
2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 
 

NeOn: Lifecycle Support for Networked Ontologies 

Integrated Project (IST-2005-027595) 

Priority: IST-2004-2.4.7 – “Semantic-based knowledge and content systems” 

 

D5.4.2. Revision and Extension of the NeOn Methodology for Building 
Contextualized Ontology Networks 

Deliverable Co-ordinator: Mari Carmen Suárez-Figueroa 

Deliverable Co-ordinating Institution: UPM 
 

Other Authors: Eva Blomqvist (CNR), Mathieu D’Aquin (OU), Mauricio 
Espinoza (UPM), Asunción Gómez-Pérez (UPM), 
Holger Lewen (UKARL), Igor Mozetic (JSI), Raúl Palma 
(UPM), Maria Poveda (UPM), Margherita Sini (FAO), 
Boris Villazón-Terrazas (UPM), Fouad Zablith (OU), 
Martin Dzbor (OU). 

This deliverable presents the second version of the NeOn methodology for building 
ontology networks. This version extends the previous one presented in D5.4.1 [80] 
providing methodological guidelines for: developing and creating ontology networks, 
reusing and re-engineering non-ontological resources, reusing ontology design 
patterns, modularizing ontologies, evaluating ontologies, evolving ontologies, and 
localizing ontologies.    

Document Identifier: NEON/2009/D5.4.2/v1.0 Date due: February 28, 2009 
Class Deliverable: NEON EU-IST-2005-027595 Submission date: February 28, 2009 
Project start date: March 1, 2006 Version: v1.0 
Project duration: 4 years State: Final 
  Distribution: Public 
 

NeOn-project.org 
 



Page 2 of 115 NeOn Integrated Project EU-IST-027595 

 

NeOn Consortium 

This document is a part of the NeOn research project funded by the IST Programme of the 
Commission of the European Communities by the grant number IST-2005-027595. The following 
partners are involved in the project: 

Open University (OU) – Coordinator 
Knowledge Media Institute – KMi 
Berrill Building, Walton Hall 
Milton Keynes,  MK7 6AA 
United Kingdom 
Contact person: Martin Dzbor, Enrico Motta 
E-mail address: {m.dzbor, e.motta} @open.ac.uk 

Universität Karlsruhe – TH (UKARL) 
Institut für Angewandte Informatik und Formale 
Beschreibungsverfahren – AIFB 
Englerstrasse 28 
D-76128 Karlsruhe, Germany 
Contact person: Peter Haase 
E-mail address: pha@aifb.uni-karlsruhe.de 

Universidad Politécnica de Madrid (UPM) 
Campus de Montegancedo  
28660 Boadilla del Monte  
Spain 
Contact person: Asunción Gómez Pérez 
E-mail address: asun@fi.upm.es 

Software AG (SAG) 
Uhlandstrasse 12 
64297  Darmstadt 
Germany 
Contact person: Walter Waterfeld 
E-mail address: walter.waterfeld@softwareag.com 

Intelligent Software Components S.A. (ISOCO) 
Calle de Pedro de Valdivia 10  
28006  Madrid  
Spain 
Contact person: Jesús Contreras 
E-mail address: jcontreras@isoco.com 

Institut ‘Jožef Stefan’ (JSI) 
Jamova 39 
SI-1000 Ljubljana  
Slovenia 
Contact person: Marko Grobelnik 
E-mail address: marko.grobelnik@ijs.si 

Institut National de Recherche en Informatique  
et en Automatique (INRIA) 
ZIRST – 655 avenue de l'Europe 
Montbonnot Saint Martin 
38334 Saint-Ismier 
France 
Contact person: Jérôme Euzenat 
E-mail address: jerome.euzenat@inrialpes.fr 

University of Sheffield (USFD) 
Dept. of Computer Science 
Regent Court  
211 Portobello street 
S14DP Sheffield  
United Kingdom 
Contact person: Hamish Cunningham 
E-mail address: hamish@dcs.shef.ac.uk 

Universität Koblenz-Landau (UKO-LD) 
Universitätsstrasse 1 
56070  Koblenz 
Germany 
Contact person: Steffen Staab 
E-mail address: staab@uni-koblenz.de 

Consiglio Nazionale delle Ricerche (CNR) 
Institute of cognitive sciences and technologies 
Via S. Martino della Battaglia,  
44 - 00185 Roma-Lazio,  Italy 
Contact person: Aldo Gangemi 
E-mail address: aldo.gangemi@istc.cnr.it 

Ontoprise GmbH. (ONTO) 
Amalienbadstr. 36   
(Raumfabrik 29) 
76227 Karlsruhe  
Germany 
Contact person: Jürgen Angele 
E-mail address: angele@ontoprise.de 

Food and Agriculture Organization  
of the United Nations (FAO) 
Viale delle Terme di Caracalla 1 
00100  Rome 
Italy 
Contact person: Marta Iglesias 
E-mail address: marta.iglesias@fao.org 

Atos Origin S.A. (ATOS) 
Calle de Albarracín, 25 
28037  Madrid 
Spain 
Contact person: Tomás Pariente Lobo 
E-mail address: tomas.parientelobo@atosorigin.com 

Laboratorios KIN, S.A. (KIN) 
C/Ciudad de Granada, 123 
08018  Barcelona 
Spain 
Contact person: Antonio López  
E-mail address: alopez@kin.es 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 3 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

Work package participants 

The following partners have taken an active part in the work leading to the elaboration of this 
document, even if they might not have directly contributed to the writing of this document or its 
parts: 

UPM 

CNR 

FAO 

JSI 

OU 

UKARL 

Change Log 

Version Date Amended by Changes 

0.00 11-06-2008 Asunción Gómez-Pérez ToC and first version of introduction 

0.03 15-07-2008 Mari Carmen Suárez-Figueroa 
Second version of introduction. 

First version of chapter 2 about the NeOn 
Methodology 

0.06 10-09-2008 Mari Carmen Suárez-Figueroa Second version of chapter 2 about the NeOn 
Methodology 

0.09 20-09-2008 Asunción Gómez-Pérez Revision and update of current draft 

0.10 5-10-2009 Asunción Gómez-Pérez 
Mari Carmen Suárez-Figueroa 

Third version of chapter 2 about the NeOn 
Methodology 

0.12 7-10-2008 Mathieu d’Aquin First version of chapter about Modularization

0.14 10-10-2008 Igor Mozetic First version of chapter about Evaluation 

0.16 30-10-2008 Mari Carmen Suárez-Figueroa Revision of chapter about Modularization 

0.18 5-11-2008 Mari Carmen Suárez-Figueroa Revision of chapter about Evaluation 

0.20 3-12-2008 Igor Mozetic Second version of chapter about Evaluation

0.22 20-12-2008 Mari Carmen Suárez-Figueroa Revision of chapter about Evaluation 

0.24 9-01-2009 Mathieu d’Aquin Second version of chapter about 
Modularization 

0.26 19-01-2009 Igor Mozetic Third version of chapter about Evaluation 

0.28 28-01-009 Mauricio Espinoza First draft of the chapter about Ontology 
Localization 

0.30 29-01-2009 Eva Blomqvist First version of chapter about ODP reuse 

0.32 29-01-2009 Asunción Gómez-Pérez Revision and update of current draft 

0.34 29-01-2009 Igor Fourth version of chapter about Evaluation 

0.36 29-01-2009 
Raúl Palma 

Holger Lewen 
First version of chapter about Evolution 



Page 4 of 115 NeOn Integrated Project EU-IST-027595 

 

0.38 30-01-2009 Mari Carmen Suárez-Figueroa Revision of chapter about Evaluation and 
Evolution 

0.40 2-02-2009 Igor Mozetic Fifth version of chapter about Evaluation 

0.42 2-02-2009 Mauricio Espinoza Second version of of chapter about Ontology 
Localization 

0.44 9-02-2009 Eva Blomqvist 
Second version of chapter about ODP reuse

Update of chapter about Evaluation 

0.46 9-02-2009 Igor Mozetic Sixth version of chapter about Evaluation 

0.48 10-02-2009 Mari Carmen Suárez-Figueroa Revision of the current version of all chapters 
and update of current draft 

0.50 11-02-2009 Fouad Zablith Update of chapter about Evolution 

0.52 12-02-2009 Mathieu d’Aquin Third version of chapter about Modularization

0.54 12-02-2009 
Raúl Palma 

Holger Lewen 
Third version of chapter about Evolution 

0.56 16-02-2009 Eva Blomqvist Third version of chapter about ODP reuse 

0.58 16-02-2009 Boris Villazón-Terrazas First version of Reuse and Re-engineering of 
Non-Ontological Resources 

0.60 16-02-2009 Fouad Zablith Update of chapter about Evolution 

0.62 16-02-2009 Mari Carmen Suárez-Figueroa Revision and update of current draft 

0.64 17-02-2009 
Mari Carmen Suárez-Figueroa 

María Poveda 
Update on chapter 2 

0.66 17-02-2009 Eva Blomqvist Update of chapter about Evaluation 

0.68 20-02-2009 Igor Mozetic Seventh version of chapter about Evaluation

0.70 21-02-2009 Mathieu d’Aquin Fourth version of chapter about 
Modularization 

0.72 26-02-2009 Margherita Sini 
Mauricio Espinoza 

Inclusion of ontology localization example 
from the FAO use case 

0.74 4-03-2009 Boris Villazón-Terrazas Second version of Reuse and Re-
engineering of Non-Ontological Resources 

0.76 6-03-2009 Igor Mozetic Eigth version of chapter about Evaluation 

0.78 6-03-2009 Mauricio Espinoza Inclusion of ontology localization example 
using an Ontology Localization tool 

0.80 9-03-2009 Mari Carmen Suárez-Figueroa Revision of the current version of all chapters 
and update of current draft 

0.82 11-03-2009 Mari Carmen Suárez-Figueroa Update on introduction and conclusions 

0.84 17-03-2009 Fouad Zablith Update of chapter about Evolution 

0.86 18-03-2009 Mari Carmen Suárez-Figueroa Revision of the current version of the draft 

0.9 20-03-2009 Mari Carmen Suárez-Figueroa Draft version ready for Q.A revision 

0.9.1 28-03-2009 Martin Dzbor Review, cleanup, consistency checks 

0.9.3 6-04-2009 

Boris Villazón-Terrazas 

Igor Mozetic 

Mari Carmen Suárez-Figueroa 

Updates based on Q.A. comments 

0.9.5 7-04-2009 
Eva Blomqvist 

Raúl Palma 
Updates based on Q.A. comments 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 5 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

Holger Lewen 

0.9.7 8-04-2009 Fouad Zablith Updates based on Q.A. comments 

1.0 12-04-2009 Mari Carmen Suárez-Figueroa Final revision and creation of the final version

Executive Summary 

Within WP5, we are creating the NeOn methodology for building ontology networks. The main 
principles that are guiding the construction of such methodology are:  

1. The methodology should be general enough in the sense that it should help software 
developers and ontology practitioners to build network of ontologies with NeOn toolkit and 
with other widely used platforms such as Protégé or Top Braid Composer. 

2. For each process or each activity, the methodology should define it precisely, state clearly 
its purpose, its inputs and outputs, the actors involved, when it is more convenient its 
execution. Furthermore, the methodology should provide prescriptive guidelines for each 
process or each activity, including proposals of methods, techniques and tools to be used 
for executing the process or activity. 

3. To facilitate a promptly assimilation by software developers and ontology practitioners, we 
present the methodology in a manner non-oriented to researchers. We also include 
examples of how to use the methodology in different use cases. 

The first version of the NeOn methodology for building ontology networks is included in D5.4.1 [80], 
presenting the following contributions: 

 Analysis of how argumentation and collaboration dimensions are related to the different 
nine scenarios identified for collaboratively building network of ontologies. 

 Methodological guidelines for carrying out the ontology (requirement) specification activity. 

 Methodological guidelines for reusing and re-engineering non-ontological resources. 

 Methodological guidelines for reusing ontological resources, focused on general or 
common ontologies, domain ontologies as a whole, and ontology statements. 

 Methodological guidelines for reusing ontology design patterns by naive users. 

The main goal of deliverable D5.4.2 is to present the second version of the NeOn methodology for 
building ontology networks, including the following contributions:  

 Overview of the scenarios for building ontology networks identified in the NeOn 
Methodology. 

 Summary of how to develop ontology networks. 

 Explanation of the difference between single ontologies and ontology networks. 

 Summary and update of the proposed methodological guidelines for non-ontological 
resource reuse and re-engineering processes, presented in D5.4.1 [80].  

 Proposed methodological guidelines for carrying out the ontology design pattern reuse. 

 Proposed methodological guidelines for the ontology modularization activity. 

 Proposed methodological guidelines for the ontology (network) evaluation. 



Page 6 of 115 NeOn Integrated Project EU-IST-027595 

 

 Proposed methodological guidelines for the ontology evolution. 

 Proposed methodological guidelines for carrying out the ontology localization activity. 

 

 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 7 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

Table of Contents 

NeOn Consortium ............................................................................................................................ 2 

Work package participants ............................................................................................................. 3 

Change Log ...................................................................................................................................... 3 

Executive Summary ......................................................................................................................... 5 

Table of Contents ............................................................................................................................. 7 

List of Tables .................................................................................................................................... 8 

List of Figures .................................................................................................................................. 9 

1. Introduction ................................................................................................................................ 11 
1.1. Deliverable Main Goals and Contributions ............................................................................ 12 
1.2. Deliverable Structure ............................................................................................................. 14 
1.3. Relation with other WP5 Deliverables and other Activities in NeOn ..................................... 15 

2. NeOn Methodology for Building Ontology Networks ............................................................. 16 
2.1. Scenarios for Building Ontology Networks ............................................................................ 17 
2.2. Building Ontology Networks in a Nutshell ............................................................................. 18 
2.3. From Ontologies to Ontology Networks ................................................................................ 19 

2.3.1. How to create the network ......................................................................................................... 20 

3. Non-Ontological Resource Reuse and Re-engineering ......................................................... 22 
3.1. Summary of the Guidelines for Non-Ontological Resource Reuse ....................................... 22 
3.2. Summary of the Guidelines for Non-Ontological Resource Re-engineering ......................... 24 
3.3. Future Work .......................................................................................................................... 26 

4. Ontology Design Pattern Reuse ............................................................................................... 27 
4.1. State of the Art and Related Work in NeOn .......................................................................... 27 
4.2. Proposed Guidelines for Ontology Design Pattern Reuse .................................................... 28 
4.3. Reuse of Content Patterns – the eXtreme Design Approach ................................................ 34 

4.3.1. Background ................................................................................................................................ 34 
4.3.2. Proposed guidelines for reusing content patterns: eXtreme Design ......................................... 36 
4.3.2. Example eXtreme Design iteration ............................................................................................ 40 

4.4. Future Work .......................................................................................................................... 44 

5. Ontology Modularization ........................................................................................................... 45 
5.1. State of the Art ...................................................................................................................... 45 

5.1.1. Techniques and tools for modularization ................................................................................... 45 
5.1.2. Integrated approaches ............................................................................................................... 47 
5.1.3. Initial guidelines for modularization ........................................................................................... 47 

5.2. Proposed Guidelines for Ontology Modularization ................................................................ 47 
5.3. Example ................................................................................................................................ 52 

6. Ontology (Network) Evaluation ................................................................................................ 55 
6.1. State of the Art ...................................................................................................................... 55 

6.1.1. Structural evaluations ................................................................................................................ 56 



Page 8 of 115 NeOn Integrated Project EU-IST-027595 

 

6.1.2. Functional evaluations ............................................................................................................... 56 
6.1.3. Usability evaluations .................................................................................................................. 56 
6.1.4. Conclusion ................................................................................................................................. 57 

6.2. Proposed Guidelines for Ontology (Network) Evaluation ...................................................... 57 
6.3. Examples .............................................................................................................................. 61 

6.3.1. Evaluation of an individual ontology .......................................................................................... 61 
6.3.2. Evaluation of ontology mappings ............................................................................................... 64 

7. Ontology Evolution .................................................................................................................... 67 
7.1. State of the Art ...................................................................................................................... 67 

7.1.1. Methods ..................................................................................................................................... 68 
7.1.2. Techniques ................................................................................................................................ 68 
7.1.3. Tools .......................................................................................................................................... 69 
7.1.4. Conclusion ................................................................................................................................. 71 

7.2. Proposed Preliminary Guidelines for Ontology Evolution ..................................................... 72 
7.2.1. Particularities when working with networked ontologies ........................................................... 78 
7.2.2. Example ..................................................................................................................................... 78 

7.3. Proposed Guidelines for Exploiting Tools in Ontology Evolution .......................................... 80 
7.3.1. Example ..................................................................................................................................... 83 

7.4. Future Work .......................................................................................................................... 84 

8. Ontology Localization ............................................................................................................... 85 
8.1. State of the Art ...................................................................................................................... 85 

8.1.1. Methods ..................................................................................................................................... 85 
8.1.2. Techniques ................................................................................................................................ 86 
8.1.3. Tools .......................................................................................................................................... 88 
8.1.4. Conclusion ................................................................................................................................. 89 

8.2. Proposed Guidelines for Ontology Localization .................................................................... 89 
8.3. Examples .............................................................................................................................. 94 

8.3.1. Pest control ontology localization .............................................................................................. 95 
8.3.2 Pest control ontology localization with LabelTranslator ............................................................ 103 

8.4. Future Work ........................................................................................................................ 107 

9. Conclusions and Future Work ................................................................................................ 108 

References .................................................................................................................................... 109 

List of Tables 

Table 1. Non-Ontological Resource Reuse Filling Card ................................................................. 23 
Table 2. Non-Ontological Resource Re-engineering Filling Card ................................................... 25 
Table 3. Ontology Design Pattern Reuse Filling Card .................................................................... 29 
Table 4. Ontology Modularization Filling Card ................................................................................ 48 
Table 5. Ontology Network Evaluation Filling Card ........................................................................ 58 
Table 6. Precision of YAGO Facts .................................................................................................. 63 
Table 7. Ontology Evolution Filling Card ......................................................................................... 73 
Table 8. Ontology Changes in FAO Experiment ............................................................................. 79 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 9 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

Table 9. Ontology Localization Filling Card .................................................................................... 90 
Table 10. Criteria to select the most appropriate Translation Tool ................................................. 92 
Table 11. Linguistic Information related to Area of “pest control” ................................................... 97 
Table 12. Linguistic Information related to Area of “control (of a pest)” .......................................... 98 
Table 13. Equivalent Translations in Italian of the Term “pest control” ........................................... 99 
Table 14. Ranked Translations of the Term “pest control” for French and Italian ......................... 100 
Table 15. Terminology Evaluation Results ................................................................................... 101 
Table 16. Semantic Fidelity Evaluation Results ............................................................................ 102 
Table 17. Stylistic Evaluation Results ........................................................................................... 102 
Table 18. Terminology Evaluation Results ................................................................................... 106 
Table 19. Semantic Fidelity Evaluation Results ............................................................................ 106 

List of Figures 

Figure 1. Scenarios for Building Ontology Networks ...................................................................... 18 
Figure 2. Simple Graphical Examples of Single Ontologies, Set of Interconnected Single 

Ontologies, and Ontology Networks ........................................................................................ 20 
Figure 3. General Workflow of Ontology Design Pattern Reuse ..................................................... 30 
Figure 4. The overall Workflow of XD ............................................................................................. 37 
Figure 5. The Situation Pattern ....................................................................................................... 42 
Figure 6. The Specialised Situation Pattern, including Resource Observations ............................. 42 
Figure 7. Tasks for the Ontology Modularization ............................................................................ 49 
Figure 8. Ontology Modularization: Result of the First Iteration ...................................................... 53 
Figure 9. Ontology Modularization: Result of the Second Iteration ................................................. 54 
Figure 10. Workflow for the Ontology Network Evaluation Activity ................................................. 59 
Figure 11. Evolva Ontology Evolution Framework .......................................................................... 71 
Figure 12. Workflow for the Ontology Evolution Activity ................................................................. 74 
Figure 13. Tasks for Ontology Evolution Supported by Semi-Automatic Tools .............................. 81 
Figure 14. Screenshot of the Evolva plug-in ................................................................................... 83 
Figure 15. Human Translator Steps ................................................................................................ 86 
Figure 16. Tasks for Ontology Localization ..................................................................................... 91 
Figure 17. Related Items for the Term “pest control” extracted from FAOTERM............................ 96 
Figure 18. Google Definitions of the Ontology Term “pest control” ................................................. 99 
Figure 19. Uses and “possibly” translated Documents of the Ontology Term “pest control”......... 100 
Figure 20. Final Ontology using Modular Strategy ........................................................................ 103 
Figure 21. Screenshot of the NeOn Toolkit Views used by the LabelTranslator Plug-in .............. 104 
Figure 22. Equivalent Translations for the Term “PestControl” ..................................................... 105 



Page 10 of 115 NeOn Integrated Project EU-IST-027595 

 

Figure 23. Linguistic Information associated to Ontology Term “PestControl” .............................. 107 

 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 11 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

1. Introduction 

The development of large-scale semantic applications in the near future will be characterized by 
using a very large number of ontologies embedded in ontology networks. Such ontologies will be 
developed collaboratively by distributed teams following a methodology for building ontology 
networks. 

Thus, in the context of WP5, we are creating the NeOn methodology that support the collaborative 
aspects of ontology development, and the reuse and the dynamic evolution of networked 
ontologies in distributed environments, in which contextual information is introduced by developers 
(domain experts, ontology practitioners) at different stages of the ontology development process. 

The NeOn methodology for building collaboratively ontology networks will include methodological 
guidelines and propose methods, techniques and tools for carrying out processes and activities, 
defined in the NeOn Glossary of Processes and Activities, during the ontology network life cycle. 
Some research results were presented in D5.4.1 [80] and other results are presented in this 
deliverable. 

The first version of the NeOn methodology [80] proposed methodological guidelines for the 
following processes and activities: ontology (requirement) specification; reusing and re-engineering 
non-ontological resources; reusing ontological resources, focused on general or common 
ontologies, domain ontologies as a whole, and ontology statements; and reusing ontology design 
patterns by naive users.    

The second version of the NeOn methodology included in this deliverable is a revision and an 
extension of the first version of the methodology, thus, other processes and activities should be 
covered in D5.4.2 by providing methodological guidelines for their execution.  

Here, we continue with the idea of reusing as much as possible other ontologies, ontology 
modules, ontology statements and ontology design patterns as well as knowledge aware resources 
(non-ontological resources) such as thesauri, lexicons, DBs, UML diagrams and classification 
schemas built by others that already have some degree of consensus. Such a reuse allows 
speeding up the ontology (network) development process, saving time and money, and promoting 
the application of good practices.  

Concretely, we focus on improving the proposed methodological guidelines for reusing and re-
engineering non-ontological resources and for reusing ontology design patterns by naive users.   

Additionally, modularization approach should be taken into account in the ontology network 
development at three different aspects: (1) designing modular ontologies; (2) modularizing existing 
ontologies, and (3) reusing ontology modules. In this deliverable we provide methodological 
guidelines for modularizing existing ontologies. 

Other important aspect in the ontology (network) development is the ontology (network) evaluation. 
An ontology network is a complex structure of connected ontologies. These connections can have 
a form of meta-relations between ontologies (e.g., versions of ontologies) or mappings and 
alignments between pairs of individual ontology elements (concepts, properties, instances of 
related ontologies). Therefore, it is often practical to focus the evaluation on different aspects of the 
ontology network and perform the evaluation of the constituent parts of the ontology network first: 
(1) evaluation of constituent ontologies and (2) evaluation of mappings/alignments between pairs 
of ontologies. After the relevant individual parts of the network are evaluated, the evaluation results 



Page 12 of 115 NeOn Integrated Project EU-IST-027595 

 

can be combined into the overall evaluation. Alternatively, the ontology network can be evaluated 
as a whole within particular application scenarios for which it was designed in the first place. 

Ontology networks need to be kept up to date in order to reflect the changes that affect the life-
cycle of such systems (e.g. changes in the underlying data sets, need for new functionalities, etc). 
Within the ontology networks lifetime, they undergo changes. They evolve for example to correct 
errors or adapt to new knowledge about the world, or changed circumstances. Moreover, during 
the ontology development process sometimes errors are not spotted and have to be corrected 
later, i.e. after initial deployment. However, as ontologies may depend on several others and may 
also be related to other elements (e.g. instances, mappings, applications, metadata, etc.), one has 
to be careful with making changes. 

Ontology evolution is described as the timely adaptation of an ontology to the arisen changes and 
the consistent management of these changes [27]. While it seems necessary to apply such an 
activity consistently for most ontology-based systems, it is often a time-consuming and knowledge 
intensive activity, as it requires a knowledge engineer to identify the need for change, perform 
appropriate changes on the base ontology and manage its various versions.  

And finally, it is worth to mention that in the context of the emerging Semantic Web, a great effort 
has been done in the construction of ontologies. However, although access to top-quality 
ontologies (e.g., Galen4, CYC5, or AKT6) is in some cases free and unlimited for users all around 
the world, most of these ontologies are available only in English. Due to the language barrier, non-
English users therefore often encounter problems when trying to access ontological knowledge in 
other languages. Moreover, more and more ontology-based systems are being built for multilingual 
applications (e.g., multilingual machine translation, multilingual information retrieval). This has 
increased the need for multilingual ontologies, and thus, for localizing ontologies. 

1.1. Deliverable Main Goals and Contributions 

The main goal of this deliverable is to present the second version of the NeOn Methodology for 
building networks of ontologies.  

The principles that guide the construction of such a methodology, as presented in deliverable 
D5.4.1 [80] are:  

1. The methodology should be general enough in the sense that it should help software 
developers and ontology practitioners to build networks of ontologies with the NeOn toolkit 
and with other widely used platforms such as Protégé or Top Braid Composer. 

2. The methodology should define each process or activity precisely; state clearly its purpose, 
its inputs and outputs, the actors involved, when its execution is more convenient. 
Additionally, the methodology should propose methods, techniques and tools to be used 
for executing each process or activity.  

3. To facilitate a prompt assimilation by software developers and ontology practitioners, we 
present the methodology in a clear and prescriptive way, including examples on how to 
use the methodology in different use cases.  

The scope of this deliverable is limited to provide methodological guidelines for the following 
processes and activities: 

 Non-Ontological Resource Reuse and Re-engineering. 

Currently, ontology engineers and software practitioners are realizing the benefits of “not 
reinventing the wheel” at each ontology development, thus looking towards new methods, 
techniques, and tools for reusing and re-engineering knowledge. 

In this sense, preliminary methodological guidelines for reusing and re-engineering non-
ontological resources were included in deliverable D5.4.1 [80]. In deliverable D5.4.2, we 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 13 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

summarize such guidelines, including improvements with respect to the preliminary ones and 
referring to the re-engineering patterns used in the guidelines, which are described in 
deliverable D2.2.2 [2]. 

 Ontology Design Pattern Reuse. 

Ontology design patterns (OPs) is a way of encoding best practices, based on experiences and 
knowledge of ‘good’ solutions. Generally patterns (e.g. in software engineering) are perceived 
as having three kinds of benefits [53]: (1) reuse benefits, (2) guidance benefits, and (3) 
communication benefits. All these benefits can intuitively also be found in ontology engineering, 
although it is not until recently that experiments have been performed that empirically show 
such benefits [30].  

Even when such benefits have been established, there is still need to support pattern usage in 
different ways with the goal of minimising the unnecessary overhead introduced and 
maximising benefits. Due to this fact there is need for guidelines on how to reuse patterns, as 
well as tool supporting the actual practical usage.  

For this reason, in D5.4.1 [80] methodological guidelines for reusing patterns by naïve users 
were presented. In this deliverable, we proposed general methodological guidelines for reusing 
ontology design patterns, and taking into account that there are different kinds of OPs [67] 
(correspondence, presentation, reasoning, lexico-syntactic, structural, and content) we provide 
here specific guidelines for reusing content OPs.  

 Ontology Modularization. 

As already mentioned, modularization approach should be taking into account in the ontology 
network development. This approach is related with the following three aspects: 

 Designing modular ontologies, that is, building ontologies from independent and self 
contained components. 

 Modularizing existing ontologies, which involves different possibilities: (1) extracting 
modules from ontologies, (2) decomposing ontologies into modules, and (3) hiding modules 
from ontologies. 

 Reusing ontology modules. 

Methodological guidelines for the three aforementioned aspects were not available until now. 
For this reason, and taking into account the importance of modularizing ontologies, which is 
motivated by several different scenarios within the NeOn case studies and technical 
workpackages, as described in [21], in this deliverable we focus on such an activity and provide 
methodological guidelines for modularizing existing ontologies, that is, for creating modules as 
sub-components of larger ontologies. 

Such methodological guidelines are supported by several operators included in the NeOn 
toolkit for modularization, as described in [20]. The proposed operators are designed to be 
generic, in order to be useful in the majority of the modularization scenarios. As such, they 
have to be used in an interactive process, where the user provides the relevant parameters 
and input. 

 Ontology (Network) Evaluation. 

Ontology evaluation is a topic that has been treated by researchers for more than a decade; 
however, it is not until recently that general frameworks and categories for ontology evaluation 
methods have emerged. Still, numerous techniques exist for all different kinds of ontology 
evaluation methods. The main challenge is to select the methods that are suitable for the case 
at hand and the data and resources available.  

Additionally, an ontology network is a complex structure of connected ontologies. Ontology 
networks should be evaluated with respect to different aspects, and such an evaluation should 



Page 14 of 115 NeOn Integrated Project EU-IST-027595 

 

be performed first on the constituent parts of the ontology network and then combining the 
results into the overall evaluation.  

In this deliverable we provide general methodological guidelines for the ontology (network) 
evaluation activity, whose goal is to evaluate and compare the ontology network within a useful 
frame of reference and using appropriate evaluation criteria.  

 Ontology Evolution. 

Ontologies are fundamental building blocks of the Semantic Web and are often used as the 
knowledge backbones of advanced information systems. As such, they need to be kept up to 
date in order to reflect the changes that affect the life-cycle of such systems (e.g. changes in 
the underlying data sets, need for new functionalities, etc). 

While knowledge engineers agree that it is necessary to apply the ontology evolution activity 
consistently in the ontology-based systems, it is often a time-consuming and knowledge 
intensive activity, as it requires a knowledge engineer to identify the need for change, perform 
appropriate changes on the base ontology and manage its various versions. Moreover, there 
was no existing approach available until now covering a complete cycle of ontology evolution, 
ranging from integrating new knowledge to managing changes. 

For these reasons, in this deliverable we provide two types of guidelines: (a) general 
methodological guidelines for facilitating the modification and evolution of an ontology, and (b) 
methodological guidelines for supporting ontology engineers and domain experts in exploiting 
tools to facilitate the evolution of their ontologies.  

 Ontology Localization. 

In the context of the emerging Semantic Web, a great effort has been done in the construction 
of ontologies. Although access to top-quality ontologies (e.g., Galen4, CYC5, or AKT6) is in 
many cases free and unlimited for users all around the world, most of these ontologies are 
available only in English. Due to the language barrier, non-English users therefore often 
encounter problems when trying to access ontological knowledge in other languages. 
Moreover, more and more ontology-based systems are being built for multilingual applications 
(e.g., multilingual machine translation, multilingual information retrieval). 

For these reasons the need for multilingual ontologies has increased. Additionally, multilingual 
ontologies are very time consuming and expensive to build. Let us take the example of the 
well-known EuroWordNet (EWN) a general purpose multilingual lexicon for eight European 
languages. Its development involved 11 academic and commercial institutions and took three 
years to complete. Therefore, it is attractive to consider new ways of building multilingual 
ontologies. One stream of research that is emerging as alternative to build a multilingual 
ontology is to localize an ontology. Since there is no universal way to localize an ontology and 
the choice of particular methods and tools to build an ontology localization system should be 
guided by the final purpose of the localized ontology and by the techniques deemed to be more 
efficient for each task of the activity, it is necessary to propose methodological guidelines to 
help ontology practitioners in the localization activity. Such methodological guidelines are 
included in this deliverable. 

1.2. Deliverable Structure 

The deliverable is structured as follows: 

 Chapter 2 presents: (1) an overview of the different scenarios for building ontology 
networks identified in the NeOn Methodology, (2) a summary of how to develop ontology 
networks, and (3) an explanation the difference between single ontologies and ontology 
networks. 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 15 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 Chapter 3 summarizes the proposed methodological guidelines for non-ontological 
resource reuse and re-engineering processes, presented in D5.4.1 [80].  

