Provides access to the alignment.
AlignmentMng Provides management of the alignment.
OntAccess Provides access to ontologies.
QueryProcessor Used to perform various kinds of queries (containment, answering, con-

sistency, etc.) during semantic matching.
RankingAccess Provides rankings of ontologies discovered.

Table 9.30: Alignment between Dynamic Ontology Access and Management

If there is an alignment between a dynamic ontology and a dynamic non-ontological resource schema, the
Ontology Discovery and Ranking component lets to discover the ontology, the Non-ontological Resource
Discovery and Ranking component is used to discover the schema; and the Ontology Matcher component
handles the run-time generation of the alignment as well as the access to and management of the mappings
that compose the alignment.

Table 9.31 shows the representation of the pattern of the Alignment between a Dynamic Ontology and a
Dynamic Non-ontological Resource Access and Management.

Pattern 9
Name Alignment between a Dynamic Ontology and a Dynamic Non-

ontological Resource Access and Management
UML Diagram

<<SWF_DMM>>

Information Directory

Manager

OntAccess

AlignmentAccess

AlignmentMng

InfoAccess

InformationMng

<<SWF_DMM>>

Alignment Repository

<<SWF_DMM>>

Ontology Repository

<<SWF_DMM>>

Information Directory

Manager

OntAccess

AlignmentAccess

AlignmentMng

InfoAccess

InformationMng

<<SWF_DMM>>

Alignment Repository

<<SWF_DMM>>

Ontology Repository

<<SWF_DMM>>

Data Repository

DataAccess

<<SWF_OCU>>

Ontology Discovery and

Ranking

RankingAccess

OntAccess

<<SWF_OEN>>

Ontology Matcher

Matcher

AlignmentAccess

QueryProcessorOntAccess

AlignmentAccess
DataAccess

<<SWF_OCU>>

Ontology Discovery and

Ranking

RankingAccess

OntAccess

<<SWF_OEN>>

Ontology Matcher

Matcher

AlignmentAccess

OntAccess

AlignmentAccess

<<component>>

Non-ontological

Resource Discovery and

Ranking

RankingAccess DataAccess

AlignmentMng

AlignmentMng

AlignmentMng

AlignmentMng

Relationship
Associated

4 (both dynamic).

Selection Criterion Presence of an alignment between a dynamic ontology and a dynamic
non-ontological resource schema.

(continues on next page)

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 123 of 198

(comes from previous page)

Roles of the Components
Ontology
Discovery and
Ranking

Provides the discovery and ranking of the dynamic ontology.

Non-ontological
Resource
Discovery and
Ranking

Provides the discovery and ranking of the dynamic non-ontological re-
source schema.

Ontology Matcher Provides the automatic matching of the ontology discovered and the
non-ontological resource schema discovered.

Roles of the Interfaces
DataAccess Provides access to the non-ontological resources schema.
Matcher Launches the matching of the dynamic ontology discovered and the

schema discovered.
AlignmentAccess Provides access to the alignment.
AlignmentMng Provides management of the alignment.
OntAccess Provides access to the ontology.
RankingAccess Provides rankings of discovered resources.

Table 9.31: Alignment between a Dynamic Ontology and a Dynamic Non-ontological Resource Access and
Management

Heterogeneous dynamic and static ontologies and non-ontological resources schemas can be aligned
through the use of the general pattern presented in tables 9.32 and 9.33.

Pattern 10
Name Alignment between a Dynamic Ontology and a Static Non-ontological

resource Access and Management
UML Diagram

DataAccess

<<SWF_OCU>>

Ontology Discovery and

Ranking

RankingAccess

OntAccess

<<SWF_OEN>>

Ontology Matcher

Matcher

AlignmentAccess

OntAccess

AlignmentAccess

AlignmentMng AlignmentMng

DataAccess

<<SWF_OEN>>

Ontology Matcher

Matcher

AlignmentAccess

OntAccess

AlignmentAccess

<<component>>

Non-ontological

Resource Discovery and

Ranking

RankingAccess DataAccess

AlignmentMng AlignmentMng

<<SWF_DMM>>

Data Repository

<<SWF_DMM>>

Ontology Repository

Relationship
Associated

4 (dynamic ontology and static non-ontological resource).

Selection Criterion Presence of an alignment between a dynamic ontology and a static
non-ontological resource schema relationship.

(continues on next page)

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 124 of 198 NeOn Integrated Project EU-IST-027595

(comes from previous page)

Roles of the Components
Ontology
Discovery and
Ranking

Provides the discovery and ranking of the dynamic ontology.

Data Repository Provides access to and storage of the static non-ontological resource
schema.

Ontology Matcher Provides the automatic matching of the discovered ontology and the
non-ontological resource schema.

Roles of the Interfaces
DataAccess Provides access to the non-ontological resources schema.
Matcher Launches the matching of the dynamic ontology discovered and the

schema.
AlignmentAccess Provides access to the alignment.
AlignmentMng Provides management of the alignment.
OntAccess Provides access to the ontology.
RankingAccess Provides rankings about resources discovered.

Table 9.32: Alignment between a Dynamic Ontology and a Static Non-ontological resource Access and
Management

Pattern 11
Name Alignment between a Static Ontology and a Dynamic Non-ontological

resource Access and Management
UML Diagram

DataAccess

<<SWF_OCU>>

Ontology Discovery and

Ranking

RankingAccess

OntAccess

<<SWF_OEN>>

Ontology Matcher

Matcher

AlignmentAccess

OntAccess

AlignmentAccess

AlignmentMng AlignmentMng

DataAccess

<<SWF_OEN>>

Ontology Matcher

Matcher

AlignmentAccess

OntAccess

AlignmentAccess

<<component>>

Non-ontological

Resource Discovery and

Ranking

RankingAccess DataAccess

AlignmentMng AlignmentMng

<<SWF_DMM>>

Data Repository

<<SWF_DMM>>

Ontology Repository

Relationship
Associated

4 (static ontology and dynamic non-ontological resource).

Selection Criterion Presence of an alignment between a static ontology and a dynamic
non-ontological resource schema relationship.

(continues on next page)

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 125 of 198

(comes from previous page)

Roles of the Components
Non-ontological
Resource
Discovery and
Ranking

Provides the discovery and ranking of the dynamic non-ontological re-
source schema.

Ontology
Repository

Provides access to and management and storage of the ontology.

Ontology Matcher Provides the automatic matching of the ontology and the non-
ontological resource schema discovered.

Roles of the Interfaces
DataAccess Provides access to the non-ontological resource schema.
Matcher Launches the matching of the dynamic ontology discovered and the

schema.
AlignmentAccess Provides access to the alignment.
AlignmentMng Provides management of the alignment.
OntAccess Provides access to the ontology.
RankingAccess Provides rankings about resources discovered.

Table 9.33: Alignment between a Static Ontology and a Dynamic Non-ontological resource Access and
Management

9.4.3 Annotate

As seen in Subsection 8.2.3 the relationship Annotate can represent either unstructured documents or on-
tologies annotated.

Next, patterns for each of these approaches are presented.

1. In the case of documents annotated by a set of instances, annotations can be stored either within the
own annotated document or as physically separated instances from the document.

If annotations are stored within the source document, then the pattern shown in Table 9.34 is used.
In this pattern, the Data Repository component is used for proving access and management of un-
structured documents and annotations. This pattern is also valid for documents annotated by non-
ontological metadata stored outside or inside the documents.

Pattern 12
Name Annotations within documents Access and Management

UML Diagram

<<SWF_DMM>>
Data RepositoryDataAccess DataManagement

<<SWF_DMM>>
Information Directory

Manager

OntAccess

InfoAccess

InformationMng

<<SWF_DMM>>
Ontology Repository

<<SWF_DMM>>
Data Repository

OntologyMng

DataAccess

<<SWF_DMM>>
Information Directory

Manager

OntAccess

InfoAccess

InformationMng

<<SWF_DMM>>
Ontology Repository

OntAndInstMng

DataAccess

<<component>>
Non-ontological

Resource Discovery and
Ranking

RankingAccess

DataAccess

<<SWF_DMM>>
Data Repository

<<SWF_OIG>>
Ontology Populator

OntPopulator

DataAccess

OntAccess

OntAndInstMng

Relationship
Associated

5 (both static) and 6.

Selection Criterion Annotations stored within the annotated documents.
(continues on next page)

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 126 of 198 NeOn Integrated Project EU-IST-027595

(comes from previous page)

Roles of the Components
Data Repository Provides access to, management and storage of the document and the

annotations.
Roles of the Interfaces

DataAccess Provides access to the document and its annotations.
DataManagement Provides management of the document and its annotations.

Table 9.34: Annotations within documents Access and Management

If annotations are stored in a separate space within instances, then the pattern shown in Table 9.35
is used. In this pattern, the Data Repository component is used for providing access to unstructured
documents; the Ontology Repository component it used for providing access and management of
annotations; and the Information Directory Manager component is used for providing access to un-
structured documents and annotations and management of annotations.

Pattern 13
Name Annotations outside documents Access and Management

UML Diagram

<<SWF_DMM>>

Data Repository
DataAccess DataManagement

<<SWF_DMM>>

Information Directory

Manager

OntAccess

InfoAccess

InformationMng

<<SWF_DMM>>

Ontology Repository

<<SWF_DMM>>

Data Repository

OntAndInstMng

DataAccess

<<SWF_DMM>>

Information Directory

Manager

OntAccess

InfoAccess

InformationMng

<<SWF_DMM>>

Ontology Repository

OntAndInstMng

DataAccess

<<component>>

Non-ontological

Resource Discovery and

Ranking

RankingAccess

DataAccess

<<SWF_DMM>>

Data Repository

<<SWF_OIG>>

Ontology Populator

OntPopulator

DataAccess

OntAccess

OntAndInstMng

Relationship
Associated

5 (both static).

Selection Criterion Annotations stored as instances outside the annotated documents.
Roles of the Components

Data Repository Provides access to and management and storage of the document.
Ontology Reposi-
tory

Provides access to and management and storage of the annotations.

Information
Directory Manager

Provides uniform access to the document and its annotations.

(continues on next page)

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 127 of 198

(comes from previous page)

Roles of the Interfaces
DataAccess Provides access to the document.
OntAccess Provides access to the annotations.
OntAndInstMng Provides management of the annotations.
InfoAccess Provides uniform access to the document and its annotations.
InformationMng Provides management of the annotations.

Table 9.35: Annotations outside documents Access and Management

As seen in Subsection 8.2.3, annotations can be generated for being accessed in a dynamic fashion.
In this case there exists three possibilities:

(a) To discover documents at run-time and annotate them with dynamically generated instances that
conform to a given ontology selected or engineered at design-time. The pattern shown in Ta-
ble 9.36 provides an architectural design for this scenario. In this pattern, the Non-ontological
Resource Discovery and Ranking component is in charge of discovering and providing access
to the annotated documents; the Ontology Repository component stores the local ontology as
well as the generated annotations. The Ontology Populator component annotates at run-time the
documents discovered and accesses the Ontology Repository component to store the annota-
tions and to take access to the ontology. Finally the Information Directory Manager component
provides access to and management of the annotations.

Pattern 14
Name Annotations of discovered documents Access and Management

UML Diagram

<<SWF_DMM>>
Data RepositoryDataAccess DataManagement

<<SWF_DMM>>
Information Directory

Manager

OntAccess

InfoAccess

InformationMng

<<SWF_DMM>>
Ontology Repository

<<SWF_DMM>>
Data Repository

OntologyMng

DataAccess

<<SWF_DMM>>
Information Directory

Manager

OntAccess

InfoAccess

InformationMng

<<SWF_DMM>>
Ontology Repository

OntAndInstMng

DataAccess

<<component>>
Non-ontological

Resource Discovery and
Ranking

RankingAccess

DataAccess

<<SWF_DMM>>
Data Repository

<<SWF_OIG>>
Ontology Populator

OntPopulator

DataAccess

OntAccess

OntAndInstMng

Relationship
Associated

5 (static ontology and dynamic document).

Selection Criterion Annotations of documents discovered according to a static ontology
discovered.

(continues on next page)

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 128 of 198 NeOn Integrated Project EU-IST-027595

(comes from previous page)

Roles of the Components
Non-ontological
Resource
Discovery and
Ranking

Provides the discovery and ranking of the document.

Data Repository Provides access to and management and storage of the document.
Ontology
Repository

Provides access to and management and storage of the annotations.

Information
Directory Manager

Provides uniform access to the document and its annotations.

Ontology
Populator

Annotates at run-time the documents discovered.

Roles of the Interfaces
DataAccess Provides access to the document.
RankingAccess Provides rankings of the documents discovered.
OntAccess Provides access to the annotations.
OntAndInstMng Provides management of the annotations.
OntPopulator Launches the automatic generation of annotations.
InfoAccess Provides uniform access to the document and its annotations.
InformationMng Provides management of the annotations.

Table 9.36: Annotations of discovered documents Access and Management

(b) To discover a suitable ontology at run-time for annotating a set of documents. The pattern shown
in Table 9.37 provides an architectural design for this scenario. In this pattern, the Ontology Dis-
covery and Ranking component is in charge of discovering and providing access to the ontology;
the Ontology Repository component stores the generated annotations. The Data Repository
Component stores the documents to be annotated; the Ontology Populator component anno-
tates at run-time the documents according to the discovered ontology and accesses the Ontol-
ogy Repository component to store the annotations; finally the Information Directory Manager
component provides access to and management of the annotations.

Pattern 15
Name Annotations of Documents according to a Discovered Ontology Access

and Management
UML Diagram

<<component>>
Non-ontological

Resource Discovery and
Ranking

RankingAccess

DataAccess

<<SWF_DMM>>
Data Repository

<<SWF_OCU>>
Ontology Discovery and

RankingOntAccess

RankingAccess

OntAccess

<<SWF_DMM>>
Information Directory

Manager

OntAccess

InfoAccess

InformationMng

<<SWF_DMM>>
Ontology Repository

OntAndInstMng

DataAccess

<<SWF_DMM>>
Data Repository

<<SWF_OIG>>
Ontology Populator

OntPopulator

DataAccess

OntAccess

OntAndInstMng

<<SWF_OCU>>
Ontology Discovery and

RankingOntAccess

RankingAccess

OntAccess

<<SWF_DMM>>
Information Directory

Manager

OntAccess

InfoAccess

InformationMng

<<SWF_DMM>>
Ontology Repository

OntAndInstMng

DataAccess

<<SWF_OIG>>
Ontology Populator

OntPopulator

DataAccess

OntAccess

OntAndInstMng

Relationship
Associated

5 (dynamic ontology and static document).

(continues on next page)

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 129 of 198

(comes from previous page)

Selection Criterion Annotations of documents according to a run-time ontology discovered.
Roles of the Components

Ontology
Discovery and
Ranking

Provides the discovery and ranking of the dynamic ontology.

Data Repository Provides access to and management and storage of the document.
Ontology
Repository

Provides access to and management and storage of the annotations.

Information
Directory Manager

Provides uniform access to the document and its annotations.

Ontology
Populator

Annotates at run-time the documents discovered.

Roles of the Interfaces
DataAccess Provides access to the document.
RankingAccess Provides rankings about documents discovered.
OntAccess Provides access to the annotations.
OntAndInstMng Provides management of the annotations.
OntPopulator Launches the automatic generation of annotations.
InfoAccess Provides uniform access to the document and its annotations.
InformationMng Provides management of the annotations.

