NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies
Integrated Project (IST-2005-027595)

Priority: 1IST-2004-2.4.7 — “Semantic-based knowledge and content systems”

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2)

Deliverable Co-ordinator: Wim Peters, Aldo Gangemi

Deliverable Co-ordinating Institution: USFD/CNR

Other Authors: Valentina Presutti (CNR); Dunja Mladenic (JSI); Raul
Palma (UPM); Klaas Dellschaft (UKO-LD); Alessandro Adamou (CNR),
Enrico Daga (CNR), Holger Lewen (UKARL), Michael Erdmann, Anne
Becker (ONTO)

Document Identifier: NEON/2009/D2.3.2/v1.1 Date due: January 30, 2009
Class Deliverable: NEON EU-IST-2005-027595 Submission date: September 15, 2009
Project start date: March 1, 2006 Version: v1.1
Project duration: 4 years State: Final

Distribution: Public

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 2 of 105 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is a part of the NeOn research project funded by the IST Programme of the
Commission of the European Communities by the grant number IST-2005-027595. The following
partners are involved in the project:

Open University (OU) — Coordinator Universitat Karlsruhe — TH (UKARL)
Knowledge Media Institute — Kmi Institut fir Angewandte Informatik und Formale
Berrill Building, Walton Hall Beschreibungsverfahren — AIFB

Milton Keynes, MK7 6AA Englerstrasse 11

United Kingdom D-76128 Karlsruhe, Germany

Contact person: Martin Dzbor, Enrico Motta Contact person: Peter Haase

E-mail address: {m.dzbor, e.motta} @open.ac.uk E-mail address: pha@aifb.uni-karlsruhe.de
Universidad Politécnica de Madrid (UPM) Software AG (SAG)

Campus de Montegancedo Uhlandstrasse 12

28660 Boadilla del Monte 64297 Darmstadt

Spain Germany

Contact person: Asuncién Gémez Pérez Contact person: Walter Waterfeld

E-mail address: asun@fi.upm.es E-mail address: walter.waterfeld@softwareag.com
Intelligent Software Components S.A. (ISOCO) Institut ‘Jozef Stefan’ (JSI)

Calle de Pedro de Valdivia 10 Jamova 39

28006 Madrid S1-1000 Ljubljana

Spain Slovenia

Contact person: Jesus Contreras Contact person: Marko Grobelnik

E-mail address: jcontreras@isoco.com E-mail address: marko.grobelnik@ijs.si
Institut National de Recherche en Informatique University of Sheffield (USFD)

et en Automatique (INRIA) Dept. of Computer Science

ZIRST — 655 avenue de I'Europe Regent Court

Montbonnot Saint Martin 211 Portobello street

38334 Saint-Ismier S14DP Sheffield

France United Kingdom

Contact person: Jérdome Euzenat Contact person: Hamish Cunningham
E-mail address: [Iglesi.euzenat@inrialpes.fr E-mail address: [Iglesi@dcs.shef.ac.uk
Universitat Koblenz-Landau (UKO-LD) Consiglio Nazionale delle Ricerche (CNR)
Universitatsstrasse 1 Institute of cognitive sciences and technologies
56070 Koblenz Via S. Martino della Battaglia,

Germany 44 — 00185 Roma-Lazio, ltaly

Contact person: Steffen Staab Contact person: Aldo Gangemi

E-mail address: [Jgle@uni-koblenz.de E-mail address: aldo.gangemi@istc.cnr.it
Ontoprise GmbH. (ONTO) Food and Agriculture Organization
Amalienbadstr. 36 of the United Nations (FAO)

(Raumfabrik 29) Viale delle Terme di Caracalla 1

76227 Karlsruhe 00100 Rome

Germany Italy

Contact person: Jurgen Angele Contact person: Marta Iglesias

E-mail address: angele@ontoprise.de E-mail address: marta.iglesias@fao.org
Atos Origin S.A. (ATOS) Laboratorios KIN, S.A. (KIN)

Calle de Albarracin, 25 C/Ciudad de Granada, 123

28037 Madrid 08018 Barcelona

Spain Spain

Contact person: Tomas Pariente Lobo Contact person: Antonio Lopez

E-mail address: tomas.parientelobo@atosorigin.com E-mail address: alopez@kin.es

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 3 of 105

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed to the writing of this document or its
parts:

CNR

JSI
USFD
UKO-LD
UPM
ONTO
UKARL

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 4 of 105

NeOn Integrated Project EU-IST-027595

Change Log
Version Date
0.1 06-01-2009
0.2 09-02-2009
0.3 12-02-2009
0.4 20-02-2009
0.5 21-02-2009
0.6 27-03-2009
0.7 01-04-2009
0.8 10-04-2009
0.9 14-04-2009
0.10 15-04-2009
0.11 16-04-2009
0.12 19-04-2009
0.13 14-09-2009

Amended by
Wim Peters
Wim Peters
Wim Peters
Wim Peters
Wim Peters

Aldo Gangemi

Wim Peters

Alessandro Adamou, Wim Peters

Wim Peters, Aldo Gangemi
Wim Peters, Aldo Gangemi
Wim Peters

Aldo Gangemi

Wim Peters, Aldo Gangemi

Changes
TOC
Added section 4.7
Added section 4.5 and 4.6
Added section 4.3
Added section 4.3

Added new plugin descriptions, plugin
models, and partly filled sections 1,2,3,5

Editorial integration
Added improved version of section 5
Added section 4.8 and figures
Changes figures
Minor editorial improvements

Revision of figures, styles, table of contents;
added COAT figure and N3 code; some text
revision

Improvements as requested by reviewers,
also reinstating changes as in 0.12 that were
missing in version sent to reviewers (0.11)

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 5 of 105

Executive Summary

This deliverable describes practical methods for collaborative ontology design support in the form
of a number of tools. It introduces two new tools for collaborative design that have been recently
added to the NeOn palette in WP2 research development activities (COAT and SocialOnto). It also
contains lightweight formal descriptions of five existing tools for collaborative design, which come
from heterogeneous requirements, approaches, and NeOn work packages. These lightweight
descriptions receive formal owl definitions in C-ODO Light format (see Deliverable 2.1.2 for a
detailed description). Their alignment with the C-ODO Light framework enables a uniform interface
for tool selection and workflow definition, implemented by the Kali-ma plug-in. This will equip the
NeOn Toolkit with a design-oriented, rather than language-oriented user interface, and aims at
facilitating the integration of existing NeOn Toolkit plug-ins in anticipation of their use in a
collaborative context, for which Kali-ma will provide an environment, which is only sketched here
(Section 5). Kali-ma architecture, implementation, and testing will be detailed in the forthcoming
deliverable D2.3.3.