 Chapter 4 presents the proposed methodological guidelines for carrying out the ontology 
design pattern reuse. 

 Chapter 5 describes the proposed methodological guidelines for the ontology 
modularization activity. 

 Chapter 6 presents the proposed methodological guidelines for the ontology (network) 
evaluation. 

 Chapter 7 describes the proposed methodological guidelines for the ontology evolution. 

 Chapter 8 presents the proposed methodological guidelines for carrying out the ontology 
localization activity. 

 Chapter 9 presents the conclusions and future work. 

1.3. Relation with other WP5 Deliverables and other Activities in NeOn  

The relation between this deliverable and the rest of the work done in WPs in the NeOn project is 
briefly described below: 

 Methodological guidelines for a subset of process and activities defined in the NeOn Glossary 
[1] are included in this deliverable.  

 For some of the processes or activities described in this deliverable and for others in the NeOn 
Glossary we planned and executed experiments, which are described in D5.6.1 and in D5.6.2.  

 The NeOn Methodology as a whole in combination with the NeOn Toolkit will be tested. The 
preliminary plan for such test is included in D5.7.1, and the final evaluation will be included in 
D5.7.2. 

 The methodological guidelines for the non-ontological resource re-engineering process used 
re-engineering patterns that are included in D2.2.2. 

  

 



Page 16 of 115 NeOn Integrated Project EU-IST-027595 

 

2. NeOn Methodology for Building Ontology Networks 

As we mentioned before, the 1990s and the first years of this new millennium have witnessed the 
growing interest of many practitioners in approaches that support the creation and management as 
well as the population of single ontologies built from scratch. There are some methodological 
approaches (e.g., METHONTOLOGY, On-To-Knowledge, and DILIGENT) that help develop 
ontologies from scratch. All these approaches have provoked a step forward by having 
transformed the art of constructing single ontologies into an engineering activity.  

The development of ontologies in different international and national projects has revealed that 
there are different alternative ways or possibilities to build ontologies [80]. Thus, it is not premature 
to affirm that a new ontology development paradigm is starting, whose emphasis is on the reuse 
and possible subsequent re-engineering of knowledge resources, the collaborative and 
argumentative ontology development, and the building of ontology networks, as opposed to 
custom-building new ontologies from scratch.  

Taking into account such a paradigm, we are creating the NeOn Methodology for building ontology 
networks. The first version of the methodology was published in D5.4.1 [80] and provided the 
following:  

 Methodological guidelines for carrying out the ontology specification activity.  

 Methodological guidelines for reusing and re-engineering non-ontological resources.  

 Methodological guidelines for reusing ontological resources, focused on reusing general or 
common ontologies, reusing domain ontologies as a whole, and reusing ontology 
statements. 

 Methodological guidelines for reusing ontology design patterns by naive users. 

In the second version of the NeOn methodology that is included in this deliverable, we present the 
following methodological guidelines to extend D5.4.1:  

 Summary and update of the methodological guidelines for reusing and re-engineering non-
ontological resources, referring to the re-engineering patterns used in the guidelines, which 
are described in deliverable D2.2.2 [2]. 

 Methodological guidelines for reusing ontology design patterns in general; and guidelines 
for reusing content ontology design patterns. 

 Methodological guidelines for modularizing existing ontologies. 

 Methodological guidelines for the ontology (network) evaluation activity.  

 Methodological guidelines for the ontology evolution activity and for supporting ontology 
engineers and domain experts in exploiting tools to facilitate the evolution of their 
ontologies.  

 Methodological guidelines for localizing ontologies. 

This chapter briefly includes: 

 An overview of the different scenarios for building ontologies and ontology networks. 

 A general description of how ontology networks should be developed. 

 An explanation (and illustration) of when ontologies become ontology networks, and how to 
create and ontology network using single ontologies. 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 17 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

2.1. Scenarios for Building Ontology Networks  

Based on the analysis of the three NeOn use cases, on the different studies carried out to revise 
the state of the art on ontology development, and on the building of ontologies in different 
international and national projects, we have detected that there are alternative ways or possibilities 
to build ontologies and ontology networks. These ways can be seen as different scenarios in the 
NeOn methodology for building ontology networks. 

As already mentioned in previous WP5 deliverables, the scenarios we proposed within the NeOn 
methodology are flexible because a combination among them is allowed, unlike in the scenarios for 
building ontologies presented in the most well-known ontology engineering methodologies, which 
are very rigid. 

Here we provide a summary of the 9 scenarios identified in the context of the NeOn methodology 
for building ontology networks. 

Figure 1 presents the set of 9 scenarios for building ontologies and ontology networks. Directed 
arrows with numbered circles associated represent the different scenarios. Each scenario is 
decomposed into different processes or activities that are represented with colour circles or with 
rounded boxes. Such processes and activities are defined in the NeOn Glossary of Processes and 
Activities [78]. The figure also shows (as dotted boxes) existing knowledge resources to be reused; 
and possible outputs (implemented ontology networks and alignments) that result from the 
execution of some of the presented scenarios. 

The most common scenarios1 that may arise during the ontology development are the following:  

 Scenario 1: Building ontology networks from specification to implementation. 

 Scenario 2: Building ontology networks by reusing and re-engineering non-ontological 
resources. 

 Scenario 3: Building ontology networks by reusing ontological resources. 

 Scenario 4: Building ontology networks by reusing and re-engineering ontological resources. 

 Scenario 5: Building ontology networks by reusing and merging ontological resources. 

 Scenario 6: Building ontology networks by reusing, merging and re-engineering ontological 
resources. 

 Scenario 7: Building ontology networks by reusing ontology design patterns.  

 Scenario 8: Building ontology networks by restructuring ontological resources. 

 Scenario 9: Building ontology networks by localizing ontological resources. 

The activities of knowledge acquisition and elicitation, documentation, configuration management, 
evaluation and assessment should be carried out during the whole ontology development.  

From this set of scenarios, we can say that scenario 1 is the most typical for building ontology 
networks without reusing existing knowledge resources. However, as already mentioned, more and 
more ontology developers build ontology networks by means of reusing existing knowledge aware 
resources (ontological and non-ontological). For this reason, the NeOn methodology differentiates 
scenarios involving reuse of ontological resources from those involving reuse and re-engineering of 
non-ontological resources.  

It is worth mentioning that these scenarios can be combined in different ways, and that any 
combination of scenarios should include scenario 1 because this scenario is made up of the core 
activities that have to be performed in any ontology development. Indeed, as Figure 1 shows, the 
results of any other scenario should be integrated in the corresponding activity of scenario 1. 

                                                 
1 The scenarios are valid for both building ontologies and ontology networks. 



Page 18 of 115 NeOn Integrated Project EU-IST-027595 

 

Although we think this set of scenarios covers the most plausible ways for building ontology 
networks, it can not be considered exhaustive.  

 

Figure 1. Scenarios for Building Ontology Networks 

The first version of the NeOn methodology [80] includes methodological guidelines for processes 
and activities of scenarios 1, 2, 3 and 7.  

These second version of the methodology includes methodological guidelines for processes and 
activities involved in scenarios 2, 7, 8 and 9, and for transversal activities (evaluation and 
evolution). The processes and activities considered in this deliverable are: reuse and re-
engineering of non-ontological resources, reuse of ontology design patterns, ontology 
modularization, ontology (network) evaluation, ontology evolution, and ontology localization.  

In the third version of the methodology we will cover the remaining scenarios. 

2.2. Building Ontology Networks in a Nutshell  

When software developers and ontology practitioners consider using ontologies for solving a 
particular problem, a provisional work team (ideally involving ontology engineers, software 
developers, domain experts and final users) should be established. Such a team will be involved at 
least in the following pre-development and support activities: environment and feasibility study, 
knowledge acquisition, ontology (requirement) specification, and scheduling. 

After the provisional team has been established, it usually carries out an environment and 
feasibility study. This allow them to decide whether ontologies should be developed or not for the 
specific problem. If the conclusion is positive, they have to decide if, for their problem, it is better to 
build a single ontology, a set of interconnected single ontologies, or an ontology network, where 
the differences between these choices are explained in Section 2.3. 

Then, simultaneously with the knowledge acquisition activities, the provisional work team should 
specify the requirements that the ontology network should fulfil, by means of the ontology 
(requirement) specification activity. The objective of the ontology (requirement) specification 
activity is as stated in [80] to output a document, the ontology requirements specification document 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 19 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

(ORSD), that includes the purpose, the scope and the level of formality of the ontology network, 
target group and intended uses of the ontology network, and the set of requirements the ontology 
network should fulfil.  

After the ontology (requirement) specification activity, it is advisable to carry out a search for 
knowledge-aware resources using as input the terms included in the ORSD. Such a search allows 
the provisional work team to know which type of resources is available for a possible reuse during 
the ontology (network) development.  

The provisional work team should perform the scheduling activity, using the ORSD and the results 
of such a quick search. During the scheduling activity, the team establishes the ontology (network) 
life cycle and the human resources for the ontology project. Such resources could include or not 
people form the provisional team, depending on organizational issues. 

After this, human resources assigned to the ontology project should follow up the established 
schedule, that is, the concrete plan for the ontology network development.  

2.3. From Ontologies to Ontology Networks 

Based on our experience, we identified three different possibilities when building ontologies: 
(1) building single ontologies; (2) building sets of interconnected single ontologies; and (3) building 
ontology networks. 

Next, we describe the three possibilities: 

 A single ontology is an ontology that has not got any type of relationship (domain dependent or 
independent) with other ontologies. 

 A set of interconnected single ontologies includes a set of ontologies that have domain 
dependent relationships among them. 

 An ontology network or a network of ontologies is a collection of ontologies together through a 
variety of formal relationships such as mapping, modularization, version, and dependency 
relationships [37].  

To clarify what is the difference between a single ontology, a set of interconnected single 
ontologies, and an ontology network, we provide here some examples.  

 An isolated ontology O1 is a single ontology, as it is shown in Figure 2 (a). 

 N single ontologies related to each other by means of ad-hoc relations between concepts 
included in such ontologies are considered as a set of interconnected single ontologies, as 
in  Figure 2 (b) shows.  

 If ontology (O2) is developed as a new version of O1 and the explicit metarelation 
“priorVersionOf” between O1 and O2 is established, then a network of ontologies has been 
created (shown Figure 2 (c)). 

 Figure 2 (d) presents the ontology network associated with a set of interconnected single 
ontologies presented in Figure 2 (b), in which the meta-relationships among the different 
ontologies involved have been explicitly expressed. 



Page 20 of 115 NeOn Integrated Project EU-IST-027595 

 

 

 
(a) Single Ontology 

 
(b) Set of Interconnected Single Ontologies 

 
(c) Ontology Network 

 
(d) Ontology Network 

Figure 2. Simple Graphical Examples of Single Ontologies, Set of Interconnected Single 
Ontologies, and Ontology Networks 

2.3.1. How to create the network 
An ontology network should be developed if there is a requirement or it is advisable to express: 
(a) meta-relationships between the ontology to be developed and other existing ontologies 
available, or (b) meta-relationships between the ontology to be developed and its components. 
Examples of these meta-relationships are: 

o priorVersionOf: if the ontology to be developed is a new version of an existing one. 

o useImports: if the ontology is importing any other ontology due to the fact that it consists 
of different knowledge domains. 

o extendingBy: if the ontology is extending an existing one. 

o composedbyModules: if the ontology to be developed is composed of a number of 
modules. 

o haveMapping: if some ontology components have mappings with other existing 
ontologies.  

Thus, in summary, if software developers and ontology practitioners explicitly define meta-
relationships such as mapping, modularization, version, and dependency, between a set of 
ontologies and/or between an ontology and its components, then de-facto, they are developing an 
ontology network. Meta-relationships, such as “priorVersionOf”, “useImports”, “isIncompatibleWith”, 
are formally explained in D1.1.1 [39].  

 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 21 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

In this case, the ontology to be developed is in constant relation with other members of the 
ontology network, and this permits a continuous knowledge sharing and an easy enrichment of the 
network. Furthermore, ontology networks favour the knowledge growth in Internet, and thus, 
knowledge sharing and spreading. 

Based on our experience building ontology networks in different domains, we realized that there 
are different ways of creating an ontology network having a set of single ontologies.  

During our developments we have identified the following two situations based on the relationship 
existing among the ontologies that will be part of the network: 

 The existing relation is an ad-hoc or domain-specific, or is a ‘subclass-of’ relation among 
concepts represented in different ontologies. 

 Concepts are repeatedly used or equivalent concepts are used in different ontologies. 

In this deliverable we provide preliminary and general methodological guidelines for the 
aforementioned situations to help ontology developers in the connection of ontologies to create an 
ontology network. It is important to mention that such situations cannot be considered exhaustive, 
and that other situations can appear during the building of other ontology networks. 

 Ad-hoc or ‘subclass-of’ relation between ontologies. In this situation there is a relation between 
concepts belonging to different ontologies, and it is needed to decide in which ontology the 
relation should be defined. Based on our experience we proposed the following possibilities: 

o If one of the ontologies represents a sub-domain of another ontology, then ontology 
developers should identify one ontology as more specific and the other as more 
general, import the first one in the second ontology, and finally establish the ad-hoc 
relation between the concepts. 

o If the relation between the concepts is ‘subclass-of’, then ontology developers should 
identify one ontology as more specific and the other as more general, import the first 
one in the second ontology, and finally establish the ‘subclass-of’ relation between the 
concepts. 

o In other situations, we proposed to build a new ontology that imports the ontologies 
among which there is the relation and to create the relation in such a new ontology. 

 Repeated or equivalent concepts. In this situation equivalent relations should be defined 
among all the concepts that are equal in the set of ontologies. The number of equivalent 
relations to be defined could be minimized by taking into account the following two cases: 

o If the equivalent relation exists between concepts of ontologies that are being reused, 
then we propose that ontology developers import the reused ontologies in another 
one, and establish the equivalent relation in this last ontology. 

o If the equivalent relation exits between a concept in an ontology to be reused and a 
concept in the ontology being developed, then we propose that ontology developers 
import as soon as possible the ontology to be reused in order to avoid the creation of 
the concept in the ontology being built and thus the establishment of the equivalent 
relation.   

 



Page 22 of 115 NeOn Integrated Project EU-IST-027595 

 

3. Non-Ontological Resource Reuse and Re-engineering  

Non-Ontological Resource Reuse refers to taking available non-ontological resources2 (e.g., 
databases, controlled vocabularies, etc.) for the development of ontologies. Non-Ontological 
Resource Reuse is defined in [80] as the process of choosing the most suitable non-ontological 
resources for the development of ontologies. 

Non-Ontological Resource Re-engineering is defined in [81, 78] as the process of retrieving and 
transforming an existing non-ontological resource (e.g., databases, controlled vocabularies, etc.) 
into an ontology.  

Non-ontological resource reuse and re-engineering processes belong to the development scenario 
called Building Ontology Networks by Reusing and Re-engineering Non-Ontological Resources 
identified in the NeOn Methodology [80]. In this scenario, software developers and ontology 
practitioners develop the ontology network by means of reusing and re-engineering existing non-
ontological resources.  

The NeOn approach to carry out non-ontological resource reuse and re-engineering processes has 
been already described in D5.4.1 [80]. Software developers and ontology practitioners should 
accomplish first the non-ontological resource reuse process with the goal of choosing the most 
suitable non-ontological resource to be used for building ontologies. If they decide that one or more 
resources are useful for the development, then the non-ontological resource re-engineering 
process should be carried out to transform the selected non-ontological resources into ontologies. 

In this chapter we present a brief summary of the methodological guidelines for the non-ontological 
resource reuse process described in [80]. Additionally, we also include a summary of the 
methodological guidelines for the non-ontological resource re-engineering process that was also 
presented in [80] and for which we have created 10 new re-engineering patterns. Those patterns 
were originally proposed and included in D2.2.2 [2]. 

3.1. Summary of the Guidelines for Non-Ontological Resource Reuse  

As we mentioned before, the goal of the Non-Ontological Resource Reuse process is to choose 
the most suitable non-ontological resource to be used for building ontologies. Domain experts, 
software developers and ontology practitioners carry out this process taking as input the ontology 
requirements specification document (ORSD) to find the most suitable non-ontological resources 
for the development of ontologies. The output of the process is a set of non-ontological resources 
that to some extend covers the expected domain. It is worth to mention that we have included new 
criteria for assessing the quality of the non-ontological resource. These criteria are described within 
Activity 2.  

In the framework of the NeOn methodology for building ontology networks, we propose the non-
ontological resource reuse process filling card, presented in Table 1, which includes the definition, 
goal, input, output, who carries out the process and when the process should be carried out. 

                                                 
2 Non-Ontological Resources (NORs), which were defined in [80], are knowledge-aware resources whose semantics 
have not been formalized yet by an ontology. 
 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 23 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

Non-Ontological Resource Reuse  

Definition 

Non-Ontological Resource Reuse refers to the process of choosing the most 
suitable non-ontological resources for the development of ontologies. 

 
 

Goal 

To choose the most suitable non ontological resources for building ontologies. 
 
 

Input Output 

The ontology requirements specification 
document (ORSD). 

 

A set of non-ontological 
resources that to some extend 
covers the expected domain. 

 
  

Who 

Domain experts, software developers and ontology practitioners. 
 
 

When 

After the ontology specification activity and before the non-ontological resource re-
engineering process. 

 
 

 
 

Table 1. Non-Ontological Resource Reuse Filling Card 

The activities for carrying out the non-ontological resource reuse process are briefly explained in 
the following; details are available in [80]: 
Activity 1. Search non-ontological resources. 

The goal of the activity is to search non-ontological resources from highly reliable Web sites, 
domain-related sites and resources within organizations. Domain experts, software developers and 
ontology practitioners carry out this activity taking as input the ontology requirements specification 
document (ORSD). They use those terms that have a highest frequency in the ORSD to search for 
candidate non-ontological resources that cover the desired terminology. The activity output is a set 
of candidate non-ontological resources that might present any of the identified typologies described 
in D5.4.1 [80]. 

Activity 2. Assess the set of candidate non-ontological resources. 

The goal of this activity is to assess the set of candidate non-ontological resources. Domain 
experts, software developers and ontology practitioners carry out this activity taking as input the 
set of candidate non-ontological resources. We propose to take into account the following criteria: 
coverage and precision, which are measurable criteria; and consensus, which is a subjective 



Page 24 of 115 NeOn Integrated Project EU-IST-027595 

 

criterion. The activity output is an assessment table that shows the evaluation criteria for every 
non-ontological resource. 

Within this activity we propose in this deliverable to include the quality of the non-ontological 
resource. Quality attributes include:  

 Well documentation of the non-ontological resources. 

 Lack of anomalies of the non-ontological resource, such redundancies or inconsistencies. 

 Reliability of the non-ontological resource, it means analysing whether we can trust in the 
resource or not. 

Activity 3. Select the most appropriate non-ontological resources. 

The goal of this activity is to select the most appropriate non-ontological resources. Domain 
experts, software developers and ontology practitioners carry out this activity taking as input the 
non-ontological resource assessment table. The selection is performed manually and looking for 
resources with: consensus, high value of coverage, and high value of precision. The activity output 
is a ranked list of non-ontological resources that to some extend covers the expected domain. 

3.2. Summary of the Guidelines for Non-Ontological Resource Re-engineering  

As we mentioned before, the goal of the Non-Ontological Resource Re-engineering process is to 
transform a non-ontological resource into an ontology. The output of the process is an ontology. 

In the framework of the NeOn methodology for building ontology networks, we propose the non-
ontological resource re-engineering process filling card, presented in Table 2, which includes the 
definition, goal, input, output, who carries out the process and when the process should be carried 
out. 

In a nutshell, the method for re-engineering non-ontological resources proposed in the NeOn 
methodology [80] considers as input a pool of non-ontological resources and a set of patterns for 
re-engineering such resources. The proposed patterns provide general solutions to the problem of 
transforming non-ontological resources into ontologies. 

The Non-Ontological Resource Re-engineering process can be divided into the following activities 
[77]:  

 Non-Ontological Resource Reverse Engineering is defined as the activity of analyzing a non-
ontological resource to identify its underlying components and creating a representation of the 
resource at higher levels of abstraction. 

 Non-Ontological Resource Transformation is defined as the activity of generating an 
ontological model, at different levels of abstraction, from the non-ontological resource. It is 
worth to mention that we have included a new task within this activity: manual refinement of the 
resultant transformation. 

 Ontology Forward Engineering is defined in D5.3.1 [81] as the activity of generating a new 
implementation of the ontology, on the basis of a new conceptual model. 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 25 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

Non-Ontological Resource Re-
engineering  

Definition 

Non-Ontological Resource Re-engineering refers to the process of taking an 
existing non-ontological resource and transforms it into an ontology. 

 
 

Goal 

Create an ontology from a non-ontological resource. 
 
 

Input Output 

One or more non-ontological resources 
selected by the reuse process.  

 
An ontology. 

 
  

Who 

Domain experts, software developers and ontology practitioners. 
 
 

When 

After the non-ontological resource reuse process and before the 
conceptualization activity. 

 
 

 
 

Table 2. Non-Ontological Resource Re-engineering Filling Card 

The activities for carrying out the non-ontological resource re-engineering process are summarized 
in the following: 

Activity 1. Non-ontological Resource Reverse Engineering. 

The goal of this activity is to analyze a NOR to identify its underlying components and create 
representations of the resource at the different levels of abstraction (design, requirements and 
conceptual). Since NORs can be implemented as XML files, databases or spreadsheets among 
others, we can consider them as software resources, and therefore, we use the software 
abstraction levels (implementation, design, requirements and conceptual). Here the requirements 
and the essential design, structure and content of the NOR must be recaptured. 

Activity 2. Non-ontological Resource Transformation. 

The goal of this activity is to generate a conceptual model from the NOR. We propose the use of 
Patterns for Re-engineering Non-Ontological Resources (PR-NOR) to guide the transformation 
process.  

To perform such transformation, the following characteristics have to be identified: (1) the non-
ontological resource type; (2) the internal data model of the non-ontological resource; and (3) the 
semantics of the relations among the non-ontological resource entities.  



Page 26 of 115 NeOn Integrated Project EU-IST-027595 

 

The semantics of the relations among the non-ontological resource entities can be a) subClassOf, 
b) a partOf relation or c) a mix of subClassOf and ad-hoc relations.  

After the identification of the aforementioned characteristics, a pattern for re-engineering non-
ontological resources has to be searched according to the type of non-ontological resource, the 
internal data model, and the semantics of the relations among the non-ontological resource 
entities. The pattern search is carried out on the set of patterns for re-engineering non-ontological 
resources described in deliverable D2.2.2 [2]. This set of patterns will be available on the ontology 
design patterns portal3.  

Finally, the selected re-engineering pattern has to be applied to transform the non-ontological 
resource into a conceptual model. 

Next, the selected re-engineering pattern has to be applied to transform the non-ontological 
resource into a conceptual model. Here, we include the task of manual refinement of the resultant 
transformation, within this task, software developers and ontology practitioners with domain 
experts’ support can perform a disambiguation of some relationships. 

 

Activity 3. Ontology Forward Engineering. 

The goal of this activity is to output a new implementation of the ontology on the basis of the new 
conceptual model. We use the ontology levels of abstraction to depict this activity because they are 
directly related to the ontology development process. 

3.3. Future Work 

In this chapter we have presented a brief summary of the methodological guidelines for carrying 
out the non-ontological resource reuse and re-engineering processes, emphasizing the updates 
with respect to the guidelines in [80].  

Further work related with these processes includes:  

 Refinement of the methods and the patterns for re-engineering non-ontological resources. 

 Inclusion of guidelines on how to generate Linked Data, following the Linking Open Data4 
recommendations. 

 Implementation of software libraries that read the data from the resource implementation and 
automatically generate the corresponding classes, attributes, and relations of the new 
ontology following the suggestions given by the PR-NOR. 

 Evaluation of the methodological guidelines and the patterns for re-engineering non-
ontological resources (PR-NORs). 

 

                                                 
3 http://ontologydesignpatterns.org/ 
4 http://linkeddata.org/ 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 27 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

4. Ontology Design Pattern Reuse  

Ontology Design Pattern (OP) Reuse is defined in [77] as the activity of using available ontology 
design patterns in the solution of different modeling problems during the development of new 
ontologies. Ontology design patterns (OPs) is an emerging technique for the reuse of encoded 
experience and best practises. Ontology Design Pattern Reuse is part of the overall NeOn 
methodology, as described in scenario 7 in NeOn deliverables D5.4.1 [80], and D5.3.2 [77].  

Design patterns were already proposed in NeOn deliverables D5.1.1 [82] and D2.5.1 [67] as a set 
of guidelines and reusable components for ontology design. In deliverable D5.4.1 [80] already 
guidelines were proposed for letting naive users exploit some types of logical OPs. In this 
deliverable the focus is on general users, proposing general methodological guidelines for OP 
reuse, as well as specific guidelines for reusing content OPs that is more suited for developers with 
some prior modelling experience. 

First we present a brief introduction to existing work in the area of pattern-based ontology design, 
or rather point at the lack of such existing work; and we then propose the NeOn methodological 
guidelines for carrying out the activity.  

4.1. State of the Art and Related Work in NeOn 

The notion of “pattern” has proved useful in the context of design within many areas, such as 
architecture, software engineering, etc. Within C-ODO (the collaborative ontology design model 
presented in D2.1.1 [14]), ontology design patterns (OPs) play a crucial role, since they summarize 
good practices to be applied within design solutions, and keep track of the design rationales that 
have motivated their adoption. As mentioned above the NeOn methodology for building ontology 
networks described in D5.4.1 [80] incorporates a scenario where OPs are the basis for ontology 
design (scenario 7), starting from ontology requirements and resulting in OPs integrated in the 
ontology network to be built.  

Even though the use of patterns is widespread, also in areas such as software engineering, there 
are very few methodologies that explicitly mention the use of patterns, and if mentioned they are 
usually proposed as a kind of “additional support” that may guide developers within any 
methodology. So far, very few purely pattern-based methodologies have been proposed. In 
ontology engineering pattern-based methods are present primarily on the logical level, where 
patterns support methods for ontology learning, enrichment and similar tasks. In these methods 
patterns are used more or less automatically, e.g. lexico-syntactic patterns to for example identify 
ontological elements in a natural language text or to extract relations between ontology concepts. 
Such methods have been proposed in several NeOn deliverables, e.g. D3.8.1 [87]. For this 
deliverable, on the other hand, the focus is on methodological support, rather than tool support, i.e. 
guidelines for using patterns rather than tools and algorithms that automatically exploit patterns. 

As already mentioned, within this focus, there is even less prior work within the ontology 
engineering field, whereas NeOn is at the forefront of this development. Some methodological 
operations were however already presented in D2.5.1 [67]. The operations are mainly used for 
content patterns, but give an idea of what could be needed also for other pattern types, in terms of 
how patterns in general may be reused. The operations were the following: 

 Covering is related to the requirements that are to be solved by a model, or a pattern. A 
pattern covers a set of requirements, if it is expressive enough to store the necessary 
knowledge to answer the full set of competency questions (CQs) representing the 
requirements. 



Page 28 of 115 NeOn Integrated Project EU-IST-027595 

 

 Cloning involves making a duplicate of an ontology element, in some cases including all 
axioms defining the element or in some cases only making a partial clone. 

 Composition is the way of combining two or more patterns, where the result in case of 
content patterns is the union of the axioms of all the patterns together with any additional 
axioms used to link the elements of the different patterns. 

 Specialization and generalization are relations among patterns, as well as among 
elements. Specialization is also a way of reusing a content pattern, when the elements are 
specialized and thereby form a new ontology tailored to some specific requirements. 

 Expansion is when a pattern is extended with additional elements or axioms. 

 Importing is a basic operator for content pattern reuse (since already available in OWL) 
and is the standard way of reusing such OPs. 

For more details, and formal definitions of the operators the reader is referred to D2.5.1 [67]. 

Additionally, in D2.5.1 [67] there is a brief and informal description of how content OPs can be 
reused, but this description is focussed only on the matching between current requirements and 
the intent of the OPs. In general, the process proposed within the NeOn methodology for reuse of 
OPs have so far been to somehow match the patterns (the solution space) to the current 
requirements (the problem space), select a set of patterns, and reuse them (possibly through 
importing, specializing and expanding them) to construct an ontology (or ontology network). A 
divide-and-conquer paradigm was inherent in these initial ideas, since the patterns are small 
solutions that solve small parts of the overall problem. Still, no more specific guidelines were 
proposed so far but are instead the topic of this deliverable.  

4.2. Proposed Guidelines for Ontology Design Pattern Reuse 

As was mentioned before, the goal of ontology design pattern reuse is to facilitate the solution of 
modeling issues and to improve interoperability through using well-proven solutions and best 
practices, in the form of patterns.  

In the framework of the NeOn methodology we propose the ontology design pattern reuse filling 
card, presented in Table 3, for the ontology design pattern reuse activity. It is worth to mention that 
the filling card for the ontology design pattern reuse presented in deliverable D5.4.1 [80] has been 
modified to obtain the new one presented in Table 3. The main difference is that we redefined the 
activity to focus on the solution of modelling problems, while previously it also included pattern-
based matching. This is in line with the latest revision of the NeOn glossary of terms. 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 29 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 
Table 3. Ontology Design Pattern Reuse Filling Card 

The tasks for carrying out the ontology design patterns reuse activity can be seen in Figure 3. This 
is an updated version of what was provided in NeOn Deliverable D5.3.2 [77]. The activity starts by 
identifying the set of requirements to be addressed; possibly not the complete set of requirements 
in the ORSD will be addressed using OPs, and a set of patterns (catalogues of patterns) that are 
available for reuse. Next the “divide and conquer” paradigm is used, meaning that the set of 
requirements is divided into smaller parts and each part is first realised by itself and then integrated 
into the complete solution. For each smaller problem, this is matched to the patterns (a search of 
the solution space) and some appropriate patterns are selected and reused. The pattern-based 
methodology is test-driven in the sense that each small solution is tested against the requirements 
before integrating it with the rest of the solution. 



Page 30 of 115 NeOn Integrated Project EU-IST-027595 

 

 

Figure 3. General Workflow of Ontology Design Pattern Reuse  

The tasks for carrying out the ontology design pattern reuse activity are explained more in depth in 
the following: 

Task 1. Identify requirements to be addressed.  

The objective of this task is to identify which requirement(s), from the ORSD, can be addressed by 
ontology design pattern reuse. In many cases different methods will be used for realizing different 
parts of the requirements, and not all requirements may have suitable patterns available. The first 
task is to decide what specific requirements to include in the following steps. This task may be 
integrated with, or done iteratively together with, the next task, which is to select available pattern 
catalogues. In case no patterns are available to solve a specific type of problem, then those 
requirements are probably not likely to be amenable by design patterns; instead they should be 
realized using alternative activities within the NeOn methodology. 

The selection of requirements may be based on the following (non-exhaustive) list of criteria: 

 What requirements are not addressed within other activities yet? 

 What requirements do not have trivial solutions? 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 31 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 What requirements can be associated with existing pattern types? 

The first question addresses the organizational aspects of the works, which requirements are not 
treated yet and require a solution to be developed. The second question addresses the fact that 
patterns do not usually provide solutions to trivial problems, but represent best practices for solving 
some commonly occurring, repetitive problems. For example creating a single OWL class is quite 
trivial, and although there may exist a logical pattern solving this issue it is commonly supported as 
a basic functionality in ontology design environment and tools, therefore applying a pattern-based 
methodology would in this case introduce overhead and give no added benefit (over using any 
graphical ontology editing tool). “Trivial” is a relative concept here, in addition to indicating very 
small problems, it can also be related to the experience and skills of the developer. If a person is 
highly experienced and skilled in a certain area, then he might find a problem trivial, i.e. he 
immediately knows the correct solution to the problem. In this case using patterns again introduces 
an unnecessary overhead. Requirements where it is not immediately obvious (subjectively) how to 
represent those in a “good” way are generally ideal candidates for design pattern reuse. For 
example, how to model an n-ary relation might not be trivial to an inexperienced ontology engineer, 
in this case a content pattern could help. Finally, in order for the requirement to be solvable but 
design pattern reuse there must at least be pattern types that solve the kind of problems posed by 
the requirements (the presence of actual suitable patterns is discussed in the next task). 