Table 9.37: Annotations of Documents according to a Discovered Ontology Access and Manage-
ment

(c) To discover at run-time both the ontology and the documents. The pattern shown in Table 9.38
provides an architectural design for this scenario. In this pattern, the Non-ontological Resource
Discovery and Ranking component is in charge of discovering and providing access to the an-
notated documents; the Ontology Discovery and Ranking component is in charge of discovering
and providing access to the ontology; the Ontology Repository component store the annotations
generated; the Ontology Populator component annotates at run-time the documents discovered
according to the run-time ontology discovered and accesses the Ontology Repository component
to store the annotations; finally, the Information Directory Manager component provide access to
and management of the annotations.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 130 of 198 NeOn Integrated Project EU-IST-027595

Pattern 16
Name Annotations of Discovered Documents according to a discovered On-

tology Access and Management
UML Diagram

<<component>>
Non-ontological

Resource Discovery and
Ranking

RankingAccess

DataAccess

<<SWF_DMM>>
Data Repository

<<SWF_OCU>>
Ontology Discovery and

RankingOntAccess

RankingAccess

OntAccess

<<SWF_DMM>>
Information Directory

Manager

OntAccess

InfoAccess

InformationMng

<<SWF_DMM>>
Ontology Repository

OntAndInstMng

DataAccess

<<SWF_DMM>>
Data Repository

<<SWF_OIG>>
Ontology Populator

OntPopulator

DataAccess

OntAccess

OntAndInstMng

<<SWF_OCU>>
Ontology Discovery and

RankingOntAccess

RankingAccess

OntAccess

<<SWF_DMM>>
Information Directory

Manager

OntAccess

InfoAccess

InformationMng

<<SWF_DMM>>
Ontology Repository

OntAndInstMng

DataAccess

<<SWF_OIG>>
Ontology Populator

OntPopulator

DataAccess

OntAccess

OntAndInstMng

Relationship
Associated

5 (dynamic ontology and dynamic document).

Selection Criterion Annotations of documents discovered according to a run-time ontology
discovered.

Roles of the Components
Ontology
Discovery and
Ranking

Provides the discovery and ranking of the dynamic ontology.

Non-ontological
Resource
Discovery and
Ranking

Provides the discovery and ranking of the document.

Data Repository Provides access to and management and storage of the document.
Ontology
Repository

Provides access to and management and storage of the annotations.

Information
Directory Manager

Provides uniform access to the document and its annotations.

Ontology
Populator

Annotates at run-time the documents discovered.

Roles of the Interfaces
DataAccess Provides access to the document.
RankingAccess Provides rankings about discovered documents.
OntAccess Provides access to the annotations.
OntAndInstMng Provides management of the annotations.
OntPopulator Launches the automatic generation of annotations
InfoAccess Provides uniform access to the document and its annotations.
InformationMng Provides management of the annotations.

Table 9.38: Annotations of Discovered Documents according to a discovered Ontology Access
and Management

2. In the case of ontologies annotated, the annotations can stored by a set of instances or by the content
of a non-ontological resource.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 131 of 198

(a) In the case of ontologies annotated by a set of instances the pattern shown in Table 9.39 is used.

Pattern 17
Name Ontologies Annotated with Ontological Metadata Access and Manage-

ment
UML Diagram

<<SWF_DMM>>
Data RepositoryDataAccess DataManagement

<<SWF_DMM>>
Information Directory

Manager

OntAccess

InfoAccess

InformationMng

<<SWF_DMM>>
Ontology Repository

<<SWF_DMM>>
Data Repository

OntAndInstMng

DataAccess

<<SWF_DMM>>
Information Directory

Manager

OntAccess

InfoAccess

InformationMng

<<SWF_DMM>>
Ontology Repository

OntAndInstMng

DataAccess

<<component>>
Non-ontological

Resource Discovery and
Ranking

RankingAccess

DataAccess

<<SWF_DMM>>
Data Repository

<<SWF_OIG>>
Ontology Populator

OntPopulator

DataAccess

OntAccess

OntAndInstMng

<<SWF_DMM>>
Information Directory

Manager

InfoAccess

InformationMng

<<SWF_DMM>>
Ontology Repository

OntAccess

<<SWF_DMM>>
Metadata Registry

MetadataAccess MetadataMng

Relationship
Associated

7.

Selection Criterion Annotations of ontologies with ontological metadata (instances).
Roles of the Components

Ontology Reposi-
tory

Provides access to the ontology.

Metadata Registry Provides access to and management and storage of the annotations.
Information
Directory Manager

Provides uniform access to the ontology and its annotations.

Roles of the Interfaces
OntAccess Provides access to the ontology.
MetadataAccess Provides access to the annotations.
MetadataMng Provides management of the annotations.
InfoAccess Provides uniform access to the ontology and its annotations.
InformationMng Provides management of the annotations.

Table 9.39: Ontologies Annotated with Ontological Metadata Access and Management

(b) In the case of ontologies annotated by a the content of a non-ontological resource the patterns
shown in Table 9.40 is used.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 132 of 198 NeOn Integrated Project EU-IST-027595

Pattern 18
Name Ontologies Annotated with Non-ontological Resource Content Access

and Management
UML Diagram

<<SWF_DMM>>
Data RepositoryDataAccess DataManagement

<<SWF_DMM>>
Information Directory

Manager

OntAccess

InfoAccess

InformationMng

<<SWF_DMM>>
Ontology Repository

<<SWF_DMM>>
Data Repository

OntAndInstMng

DataAccess

<<SWF_DMM>>
Information Directory

Manager

OntAccess

InfoAccess

InformationMng

<<SWF_DMM>>
Ontology Repository

OntAndInstMng

DataAccess

<<component>>
Non-ontological

Resource Discovery and
Ranking

RankingAccess

DataAccess

<<SWF_DMM>>
Data Repository

<<SWF_OIG>>
Ontology Populator

OntPopulator

DataAccess

OntAccess

OntAndInstMng

<<SWF_DMM>>
Information Directory

Manager

InfoAccess

InformationMng

<<SWF_DMM>>
Ontology Repository

OntAccess

<<SWF_DMM>>
Metadata Registry

MetadataAccess MetadataMng

<<SWF_DMM>>
Information Directory

Manager

OntAccess

InfoAccess

InformationMng

<<SWF_DMM>>
Ontology Repository

<<SWF_DMM>>
Data Repository

DataManagement
DataAccess

Relationship
Associated

8.

Selection Criterion Annotations of ontologies with non-ontological resource content meta-
data.

Roles of the Components
Ontology Reposi-
tory

Provides access to the ontology.

Data Repository Provides access to and management and storage of the annotations.
Information
Directory Manager

Provides uniform access to the ontology and its annotations.

Roles of the Interfaces
OntAccess Provides access to the ontology.
DataAccess Provides access to the annotations.
DataMng Provides management of the annotations.
InfoAccess Provides uniform access to the ontology and its annotations.
InformationMng Provides management of the annotations.

Table 9.40: Ontologies Annotated with Non-ontological Resource Content Access and Manage-
ment

9.5 Components Associated to the Basic Templates

This section describes the architectural patterns associated to the basic system model templates presented
in Section 8.3.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 133 of 198

9.5.1 Components Associated to Data Sources with Schema

In Subsection 8.3.1 three different kinds of data sources with an associated schema have been shown: onto-
logical data sources with an associated ontological schema, non-ontological data sources with an associated
non-ontological schema, and a mixed template that incorporates heterogeneous data sources with ontolog-
ical and non-ontological schemas. This subsection provides the patterns used for dealing with the three
different kinds of data sources.

Components Associated to Ontological Data Sources with Ontological Schema

When multiple instances data sources that conform to a given schema, the Information Directory Manager
component is used for providing access to and management of the ontology and the instances. In this pattern,
Information Directory Manager requires the presence of any component that provides the OntAccess and
OntAndInstMng interfaces. This component can be either the Ontology Repository component for the design-
time ontologies selected or in case of dynamic resources, the Ontology Discovery and Ranking component.

Table 9.41 shows the representation of the pattern of the Ontological Data Sources Access and Management.

Pattern 19
Name Ontological Data Sources Access and Management

UML Diagram

<<SWF_DMM>>
Information Directory

Manager

OntAccessInfoAccess

InformationMng

<<SWF_DMM>>
Information Directory

Manager

DataAccess

DataManagement

InfoAccess

InformationMngOntAndInstMng

<<SWF_DMM>>
Information Directory

Manager

OntAccess
DataAccess

O
ntAndInstM

ng

D
ataM

anagem
ent

AlignmentAccess

Alignm
entM

ng

InfoAccess

InformationMng

D
at

aT
ra

ns
la

to
r

M
at

ch
er

Anotaciones
cualquiera de los

patrones
anteriores

Basic Template
Associated

1.

Selection Criterion Presence of ontological data sources expressed according to an onto-
logical schema.

Roles of the Components
Information
Directory Manager

Provides uniform access to ontology and instances.

Roles of the Interfaces
InfoAccess Provides uniform access to the ontology and instances.
InformationMng Provides uniform management of the ontology and instances.
OntAccess Provides access to the ontology and instances.
OntAndInstMng Provides management of the ontology and instances.

Table 9.41: Ontological Data Sources Access and Management

Components Associated to Non-ontological Data Sources with Non-ontological Schema

When there is multiple non-ontological content that conforms to a given non-ontological resource schema, the
Information Directory Manager component is used for providing access to and management of the schema
as well as to the non-ontological resource content. In this pattern, the Information Directory Manager re-
quires the presence of any component that provides the DataAccess and DataManagement interfaces. This
component can be the Data Repository component for design-time non-ontological resources selected, or in
the case of dynamic resources, the Non-ontological resource Discovery and Ranking component.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 134 of 198 NeOn Integrated Project EU-IST-027595

Table 9.42 shows the representation of the pattern of the Non-ontological Data Sources Access and Man-
agement.

Pattern 20
Name Non-ontological Data Sources Access and Management

UML Diagram

<<SWF_DMM>>
Information Directory

Manager

OntAccessInfoAccess

InformationMng

<<SWF_DMM>>
Information Directory

Manager

DataAccess

DataManagement

InfoAccess

InformationMngOntAndInstMng

<<SWF_DMM>>
Information Directory

Manager

OntAccess
DataAccess

O
ntAndInstM

ng

D
ataM

anagem
ent

AlignmentAccess

Alignm
entM

ng

InfoAccess

InformationMng

D
at

aT
ra

ns
la

to
r

M
at

ch
er

Anotaciones
cualquiera de los

patrones
anteriores

Basic Template
Associated

2.

Selection Criterion Presence of non-ontological data sources expressed according to a
non-ontological schema.

Roles of the Components
Information
Directory Manager

Provides uniform access to non-ontological resource contents and their
schema.

Roles of the Interfaces
InfoAccess Provides uniform access to non-ontological resource contents and their

schema.
InformationMng Provides uniform management of the non-ontological resource con-

tents and their schema.
DataAccess Provides access to non-ontological resource contents and their

schema.
DataManagement Provides management of non-ontological resource contents and their

schema.
Table 9.42: Non-ontological Data Sources Access and Management

Components Associated to Ontological and Non-ontological Data Sources with Ontological Schema

When there is multiple ontological content that conforms to a given ontological schema mixed with non-
ontological content that conforms to a given non-ontological resource schemas aligned with the ontology,
then the Information Directory Manager component is used for providing access to and management of the
ontology, the non-ontological schemas, the instances and the non-ontological resource content. In this pat-
tern, the Information Directory Manager requires the presence of any component that provides the following
interfaces: OntAccess, OntAndInstMng, DataAccess and DataManagement interfaces. The AlignmentAc-
cess and AlignmentMng interfaces are used for accessing and managing the alignments between the ontol-
ogy and the non-ontological schemas. If there is any kind of dynamic resource, then the Matcher interface is
required to run-time align the different schemas with the ontology.

Table 9.43 shows the representation of the pattern of the Ontological and Non-ontological Data Sources
Access and Management.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 135 of 198

Pattern 21
Name Ontological and Non-ontological Data Sources Access and Manage-

ment
UML Diagram

<<SWF_DMM>>
Information Directory

Manager

OntAccessInfoAccess

InformationMng

<<SWF_DMM>>
Information Directory

Manager

DataAccess

DataManagement

InfoAccess

InformationMngOntAndInstMng

<<SWF_DMM>>
Information Directory

Manager

OntAccess
DataAccess

O
ntAndInstM

ng

D
ataM

anagem
ent

AlignmentAccess

Alignm
entM

ng

InfoAccess

InformationMng

D
at

aT
ra

ns
la

to
r

M
at

ch
er

Anotaciones
cualquiera de los

patrones
anteriores

Basic Template
Associated

3.

Selection Criterion Presence of multiple ontological content that conforms to a given onto-
logical schema mixed with non-ontological content that conforms to a
given non-ontological resource schemas aligned with the ontology.

Roles of the Components
Information
Directory Manager

Provides uniform access to ontologies, instances, and non-ontological
resource contents and schemas.

Roles of the Interfaces
InfoAccess Provides uniform access to the ontology, instances, and non-

ontological resource contents and their schema.
InformationMng Provides uniform management of the ontology, instances, and non-

ontological resource contents and their schema.
OntAccess Provides access to the ontology and instances.
OntAndInstMng Provides management of the ontology and instances.
DataAccess Provides access to non-ontological resource contents and schemas.
DataManagement Provides management of non-ontological resource contents and

schemas.
AlignmentAccess Provides access to the alignments between the ontology and the non-

ontological resources schemas.
AlignmentMng Provides management of the alignments.
DataTranslator Performs the data translation of the non-ontological resource contents

in terms of the ontology.
Matcher When dynamic resources are involved it provides the run-time match-

ing of the ontology and the schemas.
Table 9.43: Ontological and Non-ontological Data Sources Access and Management

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 136 of 198 NeOn Integrated Project EU-IST-027595

9.5.2 Components Associated to Annotated Resources

Any of the patterns explained in Subsection 9.4.3 can be used to store multiple resources annotated and
their annotations.

9.6 Components Associated to System Models

9.6.1 Query Information

This pattern is used to draw the architecture of the Query Information use case. The interfaces required in
this pattern must be attached to the interfaces provided in any of the approaches in subsection 9.5.1.

Table 9.44 shows the pattern associated to Query Information system models.

Pattern 22
Name Query Information

UML Diagram

<<SWF_QER>>

Semantic Query Editor

QueryProcessor

QueryEditor

<<SWF_QER>>

Query Answering

InfoAccess

OntAccess

DataAccess

QueryProcessor

<<SWF_QER>>

Semantic Query

Processor

InfoAccess

OntAccess

QueryAnswerer

<<component>>

Query Facade

<<component>>

Query Dialog

QueryFacade

Basic Template
Associated

1, 2 and 3.

Selection Criterion Presence of an application that queries a set of integrated information.
(continues on next page)

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 137 of 198

(comes from previous page)

Roles of the Components
Semantic Query
Editor

Takes care of all issues related to the user interface.

Semantic Query
Processor

Takes care of all issues related to the physical processing of a query.

Query Answering Takes care of all the issues related to the logical processing of a query.
Query Dialog Implements the Query Information use case logic, that is, the software

that handles the dialog between the Primary Actor and the System
according to the use case flows.

Query Facade Provides the operations to meet the use case responsibilities.
Roles of the Interfaces

QueryEditor Provides access to all the issues related to the user interface.
QueryProcessor Provides the physical processing of a given query.
QueryAnswerer Provides the logical processing of a given query.
InfoAccess Provides uniform access to the ontologies, instances, and non-

ontological resource contents and their schemas.
OntAccess Provides access to the ontology and instances.
DataAccess Provides access to non-ontological resource contents and schemas.
QueryFacade Provides the operations to meet the use case responsibilities.

Table 9.44: Query Information

9.6.2 Search Resources

This pattern is used to draw the architecture of the Search Resources use case. The interfaces required in
this pattern must be attached to the interfaces provided in any of the approaches in Subsection 9.4.3.

Table 9.45 shows the pattern associated to the Search Resources system models.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 138 of 198 NeOn Integrated Project EU-IST-027595

Pattern 23
Name Search Resources

UML Diagram

<<SWF_QER>>

Semantic Query Editor

QueryProcessor

QueryEditor

<<SWF_QER>>

Query Answering

InfoAccess

OntAccess

DataAccess

QueryProcessor

<<SWF_QER>>

Semantic Query

Processor

InfoAccess

OntAccess

QueryAnswerer

<<component>>

Search Facade

<<component>>

Search Dialog

SearchFacade

InfoAccess

Basic Template
Associated

4.

Selection Criterion Presence of an application that search for annotated resources.
Roles of the Components

Semantic Query
Editor

Takes care of all issues related to the user interface.

Semantic Query
Processor

Takes care of all issues related to the physical processing of a search
query.

Query Answering Takes care of all the issues related to the logical processing of a search
query.

Search Dialog Implements the Search Resources use case logic, that is, the software
that handles the dialog between the Primary Actor and the System
according to the use case flows.