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 6 of 105 NeOn Integrated Project EU-IST-027595

Table of Contents

WORK PACKAGE PARTICIPANT S ..ttt e e et e e e et s e e e atn e eeeaean 3
L0 o A N (€7 = 1 PP 4
EXECUTIVE SUMM A RY .ottt et e e e e e e e e e e e et e e e e et e e e ee b e e e eetaeeeeeenean 5
TABLE OF CONTENTS ..ottt sttt e e e ettt r e e e e e e e e et r e e e e e e e eetbaa e neeeneeeas 6
I S IO Lo 1A = I PPN 8
I S O 1 (] U N 9
I N I 2 10 1 I [] 11
2. GOAL OF THIS DELIVERABLEottt e e e e e e et eeeaneeene 12
3. COLLABORATIVE ONTOLOGY DESIGN AND C-ODO LIGHTcoiiiiiiiii e, 13
I O 1 1@ 2 T | o} SR PRPPRPPRRN 14
4. DESCRIPTION OF THE TOOLS ...ttt e e e e et s e e e et s e e e et e e e eeaaeeeeens 17
4.1 WOTKFIOW SUPPOIT (UPM) oottt e e e e e e s s e e e e e e e s s nnnab e e e e e e e s eansnaeeeeeesesnnnreneees 17
4.2 Integration of Open Rating System, Oyster, Alignment Server and Watson (UKARL)cc..c.... 22
4.3 Argumentation Support on a Semantic Wiki (Cicero) (UKO)ccoruiiiiiiiiiiie i 24
4.4 Collaboration SErVEr (ONTO) uiiiiiiieeee e ittt e e e e e e s sttt e e e e e e e s s s beteeeeeaeeesaassabeeeeeaeessaasstaraeessaansneneees 30
N @ a1 (o1 o] (o I (V1S | PO PRRP TR 34
R To T 110 o) (o I (1151) I PERP TR 35
4.7 COAT: Collaborative Ontology-based text Annotation TOol (USFD)cccciiiiiiiiiiiieeiiee, 46
4.8 C-ODO Light-based ODP repository management (CNR)ccccuviriiee i 54
5. CONCEPTUAL NAVIGATION OF DESIGN TOOLS AND THE KALI-MA PLUGIN.................. 57
5.1 QUEINYING the 100l SPACE ... ittt et e ettt e e s sttt e e e sabe e e e s snbeee s sabeeeesanbeeeeeanes 57
5.2 Beyond the logic-driven approach to modelling ontologiescooviiiiiiiiiiiie e 58
5.3 Benefits of C-ODO Light-based plug-in deSCriptioNScciceiiiiiiiee e 60

5.4 Operational FEOUITEIMENTSo ittt ettt e e ettt e e e st et e e e s bbe e e e e abbeeeesaabeeeeaabeeeessnbaeeeeanes 61

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 7 of 105

5.5 INtEroPerability SUPPOIT ..o ittt e e bt e e skt et e e s aabe e e e aabe e e e s anbaeeeeane 62
6. CONCLUSIONS AND FUTURE WORKcottiiiieiiiieeiienieeeieesiiessinsseesnrensnensreennnnnnnnnnennnssnnnnnnnnnnes 63
REFERENGCES ...ttt ettt e e e e et e e e e e e e e e e e s nnnnees 64
APPENDIX. ..ot e 66

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 8 of 105 NeOn Integrated Project EU-IST-027595

List of tables

Table 1Top five users according to three importance criteria from social network analysis 40

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 9 of 105

List of figures

Figure 1: The C-ODO Light NEIWOIKccooiiiiiiiiii e 13
Figure 2: The pattern layer in the C-ODO Light Network ... 14
Figure 3: The core layer in the C-ODO Light network...............ccccoo 14
Figure 4: The alignment layer in the C-ODO Light Network ... 15
Figure 5: The plugin layer in the C-ODO Light NetWOrKooiiiiiiiiiiiiieeeee e 15
Figure 6: The C-ODO Light NetWOrk ... 16
Figure 7: The vocabulary for the class DesignTool in C-ODO Light...........ccccooi 16
Figure 8: CODO Light model of Workflow SUPPOrt..........oooiiiiiiiiii e 19
Figure 9: Workflow Support in C-ODO Light: basic axioms + input/output knowledge types wrt
tasks declared fOr the tO0I............ueiiiiie e 20
Figure 10: Workflow Support in C-ODO Light: basic axioms + implemented tasks declared for the
€0 o) 21
Figure 11: Workflow Support in C-ODO Light: basic axioms + precedence relations between tasks
.. 22
Figure 12: Schematic overview of Open Rating System.............ciiiiiiiiii e 23
Figure 13: ORS in C-ODO Light ...ccooiii 23
Figure 14: Use case diagram of the Cicero Wiki................cccc 25
Figure 15: Use case diagram for the Cicero PIUg-iNc.uuuiiiiiiiiiiii e 26
Figure 16: Cicero in C-ODO Light: basic axioms + input/output knowledge types wrt tasks declared
L0 10T (oo PR 27
Figure 17: Cicero in C-ODO Light: basic axioms + implemented tasks declared for the tool 28
Figure 18: Cicero in C-ODO Light: basic axioms + precedence relations between tasks............... 29
Figure 19: Cicero in C-ODO Light: basic axioms + tasks (functionalities) included in the tool 30
Figure 20: Collaboration Server in C-ODO Light: basic axioms + input/output knowledge types wrt
tasks declared fOr the t00...... .. . e e e e e e e e e e 32
Figure 21: Collaboration Server in C-ODO Light: basic axioms + implemented tasks declared for
111 (o o) T 33
Figure 22: Collaboration Server in C-ODO Light: basic axioms + precedence relations between
162 1] €U 34
Figure 23: OntoConto in C-ODO Light........... 35
Figure 24: A subset of users that have edited the same pages as at least three other users (min.
vertex degree = 3) and share at least five pages with them (min. edge weight =5)....................... 38

Figure 25: Graph of the most collaborative users (min. edge weight=4, min. Vertex degree=3)
showing an isolated group of four anonymous users actively working on a group of 9 wiki pages

(o] o 4T | o PP UEPRP PSSR 39
Figure 26: Distribution of degree centrality among the Semantic Web Wiki users 39
Figure 27: SocialOnto in C-ODO Light..........ooooiiii 45
Figure 28: a simplified overview of COAT’s functionalityccccoiiiiiiiiiii e 47

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 10 of 105 NeOn Integrated Project EU-IST-027595

Figure 29: C-ODO Light model of COAT ... 48
Figure 30: Annotation with oNtology ClasSSES.........ciiii i 51
Figure 31: Addition Of @ttribULESoeeiiiiieee e 51
Figure 32: Buttons in ANNOtator GUIooo i 52
Figure 33: ANNOtation Ty PES .. oo e e e e e e et e e e e e e e e e a e e e aeeaaaes 53
Figure 34: the ODP repOSitOrycoooeiiiiiiceee 55
Figure 35: the ODP liIDrary DrOWSETcooiiiiiiiiiiiie et a e e e e 55
Figure 36: C-ODO Light-based organization of design tools as performed by Kali-ma. 59

Figure 37: Usage of extension points provided by Kali-ma for the generation of plug-in widgets... 61

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 11 of 105

1. Introduction

Navigating the sea of requirements, specifications, and capabilities of software components is a
difficult task. It encompasses the know-how of good software engineers, and has been
implemented by many different languages and methods. As an important disclaimer, we are not
going to propose a new one.

On the other hand, much less has been developed for ontology design requirements and
descriptions, and C-ODO is a set of ontologies that attempts to provide a vocabulary to talk about
that. When dealing with ontology design, however, most of the activities are carried out with the
help of software tools, so that the worlds of ontology design and software design have a
reasonable overlap, which goes well beyond the need of good software tools in order to perform
good ontology design. As the recent history of the Web of Data shows, the development of RDF
datasets, their reengineering practices, the usage of OWL vocabularies to reason on them, and
now also their visualization and interaction aspects are becoming prominent and they largely
overlap web design.

It is no surprise then that after the first release of C-ODO in 2006 (D2.1.1, [23]), which was
concentrated on describing the practices of ontology design as a mainly human-centred set of
activities, we started realizing that more effort should be involved in describing the actual pieces of
software that accompany those activities, and the actual data (“knowledge types”) that are
managed computationally.

This deliverable is based on the results of the new developments in the definition of C-ODO Light,
as they result from its application to the description of several design tools developed in NeOn as
plugins to the NeOn Toolkit.