Requirements are included within the ORSD expressed as competency questions (CQs). Different 
aspects of a CQ may be realized by different kinds of patterns. Below is a list of the available types 
of OPs and the kinds of problems they are intended to solve (for details see D2.5.1 [67]):  

 Correspondence OP – used for either re-engineering or mapping between ontologies. 

 Presentation OP – used for naming of elements or for annotating ontologies. 

 Reasoning OP – used for introducing certain reasoning capabilities. 

 Lexico-syntactic OP – used for linking natural language and ontological elements. 

 Structural OP – used for designing the logical structure of ontologies. 

 Content OP – used for designing the content of ontologies. 

Structural and content OPs are generally useful for most kinds of modeling problems, since they 
address the realization of the CQs into ontology elements and axioms. Lexico-syntactic patterns 
may additionally be useful if the ontology design team includes novice users (see method in D5.4.1 
[80]) or if a text corpus is used as the basis for building the ontology. Presentation OPs are useful if 
usability aspects of the ontology are deemed important, and correspondence OPs are relevant 
when building ontology networks by creating mapping between ontologies or when re-engineering 
other kinds of resources. Reasoning patterns define the kind of reasoning services needed to 
provide certain types of information. When choosing the requirements to address with ontology 
design pattern reuse, these available pattern types should be considered, and requirements 
covered by one or more of these types may be selected. 

Task 2. Identify available patterns.  

The goal of this task is to identify as many patterns, or rather pattern catalogues, as possible that 
could help in solving the modelling issues proposed by the requirements selected in the previous 
task. Catalogues of OPs may be found both in the form of written documents, like D5.1.1 [82] and 
D2.5.1 [67], and online catalogues like the ontology design pattern portal5. The relevant pattern 
types of the chosen requirements, identified in the previous task, should guide the search of 
available pattern catalogues. Aspects to consider when collecting patterns are for example the 
following: 

 Relevant pattern types. 
                                                 
5 www.ontologydesignpatterns.org 



Page 32 of 115 NeOn Integrated Project EU-IST-027595 

 

 Relevant problem domain. 

 Pattern provenance and reliability. 

An example illustrating the criteria above could be the problem of realising a CQ exposing an n-ary 
relation in the fisheries domain, such as connecting an aquatic resource observation to the 
observed resource, the time of the observation, and the measured parameters. Both logical and 
content pattern may be relevant, as well as presentation patterns for increasing usability aspects. 
The domain is fishery, whereas only general domain independent patterns and pattern for this 
specific domain should be considered (not for example patterns from the financial domain). If this 
ontology is to be part of a safety critical system, then only well-known patterns and proven best-
practices would be considered, while in a less safety critical case even pattern candidates (not yet 
approved by the community) could be considered for inspiration.  

Task 3. Divide and transform the problem, select a partial problem.  

The goal of this task is to prepare the set of modeling problems posed by the requirements for 
matching to the set of available patterns. Pattern-based design is inherently a divide-and-conquer 
approach, since patterns are restricted and solve a specific problem. In order to match the problem 
to such small partial solutions and reuse them, the problem needs to be divided into manageable 
pieces. In addition the problem could be divided in order to let different groups or individuals solve 
different sub-problems, not all the design team may be working on the same parts of the problem 
throughout the development. 

This task could include transformations like writing CQs to represent requirements stated only in 
example scenario sentences if not already present in the ORSD, and grouping of similar CQs that 
may be solved together by one or more pattern types if not already present in the ORSD, etc. It is 
recommended that pattern types that may affect the overall organization of the ontology are treated 
first, while detailed patterns are treated later. For example, presentation patterns such as naming 
conventions should be treated at the beginning since this will minimize the refactoring needed 
when applying the pattern to the solution. Similarly, reasoning patterns and structural patterns in 
the form of architecture patterns are recommended at an early stage, also in this case to minimize 
later refactoring.  

Finally, when the problem has been transformed and divided, one such “manageable piece” (for 
example, a set of CQs treating a coherent part of the intended ontology and envisioned to be 
solvable by logical or content patterns) is selected as a starting point. The rest of the tasks may be 
carried our iteratively, so that each sub-problem is solved before the next one is addressed, or in 
parallel, so that the sub-problems are divided between groups of designers and all groups solve 
their specific sub-problems in parallel (all using the tasks specified).   

Task 4. Match selected partial problem to patterns.  

The goal of this task is to identify which patterns are able to solve which parts of the selected sub-
problem, if any. How this task is solved is, of course, highly dependent on the type of patterns that 
are used. The matching procedure will differ a lot between, for example, matching naming pattern 
or reasoning pattern compared to matching content patterns. This task is identified as one of the 
hardest tasks of the process, and it is also a key task for the success of the complete process. This 
makes it the primary candidate for future tool support, but at the moment very little tool support is 
available. The ontology design pattern portal provides some search functions for finding patterns in 
the catalogues, but no support for the actual matching. Forthcoming versions of the planned XD 
plug-in (supporting a specific method for reuse of in the first version mainly content OPs described 
further lather in this chapter) for the NeOn toolkit will provide more support for pattern-based 
design and also the matching task. 

Some simple guidelines may be provided for specific types of OPs (see typology in D2.5.1 [67]). In 
the previous deliverable, D5.4.1 [80], the support for selecting structural and logical patterns based 
on natural language and lexico-syntactic patterns was described. For matching naming and 
annotation patterns usually a manual reading of the guidelines accompanying the patterns is 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 33 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

enough, since these patterns are more like guidelines and propose for example naming 
conventions (in these cases the selection and reuse of the patterns is the more challenging part).  

For matching correspondence OPs, support is being developed in the field of ontology matching 
(see for example [71]), but so far no general guidelines exist. Finally, also in the field of matching of 
content patterns only a few supporting tools may be found, one being the OntoCase approach as 
presented in [8], where suggestions for suitable content patterns are proposed base on ontology 
matching, ranking and learning algorithms. 

To summarize, there are no detailed general guidelines for matching a problem to a pattern at 
present, even though this is a crucial task within the overall process. More specific guidelines have 
to be tailored to each of the pattern types (as we shall do later in this chapter, for content patterns), 
we can only propose two brief general suggestions for performing this task in order to assist the 
matching: 

 Identify the type of patterns that may be suitable for solving the problem (if not already 
done in previous tasks) and match problem primarily to these kinds of patterns. 

 Depending on the type of pattern, use the description of the intent of the pattern to match it 
to the problem (for content patterns this would mean to match the competency questions it 
intends to solve to the competency questions of the problem). 

Task 5. Select patterns.  

The goal of this task is to select a set of patterns to reuse based on the results of the matching 
done in the previous task. These results may be of varying kind, if a formal method or tool was 
used then the matching results may be in the form of ranking values of a set of patterns. In that 
case the selection may be done by setting a threshold value. Still, other things than the individual 
matching results may be useful to take into account, since there may be overlapping or alternative 
patterns so that it is perhaps not suitable to select all of them.  

If manual matching was performed this is a decision-making process, where the usefulness of the 
pattern is weighted against the overhead of reusing it (instead of for example constructing a new 
solution). In many cases however it will be sufficient to simply study which patterns cover some 
part of the problem area and decide to reuse all of them, then applying a manual conflict resolution 
method in case there are overlaps or other conflicts that arise later.  

Task 6. Apply (reuse) selected patterns and compose them.  

The goal of this task is to reuse the selected patterns and compose them. How a pattern can be 
reused is of course again highly dependent on the pattern type. For example to reuse a reasoning 
pattern may involve to adapt the complete ontology for supporting this particular way of reasoning, 
as well as selecting a reasoning engine to perform the actual reasoning task. While reusing a 
content pattern may be to import it into an ontology file and specialise its elements and axioms. 
Also partial reuse of a pattern is possible, if not the complete pattern is needed or even 
appropriate. 

An important part of this task is the composition of patterns. It is rare that a single pattern can solve 
the complete problem we are trying to address, even if it is very small. In many cases two or more 
patterns will have to be combined, and this combination task is called pattern composition. 
Composition of content patterns would involve adding the union of the elements and axioms from 
the patterns to the resulting ontology, but additionally to connect the elements from different 
patterns using additional elements and axioms in order to ensure that the pattern really solves the 
problem (in case of content patterns this is to be able to answer the CQs posed).  

A certain amount of conflict resolution may be needed if patterns involve contradicting parts, but as 
stated above partial pattern reuse is also possible. At this stage however the focus is still on the 
partial selected problem intended to be solved, not on the complete solution for all the selected 
requirements. Integration of the complete solution is performed later in the process.  

 



Page 34 of 115 NeOn Integrated Project EU-IST-027595 

 

Task 7. Evaluate and revise with respect to partial problem.  

The goal of this task is to test the solution with respect to the selected partial problem at hand and 
to ensure that it really solves this problem in a correct way. As stated at the beginning a pattern-
based approach is inherently a divide-and-conquer approach, and this also leads to the possibility 
to test small and manageable pieces of the solution before finally integrating them into the 
complete solution. It does not replace the evaluations and revision of the complete solution, but 
these small “unit tests” are an important part of the process.  

If the result of the last step is a small ontology then the ontology may be evaluated and tested for 
example through adding instances and running unit tests and queries corresponding to the CQs of 
the problem. If the evaluation identifies some problems of the solution then these problems should 
be addressed in this task, before proceeding to the next. When the solution passed all tests, the 
iteration continues, by performing tasks 3-7 again on the next partial problem until all problems 
have been covered, or if the problems were solved in parallel by immediately integrating all 
solutions. 

Task 8. Integrate partial solutions.  

The goal of this task is to integrate the solutions to the partial problems solved by the previous 
iterations, or by the parallel teams working on different sub-problems. If the division of the problem 
resulted in a large number of partial tasks the number of partial solutions will also be large and this 
process may be quite challenging.  

In practice this integration may be performed after each solution of a small partial problem, instead 
of at the end of the complete process. The choice of method may depend on the team 
organisation. If arger design teams work on sub-problems in parallel and integrate their solutions 
as soon as they finish, the task needs to be performed in a collaborative fashion (supported by 
collaboration tools like chats, message boards or argumentation tools like Cicero [27]). On the 
other hand, if only one team is working in an iterative fashion, this task is less collaborative and 
simply contains the task of integrating one more “piece” into the complete solution. 

Either way, integration of the solutions is a challenging problem, and may involve refactoring of the 
whole solution. So far, detailed guidelines of this process are still future work, although technical 
guidelines for integrating ontologies are of course present. 

4.3. Reuse of Content Patterns – the eXtreme Design Approach   

In this section we describe a specific method, concerning content ontology design patterns for 
performing the tasks 3-7 of the general guidelines for ontology design pattern reuse proposed in 
Section 4.2. This specific method is intended, in the future versions, to cover the complete set of 
tasks but task 8. Integration is still a challenge for the future work, as well as the detailed support 
for the two selection tasks (1-2), thus they will not be described here.  

The eXtreme Design (XD) method is inspired by eXtreme Programming (XP) in software 
engineering, whereby we start by describing the background and basics of this methodology. Next, 
some guidelines are proposed and finally an example is given. 

4.3.1. Background 
The methodology of eXtreme Programming [5] has evolved over the last decade, as part of the 
agile software development movement. The main idea of agile software development is to be able 
to incorporate changes easily, in any stage of the development. Instead of using a waterfall-like 
method where you first do all the analysis, then the design, the implementation and finally the 
testing, the idea is to cut this process into small pieces, each containing all those elements but only 
for a very small subset of the problem. The solution will grow almost organically and there is no 
“grand plan” that can be ruined by a big change request from the customer. Also the customer is 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 35 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

highly involved in all stages, whereas such big change requests can often also be avoided. One of 
the main objectives is to have a working software as early as possible, even if it has only a very 
small subset of the intended functionality, in order to let the customer start using it and thereby 
prevent any big surprises at the end of the project.    

One of the main promoters of XP has been Kent Beck, who in his 1999 cover feature in IEEE 
Computer wrote a comprehensible summary of the XP method and its practices [5]. XP is based 
on a set of rules, or practices that should always be followed as closely as possible in order for the 
project to be successful. Beck lists the following rules in [5]: 

 Planning. The customer will decide the timing of the next release, and what it should cover, 
based on estimates of development effort. The developers implement only this functionality and 
nothing more. 

 Small releases. The system is launched already after a few months, new releases are made 
often. 

 Metaphor. The shape of the system is described by a metaphor, understandable by both 
customer and developers. 

 Simplicity. At any given time the system must be able to pass all tests, it must at the same time 
be as simple and clear as possible and contain no redundancy. 

 Tests. Two types of tests are used, unit tests written by the developers and functional tests 
developed by the customer, all tests collected so far must run correctly at any time of the 
project. 

 Refactoring. The design is evolved when necessary throughout the project, so that it is as 
simple as possible and all tests are still running. 

 Pair programming. All code of the system is written by two people sitting at one computer. 

 Continuous integration. New code is integrated daily; all tests must run after each integration. 

 Collective ownership. Anyone can change anything in the system at any point in time, if it 
improves the system. 

 On-site customer. The customer is physically present at all times during development. 

 40-hour week. Overtime should be avoided, and is not allowed two weeks in a row. 

 Open workspace. The team works all together in a large room. 

 Rules. These rules have to be followed by all members of the team, but may be re-negotiated 
at any point if it benefits the project. 

The main idea is that the problem, the current customer requirements, are divided into small 
working releases, but only the next release is ever planned in detail. This means that the customer 
picks a set of requirements (in XP called “stories”) that he feels are the most important at the 
moment and the release time is planned based on the resources available. Then only those 
requirements are treated during that iteration, nothing else. The requirements are further 
subdivided into pieces that can be realised by the developers, who then work in pairs to develop 
solutions for each little piece of the problem. The new solutions are first tested and then integrated 
into the current system, the system is refactored to improve the design and keep all tests running 
without problems. In this way the system is built incrementally by adding small pieces of new 
functionality.  

Testing is the main driver behind improvements and the thing that keeps the system from 
developing in an uncontrolled way. Tests are collected continuously and all previous tests have to 
run without problems even when new functionality is added, this guarantees a system that is 
always stable and which is really growing towards the complete solution rather than implementing 
random functionalities that introduce inconsistencies. 



Page 36 of 115 NeOn Integrated Project EU-IST-027595 

 

4.3.2. Proposed guidelines for reusing content patterns: eXtreme Design 
The eXtreme Design (XD) method is inspired by XP in many ways but its focus is a bit different, 
because where XP diminishes the value of careful design this is exactly what XD has at the focus. 
Of course designing software and designing ontologies is inherently different, but still there are 
many lessons to be learnt from programming. XD is test-driven in the same way as XP and also 
applies the divide-and-conquer approach; this is one of the reasons why it is perfectly suited for 
use with content patterns. The general XD method may be illustrated as a workflow in Figure 4. 
The method is, as mentioned previously, focused on content design patterns, whereas this method 
should be used when/if a set of content patterns have been selected (see general workflow, task 2 
in Figure 3) to realise some set of requirements. 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 37 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 
Figure 4. The overall Workflow of XD 

 

Below, detailed guidelines are described for each of the tasks included in Figure 4. We remind the 
reader that task 1 and 2 are not specialised by this specific method, for guidelines to these tasks 
see the general guidelines for design pattern reuse presented in Section 4.2. Also, no detailed 
guidelines are present for task 8; therefore it is only presented as a future work in the description 
below. 

 



Page 38 of 115 NeOn Integrated Project EU-IST-027595 

 

Task 3. Divide and transform problem, select partial problem. 
Task 3.1. Divide requirements into small “stories”.  

The objective of this sub-task is to transform and divide the requirements into small “stories” 
that address some more or less coherent subpart of the problem. A story could be a set of 
example sentences describing the type of information to be stored within the ontology (or 
ontology network), or a coherent set of CQs (if collected directly from the ORSD document 
as specified previously) that address a related part of the ontology network. The stories 
may include examples, instance-level information, since this can be used later for testing 
the requirements. If the requirements are already in the form of CQs, this sub-task should 
simply divide the CQs into groups that are somehow related and will be addressed 
together. CQ groups could be also directly extracted from the ORSD. This task may be 
performed by the development team together, a pair of developers or even preformed 
previously during the requirement specification process.   

Task 3.2. Select a “story” that has not been treated.  

The objective of this sub-task is to select a sub-problem, a small “story”, and to start the 
development iteration. At this point the process may be branched so that different 
development pairs select different “stories” and work in parallel or the process is run 
iteratively with only one pair. In case several pairs are working in parallel their respective 
background and experience may be considered when selecting the “stories”, and some 
negotiation process may be suitable.     

Task 3.3. Read “story” and divide into simple sentences, s1 ... sn.  

The objective of this sub-task is to further sub-divide the story into simple sentences, 
meaning that complex example sentences may be broken up into shorter sentences to 
increase clarity. In case the story is already in the form of CQs the CQs may be broken 
down into simpler CQs, in order to increase clarity and further divide the problem (this task 
may already have been performed during the ORSD creation, but is included since this 
method is more general and can handle different kinds of input). The sentences may be 
numbered in order to be able to refer to them and check which of them are related to 
certain CQs, tests and patterns in the coming steps. 

Task 3.4. Select a sentence, si.  

The objective of this sub-task is to pick one of the sentences (or CQs, in case this was 
already the requirement format present) that have not been treated yet. This may be viewed 
as an “inner loop” of the divide-and-conquer approach, where even the story is further sub-
divided into its pieces and now each of the pieces are treated one by one.    

Task 3.5. Transform si to an instance-free sentence.  

The objective of this sub-task is to remove any references to instances from the sentence 
(or CQ), i.e., to abstract the sentence so that all the terms refer to what will be on the T-box 
level in the ontology. A name of a person would for example be replaced with a more 
generic term “person”.     

Task 3.6. Transform the instance-free sentence into local CQs.  

The objective of this sub-task is to transform a sentence into a set of local CQs that covers 
all what is contained in the sentence. In case the requirements were already in the form of 
CQs, this task only concerns to check that the CQs are really local (see below) and that 
they cover all the information we intend to model. Using the CQs we should be able to 
retrieve all the information contained in the sentence from the ontology, so for example the 
instances that were removed from the sentence in sub-task 3.5. Still, the CQs should be 
local in the sense that they do not require any additional sentence or part of the ontology, 
only the parts represented by the sentence.    



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 39 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

Task 3.7. Transform local CQs to queries and collect in unit tests.  

The objective of this sub-task is to construct the tests that will be used to later check that 
the solution developed actually solves the problem in a correct way. Such queries could be 
expressed as SPARQL queries, but any other query language suitable may also be used. 
Unit test should be formed, i.e. collections of queries, that can be run in order to test the 
solution to this particular sub-problem against the local CQs.  

Task 4. Match the content pattern (CP) coverage to the local CQs.  

The objective of this task is to match the local CQs to the general CQs present in the descriptions 
of the content patterns (the intent of the pattern), in order to determine whether a certain pattern 
could solve some part of the problem. At the moment there is no tool support for search and 
matching based on CQs of the content patterns, but this is a future work issue that will be provided 
in future versions of the XD plug-in connecting the design pattern portal and the NeOn toolkit. 
Currently this, sometimes difficult, task has to be performed manually by abstracting from the local 
CQs and trying to match these to the pattern CQs. The result is a set of suitable content patterns. 

Task 5. Identify the set of CPs you need and associate each with the local CQs it covers.  

The objective of this task is to identify the set of CPs you need among the ones that matched some 
parts of the problem in the last task. There may be more than one pattern that can solve the 
problem at hand, and different combinations may be possible. As a general guideline, more 
specific patterns should be preferred over more general ones, since a more specific pattern will 
add more information to the solution than a more general pattern. Each pattern selected should 
also be connected to the local CQs it covers in order to identify in later steps the uncovered CQs 
and to know which pattern was used to realise what part of the solution. 

Task 6. Apply (reuse) selected patterns. 
Task 6.1. Select a pattern from the set.  
The objective of this sub-task is to initiate an iteration over the selected patterns from the 
previous task and to thereby treat them one by one. 

Task 6.2. Identify pattern entities to specialise and specialise them.  

The objective of this sub-task is to specialise the pattern so that it contains the concepts 
and properties named in the instance-free sentence and in the CQs that should be covered, 
rather than merely the general elements and axioms of the pattern itself. For example, a 
pattern containing the concept of “agent” many be specialised by introducing the sub-
concept “person” as a subclass of “agent” in order to support a CQ containing the concept 
“person”. This is done for each of the selected patterns before proceeding, usually the 
patterns are also imported into the same ontology at this stage (even though they may not 
be connected, see next task).     

Task 6.3. Identify entities and axioms for composing the specialised CPs and 
compose them 

The objective of this sub-task is to compose the set of patterns solving the problem 
specified in the particular sentence treated. If a set of patterns were selected then they 
usually need to be connected in order to be able to correctly answer the CQs and 
corresponding queries associated to the sentence. This means to import all the patterns 
into one ontology, if not already done, and it could also mean to add new elements or 
axioms in order to connect entities from the different patterns. How this is done and what is 
added depends on the particular CQs to be supported, the CQs can be checked one by one 
until each composition operation needed is covered. 

Task 6.4. Expand the ontology to cover uncovered CQs.  

The objective of this sub-task is to make sure that all the CQs of this sentence is completely 
covered. It may be the case that there were not patterns suitable for all CQs, or that some 



Page 40 of 115 NeOn Integrated Project EU-IST-027595 

 

pattern only partially solves a CQ. In this case the remaining parts have to be modelled 
“from scratch” in order for the ontology to solve the complete problem. This task aims at 
extending the composed patterns in order to cover all local CQs of the sentence currently 
treated. 

Task 6.5. Populate the A-box with instances from the “story”.  

The objective of this sub-task is to populate the current small ontology with instances from 
the initial story, in order to prepare it for the unit test, containing a set of queries that was 
prepared previously. If instances are missing also some “test case instances” may be 
introduced, in order to support the testing of the ontology. These may be later removed. 

Task 7. Evaluate and revise with respect to requirements. 
Task 7.1. Test using the collected queries.  

The objective of this sub-task is to test the constructed small ontology against the sentence 
it is supposed to represent, using the queries collected in sub-task 3.7. The queries are run 
on the populated ontology and the results are registered and compared to expected results. 

Task 7.2. Revise the ontology.  

The objective of this sub-task is to revise the ontology in case it did not pass all the tests in 
the previous sub-task. The revision and testing will continue until all tests are passed. When 
the queries run with correct results, the next sentence or story is picked and the iteration 
starts over from task 3.4 or task 3.2. Optionally the integration may also be performed 
directly after each iteration, or if all sub-problems were solved in parallel the next step may 
in any case be the integration of solutions. 

[Future work] Task 8. Integrate partial solutions.  

The objective of this sub-task is to integrate partial solutions constructed through iterations of the 
above tasks. Either the above tasks may be performed in parallel, when this task is then the 
problem of integrating the solutions for a set of n stories. In other cases the integration may be 
done after each iteration, whereas the problem is more similar to the integration and refactoring of 
the software XP process. In any case, no detailed guidelines for performing this process are 
available yet, this is still part of future work.  

4.3.2. Example eXtreme Design iteration 
Below, an example iteration of the XD method is presented, based on a use case from the fisheries 
domain. The scenario has been slightly simplified, compared to the original use case. In the ORSD 
the scenario would be additionally connected to a set of specific requirements in the form of CQs, 
but let us, for the sake of illustration, assume that the scenario is only described in the form of 
examples. Let us assume that the initial scenario to be modelled can be described through the 
following “story”: 

In 2004 the resource of species “Tuna” in water area 24 was observed to be fully exploited 
in the tropical zone at pelagic depth.    

This is assumed to be the problem “story” we are working with, whereas tasks 3.1 and 3.2 are 
already performed. We mentioned that a catalogue of content patterns needs to be present. Such 
a catalogue can be found at the ontology design pattern portal6, where we assume the following 
general (more or less domain independent) patterns to be present: 

                                                 
6 http://www.ontologydesignpatterns.org 

 AgentRole 

 Classification 

 CollectionEntity 

 Constituency 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 41 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 Description 

 InformationRealization 

 PartOf 

 RoleTask 

 Situation 

 TimeInterval 

Starting from task 3.3 the goal is to divide the story into simpler sentences. A first division may 
result in the following: 

Resource x was observed to be fully exploited in the tropical zone at pelagic depth in 2004. 
The resource x is species “Tuna” in water area 24. 

Next task 3.4 implies to select one of the two sentences to start modelling. Assume that we select 
the first sentence. Task 3.5 then indicates that we should transform this sentence into an instance-
free sentence. The sentence will look like: 

A resource was observed to be in a certain exploitation state in a particular climatic zone at 
a certain vertical distance in a certain year. 

Next task 3.6 instructs us to transform the sentence into local competency questions. The 
following set of CQs can be derived from the sentence: 

What resource was observed? In what year? In what exploitation state? In what climatic 
zone? At what vertical distance? 

These questions may then be translated into queries, as proposed by task 3.7, and collected for 
later testing of the ontology. A set of SPARQL queries could be formed as follows: 

SELECT ?x ?y WHERE {?x ?r ?y. ?x a :AquaticResource. ?y a :AquaticResourceObservation. } 
SELECT ?x ?y WHERE {?x :hasObservationYear ?y. ?x a :AquaticResourceObservation. } 
SELECT ?x ?y WHERE {?x :hasExploitationState ?y. ?x a :AquaticResourceObservation. } 
SELECT ?x ?y WHERE {?x :hasClimaticZone ?y. ?x a :AquaticResourceObservation. } 
SELECT ?x ?y WHERE {?x :hasVerticalDistance ?y. ?x a :AquaticResourceObservation. } 

It is of course important to note that it is not necessary to formulate the queries exactly like this; 
there may be other ways to formulate them and languages other than SPARQL can be used. For 
this simple example however, this set of queries will be used. 

Next is task 4, where the local CQs should be matched to the intent of the content patterns 
available (see the list above). This task is a hard problem, to be solved manually, and it requires 
some experience to be solved quickly. Still, if studied one by one, we will find that the two patterns 
that most closely resemble the case at hand are the Situation-pattern and the TimeInterval-pattern. 
The competency question of Situation “What entities are in the setting of a certain situation?” can 
be said to match the observation and the resource and the parameters that are in the setting of 
that observation. Additionally the TimeInterval pattern may be seen as partially matching the 
question of what year a certain observation was made, although this could also be solve with just a 
simple datatype property. The pattern contains CQs such as: “What is the end time of this 
interval?, What is the starting time of this interval?, What is the date of this time interval?”. The 
result of task 4 is then two matching patterns. 

In task 5 the objective is to select which of those patterns should be used for solving the modelling 
problem of the current sentence. For the sake of this example we may decide that the TimeInterval 
pattern adds too much extra effort, besides the needed year of observation, in which case we will 
only select the Situation-pattern. Thus, task 6.1, selecting a pattern to start with, means treating 
the only selected pattern. 

Task 6.2 proposes to specialise the elements of the selected pattern. The situation pattern can be 
illustrated as in Figure 5. The particular situation is in our case the observation, and the thing being 
observed is the resource, but additionally the exploitation state, climatic zone, and vertical distance 
of the observation is also a part of the setting. Thereby we add a subclass of 
situation:Situation named AquaticResourceObservation and add the other entities 



Page 42 of 115 NeOn Integrated Project EU-IST-027595 

 

as subclasses of owl:Thing. In addition we construct subproperties of the 
situation:isSettingFor and situation:hasSetting, for connecting the observations to 
the resources and the different parameters. The resulting specialisation is illustrated in Figure 6.  

 

Figure 5. The Situation Pattern 
 

 

Figure 6. The Specialised Situation Pattern, including Resource Observations 
Since this was the only pattern selected we proceed to task 6.3, but this is already prepared since 
there is no need for pattern composition with only one pattern. Next, we check if all local CQs are 
covered and discover that the year of the observation is still missing. We therefore extend the 
small ontology we have constructed with a datatype property called “yearOfObservation” of the 
AquaticResourceObservation class, as specified by task 6.4.  

The final sub-task of task 6 is task 6.5, where we populate the small ontology with the instances 
from our story. We add an instance of the resource observation, and connect it to an example 
resource, add the year “2004”, and instances “tropical”, “pelagic” and “fully exploited” as instances 
of the other classes and connect them through the properties to the observation. Let us for the 
sake of the example say that we forget to add the connection between the observation and the 
ClimaticZone instance “tropical”. 

Then the small ontology is tested, in the context of task 7.1, using the queries that were collected 
in task 3.7. All queries will give expected results except the fourth one, where not instances will be 
retrieved. Thus we discover our mistake of forgetting to instantiate the property, and we can 
proceed to task 7.2 in order to correct the ontology. In this case the mistake was rather in the 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 43 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

addition of example data and not in the modeling of the actual ontology, and the problem is easily 
corrected. We return to task 7.1 and conclude that all tests now run with expected results.   

The next step is to check if all sentences in the story were treated. In our case we realize that we 
have one sentence left and therefore proceed to the next sentence (task 3.4), which was the 
following: 

The resource x is species “Tuna” in water area 24. 

Task 3.5 instructs us to transform this into an instance free sentence, which results in the 
following: 

The resource x is a certain species in a certain water area. 

The local competency questions of this sentence (see task 3.6) are: 

What are the resources of this species? What are the resources in this water area? What is 
the species and water area of this resource? 

 These are then transformed into queries in task 3.7: 

SELECT ?x ?y WHERE {?x ?r ?y. ?x a :AquaticResource. ?y a :AquaticSpecies. } 
SELECT ?x ?y WHERE {?x ?r ?y. ?x a :AquaticResource. ?y a :WaterArea. } 
SELECT ?x ?y ?z WHERE {?x :hasSpecies ?y. ?x a :AquaticResource. ?x :hasWaterArea ?z. } 

When performing task 4 we do not find any one of the 10 patterns to fit our case at hand. This is a 
very likely situation that will occur many times, since content patterns do not cover all possible 
situations that may arise in modelling but mainly the “problematic” ones where some specific 
modelling issues need to be solved. In this case the modelling is quite straightforward. Of course a 
specific “resource pattern” could be constructed where resources are connected to some specific 
thing that is the content of the resource and some location where the resource is located, but since 
our catalogue lacks such a resource pattern task 4 does not result in any patterns.  

In this case sub-tasks 5 and 6.1-6.3 are not applicable, and we directly proceed to task 6.4. We 
model the sentence from scratch, by adding concepts for AquaticResource, AquaticSpecies and 
WaterArea. At this stage there are two possibilities, either this second sentence is modelled in a 
different file (separate from the modelling of the first sentence, we could, for example, have 
assigned the modelling of the two sentences to two separate design pairs to be performed in 
parallel) than the first sentence or the modelling is continued in the same physical ontology file as 
the first sentence. In case we are continuing within the same ontology file, we may immediately 
discover some refactoring possibilities. Since AquaticResource was a concept also used in the first 
sentence, we may not want to add a new concept representing this again, but instead to continue 
to use the already defined concept. In case we are starting a new ontology file for this sentence, 
this refactoring will take place in the integration step after we have finished the modelling of the 
sentence. We continue to add also properties between the resources and the species and water 
areas. 

In task 6.5 the ontology is again populated with instances of the story, whereas we add an 
example resource (if not already present) the species “Tuna” and a water area with number 24. 
The solution is then tested in task 7.1, through the queries developed previously, and if all queries 
run with expected results the task 7.2 is not needed. Now, we have covered all sentences in the 
example story, and assuming that no more stories are to be covered we may proceed to the 
integration. Note that, as mentioned previously, the integration and refactoring may in practice be 
done partly during the development process, or at least between the treatment of different stories. 
This process has to be adapted to the organisational setting at hand, and thereby the workflow 
should not be viewed as strict and prescriptional, but rather descriptional indicating the possible 
steps and their dependencies. Still, as mentioned previously, integration is an important issue and 
deserves further research in order to develop detailed guidelines also for the collaborative 
integration of partial solutions. 



Page 44 of 115 NeOn Integrated Project EU-IST-027595 

 

4.4. Future Work 

In this chapter we have presented preliminary methodological guidelines for carrying out the overall 
ontology design pattern reuse activity. It may be noted from the general guidelines of Section 3.2 
that they are quite brief and very general. This is due to the great diversity of ontology design 
patterns that exist. It is not possible to present detailed guidelines for all possible patterns at once. 
Instead detailed methodological guidelines should be presented for each type of pattern (see 
typology in D2.5.1 [67]). In the previous version of this deliverable, D5.4.1 [80], a method tailored 
for naive users was presented, which introduced reuse of logical patterns by means of using 
lexico-syntactic patterns. In this deliverable we have presented a specialisation of the overall 
method for reuse of content patterns. The main further work needed for reusing OPs is thereby to 
cover all of the different types of patterns, so that specific methods may be chosen based on the 
pattern types available, rather than only relying only on the general guidelines of the overall 
process.  