Search Facade Provides the operations to meet the use case responsibilities.
(continues on next page)

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 139 of 198

(comes from previous page)

Roles of the Interfaces
QueryEditor Provides access to all the issues related to the user interface.
QueryProcessor Provides the physical processing of a given search query.
QueryAnswerer Provides the logical processing of a given search query.
InfoAccess Provides uniform access to the ontologies, annotations, and non-

ontological resource contents and their schemas.
OntAccess Provides access to the ontology and annotations in the form of in-

stances.
DataAccess Provides access to the annotated data sources.
ExtractFacade Provides the operations to meet the use case responsibilities.

Table 9.45: Search Resources

9.6.3 Browse Resources

This pattern is used to draw the architecture of the Browse Resources use case.

Table 9.46 shows the pattern associated to the Browse Resources system models.

Pattern 24
Name Browse Resources

UML Diagram

<<SWF_OEN>>

Ontology Browser

ViewCustomizer

OntBrowser

<<SWF_OCU>>

Ontology View

Customization

Adapter

OntAccess

<<SWF_OCU>>

Ontology Adaptation

Operators

Profiler

<<SWF_OCU>>

Ontology Localization

and Profiling

OntAccess

OntAccess

OntAccess

<<component>>

Browse Facade

<<component>>

Browse Dialog

BrowseFacade

InfoAccess

Basic Template
Associated

5 and 6.

Selection Criterion Presence of an application that browse resources.
(continues on next page)

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 140 of 198 NeOn Integrated Project EU-IST-027595

(comes from previous page)

Roles of the Components
Ontology Browser Takes care of all issues related to the visual browsing.
Ontology View
Customization

It is responsible for enabling the user to change or amend a view on a
particular ontology to fit a particular purpose.

Ontology Adapta-
tion Operators

It is in charge of applying appropriate operators to the ontology in ques-
tion, the result of which is an ontology customized according to some
criterion.

Ontology Localiza-
tion and Profiling

It is in charge of providing functionalities that adapt an ontology accord-
ing to some context or some user profile.

Browse Dialog Implements the Browse Resources use case logic, that is, the software
that handles the dialog between the Primary Actor and the System
according to the use case flows.

Browse Facade Provides the operations to meet the use case responsibilities.
Roles of the Interfaces

InfoAccess Provides access to each of the result resources obtained.
OntBrowser Provides functionalities related to the visual browsing.
ViewCustomizer Provides the customized views of the ontologies.
Adapter Provides customized ontologies after applying the appropriate opera-

tors.
Profiler Provides the manual construction and activation, the semi-automated

construction and adaptation, and the automated acquisition and man-
agement of user profiles.

OntAccess Provides access to the ontologies and instances.
ExtractFacade Provides the operations to meet the use case responsibilities.

Table 9.46: Browse Resources

9.6.4 Extract Information

This pattern is used to draw the architecture of the Extract Information use case. The interfaces required in
this pattern must be attached to the interfaces provided in any of the approaches in Subsection 9.4.3.

Table 9.47 shows the pattern associated to the Extract Information system model.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 141 of 198

Pattern 25
Name Extract Information

UML Diagram

<<SWF_QER>>

Semantic Query Editor

QueryProcessor

QueryEditor

<<SWF_QER>>

Query Answering

InfoAccess

OntAccess

DataAccess

QueryProcessor

<<SWF_QER>>

Semantic Query

Processor

InfoAccess

OntAccess

QueryAnswerer

<<component>>

Extract Information

Facade

<<component>>

Extract Information

Dialog

ExtractFacade

InfoAccess

Basic Template
Associated

7.

Selection Criterion Presence of an application that extract meaningful information by ana-
lyzing search results.

Roles of the Components
Semantic Query
Editor

Takes care of all issues related to the user interface.

Semantic Query
Processor

Takes care of all issues related to the physical processing of a search
query.

Query Answering Takes care of all the issues related to the logical processing of a search
query.

Extract Information
Dialog

Implements the Extract Information use case logic, that is, the software
that handles the dialog between the Primary Actor and the System
according to the use case flows.

Extract Information
Facade

Provides the operations to meet the use case responsibilities, perform-
ing the required analysis of the search results.

(continues on next page)

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 142 of 198 NeOn Integrated Project EU-IST-027595

(comes from previous page)

Roles of the Interfaces
QueryEditor Provides access to all the issues related to the user interface.
QueryProcessor Provides the physical processing of a given search query.
QueryAnswerer Provides the logical processing of a given search query.
InfoAccess Provides uniform access to the ontologies, annotations, and non-

ontological resource contents and their schemas.
OntAccess Provides access to the ontology and annotations in the form of in-

stances.
DataAccess Provides access to the annotated data sources.
ExtractFacade Provides the operations to meet the use case responsibilities.

Table 9.47: Extract Information

9.6.5 Edit

This pattern is used to draw the architecture of the Manage Knowledge use case when editing ontology
elements, instances, alignments and annotations.

Table 9.48 shows the pattern associated to the Edit system models.

Pattern 26
Name Edit

UML Diagram

<<SWF_OEN>>

Ontology Matcher

AlignEditor

V
ie
w
C
u
s
to
m
iz
e
r

Q
u
e
ry
P
ro
c
e
s
s
o
r

O
n
tA
c
c
e
s
s

A
lig
n
m
e
n
ts
A
c
c
e
s
s

<<SWF_OEN>>

Ontology Editor

QueryProcessor

OntEditor

OntAccess

OntAndInstMng

O
n
tB
ro
w
s
e
r

OntEditor

<<component>>

Edit Facade

<<component>>

Edit Dialog

EditFacade

<<SWF_OIG>>

Manual Annotation

ManualAnnotator

O
n
tA
c
c
e
s
s

D
a
ta
A
c
c
e
s
s

D
a
ta
M
a
n
a
g
e
m
e
n
t

<<SWF_OIG>>

Automatic Annotation

AutoAnnotator OntAccess

DataAccess

DataManagement

ManualAnnotator

Basic Template
Associated

8 and 9.

Selection Criterion Presence of an application that edits ontology elements, instances,
alignments and annotations.

(continues on next page)

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 143 of 198

(comes from previous page)

Roles of the Components
Ontology Editor Takes care of creating and modifying the ontologies and instances.
Ontology Matcher It is responsible of editing the alignments.
Automatic Annota-
tion

Is in charge of automatically annotating resources with concepts in the
ontologies.

Manual Annotation Is in charge of the manual and semi-automatic annotation of the the
resources with concepts in the ontology.

Edit Dialog Implements the Edit logic, that is, the software that handles the dialog
between the Primary Actor and the System according to the use case
flows.

Edit Facade Provides the operations to meet the use case responsibilities.
Roles of the Interfaces

OntEditor This interface provides the functionalities to edit the ontology elements.
AlignEditor This interface provides the graphic representation and manipulation of

the alignments.
ManualAnnotator This interface is required for the manual and semi-automatic annota-

tion of the resources and for bootstrapping learning when automatic
annotations are performed.

AutoAnnotator Provides the automatic annotation of the resources.
OntAccess Provides access to the ontologies and instances and for collaborative

annotation.
OntAndInstMng Provides management of the ontology and instances.
QueryProcessor This interface is required to check if an ontology is satisfiable after per-

forming changes and for providing semantic matching.
OntBrowser This interface is required to navigate through an ontology to insert,

modify, or document its elements.
ViewCustomizer This interface is required to perform alignments between customized

views of ontologies.
AlingmentAccess This interface is required to access to alignments stored in other com-

ponents.
DataAccess This interface is required to access the annotated resources.
DataManagement This interface is required to insert annotations into the annotated re-

sources.
EditFacade Provides the operations to meet the use case responsibilities.

Table 9.48: Edit

9.6.6 Populate

This pattern is used to draw the architecture of the Manage Knowledge use case when populating an ontol-
ogy.

Table 9.49 shows the pattern associated to the Populate system model.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 144 of 198 NeOn Integrated Project EU-IST-027595

Pattern 27
Name Populate

UML Diagram

<<SWF_OIG>>

Ontology Populator

OntPopulator

OntAccess

DataAccess

ManualAnnotator

OntAndInstMng

<<SWF_OIG>>

Manual Annotation

OntAccess

DataAccess

<<component>>

Populate Facade

<<component>>

Populate Dialog

PopulateFacade

Basic Template
Associated

10.

Selection Criterion Presence of an application that populates an ontology.
Roles of the Components

Ontology Popula-
tor

Automatically generates new instances in a given ontology from a data
source.

Mannual Annota-
tion

Bootstraps learning.

Populate Dialog Implements the Populate use case logic, that is, the software that han-
dles the dialog between the Primary Actor and the System according
to the use case flows.

Populate Facade Provides the operations to meet the use case responsibilities, perform-
ing the required analysis of the search results.

Roles of the Interfaces
OntPopulator Provides the automatic generation of instances.
ManualAnnotator This interface is required to bootstrap learning.
QueryAnswerer Provides the logical processing of a given search query.
OntAccess Provides access to the ontologies and instances.
DataAccess This interface is required to access the annotated resources.
OntAndInstMng This interface is required to insert the generated instances.
PopulateFacade Provides the operations to meet the use case responsibilities.

Table 9.49: Populate

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 145 of 198

9.6.7 Learn

This pattern is used to draw the architecture of the Manage Knowledge use case when learning an ontology
from a document corpora.

Table 9.50 shows the pattern associated to the Learn system model.

Pattern 28
Name Learn

UML Diagram

<<SWF_DMM>>

Ontology Repository

OntAndInstMng

<<SWF_OEN>>

Ontology Learner

OntLearner

DataAccess

<<component>>

Learn Facade

<<component>>

Learn Dialog

LearnFacade

Basic Template
Associated

11.

Selection Criterion Presence of an application that learns an ontology from a document
corpora.

Roles of the Components
Ontology Learner Acquires knowledge and generates ontologies of a given domain.
Ontology Resposi-
tory

Stores the ontologies learned.

Learn Dialog Implements the Learn use case logic, that is, the software that handles
the dialog between the Primary Actor and the System according to the
use case flows.

Learn Facade Provides the operations to meet the use case responsibilities, perform-
ing the required analysis of the search results.

(continues on next page)

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 146 of 198 NeOn Integrated Project EU-IST-027595

(comes from previous page)

Roles of the Interfaces
OntLearner This interface is used to derive ontologies (semi)-automatically from

natural language texts.
OntAndInstMng This interface is required to create or modify the ontologies learned.
DataAccess This interface is required to access to the documents.
LearnFacade Provides the operations to meet the use case responsibilities.

Table 9.50: Learn

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 147 of 198

Chapter 10

Requirements Engineering Process

This chapter provides the NeOn methodological guidelines for carrying out the Requirements Elicitation and
Analysis activity. We do not propose methodological guidelines for the rest of the activities involved in the
Requirements Engineering process because we have not specialized them with respect to existing software
engineering methods.

The NeOn methodology proposes to write the requirements document incrementally at the start of the project
and as the project proceeds at the beginning of every application release development. The process will
make use of the use cases technique and system models will be drawn in order to provide a graphical
representation of the requirements.

10.1 Proposed Guidelines for Requirements Elicitation and Analysis

The results of this activity are the Semantic Application Requirements document, the Release Planning and
the Set of Ontological Needs.

For carrying out this activity both the use cases technique and system models will be used. Within this activity
semantic characteristics of the application will be discovered.

The general description of the Requirements Elicitation and Analysis activity is presented in Table 10.1,
including the definition, goal, inputs and outputs, who carries out the activity, and when the activity should be
carried out.

The tasks for carrying out the requirements elicitation and analysis activity can be seen in Figure 10.1.

Next, each task is introduced:

• In Task 1 the scenarios that the application will deal with are obtained by applying the use cases
technique.

• In Task 2 the characteristics of the semantic application are identified as well as the set of ontological
needs.

• In Task 3 the system models of the application taking into account the results of Task 1 and Task 2 are
elaborated.

• In Task 4 the use cases, the semantic characteristics, and the system models are integrated within a
single document in a given standardized format.

• Tasks 5 and 6 has been obtained by adapting the way in which in Extreme Programming the de-
velopment team estimates the effort required for implementing a certain task and then the customer
prioritizes the stories for implementation.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 148 of 198 NeOn Integrated Project EU-IST-027595

Table 10.1: General description of the Requirements Elicitation and Analysis activity

Requirements Elicitation and Analysis
Definition
Requirements Elicitation and Analysis refers to the activity of eliciting and understanding
the requirements of the persons or groups who will be affected by the system, directly or
indirectly.
Goal
The requirements elicitation and analysis activity states the functionalities that the system
should provide as well as the constraints on the system.
Input Output
A set of Business Requirements, the Use
Cases Catalogue, the Semantic Application
Questionnaires and the System Models Cat-
alogue.

The Semantic Application Requirements
document, the Release planning and the Set
of Ontological Needs.

Who
Software developers, who form the application development team in close collaboration
with the customer or final application user. It is required to some member of the devel-
opment team to have expertise in semantic technology as well as in the requirements
engineering process.
When
This activity must be carried out at the start of the project inside the requirements engi-
neering process and at the beginning of every application release development.

• At the start of the project, the developers and customers try to identify all the really
significant requirements they can.

• As the project proceeds, the customers should continue to state new business re-
quirements. Thus the activity of requirements elicitation and analysis will not shut off
until the project is over.

Why
To specify the requirements of the large-scale semantic application being developed.
Where
In a place (e.g. meeting room) appropriate to maintain the interviews with the customer.

10.1.1 Task 1. To Identify the Use Cases

The objective of this task is to gather information about the application and to distill scenarios from this
information. The technique that we will used for discovering the scenarios is based on use cases. This task
must be carried out by the development team.

The inputs to this task are the Business Requirements facilitated by the customer and the Use Cases Cata-
logue. The output of this tasks are the use cases themselves.

The NeOn methodology provides a catalogue of use cases (see Chapter 7) with the aim of identifying use
cases related to semantic applications. When performing this task these common use cases can be selected,
adapted and appended to the identified set of requirements. The methodology does not provide specific
recommendations for other use cases non related to semantics.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 149 of 198

Requirements elicitation and analysis
C

us
to

m
er Input

Business
Requirements

Task 1
Identify the use

cases

Task 2
Identify semantic

characteristics and
ontological needs

Task 3
Identify system

models

Task 5
Estimate

requirements

Task 6
Prioritize

requirements

Tasks
efforts

Output 2
Release
Planning

Use cases

Semantic
characteristics

System
models Task 4

Document
requirements

Output 1
Semantic Application

Requirements document

D
ev

el
op

m
en

t T
ea

m
M

et
ho

do
lo

gi
ca

l
In

pu
ts Input

Use Cases
Catalogue

Input
System Models

Catalogue

Input
Semantic Application

Questionnaires

Output 3
Set of Ontological Needs

Figure 10.1: Tasks in the Requirements Elicitation and Analysis activity

10.1.2 Task 2. To Identify the Semantic Characteristics and Ontological Needs

The objective of this task is to collect the characteristics of the semantic application being developed, the
typology of the resources that the application will deal with, and the Set of ontological needs. This task must
be carried out by the development team.

The input to this task are the business requirements, and the output of this task are a the Semantic charac-
teristics of the application and the Set of Ontological Needs.

The methodology presented in this deliverable provides a set of questionnaires used for identifying the char-
acteristics (see Section 14) and Set of ontological needs.

10.1.3 Task 3. To Identify System Models

The objective of this task is to preliminary specify the system in the form of system models. This task must
be carried out by the development team.

The input to this task are the Use cases, the Semantic characteristics, and the System models catalogue.
The system models will reflect the scenarios identified during the use cases identification task constrained
by the semantic characteristics of the application.

The output of this task are the System Models, which permit representing the system from the following
different perspectives [Som07]:

• An external perspective, where the context or environment of the application is modelled.

• A structural perspective, where a preliminary architecture of the system or the structure of the data
processed by the system is modelled.

The methodology presented in this deliverable provides a catalogue of system models that describe common
behaviours of semantic applications (see Section 8). When performing this task these common system
models can be selected according to the identified use cases and semantic characteristics. In consequence,

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 150 of 198 NeOn Integrated Project EU-IST-027595

the system model catalogue is indexed by the related use case and characteristics associated to a given
system models.

The system model catalogue provides a set of symbols (e.g. ontological and non ontological resources,
applications and relationships between these symbols) that reflects the aforementioned structural perspective
of the system. For reflecting the external perspective the system model will show the limits of the external
systems that will be related with the system under development (see Chapter 8).