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 12 of 105 NeOn Integrated Project EU-IST-027595

2. Goal of this deliverable

This deliverable has two main objectives.

First, to introduce new tools for collaborative design that have been recently added to the NeOn
palette in WP2 research development activities.

Second, to gather a lightweight formal description of existing tools for collaborative design, which
come from heterogeneous requirements, approaches, and NeOn work packages. This second
objective aims at a clear match between ontology design functionalities and the possible
implementations of those functionalities in NeOn. A practical outcome of this second objective is
constituted by the ongoing work on the Kali-ma tool, whose architecture is outlined at the end of
this deliverable. This plug-in will be able to help users overcome the problem of locating available
functionalities within the NeOn Toolkit framework, and provides new ways of composing
implemented functionalities according to explicit design needs.

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 13 of 105

3. Collaborative Ontology Design and C-ODO Light

This deliverable has dependencies with regard to the deliverable D2.1.2 (Model for collaborative
design of networked ontologies (v2)), where the C-ODO network of ontologies has been updated
and reconstructed as C-ODO Light, which deals with new requirements:

1. Ability to formalize tool descriptions in terms of input/output data, functionalities, interface
objects and interaction patterns;

Alignments to existing vocabularies such as DOAP, FOAF, OMV, etc.
Lighter axiomatization (e.g. no anonymous classes in restrictions)
Patterns-based design, which reuses the ontologydesignpatterns.org practices

C-ODO Light (Fig. 1) is briefly summarized in the following section.

URI
cpannotatio ..
S pa S

T

U objectrole.owl

““-u\..____\q—h_

5 classificat ..

URI

-~ o place. uwl
5 participati ... 5 partof.owl
“-,. l\
{":}cnmmunmes owl ?.,= \,sequem:e uwl =-;E E,cnllenmne

/ 5 topic.owl
URI
scn ion. u»wl
URT \uﬂnmemterva B /‘

g agentrole.owl =
& intensionex ..

/

G specializat ... | Y% controlflow.owl
X LRI

g information ..

w5 situation. mvl

o description ...

s, . =
| Al taskexecuti ...
LIRT k “‘*-—-; /ﬂ f

o taskrole.owl urt
oy trustep.owl

% codprojects.owl

Egcudclata uwl ﬂ/ o codworkflow ..
AN

\'"E}cu-dinterfac — ””cudkernel.mvl 4~ <555 codarg.owl

uRI m1L fﬁ %I I:D:;mlj;lﬂ-ﬂ\

oy Codinteract ..
5 codtools.owl 7

N7

% codolight.owl

LRI LR action.owl

o gy ExtEndedtru ..

.y Coat2codo.owl \f
5% logsnaZcodo.owl | 4% d2codo.ow /; \\ urz
= ;f LRI gy SWeEttDOls. 0wl “ax agents.owl
/ \I:gEDdDZD‘W| owl

W% ciceroZeodo.owl | | S5 facebookmap ...

LRI LRI

~ar L50rs2codo.owl way editorialwo ...

g sSom2codo.owl /ﬁ'
B(um AN
<5 sweettools2 2 5 accessRight.owl

\\]‘ U som 'é/ o

— _J
J ?\({'ﬂdﬂapkﬂ-ﬂu owl LB entity.owl |
-________‘. LRI
<5 accessright 1]\ \"mp ™ 5 OWL2

) <& omv2codo.owl J' ——= % ol 10b.owl l

URI
L7 im2codo.owl war index.rdf \‘\)
5 owl22codo.owl Uiny| |8 rdf-schema
YR ontology

&1

Eﬁtrust!cﬂdﬂ owl

Figure 1: The C-ODO Light network

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 14 of 105 NeOn Integrated Project EU-IST-027595

3.1 C-ODO Light

The C-ODO Light network of ontologies is currently organized according to 4-layer architecture:

1. Pattern layer: it contains reusable content ontology design patterns [22], such as sequence,
partof, situation, collectionentity, etc. The patterns (Fig. 2) are reused in the design of the
ontologies constituting the “corolla” architecture of C-ODO Light.

E{Jﬁcmnnﬂmtiu...

e :}vﬁﬁm S esael]

'utlasnfu:at

| s place.owl |

”RI pnmclpnrl 5__”'“ parmf w.rl

E Eﬁ-tﬂpl[uwl

' \..,' intensionex ..

E{J.,R-Irdescriptiu-n

\'ﬂlrcummu nities. uwl ?"" "'";que il Wl {"-'!’I..E?.”FE“E.’.‘F

| \I:EUESEFIDTIDH nwl -m_ﬂ

T {Jﬂtaske xtcutl

/ = mfi;ma@\nz uj;k;'*ﬁ"' \ / ;gg;ms;gpm

Figure 2: The pattern layer in the C-ODO Light network

2. C-ODO layer: it contains the nine modules of the C-ODO light core network of ontologies,
organized as in a corolla, with codkernel module in the centre, and the modules: coddata,
codprojects, codworkflows, codarg, codsolutions, codtools, codinterfaces, and
codinteraction importing codkernel (Fig. 2).

" EderDJEEl'S m\rl ;
ucu-ddata nwl LT fl 5”R1cmurkfluw
.- H - el .o—f’”"w A S x"\
: ‘Hgfﬂdlﬂtfrf&c P.“ ”RIl:u-dkernEI owl *'F—' \'ﬁ}fﬂdarg owl |

iun: #\]liﬁl /ﬁ :.”RIﬁf \

ucudmtera:r B e ucudsulutlun
L cmimnls uwl /"

PH |

Figure 3: The core layer in the C-ODO Light network

[urr

3. Alignment layer: it consists of the modules containing mapping axioms between C-ODO
Light and related vocabularies, currently: OMV, DOAP, FOAF, NeOn Trust ontology, NeOn
Access Rights ontology, NeOn OWL1.0 metamodel, NeOn OWL2 metamodel, the RDF-
OWL datamodel, and the SweetTools vocabulary (Fig. 3).

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 15 of 105

E&exten&emru
B

|~ sweettools.owl |

LA frz=

. 5 codolight.ow |

R
{ g action.owl |

| sweettoolsZ ... |

L\

YR rust 2codo.owl \\]I

e\
[- e

\'f.:hccessrlght 1\\ ______________________
— V[[omzedoou] ~ v e
L

LB hdm2codo.owl [g
| L5 ontology |

;eﬁfﬂtit?.ml L l 1

Figure 4: The alignment layer in the C-ODO Light network

4. Plugin layer: it consists of the modules containing the descriptions of the NeOn plugins
related to ontology design, formalized in OWL by reusing the C-ODO vocabulary and some
of the alignment modules (Fig. 4).

R A

LRI | URI

& logsnazcodo.owl | | G xd2codo.ow |
i cicero2codo.owl |

| v editorialwo ... |

| +5¢ sweettool

g doapZcodo.oy

UL trustZeodo.owl |

| 45 taors2codo.owl |

| nar omv2codo.owl |

Lt S

Figure 5: The plugin layer in the C-ODO Light network

The transitive closure of all modules in the four layers is loadable through the OWL ontology:
http://www.ontologydesignpatterns.org/cpont/codo/allcodomappings.owl, which only contains
owl : import axioms. An example of selected imports in the network is shown in Fig. 6.