Additionally, the specific method proposed for content patterns still needs some further work, with 
respect to evaluation of the method and development of detailed guidelines also for the final step, 
i.e. result integration. The method has already been tried in many project use-cases, since it is 
based on long experience and work in ontology engineering, but previously it has not been 
described at this level of detail. In the particular form described above it has only been used in 
NeOn training events and during the experiments on patterns presented in NeOn deliverable 
D5.6.2 [30]. Next steps are to experiment specifically on this method, refine it and empirically 
determine its strengths and weaknesses. 

Additionally, the need for tools supporting the general activity of ontology design pattern reuse has 
been observed. At the moment there exist no tools that explicitly support pattern reuse. Within the 
NeOn toolkit this will be supported through the XD plug-in being developed. Initially the plug-in will 
support mainly the XD method, as described in Section 4.3, but it is not in principle restricted to 
only content patterns for example. The first version of the plug-in will support basic search and 
retrieval of patterns, importing patterns, composing them etc. This will be supported through a 
graphical user interface intuitive to ontology engineers.    

 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 45 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

5. Ontology Modularization  

Designing ontologies in a modular way is generally considered as a good practice [68]. However, 
there may be scenarios where ontology engineers need to reuse or exploit an ontology that has not 
been modularized at design time, or for which the criteria applied for distinguishing modules do not 
fit the particular requirements of his/her current application. Therefore, we consider the activity of 
ontology modularization as one responsible for creating modules from an existing ontology. This 
activity, and therefore the present methodological guidelines, is supported by several operators 
included in the NeOn toolkit for modularization, as described in [20]. The importance of such an 
activity is motivated by several different scenarios within the NeOn case studies and technical 
workpackages, as described in [21]. The proposed operators are designed to be generic, in order 
to be useful in the majority of the modularization scenarios. As such, they have to be used in an 
interactive process, where the user provides the relevant parameters and input. Proper 
methodological guidance is then required to support him in this task." 

Within the NeOn Glossary of Processes and Activities [78], ontology modularization is described as 
the “the activity of identifying one or more modules in an ontology with the purpose of supporting 
reuse or maintenance.” 

In this chapter we present a brief introduction to the existing techniques and tools for ontology 
modularization. We also propose the NeOn methodological guidelines for carrying out the activity.  

5.1. State of the Art 

5.1.1. Techniques and tools for modularization 
We consider in this section techniques and tools that have been developed to help users in 
extracting or creating modules from existing, and potentially large scale ontologies. We start our 
analysis by briefly introducing notations and distinguishing two major types of modularization: 
ontology module extraction and ontology partitioning. We then describe different techniques in 
each of these categories.  

We consider an ontology O as a set of axioms (subclass, equivalence, instantiation, etc.) and the 
signature Sig(O) of an ontology O as the set of entity names occurring in the axioms of O, i.e. its 
vocabulary. A module is considered to be a significant and self-contained sub-part of an ontology. 

Ontology Partitioning. Ontology Partitioning refers to the activity of dividing an ontology into a set 
of (not necessary disjoint) modules that together form an ontology and that can be treated 
separately [78].  

More precisely, it splits up the set of axioms into a set of modules {M1 , · · · , Mk } such that each Mi 
is an ontology and the union of all modules is semantically equivalent to the original ontology O.  

Note that some existing approaches being labelled as partitioning methods do not actually create 
partitions, as the resulting modules may overlap. There are several approaches for ontology 
partitioning that have been developed for different purposes.  

 The approach presented in [50] aims at improving the efficiency of inference algorithms by 
localizing reasoning. For this purpose, this technique minimizes the shared language (i.e. 
the intersection of the signatures) of pairs of modules. A message passing algorithm for 
reasoning over the distributed ontology is proposed for implementing resolution-based 
inference in the separate modules. Completeness and correctness of some resolution 
strategies is preserved and others trade completeness for efficiency.  



Page 46 of 115 NeOn Integrated Project EU-IST-027595 

 

 The approach presented in [16] partitions an ontology into a set of modules connected by ε-
connections. This approach aims at preserving the completeness of local reasoning within 
all created modules. This requirement is supposed to make the approach suitable for 
supporting selective use and reuse since ever y module can be exploited independently of 
the others.  

 A tool that produces sparsely connected modules of reduced size was presented in [76]. 
The goal of this approach is to support maintenance and use of very large ontologies by 
providing the possibility to individually inspect smaller parts of the ontology. The algorithm 
operates with a number of parameters that can be used to tune the result to the 
requirements of a given application.  

Module Extraction. Ontology Module Extraction refers to the activity of obtaining from an ontology 
concrete modules to be used for a particular purpose (to contain a particular sub-vocabulary SV of 
the original ontology) [78].  

This activity has been called segmentation in [72] and traversal view extraction in [56]. More 
precisely, given an ontology O and a set SV � Sig(O) of terms from the ontology, a module 
extraction mechanism returns a module MSV , supposed to be the relevant par t of O that covers 
the sub-vocabulary SV (Sig(M) � SV ).  

 Techniques for module extraction often rely on the so-called traversal approach: starting 
from the elements of the input sub-vocabulary, relations in the ontology are recursively 
“traversed” to gather relevant (i.e. related) elements to be included in the module. Such a 
technique has been integrated in the PROMPT tool [56], to be used in the Protégé 
environment. This approach recursively follows the proper ties around a selected class of 
the ontology, until a given distance is reached. The user can exclude certain proper ties in 
order to adapt the result to the needs of the application.  

 The mechanism presented in [72] starts from a set of classes of the input ontology and 
extracts related elements on the basis of class subsumption and OWL restrictions. Some 
optional filters can also be activated to reduce the size of the resulting module. This 
technique has been implemented to be used in the Galen project and relies on the Galen 
Upper Ontology.  

 In [75], the author defines a viewpoint as being a sub-par t of an ontology that only contains 
the knowledge concerning a given sub-vocabulary (a set of concept and property names). 
The computation of a viewpoint is based on the definition of a viewpoint dependent 
subsumption relation.  

 Inspired from the previously described techniques, [24] defines an approach for the 
purpose of the dynamic selection of relevant modules from online ontologies. The input 
sub-vocabulary can contain classes, properties, or individuals. The mechanism is fully 
automatized and is designed to work with different kinds of ontologies (from simple 
taxonomies to rich and complex OWL ontologies) and relies on inferences during the 
modularization process.  

 Finally, the technique described in [29] is focused on ontology module extraction for aiding 
an ontology engineer in reusing an ontology module. It takes a single class as input and 
extracts a module about this class. The approach it relies on is that, in most cases, 
elements that (directly or indirectly) make reference to the initial class should be included.  



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 47 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

5.1.2. Integrated approaches 
One important issue related to modularizing ontologies is that different scenarios and applications 
require different ways to modularize ontologies [23]. To facilitate the selection, combination, and 
adaptation the various existing module extraction techniques, [22] describes a parametric 
approach for this activity. The principle is to describe module extraction techniques under a 
common framework that can be parameterized according to the modularization technique that is 
more suited for the application. This framework relies on a graph transformation engine. Ontologies 
to be modularized are represented as graphs and modularization techniques re-formulated as 
graph transformation rules. In this way, existing modularization technique can implemented in the 
same tool, making it easier to compare, adapt and combine them, and new modularization 
techniques can easily be implemented in the form of modularization rules. The paper [22] 
described the reformulation of several existing techniques for modularization, but an operational 
implementation of the tool has not been made available. 

Very similar ideas to the one described in [22] are at the basis of another approach for parametric 
modularization [28] which, instead of a graph transformation framework, employees a mechanism 
that recursively execute SPARQL queries over the ontology to build a sub-set of it. The parameters 
of this framework are the sets of SPARQL query that represent modularization techniques. In the 
same line of ideas, the SAIQL [46] query language has been applied to ontology customization 
[custom], which can be related to the task of extracting modules from ontologies.  

5.1.3. Initial guidelines for modularization 
A study for a particular scenario of various modularization techniques and of the different criteria 
for their evaluation has been described in [19]. For this study, modules were extracted from several 
ontologies, using several different techniques, for an application in knowledge selection, i.e., 
requiring to obtain only the relevant part of the ontologies according to given set of keywords. A 
number of criteria have been identified to characterize the modularization techniques and their 
results. These criteria were then use to evaluate the application of each technique to this particular 
scenario.  

Amongst other conclusions, this study showed the need for clear and comprehensive guidelines for 
application developers to employ modularization, and in particular, to select the appropriate 
techniques and criteria according to the requirements of the application.  

5.2. Proposed Guidelines for Ontology Modularization  

As we mentioned before, the goal of ontology modularization is to obtain a module or a set of 
modules from an ontology, which fit the requirements of a particular application or a particular 
scenario. As already commented, there is a clear need for methodological guidelines, to help 
ontology developers in selecting and applying the appropriate techniques for modularization 
depending on the goal of modularization. For this purpose, in the NeOn methodology we start by 
detailing the filling card for the activity of ontology modularization, and by proposing a set of 
detailed tasks for this activity. 

Note that, as opposed to a single, monolithic ontology, an ontology network is essentially a 
modular ontology, made of components (the individual ontologies) interacting with each other in a 
particular context. The approach presented here is applied on individual ontologies (possibly 
networked) to create either networks of ontologies or elements for networks of ontologies. 

In the framework of the NeOn methodology for building ontology networks, we propose the 
ontology modularization filling card, presented in Table 4, which includes the definition, goal, input, 
output, who carries out the activity and when the activity should be carried out. 



Page 48 of 115 NeOn Integrated Project EU-IST-027595 

 

Ontology Modularization  

Definition 

Ontology Modularization refers to the activity of identifying one or more modules in 
an ontology with the purpose of supporting reuse or maintenance. 

 
 

Goal 

The modularization activity offers a way to cut-down potentially large ontologies into 
smaller, more manageable modules. 

 
 

Input Output 

An ontology. 
 

A module or a set of modules from the input ontology. In 
practice, ontology modules are themselves ontologies. 

 
  

Who 

Ontology engineer (ontology development team), curator of the ontology, preferably 
with the help of domain experts. 

 
 

When 

In scenario 3 for facilitating the reuse of ontological resources and in scenario 4, as 
part of the re-engineering process. Also in scenario 8, as part of the restructuring 
activity. 

 
 

 
 

Table 4. Ontology Modularization Filling Card 

The tasks for carrying out the ontology modularization activity can be seen in Figure 7.  



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 49 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 

Figure 7. Tasks for the Ontology Modularization 

The tasks for carrying out the ontology modularization activity are explained in the following: 
Task 1. Identify purpose of modularization. 

The goal of this task is to make explicit the reason why the considered ontology should be 
modularized. In other terms, the outcome of this task is a clear description of the application 
scenario in which modularization and ontology modules are used, as well as the expected benefit 
of the modular approach. D1.1.3 [21] describes some typical use case for modularization and 
concrete examples from NeOn.  

Commonly considered benefits (and thus drivers) of ontology modularization are: 

 Improving performance by enabling the distribution of reasoning or by exploiting only the 
relevant modules of a large ontology (see [20] for an example in inference justification). 



Page 50 of 115 NeOn Integrated Project EU-IST-027595 

 

 Facilitating the development and maintenance of the ontology by dividing it in loosely 
coupled, self-contained components, which can be managed separately.  

 Facilitating the reuse of (parts of) the ontology, by extracting modules of the ontology 
that have a specific application or purpose for being reuse. 

 Customizing ontologies, by application developers to flexibly extract and combine 
modules relevant to a particular application, or to provide different modules to different 
groups of users (see [48] for an example in managing access rights in a distributed 
question answering system). 

Identifying the purpose of modularization is essential for the next tasks, in particular to select the 
appropriate modularization technique and criteria to maximize the expected benefit of 
modularization. 

Task 2. Select a modularization approach. 

We distinguish two different types of modularization: ontology partitioning and ontology module 
extraction. It is generally easy to decide which one to choose according the modularization 
purpose:  

 Whenever the purpose relates to the entire ontology (i.e., improving maintenance, and in 
some cases performance), a partitioning approach should be considered.  

 Whenever the purpose relates to extracting specific parts of an ontology (e.g., to customize 
it or reuse it partially), module extraction should be considered. 

However, considering that the present methodological guideline favours an iterative approach, it 
can happen that the two approaches can be combined, extracting, for example, modules from the 
result of a partitioning technique. 

Task 3. Define modularization criteria. 

The modularization criteria define the basic characteristics that the resulting modules should have, 
i.e., what should go into a module. In [19] a set of criteria typically employed for modularization is 
given (e.g., logical completeness and correctness with respect to the original ontology, size, 
relation between modules, etc.) The criteria to emphasize should be decided depending on the 
purpose of modularization. For example, if the goal is to improve the reasoning procedure, logical 
criteria should be favoured. Authors in [23] show that with the great variety of techniques for 
modularization all implement different criteria, meaning that this task is essential for choosing the 
appropriate technique, or combination of techniques. Unfortunately, while work in [19] provides a 
list of common criteria, and insights on their importance in different scenarios, the choice of the 
right criteria to apply is highly dependent on a particular situation and has to be left to the ontology 
engineers to decide.  

Task 4. Select a base modularization technique. 

As mentioned in Section 5.1, there is a great variety of techniques and tools for ontology 
modularization. In [23, 19] we showed that these techniques implement a different intuition about 
what should be in a module, and so, there is no universal definition of what an ontology module 
should contain. In other words, it is necessary to select the most appropriate technique; depending 
on the criteria to apply. There is currently no comprehensive list of techniques that could be applied 
for modularization. However, authors in [19] provide a complete description of the major 
techniques and experiment demonstrating how they realize some possible criteria. 

Task 5. Parameterize the technique and apply it. 
Depending on the technique that has been selected by the previous task, there may be various 
parameters required to obtain interesting and useful results. For example, module extraction 
techniques generally require identifying a sub-vocabulary of the original ontology, defining a 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 51 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

particular area of interest. Partitioning techniques may require indications, for example, about the 
minimal/maximal size of a module (like it is the case of the NeOn Toolkit plug-in for ontology 
partitioning [20]). In this case, the ontology engineer can only refer to guidelines and manual of the 
individual tool to establish the best parameters in his/her context. Most of the techniques would, in 
principle, be applied in the same way, taking the original ontology as input and creating modules in 
the form of smaller ontologies, allowing in this way to process the resulting modules iteratively, in 
the same way as the original ontology. 

Task 6. Combine results. 
As mentioned earlier, we favour an iterative process where the adequate modules are produced by 
refining and combining the results obtained with various parameters, techniques and approaches. 
Therefore, at every iteration, every time a new (set of) module(s) is produced, it is necessary to 
integrate it—i.e. to combine it—with the modules that were produced at previous iterations. The 
way to combine depends on the criteria for modularization and on the modules already produced. 
Two possibilities are:  

 If some modules were too small or not logically complete and the current iteration produced 
complementary modules, then the results should merged.  

 If modules from a previous iteration were too big because the employed technique didn’t 
consider some of the criteria, and a new technique is applied that implements the missing 
criteria, then the common part from the results of both iteration should be considered.  

Operators for combining modules have been included as a plug-in in the NeOn toolkit [20], in 
addition to plug-ins for ontology partitioning and module extraction, in order to facilitate this task. 
More precisely, tools are provided to compute the intersection (i.e., the common part), the union 
(i.e., the fusion) and the difference (i.e., the complement) of two ontology modules. These should 
be applied in the following situations: 

 Intersection: when two or more modules have been produced that are complementary in 
the sense that they are too broad and should be reduced in relation with each other. 

 Union: when two or more modules have been produced that are complementary in the 
sense that they are too narrow and should be integrated with each other 

 Difference: when two of more modules have been produced that are complementary in the 
sense that they one should be narrowed down so that it does not overlap with the other. 

Task 7. Evaluate the result. 
The evaluation of the result of the modularization (meaning the complete set of modules 
generated) is a crucial part of the iterative and interactive process we promote. Indeed, it depends 
on this evaluation whether a new iteration is necessary, applying a new set of criteria and a new 
technique, or if the current (set of) modules is satisfactory considering the application scenario. 
There are two ways in which the modularization could be evaluated. 

 By checking the criteria: Evaluating whether the criteria defined for modularization have 
been realized as expected by the modularization technique is useful both for checking if the 
results match the requirements of the application, and for establishing a new set of criteria 
in case another iteration is required. 

 By testing against the purpose of modularization: If the defined criteria have all been 
realized, it is important to check whether or not the obtain modularization actually realize 
the expected improvement compared to the original ontology. For example, if the goal was 
to facilitate the maintenance of the ontology, the ontology engineers and domain experts 



Page 52 of 115 NeOn Integrated Project EU-IST-027595 

 

should check whether the structure of the new, modular ontology has been created in a 
sensible way according to this purpose. 

There can be 3 outcomes for this task. It can establish by evaluation that: 

 The modularization is satisfactory, so that the created modules can be finalized and 
deployed (Task 8). 

 The modularization is incomplete, so that a new iteration should be carried on, using 
another set of criteria and another technique to produce complementary results.  

 The modularization is improper, so that a new iteration is required, re-considering the set 
of criteria and the technique to employ in order to produce modules that better match the 
purpose of modularization. 

Note that in different iterations, only the purpose of modularization cannot change. In particular, 
even if the approach (extraction or partitioning) generally does not change, it is not hard to imagine 
scenarios in which a partitioning technique is first applied, followed by extraction procedures on the 
previously created modules, as showed by the example in Section 5.3. 

Task 8. Finalize modularization. 

Once the produced modularization has judged satisfactory, an additional step can be required for it 
to be deployed and exploited in an application. For example, it usually necessary to revise the 
identifiers of each of the modules so that they follow the conventions employed in the target 
application, to re-establish links between modules, or simply to deploy the resulting modules in a 
way that it is made accessible in the target application and the editorial workflow. 

5.3. Example 

In this section we include a general example of how to use the proposed guidelines for the 
ontology modularization activity and what results are expected. 

We consider the scenario where a large monolithic ontology has been developed in the past, and 
this needs to be modularized in order to facilitate its maintenance. The purpose of the 
modularization has therefore been clearly identified (Task 1). In this case, it is clear that what is 
required is to produce a set of modules that together cover the entire ontology. Thus, in Task 2, the 
partitioning approach is selected. Considering that the purpose is to facilitate maintenance, the 
major criteria (Task 3) to take into account are:  

 the sizes of the modules, which should be small enough to be easily manageable, but not 
too small so that the ontology curator does not have to handle to many different modules 
for a particular management task; and 

 the relations between modules, that should favour a well-structured organization in the 
dependency of the modules 

Considering both criteria above, it is decided to apply the NeOn toolkit plug-in for ontology 
partitioning [20], which work on the dependency graph of modules and intend to provide good 
structures for this dependency graph. The only parameter for this technique is the minimum size of 
a module (Task 4), which is chosen according to the size of the initial ontology. The resulting 
partition is described in the figure below. Even if there are no previous results yet, some modules 
produced by the partitioning technique can already be combined together (Task 6). Indeed, small 
modules can be judged too small and might contain information that is considered relevant for 
other modules. Therefore, these modules can be merged using the NeOn toolkit plug-in for module 
combination, and employing the Union operator. This is depicted for our example in Figure 8. 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 53 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

Now that a first result has been produced, it can be evaluated (Task 7) by the ontology 
development team and the domain experts. In this example, there is one module that is considered 
too big and covering two major topics that could be separated. A second iteration is necessary. 

 

Figure 8. Ontology Modularization: Result of the First Iteration 

The goal of the second iteration is to extract from one of the modules produced previously, the 
elements related to one particular topic. Thus, we chose to follow the extraction approach (Task 2). 
The criteria here are mainly that the extracted module should contain ontological elements relevant 
to one this particular topic (Task 3). The NeOn Toolkit plug-in for module extraction [20] proposes a 
number of operators that can be used interactively and combine to extract modules, following the 
general idea of a parametric modularization as described in [22]. This tool is used (Task 4), 
following the rules described in [24] to generate relevant modules on the basis of a set of core 
terms defining the topic (Task 5). The result is depicted in the figure below. Now that one module 
has been extracted for one of the topic covered by the original module, the one for the second 
topic has to be created in the combination task (Task 6). This is achieved by using the Difference 
operator in the module combination plug-in of the NeOn Toolkit (see Figure 9). In this way, the 
original module has then been divided into two modules, one being the complement of the other. 
We then obtain a new set of modules that can be evaluated, and, if judged adequate, can replace 
the original, monolithic ontology. 



Page 54 of 115 NeOn Integrated Project EU-IST-027595 

 

 

Figure 9. Ontology Modularization: Result of the Second Iteration 
This abstract example provide an illustration of the overall activity of modularizing an existing 
ontology, using the iterative and interactive method we promote, using different modularization 
approaches, and combining results from different techniques. However, even with the provided tool 
and methodological support, modularizing an ontology is still a very time consuming task, not only 
because of the expensive computation it requires, but also because of the expertise and 
experience needed from the ontology engineer to obtain the desired result (which is very often very 
hard to establish). We applied the proposed guidelines and the corresponding tools successfully on 
a number of either small-scale or artificial examples (see e.g. [20]). In the future, we plan to realize 
this activity in more realistic scenarios that may require adapting the tools and the guideline to 
become more robust and more flexible. 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 55 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

6. Ontology (Network) Evaluation  

Ontology Evaluation is defined in [81, 78] as the activity of checking the technical quality of an 
ontology against a frame of reference. We can distinguish two different types of ontology 
evaluation: 

 Ontology Validation is the ontology evaluation activity that compares the meaning of the 
ontology definitions against the intended model of the world aiming to conceptualize. This 
activity answers the question: are you producing the right ontology? 

 Ontology Verification is the ontology evaluation activity which compares the ontology 
against the ontology specification document (ontology requirements and competency 
questions), thus ensuring that the ontology is built correctly (in compliance with the ontology 
specification). This activity answers the question: are you producing the ontology in the 
right way? 

In this chapter we present a brief summary of the state of the art in ontology evaluation. We also 
propose the NeOn methodological guidelines for carrying out the ontology network evaluation 
activity.  

6.1. State of the Art 

Ontology evaluation is an important part of the overall NeOn methodology for constructing ontology 
networks, and during recent years ontology evaluation has attracted a considerable amount of 
attention within the research community. This also indicates that there is a large amount of related 
work in the area. A thorough account on the state of the art in ontology evaluation, related to the 
NeOn project, has already been presented in NeOn deliverable D2.2.1 [70], hence this section is to 
be viewed more as a summary of that deliverable, adding some aspects related to methodologies 
(since this is the topic of this deliverable). For a complete coverage of ontology evaluation methods 
the reader is referred to either D2.2.1 [70] and its referenced literature or directly to collective 
frameworks like the O2 ontology and oQual and the method and measurement overview in [37], or 
state of the art overviews like [10] and [38] as already referenced in D2.2.1 [70]. 

As already mentioned in D2.2.1 [70] within the NeOn project the work in [36] has been used to 
describe the general notion of evaluation and the specific methods relevant to the NeOn project. 
The work proposes several levels of formal description for characterizing and describing ontology 
evaluation as such and specific evaluation instances. A meta-ontology called O2 describes 
ontologies as semiotic objects and describes the elements and features of the ontology that may 
be evaluated. Next, oQual models ontology evaluation as a diagnostics task, based on the formal 
description of ontologies in O2. Based on this Quality-oriented Ontology Descriptions can be 
formulated, which together with descriptions of principles and parameters etc. will constitute the 
basis of the ontology evaluation.  

One of the main merits of the above mentioned work is the overall formal framework describing 
ontology evaluation and the division of evaluation methods into three main categories: 

 Structural evaluations consider the logical structure of the ontology, usually depicted as a 
graph of elements. Evaluating this means evaluating the ontology on a context-free 
syntactic and semantic level, where general quality principles may be stated depending on 
the aim/goal of the evaluation. At the structural level the ontology is simply regarded as an 
information object. 

 Functional evaluations. Evaluating the functional dimension means to evaluate the ontology 
in its usage context, so to evaluate the conceptualization against its requirements and goals 



Page 56 of 115 NeOn Integrated Project EU-IST-027595 

 

to be achieved by the ontology. At the functional level the ontology is viewed as an 
information object and its intended conceptualization. 

 Usability evaluations focus on the pragmatics of the ontology and the context in which it is 
communicated. At this level the ontology is viewed as a semiotic object, trying to convey 
some meaning in a context. These dimensions are not methods in themselves, but merely 
categories into which specific methods may be classified. 

6.1.1. Structural evaluations 
Structural evaluations focus as mentioned above on syntax and formal semantics of the ontology. 
In [37] a comprehensive overview is given with respect to currently available structural measures 
applicable when evaluating ontologies. Such measures for example include: depth, breadth, 
tangledness, fan-outness, ratio of shared differentiating notion, density, modularity, logical 
adequacy, and degree distribution. 

Some are quite intuitive, like studying different variants of the taxonomic depth, breadth, 
tangledness and fan-outness of the ontology structure. Density, modularity and degree distribution 
concern the distribution of relations within the ontology, while logical adequacy is concerned with 
the formal definitions of the ontology and can measure for example the generic language 
complexity, inverse relations ratio or axiom class ratio. The ratio of differentiating notions is 
concerned with the rationale behind the taxonomy, and how the classes were divided into sets of 
siblings. 

6.1.2. Functional evaluations 
Functional evaluations are the main focus of D2.2.1 [70], whereby only a very brief summary is 
presented here. Functional evaluations focus as mentioned above on the usage of the ontology, 
how well it matches the intended conceptualization. Again we may find a good overview in [37]. 
Such measures for example include: expert agreement, user satisfaction, task assessment, and 
topic assessment. 

Expert agreement can be the basis of applying precision and recall-like measures for ontology 
evaluation. Task assessment evaluated the ontology with respect to its appropriateness for the 
intended task, for example using competency questions. Topic based assessments measures the 
fitness of the ontology with respect to some existing repository of knowledge on the same topic. 
User satisfaction can be measures in terms of for example user ratings or polls. In D2.2.1 [70] two 
specific methods are discussed, first gold standard-based evaluations where the ontology is 
compared to an “ideal” ontology (the gold standard of that intended conceptualization) and then 
Open Rating Systems for collecting user satisfaction. 

6.1.3. Usability evaluations 
Usability evaluations focus on the pragmatics of the ontologies, how well they convey the intended 
conceptualization. These measures are related to the ontology profile, which in terms of [37] is the 
metadata of the ontology, the information about the ontology itself and its elements. Three levels of 
usability are defined in [37]: 

 Recognition is mainly about the annotations of the ontology that should convey the 
structure, functions and state of the ontology. 

 Efficiency of the ontology implies to study how efficiently the ontology supports the user 
needs. 

 Interfacing level is concerned with the connection to ontology-based user interfaces. 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 57 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

6.1.4. Conclusion 
Ontology evaluation is a topic that has been treated by researchers for more than a decade; still it 
is not until recently that some general frameworks and categories for ontology evaluation methods 
have emerged. Still, numerous techniques exist for all different kinds of ontology evaluation 
methods (categorised as described above). The challenge is rather to select the methods that are 
suitable for the case at hand and the data and resources available.  

Since ontology evaluation methods have already been treated in other deliverables (i.e. D2.2.1 
[70]) and there exist several comprehensible state of the art overviews (see [37], [10], and [38]) we 
did not aim to present a detailed account of all techniques present today. Instead we have 
presented a general overview of the kinds of measures applicable within ontology evaluation, in 
order to set the stage for the proposed general guidelines for evaluation of networked ontologies 
presented in the rest of this chapter. Some specific methods are also presented in detail further on.  

6.2. Proposed Guidelines for Ontology (Network) Evaluation  

As already mentioned the goal of the Ontology Network Evaluation activity is to evaluate and 
compare the ontology network within a useful frame of reference and using appropriate evaluation 
criteria.  

An ontology network is a complex structure of more or less loosely connected ontologies. These 
connections can have a form of meta-relations between ontologies (e.g., versions of ontologies) or 
mappings and alignments between pairs of individual ontology elements (concepts, properties, 
instances of related ontologies). Therefore, it is often practical to focus the evaluation on different 
aspects of the ontology network and perform the evaluation of the constituent parts of the ontology 
network first: 

 Evaluation of constituent ontologies. 

 Evaluation of mappings/alignments between pairs of ontologies. 

After the relevant individual parts of the network are evaluated, the evaluation results can be 
combined into the overall evaluation. Alternatively, the ontology network can be evaluated as a 
whole within particular application scenarios for which it was designed in the first place. 

In the framework of the NeOn methodology, we proposes the filling card for the ontology network 
evaluation activity presented in Table 5, which includes the definition, goal, input, output, who 
carries out the activity and when the activity should be carried out. 



Page 58 of 115 NeOn Integrated Project EU-IST-027595 

 

Ontology Network Evaluation  

Definition 

Evaluation of Ontology Networks refers to the activity of checking the technical quality of 
the ontology network against a frame of reference. 

 

 

Goal 

The goal is to compare the ontology network with the specification requirements and 
golden standards (if available) by taking into account evaluation criteria and applying 
various evaluation approaches (manual, automatic), yielding evaluation results and 
advices on how to improve the ontology network. 

 
 

Input Output 

A set of ontologies with 
interconnection links (network), 
evaluation criteria and a frame of 
reference. 

 

Evaluation results in the form of quantitative and 
qualitative measures, and informal advices on the 
possible ontology network modifications. 

 

  

Who 

Domain experts and users, also ontology developers and practitioners, who form the 
network ontology development team. 

 
 

When 

This activity should be carried out in parallel with the ontology network development and 
evolution, and after parts of the ontology network are (at least partially, as prototypes) 
implemented. 

 
 

  
Table 5. Ontology Network Evaluation Filling Card 

The tasks for carrying out the ontology network evaluation activity can be seen in Figure 10.  

 

 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 59 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 

Figure 10. Workflow for the Ontology Network Evaluation Activity 

The tasks for carrying out the ontology network evaluation activity are explained in the following: 
Task 1. Select individual components of the ontology network. 
The objective of this task is to identify individual ontologies within the network, or pairs of related 
ontologies and the mappings/alignments between them.  

The individual components of the ontology network are selected by the ontology development team 
based on two criteria: (1) which ontologies and mappings are critical for the overall network, and 
(2) which can actually be evaluated. The latter means that there must exist some frame of 
reference against which these individual components can be, at least in principle, evaluated. 

 

Task 2. Select an evaluation approach. 

Once the components of the ontology network are selected, one has to specify the corresponding 
evaluation approach. 

In the case of evaluating individual ontologies, the most common evaluation approaches are [10]: 



Page 60 of 115 NeOn Integrated Project EU-IST-027595 

 

 Comparison of the ontology to the “gold standard” [51]. 

 Using the ontology in an application and evaluating the results [66]. 

 Comparison of the ontology with a source of data about the domain to be covered (e.g., a 
set of documents) [12]. 

 Evaluation by human experts who assess how the ontology meets the requirements [49]. 

The selection really depends on the availability of corresponding frame of reference and/or human 
experts. 

In addition to these, existing common methods, more recently also methods for pattern-based 
evaluations, have emerged. Ontology design patterns (see D2.5.1 [67] for details and definitions) 
are encoded best practices, ranging from detailed solutions of modeling issues to general 
guidelines such as naming conventions. In this sense, ontology design patterns (OPs) can also be 
used for ontology evaluation. The three evaluation dimensions (as mentioned in Section 6.1) are 
covered by different kinds of patterns. Pattern-based evaluation is then carried out through 
checking the ontology to be evaluated against the issues and solutions represented by the 
patterns.  

In the case of evaluating mappings and alignments between pairs of ontologies, there are typically 
three evaluation approaches [13]: 

 Open evaluation is made with already published reference alignments. 

 Blind evaluation is made by evaluators from reference alignments, unknown to the methods 
used to compute the alignments. 

 Consensual evaluation, when there is no “golden standard” reference alignment, is 
obtained by reaching consensus over the results found by different methods. 