The following guidelines can be applied in order to elaborate a system model:

Step 1. To associate a basic symbol to each of the resources that the application will deal with.

Step 2. To identify the existing basic relationships between the basic resources.

Step 3. To identify the system model template associated to the identified use cases.

Step 4. To combine the symbols, relationships and system model templates in order to conform a unique
system model.

10.1.4 Task 4. To Document Requirements

The objective of this task is to consolidate the requirements discovered in the previous tasks in a single
description as the official statement of what the application developers should implement. This task must be
carried out by the development team.

The inputs to this task are the Use cases, the Semantic characteristics, and the System Models.

The output of this task is the Semantic Application Requirements Document. The NeOn methodology sug-
gest a template for writing the requirements document based on the proposed in [Som07], that at the same
time, is based on the standard IEEE/ANSI 830-1998 [IEE98]. The requirements document should contain
the slots shown in Table 10.2.

10.1.5 Task 5. To Estimate Requirements

The objective of this task is to estimate the effort needed for implementing a set of requirements. This task
must be carried out by the development team.

The input to this task are the system models. As happens in Extreme Programming, the developers work
together to break the system models (those not implemented in previous application releases) down into
development tasks. A task is something that one developer can implement in a short period of time. Tasks
are enumerated as completely as possible.

The estimation made by the development team is reflected in the output of this task. This output reflects the
estimation cost for each identified task. Tasks are grouped according to the system model wich they belong.

10.1.6 Task 6. To Prioritize Requirements

The objective of this task is to prioritize the development tasks estimated in Task 5 by the development team.
This task must be carried out by the customer.

The input to this task is the tasks budget. According to this input, the customers choose the system models
that they want to be implemented in the following application release.

The order of implementation of the selected system models within the current iteration is a technical decision.
The developers implement the system models selected by the customer in the order that makes the most
technical sense. The customers cannot change the system models to be implemented in the next application
release once the requirements process has finished and the design process is started. They are free to
change or reorder any other system model in the project, but not the ones that the developers are currently
working on.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 151 of 198

Chapter Description
Preface This should define the expected readership of the document and de-

scribe its version history, including a rationale for the creation of a new
version and a summary of the changes made in each version [Som07].

Introduction This should describe the need for the system. It should briefly describe
its functions and explain how it will work with other systems. It should
describe how the system fits into the overall business or strategic ob-
jectives of the organisation commissioning the software [Som07].

Glossary This should define the technical terms used in the document. Assump-
tions about the experience or expertise of the reader cannot be made
[Som07].

User
requirements

The functionalities provided for the user and the non-functional sys-
tem requirements should be described in this section. This description
may use natural language, diagrams or other notations that are under-
standable to customers. Product and process standards which must
be followed should be specified [Som07].

Use cases This should describe the functional requirements in more detail using
the use cases-based representation.

Application
semantic charac-
teristics

This should describe the non-functional requirements in terms of appli-
cation characteristics and constraints.

System models This should set out one or more system models showing preliminary re-
lationships between key system components and between the system
and its environment.

System evolution This should describe the fundamental assumptions on which the sys-
tem is based and should anticipate changes because of changing
user’s needs, etc. [Som07].

Appendices These should provide detailed, specific information that is related to the
application being developed [Som07].

Index Several indexes to the document may be included. In addition to a nor-
mal alphabetic index, there may be an index of diagrams, etc. [Som07].

Table 10.2: The structure of the requirements document

The output of this task is the release planning that reflects the system models to be implemented for the next
application release.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 152 of 198 NeOn Integrated Project EU-IST-027595

Chapter 11

Design Process

This chapter provides the NeOn methodological guidelines for carrying out the Component Identification
activity. The rest of the activities are out of the scope of this deliverable and their guidelines will be provided
in the next version.

Distributed systems architecture and user interface designs techniques are relevant for semantic application
designing and will be considered in future versions of the methodology.

11.1 Proposed Guidelines for Component Identification

The goal of the Component Identification activity is to create an initial set of interfaces and component
specifications, hooked together into a first-cut component architecture [CD01]. This activity is launched
after the Requirements Engineering process is finished and takes the Semantic Application Requirements
Document, the Release Planning and the Architectural Patterns as inputs.

The NeOn methodology proposes the filling card, presented in Table 11.1, for the component identification
activity, including the definition, goal, inputs and outputs, who carries out the activity and when the activity
should be carried out. This filling card has been adapted from the definition of the Component Identification
activity described in the state of the art of this activity.

The tasks for carrying out the requirements elicitation and analysis activity can be seen in Figure 11.1. The
result of this activity is the Initial Architecture.

The tasks proposed in these guidelines have been adapted from the activity description presented in [CD01].
Table 11.2 shows a mapping between the tasks that conform the Component Identification activity as it has
been explained on the state of the art in Section 2.5.1 and the tasks that propose the NeOn methodology for
the development of large-scale semantic applications.

As can be seen in Table 11.2 the first task in the state of the art (Develop Business Type Model) has been not
adapted to the methodology proposed in this deliverable. The reason is that the data structures that semantic
application uses are mainly ontologies or existing data schemas to be integrated within the application. In
the case it is needed to create any ontology (or network of ontologies) to be used by the application, then the
processes and activities defined in the NeOn methodology for building ontology networks can be applied.

11.1.1 Task 1. To Identify Dialogs and System Facades

The objective of this task is to identify the components that will be in charge of system interactions. The
system interfaces are focused on, and derived from, the system’s interaction. This task must be carried out
by the development team.

The input to this task are the Use Cases gathered in the Semantic Application Requirements Document and
the Release Planning, so the System Dialogs and Facades emerge from the use cases contemplated in the
current release.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 153 of 198

Table 11.1: Component Identification Filling Card

Component Identification
Definition
Component Identification refers to the activity of discovering the repositories that contains
the information to be accessed and managed, which interfaces are needed to access and
manage it, what components are needed to provide that functionality, and how they will fit
together.
Goal
The component identification activity creates an initial set of interfaces and component
specifications, hooked together into a preliminary component architecture.
Input Output
The Semantic Application Requirements
Document, the Release Planning and the ar-
chitectural patterns.

The Initial Architecture

Who
Software developers, who form the application development team. It is required to some
member/s of the development team to have expertise in semantic technology and they
master the Semantic Web Framework components and the architectural patterns de-
scribed by this methodology.
When
This activity must be carried out within the design process after the requirements engi-
neering process for every application release development.
Why
To identify the components making up the semantic application and their relationships.
Where
At the software developersŠ workspace.

For each use case two components will be defined:

• A Dialog component that implements the use case logic, that is, the software that handles the dialog
between the primary actor and the system according to the specified use case.

• A System Facade component. For every step within a use case, the System Facade component may
need to provide zero, one or multiple operations to meet its responsibilities.

The Dialog component will make use of the System Facade component. Thus the Dialog will have a depen-
dency on the System Facade component.

The outputs of this task are a enumeration of the System Dialogs and Facades components. For every
facade component a list of its operations must be specified.

11.1.2 Task 2. To Identify Knowledge Sources

The objective of this task is to catalogue the repository components that contain the ontological and non-
ontological data that the application will make use of. This task must be carried out by the development
team.

The input to this task are the System Models gathered in the Requirements Document, the Release Planning,
and the Architectural Patterns so the knowledge sources emerge from the system models contemplated in
the current release planning.

In this task, for each ontological and non-ontological resource reflected in the system models we identify its
containing repository. Please note that several resources of a given kind (ontological or non-ontological) can

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 154 of 198 NeOn Integrated Project EU-IST-027595

Component Identification

C
us

to
m

er

Task 1
Identify System

Dialogs and
Facades

Task 2
Identify Knowledge

Sources

Task 3
Create Initial
Architecture

Input 2
Release
Planning

System
Dialogs and Facades

Knowledge
sources

Output
Initial

Architecture

D
ev

el
op

m
en

t T
ea

m

Input 1
Semantic Application

Requirements
Document

Use cases

System
models

Input 3
Architectural

Patterns

M
et

ho
do

lo
gi

ca
l

In
pu

ts

System
models

Figure 11.1: The component identification activity

be stored in the same repository.

As can be seen in Chapter 8 dynamically run-time discovered resources can be used within semantic ap-
plications. The methodology facilitates architectural patterns that will solve this issue through the use of
gateway (Ontology Discovery and Ranking and Non-ontological Resource Discovery and Ranking) compo-
nents presented in Chapter 9.

The output of this task is the set of identified Knowledge Sources.

The methodology presented in this deliverable provides a set of repository components and interfaces that
offer the functionalities for accessing, managing and storing semantic and non-semantic resources, among
other functionalities.

For each basic symbol identified in a system model there exists an architectural pattern that can be selected
with the purpose of interfacing with the correspondent resource.

Software Engineering task NeOn methodology task
Task 1. Develop Business Type Model none
Task 2. Identify Business Interfaces Task 1. To Identify Dialogs and System

Facades
Task 3. Identify System Interfaces and
Operations

Task 2. To Identify Interfaces with
Knowledge Sources

Task 4. Create Initial Component
Specifications and Architecture

Task 3. To Create the Initial Architec-
ture

Table 11.2: Mapping between the tasks described in the state of the art and the tasks proposed by the NeOn
methodology for the Component Identification activity

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 155 of 198

11.1.3 Task 3. To Create the Initial Architecture

The objective of this task is to draw an initial application architecture so developers can get an idea of how
the components might fit together. This task must be carried out by the development team.

The inputs to this task are the System Models gathered in the Requirements Document, the Release Plan-
ning, the System Dialogs and Facades, the Knowledge Sources and the Architectural Patterns.

The architecture is obtained by composing the components identified in tasks 1 and 2 together with other
components and interfaces, obtained from the Architectural Patterns by locating the patterns that correspond
to each relationship and system model template (within the application system limit), until the architecture is
completed. The composition of all the patterns can be done by attaching the required interfaces of a given
pattern to the interfaces provided by another pattern. Attaching a required interface to a provided interface
requires that both interfaces be of the same type.

The output of this task is the Initial Architecture of the application.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 156 of 198 NeOn Integrated Project EU-IST-027595

Chapter 12

Fictitious Example

This chapter presents an example showing how to carry out the Requirements Elicitation and Analysis and
Component Identification activities, given a fictitious case study.

12.1 Requirements Elicitation and Analysis Activity

This section presents how to carry out the three first tasks of an hypothetical Requirements Elicitation and
Analysis episode starting from a given set of Business Requirements.

12.1.1 Business Requirements

A logistics company has proved that setting dynamic shipment routes will decrease their shipment risks and
delivery time and will increase its income because of factors such as weather, transport companies availability
and fares, etc.

The company wants to upgrade its system to enable intelligent search of optimal routes taking into account
weather information coming from different internet providers and information owned by transport compa-
nies, such as delivery times, transportation costs, availability of service for a certain route stretch, etc. The
candidate routes are obtained from cartographies available in the Web.

Besides searching for the most adequate routes and transport companies, the logistics company wants to
make use of the aforementioned integrated information to provide its clients with real time tracking of their
shipments.

The information that the new application will use is encoded according to different formats: the weather
information providers expose their information as instances expressed according to a given ontology; the
transport companies provide a set of XML resources to facilitate the interoperability with the logistics compa-
nies; and the cartographies are published in the Semantic Web as instances that conform to a given ontology.
Additionally, the logistics company will also use information stored in a relational database comprised in its
own information systems.

The logistics company works with several transport companies and with only one weather information
provider. Weather-information providers are not defined at the beginning of the project of the application
development. That is, the application will discover information about weather at run-time and then integrate
this information with the rest of the information.

None of the different XML schemas or ontologies that providers use to specify its information formats are
unique, that is, each provider models its information according to different criteria.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 157 of 198

Data Acess via Shared Ontology

Ontology Author

Specify
Ontology

Application Developer

Build Translator

Produce
Operational

Data

Consume
Operational

Data

<<actor>>
Application

System

Logistics
Company

Obtain Optimum
Route

<<actor>>
Weather Information

Provider System

Track Shipment

Customer

<<actor>>
Cartography Provider

System

<<actor>>
Transport Company

System

<<actor>>
Logistics Company
Information System

Figure 12.1: Identified use cases of the fictitious case study

12.1.2 Task 1. To Identify the Use Cases

Taking into account the Business Requirements facilitated by the logistics company, the development team
starts identifying the use cases, finding the two use cases shown in Figure 12.1.

The first use case, Obtain Optimum Route, identifies the individual interactions between the logistics com-
pany system and the different external systems when an optimum route is obtained. The purpose of the
second use case, Track Shipment, is to show the interactions between the customer of the logistics company
with the system and the interactions of the system with the external information provider systems.

Both use cases can be seen as realisations of the use case template UCT1 (Query Information) presented
in Section 7.1. The template in the catalogue has to be instantiated by the development team by identifying
the concrete primary actor and the set of stakeholders including the external systems and modifying the flow
of the main success scenario and extensions.

The development team locates the template in the catalogue of common use cases and then instantiates the
use case specification as shown in tables 12.1 and 12.2.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 158 of 198 NeOn Integrated Project EU-IST-027595

Obtain Optimum Route
Scope Shipment Management System of the Logistics Company
Level User-goal
Primary Actor
Logistics Company
Stakeholders and Interests

• The Logistics Company requires to calculate the optimal route for a given shipment.

• The Weather Information Provider Systems provide the System with information
about weather conditions for a given location.

• The Transport Companies Systems provide the System with information of the
routes they follow to deliver a shipment and of their postal rates.

• The Cartography Provider System provides the System with cartographical informa-
tion of the geographical points contained in a given route.

• The Logistics Company Information System provides the System management with
information of shipment orders.

Preconditions

• The Logistics Company can access the System.

Success Guarantee (or Postconditions)
The System returns the optimum route for the given shipment to the Logistics Company.

(continues on next page)

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 159 of 198

(comes from previous page)

Main Success Scenario (or Basic Flow)

1. The Logistics Company sends the shipment order identifier to the System.

2. The System sends the shipment order identifier to the Logistics Company Informa-
tion System.

3. The Logistics Company Information System responds to the System with the depar-
ture and arrival places of the shipment.

4. The System sends the shipment departure and arrival places to the Cartography
Provider System.

5. The Cartography Provider System responds to the System with the locations situ-
ated between the departure place of the shipment and the arrival places.

6. The System sends one location contained between the departure place of the ship-
ment and the arrival place to a Weather Information Provider System.

7. The Weather Information Provider System responds to the System with the weather
information of the given location.

Steps 6-7 are repeated until there are no more locations between the shipment departure
and arrival places for querying about their weather conditions.

9. The System sends to a Transport Company System the departure and arrival places.

10. The Transport Company System responds to the System with its availability of de-
liver from the departure to the arrival places as well as with its postal fares.

Steps 9-10 are repeated until there are no more transport companies to be queried.

11. The System evaluates the gathered information on transportation costs and routes
and weather conditions and responds to the Logistics Company with the optimal
route and transportation company for delivering the required shipment.

(continues on next page)

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 160 of 198 NeOn Integrated Project EU-IST-027595

(comes from previous page)

Extensions (or Alternative Flows)
*a. At any time, System fails:

1. The System informs the Logistics Company about the failure.

2-3a. At any time the communication with the Logistics Company Information System fails.

1. The System informs the Logistics Company about the failure.

3a. The Logistics Company Information System does not find the requested order.

1. The System informs the Logistics Company about the failure.

4-5a. At any time the communication with the Cartography Provider System fails.

1. The System informs the Logistics Company about the failure.

2. The System continues without taking into account route weather conditions in Step
9.

5a. The Cartography Provider System is not able to provide a route between the departure
and arrival places.

1. The System informs the Logistics Company about the failure.

2. The System continues without taking into account route weather conditions in Step
9.

6-7a. At any time the communication with the Weather Information Provider System fails.

1. The System informs the Logistics Company about the failure.

2. The System continues without taking into account route weather conditions in Step
9.

7a. The Weather Information Provider System is not able to provide the weather conditions
for a given location.

1. The System informs the Logistics Company about the failure.

2. The System continues without taking into account the route weather conditions for
the given location in Step 6.

9-10a. At any time the communication with the Transport Company System fails.