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 16 of 105 NeOn Integrated Project EU-IST-027595

LRI
o plugininferences.owl |

¥ designaspects.owl | | U7 logsna2codo.owl |

| v allcodomappingsplugins.owl — % facebookmapper2codo.owl

| o coatZcodo.owl I % editorialworkflow2codo.owl
URI R
o t50rs2codo.owl | P
| . CiceroZcodo.owl |
% wd2codo.owl
e odm2codo.owl ¢ omvZcodo.owl

/ \\ ”“I cudullghr owl
.,

Figure 6: The C-ODO Light network

A relevant fragment of C-ODO is depicted in Fig. 7.

| codtools:ProgrammingLanguage ‘ | codinteraction:UserType
|-4,— codtools:isProgrammingLanguageOf : codtools:DesignTool 1 codtools:isUserTypeFor : codtools:DesignTool

5 o/
N
coddata:KnowledgeType ™~ 2 - =
T PR A Kniwl!: = X Z codkernel:DesignFunctionality
= 4 i eResource & = v
= o a:s rlassilies A 9 codtools:DesignTool | codtools:isimplementedin : codtools:DesignTool or codtools PleceOfSoftware
I H owl:Thini ™ i . =
?_fl codtools:isinputTypeFor] B |™ codtools:appliesPattern : codinteraction:SoftwareEngineeringPattern 9 taskexecution-isExecutedin : codkernel:DesignOperation
[codtools:isOutputTypeFor : owl:Thing <~ _|m codtools:appliesTechnique : codtools:Technique o =

| codtools:hasinputType : coddata:knowledgeType[1.]

|# codtools:hasProgramminglanguage : codtools:ProgrammingLanguage(1.]
|® codtools:hasUserType : codinteraction:UserType([1.]

M codtools:implements : codkernel:DesignFunctionality[1.]

| codtools:includesCapability : codtools:PieceOfSoftware

Figure 7: The vocabulary for the class DesignTool in C-ODO Light

NeOn

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 17 of 105

4. Description of the tools

A number of tools are described in various ways in the following sections: free text annotated with
C-ODO concepts, C-ODO lite UML diagrams, etc., and for each one there is an ontology that
instantiates C-ODO Light concepts for their functionalities, pieces of software, knowledge types,
etc.

4.1 Workflow Support (UPM)

The main purpose of the Workflow Support feature is to manipulate changes proposed to
ontologies according to a well-defined process that coordinates who, when and how the ontology
changes. In particular, the workflow feature supports (i) the identification of users to the system, (ii)
the management of the workflow activities and (iii) the user-interaction with the workflow. For the
workflow management, the component (i) takes care of enforcing the constraints imposed by the
collaborative workflow (described in D1.3.1), (ii) creates the appropriate action individuals of the
workflow ontology (described in D1.3.2) and (iii) registers them into the distributed registry Oyster
[24]. Hence, whenever a new workflow action is performed, the component performs the following
tasks:

e It gets the identity and role of the user performing the action (if it is an explicit action) e.g.
send to approve, or the associated change (if it is an implicit action) e.g. adding a new class
implicitly creates an insert action.

¢ It gets the status of the ontology element associated to the action/change.

e It verifies that the role associated to the user can perform the requested action when the
ontology element is in that particular status.

e If the verification succeeds, it creates the workflow action and registers it.

o If the verification fails, it undoes the associated change(s) for the implicit actions because
the complete operation (e.g. adding a new class) failed.

To support the user’s activities we rely on the ontology editor of NeOn Toolkit for the edition of
ontology elements. Additionally, the NeOn Toolkit is extended with a set of views that allow editors
to (i) see the appropriate information of ontologies in the editorial workflow and (ii) perform the
applicable workflow actions (approve, reject, etc.), depending on their role. There are four views:

e Draft view: Shows all proposed changes (from all editors) to that ontology version. In
accordance to FAO scenario the changes of the current editor are editable while changes
from other editors are non editable.

e Approved view: Shows the approved changes.
e To Be Approved view: Shows all changes (from all editors) pending to be approved.

e To Be Deleted view: Shows all proposed deletions (from all editors).

4.1.1 The Functionality of workflow support in CODO Light terms

This section describes the functionality of the workflow support implemented as a NeOn Toolkit
Feature. The elements from the CODO Light ontology used in this description are in italics.

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 18 of 105 NeOn Integrated Project EU-IST-027595

The workflow feature implements a CollaborativeOntologyDevelopmentFunctionality and it is an
instance of a CollaborativeOntologyDevelopmentTool. In a nutshell, it supports ontology editors
with different roles (instances of UserType) to propose changes, which are validated or rejected
later by an authorized user. The workflow feature takes care of enforcing the constraints imposed
by a CollaborativeWorkflow which coordinates who, when and how an ontology changes. Hence,
the workflow defines the actions that ontology editors can perform according to their role and
depending on the state of the ontology elements (for additional information we refer the reader to
D1.3.1 and D1.3.2). Furthermore, users are also able to visualize depending on their role, the
proposed changes.

The functionalities supported are (CollaborativeOntologyDevelopmentFunctionality):

e User Identification: Identifies users to the system and log them in. The user information
includes user first name and last name and user role.

o Workflow Management: Based on the predefined collaborative workflow, it performs
several tasks (CollaborativeWorkflowTask): enforces the workflow constraints, create
appropriate workflow instances (of workflow ontology) and register them into the ontology
registry.

e User Interaction in the workflow: Support the following tasks
(CollaborativeWorkflowTask): visualization of the appropriate information of ontologies in
the editorial workflow and (ii) execution of the applicable workflow actions (approve, reject,
etc.), depending on their role.

Figure 8 below illustrates the CODO-based conceptual design of the workflow support.

Figures 9-11 illustrate the editorialworkflow2codo.owl model (see Appendix for n3 format), which
describes the basics of the tool in terms of C-ODO Light vocabularies. The figures represent views
of editorialworkflow2codo.owl for functionalities included in workflows (Figure 10), precedence
relations between functionalities (tasks, Figure 11), and input/output knowledge types for a
functionality (Figure 9).

Fig. 9 illustrates the basic axioms and the input and output types for the workflow support tasks.
Fig. 10 illustrates basic axioms about functionalies such as Changelogging,
WorkflowVisualization and WorkflowManagement.

Fig. 11 presents a view on the basic axioms combined with precedence relations between tasks
that capture the workflow restrictions of the tool.

Boxes represent classes, aligned to codarg.owl vocabulary, while triangles represent individuals
(design tools, workflows, functionalities, knowledge types, user types).

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 19 of 105

Collaborative
Ontology UserType
Development
Tool
subClassOf
instanceOf
Collaborative usesConcept . representedBy
Ontology |[* Collaborative:
Ontology isUsertTypeOf iy Workflow
Development Editor
Functionality
inslanceO# I|1sl.ant:e0%A defines defines
y U:F" Workflow
entification Management ; Subject
g Workflow Validator e pjerl Action State
Support
Feature 4 ¥ L3
user hasinputData
interaction in
workflow
basedOn
hasOutputData
uses uses
Enforce
ontology T pecute —> Workflow
anges :crtio:w Constraints
\ Create uses | Workflow
™~ —* Individuals Ontology
» Visualize
Changes
Register uses Ontology
hasTask — Individuals Registry
hasTask
instanceOf
Collaborative
Workflow
Task

Figure 8: CODO Light model of Workflow Support

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 20 of 105 NeOn Integrated Project EU-IST-027595