Again, the selection of the evaluation approach depends on the availability of the reference 
alignments. No guidelines can replace the insight that the ontology network developers and 
domain experts have with respect to the “gold standard” of intended model of the world. The 
guidelines just offer different techniques that the evaluators can use for the evaluation task and 
some examples where different selections were made. 

The examples in Section 6.3 show some typical applications of the above evaluation approaches in 
two practical cases. 

Task 3. Identify evaluation criteria and frame of reference. 
Depending on the evaluation approach selected, a frame of reference (or “golden standard”) has to 
be specified and corresponding evaluation measures defined. A frame of reference can be other, 
existing resources available (reference ontologies and reference alignments), sources of data, from 
which the ontologies and mappings were derived (e.g., documents corpora), or human experts with 
the implicit understanding of the domain. 

Evaluation criteria are various metrics which can be applied to the ontologies and mappings to be 
evaluated. The most common metrics are: 

 Precision and recall measure, for an ontology or a mapping, (a) how many identified items 
are correct, and (b) how many items, that should have been identified are actually 
identified. 

 Cost-based evaluation metrics measure the performance in terms of the costs of errors or 
the utility of correct identifications. 

 Measure of “fit” between an ontology or a mapping, and a corpus (domain knowledge) by 
using vector space model of instances. 

 Lexical measures compare the contents of two ontologies or mappings without considering 
their conceptual structure. 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 61 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

Task 4. Apply selected evaluation approach. 

The goal of this task is to collect the selected network components, reference ontologies and 
mappings and to apply the evaluation approach selected. This requires proper setup for the 
evaluation experiments and implementation of software tools to compute the evaluation measures, 
and/or engage the human experts in stimulating sessions to collect their evaluations. The result is 
the computation of evaluation metrics, until all the selected components of the ontology network 
are evaluated. 

Task 5. Combine individual evaluation results. 
The goal of this task is to highlight the weakest spots in the ontology network by considering 
individual evaluation results and how they affect the rest of the network.  

Task 6. Select a global evaluation approach. 
The ontology network is designed with several typical application scenarios in mind. Rather then 
evaluating individual ontologies or mappings between pairs of ontologies, it may be more practical 
to see how the results of the application are affected by the use of the ontology network in 
question. Instead of focusing on an individual application, one may also focus on an evaluation 
from the point of view of the individual users or the organization that will use the ontology network 
[35]. 

Task 7. Present evaluation results. 
The final task is to present the results of the evaluation in an appropriate form for possible repair 
(corrections and additions), improvements and future evolution of the ontology network. 

6.3. Examples  

In this section we include examples of how the proposed guidelines for the ontology network 
evaluation activity were actually used in practice and what were the results. The first example 
follows the guidelines for the evaluation of single ontology; the second example shows how 
patterns-based evaluation was performed in an individual ontology; and the third example 
illustrates the guidelines for evaluation of ontology mappings. These evaluation cases did not 
follow proposed guidelines (since they were completed earlier) but show that the proposed 
guidelines are general enough that current best practices are covered by them. 

6.3.1. Evaluation of an individual ontology 
In this example we show how one of the largest ontologies, which was derived mostly 
automatically, was evaluated. This should provide an example guideline on how to evaluate an 
individual, non-trivial ontology by selecting an evaluation approach, evaluation criteria and frame of 
reference, and present the evaluation results. 

YAGO [83] is a large, lightweight, general-purpose ontology, automatically derived from Wikipedia 
and WordNet. It consists of over 1.7 million entities (individuals and concepts) and 15 million facts 
(ground binary relations between entities). The relations include the taxonomic hierarchy as well as 
around 100 semantic relations between entities. The empirically evaluated precision of YAGO is 
around 95%, which makes it one of the most accurate and largest (second only to DBpedia) 
generic ontologies available.  

Individuals in YAGO are derived from the Wikipedia page titles. The class of each individual is 
derived from the Wikipedia category system. This defines the lower level type relation in the 
taxonomic hierarchy. The Wikipedia categories are linked to the WordNet synsets (each synset of 
WordNet is a class in YAGO). For the subClassOf relation, the hyponymy relation between the 
WordNet synsets is taken. Other, non-taxonomic relations are extracted from Wikipedia by 
exploiting redirects (means), relational categories (locatedIn, bornOnDate, etc.), some parsing 



Page 62 of 115 NeOn Integrated Project EU-IST-027595 

 

(familyNameOf, givenNameOf), Wikipedia infoboxes (hasChild, hasBDP, etc.), and other 
techniques. There are altogether about 100 relations in YAGO. 

The YAGO evaluation follows our guidelines in Tasks 2, 3, 4 and 7. The authors selected an 
evaluation approach by manual comparison of the ontology to the “gold standard” (Task 2). They 
identified precision as the evaluation criteria, and the Wikipedia source as a frame of reference 
(Task 3). The selected evaluation approach was applied by engaging human judges (Task 4), and 
eventually, the evaluation results were presented and discussed (Task 7). 

Specifically, the evaluation proceeded as follows. They authors stated that they were interested in 
the precision of YAGO [83]. To evaluate the precision of an ontology, its facts have to be compared 
to some ground truths. Since there is no computer-processable ground truth of suitable extent, 
they had to rely on manual evaluation. They presented randomly selected facts of the ontology to 
human judges and asked them to assess whether the facts were correct. For each fact, judges 
could click "correct", "incorrect" or "don't know". Since common sense often does not suffice to 
judge the correctness of the YAGO facts, a snippet of the corresponding Wikipedia page was also 
presented to the judges. Thus, the evaluation compared YAGO against the ground truth of 
Wikipedia (i.e., it does not deal with the problem of Wikipedia containing some false information). 
On the other hand, the authors claim that it would be pointless to evaluate the portion of YAGO 
that stems from WordNet, because one can assume human accuracy there. 13 judges participated 
in the evaluation and evaluated a total number of 5200 facts (ground relations between YAGO 
entities). 

The precision of the most precise and least precise relations is presented in the following Table. To 
make sure that the findings are significant, the Wilson confidence interval for α = 5% was 
computed. A confidence interval of 0% means that the facts have been evaluated exhaustively. 
The evaluation shows very high quality results. 74 heuristics have a precision of over 95%. 
Especially the crucial link between WordNet and Wikipedia (WordNetLinker) turned out to be very 
accurate. Also, the use of conceptual categories (ConceptualCategory) and infobox types 
(InfoboxType) to establish the type relation proved very fruitful.  

Their algorithms for extraction of facts even in principle cannot achieve a precision of 100%. One 
reason for this is statistical: even if all of the assessed sample facts are correct (as they were 
indeed for many heuristics), the center of the confidence interval is lower than 100% to account for 
the uncertainty that is inherent in a confidence estimation.  

Relation #Eval Precision 

1 hasExpenses 46 100.0 % ± 0.0 % 

2 hasInflation 25 100.0 % ± 0.0 % 

3 hasLaborForce 43 97.67441% ± 0.0 % 

4 during 232 97.48950% ± 1.838 % 

5 ConceptualCategory 59 96.94342% ± 3.056 % 

6 participatedIn 59 96.94342% ± 3.056 % 

7 plays 59 96.94342% ± 3.056 % 

8 establishedInYear 57 96.84294% ± 3.157 % 

9 createdOn 57 96.84294% ± 3.157 % 

10 originatesFrom 57 96.84294% ± 3.157 % 

...   

72WordNetLinker 56 95.11911% ± 4.564 % 

...   

74 InfoboxType 76 95.08927% ± 4.186 % 

75 hasSuccessor 53 94.86150% ± 4.804 % 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 63 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

...   

88 hasGDPPPP 75 91.22189% ± 5.897 % 

89 hasGini 62 91.00750% ± 6.455 % 

90 discovered 84 90.98286% ± 5.702 % 

Table 6. Precision of YAGO Facts 
Another source of error are inconsistencies of the underlying sources. For example, for the relation 
bornOnDate, most false facts stem from erroneous Wikipedia categories (e.g. some person born in 
1802 is in the Wikipedia category 1805 births). For facts with literals (such as hasHeight), many 
errors stem from a non-standard format of the numbers (giving, e.g., one movie actor the height of 
1.6km, just be- cause the infobox says 1,632m instead of 1.632m). Occasionally, the data in 
Wikipedia was updated between the time of our extraction and the time of the evaluation. This 
explains many errors in hasGDPPPP and hasGini. In addition, the evaluation of an ontology is 
sometimes a philosophical issue, because even simple relations suffer from vagueness. For 
example, is Lake Victoria locatedIn Tanzania, if Tanzania borders the lake? Is an economist who 
works in France a French Economist, even if he was born in Ireland? These cases of disputability 
are inherent even to human-made ontologies. Thus, they authors state that one can be extremely 
satisfied with the evaluation results. They claim that it is difficult to compare YAGO to other 
information extraction approaches, because the approaches usually differ in the choice of relations 
and in the choice of the sources. Finally, precision can usually be varied at the cost of recall.  

Evaluation of an individual ontology using a pattern-based approach 

As already mention in Section 6.2, in addition to existing common methods for evaluating 
ontologies, now there are also methods for pattern-based evaluations. In this subsection, we show 
how ontology design patterns, more specifically content design patterns (CPs), are used to 
evaluate an ontology. The example does not cover the complete evaluation of the ontology, but 
presented one specific case where a CP assisted in finding potential problems and additionally 
suggests a way to improve the solution. The example is set within the fishery domain, and is taken 
from the actual evaluation of ontologies performed in the WP7 case study, and in this particular 
case the ontology evaluation and revision reported in NeOn D7.2.3 [98].  

The ontology being evaluated is version 0.3 of the ontology referred to as ‘Fishing areas’ in NeOn 
D7.2.2 [99], modeling the division of water areas into divisions and subdivisions. Marine and inland 
waters are divided into regions, or ‘FAO division areas’. The FAO division areas consist of major 
areas, divided into sub-areas, each divided into divisions and these finally into sub-divisions. Water 
areas have names in natural language only at the area level, while internal divisions are identified 
by numeric values. An example from [2] is the major area South East Pacific, which has code 87, 
and then one of its subdivisions has the code: 87.2.1.1. Another example is the FAO major Fishing 
area 51, i.e. Western Indian Ocean, and its subareas that are numbered from 1 to 8, where 1 
corresponds to the Red Sea and 2 to the Persian Gulf, but where the subdivisions of these sub-
areas (1-8) do not have names, only numbers to indentify them. 

The ontology was examined and evaluated manually, by an ontology patterns expert. Using the 
available pattern catalogue within the NeOn project, more specifically as represented in the 
ontology design pattern portal7, as a ‘gold standard’ of modeling to which the solutions were 
compared. CPs introduce best practices for solving particular modeling problems, but by 
introducing those solutions the pattern catalogue can also be seen as a catalogue of modeling 
issues. Hence, the patterns can be used as a list of possible issues, when trying to identify 
potential problems in the ontology to be evaluated. 

                                                 
7 http://www.ontologydesignpatterns.org 



Page 64 of 115 NeOn Integrated Project EU-IST-027595 

 

In the ontology in this example a locally defined, transitive, ‘part-of’ relation was used to model the 
division of sub-areas and further levels of divisions and sub-divisions. In this case the available 
content pattern, the ‘part-of pattern’, introducing the exact same relation could have been imported 
and used. When performing a pattern-based evaluation this is seen as a quality indication, that a 
best practices solution was used (disregarding whether the actual pattern implementation was 
imported or not).  Nevertheless, the use of this particular relation can also cause problems in 
certain contexts. In this case there are several steps in the division of the areas, i.e. areas have 
sub-areas, then divisions that in turn have sub-divisions. When using only this one transitive 
relation, ‘part-of’, and then reasoning with this ontology, it will not be possible to distinguish 
between the direct sub-parts of an area and the ones that are subparts of that area due to the 
transitivity of the relation. Although transitivity is a desirable property for certain reasoning 
applications, i.e. answering questions such as ‘is this sub-division a part of the sub-area 
representing the Red Sea?’, it may not be desirable in all cases. For example, if the hierarchical 
structure of the partitioning of the areas should be reconstructed, e.g. for browsing the ontology in 
a graphical interface, or when answering questions such as ‘what are the divisions of the Red 
Sea?’, we are perhaps not interested in all inferable parts of the Red Sea but only the direct 
components. For providing this option something more is needed. 

Such problems are addressed by the ‘componency pattern’, also available at the ontology design 
pattern portal. The pattern introduces the two object properties ‘hasComponent’ and  
‘isComponentOf’, which are each other’s inverses. These are non-transitive properties that can be 
used in combination with the ‘part-of pattern’ to both register general partitioning but in this case 
also the non-transitive property of a ‘proper part’, i.e. a direct component of something. When using 
these two patterns as ‘gold standards’ when manually examining the ‘Fishing areas’ ontology, the 
ontology evaluator can discover the potential problem of a missing non-transitive property to 
distinguish the different ‘levels’ of area decomposition. Since it is likely that applications need to be 
able to answer questions such as exemplified above, this is considered as a problem in the 
ontology. However, since this was discovered using the best practice of how to solve such a 
problem, i.e. the ‘componency pattern’ a solution can also be proposed, i.e. to add an additional 
non-transitive property possibly by importing the ‘componency pattern’. 

6.3.2. Evaluation of ontology mappings 
The guidelines for evaluating ontology mappings are best illustrated by an international initiative 
that organizes systematic evaluation of software systems which compute ontology mappings and 
alignments. These guidelines closely match our proposed guidelines, since they follow Tasks 2, 3 
and 4, and finally present and analyse results as in Task 7. 

The evaluation of mappings and alignments between ontologies within the framework of the NeOn 
project is described in details in deliverable D3.4.1 [45]. The main objective is to evaluate different 
ontology mapping algorithms on the project case studies (fisheries ontologies and pharmaceutical 
cases). The basis for the alignments evaluation is an ongoing Ontology Alignment Evaluation 
Initiative (OAEI), specifically the last one in the series, OAEI-2008 [13]. Here we give some details 
on the alignments evaluation in the FAO case study, and just list the rest of the test cases. 

6.3.2.1. OAEI guidelines 

OAEI is an international coordinated initiative that organizes the evaluation of ontology mapping 
and alignment systems. The main goal is to compare systems and algorithms on the same basis 
and to draw conclusions about the best alignment strategies. The comparison and evaluation is 
performed on consensus test cases. The ambition is that from such unbiased evaluations, 
developers can learn and improve their alignment systems.  

The main phases of the OAEI evaluations are the following: 

 Organizers provide pairs of ontologies. 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 65 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 Participants return the alignments, computed from matching theses ontologies. 

 Organizers evaluate the results with regard to reference alignments (which can be hidden 
or disclosed). Usually, the evaluation criteria are precision and recall, adapted to 
alignments.  

Preparatory phase: ontologies to be matched and relevant alignments (where applicable) are 
provided in advance. This gives potential participants chance to send bugs and remarks to the 
organizers, and to propose additional test cases. 

Execution phase: participants apply their systems to automatically compute alignments between 
the ontologies from the test cases. In most cases, the ontologies are given in OWL-DL, and the 
computed alignments are expected in the Alignment format, specified by the organizers. 

Evaluation phase: the organizers evaluate the alignments provided by the participants. In the case 
of blind tests, only the organizers can compare the results with respect to the withheld reference 
alignments. The standard evaluation criteria are precision and recall, computed against the 
reference alignments, and aggregated by using weighted harmonic means (weights are the 
numbers of true positives). This phase corresponds to Task 2, selection of evaluation approach, 
and Task 3, identification of evaluation criteria and frame of reference. 

6.3.2.2. Fishery case study 

FAO has large amounts of data, taxonomies, thesauri and ontologies related to food production 
and consumptions, and also specific to fisheries. The goal of the FAO case study was to explore 
the possibilities of establishing alignments between some of the resources which are closely 
related. Specifically, the following ontologies were used: 

 AGROVOC – a general thesaurus, in OWL, related to all matters of interest to FAO. For the 
evaluation purposes, only fragments with an overlap with other ontologies were considered 
(organisms, vessels, fishing gears). 

 ASFA – a thesaurus dedicated to aquatic sciences and fisheries, in OWL. 

 Ontologies for modelling coding systems for commodities and species - two specific 
ontologies in OWL with instances in three languages. 

The evaluation task was to establish alignments between these ontologies: 

 AGROVOC and ASFA alignments (agrasfa) 

 AGROVOC and fisheries ontology about biological species (agrobio) 

 The two ontologies about biological species and commodities (fishbio) 

Several alignment algorithms participated in the FAO case study evaluation: Aroma, ASMOV, 
DSSim, Lily, RiMOM, SAMBO. These systems are described in detail in the proceedings of the 
Ontology matching workshop [73]. 

Reference alignments were obtained by randomly selecting a specific number of correspondences 
from each algorithm and pooling them together (this corresponds to Task 3, selection of frame of 
reference). This provided sample alignments, which were evaluated by FAO experts for 
correctness. There were two assessors: one specialized in thesauri, and another specialized in 
fisheries data. This corresponds to Task 4, an application of selected evaluation approach by 
engaging human experts. 

The detailed results of evaluation are in NeOn deliverable D3.4.1 [45]. Here we show just the 
results for the two systems which returned usable results for agrobio and fishbio alignments. The 
evaluation criteria used were precision and recall, relative to the sample that has been extracted 
(this corresponds to Task 3, identification of evaluation criteria).  

 



Page 66 of 115 NeOn Integrated Project EU-IST-027595 

 

System 
subtrack retrieved 

|A| 

Evaluated 

|A ∩ A0| 

Correct 

|A ∩ R0| 

RPrecision 

P0 (A , R0) 

RRecall 

R0 (A, R0) 

DSSim 

agrasfa 

agrobio 

fishbio 

218 

339 

243 

129 

214 

166 

70 

151 

79 

0.54 

0.71 

0.48 

0.31 

0.97 

0.60 

RiMOM 

agrasfa 

agrobio 

fishbio 

743 

395 

738 

194 

219 

217 

159 

149 

118 

0.81 

0.68 

0.54 

0.70 

0.95 

0.90 
 

From the above results it seems that fishbio is the most difficult task in terms of precision, while 
agrasfa is the most difficult in terms of recall. It was concluded that the RiMOM system provides 
the best results. The system seems especially interesting for this real-life case study, as it 
performed well when aligning between classes as well as when aligning between ontology 
instances. This is the final stage of evaluation, corresponding to Task 7, presentation and 
discussion of the evaluation results. 

6.3.2.3. Other OAEI-2008 testing data 

Apart to the FAO testing cases, there was a number of testing sets used in the OAEI 2008 
evaluation: 

 Anatomy – ontologies are the NCI thesaurus and the Adult Mouse Anatomical Dictionary. 

 Directory – directories matching sets were constructed from Google, Yahoo and Looksmart 
web directories. 

 Multilingual directories – provides alignment problems for multilingual (English and Japan) 
internet directories. 

 Library – two large Dutch thesauri were to be aligned: the Scientific and Deposit collection 
of books. 

 Very large crosslingual resources – three resources were used: GTAA – a Dutch thesaurus 
to index TV programs, WordNet – lexical database of English, and DBpedia – resources 
tied to Wikipedia articles. 

 Conference – fifteen ontologies in the domain of organising conferences were to be 
aligned. 

All the details of data used, algorithms evaluated and evaluation results are in [13]. 

6.3.2.4. Results 

Experiments with finding alignments and mappings between ontologies indicated that no automatic 
procedure, i.e., algorithm can find results as good as human experts. Nevertheless, some results 
are very promising. If the ontologies are clearly defined and the labels for concepts and properties 
are sensible, some alignments algorithms can detect almost all alignments correctly. 

 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 67 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

7. Ontology Evolution  

Ontology Evolution is defined in the NeOn Glossary of Processes and Activities [78] as follows: 
“Ontology evolution refers to the activity of facilitating the modification of an ontology by preserving 
its consistency. Ontology evolution can be seen as a consequence of different activities during the 
development of the ontology.” 

Ontologies are fundamental building blocks of the Semantic Web and are often used as the 
knowledge backbones of advanced information systems. As such, they need to be kept up to date 
in order to reflect the changes that affect the life-cycle of such systems (e.g. changes in the 
underlying data sets, need for new functionalities, etc). 

Within their lifetime, ontologies undergo changes. They evolve, for example, to correct errors or 
adapt to new knowledge about the world, or changed circumstances. Moreover, during the 
ontology development process sometimes errors are not spotted and have to be corrected later, 
i.e., after initial deployment. However, as ontologies may depend on several other ontologies and 
may also be related to other elements (e.g. instances, mappings, applications, metadata, etc.), one 
has to be careful with making changes. Dealing with ontology changes usually involves the 
execution of many related tasks identified in the context of the ontology evolution activity. For 
instance, among these tasks are the capturing and formal representation of ontology changes, the 
verification of the ontology consistency after the changes are performed and the propagation of 
those changes to the ontology related entities. The definition of this activity and the study of those 
tasks is the subject of ontology evolution research.  

Ontology evolution is described as the timely adaptation of an ontology to the arisen changes and 
the consistent management of these changes [40]. While it seems necessary to apply such an 
activity consistently for most ontology-based systems, it is often a time-consuming and knowledge 
intensive activity, as it requires a knowledge engineer to identify the need for change, perform 
appropriate changes on the base ontology and manage its various versions.  

In this chapter we present a brief introduction to the existing methods, techniques and tools for 
ontology evolution. We also propose the NeOn methodological guidelines for carrying out the 
activity. Note that for this first version, we propose high level guidelines instead of providing 
detailed ones. Additionally, we provide here methodological guidelines for supporting ontology 
engineers and domain experts in exploiting tools to facilitate the evolution of their ontologies. 

7.1. State of the Art 

Although the evolution of conceptual models such as schemas in databases or XML schemas has 
been thoroughly investigated in the computer science field, the evolution of ontologies is still under 
continuous research. An extensive overview on the current state of the art can be found in [65]; 
therefore in the following we only introduce briefly the most relevant work for this section. 

We start in Section 7.1.1 by presenting some of the most well known methods for ontology 
evolution, followed by the presentation of typical ontology evolution techniques in Section 7.1.2. 
Next in Section 7.1.3 we describe some existing tools supporting ontology evolution aspects and 
we conclude with a brief analysis in Section 7.1.4. 

 



Page 68 of 115 NeOn Integrated Project EU-IST-027595 

 

7.1.1. Methods  
Ontology evolution is defined by [74] as the timely adaptation of an ontology to the arisen changes 
and the consistent propagation of these changes to dependent artefacts. The author proposes a 
six phase process for ontology evolution: 

 The change capturing phase is in charge of the continual improvement of an ontology. It 
distinguishes two types of changes depending on the source of the change: top-down 
changes are those made by humans and bottom-up changes are those derived from 
machine learning techniques, generated to repair or evolve knowledge automatically.  

 The change representation phase is in charge of representing requests for changes 
formally and explicitly. The representation of ontology changes makes them machine-
understandable, usable by other ontology evolution systems as well as exploitable for 
supplementary functionality of an ontology evolution system. 

 The semantics of change phase prevents inconsistencies by computing additional changes 
that guarantee the transition of the ontology into another consistent state. 

 In the change propagation phase all of the ontology dependent artefacts are updated. 

 The role of the change implementation phase is to inform the ontology engineer about all 
consequences of a change request, to apply all the (required and derived) changes to the 
ontology in a transactional manner and to keep track about performed changes.  

 Finally, the change validation phase enables justification of performed changes and 
undoing them at user’s request. 

Another approach for modelling the ontology evolution process is presented in [25]. It is based on 
the work proposed in [6] which distinguishes four generic activities in the process of making a 
change: 

 Requesting a change initiates the change process and includes activities related with the 
representation of changes, prioritization of multiple changes and the discovery of changes. 

 Planning the change deals with understanding why the change needs to be made, and 
where the change needs to be made. As part of this activity an analysis of the change 
impact is performed that identifies all the potential consequences (side effects) of a change 
along with an estimation of what needs to be modified to accomplish a change. Additionally, 
during this activity the engineer is presented with an estimated cost of evolution to allow 
him to decide whether or not to implement the change. 

 The implementation of the change refers to the activities of change propagation, 
restructuring the ontology before the implementation of the change and inconsistency 
management. 

 Finally, the verification and validation phase addresses the issues of building the right 
ontology and build it in a right way (i.e. quality assurance assessment). 

7.1.2. Techniques 
Even though the previous ontology evolution approaches model the process in a different way (i.e. 
using different names and number of steps), they identify very similar activities. We can summarize 
that change representation is fundamental, as well as the activities related to the discovery of 
ontology changes, the potential side effects of those changes and the verification of the ontology 
consistency after applying them. Finally, besides the activity of the actual implementation of the 
changes, some of the approaches introduce the activity of the propagation of changes. For each 
activity, specific methods and techniques have been proposed in the past. For instance, there are 
some approaches for the formal and explicit representation of ontology changes. Much of the 
current work focuses on devising taxonomies of elementary change operators that are sound and 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 69 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

complete. In [74], the author describes an evolution ontology that is used as a backbone for 
creating evolution logs. This ontology models what changes are performed in an ontology, along 
with information such as why, when, by whom and how. The structure of the hierarchy of ontology 
changes is based on the KAON ontology model. The author introduces three levels of changes: 
elementary, composite and complex. In [42], the author describes an ontology for representing 
ontology changes for the OWL ontology language. Changes are classified as atomic or composite. 
They also define a class that represents a set of change operations that has a source and target 
ontology. Finally, the ontology includes properties that specify arguments for a change operation 
as well as a property effect to annotate the class of operations with the effect of the change. 

According to [74] the discovery of changes can be done using top-down or bottom-up techniques. 
In the first, experts explicitly requests changes while in the second, the changes are discovered 
using machine learning techniques. Similarly, user-driven changes are discovered from certain 
usage patterns emerged over a period of time. In [43] examples of such patterns include querying 
and browsing behavior. 

The management of consistency has also been addressed in the past. For instance, [74] and [26] 
adopted or extended the work in data schema evolution presented in [4], where semantics for each 
schema change is determined by first identifying a set of invariant properties intrinsic to the model, 
ensuring semantic integrity. The invariants strictly depend on the underlying model. So for each 
change, different alternatives are evaluated to preserve the invariants properties. In a related work, 
[40] the authors present an approach to localize inconsistencies based on the notion of a minimal 
inconsistent sub-ontology. 

Finally, regarding the propagation of changes, in [74], the author discusses the propagation of 
ontology changes to three different types of ontology related artefacts: related ontologies, ontology 
instances and applications. The author further elaborates only the propagation of ontology changes 
to related ontologies. A related work is presented in [59] where the authors present an approach 
for the management of changes that comprises the ability to make copied (and possibly changed) 
versions of controlled vocabularies (e.g. ontologies) up to date with a remotely changed controlled 
vocabulary. Another approach is presented in [84], where the authors describe the management of 
the dependency between component ontologies in an ontology as a whole (i.e. an ontology is 
divided into several components ontologies). They consider two kind of dependencies between 
component ontologies (i.e. is-a relation and referring-to relation), the influence of a change of one 
ontology to others through its dependencies and finally they design a function to suggest a few 
candidate modifications of the influenced ontology for keeping the consistency (i.e. propagate 
changes). The approach considers that components ontologies can be distributed and changed 
locally, but the management of the dependencies is done centralized. 

7.1.3. Tools 
There are several tools for ontologies that address some aspects of ontology evolution. One 
example is the Karlsruhe Ontology and Semantic Web framework (KAON)8 [74, 97]. The KAON 
ontology evolution support is realized at the API level and includes the following functionalities: 

 Evolution logging is responsible for keeping track of the ontology changes in an evolution 
log. 

 Change reversibility enables undoing and redoing changes made in an ontology. 

 Evolution strategy is responsible for ensuring that all changes applied to the ontology leave 
the ontology in a consistent state and for preventing illegal changes. Also, the evolution 
strategy allows the user to customize the evolution process. 

                                                 
8 http://kaon.semanticweb.org/  



Page 70 of 115 NeOn Integrated Project EU-IST-027595 

 

 Evolution graph enables ontology engineers to enhance a set of changes with their own 
changes and to resolve them. 

 Ontology inclusion facilities, together with the dependent evolution, are responsible for 
managing multiple ontologies within one node (i.e. change propagation). 

 Ontology replication facilities, together with the distributed evolution, are responsible for 
enabling the reuse and the management of distributed ontologies (i.e. change propagation). 

 Change discovery includes the means for the discovery of problems in an ontology and for 
making recommendation for their resolution. 

 Usage logging is responsible for keeping track of the end-users interactions with ontology-
based applications in order to adapt ontologies to the users’ needs. 

In [42] the author introduces the tool OntoView, a web-based change management system for 
ontologies. The system aims at helping users to manage changes in ontologies and keeping 
ontology versions as much interoperable as possible. OntoView, inspired by the Concurrent 
Versioning System CVS, provides an interface to different versions of ontologies, by maintaining 
not only the transformations between them, but also the conceptual relation between concepts in 
different versions. 

A similar tool support called PROMPTdiff was presented by the same authors in [58]. PROMPTdiff 
is an ontology-versioning system implemented as a Protégé plug-in that compares two different 
versions of an ontology (similar also to the SemVersion system presented in [87]) producing a 
structural diff between ontologies (i.e. mappings). 

Additionally, in [52] the Evolva ontology evolution framework is proposed covering a complete 
ontology evolution cycle. Evolva intends to be a blueprint for ontology evolution systems, relying on 
the hypothesis that various forms of data sources (texts, folksonomies, etc.) can be used to detect 
the need for an evolution, and initiate it (see Figure 11). Evolva also relies on the idea that, in order 
to integrate new pieces of information extracted from the exploited sources into the current 
ontology, evolution systems can rely on the automated use of external background knowledge, 
such as other ontologies, lexical resources (e.g., WordNet [32]) or the Web. 

While the goal of the Evolva framework is to reduce, as much as possible, human intervention 
within the evolution process, user input is required at the level of evolution management, and for 
fine-tuning various parts of the framework. The role of the user is needed, to properly parameterize 
the components, select the right sources of information and of background knowledge, validate the 
results of various steps and, generally, guide the evolution process to obtain high quality results. 
These tasks are not trivial, as they depend a lot on the particular ontology to be evolved, the 
domain covered, the applications relying on the ontology and the reasons for its evolution. The 
experience of the knowledge engineer and his/her knowledge of the ontology and of the exploitable 
sources of information are therefore essential.  



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 71 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 

Figure 11. Evolva Ontology Evolution Framework 

7.1.4. Conclusion 
Summarizing, several research efforts have addressed various phases of the ontology evolution 
process. A first category of approaches [42, 56, 74, 89] are concerned with formalisms for 
representing changes and for facilitating the versioning process. Another category of work [1, 7, 
55, 60] aims to identify potential novel information that should be added to the ontology. They do 
this primarily by exploiting the changes occurring in the various data sources underlying an 
information system (e.g. databases, text corpora, etc), or by interpreting trends in the behaviour of 
the users of the system [1, 7]. A few systems from this category also investigate methods that 
propose appropriate changes to an ontology given a piece of novel information. These methods 
typically rely on agent negotiation/multi-agent systems [55, 60] to propose concrete changes that 
then are verified by the ontology curator. However, the management side of evolution does not 
occupy a substantial part of their process. Thus, there is no existing approach covering a complete 
cycle of ontology evolution, ranging from integrating new knowledge to managing changes. 

A large number of the ontology evolution activities (e.g. change propagation, change 
representation, versioning approaches, etc.) have been thoroughly investigated in many other 
computer science fields, however for our domain (i.e. ontologies), they are still under active 
research. For instance, regarding the representation of changes, we can summarize that much of 
the current work focuses on devising taxonomies of change operations that classify them as 
elementary (atomic) or composite, and some approaches also consider complex type of changes. 
Even though the proposed elementary (atomic) changes are introduced as operations that cannot 
be subdivided into smaller operations, they are in all cases considering changes at the entity level 
(i.e. concepts, properties, individuals) , and in some cases they are not even minimal (e.g. include 
modify operations). Furthermore, existing approaches are dependent on the underlying ontology 
model (i.e. they are based on proprietary models (e.g. KAON) or for specific languages (e.g. OWL) 
and consequently they have different set of elementary (atomic) changes. With respect to the 
propagation of ontology changes still much can be learned from other related fields. For instance, 
the propagation of changes has been investigated in particular to dependent ontologies, ontology 
instances and in a few cases to dependent applications. In the case that the dependent ontologies 
are distributed, in general they address one of the following cases: 

 An ontology is locally edited by a single user and changes to that ontology are propagated 
to physically distributed replicas of the ontology  

 A shared-central copy of an ontology is shared by several users. Each user has a local 
copy of this ontology (maybe even modified), that may (or not) be updated (synchronized) 
whenever then shared-central copy is changed centralized by a single user. 