1. The System informs the Logistics Company about the failure.

2. The System continues with the next transport company to be queried in Step 9.

10a. The Transport Company does not deliver from the departure to the arrival places.

1. The System continues with the next transport company to be queried in Step 9.

(continues on next page)

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 161 of 198

(comes from previous page)

Special Requirements

• The application will discover in the Web the weather information providers at run-
time.

Technology and Data Variations List

• The Logistics Company Information System consist of an Oracle relational database
accessible by standard APIs (e.g. ODBC, JDBC).

• The Weather Information Provider Systems will publish their information in the Se-
mantic Web as instances expressed according to a given ontology.

• The Transport Companies Systems provide their information as Web accessible
XML resources.

• The The Cartography Provider System provide its information as instances ex-
pressed according to a given ontology.

Frequency of Occurrence
High
Miscellaneous

• Open issue: some security aspects of several system are not clear for the moment.

Table 12.1: Obtain Optimum Route use case

Track Shipment
Scope Shipment Management System of the Logistics Company
Level User-goal
Primary Actor
Customer
Stakeholders and Interests

• The Customer of the logistics company requires to track the state and position of a
given shipment.

• The Transport Companies Systems provide the System with information about the
state and position of the shipment.

• The Cartography Provider System provides the System with cartographical informa-
tion about the route that the shipment is following.

• The Logistics Company Information System provides to the System management
information about shipment orders.

(continues on next page)

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 162 of 198 NeOn Integrated Project EU-IST-027595

(comes from previous page)

Preconditions

• The User can access the System.

• The shipment order has been sent to the transport company.

• The transport company has assigned to the shipment order its own identifier and
this has been sent to the logistics company.

Success Guarantee (or Postconditions)
The System returns the the state and position of the shipment to the Customer.
Main Success Scenario (or Basic Flow)

1. The User sends to the System the shipment order identifier.

2. The System sends the shipment order identifier to the Logistics Company Informa-
tion System .

3. The Logistics Company Information System responds to the System with the identi-
fier assigned to the shipment by the transport company, the departure place of the
shipment and the arrival place.

4. The System sends the shipment departure and arrival places to the Cartography
Provider System .

5. The Cartography Provider System responds to the System with the route from the
departure place to the arrival place.

6. The System sends the identifier assigned to the shipment order by the transport
company to a Transport Company System.

7. The Transport Company System responds to the System with the current status and
position of the shipment order.

8. The System responds to the Customer with the route of the shipment, marking on it
the current position as well as the current shipment status.

(continues on next page)

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 163 of 198

(comes from previous page)

Extensions (or Alternative Flows)
*a. At any time, System fails:

1. The System informs the Customer about the failure.

2-3a. At any time the communication with the Logistics Company Information System fails.

1. The System informs the Customer about the failure.

3a. The Logistics Company Information System does not find the requested order.

1. The System informs the Customer about the failure.

4-5a. At any time the communication with the Cartography Provider System fails.

1. The System sends the identifier assigned to the shipment order by the transport
company to a Transport Company System.

2. The Transport Company System responds to the System with the current status and
position of the shipment order.

3. The System responds to the Customer with the current status of the shipment and
its position, without returning the complete route.

5a. The Cartography Provider System is not able to provide a route between the departure
and arrival places.

1. The System sends to a Transport Company System the identifier assigned to the
shipment order by the transport company.

2. The Transport Company System responses to the System with the current status
and position of the shipment order.

3. The System responses to the Customer with the current status of the shipment and
its position without returning the complete route.

6-7a, 5a.1-2a. At any time the communication with the Transport Company System fails.

1. The System informs the Customer about the failure.

Technology and Data Variations List

• The Logistics Company Information System consist of an Oracle relational database
accessible by standard APIs (e.g. ODBC, JDBC).

• The Transport Companies Systems provide their information as Web accessible
XML resources.

• The The Cartography Provider System provides its information as instances ex-
pressed according to a given ontology.

Frequency of Occurrence
High

(continues on next page)

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 164 of 198 NeOn Integrated Project EU-IST-027595

(comes from previous page)

Miscellaneous

• Open issue: some security aspects of several systems are not clear for the moment.

Table 12.2: Track Shipment use case

12.1.3 Task 2. To Identify Application Characteristics and Ontological Needs

In this task, the development team proceeds to identify those non-functional requirements that will affect the
behaviour of the whole application.

As previously seen, the set of characteristics that commonly appear on semantic applications is intended to
help developers identify the semantic requirements of the application under development. Next, the applica-
tion is characterized according to the dimensions explained in Chapter 6.

Ontologies Dimension

The application is characterized by the consumption of own and foreign ontologies (those owned by the
cartography providers and the weather information providers). Thus, the application is not bound to the
particular domain of the logistics company. The ontologies also are not centralized in a single resource but
distributed in multiple sources, so there is Distribution of ontologies.

With respect to the Design-time or run-time ontology selection characteristic, the ontologies owned by the
cartography providers are identified and selected at design time. Nevertheless, the weather information
provider’ ontologies must be discovered and queried at run-time so the application is characterized by partial
Design-tome ontology selection.

With respect to the Scalability regarding the number of ontologies characteristic, the application will not
operate at scale with a huge number of ontologies.

Because the application will deal with different ontologies produced by different organizations, these ontolo-
gies may have different encodings (e.g., RDF(S) or OWL) and can exhibit differences in quality, computational
heterogeneity (lightweight and heavyweight ontologies), can be modeled according to different criteria and
will exhibit conceptual heterogeneity that should be solved with the use of mappings; thus, the Ability to
resolve conceptual heterogeneity in ontologies characteristic is guaranteed.

The use of different ontologies that somehow have to be interrelated will lead to a ontology network typology.

Data Dimension

The application is characterized by the consumption of own and foreign data. In consequence, there is Use
of enternal and external data sources.

As happened with the ontologies, the data is not centralized in a single resource but distributed among
different companies, that is, there is Data Distribution.

Also, the application is characterized by the use of dynamic data that is constantly changing so there is Data
Dynamicity. The data is gathered, selected, combined and processed at run-time.

With respect to the Data scalability characteristic, the application has to operate at scale with a huge number
of instances.

There is Data Encoding Heterogeneity because data is encoded in two different forms, that is, semantic and
non-semantic (ontology instances, XML, records in a relational database.).

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 165 of 198

Reasoning Dimension

With respect to the Reasoning Dimension, the development team can advance that heavyweight logical
reasoning is not a key aspect of the application. Because the application has to deal with the heterogeneity of
ontologies and instances explained before, the reasoning has to be hybrid and enabled by the combination of
subsumption reasoning and other kinds of reasoning. Besides, the application should deal with contradictory
information coming from contradictory weather previsions. And, furthermore, it is not guaranteed that the
information used will be always complete since the system will process information from different providers
that the logistics company does not own.

Non-functional Dimension

With respect to the Interoperability with other applications, the system will interoperate with legacy databases
and will use the XML information provided by the transport companies.

12.1.4 Task 3. To Identify System Models

The development team starts by identifying the typology of the resources that the application will deal with.
Table 12.3 shows the resources identified with its associated basic symbols, which are taken from Section
8.1 after analyzing the characteristics of each resource.

Resource
Identifier

Resource Description Basic Symbol

Cartography
Ontology

Ontology of the cartography provider 1. Static Ontology

Cartography
Instances

Instances of the cartography provider 2. Static Instances

Transport
Schema

XML schema of the transport company
provider

3. Static Non-ontological Resource
Schema

Transport
Data

XML data of the transport company
provider

4. Static Non-Ontological Resource
Content

Weather
Ontologies

Ontologies of the weather information
providers

6. Dynamic Ontology

Weather
Instances

Instances of the weather information
providers

7. Dynamic Instances

Logistics DB Corporate database of the logistics
company

13. Non-ontological Resource Content
that Conforms To a given Schema Ab-
breviation

Table 12.3: Symbols associated to the resources used by the example application

Then the development team identify the existing basic relationships between the basic resources. Table 12.4
shows the relationships identified, obtained from Section 8.2.

As it has been seen in subsection 12.1.2 both use cases are associated to the use case template UCT1
(Query Information) presented in Section 7.1. By taking a look to the system model catalogue, the develop-
ment team realizes that they count with three possible system models.

The System Model 1 (Query Information with a Single Ontology Approach) is discarded because of the
Multiple Ontology Typology characteristic identified in the previous task. From the other system models,
the development chooses the third system model (Query Information with a Hibrid Ontologies Approach)
because of a design decision.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 166 of 198 NeOn Integrated Project EU-IST-027595

Resource 1 Resource 2 Relationship
Cartography
Instances

Cartography
Ontology

1. Instances that Conform To a Given Ontology

Transport Data Transport Schema 2. Non-ontological Resource Content that Con-
forms To a Given Schema

Weather Instances Weather
Ontologies

1. Instances that Conform To a Given Ontology

Table 12.4: Relationships between the resources used in the example application

As the system model chosen indicates, it is needed to create and incorporate another ontology consisting
of a shared vocabulary that will be aligned with the rest of the ontological and non-ontological schemas to
facilitate information integration. In consequence, several Aligned With relationships must be included in the
final system model.

By integrating the basic symbols and their relationships with the Query Information with a Hibrid Ontology
Approach, the system model resulting is the one shown in Figure 12.2.

12.2 Component Identification Activity

This section presents how to carry out the three tasks of the Component Identification activity, taking into
account the use cases and system model obtained in the previous section.

12.2.1 Task 1. To Identify Dialogs and System Facades

Within this task the development team introduces in the architecture a system dialog and a facade for each
use case identified. The components obtained are the following:

• Obtain Optimum Route Dialog component. It implements the Obtain Optimum Route use case
logic, that is, the software that handles the dialog between the Logistics Company and the system
according to the specified use case. This component will make use of the Obtain Optimum Route
Facade component.

• Obtain Optimum Route Facade component. For every step within the Obtain Optimum Route use
case, it will provide operations to meet its responsibilities.

• Track Shipment Dialog component. It implements the Track Shipment use case logic, that is, the
software that handles the dialog between the Customer and the system, according to the specified
use case. This component will make use of the Track Shipment Facade component.

• Track Shipment Facade component. For every step within the Track Shipment use case, it will provide
operations to meet its responsibilities

12.2.2 Task 2. To Identify Interfaces to Knowledge Sources

Within this task the development team catalogues the sources or repositories containing the ontological and
non-ontological data that the application will make use of. For each ontological and non-ontological resource
reflected in the previously system model obtained, its containing repository is identified. Table 12.5 shows
the system and patterns associated to each resource.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 167 of 198

Logistics Company

Application

Weather Information

Providers
Cartography Provider

Transport Company 1

Corporate

Database

aligned with

aligned with

query

Cartography

Ontology

Cartography

Instances

conforms to

aligned with

aligned with

Logistics Shared

Ontology

Transport

Schema 1

conforms to

Transport

Data 1

Ontology

Instances

conforms to

Transport Company N

Transport

Schema N

1

conforms to

Transport

Data N

aligned with

Figure 12.2: System model identified for the fictitious example

12.2.3 Task 3. To Create the Initial Architecture

By integrating the all the components and patterns the architecture shown in Figure 12.3 is obtained.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 168 of 198 NeOn Integrated Project EU-IST-027595

Resource System Pattern
Transport Data Transport Companies 2. Data Repository
Transport Schema Transport Companies 2. Data Repository
Logistics Shared Ontol-
ogy

Logistics Company 1. Ontology Repository

Corporate Database Logistics Company 2. Data Repository
Weather Ontology Weather Information

Providers
3. Dynamic Ontological Resource
Access

Weather Instances Weather Information
Providers

3. Dynamic Ontological Resource
Access

Cartography Ontology Cartography Providers 1. Ontology Repository
Cartography Instances Cartography Providers 1. Ontology Repository

Table 12.5: Patterns associated to the repositories used by the example application

<<SWF_QER>>

Semantic Query Editor

QueryProcessor

QueryEditor

<<SWF_QER>>

Query Answering

InfoAccess

QueryProcessor

<<SWF_QER>>

Semantic Query

Processor

InfoAccess

QueryAnswerer

QueryEditor
<<component>>

Track Shipment Facade

<<component>>

Obtain Optimum Route

Facade

<<component>>

Track Shipment Dialog

RouteFacade

<<component>>

Obtain Optimum Route

Dialog

ShipmentFacade

<<SWF_DMM>>

Information Directory

Manager

OntAccess

DataAccess

AlignmentAccess

<<SWF_DMM>>

Ontology Repository

(Logistics Company)

<<SWF_DMM>>

Data Repository

(Logistics Company)

<<SWF_DMM>>

Ontology Repository

(Cartography Providers)

OntAccess

DataAccess<<SWF_DMM>>

Data Repository

(Transport Companies)
<<SWF_OCU>>

Ontology Discovery and

Ranking

OntAccess

RankingAccess

<<SWF_DMM>>

Ontology Repository

(Weather Information

Providers)

OntAccess

<<SWF_OEN>>

Ontology Matcher

Matcher DataTranslator

OntAccess

QueryProcessor

OntAccess

<<SWF_DMM>>

Alignment Repository
AlignmentsAccess

Figure 12.3: Example Application Architecture

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 169 of 198

Chapter 13

Real Example. FAO case study

This chapter presents an real example showing how have been carried out the Requirements Elicitation and
Analysis and Component Identification activities for the AGROVOC Concept Server Workbench 3.0 have
been carried out. The AGROVOC Concept Server Workbench 3.0 web-based distributed collaborative tool
for managing multilingual ontologies about agriculture.

13.1 Requirements Elicitation and Analysis Activity

This section presents how the three first tasks of the Requirements Elicitation and Analysis of the system
have been carried out, starting from a given set of Business Requirements.

Since the full requirements of the application are quite long and extensive, we are reporting here the most
important sections.

13.1.1 Business Requirements

The AGROVOC Concept Server Workbench can be a good reference system for all users in the agricul-
tural domains who would need to search or manage terminologies or ontological concepts for agriculture,
in multiple languages. It uses as a resource the FAO AGROVOC multilingual thesaurus which has been
re-engineered and extended to have some of the characteristics of a full ontology.

Currently, the AGROVOC maintenance tool is a stand-alone system and it is not available online, which
implies an increment of work for the FAO staff that manages the different AGROVOC languages and other
updates (incorporate changes, new terms, new language versions.

The need to develop of a new tool that could maintain the AGROVOC Concept Server arises from the follow-
ing objectives:

• to promote and facilitate the enrichment of the agricultural terminology and knowledge outside the
usual AGROVOC managing organisations;

• to have an enriched platform for managing terminological and ontological data, and make these avail-
able via web services, or via download facilities (currently provided with a separate ftp area1);

• to provide a knowledge base from where users can download modules to further build domain-specific
ontologies;

• to have a unique collaborative tool available online for AGROVOC;

• to provide a framework in which terminologists and domain experts can benefit from semantic-based
techniques, such as corpus analysis, term extractions, etc;

1ftp://ftp.fao.org/gi/gil/gilws/aims/kos/agrovoc_formats

2006–2009 c© Copyright lies with the respective authors and their institutions.

ftp://ftp.fao.org/gi/gil/gilws/aims/kos/agrovoc_formats

Page 170 of 198 NeOn Integrated Project EU-IST-027595

• to allow local terminology to be represented and available for regional or sub-regional users and/or
applications without having to centralize all languages for all domains in a unique repository .

While mentioning those, it is important also to indicate the reasons which drove the reengineering of the
AGROVOC full system (content and infrastructure):

• the current thesaurus is keyword-oriented and it is not easy to distinguish a conceptual entity (concept)
from the terms that represent it;

• the current AGROVOC may be used for more services (we wish to incorporate more semantics in the
original thesaurus structure);

• the AOS initiative promotes the ability to represent, share and distribute local knowledge, terminology
in multiple languages including language variances, term and string level relationships.

The main business reasons for the development of this new tool for managing the concept server data are:

• to reduce AGROVOC maintenance work;

• easier construction of sub-domain ontologies;

• more complete and coherent agricultural terminology;

• better connection (mapping) with FAOTERM and other systems;

• enriched collaboration within the agricultural community and other agricultural projects oriented versus
the semantic Web (e.g. Agropedia Indica).