URI :
n-uatn o B UserType
w

subClassOf

L2 Userinformation

<% OntologyChangelnformation |

% UserRole

| 5 WorkflowState Changelnformation |

A\

DecidelfNewlUser_Yes

A A\

j DecidelfUserlsallowed DeCidelfNewlser

Register isClasdifiedBy A
i} Lagln

ChangeOntology

prdEntification

OntologylDEType
m

DecidelfTaskReguiresOntolog

A‘ putType
wistateChang

ionKType hasing

hasl
ChangeLogging rasinpl

WorkflowVisualizatign

A\

DecidelfUserlsAllowed Yes

eliverErforMessageTolser A

i E DecidelfNewUser_No

DecidelfUserlsAllowed_No

A\

guiresOntologyChange_Yes

nationkK Type

A\

SynchronizeChanges

A

CaptureOntologyAxiom
n o DecidelfTaskRequtee

/2

WorkflowManagement

VisualizeChanges
A ChangeManagementTool

WorkflowSupportTool

Figure 9: Workflow Support in C-ODO Light: basic axioms + input/output knowledge types
wrt tasks declared for the tool

NeOn

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 21 of 105

OntologylDKType

% Annotation
' il

Ll =] v

o5 UserType
v

5% Userinformation

ss0f

<% UserRole

<% OntologyChangelnformation |

/

S WorkflowStateChangelnformation |

sitiedBy

A UserinformationKType Aﬂ " DecidelfNewUser_Yes
teerldentifica

OntologyaxiomListK Type

hasRart A A
isClassifiedBy eifUserisAllowed pecigelfNewlser
DecidelfTaskReguifiesOntologyChange Register isClasg A
A art Lagln
hapgeUntology

wStateChangeInformationK Type RegisterworkflowAction a

A DecidelftiserlsAllowed_Yes

fAntologyChangelist Type IA
A DeliwErErforMessageTolser A
TrapstérmOntologyAxiom miE Nt DecidelfMewlser_No

Changeloggi

A‘ has

WorkflowVisua|ization

WorkflowManagement

A\

. IfUserlsAllowed_No
OntolpgyChangelnformationk Type

ments

implements

T 'ﬂ VisualizeChanges impleme

WorkflowSupportTool

ChangeManagementTool

Figure 10: Workflow Support in C-ODO Light: basic axioms + implemented tasks declared

for the tool

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 22 of 105 NeOn Integrated Project EU-IST-027595

LRI

oy Annotation \u‘n; UserType
% Userinformation
ass0f
subClassOf
subfassOf subClassOf
URI .
5 OntologyAxiomList i ~ar OntologyChangelnformation o
- ~ar OntologylD gy UserRole
L% OntologyChangeList
Wdﬁlv <% WorkflowState Changelnformation
OntologylDKType A UserinformationKType A i == ar Yes
OntologyAxiomListK Type \UspetdE ntificatio _ OirecHePFETe 5
A A -‘ feg,, precedes
OntologyChangelistKType Register precede ﬂ
e D A ifelfHewlser
Ariiads % e/ T\
4 F precedes ChangéUology i =
LR . i q
ire R

6, precedes

DecidelfTaskRequ | fologyehange \ isClast .
. \-ﬁ des | preced

preced

/2

redes

DecidelfUserlsAllowed_MNo

isterUntologydxiom

ChangeLogging directlyPrecey “""- A .-.

Decidg¢lfTaskRequiresOntologyChange_Yes

SynchronizeChanges
WorkflowVisualization

CaptureOntologyAxiom .)
DecidelfTaskReguiresOntologyChange_No

WorkflowManagement j VisualizeChanges A

ChangeManagementTool
WorkflowSupportTool

Figure 11: Workflow Support in C-ODO Light: basic axioms + precedence relations between
tasks

4.2 Integration of Open Rating System, Oyster, Alignment Server and Watson (UKARL)

The Open Rating System can be used to collaboratively review content, in the case of NeOn,
ontologies. Being able to break the reviews down into to bits on certain properties of the ontology
(e.g. Domain Coverage, Usability, Reusability) enables reviewers to only review the aspects they
are most comfortable reviewing. ldeally, the reviews are assigned based on the expertise of the
reviewer, similar to the peer review process currently used in science. But, the reviews do not have
to be coordinated, just by reviewers entering reviews, they help making the system better and
provide added value to the users. It does not matter if there are multiple reviews for the same
property of an ontology, since reviews are ranked based on the trust in a reviewer and this is user-
specific. So on a global scale, all reviewers collaborate to provide a more detailed evaluation of the
ontologies and to provide added value to the users.

Users can then choose which reviewer(s) to trust and get their reviews and ontologies ranked
based on an underlying trust network. For details on the algorithms see D2.2.1.

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 23 of 105

Open Rating System

Add Review on Ontology /
Property of an Ontology

Reviewer
1 Reviewer
3
View Ontology
Reviews / Receive
Ranked Results
Re '2E er User

Figure 12: Schematic overview of Open Rating System

4.2.1 Workflow support TS-ORS Light model

Figure 13 below illustrates the functionalities covered by the Collaboration Server along the same

lines as in the previous section: basic axioms, input/output types, implementation and precedence
relations.

5 Annotation

T550f subC f
subEfassOf
URI

T P—— ey OntologyRank
~ax ReviewRan _
" SABOUT I UL poiew _
subClpssOf isAbout
isAl

% Ontology

isClasgifiedBy
isConcepfualizedBy

/i

ReviewRankin
g hasinpo hasingutType

hasOutpmIype

U DesignTool

Figure 13: ORS in C-ODO Light

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 24 of 105 NeOn Integrated Project EU-IST-027595

4.3 Argumentation Support on a Semantic Wiki (Cicero) (UKO)

Creating and designing an ontology is a complex task that requires the collaboration of domain and
ontology engineering experts. For coming to a consensual model of a domain that is expressed by
an ontology, the participants in the engineering process must discuss their different viewpoints in
an efficient manner. Thus, discussions are an important part of collaborative ontology engineering.

The Cicero tool facilitates an asynchronous discussion and decision taking process between
participants of an ontology engineering project. Two main objectives of capturing discussions in
Cicero can be distinguished:

e Higher Efficiency: Cicero supports its users in discussing the design rationale of ontologies.
The whole discussion including the pro and contra arguments is recorded, leading to fewer
redundancies in disputes. It has been shown that the applied discussion methodology
facilitates efficient discussions and accelerates convergence to a solution.

e Enhanced Documentation: The captured discussions reflect the design rationale of an
ontology. By attaching a discussion to the entities in the ontology, it is possible later to
understand why certain elements are modelled as they are. Furthermore, prior discussions
can easily be resumed if e.g. new requirements have to be taken into account.

The first objective is accomplished by the Cicero tool itself.’ Its underlying argumentation model
and discussion workflow are described in two of the attached diagrams. The second objective is
accomplished by means of the Cicero plug-in that integrates functionality of Cicero into the NeOn
toolkit.

4.3.1 Cicero Wiki

In Cicero, there exist four different predefined roles (Cicero Administrator, Project Moderator, Issue
Moderator and Project Member; see Error! Reference source not found.0). The different access
rights of these roles can be configured for each project. Error! Reference source not found.O
shows the default access rights of each role and which actions can be triggered.

" It can be downloaded from http://isweb.uni-koblenz.de/Research/Cicero/.

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 25 of 105

T — m____

S
'\‘“

> S| L
‘sf

—1%

Propose Solutlon
Project Mamber

Figure 14: Use case diagram of the Cicero Wiki

The Cicero Wiki supports the following functionality:

1.

Create Project: A Cicero Administrator creates a new project within the Wiki. The title and a
short description have to be given as input. A project groups all discussions related to an
ontology project.

Create Issue: A Project Member creates a new issue within an existing discussion project.
The title and a short description have to be given as input.

Propose Solution: A Project Member proposes a solution for a previously created issue. A
description of the solution proposal is required as input.

Provide Argument: A Project Member provides arguments in favour or against a specific
solution proposal. A description of the argument is required as input.

Start Voting: An Issue Moderator starts a preferential voting for an argumentation thread
(consisting of the issue, solution proposals and arguments). Having a preferential voting
about the solutions is optional and depends on the participation policies in the ontology
project.