Page 72 of 115 NeOn Integrated Project EU-IST-027595 

 

 An ontology is divided into several (distributed) component ontologies related to each other. 
Each component ontology is then treated as a normal ontology that is locally edited by a 
single user and changes are propagated to related ontology components in a centralized 
manner when the user publish the component ontology into a central server. 

Hence, in all cases, they are considering a central (main) copy of the ontology that is either 
replicated or divided into several component ontologies. Moreover, in most of the cases, changes 
are propagated only in one direction: from the main copy to its replicas. The only exception is when 
the ontology is divided into several component ontologies, but in this case the management of 
changes is also centralized. 

Similarly, the existing tools support different aspects of the change management. Many of them are 
focused on the management of ontology versions rather than in support the tasks of the ontology 
evolution process that are our main interest. Nevertheless, some tools address evolution aspects 
such as the effect of changes in dependent applications or, the tracking of changes and their 
formal representation and/or the propagation task. However in those cases, the management of 
ontologies and their changes is either centralized or changes are propagated from a main copy of 
the ontology to its distributed non-editable replicas. 

Finally, there are several aspects regarding ontology evolution that are still not fully addressed in 
the existing models/tools. For instance, in practice the evolution of the ontologies is no longer 
driven by a single user. Currently a whole team of ontology editors is in charge of the development 
and maintenance of the ontology. Each member of the team may have different role and 
associated permissions and usually they follow a well defined process to control when and how the 
ontology can change (evolve). Furthermore, the members of the team are usually geographically 
distributed.  

The aspects mentioned above are the main reason why methodological guidelines for ontology 
evolution are needed in the context of the NeOn methodology for building ontology networks. While 
existing evolution frameworks normally include a description of the life cycle, this description is 
neither meant nor suited to replace guidelines. Therefore we propose here methodological 
guidelines for supporting ontology developers during the evolution of the ontologies and for 
supporting them in exploiting tools to facilitate the evolution of their ontologies.   

7.2. Proposed Preliminary Guidelines for Ontology Evolution  

As we mentioned before, ontology evolution refers to the activity of facilitating the modification of 
an ontology by preserving its consistency. Ontology evolution can be seen as a consequence of 
different activities during the development of the ontology. 

In the framework of the NeOn methodology we propose the filling card for the ontology evolution, 
presented in Table 7, which includes the definition, goal, input, output, who carries out the activity 
and when the activity should be carried out. 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 73 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

Ontology Evolution  

Definition 

Ontology evolution refers to the activity of facilitating the modification of an ontology by 
preserving its consistency. Ontology evolution can be seen as a consequence of different 
activities during the development of the ontology. 

 
 

Goal 

The goal of ontology evolution is to provide a defined process (potentially with tool 
support) to perform updates and changes to one or multiple ontologies.  

 
 

Input Output 

An ontology in a consistent state. 
 

An ontology in a consistent state with 
proposed changes implemented. 

 
  

Who 

All ontology engineers that have to perform changes/updates to a deployed ontology. 

 
 

When 

Ontology evolution normally occurs after the ontology is deployed. Changes during the 
initial creation would be part of the initial ontology engineering process. Once an 
ontology has been deployed and needs to be updated/changes, ontology evolution is 
needed. 

 
 

 
 

Table 7. Ontology Evolution Filling Card 



Page 74 of 115 NeOn Integrated Project EU-IST-027595 

 

The tasks for carrying out the ontology evolution activity can be seen in Figure 9. 

 

Figure 12. Workflow for the Ontology Evolution Activity 

The tasks for carrying out the ontology evolution activity are explained in detail in the following: 

Task 1. Requesting a change. 
This is the initial task in the evolution of an ontology. In order for ontology evolution to have the 
desired outcome, it is important that the input ontology is in a consistent state. If the ontology is not 
in a consistent state, it has to be repaired first, using one of the different ontology diagnosis and 
repair tools (e.g. RADON9) or techniques before starting the evolution process. Note that we 
require the input ontology to be in a consistent state because dealing with an inconsistent ontology 
may produce unexpected results. For instance the propagation of changes may produce 
inconsistencies in related artificats. This requirement is also in accordance to existing ontology 
evolution approaches (e.g. [74]). Besides, the main goal of ontology evolution is to adapt an 
ontology to arisen needs (e.g. changes in the domain, changes in the experts knowledge, etc.), not 
to repair an inconsistent ontology. Therefore, the input of the evolution process is an ontology that 
                                                 
9 http://radon.ontoware.org/index.html  



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 75 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

correctly modelled a particular domain/task, before new needs arise. However, the repairing of an 
inconsistent ontology before starting the ontology evolution process can be seen as a one pre-
processing task. The first step of this task is basically initiating the change process. Changes can 
either be requested from users or developers, who feel that the ontology is not adequate in its 
current form, or changes can be discovered. In literature [74] change discovery is distinguished 
into top-down and bottom-up change discovery. Top-down (deductive/explicit) changes are usually 
the results from knowledge elicitation techniques that are used to acquire knowledge directly from 
human experts (e.g. domain experts or end users). Bottom-up changes are the result from 
machine learning techniques, which use different methods to infer patterns from the sets of 
examples (e.g. Structure/Data/Usage-driven Change Discovery).  

Once changes are discovered or requested, they have to be represented in a formal and explicit 
way. Typically, a change ontology is used to model proposed/requested changes (e.g. [74, 42, 
56]). This formal representation of ontology changes makes them machine-understandable, which 
supports and facilitates many evolution activities: their propagation to ontology related entities, the 
synchronization of distributed copies of the same ontology, their integration with information related 
to the process of the ontology development (e.g. accept/reject changes), the identification of 
conflicts, etc. Moreover, having changes formally represented makes them usable by other 
ontology evolution systems as well as exploitable for supplementary functionality of an ontology 
evolution system such as learnability. Finally, it allows to keep track of the ontology changes by 
generating a log that maintains the history (and order) of applied changes as a sequence of 
individuals of the proposed model. 

In contrast to previous approaches in the literature, in NeOn Deliverables D1.3.1 [65] and D1.3.2 
[64], a layered approach for the representation of ontology changes was presented, which consists 
of a generic ontology, independent of the underlying ontology model that models generic 
operations in a taxonomy of changes that are expected to be supported by any ontology language. 
Furthermore, the model can be specialized for different ontology languages, allowing the reuse and 
refinement for specific needs. Also, the model extends previous taxonomies of changes with a 
more granular classification that considers the actual “atomic changes” that can be performed in an 
ontology.  

In case there are multiple change requests for an ontology, the requested changes have to be 
prioritized. In order to determine which change should be implemented first, one can rely on the 
status of the person requesting the change, or have an ontology engineer review the requested 
changes and rank them according to urgency. It is also important that dependencies are 
considered when ranking the requested changes. It could be that changes are dependent on each 
other or even contradict each other.  

Finally, according to NeOn Deliverables D1.3.1 [65] and D1.3.2 [64] (see also [62]), this task 
includes (in some scenarios) the use of a well defined process (i.e. a workflow) for coordinating 
change proposals. This process is responsible for determining who (depending on the user 
permissions) can do what (i.e. what kind of actions) and when (depending on the state of the 
ontology element (e.g. classes, properties and individuals) and the permissions of the user).  

As NeOn technology supporting this task we can mention the following: 

 RADON Plug-in10 is an ontology diagnosis and repair tool that can be used before starting 
the evolution activity. 

 Evolva Plug-in11 supports the discovery of changes from external data sources (e.g. text or 
folksonomies) and relies on various background knowledge sources to automatically link new 
knowledge to the ontology. 

                                                 
10 http://www.neon-toolkit.org/wiki/index.php/RaDON  
11 http://evolva.kmi.open.ac.uk/ 



Page 76 of 115 NeOn Integrated Project EU-IST-027595 

 

 The workflow Feature12 supports the process to coordinate the proposal of changes. 

 Finally, the change ontology used within NeOn for the representation of changes is 
described in NeOn Deliverable D1.3.1 [65]. 

Task 2. Planning the change. 
In this task the change request is analyzed and it is determined why the change needs to be made 
and which part of the ontology is affected by the change.  

For that purpose one uses Impact Analysis, where all potential consequences (side effects) of a 
change are identified along with an estimation of what needs to be modified to accomplish a 
change [91]. As we noted in the introduction, ontologies may depend on several others and may 
also be related to other artefacts (e.g. instances, mappings, applications, metadata, etc.). Hence, 
for the analysis of the impact of a change, a complete list of all implications to the ontology and its 
dependent artefacts should be presented to the ontology engineer [92].  

The previous analysis is also helpful to estimate the cost of evolution. Based on this cost the 
ontology engineer can decide whether or not to propagate a change to a dependent artefact [92]. 

As a result of the analysis performed during this task, the ontology engineer may decide to 
implement the change, or if the change has many side-effects or if the cost of implementation is 
too high, he may defer the change request to a later time or not implement it at all. 

Once the ontology developer team has decided which changes will be implemented and how they 
have to be implemented, the next phase of ontology evolution, namely change implementation is 
entered. 

As NeOn technology supporting this task we can mention that the NeOn toolkit13 provides a simple 
support for the decision of making a change or not. In particular, when a user wants to delete an 
ontology element the list of related axioms (the side-effect) is shown to the editor, allowing him to 
verify the cost of implementing the change. 

Task 3. Implementing the change. 
Implementing the changes is of varying difficulty, depending on the impact of the requested 
change. While some change can be as easy as adding or removing a subclass, other changes can 
require complex operations and restructuring of the ontology.  

One of the first and foremost important features is change logging, which allows to track which 
changes have been made, and also allows for an easy undo, in case something goes wrong. The 
change log can also be published to inform people using the ontology on the updates.  

If the requested change turns out to be too difficult to be implemented, the ontology may need to 
be restructured first, before the actual desired change can be implemented [93]. Depending on the 
complexity of the task, an ontology engineer can be chosen to perform the restructuring and the 
subsequent implementation of the changes.  For instance, in [94] the authors distinguish three 
reasons to apply transformation: (i) to select an alternative conceptual schema which is regarded 
as a better representation of the domain, (ii) to enrich the schema with derivable parts creating 
diverse alternative views on the same conceptual schema as a part of the original schema, (iii) to 
optimise a finished conceptual schema before mapping it to a logical design. 

One important issue to take into consideration when implementing a change is the management of 
inconsistencies that this change may introduce in the ontology. In case an inconsistency occurs, it 
has to be decided how to address it. While some approaches try to keep the ontology in consistent 
state at all cost by even disallowing changes introducing inconsistencies, others claim that the 
inconsistencies are inevitable and hence we have to deal with them. Regardless of the approach, 

                                                 
12 http://www.neon-toolkit.org/wiki/index.pjp  
13 www.neon-toolkit.org  



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 77 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

the inconsistencies have to be identified and resolved, maybe using some tools as it was 
mentioned in the introduction. In the literature, this activity has been introduced in [74] as the 
semantics of the change (originally proposed in the area of data schema evolution in [95]), and 
includes the computation of additional changes that guarantee the transition of the ontology into 
another consistent state. It enables the resolution of induced changes in a systematic manner, 
ensuring the consistency of the whole ontology. In particular, the author focuses on the structural 
inconsistencies that arise when the ontology model constraints are invalidated after a change 
request. Additionally, they author introduce evolution strategies to choose how a change should be 
resolved based on the structure of the ontology, the complexity of the process, the frequency of the 
strategy use or on an explicitly given state of the instances to be achieved (given by the ontology 
engineer).  

Furthermore, another important issue that has to be addressed during the implementation of the 
change(s) is the management of the ontology version. After the ontology changes, the ontology 
engineer should decide whether the resulting ontology constitutes a new version of the ontology 
and hence it should have a different version information. Some recommendations on the use of 
URIs14 can be found. For instance, in [44] the authors propose to use an URI for ontology 
identification with a two level numbering scheme: mayor and minor. Minor numbers for backward 
compatible modifications (an ontology-URI ending with a minor number identifies a specific 
ontology). Major numbers for incompatible changes (an ontology-URI ending with a major number 
identifies a line of backward compatible ontologies). In practice, however, it is common that 
ontologies do not include any version information at all. As a consequence, usually is not easy to 
identify different versions of an ontology. The problem of identifying ontologies in the semantic web 
is not a trivial issue (see [44]). For instance, in [63], a composite identification consisting of the URI 
plus version (if available) plus the location of the ontology is used to identify an ontology.  

Finally, as aforementioned, the change(s) have to be propagated to all the ontology related 
artefacts (if the ontology engineer decided to do it in the previous task based on the analysis of the 
cost and impact). In [74] the author discusses the propagation of changes to dependent ontologies, 
instances, and applications and elaborates on the propagation to dependent ontologies using a 
combination of push and pull mechanism. For the propagation to ontology instances several 
mechanisms can be applied from the research in the area of databases. For instance, in [96] the 
authors discuss how changes can be propagated to the instances of the database by using four 
possible mechanisms: immediate conversion (propagate changes as they happen), deferred 
conversion (propagate changes at specific points in time), explicit deletion (when referenced 
concepts are dropped) or filtering (for using different versions of the schema). 

In NeOn Deliverables D1.3.1 [65] and D1.3.2 [64] (see also [62]), the propagation of changes has 
also been considered to (i) distributed copies of the same ontology and (ii) ontology metadata.  

As NeOn technology supporting this task we can mention that the change capturing plug-in15 
supports the logging of changes automatically from the NeOn ontology editor. Additionally it is also 
in charge of the propagation of changes to distributed copies of the same ontology. 

As aforementioned, the RADON plug-in can be used for the management of inconsistencies.  

Task 4. Verification and validation. 
Before the ontology is considered evolved completely, the last step deals with assessing questions 
whether the right ontology is built, and whether it is built in the right way. During this assessment, 
usually not only the ontology originally modified is verified in isolation, but in general this activity 
can include the verification of other artefacts related to the ontology (as mentioned above) to 
ensure they were not changed in a wrong way or they have an unexpected behaviour. The 
verification and validation step can include the following activities: 
                                                 
14 http://www.w3.org/Provider/Style/URI  
15 http://www.neon-toolkit.org/wiki/index.pjp  



Page 78 of 115 NeOn Integrated Project EU-IST-027595 

 

 Formal verification, such as state machines and temporal logics to derive useful properties of 
the system under study. 

 Testing by users or automatically to verify whether the system behaves as expected. 

 Debugging for localising and repairing errors found during the verification or testing (usually 
performed by an ontology engineer) e.g. [39]. 

 Quality assurance, which typically concerns non-functional qualities, like reusability, 
adaptability, interoperability, etc. 

 Justification of the changes [74]. 

In case problems are detected, these have to be fixed by moving back into task 3, and then 
returning to task 4 to verify the corrected outcome.  

Additionally, this task may include curation (e.g. approve/reject) activities derived from the well-
defined process (i.e. workflow) that coordinate the change proposals (see NeOn Deliverables 
D1.3.1 [65] and D1.3.2 [64] and also [62]). In this case, ontology engineers usually have different 
roles and only those with the required authority can accept or reject the change proposals. If a 
change is rejected, the original author can modify the change and start all over again since task 1 
or he can decide to discard it completely.  

As NeOn technology supporting this task we can mention the following: 

 The Cicero Plug-in16 supports the justification of changes. 

 The workflow Feature supports the curation activities. 

7.2.1. Particularities when working with networked ontologies 
Since the NeOn project deals mainly with networks of ontologies and networked ontologies [39] 
defined as a collection of ontologies related together via a variety of different relationships such as 
mapping, modularization, version, and dependency relationships, it is important to note that the 
process described above can also be applied to networked ontologies since many of those 
dependencies are taken into account as we explained. The advantage in the NeOn context is that 
when an ontology that is evolved is known to be part of an ontology network, that information is 
considered during the analysis of the impact and cost in task 2. Furthermore, during the 
propagation of the changes in task 3, all the ontology related artefacts are updated (if necessary), 
ensuring the consistency of the networked ontologies. Finally, when assessing the correctness of 
the evolved ontology in task 4, the verification also takes into consideration the ontology related 
artefacts to ensure that the whole network of ontologies is behaving as expected (i.e. is 
consistent). 

So arising conflicts can be caught at an earlier stage and this can affect the decision whether a 
change should be implemented as we explained in task 2.  

In the case of evolving a single ontology (which is not know to be part of a network of ontologies), it 
is often unknown which other ontologies will later import the ontology or even use the ontology. So 
interoperability cannot be considered.  

7.2.2. Example 
To describe the proposed guidelines for the ontology evolution activity in a more practical way, in 
this section we illustrate how to perform this activity by describing an experiment conducted in 
collaboration with a team of FAO ontology editors in charge of the maintenance of ontologies in the 
fishery domain. The editors performed collaboratively a set of typical changes and actions to a 
                                                 
16 16 http://www.neon-toolkit.org/wiki/index.pjp 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 79 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

stable version of a fishery ontology in order to reach a new stable version. In this scenario a central 
server kept a shared copy of the ontology and the related changes. In the remainder of this section 
we describe only the most relevant points. A detailed and complete description of the experiment is 
presented in [64]. 
 
Task 1. Requesting a change. 

Initially, FAO experts in the fishery domain requested a set of changes to be applied to the current 
version of the species ontology17. That is, changes were discovered using a top-down/explicit 
method. A total of 31 changes were requested as shown in Table 8. 

# Description 
1 Add Individual 31005_10000 (Species) 
2 Add Individual 31005_10001 (Species) 
3 Add Individual 31005_10000 DataProperty hasCodeAlpha3 value: DCR. Type: string 
4 Add Individual 31005_10000 DataProperty hasID value: 10000. Type: string 
5 Add Individual 31005_10000 DataProperty hasMeta value: 31005. Type: string 
6 Add Individual 31005_10000 DataProperty hasNameEN value: Yellow-nosed albat. Type: string 
7 Add Individual 31005_10000 DataProperty hasNameScientific value: Diomedea chlororhynchos. 
8 Add Individual 31005_10001 DataProperty hasCodeAlpha3 value: PDM. Type: string 
9 Add Individual 31005_10001 DataProperty hasID value: 10001. Type: string 
10 Add Individual 31005_10000 DataProperty hasMeta value: 31005. Type: string 
11 Add Individual 31005_10001 DataProperty hasNameEN value: Great-winged petre. Type: string 
12 Add Individual 31005_10001 DataProperty hasNameScientific value: Pterodroma wrong macroptera. 
13 Add Root Class Speciation 
14 Add Individual Allopatric 
15 Add Individual Peripatric 
16 Add Individual ParapatricWrong 
17 Add DataProperty hasSpeciation (Species) 
18 Add SubClass genus of biological_entity. Right Click biological_entity and add Class genus.  
19 Add Root Class Person 
20 Add DataProperty name (Person) 
21 Add ObjectProperty hasScientificNameAuthor  
22 Add ObjectProperty domain (hasScientificNameAuthor,Species) 
23 Add ObjectProperty range (hasScientificNameAuthor,Person) 
24 Add Root Class Category 
25 Add DataProperty description (Category)  
26 Add Individual Extinct (Category) 
27 Add Individual Endangered (Category) 
28 Add Individual Extint DataPropertyValue (description, the last remaining member of the species has 
28 Add ObjectProperty hasCategory. 
30 Add ObjectPropertyRange (hasCategory,Category) 
31 Add ObjectPropertyDomain (hasCategory,Species)  

Table 8. Ontology Changes in FAO Experiment 
In this scenario, different ontology editors were working collaboratively in the implementation of the 
changes and hence it was not necessary to prioritize them (prioritization of multiple changes). 

                                                 
17 Available at http://www.fao.org/aims/neon.jsp  



Page 80 of 115 NeOn Integrated Project EU-IST-027595 

 

Each of the proposed changes was represented as instances of a change ontology (see [65]) 
(representation of changes). For this experiment, ontology editors were using the NeOn Toolkit 
with the collaborative infrastructure. Hence, the representation of the changes was performed 
automatically whenever a new change was captured by the system change capturing Plug-in of 
NeOn Toolkit). 

Furthermore, in this scenario, the ontology editors were following a well defined process (i.e. 
workflow) for the coordination of the change proposals. As a consequence during this task, the 
system created for any new change proposal, the appropriate workflow action automatically (i.e. 
insert, update, delete). 

Task 2. Planning the change. 

For this experiment, it was necessary to implement the requested changes regardless of the side-
effects. Therefore, it was not performed any analysis of the impact or cost. In fact, the idea of the 
experiment was to assess the efficiency of the system to support the development of an ontology 
in a collaborative scenario, not the time or cost of implementing a change. 

Task 3. Implementing the change. 

For this task, it was not necessary any restructuring of the change(s) because on the one hand the 
changes were not too difficult to implement due to the ontology structure and on the other hand, 
the cost of implementing was not an issue. 

Additionally, for this task, the system (change capturing plug-in of NeOn Toolkit) took care of 
logging automatically all of the proposed changes (change logging), maintaining the chronological 
history of the events. 

In this experiment, the change(s) did not introduce any inconsistencies in the ontology. However, in 
case it would be necessary to manage inconsistencies, the RADON Plug-in for NeOn Toolkit, could 
have been used to detect and fix them. 

As we introduced at the beginning of this section, for this experiment, the ontology and related 
changes were centralized in a server. Furthermore, the ontology used for the experiment was not 
related to other artifacts at the moment. Hence, it was not necessary any propagation of changes. 

Task 4. Verification and validation. 

During this task, the ontology editors analyzed every change to ensure that the resulting ontology 
was as expected using the visualization plug-ins of the NeOn Toolkit.  

Additionally, this task was one of the most important of the experiment as it included all the 
curation activities derived from the workflow that coordinates the proposal of changes. Hence, in 
this task, an ontology validator was in charge of accepting and rejecting changes as necessary by 
using the appropriate workflow Plug-ins of the NeOn Toolkit. Finally, at the moment of the 
experiment, there was no support for the justification of changes. 

7.3. Proposed Guidelines for Exploiting Tools in Ontology Evolution 

In Section 7.2 we discussed a generic approach for ontology evolution. In this section we focus on 
evolving ontologies through the use of semi-automatic tools, which assist the user throughout the 
evolution process. 

Here, we propose a methodological guideline for supporting ontology engineers and domain 
experts in exploiting tools to facilitate the evolution of their ontologies. The goal of this guideline is 
to complement the tool-based support provided by the proposed Evolva framework, with concrete 
guidance on how to realize the various tasks of the evolution activity, using semi-automatic 
techniques in an efficient way.  



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 81 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

The tasks for performing the semi-automatic ontology evolution can be seen in the workflow shown 
in Figure 13.  

 

Figure 13. Tasks for Ontology Evolution Supported by Semi-Automatic Tools 

The tasks for carrying out the semi-automatic ontology evolution are explained in detail in the 
following: 

Task 1. Identify the part of ontology to evolve. 
The first task required by the ontology development team is to select the part of the ontology to 
evolve. The evolution can be applied either on the entire ontology, or on a certain part of it. In 
many cases, ontologies may include a significant amount of statements, causing the evolution to 
take a long processing time. In such cases, after specifying the evolution purpose, the user may 
choose the part of the ontology to evolve through selecting the set of concepts to be handled by 
the process. 

 

 



Page 82 of 115 NeOn Integrated Project EU-IST-027595 

 

Task 2. Set the data sources and extraction parameters. 
Depending on the domain, domain experts should prepare the data sources that contain relevant 
information to the ontology context. Such data sources could be in the form of text documents, 
folksonomies, databases or even other ontologies. Based on the decision of the ontology 
development team to evolve the ontology either in terms of schema, instances or both, the 
extraction should be customized accordingly. For example, in the case of schema evolution, the 
user may choose to extract concepts from the data sources, without dealing with instances. While 
in the case of instances, the evolution process could omit the extraction of schema elements. 
Choosing between schema and instances evolution could be biased by the ontology functionalities 
and domain nature. For example, when many ontology dependent components exist (e.g. various 
applications or other aligned ontologies), evolving the ontology schema may be costly and the 
ontology development team may choose to perform this operation less frequently. While in 
environments where ontology components are easily controllable, and where a lot of new 
information is generated leading to a frequent generation of new concepts, schema evolution 
would be required. 

Task 3. Validate extracted data. 
After extracting knowledge elements from the data sources, noise and irrelevant entities should be 
excluded. The user is supported by manual and automated validation techniques with 
customizable parameters. For the manual validation, the domain expert would serve as one of the 
best quality checkers as he/she is the most knowledgeable about the ontology context. This task is 
completed after checking that all the data are valid to be processed further by the system. 

Task 4. Setup relation discovery and quality check. 
The role of the user, after the data validation task, is to prepare the automated relation discovery 
process. The relation discovery process links the validated data to the ontology. This requires the 
user to select the various types of background knowledge sources to be used. The choice of 
background knowledge is directly dependent on the type of domain the ontology represents. If the 
domain were specialized, the user would choose domain specific background knowledge sources 
(e.g. specialized thesauri). This would improve the quality of relations and increase the system 
precision. While if the domain were generic, using online ontologies or generic thesauri would 
perform well. In addition to the selection of sources, the user should fine-tune the parameters of 
the relation discovery process, such as the selection of relations with a high-ranking measure, or 
specify the maximum depth to explore. Domain experts should check the quality of relations, 
before using them later in the system. 

Task 5. Generate ontology changes and new ontology version. 
Based on the approved relations in the previous task, ontology changes are generated and applied 
on the new ontology version. Users should specify where to apply the changes, i.e. directly on the 
initial ontology or on a detached copy. The choice of where to perform changes depends on the 
environment and the ontology development team approach. The team should be aware that 
applying changes on the initial ontology would directly affect the dependent components. If this is 
not feasible, or designers prefer to keep the initial ontology intact while reviewing the changes, 
creating a detached ontology version would be more appropriate. 

Task 6. Validate new ontology and manage changes. 
The user should control the changes performed on the new ontology version. With the new evolved 
ontology, problems such as inconsistencies and duplication are likely to emerge. Users in this task 
specify the checking methods to be applied on the new ontology version using reasoners for 
example, in addition to manually control the recorded ontology changes. 

Task 7. Deploy new ontology version. 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 83 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

Once the new version is approved, users should control the propagation of the new ontology 
version to the dependent components. Links to the previous ontology version should be checked 
and whether the new ontology has been successfully saved and accessible. 

7.3.1. Example 
As described in deliverable D1.5.3 [52], we implemented Evolva as a plugin within the NeOn 
toolkit. Evolva provides ontology evolution through a complete framework, applied as a plugin in 
the NeOn ontology toolkit [52]. The various currently implemented steps in the plugin are visualized 
in Figure 3, covering the first three components of our ontology framework in Figure 1. In this 
section we highlight an example of ontology evolution, following the guidelines presented in 
Section 7.3. We run our example in an environment where the NeOn toolkit and Evolva plugin are 
operational18. 

Consider the case of evolving the latest version of the SWRC ontology19 in the academic context. 
We first load the ontology in the NeOn toolkit, and start Evolva. In our simple case where the 
ontology has a limited number of concepts and time it not an issue, we choose to evolve all the 
ontology20 (Task 1).  

 

Figure 14. Screenshot of the Evolva plug-in 

After preparing the ontology and identifying the part of ontology to evolve, we move to select the 
data sources containing relevant information with a potentially added value to our ontology (Task 
2). A relevant source of information we found was on the Leverhulme website that contains text 
documents about research project, and information about people in the academic domain. We 
locate and download the relevant text documents, then select the sources in Evolva for performing 
data extraction and validation. Having no ontology dependent components, a schema evolution 
won’t have any side effects on applications or other dependent elements. Thus, as ontology 
developers in this use case, we test the extraction of concepts from the data sources and integrate 
them in the ontology. At the time of writing this document, Evolva includes the extraction of 
concepts from text documents. Additional extraction features are to be implemented soon. The 

                                                 
18 Details on how to install and run Evolva can be found at: http://evolva.kmi.open.ac.uk/  
19 The SWRC ontology can be downloaded at: http://ontoware.org/frs/download.php/354/swrc_updated_v0.7.1.owl 
20 Note that selecting part of the ontology to evolve is not yet available in the current version of Evolva.  



Page 84 of 115 NeOn Integrated Project EU-IST-027595 

 

validation parameters incorporate term existence checking feature (based on a similarity value), 
and a term length checker for removing terms under a specific length.  

We load the Leverhulme text documents, and run the extraction and validation process. A list of 
extracted concepts is returned, with Evolva automatically identifying existing terms in the ontology, 
and terms that fall below a length threshold. If the automatic validation performs poorly overall, it is 
possible for users to fine-tune the parameters, and re-run the validation process again. In addition 
to the automatic validation, users have the ability to go through the list of concepts, and manually 
select terms they find irrelevant (Task 3). Domain experts would play here a major role as they are 
the most aware of the relevance of concepts with respect to the ontology.  

After the data validation process and approving relevant data, we move to Task 5 of setting up the 
relation discovery process with the right background knowledge sources and parameters. The 
SWRC ontology domain is, to some extend, a generic academic purpose ontology. Thus related 
information can be easily found through online ontologies in which a lot of academic domain 
ontologies can be found, as well as through WordNet, the generic thesaurus. Thus we choose to 
perform the relation discovery process through exploiting Scarlet [69] (a Semantic Web based 
relation discovery engine) and WordNet.  

Evolva automatically harvests the chosen background knowledge, and identifies how extracted 
concepts should be integrated in the ontology. For example, Applicant and Website are two 
concepts extracted from the Leverhulm text document. WorNet links Applicant as a subClass of 
Person, an existing concept in the SWRC ontology; while Scarlet links Website to Organization 
through a hasWebsite relation. The length of relations to discover is customizable. Thus if the 
users find that the process is taking long, or lengthy relations prove to be overall irrelevant, they 
can decrease the relation length threshold and re-run the process again. The user should validate 
such identified relations, as they will be used in the next step for deducing ontology changes. 

Once all relations are approved and relevant, they are used to generate the ontology changes. If 
the user spots any unwanted changes, it is possible to go back to the relation validation, remove 
the source relations, and regenerate the ontology changes. Based on the ontology changes 
provided, we apply them both directly on the SWRC ontology, and on a separate ontology copy 
that includes all the new changes applied.  

Our next task is to validate the new ontology version, and manage the new changes that the 
ontology has been subject to (Task 6). Evolva relies on the change logging plugin [65] based on 
the NeOn toolkit. The user is given all the functionalities to review changes after being applied on 
the ontology. Inappropriate changes can be rolled back, or sent for further review, until reaching a 
reliable new ontology version. 

After approving the final ontology version, we deploy it by double-checking the links to the previous 
ontology version that are automatically created by Evolva (Task 7). We also check that the 
ontology has been saved correctly, and it is still accessible by doing some random checks such as 
running queries and validating the results.  

7.4. Future Work 

In this chapter we have presented detailed methodological guidelines for carrying out the ontology 
evolution activity. Further work related with this activity includes: 

 Evaluation of the proposed guidelines with additional experiments. 

 Refinement of the guidelines with the received feedback. 

 Integration with other activities of the ontology engineering methodology. 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 85 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

8. Ontology Localization  

Ontology Localization is defined in [78] as the activity that consists in adapting an ontology to a 
particular language and culture. The output of this activity is an ontology (multilingual ontology) 
whose ontology terms expressed in a source natural language have been translated to the target 
natural language. The resulting translations are added to available labels of the original ontology 
already in one or several languages. 

In this chapter we present a brief introduction to the existing methods, techniques and tools for 
ontology localization. We also propose the NeOn methodological guidelines for carrying out the 
activity. 

8.1. State of the Art 

In this section we present some of the methods, techniques and tools that we found in the literature 
related with the localization of an ontology to different natural languages. First, we introduce 
existing general methods for carrying out the ontology localization activity. Then, we describe some 
techniques for ontology localization which has been guided by the observation of how the 
localization process is performed by a human expert. We also present some tools which support 
the localization activity to create a multilingual ontology. And finally we include some conclusions. 

8.1.1. Methods 
As we mentioned before, the goal of the ontology localization is to build a multilingual ontology. 
Two main streams of research are emerging as alternative to build a multilingual ontology: the first 
is based on the integration of language-specific ontologies via ontology merging techniques, while 
the second assumes the localization of an existing ontology. 