In more detail, and to clarify the business requirements used in this deliverable, we have to highlight that

• agricultural users would need to be able to find a concept related to agriculture by using any of the
possible solutions that they could apply, e.g., search using a term in a specific language that represents
a concept, search by URI if already known, search by creator or owner, by creation or modification date,
etc.

• agricultural users would need to operate on the terminological base that underpins the ontological
structure, this means that they would need to add a term or word that identifies a concept, and they
would need to edit already inserted terms, or eliminate them if needed.

• agricultural users would need to be facilitated the management of the terminological and ontological
base with some automatic actions today available in the international community through several tools
(e.g. corpus analysis, relationships refinement, etc).

13.1.2 Task 1. To Identify the Use Cases

Taking into account the Business Requirements facilitated by FAO, the use cases identified are those shown
in Figure 13.1.

Next all the use cases are explained

• The first use case, Search Concept, identifies the interactions between any kind of system user and
the application when finding and visualizing an AGROVOC concept.

As an example scenario, let us think of a fishery expert writing a document about the tuna fish who
would like to identify which type of species are available. Then, the user navigates or ask to the system
to find the concept "tuna" and to visualize it in the main concept window. The system shows the
concept window with the "tuna" concept selected and visualized in full hierarchy.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 171 of 198

System

User

Search Concept

External Provider 1

External Provider N

Registered User

Manage Terms

FAO Documents Respository

Corpus Analysis

<<includes>>

Figure 13.1: Use cases identified in the FAO case study

One of the advantages of using this use case for the FAO organization is that an expert would not ask
the resource owner but would carry out the task himself, consequently saving time to the expert and to
the resource maintainer.

This use case can be seen as a realisation combining the use cases templates UCT1 (Query Infor-
mation), UCT2 (Search Resources) and UCT3 (Browse Resources) presented in sections 7.1, 7.2
and 7.3 respectively. After locating the correspondent templates in the catalogue of use cases and
instantiating them, the use case specification shown in 13.1 is obtained.

Search Concept
Scope AGROVOC Concept Server Workbench 3.0
Level User-goal
Primary Actor
User
Stakeholders and Interests

– The User makes a request to the system to get a concept. This User role represents
any kind of user (registered and non-registered users).

– The External Providers may provide answer to the system, which make them avail-
able to the final customer, who is the User.

Preconditions

– None.

(continues on next page)

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 172 of 198 NeOn Integrated Project EU-IST-027595

(comes from previous page)

Success Guarantee (or Postconditions)
The System returns the requested concept information to the User. The concept may be
found within the own AGROVOC knowledge base or not. In the latter case, results from
external resources may be shown.
Main Success Scenario (or Basic Flow)

1. The User submits a search query following several patterns such as URI, a term
string in a specific language, date in which a concept may have been created, owner,
status, and relationships with other concepts or term codes.

2. The System looks within the AGROVOC knowledge base, finding a set of results.

3. The System returns the results ranked by an specific criteria to the User.

4. The User asks the system to return an specific concept information.

5. The System responds to the User with the information associated to the concept
chosen (including its terms).

Extensions (or Alternative Flows)
*a. At any time, System fails:

1. The System informs the User about the failure.

1a. The User navigates to a concept.

1. The use case continues in step 4.

2a. No results are found within the AGROVOC knowledge base.

1. The System sends the search query to an External Provider.

2. The External Provider responds to the System with the requested information.

Steps 2a.1-2a.2 are repeated until there are no more external providers to be
queried.

3. The use case continues on step 3.

2a.1-2a.2a. The communication with the External Provider fails.

1. The system keeps requesting other Information Providers continuing in step 2a.1.

4a. The User asks the system to return an specific concept information in a particular
language.

1. The System responds to the User with the information associated to the concept
chosen according to the language chosen.

Special Requirements

– Concepts are stored as ontology classes.

– Terms are linguistic information associated to a concept stored within a non-
ontological resource.

Miscellaneous
3. The criteria for ranking the results is not currently specified.

(continues on next page)

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 173 of 198

(comes from previous page)

Frequency of Occurrence
High

Table 13.1: Search Concept use case

• The second use case, Manage Terms, identifies the interactions between a registered user and the
application when assigning terms to a given concept.

As an example scenario, let us think of a student located in south Italy who after browsing the
AGROVOC concept server data, finds a concept represented in English but not in Italian. Then the
user proceeds to assign a new translation for an English term by creating a new term, for example
“acqua”, associated to the concept represented by the English term “water". Finally the term “acqua"
is added to the knowledge base and associated with the appropriate concept.

An advantage of this use case for the FAO organisation is that AGROVOC data are enriched and
available to more users worldwide since it increases sharing, collaboration and decreases individual
efforts.

This use case can be seen as a realisation of the use case UCT5 (Manage Knowledge) presented in
section 7.5. After locating the correspondent template in the catalogue of use cases and instantiating
it, the use case specification shown in 13.2 is obtained.

Manage Terms
Scope AGROVOC Concept Server Workbench 3.0
Level User-goal
Primary Actor
Registered User
Stakeholders and Interests

– The Registered User who have privileges to modify the knowledge base.

Preconditions

– The Registered User must be registered and logged-in.

Success Guarantee (or Postconditions)
Modifications requested by the Registered User are correctly saved in the knowledge base
by adding a new translation and linking it to the appropriate concept.
Main Success Scenario (or Basic Flow)

1. Find a concept and obtain its associated terms: Includes Search Concept.

2. The Registered User request the System to add an specific term associated to the
concept.

3. The System commits the changes sent by the Registered User.

(continues on next page)

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 174 of 198 NeOn Integrated Project EU-IST-027595

(comes from previous page)

Extensions (or Alternative Flows)
*a. At any time, System fails:

1. The System informs the Registered User about the failure.

2a. The Registered User wants to modify an specific term.

1. The Registered User sends the modifications to the System .

2. The System continues in Step 3.

2b. The Registered User wants to remove a given term.

1. The Registered User sends to the System the term to be deleted.

2. The System continues in Step 3.

Special Requirements

– Concepts are stored as ontology classes.

– Terms are linguistic information associated to a concept stored within a non-
ontological resource.

Frequency of Occurrence
High

Table 13.2: Manage Terms use case

• The third use case, Corpus Analysis, identifies the interactions between a registered user and the
application when identifying new terms, concepts or relationships to enrich the knowledge base from
a existing document.

Within this use case multiple terms that are not in the knowledge base can be added after extracting
them from several documents of a specific domain and in a specific language. The documents are
stored within the FAO document repository.

As an example scenario, let us think of an AGROVOC manager in Spain who would like to enrich the
ontology section for nutrition. The user selects a language, and a domain. Then the system performs
an analysis and proposes a list of concepts, terms or relationship between terms (synonymy, etc) for
being added to the ontology system.

Maintaining the current AGROVOC and the future concept server is a very expensive action in terms
of the time spent by the experts involved. It requires knowledge on the domain, experience in the IM
area, and dedication to the task. The corpus analysis functionality will speed up this process allowing
the user to minimise the efforts.

This use case can be seen as a realization of the use case UCT2 (Search Resources) presented in
section 7.2 when filtering documents by language and domain. This use case also realizes the use
case UCT5 (Manage Knowledge) presented in section 7.5 when performing ontology learning. After
locating the correspondent template in the catalogue of use cases and instantiating it, the use case
specification shown in 13.3 is obtained.

Corpus Analysis
Scope AGROVOC Concept Server Workbench 3.0
Level User-goal

(continues on next page)

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 175 of 198

(comes from previous page)

Primary Actor
Registered User
Stakeholders and Interests

– The Registered User who requests the System to enrich the knowledge base by
analysing documents in a specific domain and language.

– The FAO Documents Repository is an external repository that provides the system
with documents (and associated metadata) from which to extract the information.

Preconditions

– Documents and associated metadata in the FAO Documents Repository exist.

– The Registered User must be logged-in and have specific privileges to perform the
use case.

Success Guarantee (or Postconditions)
The system enriches the knowledge base with the information extracted from the FAO
Documents Repository after validating the System proposal by the Registered User.
Main Success Scenario (or Basic Flow)

1. The Registered User selects the domain and the language he wishes to work on.

2. The System request the FAO Document Repository a set of documents filtered by
the selected domain and language.

3. The FAO Document Repository provides the System with the set of documents.

4. The System analyses the corpora and provides the Registered User with the list of
learned concepts, terms and relationships between terms.

5. The Registered User selects from the list the items to be added and sends them back
to the System.

6. The System modifies the knowledge base by incorporating the items selected by the
Registered User.

Extensions (or Alternative Flows)
*a. At any time, System fails:

1. The System informs the Registered User about the failure.

Special Requirements

– The FAO Document Repository contains the metadata needed to filter the documents
by domain and language.

– Concepts are stored as ontology classes.

– Terms are linguistic information associated to a concept stored within a non-
ontological resource.

(continues on next page)

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 176 of 198 NeOn Integrated Project EU-IST-027595

(comes from previous page)

Frequency of Occurrence
High

Table 13.3: Corpus Analysis use case

13.1.3 Task 2. To Identify Application Characteristics and Ontological Needs

In this task, the FAO development team has identified the semantic application characteristics and con-
straints. Tables 13.4, 13.5, 13.6 and 13.7 show the applicability of the characteristics and the motivation
behind their selection.

Characteristic Applicability Motivations
Use of internal
or external
ontologies

Internal The application does not consume ontologies produced by
other applications.

Generation of
new ontologies

Yes From this system users maybe export ontologies that can be
consumed by other applications or have different uses.

Centralization
or distribution
of ontologies

Distribution The AGROVOC concept server application may be replicated
and may access distributed ontologies. First releases of the
system may use a centralised repository, but further exten-
sions will make use of distributed repositories.

Ontologies
Dynamicity

Yes Ontologies will change at run-time with the addition of new
concepts.

Scalability
regarding the
number of
ontologies

Yes The application is planned to use multiple ontologies or mod-
ules. These may be very large.

Use of a
single ontology
or a network of
ontologies

Network of
ontologies

The application will make use of remote distributed ontolo-
gies.

Table 13.4: Characteristics of the FAO case study with respect to the dimension of the ontologies.

Characteristic Applicability Motivations
Use of internal
or external data
sources

Both The application may make use of external documents and
associated annotations.

Data
Distribution

Yes Instances may be distributed.

Data
Dynamicity

Yes Data will change over time.

Data scalability Yes Data may not only a lot, but in multiple languages.
Data Encoding
Heterogeneity

Yes Mostly the system will make use of similar textual data ex-
pressed according to different formats.

Table 13.5: Characteristics of the FAO case study with respect to the data dimension.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 177 of 198

Characteristic Applicability Motivations
Kind of
semantic
reasoning

Subsumption The application will reason with taxonomies.

Hybrid
reasoning

Yes The application will make use of linguistic techniques for on-
tology learning

Dealing with
contradictory
data

No The data that the application will make use of will not be con-
tradictory.

Dealing with
incomplete data

No The application will assume that the information processed
will be always complete.

Table 13.6: Characteristics of the FAO case study with respect to the reasoning dimension.

Characteristic Applicability Motivations
Interoperability
with other
applications

Yes The application will interoperate with existing FAO Document
repositories and with other External Providers.

Table 13.7: Characteristics of the FAO case study with respect to the non-functional dimension.

13.1.4 Task 3. To Identify System Models

The typology of the resources that the application will deal with are shown in Table 13.8 together with its
associated basic symbols taken from Section 8.1.

Table 13.9 shows the identified relationships between the basic resources obtained from Section 8.2.

The first use case, Search Concept is a realisation of the use cases templates UCT1 (Query Information),
UCT2 (Search Resources) and UCT3 (Browse Resources). Thus the following system model templates will
be adapted in the application system model:

• Search Resources (System Model 4) for searching the concepts in the AGROVOC ontologies using
the annotations (or terms) of those concepts.

• Browse Annotated Resources (System Model 5) for browsing the terms associated to the concepts in
the AGROVOC ontologies.

• Query Information with a Single Ontology Approach (System Model 1) when querying each of the
external providers when there are no results found within the AGROVOC knowledge base.

The second use case, Manage Terms is a realisation of the use cases templates UCT5 (Manage Knowledge)
with the goal of editing the terms within the AGROVOC knowledge base. Thus the system model template
Edit Annotations (System Model 9) is included within the application system model.

The third use case, Corpus Analysis is a realisation of the use cases templates UCT2 (Search Resources)
and UCT5 (Manage Knowledge). Thus the following system model templates will be adapted in the applica-
tion system model:

• Search Resources (System Model 4) for searching the documents in the FAO documents repository
using the metadata of these documents (language, domain, etc.).

• Learn (System Model 11) for learning the AGROVOC ontologies from the searched documents within
the FAO documents repository.

By integrating the basic symbols with their relationships the final system model is the one shown in Figure
13.2.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 178 of 198 NeOn Integrated Project EU-IST-027595

Resource
Identifier

Resource Description Basic Symbol

AGROVOC
Ontologies

Ontologies containing the AGROVOC
concepts

1. Static Ontology

AGROVOC
Terms

Multilingual terms associated to the
AGROVOC concepts

4. Static Non-Ontological Resource
Content

Linguistic
Model

Schema of the multilingual terms asso-
ciated to the AGROVOC concepts

3. Static Non-ontological Resource
Schema

FAO
Documents

Text documents stored in the FAO doc-
uments repository

5. Static Unstructured Document

FAO
Documents
Metadata

Metadata about text documents stored
in the FAO documents repository

5. Static Non-ontological Resource
Content

FAO
Documents
Metadata
Schema

Schema of the Metadata about text
documents stored in the FAO docu-
ments repository

5. Static Non-ontological Resource
Schema

External
Contents

External non-semantic data resources 4. Static Non-Ontological Resource
Content

External
Resources
Schema

Schema of the external contents 3. Static Non-ontological Resource
Schema

External
Instances

Instances stored in external semantic
resources

2. Static Instances

External
Ontologies

Ontologies stored in external semantic
resources

1. Static Ontology

Table 13.8: Symbols associated to the resources used by the AGROVOC Concept Server application

Resource 1 Resource 2 Relationship
AGROVOC Terms Linguistic Model 2. Non-ontological Resource Content that Con-

forms To a Given Schema
AGROVOC Terms AGROVOC Ontolo-

gies
8. Ontology Annotated by a Non-ontological Meta-
data

Documents Meta-
data

FAO Documents 6. Unstructured Document Annotated by a Non-
ontological Metadata

Documents Meta-
data

Documents Meta-
data Schema

2. Non-ontological Resource Content that Con-
forms To a Given Schema

External Contents External Re-
sources Schemas

2. Non-ontological Resource Content that Con-
forms To a Given Schema

External Instances External Ontolo-
gies

1. Instances that Conforms To a Given Ontology

Table 13.9: Relationships between the resources used by the example application

13.2 Component Identification Activity

This section presents how to carry out the three tasks of the Component Identification activity, taking into
account the use cases and system model obtained in the previous section.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 179 of 198

External Provider

FAO Documents Repository

Agrovoc Concept Server Workbench 3.0

Application

search
browse

edit
learn

AGROVOC
Ontology 1

AGROVOC
Ontology N

query

query

annotate annotate

search
browse

edit
learn

conforms to

FAO documents

annotate

search

learn

Ext. Ontology N

conforms to

External Instances
N

conforms to

Ext. Resource
Schema 1 External Content 1

AGROVOC
Terms 1

AGROVOC
Terms N

Linguistic Model

conforms to

Documents
Metadata

Documents
Metadata Schema

Figure 13.2: Identified system model for the FAO case study

13.2.1 Task 1. To Identify Dialogs and System Facades

Within this task the development team introduces in the architecture a system dialog and a facade for each
use case identified. The components obtained are the following:

• Search Concept Dialog component. It implements the Search Concept use case logic, that is, the
software that handles the dialog between the User and the system according to the specified use case.
This component will make use of the Search Concept Facade component.

• Search Concept Facade component. For every step within the Search Concept use case, it will
provide operations to meet its responsibilities.

• Manage Terms Dialog component. It implements the Manage Terms use case logic, that is, the soft-
ware that handles the dialog between the Registered User and the system, according to the specified
use case. This component will make use of the Manage Terms Facade component.