Cast Vote: A Project Member casts his vote for one of the previously proposed solutions. It
is required that a preferential voting is started first.

Take Decision: An Issue Moderator decides which of the previously proposed solutions
should be implemented in the ontology project. This decision is based on the discussions
among the project members but needn’t take into account the result of the (optional) voting
phase.

A more detailed description of the Cicero Wiki and how to use its functionality is available in its
online manual: http://cicero.uni-koblenz.de/wiki/index.php/Help:Contents

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 26 of 105 NeOn Integrated Project EU-IST-027595

4.3.2 Cicero Plug-in for NeOn Toolkit

The Cicero Plug-in for the NeOn Toolkit can be used for annotating ontology elements with related
issues in the Cicero Wiki.2 For using the plug-in, a login for the Cicero Wiki is required that has at
least the access rights of a Project Member for the discussion project from which issues should be
annotated. 11 shows which actions can be triggered with the Cicero Plug-in.

Projeact Mamher

o

o <

Figure 15: Use case diagram for the Cicero Plug-in

All'in all, the Cicero Plug-in supports the following functionality:

1. Annotate Discussion Project: A user of the toolkit can annotate the URL of a discussion
project to the currently opened ontology. In this discussion project, all issues will be
created.

2. Create Issue in Toolkit: A toolkit user, who is at least a Project Member of the annotated
discussion project, can create a new issue from within the NeOn Toolkit. The new issue is
created in the wiki and automatically annotated to the currently selected ontology elements.

3. Annotate Issue: A toolkit user, who is at least a Project Member of the annotated discussion
project, can annotate ontology elements with the URL of an already existing issue.

4. Show Issues: A toolkit user, who is at least a Project Member of the annotated discussion
project, can select one or more ontology elements and retrieve the related issues from the
Cicero Wiki.

A more detailed description of the Cicero Plug-in and how to use its functionality is available in the
online help of the plug-in and in the wiki of the NeOn Toolkit: http://www.neon-
toolkit.org/wiki/index.php/Cicero

2 The Cicero Plugin can be downloaded from http://cicero.uni-koblenz.de/wiki/index.php/Download_(plugin)

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 27 of 105

4.3.3 Cicero C-ODO Light model

cicero2codo.owl (see Appendix) describes two complementary tools: CiceroWiki and
CiceroToolkitPlugin, in terms of codolight vocabularies.

The model is visualised in the figures below, which represent views of cicero2codo.owl for
functionalities included in workflows, precedence relations between functionalities (tasks), and
input/output knowledge types for a functionality.

Boxes represent classes, aligned to codarg.owl vocabulary, while triangles represent individuals
(design tools, workflows, functionalities, knowledge types, user types).

For example, fig. 16 illustrates the basic axioms and the input and output types for Cicero tasks.
Fig. 17 shows how the individual CiceroWiki (a DesignTool) implements several functionalities:
ProposeSolution, Createlssue, CastVote, etc. A functionality can be the task for a user type, e.g.
CiceroAdministrator.

Fig. 18 presents a view on the basic axioms combined with precedence relations between tasks
that capture the workflow restrictions of the tool.

LRI
wav ldEa S tationThread
A 8 DesignTool g ArgumentationThrea SR A rqument
CiceroToolkitPluginWorkflow

subCl

Cicérawiki 5% CiceroSolutionProposal subClass0f

A

TakeDecision subClassOf

isClassi{iedBy

A% Cicerolssue

2 CiceroArgument

CiscussDesignRationale .
ProvideArgument

CastVate

A

CiceroWikiWorkflow

PreferentialVoting

hasOutputType

. CiceroToolkitPlugin
ProjectModerator AnnctationkKType

Figure 16: Cicero in C-ODO Light: basic axioms + input/output knowledge types wrt tasks
declared for the tool

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 28 of 105

NeOn Integrated Project EU-IST-027595

A % DesignTool

CiceroToolkitFTuginWorkflow

/0

TakeDEcision

imjlementg

implg

implements

imptEments

CiceroToolkitPlugin

ProjectModerator

< ArgumentationThread |
e

<3 Argument

URI

ki uCicemSqutiuanpusaI| subCl

subClassOf
isClassi{iedBy

A% Cicerolssue

implemgnts

CiceroArgumentKType

déArgument

ia

CiceroWikiworkflow

CreateAnnotation OntologyEle mentK Type

A

AnnctationkKType

Figure 17: Cicero in C-ODO Light: basic axioms + implemented tasks declared for the tool

NeOn

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 29 of 105

A\

CiceroToolkitFluginWorkflow

< ArgumentationThread |
e

% DesignTool

<3 Argument

i drowiki | 3 CiceroSolutionProposal | subCl

TakeDecision

subClassOf
isClassi{iedBy

A% Cicerolssue

CicercArgumentKType

esighRationale .
ProvideArgument

CiceroAdynfni

CiceroWikiworkflow

PreferentialVoting

lssueMoferator 2 ij ,.
requires :

CreateAnnotation

OntologyEle mentKType

A

AnnctationkKType

CiceroToolkitPlugin
ProjectModerator

Figure 18: Cicero in C-ODO Light: basic axioms + precedence relations between tasks

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 30 of 105 NeOn Integrated Project EU-IST-027595

LRI

LRI

\.’“:IE-B .
L 8 DesignTool g ArgumentationThread 7 A rqument
CiceraToolkitP lygHy
subClassOf
Cicérawiki % CiceroSolutionProposal subClhssOf

subClassOf
isClassifiedBy
'\J,E}Cicemlssue
includesFul CicernSolutionProposalKType -
ifiedBy oy CiceroArgument

CicerolssueKType 503

iceroWikiWorkflow

CreateAnnotation OntologyElementK Type

CiceroToolkitPlugin A

ProjectModerator AnnotationkType

Figure 19: Cicero in C-ODO Light: basic axioms + tasks (functionalities) included in the tool

4.4 Collaboration server (ONTO)

The OntoBroker Collaboration Server acts as a central server with remote access to allow for the
distributed usage, management, and editing of ontologies and for true concurrent and collaborative
modeling via the NeOn Toolkit. The Collaboration Server is a full-fledged implementation of the
KAON2 datamodel.

To use the Collaboration Server with NeOn Toolkit, the user has to choose “Collaboration Server”
as a data model instead of the default setting “RAM model”. Since the Collaboration Server is a
remote data model the user has to properly define the host and port of the machine on which the
Collaboration Server is running. In this way a single machine can hold the data model for different
clients.

By using the Collaboration Server the NeOn Toolkit supports collaborative ontology editing,
allowing for the distributed modeling by any number of editors. This means that the ontologies are

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 31 of 105

accessible concurrently by many clients. Each of these clients establishes its own session with the
server and thus can access available ontologies. All transactions of a client occur within this
session. The Collaboration Server maintains a single KAON2 connection internally and thus
ensures the overall integrity of the complete data model.

Clients may register for update events. If one client creates or changes an ontology entity or an
axiom on the Collaboration Server the ontology is updated. The changes are propagated to all
registered clients that can act accordingly, e.g. by updating the views within NeOn Toolkit. For
transactional integrity the Collaboration Server locks ontologies to prevent concurrent writing.

The Collaboration Server supports OWL as well as F-logic and RDF. For each of them a single
Collaboration Server connection is required. A connection to the server corresponds to an
“ontology project” of the Neon Toolkit. The Collaboration Server supports all functionalities
provided by the KAON2 API, e.g. modeling actions like creating and opening ontologies, as well as
reading, writing and editing entities and axioms. Furthermore, searching within the ontology,
querying and reasoning tasks are supported.