1. Reconciliation and Merging of Existing Monolingual Ontologies. According to the first approach, 
people speaking different languages will model a given domain area by defining different 
ontologies that will be merged to provide a multilingual semantic environment. As many 
aspects of the predefined knowledge area will be common for all languages, many redundant 
“synonymous" relationships between language specific ontologies will be defined, increasing 
resource wasting and complexity. Developing a multilingual semantic framework using the 
above exposed methodology, involves then the risk of getting an unmanageable entity as an 
outcome, in which great care is required to define relationships between “equivalent ontologies" 
and to track changes and coherently update those relations [9]. 

2. Localization of an Existing Monolingual Ontology.  Within this second trend, we have to 
differentiate between two approaches: 1) the inclusion of multilingual information in the 
ontology (what we refer to as non-modular approach), and 2) the association of external 
multilingual information with the ontology (modular approach).In both approaches there exists a 
monolingual ontology covering the subject domain of the proposed multilingual ontology, and 
serving as the source language from which is possible to obtain the corresponding translations 
in different languages. In the non-modular approach, multilinguality is obtained by including 
ontology labels in different languages by making use of the rdfs:label property (see RDF(S)21). 
In the second approach, the modular approach, an external linguistic model is associated to 
the ontology. Different models have been proposed to associate linguistic data to ontologies: 
the Linguistic Information Repository (LIR) [54] specially designed to link multilingual 

                                                 
21 www.w3.org/TR/rdf-schema/ 



Page 86 of 115 NeOn Integrated Project EU-IST-027595 

 

information to ontologies, or LingInfo [11] and LexOnto [15], whose focus is on the association 
of further linguistic data to ontology labels such as morphosyntactic decomposition of labels or 
subcategorization frames of properties, respectively. 

In this deliverable we focus on the creation of guidelines that supporting the localization of an 
existing monolingual ontology for supporting the building of a multilingual ontology. We believe that 
this approach is inherently scalable, as new languages can be easily supported by integrating new 
lexical entities and definitions, and possibly slightly restructuring a small number of ontology terms. 

8.1.2. Techniques 

To our knowledge, no other study has focused on the techniques for ontology localization.  In our 
opinion, the starting point in the design of an ontology localization system and the techniques it 
relies on should be guided by the observation of how the localization process is performed by a 
human expert. As the localization activity involves the use of translation techniques, we study the 
different attempts to model the human translation process. In particular, we adopt the model 
organized in four steps: 1) meaning discovering, 2) finding receptor (target) language equivalents, 
3) checking the meaning of the receptor (target) language item, and 4) formulation of the final 
translation. Figure 15 illustrates the steps above described. 

 

 

Figure 15. Human Translator Steps 

In order for a human translator to be able to discern among the different meanings a word may 
have (homonymic or polysemic words), (s)he needs to analyse the context. Depending on the 
context in which the word is used, a certain meaning will be selected, whereas the rest of potential 
meanings of the word will be discarded. This process is performed almost unconsciously in the 
translator's mind if (s)he has a good command of the subject and the terminology used in it. For 
example, if the word to be translated is ‘bank', and the text is about finances, the translator will 
undoubtedly assign the meaning “financial institution" to the word ‘bank'. 

The next step in the translator's mind is to look for possible equivalents of the word ‘bank' with the 
meaning of “financial institution" in the target language. Assuming the translator's proficiency on 
the subject in both, the source and target culture, the translator will look for an equivalent concept 
in the target culture. If ‘bank' is going to be translated into Spanish, the translator has to find out if 
the English word is referring to a “savings bank" or to an “investment bank", for example, since in 
the first case, ‘bank' would be translated into ‘caja' and in the second into ‘banco'. Here again the 
context is essential for the translator to make the right choice. At this stage, it is difficult to separate 
this action into two steps, (finding language equivalents and checking their meaning) because 
concepts are represented by lexicalizations, and they come together as indivisible items in the 
translator's mind. 

In order to take the final decision on which the most appropriate translation for a certain word is, 
the translator will have to take into account two additional aspects: 1) which is the concept in the 
target language that better matches the concept in the source language?, and 2) which is the 
purpose of the translation? Once the purpose and context have been checked again, the translator 
is able to select the most appropriate translation for the source word. 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 87 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

In the following, we describe how each phase may be automated in some way. 

1. Meaning Discovering. A way of discovering the meaning of an ontology label (name of an 
ontology term) to be localized is to extract small excerpts that describe the specific entity (here 
context22). The context describes the meaning of a specific term in the ontology. In a broader 
perspective in the ontology localization process, we can look at ontology label context from two 
different dimensions, considering: 1) the size of the context, and 2) the depth of processing.  

When looking at the size of the context, it is useful to divide it into three categories [47]: i) without 
context, ii) with local context, and iii) with global context. The first alternative is sometimes 
disregarded, but it contains important information about the internal structure of the word, e.g., 
capitalization, type of ontology term (class, object property, instance, etc.), which often relates the 
word to other words with similar meaning in the ontology. The local context can be defined as a 
narrow window of 3-5 words centred on the ontology label itself. A narrow window shows a set of 
the semantically related terms, such as hyperonyms, hyponyms, etc. The global context can be a 
window of 25-1000 words centred on the ontology label itself, which fairly well approximates 
contexts starting from the immediately surrounding direct relationship terms to the whole ontology. 

As an orthogonal dimension of context we have the depth of pre-processing. There are different 
points of view that can be applied for ontology context pre-processing: syntactic, and structure-
level. For example, a syntactic context processing interprets the context information as a “bag of 
words". A structure-level context interprets the information as the entities that appear hierarchically 
organized in an ontological structure. 

Obtaining the context of each term in the ontology could be executed using techniques of ontology 
module extraction [57, 72]. 

2. Finding target language equivalents. Regarding finding language equivalent terms, cross-
language term extraction methods can be used by the system to perform this task. The goal of 
automatic term extraction is to identify candidate terms in (more or less) unstructured text. The 
most common way of discovering candidate translations is to use bilingual dictionaries [17]. 
Dictionary based approaches are fairly easy to implement and they offer quite effective tools for 
retrieving translations for ontology labels. However, significant performance degradation is often 
observed when ontology labels contain words that do not appear in the dictionary. If there is no 
word in the dictionary for an unknown label, the label is usually left untranslated. The most 
important categories of untranslatable labels are compound labels, proper names and their spelling 
variants and special terms. 

A complementary method for discovering translation equivalents is Web mining [18, 90]. This 
method is based on the observation that new terms, foreign terms, or proper nouns are used in a 
source language web text (e.g., Spanish), they are sometimes accompanied by the target 
language translations (e.g., English) in the vicinity of the source text. For example, ‘Marinos de 
Seattle’ (Seattle Mariners). After mining the Web to collect a sufficient number of such instances 
for any proper noun or a name entity and applying statistical techniques, we are able to infer the 
appropriate translation with reasonable confidence. For those languages with no word boundaries 
(e.g., Chinese), the text should be correctly detected first, then the mining system has to perform 
segmentation of the sentences to find the candidate words. The quality of the segmentation greatly 
influences the quality of term extraction because incorrect segmentation of the source text may 
break the correct translation of the target term into two or more words thus losing the correct word. 

3. Checking the meaning of the target language lexical unit. Regarding the translator's task of 
checking the label meaning in the target language, we believe that this task may be automated 
using word sense discovery approaches. Word sense discovery is defined as the task of learning 

                                                 
22 In NLP, context it is the environment in which a word is used, and context, viz. word usage, provides the only information we 
have for figuring out the meaning of a new or a polysemous word 

 



Page 88 of 115 NeOn Integrated Project EU-IST-027595 

 

what senses a word may have in different contexts [47]. This task can be seen achieved in three 
steps 1) to determine the groups of related words in context, 2) to determine a suitable inventory of 
word sense labels, and 3) to learn how to associate a word sense label with a word cluster using 
either machine learning or manually created rules or metrics. 

To the best of our knowledge, in the ontology localization activity, not only unstructured resources 
(e.g. dictionaries) but also structured resources that already encode some kind of semantic 
knowledge (e.g., thesauri, lexicons, wordnets) are used to discover word meanings. However, 
these kinds of approaches usually rely on static knowledge and data. Therefore, they cannot 
effectively reflect the quickly shifting interests of ontology users. Additionally, there are several 
disadvantages associated with these word senses. First, manually created lexicons often contain 
rare senses. For example, WordNet (version 1.5) included a sense of computer that means “the 
person who computes". Another problem with these lexicons is that they miss many domain 
specific senses. For example, WordNet misses the user-interface-object sense of the word dialog 
(as often used in software manuals). 

Other resources may also be considered to avoid these problems, for instance the semantic 
knowledge available on online ontologies. These approaches rely on mechanisms that not only do 
dynamically the selection of appropriate ontologies from the Web, but also extract from these 
ontologies the relevant and useful parts [61, 86]. 

4. Formulation of the final translation. At this stage, we consider that a way of selecting the 
most appropriate translation is to use word sense disambiguation techniques. Word sense 
disambiguation involves the association of a given word in a text or discourse with a definition or 
meaning which is distinguishable from other meanings potentially attributable to that word. 
According to [41], this task necessarily involves two steps. The first step is to determine all the 
different senses for every word relevant to the text or discourse under consideration (see previous 
step). The second step involves a means to assign the appropriate sense to each occurrence of a 
word in context. 

8.1.3. Tools 
In this section we present tools which support the localization activity to create a multilingual 
ontology. This survey is not complete, but we present the most representative tools.   

TermTranslator. In [31] authors propose a system for supporting the multilingual extension of 
ontologies existing in just one natural language. This tool is used to support “the supervised 
translation of ontology labels" and, at the same time, to allow for the semantic annotation of 
multilingual web documents using the resulting multilingual labels of ontologies. Therefore, the tool 
offers a semi-automatic strategy.  

Ontoling.  In [61] authors propose a framework for a semi-automatic linguistic enrichment of 
ontologies. They use two resources for the linguistic or multilingual enrichment, WordNet, for the 
linguistic enrichment of ontologies with English labels, and DICT dictionaries, for the linguistic and 
multilingual enrichment of ontologies. The tool also uses an enrichment component to exploit the 
taxonomical structure of the glosses of the linguistic resource to judge which linguistic information 
can be used to enrich the ontology. The main limitations of this work are that it only supports OWL 
ontologies, the loaded linguistic resource must be a taxonomical lexical resource and/or a linguistic 
resource with glosses, and the linguistic and multilingual information obtained from the resources is 
stored in the ontology itself. 

LabelTranslator system. In [32, 33] authors propose a system for supporting the ontology 
localization activity. The tool is called LabelTranslator  [32, 33], and takes as input an ontology 
whose labels are described in a source natural language and obtains the most probable translation 
of each ontology label in a target natural language. LabelTranslator [32, 33] has been designed 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 89 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

with the aim of automating ontology localization, and has been implemented in the ontology editor 
NeOn Toolkit23 as a plug-in. In its current version, it can localize ontologies in English, German and 
Spanish. First, the system uses a translation service which obtains automatic translations of each 
ontology label (name of an ontology term) in English, German, or Spanish by consulting different 
linguistic resources such as lexical databases, bilingual dictionaries, and terminologies. This 
service also uses a compositional method in order to perform the translations of composed labels. 
The compositional method first searches for translation candidates of each lexical component and 
then builds the translations for the candidates using lexical templates.  Second, a ranking method 
sorts the different translations according to the similarity with its lexical and structural context. The 
method relies on a relatedness measure based on glosses to disambiguate the translations. This is 
done on the basis of the comparison of the senses associated to the translation and their context. 

8.1.4. Conclusion 
As a conclusion we can mention that there is no universal way to localize an ontology and that the 
choice of a specific method and tool to build an ontology localization system should be guided by 
the final purpose of the localized ontology and by the techniques deemed to be more efficient for 
each task of the activity.  Most of the analyzed methodologies and techniques propose simple 
methods for carrying out the ontology localization activity inspired in the human translation 
process. The methods consist of high level steps that can be summarized as follows: discover the 
meaning of the ontology term, find target language equivalents, check the meaning in the target 
language and formulate the final translation of each localized term. However, these methodologies 
do not provide guidelines explaining how to carry out each step. 

Finally, we can mention that some tools exist to enrich an ontology with linguistic information. 
However, only one tool, called LabelTranslator, has been designed and implemented from its 
creation for supporting all tasks of the activity of localization. 

8.2. Proposed Guidelines for Ontology Localization  

As we mentioned before, the goal of the ontology localization is to adapt an ontology to a particular 
language and culture.  

In the context of the NeOn methodology for building ontology networks we propose the ontology 
localization filling card, presented in Table 9, which includes the definition, goal, inputs and 
outputs, who carries out the activity and when the activity should be carried out. 

 

 

                                                 
23 http://www.neon-toolkit.org/ 



Page 90 of 115 NeOn Integrated Project EU-IST-027595 

 

Ontology Localization  

Definition 

Ontology localization refers to the adaptation of an ontology to particular language and 
culture. 

 
 
Goal 

To translate an ontology expressed in a source natural language into a target natural 
language.  

 
Input Output 

An ontology whose ontology terms 
are expressed in one or several 
natural languages, from which one 
is selected as source natural 
language.        

An ontology whose ontology terms have 
been translated to the target natural 
language. 
The resulting translations are added to 
available labels of the original ontology 
already in one or several languages.  

Who 

Software developers and ontology practitioners, who form part of the ontology 
development team, in collaboration with domain and linguistic experts.   

 
When 

Once the conceptual model of the ontology is stable, with the aim of avoiding spending 
time and resources in a model that is not definitive.  

 
  

Table 9. Ontology Localization Filling Card 

The tasks for carrying out the ontology localization activity can be seen in Figure 16. The result of 
this activity is an enriched ontology (multilingual) with linguistic information (into target language) 
associated to each localized term. 

 

 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 91 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 

Figure 16. Tasks for Ontology Localization 

The tasks for carrying out the ontology localization activity are explained in detail in the following: 

Task 1. Select the most appropriate linguistic assets.  

The goal of this activity is to select the most appropriate linguistic assets that help in the 
localization activity. User and domain experts carry out this activity taking as input the ontology to 
be localized. The activity output is a set of linguistic assets that can help to reduce the cost, 
improve the quality and increase the consistency of the localization activity. 

Linguistic assets may include computer aided translation (CAT) tools or machine translation (MT) 
tools. It is important to make a distinction between MT tools and CAT tools. Where the purpose of 
a machine translation tool is to assume and perform many of the tasks normally completed by a 
translator, computer aided translation tools are used to support the translator, by eliminating 
repetitive work, automating terminology lookup activities, and recycling previously translated text. 

Computer aided translation tools, also called computer assisted translations tools, can be 
categorized as follows: 

 Translation Memory tools. A key technology that enables to user to store translated phrases 
or sentences in a special database for local re-use or shared use over a network. Translation 
memory systems work by matching terms in the database with those in the source text. If a 
match is found the system proposes the ready-made translation in the target language. 



Page 92 of 115 NeOn Integrated Project EU-IST-027595 

 

 Terminology tools. A terminology management tool is much more that just creating and 
maintaining bilingual list of translated terms. These tools enables to translators to maintain 
term databases that include additional information such as definitions, context, gender, 
source, synonyms, etc. A type of terminology tool that is often used in localization is the 
electronic dictionary; however other electronic resources as specialized encyclopaedias or 
multilingual corpora can be used too. 

 Ontology Localization tools. These tools are designed to help translators localize ontology 
terms. Most of these tools combine, translation memory, leveraging (re-using), and 
validation. 

As a rule, the first two, translation memory and terminology tools, are generally combined in a tool 
set for the translation of sentences commonly found in the annotation of classes, properties or 
instances, (e.g. consider rdfs:description). On the other hand, ontology localization tools can be 
used to translate ontology terms, i.e. ontology labels, ontology identifiers, instances, etc.   

Other option to support the localization of ontologies is to use machine translation tools. These 
tools are applied to any levels, from processing a huge amount of sentence strings to online 
“gisting” offered on many web sites.  Currently, more and more translation memory (TM) systems 
offer support for MT. In a typical setup where TM and MT are used, the computer first searches the 
translation memory for a match of the term to be translated. If no match is found, the translator can 
ask the MT system to translate the term, edit the result and store the translation in the translation 
memory.   

The choice of a specific tool usually depends on one o more of the following criteria: 

 Supported languages. Each tool support different feature sets and language sets. Make sure 
all target languages for current and possible future ontology localization projects are 
supported by the tool. 

 Support. How much support will be required for the translators using the tool?  

 Alignment. If previous translations do exist, but not translation memories, the translated 
ontologies need to be aligned in order to create a translation memory. Check whether the 
tool contains an alignment feature. 

 Network support.  Does the tool allow translation memories to be shared over a network?. 
Which networks protocols are supported? 

 Customization. Does the tool contain features that enable the user to customize the 
localization of specific terms? 

To select the appropriate translation tool for performing the ontology localization activity, follow the 
basic preliminary guidelines presented in Table 10. 

Type of Ontology Term Translation Tool Comments 

Ontology labels and 
instances. 

Ontology Localization 
tool, Machine translation 
tool or computer aided 
translation tool. 

Machine Translation could be used effectively to 
translate ontology labels and instances only if 
the ontology terms are very controlled.  

Ontology term annotations. Translation Memory tool. The major cost involved at this level is the 
difficulty to translate correctly long pieces of text. 

Culture specific terms. Native creation tool. 
The tool requires a thorough analysis of the 
cultural conventions of source and target 
communities. 

Table 10. Criteria to select the most appropriate Translation Tool 

Task 2. Select ontology term(s) to be localized. The goal of this task is to select the ontology 
term(s) to be localized. Domain experts and the ontology development team carry out this task 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 93 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

taking as input an ontology whose terms expressed in a source natural language need to be 
localized to a target natural language. The task output is a set of ontology terms with information of 
the text to be translated and its context. 

Since there are no methodological guidelines for guiding in the selection of the ontology terms, we 
believe that the user is the one who has to choose the space of candidates to be localized. At this 
stage, the user may choose to localize the complete ontology or certain terms only. 

Task 3. Obtain ontology term translation(s). For each ontology term, the goal of this task is to 
obtain the most appropriate translations in the target language. Domain and linguist experts carry 
out this task taking as input the text of the ontology term(s) to be localized.   

Different techniques can be used to automatize this task (see Section 8.1.2 for more details):  

1) cross-language term extraction to discover translation equivalents,  

2) word sense discovery for discovering the possible senses or definitions of the translations, 
and  

3) word sense disambiguation for selecting the most appropriate translation for each ontology 
term(s).  

The task output is a ranked set of translations for each ontology term(s). 

Task 4. Evaluate term translation(s). The goal of this task is to evaluate the translations of each 
ontology term. Domain and linguist experts, carry out this activity taking as input the translations of 
each ontology term(s) localized. The output of this task is a set of ontology terms with its 
corresponding evaluation. 

Different linguistic criteria can be used for the evaluation of the translations of each ontology 
term(s).  We propose three levels of evaluation criteria and for each level we propose a set of 
tests, which can be automated as far as possible. 

1. Terminology evaluation. The aim of terminology evaluation is to control that the obtained 
translations do not alter the knowledge represented in the original ontology. In the following we 
describe the tests that should be checked: 

• Unchanged test checks whether a translation is basically identical to the original string. This 
test checks to see if the translation is not just a copy of the source language. Sometimes, 
this is what you want, but other times you will detect words that should have been 
translated. 

2. Semantic fidelity evaluation. The aim of a semantic fidelity evaluation is to control that the 
translation be conceptually equivalent to the ontology term in the source language.  Additionally 
is necessary to check if the translation is clear and easy to understand.  A way of evaluating 
the semantic fidelity is described in the following:  

• Backward Translation test provides a quality-control step demonstrating that the quality of 
the translation is such that the same meaning is derived when the translation is moved 
back into the source language. 

3. Stylistic evaluation. The aim of stylistic evaluation is to control the clarity and beauty of 
language, which depend on the style of the source language and on the peculiarities of the 
individual idiolect. The following are descriptions of the tests that should be checked: 

• Acronym test checks that acronyms that appear are unchanged. If the acronym term 
appears in an ontology term, this test will check that it appears in the translation. 
Translating acronyms is a language decision but many languages leave them unchanged in 
that case this test is useful for tracking down translations of the acronym and correcting 
them. 



Page 94 of 115 NeOn Integrated Project EU-IST-027595 

 

• Blank test checks whether a translation is totally blank. This will check to see if a translation 
has inadvertently been translated as blank i.e. as spaces. This is different from untranslated 
which is completely empty. 

• Double words test checks for repeated words in the translation. Words that have been 
repeated in a translation will be highlighted with this test e.g. “the the”, “a a”. These are 
generally typos that need correcting. Some languages may have valid repeated words in 
their structure, in that case either ignore those instances or switch this test. 

• Long test checks whether a translation is much longer than the original string. This is most 
useful in the special case where the translation is multiple words long while the source text 
is only one word long. Be aware that this test may create a number of false positives. 

• Short test checks whether a translation is much shorter than the original string. This is most 
useful in the special case where the translation is one word long while the source text is 
multiple words long. Be aware that this test may create a number of false positives. 

• Simple caps test checks if the capitalization of two strings is not largely different. This test is 
useful for identifying translations that do not start with a capital letter (upper-case letter) 
when they should, or those that do when they shouldn't. It will also highlight sentences that 
have extra capitals; depending on the capitalization convention of your language, you might 
want to change these to Title Case, or change them to normal sentence case.  

Task 5. Ontology update. The goal of this task is to update the ontology with the linguistic 
information obtained for each ontology term(s) in the target language. Domain experts carry out 
this task taking as input the selected translations for each ontology term expressed in a source 
natural language. The activity output is an enriched ontology with linguistic information (into target 
language) associated to each localized term. In this case, we consider two strategies: non-modular 
and modular. 

 Non-modular strategy. In the non-modular strategy the association between linguistic content 
and ontological data is projected over standard RDFS/OWL predicates. Different features 
included in RDFS (and therefore in OWL) support linguistic tagging of ontology terms by 
using: (i) rdfs:label and rdfs:comment, (ii) sub-properties of rdfs:label, (iii) language identifiers 
(as specified by RFC 3066) and xml:lang, (iv) embedded XML, etc.  

For example, the rdfs:label property is used for addressing short lexical objects like terms or 
words (used both to provide synonymic expressions as well as to provide translations for 
different languages) while rdfs:comment is commonly associated to wider descriptions like 
those which could be extracted from word glosses and term definitions. These options, 
though guaranteeing a complete adherence to widely accepted standards, offer poor 
representation primitives. 

 Modular strategy. The modular strategy relies on the combination of two independent 
modules, the ontological and the linguistic one. Different models have been proposed to 
associate linguistic data to ontologies: the Linguistic Information Repository (LIR) [54], 
specially designed to link multilingual information to ontologies, or LingInfo [11] and LexOnto 
[15], whose focus is on the association of further linguistic data to ontology labels such as 
morphosyntactic decomposition of labels or subcategorization frames of properties, 
respectively. 

8.3. Examples  

In this section we include two different examples of how to use the proposed guidelines for the 
ontology localization activity and the obtained results. 
 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 95 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

The first example refers to the localization of the Pest control ontology, by means of using the 
guidelines proposed in this deliverable.  Basically, the ontology localization activity is carried out by 
FAO Information Management specialist with the contribution of domain and linguistic experts. In 
particular we will refer to ISMEA, the Italian Institut “di Servizi per il Mercato Agricolo Alimentare” 
and internal FAO translators and systems. 
 
The second example instantiate the guidelines for the localization of the ontology proposed in the 
first sample (Pest control ontology), but using an automatic localization tool (named 
LabelTranslator). It is important to mention that the work done within the LabelTranslator system in 
the localization activity has been one of the inputs to get preliminary guidelines for this activity. 
Such preliminary guidelines have been extended, improved, and proposed in this deliverable. 
Using the proposed guidelines presented in this deliverable, we described the localization activity 
with the Pest control ontology. 

8.3.1. Pest control ontology localization 
The objective in this FAO example is to localize the Pest control ontology from English to French 
and Italian. The input ontology is a module of the AGROVOC Concept Server containing English 
terms identifying one or more concepts.  

Next, we show the tasks that we have carried out to localize the Pest control ontology to French 
and Italian. 

Task 1. Select the most appropriate linguistic assets. 
In general FAO experts make use of several computer aided translation tools to perform the 
localization of their ontologies. In this particular use case, the following criteria were used to select 
the linguistic assets for performing the ontology localization activity: 

 Supported languages. The selected tools supported at least one of the target languages. 

 Support. FAO experts have experience using the selected tools, therefore they do not 
require additional support.  

Basically, the FAO experts use mainly the FAOTERM, the institutional multilingual terminological 
system24. FAOTERM provides a terminology database, with the correct language equivalents, and 
standardize terminology within the Organization and within the United Nations system as a whole.  
This system also provide a query service for all terminology and reference request in FAO, from 
external translators and editors as well as for international organizations.  

FAOTERM may be useful only for a limited number of languages, mostly the 5 official FAO 
languages. Russian sometimes may also be available because of recent addition, and Italian may 
sometimes be available because of the location of the FAO HQ premises. 

In addition to the one mentioned above, another important assets used to help in the localization 
activity is to make use of the Google define functionality. Finally for this use case FAO experts may 
also make use of cataloguing systems such as AGRIS or FAODOC.  

Task 2. Select ontology term(s) to be localized. 
From the Pest control ontology, we manually extracted the concept term “pest control” and their 
related terms that will be localized into French and Italian.   

The related terms are: 

 Postharvest sparring,  

 Product protection,  

                                                 
24 http://www.fao.org/faoterm/ 



Page 96 of 115 NeOn Integrated Project EU-IST-027595 

 

 Postharvest control, and  

 Postharvest treatment. 

Task 3. Obtain ontology term translation(s). 
For each ontology term we use a manual process for discovering translation equivalents, 
discovering the possible senses or definitions of the translations, and to disambiguate the 
translation senses.    

Discovering translation equivalents 
For example for the term “pest control”, we find 11 entries (using FAOTERM). Most of them are 
titles of conferences or journals.  However, two entries refers to terminology in the area of Plant 
production (“control (of a pest)”) and in the area of pest control (“pest control”). Figure 17 shows 
some related items for the term “pest control”. 

 

Figure 17. Related Items for the Term “pest control” extracted from FAOTERM 

 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 97 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

The linguistic information related to the result “pest control” is shown in Table 11. 

Arabic 

 تاف _ ةحفاآم لا 
 Source: ATG/KCCM, FAO, 2007. 

English 

 pest control 

Spanish 

 lucha contra las plagas 

  Remarks: FAOTERM-Subjects; TRG(A-Sys1)/KCCM, FAO, 2007. 

 lucha antiparasitaria 

 control de plagas 

French 

 lutte contre les ravageurs 

  Remarks: FAOTERM-Subjects; TRG(A-Sys1)/KCCM, FAO, 2007. 

 lutte phytosanitaire 

Russian 

 •••••••••••••••••••• ••••••••• 

Chinese 

 有害生物防治 

 Source: CTG/KCCM, FAO, 2007. 

Record info 

Entry Number:75416 

Category  Terminology 

Status  Validated 

Reliability  2 

Source Language  en 

Source  FAOTERM-Subjects; TRG(A-Sys1)/KCCM, FAO, 2007. 

Subject  PEST CONTROL 

Table 11. Linguistic Information related to Area of “pest control” 



Page 98 of 115 NeOn Integrated Project EU-IST-027595 

 

On the other hand, the linguistic information related to the result “control (of a pest)” is shown in 
Table 12. 

 
Arabic 

 ةحفاآم 
 Definition ةف _ امخإ د ، ءاوتحإ وأ ابإ ةد ةريشع 
English 

 control (of a pest) 

 

 

Definition Suppression, containment or eradication of a pest 
population. 

Spanish 

 control (de una plaga) 

 

 

Definition La supresión, contención o erradicación de una 
población de plagas. 

French 

 lutte (contre un organisme nuisible) 

 

 

Definition Suppression, enrayement ou éradication de la 
population d'un organisme nuisible. 

Chinese 

 病虫害控制 

 病虫害防治 

 

 

 

 

Source Chinese Academy of Agricultural Sciences, CAAS, 
Beijing, FAO Language Resources Project 2005. Ref.1: English-
Chinese Dictionary of Agriculture, the First Edition, 1998, 
China Agricultural Press, Beijing. (www.ccap.com.cn).  

Record info 

Entry Number:17532 

Category  Terminology 

Status  Validated 

Reliability  5 

Source Language  en 

Source  IPPC GLOSSARY 

Subject  PLANT PRODUCTION 

Glossint  Phytosanitary Terms 

Table 12. Linguistic Information related to Area of “control (of a pest)” 

As we could see this technique may be useful only for a limited number of languages, mostly the 5 
official FAO languages. However, for Italian no translations have been yet identified. Domain 
experts at this point will preferably refer to specialized dictionaries, online or printed. Thus, for 
example we obtain the equivalent translations for the term “pest control” in Italian shown in Table 
13. 

 

  

Nebulizzazione postraccolta 
Difesa dei prodotti immagazzinati 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology Networks Page 99 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

Difesa postraccolta 
Trattamento postraccolta 
Controllo dei parassiti (postraccolta)

Table 13. Equivalent Translations in Italian of the Term “pest control” 

Discovering the possible senses or definitions of the translations 
For discovering the definitions we use Google define functionality. In Figure 18 we show a sample 
of the definitions obtained for the term “pest control”. 

 

Figure 18. Google Definitions of the Ontology Term “pest control” 

Additionally, we check the use of the term “pest control”, and possibly translated documents that 
make use of its translations in the desired languages using the AGRIS/CARIS resource25. Figure 
19 shows a screenshot of the document related with the sample term “pest control”. 

                                                 
25 http://www.fao.org/agris/search/search.do  



Page 100 of 115 NeOn Integrated Project EU-IST-027595 

 

 

Figure 19. Uses and “possibly” translated Documents of the Ontology Term “pest control” 

Disambiguate the translation senses 
With the information obtained in the previous steps we used a manual disambiguation process to 
rank the translations of the each ontology term. For example in Table 14 we show the ranked 
translation obtained for the sample term “pest control”. 

English French Italian 

pest control lutte contre les ravageurs Nebulizzazione postraccolta 

pest control lutte phytosanitaire Difesa dei prodotti immagazzinati 

control (of a pest) lutte (contre un organisme nuisible) Difesa postraccolta 

  Trattamento postraccolta 

  Controllo dei parassiti (postraccolta) 

Table 14. Ranked Translations of the Term “pest control” for French and Italian 

Task 4. Evaluate term translation(s). 
Based on the NeOn guidelines we would identify the following situation: 

Terminology evaluation 
NeOn guidelines identify clearly mistakes which may be done and allows to exactly identifying 
correct localization of terms. Table 15 shows the results of the terminology evaluation of the term 
“pest control” and their related terms. The columns two and three show the translations in French 
and Italian and the terminology evaluation comments of each translation are shown in the last 
column. 

 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology NetworksPage 101 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

English French Italian Terminology 
evaluation 

Postharvest spraying  Pulvérisation après 
récolte  

Nebulizzazione 
postraccolta  

Plural test: ok 
Unchanged test: ok 

Product protection 
(stored) 

Protection des denrées 
(stockées)  

Difesa dei prodotti 
immagazzinati  

Plural test: ok 
Unchanged test: to 
verify  

Postharvest control  Lutte après récolte  Difesa postraccolta  Plural test: ok 
Unchanged test: to 
verify  

Postharvest treatment  Traitement  Trattamento  Exact match for all  

 postrécolte  postraccolta  Languages 

   Plural test: ok  

   Unchanged test: ok  

Pest control 
(postharvest)  

Lutte antiparasite (après 
récolte)  

Controllo dei parassiti 
(postraccolta)  

The Italian term 
“Lotta antiparassitaria 
(postraccolta)” is not 
used as exact  

   translation of the  

   French term  

   Plural test: ok  

   Unchanged test: 
failed  

Table 15. Terminology Evaluation Results  

Semantic fidelity evaluation 
In order to evaluate the semantic fidelity of the translation we would implement the “Backward 
Translation” criteria. Table 16 shows the semantic fidelity evaluation results (only few cases have 
been analyzed) for some terms translated to French and Italian. As we can see, in many cases the 
translation do not match exactly the original meaning, but in a deeper analysis, taking in 
consideration the context and the topics (agriculture) we identified that the semantic fidelity is 
covered 100% while the syntactic fidelity is not ensured. 