• Manage Terms Facade component. For every step within the Manage Terms use case, it will provide
operations to meet its responsibilities

• Corpus Analysis Dialog component. It implements the Corpus Analysis use case logic, that is,

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 180 of 198 NeOn Integrated Project EU-IST-027595

the software that handles the dialog between the Registered User and the system, according to the
specified use case. This component will make use of the Corpus Analysis Facade component.

• Corpus Analysis Facade component. For every step within the Corpus Analysis use case, it will
provide operations to meet its responsibilities

13.2.2 Task 2. To Identify Interfaces to Knowledge Sources

Within this task the development team catalogues the sources or repositories containing the ontological and
non-ontological data that the application will make use of. For each ontological and non-ontological resource
reflected in the previously system model obtained, its containing repository is identified. Table 13.10 shows
the system and patterns associated to each resource.

Resource System Pattern
AGROVOC Ontologies AGROVOC Concept

Server Workbench 3.0
1. Ontology Repository

AGROVOC Terms AGROVOC Concept
Server Workbench 3.0

2. Data Repository

Linguistic Model AGROVOC Concept
Server Workbench 3.0

2. Data Repository

FAO Documents FAO Documents Reposi-
tory

2. Data Repository

FAO Documents Meta-
data

FAO Documents Reposi-
tory

2. Data Repository

FAO Documents Meta-
data Schema

FAO Documents Reposi-
tory

2. Data Repository

External Contents External Provider 2. Data Repository
External Resources
Schema

External Provider 2. Data Repository

External Instances External Provider 1. Ontology Repository
External Ontologies External Provider 1. Ontology Repository

Table 13.10: Patterns associated to the repositories used by the FAO application

13.2.3 Task 3. To Create the Initial Architecture

The architecture obtained by integrating all the components and patterns has been divided into three different
figures (13.3, 13.4 and 13.5) in order to be clearly visualized. Each of these figures show the architecture
corresponding to each of the three use cases.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 181 of 198

<<SWF_QER>>
Semantic Query Editor

QueryProcessor

<<SWF_QER>>
Query Answering

InfoAccess

QueryProcessor
<<SWF_QER>>
Semantic Query

Processor

InfoAccess

QueryAnswerer

QueryEditor
<<component>>

Search Concept Facade

<<component>>
Search Concept Dialog

RouteFacade

<<SWF_DMM>>
Information Directory

Manager

OntAccess

DataAccess

<<SWF_DMM>>
Ontology Repository
(External Provider)

<<SWF_DMM>>
Data Repository

(External Provider)

<<SWF_DMM>>
Ontology Repository
(AGROVOC Concept

Server) OntAccess

DataAccess

<<SWF_DMM>>
Data Repository

(Agrovoc Concept
Server)

InfoAccess

<<SWF_OEN>>
Ontology Browser

ViewCustomizer

OntBrowser

<<SWF_OCU>>
Ontology View
CustomizationAdapter

OntAccess

<<SWF_OCU>>
Ontology Adaptation

Operators

Profiler <<SWF_OCU>>
Ontology Localization

and Profiling

OntAccess

OntAccess

OntAccess

Figure 13.3: FAO Application Architecture (Search Concept)

<<SWF_QER>>
Semantic Query Editor

QueryProcessor

<<SWF_QER>>
Query Answering

InfoAccess

QueryProcessor
<<SWF_QER>>
Semantic Query

Processor

InfoAccess

QueryAnswerer

QueryEditor
<<component>>

Manage Terms Facade

<<component>>
Manage Terms Dialog

RouteFacade

<<SWF_DMM>>
Information Directory

Manager

<<SWF_DMM>>
Ontology Repository
(AGROVOC Concept

Server) OntAccess

DataAccess

<<SWF_DMM>>
Data Repository

(Agrovoc Concept
Server)

InfoAccess

<<SWF_OEN>>
Ontology Browser

ViewCustomizer

OntBrowser

<<SWF_OCU>>
Ontology View
CustomizationAdapter

OntAccess

<<SWF_OCU>>
Ontology Adaptation

Operators

Profiler <<SWF_OCU>>
Ontology Localization

and Profiling

OntAccess

OntAccess

OntAccess

<<SWF_OIG>>
Manual Annotation

ManualAnnotator

OntAccess

DataManagement

DataAccess

Figure 13.4: FAO Application Architecture (Manage Terms)

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 182 of 198 NeOn Integrated Project EU-IST-027595

<<SWF_QER>>
Semantic Query Editor

QueryProcessor

<<SWF_QER>>
Query Answering

InfoAccess

QueryProcessor
<<SWF_QER>>
Semantic Query

Processor

InfoAccess

QueryAnswerer

QueryEditor
<<component>>

Corpus Analysis Facade

<<component>>
Corpus Analysis Dialog

RouteFacade

<<SWF_DMM>>
Information Directory

Manager

DataAccess

<<SWF_DMM>>
Data Repository
(FAO Documents

Repository)

<<SWF_DMM>>
Ontology Repository
(AGROVOC Concept

Server)

OntAndInstMng

DataAccess

InfoAccess

<<SWF_OEN>>
Ontology Learner

OntLearner

Figure 13.5: FAO Application Architecture (Corpus Analysis)

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 183 of 198

Chapter 14

Conclusions and Future Work

The development of applications that contain semantic functionalities is difficult for Software Engineers out-
side the semantic community.

With this first version of the NeOn methodology for the development of large-scale semantic applications, we
aim to facilitate the adoption of semantic technologies to Software Engineers.

For this purpose, we have adapted the Requirements Engineering and Design processes and different tech-
niques from software engineering and we have provide a set of catalogues.

We have analyzed the state of the art of classifications and categorisations of semantic applications in order
to provide 32 common characteristics and constraints of semantic applications that can be selected and
included in a requirements document as non-functional requirements. The characteristics and constraints
associated to a given large-scale semantic application will impact during the whole development process.

The methodology adopts the use cases technique and provides 5 use case templates by adapting state of
the art scenarios for building semantic applications from the viewpoint of the user’s goals. This is useful for
start analysing the application functional requirements from the user’s concrete functional requirements.

In addition, this deliverable provides a new way to make a graphical representation of the macro-structure
and environment of a semantic application by describing 11 system models, basic templates, relationships
and basic symbols. The system models can be selected once the previously mentioned application charac-
teristics and constraints and use-cases are identified.

We also provide 28 architectural patterns with the aim of facilitating the architectural design of a large-scale
semantic application. The components involved in these architectural patterns have been obtained from the
Semantic Web Framework [GGMN08] defined in the context of the Knowledge Web Project (FP6-507482).
The architectural patterns can be selected once the system model of the application have been identified.

The methodology presented in this deliverable has not been evaluated yet in any large-scale development
project finished. A first evaluation of the methodology will be provided by the NeOn case studies and included
in the following version of the methodology.

The catalogues and patterns presented in the deliverable can be extended, and for this purpose a collabora-
tive space (e.g. a wiki) will be enabled to facilitate the feedback, extension and enrichment to the community.

Immediate lines of work include continuing defining the rest of the processes: Provisioning and Development,
Integration and Testing.

Another future line of work is to extend the methodology for integrate large-scale semantic web applications
with other paradigms such the Web 2.0 and to specialize the methodology in order to specifically deal with
particular settings and tendencies such as the Open Linked Data initiative 1 or the Semantic Grid.

Also, an interesting result should be to give software support to the methodology by building or adapting
an existing CASE tool and by formalising the processes, activities, methods, catalogues and patterns of the
methodology with ontologies with the aim of automatically documenting the large-scale semantic application
development process, or of supporting the application code generation. For this last point, it is necessary to

1http://linkeddata.org/

2006–2009 c© Copyright lies with the respective authors and their institutions.

http://linkeddata.org/

Page 184 of 198 NeOn Integrated Project EU-IST-027595

define the rest of the processes and to provide interoperable implementations of the components that can be
involved in the semantic application.

The questionnaires will be also used to characterize and categorize existing semantic applications to realize
an analysis of the current panorama of semantic applications.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 185 of 198

Appendix A

Questionnaires for Identifying the
Characteristics of Semantic Applications

This section provides a set of questionnaires that can be used by the application developers to identify the
characteristics of a semantic application given during their interviews with the customer or to identify the
characteristics of an existing semantic application. The questions are also valid for identifying the ontologies
and data sets that the application will deal with and to detect the ontological needs.

The questions are grouped into the following questionnaires:

• Questionnaire about Ontologies. To help the application developers to determine the characteristics of
the ontologies that the application will make use of.

• Questionnaire about Data. To help the application developers to determine the characteristics of
the data that the application will consume or manipulate and its relation with the ontologies or data
schemas which data may conform to.

• Questionnaire about Reasoning. To help the application developers to determine the characteristics of
the reasoning that the application will apply to the ontologies and data.

• Questionnaire about Non-functional Characteristics. To help the application developers to determine
the other non-functional characteristics of the application with other applications.

Bellow, each of the questionnaires is provided. For each question their purpose and possible answers are
provided. A question may have secondary questions, if needed, to specify the answer more.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 186 of 198 NeOn Integrated Project EU-IST-027595

Questionnaire 1 Characteristics of the ontologies

The following questions must be answered by considering the whole set of ontologies that the application will
use.

1. Will the application combine ontologies for being exploited jointly or each ontology will be processed
by separate?

A Jointly

B By separate

C Mixed

D Unknown

Characteristic: Use of a single ontology or a network of ontologies.

2. Will be the ontologies be identified by developers at design-time or located by the application at run-
time?

A Design-time

B Run-time

C Mixed

D Unknown

Characteristic: Design-time or run-time ontology selection.

a) If the answer is “run-time” or “mixed”, specify the selection criteria.

A Quality
B Complexity
C Richness
D User’s evaluation
E Unknown
F Other(s):

Purpose: to identify the run-time selection criteria.

3. Are all of the ontologies bound to the same particular domain?

A Yes

B No

C Unknown

Characteristic: Use of generic or domain-specific ontologies.

4. Will the application produce new ontologies?

A Yes

B No

C Unknown

Characteristic: Generation of new ontologies.

5. Will the ontologies be centralized in a single resource or distributed?

A Centralized

B Distributed

C Unknown

Characteristic: Centralization or distribution of ontologies.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 187 of 198

6. How many ontologies will the application deal with?

A 1

B 2-5

C 5-15

D 15-50

E 50-

F Unknown

Characteristic: Scalability with respect to the number of ontologies.

The following questions must be answered by considering each of the existing ontologies.

7. Which is the domain described by the ontology?

A

B Unknown

Purpose: to identify the domain described by the ontology.

8. Is the ontology obtained from an external resource?

A Yes. Specify from where: .

B No

C Unknown

Characteristic: Use of internal or external ontologies (when at least one ontology is obtained from an
external resource).
Purpose: to identify the external resource from where the ontology have been obtained.

9. Does the ontology need to be reengineered?

A Yes

B No

C Unknown

Purpose: To detect the ontological need of reengineering the considered ontology.
Characteristic: Ontologies reuse and reengineering.

10. Which will be the purpose of the ontology within the application?

A Its own consumption

B External consumption

C Both

D Unknown

Purpose: to identify if the ontology will be consumed by the application, by other application, or by
both.

11. Will the ontology change during application execution time?

A Yes

B No

C Unknown

Characteristic: Ontology Dynamicity (for the considered ontology).

12. How many ontology elements does the ontology contains?

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 188 of 198 NeOn Integrated Project EU-IST-027595

A -50

B 50-100

C 100-200

D 200-1000

E 1000-

F Unknown

Characteristic: Scalability with respect to the number of ontology elements (for the considered ontol-
ogy).

13. In which ontology language is the ontology formalized?

A RDFS

B OWL

C Other:

D Unknown

Purpose: to identify the ontology language in which the ontology is formalized
Characteristic: Ontologies encoding heterogeneity (if different ontology languages are used for differ-
ent ontologies).

14. Is there any need of aligning the ontology with other ontologies due to conceptual heterogeneity?

A Yes (specify the ontologies that need to be aligned with the ontology considered):

B No

C Unknown

Purpose: to identify the ontologies that need to be aligned with the ontology considered.
Characteristic: Ability to resolve conceptual heterogeneity in ontologies (when at least two ontologies
need to be aligned).

a) If the answer is “Yes”, is there any existing alignment?

A Yes (specify the existing alignments):

B No

C Unknown

Purpose: to discover the existing alignments.

b) Specify the alignments that need to be created.

A

B Unknown

Purpose: to identify the ontological need of creating new alignments.

i – Specify for each of the previous alignments when they will be created.

A Design-time:

B Run-time:

C Unknown:

Purpose: to identify if each of the alignments will be created at design-time or automatically
at run-time.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 189 of 198

Questionnaire 2 Characteristics of the data

The following questions must be answered by taking into account the whole set of data sets (or collections of
data) that the application will access or manage.

1. Are all of the data sets bound to the same particular domain?

A Yes

B No

C Unknown

Characteristic: Data domain dependence.

2. Will the application produce new data sets?

A Yes

B No

C Unknown

Characteristic: Data generation.

3. Will the data be linked?

A Yes

B No

C Unknown

Characteristic: Use of linked data.

4. Will the existing data sets be centralized in a single resource or distributed in multiple resources?

A Centralized

B Distributed

C Unknown

Characteristic: Data distribution.

5. Will the data sets be identified by developers at design-time or located by the application at run-time?

A Design-time

B Run-time

C Mixed

D Unknown

Characteristic: Design-time or run-time data selection.

6. How many data sets will the application deal with?

A 1

B 2-5

C 5-15

D 15-50

E 50-

F Unknown

Characteristic: Data scalability.

7. Will the application aggregate non-semantic data?

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 190 of 198 NeOn Integrated Project EU-IST-027595

A Yes

B No

C Unknown

Characteristic: Use of non-semantic data.

The following questions must be answered by considering each of the data sets.

8. Which will be the purpose of the data set within the application?

A Own consumption

B External consumption

C Both

D Unknown

Purpose: to identify if the data set will be consumed by the application, by other application or by
both.

9. Will the data set be taken from an external resource?

A Yes. Specify from where:

B No

C Unknown

Characteristic: Use of internal or external data sources (when at least one data source is obtained
from an external resource). Purpose: to identify the external resource from where the ontology have
been obtained.

10. Will the data set be changing during the application execution time?

A Yes

B No

C Unknown

Characteristic: Data dynamicity (for the data set considered).

11. Which will be the size of the data set?

A Various KB

B Various MB

C Various GB

D Various TB

E More than various TB

F Unknown

Characteristic: Data scalability (for the data set considered).

12. Which will be the format in which triples will be expressed?

A RDF/XML

B N3

C Other:

D Unknown

Purpose: to identify the format in which the data set is represented.
Characteristic: Data encoding heterogeneity (if different formats are used for multiple data sets).

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 191 of 198

13. Will the data conform to a given ontology or to another kind of non-ontological data schema?

A Yes, it conforms to an ontology. Specify the ontology:

B Yes, it conforms to a non-ontological data schema. Specify the non-ontological data schema:

C No, it is unstructured data.

D Unknown

Purpose: to identify the ontology or schema which the data set conforms to.

a) If the answer is “conforms to a non-ontological data schema”, will the data set be reeingeneered
for obtaining an ontological resource?

A Yes

B No

C Unknown

Purpose: to detect the ontological need of performing a non-ontological resource reengineering.

i – If the answer is “no”, will the application integrate the data set schema in order to exploit
jointly the ontologies and non-semantic data?

A Yes

B No

C Unknown

Purpose: to determine whether data should be treated as ontology instances.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 192 of 198 NeOn Integrated Project EU-IST-027595

Questionnaire 3 Characteristics of reasoning

1. Do you know at this stage what are the kinds of semantic reasoning that the application will apply?

A Consistency checking

B Inference of new data

C Automatic classification

D Instances classification

E Subsumption reasoning

F Unknown

Characteristic: Kind of semantic reasoning.

2. Do you know at this stage if the application will apply sound reasoning?

A Yes, the application will apply sound reasoning

B Yes, the application won’t apply sound reasoning.

C No

Characteristic: Sound reasoning.

3. Do you know at this stage if the application will apply complete reasoning?

A Yes, the application will apply complete reasoning

B Yes, the application won’t apply complete reasoning

C No

Characteristic: Complete reasoning.

4. Do you know at this stage if the application will have to reason simultaneously with knowledge sources
with non-ontological nature and with ontological sources?