4.4.1 Example Scenario: Collaborative Ontology Engineering with the Collaboration Server

We assume that there are two clients both willing to perform modeling actions on the same
ontology. At the beginning client1 connects with the Collaboration Server. After the Collaboration
Server has established the connection, the project is shown to client1. Successively client one
creates an ontology ontology1 and a concept named concept1l as well as a subconcept of
concept1 named concept2.

When client2 registers to the Collaboration Server he is capable to open ontology1, which was
formerly created by client1 and is opened there, too. The Collaboration Server enables client2 to
get the ontology elements created by client1, namely concept1, concept2 and the subconcept
relation.

If several clients are connected with the same Collaboration Server instance, the server sends all
events to each of them. If client2 creates a new concept concept3 and defines it as a subconcept
of concept1, the Collaboration Server sends a message about the creation to client2. Additionally
the Collaboration Server sends a message to client1. The newly created ontology elements are
displayed to all connected users.

4.4.2 Collaboration Server C-ODO Light model

The following figures illustrate the functionalities covered by the Collaboration Server along the
same lines as in the previous section.

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 32 of 105

NeOn Integrated Project EU-IST-027595

A

% OntologyElement
= i
URI
isClassifiedBy e

subC

{54 F-LogicQuery

isClassifiedBy

V% F-LogicRule
agBy

)
/2
/T :

LRT
S

F-LogicOntology

F-LogicQue

" hasOutpii =
OWLProjectKType Creg =

F-LogicAttribute

"L F-LogicRelation

AccessSharedOntologiesRe m
Create AndEditRulesRe motely

Creat m:IEdj_F A
asOUtputType

DR e

i\: CreateOntologiesRemotely A

)) dEditClassesRe motely
CollaborationSe rver CnaatE;!\m:lla:l|t'E1uEruaslglerﬁi;chegi‘yn

Figure 20: Collaboration Server in C-ODO Light: basic axioms + input/output knowledge
types wrt tasks declared for the tool

NeOn

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 33 of 105

&% OntologyElement

&

<5 SPARQLQuEryY

V% F-LogicRule L

ay F-LogicOntology

SPAROLOueryK Type
F-LogicQueryKType QLQueryKTyp

A\ A\

OWLProjectKType

A

RuleKType

URI
.l

F-LogicAttribute

CreateProjgctsRemately

A\

AccessSharegOgtologiesRemotely

CreateAndEditRulesRemotely A
CreateApdEditDatatypePropertiesRe motely

impleménts implgments !

CreateAndEditMappingRulesRemotely

OWLOntologyKType
OWL1Class

imppements implements OWL1DatatypePropertyK Type
implements
mplgments

imptements

imptements CreateOntologiesRemotely T —A
/15 TR — WL

. . dEditClassesRemotely
CollaborationSe rver Cna:nE;!\m:lla:l|t'E1uEruasl‘{TIerﬁfHIE‘E)?‘yn

Figure 21: Collaboration Server in C-ODO Light: basic axioms + implemented tasks
declared for the tool

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 34 of 105 NeOn Integrated Project EU-IST-027595

LRI 7 OntologyEle ment

oy SPARQLOUE MY

,_/mﬁtﬁs’sfltl_—b

assOf
URI

F-LogicRule K Type LRT
ar Query .

~ar F-LogicConce pt

isClasSifiedBy
URIple % Ontology
subCfassOf it % F-LogicRule L F-LogicOntology
isCla
URI .
~a F-LogicQuery subClassOf ~5% ObjectProperty bCthss0
SUBERSSEN b pssof
isClassifiedBy A F-LogicOntologyk
Y2 F- | agicMappingRule s ogictntologyk ype subClhsso
F-LogicProjectKTyke urt
. SPAROLOueryK Type g DatatypeProperty Ut
F-LogicQueryKType ey OWLOntology

A

OWLProjectKType

A

k 5 F-LogicAttribute
CreatePrajdcrsRen

URI

o F-LogicRelation

CreateAndEditRitesRe

LogicRelationKType

OWL1DatatypePropertyK Type

A\

CollaborationServer

Figure 22: Collaboration Server in C-ODO Light: basic axioms + precedence relations
between tasks

4.5 OntoConto (JSI)

OntoConto (NeOn D4.5.2) is an application for visualizing, editing and evaluating alignments and
ontologies. There are two main goals of this application.

The first one is to support collaborative editing on networked ontologies. Each human ontology
editor can edit an ontology with the clear visualization of networked ontologies and relations. Thus
while each user edits a separate ontology, all users cooperate in the sense of a networked
ontology.

The application enables the creation and editing of an ontology and results with an ontology
constructed in the context of other ontologies.

The second main goal of this application is to support an evaluation of network ontologies (used in
NeOn D3.4.1), mainly by helping evaluate alignments between pairs of ontologies. A human
evaluator is provided with the visualization of alignments obtained from several different methods
provided by the Alignment server. The application provides an evaluator with means to visualize
and compare different alignments.

The application enables the evaluation of an ontology and results with an alignment evaluation.

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 35 of 105

4.5.1 Tool description

OntoConto, developed in D4.5.2, is a NeOn Toolkit plug-in that enables contextualized
visualization of ontologies and ontology networks. The idea is to enable the user to browse
through an ontology inside a context of related networked ontologies as defined in D3.2.2.
Visualization consists of two parts. First, a pair of ontologies is visualized in an intelligent way and
second, alignment of these two ontologies is visualized as links between the related concepts.
Integration inside the NeOn Toolkit provides an easy access to the loaded ontologies, as well as
possibility to edit them. The software incorporates the NeOn Alignment server (D3.3.2), which
enables the user an access to several different alignments between ontologies of current interest.
OntoConto is also used for evaluation of mappings in D3.4.1.

The screen is divided into two parts, both serving as placeholders for an ontology, within which the
user can visualize each ontology. This visualization is based on the underlying tree (forest)
structure defined with SubConceptOf relation between concepts. Since ontologies can be too big to
visualize all at once, only four layers are visualized at the time and a visualization method for
enhancing center of the screen is used (lens). The user can easily traverse the ontology by
selecting any concept as the next root node of visualization. Any concept can also be deleted,
edited, and new concepts can be added.

After the user loads both ontologies, he/she is enabled to request any mapping generated by the
alignment server. All the mappings between currently visible concepts are drawn real time on the
screen, connecting the two ontologies. Mappings can also be added, edited and deleted.

4.5.2 OntoConto support C-ODO Light model

Figure 23 below illustrates the functionalities covered by OntoConto in terms of C-ODO Light.

LRI

g DesignTool ologyMappingKType

FacebookBasedMappe
hasInpitH

MetworkOrOntologiesKType

Figure 23: OntoConto in C-ODO Light

4.6 SocialOnto (JSI)

Social network analysis methods in combination with machine learning can be used to analyze
collaboration between the users in the networked ontology setting [2]. For the purpose of the
analysis, we can assume two distinct scenarios of collaborative work on networked ontology:
several experts constructing/editing related ontologies and several experts editing the same
ontology. The developed SocialOnto tool focuses on the latter.

In the first scenario, several experts are independently constructing ontologies from similar
domains, each expert working on a separate ontology. We can support collaboration between the
experts by exchanging information between them, as they are working on similar domains. More
precisely, we propose a practical method supporting the experts in ontology construction [1, 3, 4, 5,
6, 7] by showing his/her data in the context of the ontologies constructed by the other experts.
This work is performed in collaboration with WP3, providing support for including context in the
ontology construction process (NeOn deliverable D3.2.1, D3.2.2) following ideas from [8] and

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 36 of 105 NeOn Integrated Project EU-IST-027595

adjusted for our task to support collaboration via setting the context of other experts. The support
lies in visualizing the data in the context of the ontologies generated by other experts, and
suggesting the naming of concepts according to the context. In our practical setting, the mapping
between the existing ontologies and ontology, which an expert is constructing, is obtained from the
alignment server (NeOn deliverable D3.3.2).