 

 

 

 

 



Page 102 of 115 NeOn Integrated Project EU-IST-027595 

 

Original Term (EN) Translation Backward Translation (EN) 

Postharvest spraying  Pulvérisation après récolte (FR) Post-harvest spray  

  Postharvest spraying  

Postharvest control  Lutte après récolte (FR)  Postharvest fight  

  Postharvest control  

Postharvest spraying  Nebulizzazione postraccolta (IT) Postharvest haze  

  Postharvest spraying  

Postharvest treatment  Trattamento postraccolta (IT)  Postharvest treatment  

Postharvest control  Difesa postraccolta (IT)  Postharvest defence  

  Postharvest protection  

  Postharvest control  

Table 16. Semantic Fidelity Evaluation Results  

Stylistic evaluation 
In this case we would check elements such as acronyms, the use of multiple words, capitalizations, 
etc. 

For the mentioned use case no particular problems arises but the use of the parenthesis: for 
example, the English term “Product protection (stored)” appear to be translated in Italian as “Difesa 
dei prodotti immagazzinati”. Based on the tested guidelines for localization, in this case we would 
identify that a more correct translation would appear to be “Difesa dei prodotti (immagazzinati)”. 

In other cases instead the proposed translations are consistent as shown in Table 17. 

English French Italian 

Pest control (postharvest) Lutte antiparasite (après rècolte) Controllo dei parassiti (postraccolta)

Table 17. Stylistic Evaluation Results  

Task 5. Ontology update. 

In this task for the mentioned use case we would chose the “Modular strategy” proposed by the 
guidelines. In this case all lexicalizations belonging to the same concepts are managed with a 
specific ontological model in which:  

 all lexicalizations are represented as instances of the class “c_noun”; 

 the concept corresponding to those lexicalization is represented as a class under a top level 
concept called “c_domain_concept”; 

 lexicalizations are attached to the corresponding concept through an objectProperty 
relationships called “hasLexicalization”. 

This model (known as the AGROVOC Concept Server model) has been implemented through the 
AGROVOC Concept Server Workbench tool, which allows users to easily update the ontology. 

The final ontology will contain at least the terminology shown in Figure 9. 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology NetworksPage 103 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 

Figure 20. Final Ontology using Modular Strategy 

8.3.2 Pest control ontology localization with LabelTranslator 
The objective of this example is to localize some terms of the Pest control ontology from English to 
Spanish using the LabelTranslator system [32].   

LabelTranslator has been designed with the aim of automating ontology localization, and has been 
implemented in the ontology editor NeOn Toolkit as a plug-in. In its current version, it can localize 
ontologies in English, German and Spanish. In its design, the methodological guidelines proposed 
in Section 8.2 have been followed, and some of the techniques and tools described in Section 8.1 
have been used. 

In the following, we briefly describe how the tasks are performed by LabelTranslator system, and 
which are the techniques and tools used for each end. 

Task 1. Select the most appropriate linguistic assets. 
The linguistic assets accessed by the current version of the LabelTranslator NeOn plug-in to 
perform the ontology localization are multilingual linguistic resources (EuroWordNet, Wiktionary, or 
IATE) and translation web services (GoogleTranslate, BabelFish, etc.). The addition of further 
domain specific resources is foreseen for domain ontologies. 

Task 2. Select ontology term(s) to be localized. 
Once an ontology has been created or imported in NeOn, LabelTranslator allows users and 
domain experts to manually/automatically sort out the ontology elements that should undergo 
localization. For each ontology element, LabelTranslator retrieves its local context, which is 
interpreted by the system using a structure-level approach. 

For this sample we manually extracted some concept terms that will be localized into Spanish. 
Figure 21 shows a screenshot of both Ontology Navigator and the Entity Properties View with 
information of the sample term “PestControl”. 



Page 104 of 115 NeOn Integrated Project EU-IST-027595 

 

 

Figure 21. Screenshot of the NeOn Toolkit Views used by the LabelTranslator Plug-in 

Task 3. Obtain ontology term translation(s). 
In order to obtain the most appropriate translation for each ontology element in the target language 
LabelTranslator uses the following techniques in the indicated order: 

 In step 1 the system obtains equivalent translations for all selected labels by accessing the 
linguistic assets listed in task 1. 

 In step 2 the system retrieves a list of semantic senses for each translated label, querying 
different third-party knowledge pools: Watson26, which indexes many ontologies available 
on the Web, and remote lexical resources as EuroWordnet. 

 In step 3 the senses of each context label are as well discovered as in step 2. 

 In step 4 the system uses a disambiguation method to sort the translations according to 
their context. LabelTranslator carry out this task in relation to the senses of each translated 
label and the senses of the context labels. At this stage, domain and linguist experts may 
decide to choose the most appropriate translation of the ones in the ranking. In default of 
this, the system will consider the one in the highest position. 

In Figure 22 we show a sample of the equivalent translations obtained for the term “PestControl”.  
Notice that the obtained translations are ranked according to ontology context.  

                                                 
26 http://watson.kmi.open.ac.uk/WatsonWUI/ 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology NetworksPage 105 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 

Figure 22. Equivalent Translations for the Term “PestControl” 
Task 4. Evaluate term translation(s). 
The current version of LabelTranslator does not provide a method for semi-automatically evaluate 
the translations obtained in the previous step. Therefore, we used a manual evaluation to perform 
this task.  

Based on the NeOn guidelines we would identify the following situation: 

Terminology evaluation 
Table 18 shows the results of the terminology evaluation of some ontology terms. The middle 
column shows the translations obtained by LabelTranslator in Spanish. The terminology evaluation 
comments of each translation are shown in the last column. 

 

 

 

 

 

 

 

 



Page 106 of 115 NeOn Integrated Project EU-IST-027595 

 

English Spanish Terminology evaluation 

Pest control Control de Plagas Plural test: the correct plural form 
has been used  

Unchanged test: ok  

Product protection (stored) Protection des denrées (stockées)  Plural test: ok  

Unchanged test: to verify  

Biopesticides Bioplagicidas  Plural test: ok Unchanged test: to 
verify  

Postharvest treatment  Traitement  Exact match for all  

 postrécolte  Languages 

  Plural test: ok  

  Unchanged test: ok  

Table 18. Terminology Evaluation Results  

Semantic fidelity evaluation 
In order to evaluate the semantic fidelity of the translation we would implement the “Backward 
Translation” criteria. Table 19 shows the semantic fidelity evaluation results (only few cases have 
been analyzed) for some terms translated to Spanish. 

Original Term (EN) Translation (ES) Backward Translation (EN) 

Pest control  Control de plagas  Pest control  

  Pest management 

Brush control  Cepillo de Control Brush of control  

   

Insect control Desinsectación Disinsecting 

   

Table 19. Semantic Fidelity Evaluation Results  

As we could see, in many cases the translation does not match exactly the original meaning. In a 
deeper analysis, taking in consideration the context and the topics (agriculture) we identified that 
the translations “cepillo de control” and “desinsectación” do not match the original meaning. The 
remainder translations are covered 100%. 
Stylistic evaluation 
Within this sample we did not carry out this step. 

Task 5. Ontology update. 

The ontology is updated with the resulting linguistic data, which is stored in the LIR model, a 
separate module adopted by the LabelTranslator NeOn plug-in for organizing and relating linguistic 
information within the same language and across languages to domain ontologies. 

Figure 23 shows the Linguistic Information page of the sample term “PestControl”. The linguistic 
page uses a model based on modular approach to store the linguistic information associated to 
each ontology term. 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology NetworksPage 107 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

 

Figure 23. Linguistic Information associated to Ontology Term “PestControl” 

8.4. Future Work 

In this chapter we have presented preliminary methodological guidelines for carrying out the 
ontology localization activity. These guidelines have been thought for a scenario which starts from 
an ontology already conceptualized without taking into account the multilingual and localization 
aspects. 

Further work related with this activity includes: the design of guidelines to support the scenario 
when the ontology is built using a process that allow handle multiple languages and cultural 
conventions without the need of re-design it. 

 

 
 
 



Page 108 of 115 NeOn Integrated Project EU-IST-027595 

 

9. Conclusions and Future Work 

As already mentioned in D5.4.1 [80], our aim within the NeOn project is to create the NeOn 
methodology for building ontology networks covering the drawbacks presented in the three 
analyzed methodologies (METHONTOLOGY, On-To-Knowledge, and DILIGENT), and benefiting 
from the advantages included in such methodologies, with respect to the aforementioned 
characteristics. 

Therefore, deliverable D5.4.1 [80] included the first version of the NeOn methodology for building 
ontology networks presenting the following contributions: 

 Analysis of how argumentation and collaboration dimensions are related to the different 
nine identified scenarios for collaboratively building network of ontologies. 

 Prescriptive methodological guidelines for carrying out the ontology specification activity, 
including three examples on how to apply the proposed methodological guidelines. 

 Methodological guidelines for reusing and re-engineering non-ontological resources. 

 Prescriptive methodological guidelines for reusing ontological resources, focused on 
general or common ontologies, domain ontologies as a whole, and ontology statements. 

 Methodological guidelines for reusing ontology design patterns by naive users. 

The second version of the NeOn methodology is included in this deliverable (D5.4.2) and is 
focused on: 

 improving and extending the methodological guidelines proposed in D5.4.1 [80]; 

 reusing ontology design patterns; 

 modularizing ontology networks; 

 evaluating ontology networks;  

 evolving ontology networks; and 

 localizing ontology networks. 

Furthermore, future methodological work (methods, techniques and tools) for continuing the 
presented step forward will be included in deliverable D5.4.3 focusing on: 

 selecting, comparing and combining non-ontological resources, ontological resources, and 
ontology design patterns for building ontology networks; and 

 mappings between ontological resources. 

We are also analyzing the possibility of providing in the next version of the NeOn methodology 
(that is, deliverable D5.4.3) methodological guidelines for: 

 deciding which implementation language is better for each type of ontologies; 

 deciding which knowledge should be represented as concepts, as relationships, etc.; 

 using naming conventions in the ontology (network) development. 

 

 

 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology NetworksPage 109 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

References 

1. H. Alani, S. Harris, and B. O'Neil. Winnowing Ontologies based on Application Use.  
Proceedings of 3rd European Semantic Web Conference (ESWC'06), Montenegro (2006). 

2. S. Angeletou, A. García-Silva, A. Gómez-Pérez, D. Maynard, M.C. Suárez-Figueroa, W. 
Peters, B. Villazón-Terrazas. NeOn Deliverable D2.2.2 Methods and tools supporting re-
engineering. NeOn Project. http://www.neon-project.org.  December, 2007. 

3. C. F. Baker, C. J. Fillmore, and J. B. Lowe, “The Berkeley FrameNet project,” Proceedings of 
the COLING-ACL (1998). 

4. J. Banerjee, W. Kim, H. Kim, H. Korth. Semantics and implementation of schema evolution in 
object-oriented databases. Proc. ACM SIGMOD Conf. Management of Data, 16(3), pp. 311-
322 (1987). 

5. K. Beck. Embracing Change with Extreme Programming. In: IEEE Computer, (Cover Feature), 
October 1999. 

6. K. H. Bennett, V. Rajlich. Software maintenance and evolution: a roadmap. In ICSE - Future of 
SE Track, pages 73–87, 2000. 

7. S. Bloehdorn. Ontology Evolution. Semantic Web Technologies - Trends and Research in 
Ontology-based Systems (John Wiley & Sons, 2006), 51-70. 

8. E. Blomqvist. Pattern Ranking for Semi-automatic Ontology Construction. In: Proccedings of 
SAC'08: Track on Semantic Web and Applications (SWA), Fortaleza, Brazil, March 16-20, 
2008. 

9. D. Bonino, F. Corno, L. Farinetti, A. Ferrato. Multilingual Semantic Elaboration in the DOSE 
platform. In SAC 2004, ACM Symposium on Applied Computing, 2004. 

10. J. Brank, M. Grobelnik, D. Mladenic. A survey of ontology evaluation techniques. In 
Proceedings of the Conference on Data Mining and Data Warehouses (SiKDD 2005), 
Ljubljana, Slovenia, 2005. 

11. P. Buitelaar, M. Sintek, M. Kiesel. A multi-lingual/multimedia lexicon model for ontologies. In 
Proc. ESWC'06, Budva, Montenegro., 2007. 

12. C. Brewster, H. Alani, S. Dasmahapatra, Y. Wilks. Data driven ontology evaluation. 
Proceedings of Int. Conf. on Language Resources and Evaluation, Lisbon, Portugal, 26–28 
May 2004. 

13. C. Caracciolo, J. Euzenat, L. Hollink, R. Ichise, A. Isaac, V. Malaise, C. Meilicke, J. Pane, P. 
Shvaiko, H. Stuckenschmidt, O. Svab-Zamazal, V. Svatek. Results of the Ontology Alignment 
Evaluation Initiative 2008. OAEI-2008 at the ISWC ontology matching workshop, Karlsruhe, 
2008. 

14. C. Catenacci, A. Gangemi, J. Lehmann, M. Nissim, V. Presutti, G. Steve. D2.1.1 Design 
rationales for collaborative development of networked ontologies – State of the art and the 
Collaborative Ontology Design Ontology. NeOn Project. Available at: http://www.neon-
project.org. February 2007. 



Page 110 of 115 NeOn Integrated Project EU-IST-027595 

 

15. P. Cimiano, P. Haase, M. Herold, M. Mantel, P. Buitelar. Lexonto: A model for ontology 
lexicons for ontology-based NLP. In OntoLex'07, Busan, South Corea., 2007. 

16. B. Cuenca Grau, B. Parsia, E. Sirin, A. Kalyanpur. Automatic par titioning of owl ontologies 
using -connections. In Description Logics, 2005. 

17. L. Chengye, X. Yue, G. Shlomo. Translation disambiguation in web-based translation 
extraction for english-chinese CLIR. In Workshop of SIGIR 2006, 2006. 

18. P. J. Cheng. Translating unknown queries with web corpora for cross-language information 
retrieval. In Proc. of the 27th annual international conference on Research and development in 
information retrieval, 2004. 

19. M. d'Aquin, A. Schlicht, H. Stuckenschmidt, M. Sabou. Criteria and Evaluation for Ontology 
Modularization Techniques. To appear in "Ontology Modularization", Christine Parent, Stefano 
Spaccapietra, Heiner Stuckenschmidt (editors.) Springer, (In press) 2009. 

20. M. d’Aquin, P. Haase, C. Le Duc, A. Zimmermann. D1.1.4 NeOn Formalism for Modularization: 
Implementation and Evaluation. NeOn Deliverable 2008.  

21. M. d’Aquin, P. Haase, S. Rudolph, J. Euzenat, A. Zimmermann, M. Dzbor, M. Iglesias, Y. 
Jacques, C. Caracciolo, C. Buil Aranda, J. M. Gomez. D1.1.3 NeOn formalisms for 
modularization: Syntax, semantics, algebra. NeOn Deliverable 1.1.3, 2008. 

22. M. d'Aquin, P. Doran, E. Motta, V. Tamma. Towards a Parametric Ontology Modularization 
Framework Based on Graph Transformation. International Workshop on Modular Ontologies, 
K-CAP 2007. 

23. M. d’Aquin, A. Schlicht, H. Stuckenschmidt, M. Sabou. Ontology modularization for knowledge 
selection: Experiments and evaluations. In Roland Wagner, Norman Revell, and Gu�nther 
Pernul, editors, Database and Exper t Systems Applications, 18th International Conference, 
DEXA 2007, Regensburg, Germany, September 3-7, 2007, Proceedings, volume 4653 of 
Lecture Notes in Computer Science, pages 874–883. Springer, 2007. 

24. M. d’Aquin, M. Sabou, E. Motta. Modularization: a key for the dynamic selection of relevant 
knowledge components. In Workshop on Modular Ontologies, 2006. 

25. P. De Leenheer, T. Mens. Ontology Management. Semantic Web, Semantic Web Services, 
and Business Applications, Chapter Ontology Evolution. State-of-the-art and Future Directions. 
Springer, 2007. 

26. P. De Leenheer, A. de Moor, R. Meersman. Context Dependency Management in Ontology 
Engineering: a Formal Approach. Journal on Data Semantics VIII, LNCS 4380, Springer-
Verlag, pp. 26-56 2007. 

27. K. Dellschaft, H. Engelbrecht, J. MonteBarreto, S. Rutenbeck, S. Staab. (2008). Cicero: 
Tracking Design Rationale in Collaborative Ontology Engineering. Proceedings of the ESWC 
2008 Demo Session.  

28. P. Doran, I. Palmisano, V. Tamma. SOMET: Algorithm and Tool for SPARQL Based Ontology 
Module Extraction. International Workshop on Ontologies: Reasoning and Modularity (WORM-
08), ESWC 2008. 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology NetworksPage 111 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

29. P. Doran, V. Tamma, L. Iannone. Ontology module extraction for ontology reuse: An ontology 
engineering perspective. In Proceedings of the 2007 ACM CIKM International Conference on 
Information and Knowledge Management, 2007. 

30. M. Dzbor, M. C. Suárez-Figueroa, A. Gómez-Pérez, E. Blomqvist, H. Lewen, and M. Espinoza. 
D5.6.2 Experimentation with parts of NeOn methodology. Technical report, NeOn Project, 
2009. Available at: http://www.neon-project.org. 

31. T. Declerck, A. Gómez-Pérez, O. Vela, Z. Gantner, D. Manzano-Macho. Multilingual lexical 
semantic resources for ontology translation. In Proceedings of LREC 2006, 2006. 

32. M. Espinoza, A. Gómez-Pérez, E. Mena. Enriching an ontology with multilingual information. In 
Proc. of 5th European Semantic Web Conference (ESWC'08), Tenerife, (Spain), June 2008. 

33. M. Espinoza, A. Gómez-Pérez, E. Mena. Labeltranslator - automatically localizing an ontology. 
In Proc. of 5th European Semantic Web Conference (ESWC'08), Tenerife, (Spain), June 2008. 

34. C. Fellbaum, Wordnet: An Electronic Lexical Database (MIT Press, 1998). 

35. M. S. Fox, M. Barbuceanu, M. Gruninger, J. Lin. An organization ontology for enterprise 
modelling. In: M. Prietula et al. (eds.), Simulating organizations: Computational models of 
institutions and groups, AAAI/MIT Press, 1998, pp. 131–152. 

36. A. Gangemi, C. Catenacci, M. Ciaramita, J. Lehmann. Modelling Ontology Evaluation and 
Validation. In Proceedings of the Third European Semantic Web Conference, volume 4011 of 
LNCS. Springer, 2006. 

37. A. Gangemi, C. Catenacci, M. Ciaramita, J. Lehmann. (2005). Ontology evaluation and 
validation - An integrated formal model for the quality diagnostic task. Technical Report, 
available at http://www.loa-cnr.it/Publications.html. 

38. J. Hartmann, Y. Sure, A. Giboin, D. Maynard, M. C. Suárez-Figueroa, and R. Cuel. Methods for 
ontology evaluation. Knowledge Web Deliverable D1.2.3. 2005. 

39. P. Haase, S. Rudolph, Y. Wang, S. Brockmans, R. Palma, J. Euzenat, M. d'Aquin.  NeOn 
Deliverable D1.1.1. Networked Ontology Model. November 2006. Available at: 
http://www.neon-project.org/. 

40. P. Haase, L. Stojanovic. Consistent Evolution of OWL Ontologies. Proceedings of the Second 
European Semantic Web Conference, Heraklion, Greece, 2005 (2005): 182-197. LNCS 3532, 
Springer. 

41. N. Ide, J. Veronis. Introduction to the special issue on word sense disambiguation: The state of 
the art. Computational Linguistics. Special Issue on Word Sense Disambiguation, 1998. 

42. M. Klein. Change Management for Distributed Ontologies. PhD thesis, Vrije Universiteit, 
Amsterdam), 2004. 

43. M. Klein, N. Noy. A Component-based Framework for Ontology Evolution. In Proceedings 
Workshop on Ontologies and Distributed Systems, IJCAI 2003 (Acapulco, Mexico). 

44. M. Klein, D. Fensel. Ontology versioning for the Semantic Web. 2001. 

45. S. Kohler, J. Euzenat, G. Herrero, C. Caracciolo. Evaluation of Mapping. NeOn deliverable 
D3.4.1, 2009. 



Page 112 of 115 NeOn Integrated Project EU-IST-027595 

 

46. A. Kubias, S. Schenk, S. Staab. SAIQL Query Engine - Querying OWL Theories for Ontology 
Extraction. In Poster Session of ESWC 2007. 

47. K. Linden. Word sense discovery and disambiguation. Academic Dissertation, University of 
Helsinki, Faculty of Arts, Department of General Linguistics, 2005. 

48. V. López, E. Motta, M. Dzbor, M. d’Aquin, S. Peroni, D. Guidi. D8.6. Final Version of the 
Question Answering System. OpenKnowledge Deliverable, 2009. 

49. A. Lozano-Tello, A. Gómez-Pérez. Ontometric: A method to choose the appropriate ontology. 
Journal of Database Management, 15(2):1–18 (2004). 

50. B. MacCartney, S. McIlraith, E. Amir, T.E. Uribe. Practical Par tition-Based Theorem Proving 
for Large Knowledge Bases. In Proc. of the International Joint Conference on Artificial 
Intelligence (IJCAI), 2003. 

51. A. Maedche, S. Staab. Measuring similarity between ontologies. Proceedings of the 13th 
Conference on Information and Knowledge Management (2002). LNAI Vol. 2473. 

52. D. Maynard, N. Aswani, W. Peters, F. Zablith, M. d’Aquin, NeOn Deliverable D1.5.3. Advanced 
Methods for Change Propagation between Networked Ontologies and Metadata (May 2009). 

53. T. Menzies. Object-oriented patterns: Lessons from expert systems. Software - Practice and 
Experience, 1(1), December 1997. 

54. E. Montiel-Ponsoda, G. Aguado, A. Gómez-Pérez, W. Peters. Modelling multilinguality in 
ontologies. In Coling 2008: Companion volume - Posters and Demonstrations, Manchester, 
UK, 2008. 

55. V. Novacek, L. Laera, S. Handschuh. Semi-automatic Integration of Learned Ontologies into a 
Collaborative Framework. International Workshop on Ontology Dynamics (IWOD-07) (2007). 

56. N. Noy, A. Chugh, W. Liu, M. Musen. A framework for ontology evolution in collaborative 
environments. In International Semantic Web Conference, pages 544–558, 2006. Athens, 
Georgia, USA. 

57. N.F. Noy, M.A. Musen. Specifying Ontology Views by Traversal. In Proc. of the International 
Semantic Web Conference (ISWC), 2004. 

58. N. Noy, S. Kunnatur, M. Klein, M. Musen. Tracking changes during ontology evolution. In 
International Semantic Web Conference, 2004. 

59. D. Oliver. Change Management and Synchronization of Local and Shared Versions of a 
Controlled Vocabulary. 2000. Stanford University. 

60. K. Ottens, M. P. Gleizes, P. Glize. A multi-agent system for building dynamic ontologies. 
Proceedings of the 6th international joint conference on Autonomous agents and multiagent 
systems (Honolulu, Hawaii: ACM, 2007), 1-7. 

61. M. T. Pazienza, A. Stellato. Exploiting linguistic resources for building linguistically motivated 
ontologies in the semantic web. In Second Workshop on Interfacing Ontologies and Lexical 
Resources for Semantic Web Technologies (OntoLex2006), held jointly with LREC2006, May 
24-26, 2006, Genoa, (Italy), 2006. 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology NetworksPage 113 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

62. R. Palma, P. Haase, Ó. Corcho, A. Gómez-Pérez and Q. Ji. An Editorial Workflow Approach 
for Collaborative Ontology Development. Springer. ASWC.  2008. 

63. R. Palma, J. Hartmann, P. Haase. OMV - Ontology Metadata Vocabulary for the Semantic 
Web, 2008. v. 2.4, available at http://omv.ontoware.org/. 

64. R. Palma, P. Haase, Q. Jiu. D1.3.2 Evaluation of propagation models and strategies. Technical 
Report D1.3.2; NeOn Deliverable, December 2008. 

65. R. Palma, P. Haase, Y. Wang, M. d’Aquin. D1.3.1 propagation models and strategies. 
Technical Report D1.3.1; NeOn Deliverable, November 2007. 

66. R. Porzel, R. Malaka. A task-based approach for ontology evaluation. Proceedings of the ECAI 
2004 Workshop on Ontology Learning and Population. PP. 9–16, 2004. 

67. V. Presutti, A. Gangemi, S. David, G. Aguado de Cea, M. C. Suárez-Figueroa, E. Montiel-
Ponsoda, M. Poveda. D2.5.1: A Library of Ontology Design Patterns: reusable solutions for 
collaborative design of networked ontologies. NeOn Project. Available at: http://www.neon-
project.org. February 2008. 

68. A. L. Rector. Normalisation of ontology implementations: Towards modularity, re-use, and 
maintainability. Proceedings Workshop on Ontologies for Multiagent Systems (OMAS) in 
conjunction with European Knowledge Acquisition Workshop, Siguenza, Spain, 2002. 

69. M. Sabou, M. d'Aquin, E. Motta. Exploring the Semantic Web as Background Knowledge for 
Ontology Matching. Journal on Data Semantics, no. XI (2008). 

70. M. Sabou, S. Angeletou, M. d’Aquin, J. Barrasa, K. Dellschaft, A. Gangemi, J. Lehmann, H. 
Lewen, D. Maynard, D. Mladenic, M. Nissim. NeOn D2.2.1. Methods for Selection and 
Integration of Reusable Components from Formal or Informal User Specifications. NeOn 
Project. Available at: http://www.neon-project.org. May 2007. 

71. F. Scharffe, Y. Ding, D. Fensel. Towards correspondence patterns for ontology mediation. In: 
Proceedings of The Second International Workshop on Ontology Matching, 2007. 

72. J. Seidenberg, A. Rector. Web ontology segmentation: Analysis, classification and use. In 
Proceedings of the World Wide Web Conference (WWW), Edinburgh, June 2006. 

73. P. Shvaiko, J. Euzenat, F. Giunchiglia, H. Stuckenschmidt. Proc. 3rd Intl. Workshop on 
Ontology Matching, Karlsruhe, 2008. 

74. L. Stojanovic. Methods and Tools for Ontology Evolution. PhD thesis, University of Karlsruhe 
(TH), Germany, August 2004. 

75. H. Stuckenschmidt. Toward Multi-Viewpoint Reasoning with OWL Ontologies. In Proc. of the 
European Semantic Web Conference (ESWC), 2006. 

76. H. Stuckenschmidt, M. C. A. Klein. Structure-based par titioning of large concept hierarchies. In 
International Semantic Web Conference, pages 289–303, 2004. 

77. M. C. Suárez-Figueroa, M. Fernández-López, A. Gómez-Pérez, K. Dellschaft, H. Lewen, M. 
Dzbor. NeOn D5.3.2. Revision and Extension of the NeOn Development Process and Ontology 
Life Cycle. NeOn project. http://www.neon-project.org. November 2008. 



Page 114 of 115 NeOn Integrated Project EU-IST-027595 

 

78. M. C. Suárez-Figueroa, A. Gómez-Pérez. First attempt towards a standard glossary of ontology 
engineering terminology. Proceedings of 8th International Conference on Terminology and 
Knowledge Engineering (TKE'08), 2008. 

79. M. C. Suárez-Figueroa, A. Gómez-Pérez. Towards a Glossary of Activities in the Ontology 
Engineering Field. 6th Language Resources and Evaluation Conference (LREC 2008). 
Marrakech (Morocco). 2008.   

80. M. C. Suárez-Figueroa, G. Aguado de Cea, C. Buil, K. Dellschaft, M. Fernández-López, A. 
García, A. Gómez-Pérez, G. Herrero, E. Montiel-Ponsoda, M. Sabou, B. Villazon-Terrazas, Z. 
Yufei. NeOn D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks. NeOn 
project. http://www.neon-project.org. February 2008. 

81. M. C. Suárez-Figueroa, G. Aguado de Cea, C. Buil, C. Caracciolo, M. Dzbor, A. Gómez-Pérez, 
G. Herrero, H. Lewen, E. Montiel-Ponsoda, V. Presutti. NeOn Deliverable D5.3.1. NeOn 
Development Process and Ontology Life Cycle. NeOn Project. http://www.neon-project.org. 
August 2007. 

82. M. C. Suárez-Figueroa, S. Brockmans, A. Gangemi, A. Gómez-Pérez, J. Lehmann, H. Lewen, 
V. Presutti, and M. Sabou. D5.1.1 NeOn Modelling Components. NeOn Project. Available at: 
http://www.neon-project.org. March 2007. 

83. F. M. Suchanek, G. Kasneci, G. Weikum. YAGO: A Large Ontology from Wikipedia and 
WordNet. Elsevier Journal of Web Semantics, 2008. 

84. E. Sunagawa, K. Kozaki, Y. Kitamura, R. Mizoguchi. An environment for distributed ontology 
development based on dependency management. In International Semantic Web Conference, 
pages 453–468, 2003. 

85. P. Starren, M. Thelen. General dictionaries and students of translation: A report on the use of 
dictionaries in the translation process. In Proceedings BudaLEX88, 1988. 

86. R. Trillo, J. Gracia, M. Espinoza, E. Mena. Discovering the semantics of user keywords. 
Journal on Universal Computer Science. Special Issue: Ontologies and their Applications, 
2007. 

87. M. Völkel. D2.3.3.v2 SemVersion: Versioning RDF and Ontologies. Technical report, University 
of Karlsruhe, January 2006. 

88. J. Völker, E. Blomqvist. D3.8.1 Prototype for Learning Networked Ontologies. NeOn Project. 
Available at: http://www.neon-project.org. February 2008. 

89. D. Vrandecic. The DILIGENT knowledge processes. Journal of Knowledge Management 9, no. 
5 (2005): 85-96. 

90. Y. Zhang and P. Vines. Using the web for automated translation extraction incross-language 
information retrieval. In Proceedings of the 27th annual international ACM SIGIR conference, 
2004. 

91. S. Bohner, R. Arnold. Software change impact analysis. IEEE Computer Society Press. 1996. 

92. P. Plessers. An Approach to Web-based Ontology Evolution. PhD Thesis, Department of 
Computer Science, Vrije Universiteit Brussel, Brussel, Belgium. 2006 



D5.4.2. Revision and Extension of the NeOn Methodology for Building Contextualized Ontology NetworksPage 115 of 115 

2006–2009 © Copyright lies with the respective authors and their institutions. 

 

93. E. J. Chikofsky, J. H. Cross. Reverse engineering and design recovery: A taxonomy. IEEE 
Software 7(1), pp. 13-17. 1990. 

94. H. A. Proper, T. A. Halpin. Conceptual Schema Optimisation: Database Optimisation before 
sliding down the Waterfall. Technical Report 341, Department of Computer Science, University 
of Queensland, Australia. 1998. 

95. J. Banerjee, W. Kim, H. Kim, H. Korth. Semantics and implementation of schema evolution in 
object-oriented databases. Proc. ACM SIGMOD Conf. Management of Data, 16(3), pp. 311-
322. 1987. 

96. B. Parsia, E. Sirin, A. Kalyanpur. Debugging OWL ontologies. Proc. 14th Int’l Conf. World Wide 
Web. ACM Press, pp. 633-640. 2005. 

97. E. Bozsak, Marc Ehrig, Siegfried Handschuh, Andreas Hotho, Alexander Maedche, Boris 
Motik, Daniel Oberle, Christoph Schmitz, Steffen Staab, Ljiljana Stojanovic, Nenad Stojanovic, 
Rudi Studer, Gerd Stumme, York Sure, Julien Tane, Raphael Volz, Valentin Zacharias. KAON - 
Towards a large scale Semantic Web. In Proceedings of E-Commerce and Web Technologies, 
Third International Conference, EC-Web 2002, Aix-en-Provence, France, September 2-6, 
2002. pp 304-313. Springer. 

98. C. Caracciolo, J. Heguiabehere. NeOn Deliverable D7.2.3. Initial Network of Fisheries 
Ontologies. NeOn Project, March 2009. 

99. C. Caracciolo, A. Gangemi. NeOn Deliverable D7.2.2. Revised and Enhanced Fisheries 
Ontologies. NeOn Project, August 2007. 