A Yes, by applying machine learning techniques

B Yes, by applying linguistic techniques

C Yes, by applying statistical techniques

D Yes, by applying graph matching techniques

E Yes, by applying techniques

F No

Characteristic: Hybrid reasoning.

5. Will the application deal with contradictory data?

A Yes

B No

C Unknown

Characteristic: Reasoning with contradictory data.

6. Will the application deal with incomplete data?

A Yes

B No

C Unknown

Characteristic: Reasoning with incomplete data.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 193 of 198

7. Do you know at this stage if the application will reason with uncertainty?

A Yes, the application will reason with uncertainty

B Yes, the application won’t reason with uncertainty

C No

Characteristic: Reasoning with uncertainty.

8. Do you know at this stage if the application will distribute the reasoning?

A Yes, the application will distribute the reasoning

B Yes, the application won’t distribute the reasoning

C No

Characteristic: Distributed reasoning.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 194 of 198 NeOn Integrated Project EU-IST-027595

Questionnaire 4 Non-functional characteristics

1. Will the application access programmatically other applications?

A Yes

B No

C Unknown

Characteristic: Interoperability with other applications.

a) If the answer is “yes”, specify the kind of interfaces that the external systems provide to facilitate
the interoperability.

A API

B Web Service

C Semantic Web Service

D Other:

Purpose: to identify the mechanism that facilitates the interoperability when the application ac-
cess programmatically other application.

2. Will other applications access programmatically to the application?

A Yes

B No

C Unknown

Characteristic: Interoperability with other applications.

a) If the answer is “yes”, specify the kind of interfaces that the external systems require to facilitate
the interoperability.

A API

B Web Service

C Semantic Web Service

D Other:

Purpose: to identify the mechanism that facilitates the interoperability when other application
access programmatically the application.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 195 of 198

Bibliography

[AMS+08] Mathieu d’ Aquin, Enrico Motta, Marta Sabou, Sofia Angeletou, Laurian Gridinoc, Vanessa
Lopez, and Davide Guidi. Towards a New Generation of Semantic Web Applications. IEEE
Intelligent Systems, 23(3), May/June 2008.

[BBB+01] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunningham, Martin
Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian Marick,
Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, and Dave Thomas. Manifesto for
Agile Software Development. http://www.agilemanifesto.org/, 2001.

[BCKB03] Len Bass, Paul Clements, Rick Kazman, and Ken Bass. Software Architecture in Practice, chap-
ter 11. Addison-Wesley, Boston, second edition, 2003.

[Bec99a] Kent Beck. Embrace Change with Extreme Programming. IEEE Computer, pages 70–77, Octo-
ber 1999.

[Bec99b] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley Professional,
October 1999.

[Boh79] Barry W. Bohem. Software Engineering; R & D trends and defense needs. In P. Wegner, editor,
Research Directions in Software Technology (Ch. 22), pages 1–9, Cambridge, MA, 1979. MIT
Press.

[CD01] John Cheesman and John Daniels. UML Components. A Simple Process for Specifying
Component-Based Software. Component Software Series. Addison-Wesley, 2001.

[CLC03] David Cohen, Mikael Lindvall, and Patricia Costa. Agile Software Development. State-of-the-art
report, Data and Analysis Center for Software, 775 Daedalian Dr. Rome, New York 13441-4909,
January 2003.

[Coc00] Alistair Cockburn. Selecting a project’s methodology. IEEE Software, 17(4):64–71, 2000.

[DF08] John Domingue and Dieter Fensel. Towards a Service Web: Integrating the Semantic Web and
Service Orientation. IEEE Intelligent Systems, January 2008.

[FKN+92] A. Finkelsetin, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. Viewpoints: A framework
for integrating multiple perspectives in system development. International Journal of Software
Engineering and Knowledge Engineering, 2, 1992.

[FM01] Dieter Fensel and Enrico Motta. Structured Development of Problem Solving Methods. IEEE
Transactions on Knowledge and Data Engineering, 13(6):913–932, 2001.

[GGMN08] Raúl García-Castro, Asunción Gómez-Pérez, Oscar Muñoz-García, and Lyndon J.B. Nixon.
Towards a Component-Based Framework for Developing Semantic Web Applications. In
J. Domingue and C. Anutariya, editors, 3rd Asian Semantic Web Conference (ASWC 2008), Lec-
ture Notes in Computer Science, pages 197–211, Bangkok, Thailand, December 2008. Springer-
Verlag.

2006–2009 c© Copyright lies with the respective authors and their institutions.

http://www.agilemanifesto.org/

Page 196 of 198 NeOn Integrated Project EU-IST-027595

[GMG+07] Raúl García-Castro, Oscar Muñoz-García, Asunción Gómez-Pérez, Stefania Costache, Diana
Maynard, Stamatia Dasiopoulou, Raúl Palma, Vit Novacek, Freddy Lécué, Ying Ding, Monika
Kaczmarek, Ruzica Piskac, Dominik Zyskowski, Jérôme Euzenat, and Martin Dzbor. D1.2.5.
Architecture of the Semantic Web Framework v2. Technical report, Knowledge Web, December
2007.

[Gru93] Thomas R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 5(2):199–200, 1993.

[GS08] Asunción Gómez-Pérez and Mari Carmen Suárez-Figueroa. NeOn Methodology: Scenarios for
Building Networks of Ontologies. /16th International Conference on Knowledge Engineering and
Knowledge Management Knowledge Patterns (EKAW 2008). Conference Poster, Italy, 2008.

[Hig02] Jim Highsmith. Agile Software Development Ecosystems. The Agile Software Development
Series. Addison-Wesley Professional, April 2002.

[HOC00] Jim Highsmith, Ken Orr, and Alistair Cockburn. Extreme Programming. E-business application
delivery, Cutter Consortium, February 2000.

[IEE90] IEEE. IEEE Standard Glossary of Data Management Terminology. IEEE Standard 610.5-1990,
Standards Coordinating Committee of the IEEE Computer Society, August 1990.

[IEE95a] IEEE. IEEE Guide for Software Quality Assurance Planning. IEEE Standard 730.1-1995, Soft-
ware Engineering Standards Committee of of the IEEE Computer Society, December 1995.

[IEE95b] IEEE. IEEE Standard for Developing Software Life Cycle Processes. IEEE Standard 1074-1995,
IEEE Computer Society, September 1995.

[IEE97] IEEE. IEEE Standard for Developing Software Life Cycle Processes. IEEE Standard 1074-1997,
IEEE Computer Society, December 1997.

[IEE98] IEEE. IEEE Recommended practice for software requirements specifications, chapter 6. Num-
ber IEEE/ANSI 830-1998 in IEEE Software Engineering Standards Collection. IEEE Computer
Society Press, Los Alamitos, CA, 1998.

[Jac92] Ivar Jacobsen. Object Oriented Software Engineering: A Use Case Driven Approach. ACM
Press. Addison-Wesley Professional, July 1992.

[Joh97] Ralph E. Johnson. Frameworks = (Components + Patterns). Communications of the ACM,
40(10):39–42, October 1997.

[JU99] Robert Jasper and Mike Uschold. A Framework for Understanding and Classifying Ontology
Applications. In Twelfth Workshop on Knowledge Acquisition Modeling and Management KAW
99, 1999.

[KHS+08] Kouji Kozaki, Yusuke Hayashi, Munehiko Sasajima, Shinya Tarumi, and Riichiro Mizoguchi. Un-
derstanding Semantic Web Applications. In 3rd Asian Semantic Web Conference (ASWC 2008),
2008.

[Kru92] Charles W. Krueger. Software Reuse. ACM Comput. Surveys, 24(2):131–183, June 1992.

[Kru00] Philippe Kruchten. The Rational Unified Process: An Introduction. Object Technology. Addison-
Wesley, second edition, March 2000.

[KSF08] Reto Krummenacher, Elena Simperl, and Dieter Fensel. Scalability in Semantic Computing:
Semantic Middleware. In Proceedings of the IEEE Conference on Semantic Computing, pages
538–544, 2008.

D5.5.1 NeOn methodology for the development of large-scale semantic applications Page 197 of 198

[Lar05] Craig Larman. Applying UML and Patterns. An Introduction to Object-Oriented Analysis and
Design and Iterative Development. Software Engineering/Object-Oriented Analysis and Design.
Prentice Hall, Upper Saddle River, NJ 07458, third edition, August 2005.

[Man07] Christoph Mangold. A survey and classification of semantic search approaches. International
Journal of Metadata, Semantics and Ontologies, 2(1):23–34, January 2007.

[Mot99] Enrico Motta. Reusable Components for Knowledge Modelling. IOS Press, Amsterdam, The
Nederlands, 1999.

[MS06] Enrico Motta and Marta Sabou. Next Generation Semantic Web Applications. In 1st Asian
Semantic Web Conference, Beijing, September 2006.

[Obe06] Daniel Oberle. Semantic Management of Middleware. Semantic Web and Beyond. Springer,
2006.

[Par01] Luis F. Paradela-González. Una Metodología para la Gestión del Conocimiento. PhD thesis,
Universidad Politécnica de Madrid, Madrid, Spain, 2001.

[PF02] Stephen R. Palmer and John M. Felsing. A Practical Guide to Feature-Driven Development. The
Coad Series. Prentice Hall PTR, February 2002.

[SAA+00] Guus Schreiber, Hans Akkermans, Anjo Anjewierden, Robert de Hoog, Nigel Shadbolt, Wal-
ter Van de Velde, and Bob Wielinga. Engineering and Managing Knowledge: The CommonKADS
Methodology. M.I.T. Press, 2000.

[SAA+07] Marta Sabou, Sofia Angeletou, Mathieu d’ Aquin, Jesús Barrasa, Klaas Dellschaft, Aldo
Gangemi, Jos Lehmann, Holger Lewen, Diana Maynard, Dunja Mladenic, Malvina Nissim, Wim
Peters, Valentina Presutti, and Boris Villazón. D2.2.1 Methods for Selection and Integration of
Reusable Components from Formal or Informal User Specifications. Technical report, NeOn
Project, April 2007.

[SAB+07] Mari Carmen Suárez-Figueroa, Guadalupe Aguado de Cea, Carlos Buil, Caterina Caracciolo,
Martin Dzbor, Asunción Gómez-Pérez, German Herrero, Holger Lewen, Elena Montiel-Ponsoda,
and Valentina Presutti. D5.3.1. NeOn Development Process and Ontology Life Cycle. Technical
report, NeOn Project, August 2007.

[SAB+08] Mari Carmen Suárez-Figueroa, Guadalupe Aguado de Cea, Carlos Buil, Klaas Dellschaft, Mari-
ano Fernández-López, Andrés García, Asunción Gómez-Pérez, German Herrero, Elena Montiel-
Ponsoda, Marta Sabou, Boris Villazón-Terrazas, and Zheng Yufei. D5.4.1. NeOn Methodology
for Building Contextualized Ontology Networks. Technical report, NeOn Project, February 2008.

[Sch01] Ken Schwaber. Agile Software Development with SCRUM. Agile Software Development. Prentice
Hall, October 2001.

[SFG+08] Mari Carmen Suárez-Figueroa, Mariano Fernández-López, Asunción Gómez-Pérez, Klaas
Dellschaft, Holger Lewen, and Martin Dzbor. D5.3.2 Revision and Extension of the NeOn Devel-
opment Process and Ontology Life Cycle. Technical report, NeOn Project, November 2008.

[Som07] Ian Sommerville. Software Engineering. International Computer Science Series. Addison-
Wesley, eighth edition, 2007.

[SW99] Desmond Francis D’ Souza and Alan Cameron Wills. Objects, Components, and Frameworks
with UML. The Catalysis Approach. Object Technology. Addison-Wesley, 1999.

[Szy98] Clemens Szyperski. Component Software, Beyond Object Oriented Programming. Addison-
Wesley, 1998.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 198 of 198 NeOn Integrated Project EU-IST-027595

[WVV+01] H. Wache, T. Vögele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann, and S. Hübner.
Ontology-based integration of information - a survey of existing approaches. In IJCAI workshop
on Ontologies and Information Sharing, pages 108–117, 2001.

	Introduction
	WP5 Goals
	Deliverable Goal
	Deliverable Structure

	Related Work in Software Engineering
	Definitions for Methodology, Method, Technique, Process, Activity and Task
	Component Based Development
	Requirements
	Specification
	Provisioning
	Assembly
	Testing
	Deployment

	Agile Software Development
	Extreme Programming
	SCRUM
	The Crystal Methods
	Feature Driven Development
	Comparison of Presented Methods

	Requirements Engineering Process
	Methods
	Techniques

	Design Process
	Methods
	Techniques

	Conclusions

	Related Work in the Characterisation and Classification of Semantic Applications
	Characteristics of Semantic Applications
	Traditional Knowledge-Based Systems Characteristics
	Semantic Web Applications Characteristics
	Comparison of the Characteristics Presented

	Scenarios for building Semantic Applications
	Classification of Ontology Applications
	Classification of Semantic Web Applications

	The Semantic Web Framework
	Definition and Classification of Components

	Conclusions

	Research Methodology
	General Framework for Describing the Methodology
	Requirements for the NeOn Methodology for Building Large-Scale Semantic Applications
	Generic requirements
	Specific requirements

	NeOn Methodology for Building Large Scale Semantic Web Applications
	Requirements Engineering
	Inputs
	Outputs

	Design
	Inputs
	Output

	Semantic Application Characteristics
	Ontologies Dimension
	Data Dimension
	Reasoning Dimension
	Non-functional Characteristics Dimension

	Use Cases Catalogue
	Query Information Use Case
	Search Resources Use Case
	Browse Resources Use Case
	Extract Information Use Case
	Manage Knowledge Use Case

	System Models Catalogue
	Basic Symbols
	Resources
	Dynamic Resources
	Applications and Systems

	Relationships Between Symbols
	Conforms To
	Aligned With
	Annotate

	Basic Templates
	Data Sources with Schema
	Annotated Resources

	System Models
	Query Information System Models
	Search Resources System Model
	Browse Resources System Models
	Extract Information System Model
	Manage Knowledge System Models

	Examples
	Example 1
	Example 2
	Example 3

	Architectural Patterns
	Semantic Web Framework Component Interfaces Description
	Data and Metadata Management
	Querying and Reasoning
	Ontology Engineering
	Ontology Customization
	Ontology Instance Generation

	Components Not Defined in the SWF
	Non-ontological Resource Discovery and Ranking

	Components associated to Basic System Models Symbols
	Components Associated to Resources

	Components associated to Relationships Between Symbols in System Models
	Conforms To
	Aligned With
	Annotate

	Components Associated to the Basic Templates
	Components Associated to Data Sources with Schema
	Components Associated to Annotated Resources

	Components Associated to System Models
	Query Information
	Search Resources
	Browse Resources
	Extract Information
	Edit
	Populate
	Learn

	Requirements Engineering Process
	Proposed Guidelines for Requirements Elicitation and Analysis
	Task 1. To Identify the Use Cases
	Task 2. To Identify the Semantic Characteristics and Ontological Needs
	Task 3. To Identify System Models
	Task 4. To Document Requirements
	Task 5. To Estimate Requirements
	Task 6. To Prioritize Requirements

	Design Process
	Proposed Guidelines for Component Identification
	Task 1. To Identify Dialogs and System Facades
	Task 2. To Identify Knowledge Sources
	Task 3. To Create the Initial Architecture

	Fictitious Example
	Requirements Elicitation and Analysis Activity
	Business Requirements
	Task 1. To Identify the Use Cases
	Task 2. To Identify Application Characteristics and Ontological Needs
	Task 3. To Identify System Models

	Component Identification Activity
	Task 1. To Identify Dialogs and System Facades
	Task 2. To Identify Interfaces to Knowledge Sources
	Task 3. To Create the Initial Architecture

	Real Example. FAO case study
	Requirements Elicitation and Analysis Activity
	Business Requirements
	Task 1. To Identify the Use Cases
	Task 2. To Identify Application Characteristics and Ontological Needs
	Task 3. To Identify System Models

	Component Identification Activity
	Task 1. To Identify Dialogs and System Facades
	Task 2. To Identify Interfaces to Knowledge Sources
	Task 3. To Create the Initial Architecture

	Conclusions and Future Work
	Questionnaires for Identifying the Characteristics of Semantic Applications
	Bibliography