In the second scenario, several experts are constructing the same ontology by independently
editing different parts of the ontology. In order to support their collaboration, we propose to perform
collaboration analysis based on the information on the actions of each expert. The assumption is
that for each user a record exists of all the actions the user has performed on the ontology,
including the location in the ontology (concept or relation) where the action was performed. In our
practical setting, we assume that the tool (e.g., NeOnToolkit or AGROVOC Concept Server
Workbench) produces a log-file of the ontology engineering process, in which each line contains
information on a specific ontology change including: user id, time, concept or relation id, action
performed by the user. In this scenario it is not really important whether the activity is synchronous
or not, as we are performing analysis on past activities. This scenario fits the requirements of FAO
collaborative ontology engineering in the situation when there are several ontology experts (or
several domain experts) changing the ontology. The assumption we have here is that all the used
tools are able to produce a log-file containing the needed information. The analysis enables
several insights into the collaborative ontology editing based on (1) visualization of the ontology to
show what parts were changed by which expert and (2) representing the community of experts as
a social network where the connections reflect the experts' activity in the same part of the ontology
(enabling calculation of some standard measures such as, computing centrality of the expert,
identifying components, etc).

The SocialOnto tool has been developed for this deliverable for processing log files of ontology
editing and performing social network analysis on them.

4.6.1 Formal description of SocialOnto by means of the C-ODO ontology

The main goal of the SocialOnto tool is social network analysis, taking into account the activity of
different users who are editing the same ontology. It operates within a situation comprising a
number of users editing an ontology, and a log file recording the activities of the users.

The social network analysis tool SocialOnto takes log-file of ontology editing as input, where each
line of the log-file contains at least timestamp, userld, conceptld or relationld (that the user has
edited). It creates a social network (vertex=userld, link=linking similar users, weight on the link =
similarity of two users) and performs analysis on the social network in terms of degree centrality,
cohesion etc. The tool analyzes the behavior of the users when they edit an ontology, and
produces new insights into their collaboration.

4.6.2 Example of Social Network Analysis on Semantic Wiki pages

The SocialOnto tool created for this deliverable has been used for the analysis of interactions
between the users while they are editing the same ontology represented by Semantic Wiki pages.
The available data is given in change logs as history of changes of the Wiki pages. These change
logs are publicly available at http://semanticweb.org/wiki/ Main_Page3.

Our goal is to provide some insights into the changes of wiki pages by presenting the change logs
as two orthogonal graphs. The first is a graph of users connected if they have changed the same
page. The second is a graph of pages that are connected if the same user has changed them. In
addition we define a bipartite graph connecting users and Wiki pages. The resulting visual
representations of the change logs clearly shows several dimensions of the users’ activity including

3 Thanks to Markus Krotzsch and Peter Haase for providing the data.

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 37 of 105

the most active users, a grouping of users based on the access of the same pages, the most
central users and the most frequently edited pages.

4.6.2.1 Data Pre-processing

The data with change logs of semantic Wiki pages as of the end of 2008 were given in an XML
form, presented as a sequence of revisions for each page in the Wiki, containing a timestamp and
either a username with an internal ID code or an IP of the person performing the page revision.
Consecutive changes in page content were also included in the file, but we have discarded them in
the pre-processing phase as they are not used in our further analysis. There was a total of 36,078
page edits. Most of those edits (75.5%) were made by the registered users. We have identified 617
registered users and 2,512 different IPs of the anonymous (non-registered) users. For the
purposes of further analysis, each unique IP was considered a separate user giving us a total of
3,129 users. We have also performed some merging of user IDs in the process of data cleaning,
since there were some cases of people using several usernames when logging in, for instance
MaxVolkel and Max Volkel obviously refer to the same person.

The most “collaborative” users can be seen in Figure 15. By collaborative we mean that they are
frequently (at least 5 times) editing the same pages as (at least 3) other users. In our visualization,
the size of the circle reflects the number of changes the user has made on all the pages, while the
color shows if the user is registered (red) or anonymous (blue). We can see that the most active
users are registered (the right top part in Figure 15), a few of them are exceptionally active
compared to the other users (e.g., the most active user has made 6980 page edits, the second
most active 2982, while the 10th most active made 589 page edits).

After a brief inspection, it was determined that there were many very similar pages in the Wiki, for
instance: WikiSpammer, WikiSpammers, Talk:WikiSpammer. Since it was conjectured that the
same user or group of users with similar knowledge and skills is likely to be editing all of these
very similar pages, it was deemed useful to first group together such similar pages into one
concept and form an aggregate concepts representation of the data.

When combining the pages we used additional information that we have on the data, namely that
the pages represent concepts of the ontology on semantic web represented as Semantic Wiki.
However, in the presented work no information about the structure of the original concept ontology
was used. The concepts were grouped based on syntactic similarity of their names i.e. page titles
and the shortest title was used to label the aggregated concept. Short words that were too
common in the concept names were added to the exception list in order to contain a reasonable
maximum group size. Some of these words include: Property, Talk, Category, Template, etc. The
number of concepts was thus reduced from the original 7,369 to 5,500.

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 38 of 105 NeOn Integrated Project EU-IST-027595

.JoriSGi||i.Denn.Markus Krotzsch
@
Mores @ JIDiederich
Freddy

® .Bar n .Langec
88.65.6581 Ty 84.163.113.141 Darkrichsmile MovGPH Max Volkel

200.238. 102 162,

213.149.126 86 . 7001 .
Mick
° .Fuelboﬂle Fletchip

Yaron Kor Bare
881 137.219.228 Heikohaller

® 023124313 ®:. 200 7§ .Vlncent feI.J Mdd469’Denan1Tnblas Kuhn

130.237. 219 85 ulian Mendez
o

gy Wuse @.. “re
88.73.198.73 129.13.72.145
® o 1291373100 Hbalanci
141217134 P81.177.14.26
* 199.20.68.40

£1.2.95.202 OlivierDameran = Eanhe
® 50 256 102 75 1PminHeimann =op

[5) MBiun -Germany .LionsPhiI .

129.13.72.‘. .)
207.44.238.95 195.55.130.44 Rainer Wasser213.144.1.62

Y .130 237.219.125 .Bentrem
Shanks .67 86.216. ﬁ

24 Boutd
140.203.154.12 0222 191.251 51

Patrick

Skierpage

Dedekj

622312431351, 14207 133

Cie

140.203.154.5
80.9.92.21 1.

86.181.1280 @, Stormraven

200.118.2.1
O 14212245 '141 76.2.9 .83.175.64.38

.84.153.86.147 .203.69.39.251

Figure 24: A subset of users that have edited the same pages as at least three other users
(min. vertex degree = 3) and share at least five pages with them (min. edge weight = 5).

4.6.2.2 Searching for Relations

After the preprocessing, three different graphs were extracted from the data: a graph of users, a
graph of concepts and a combined bipartite graph of concepts and users. These were given as
input to social network analysis system Pajek [17] that was used here for data analysis including
graph visualizations provided in Figure 24 and Figure 25.

Anonymous revisions accounted for 24.5% of the total number of page edits, so it would not have
been beneficial to simply disregard them. Even though the average number of revisions per
anonymous user was only 3.5, the maximum number was 251, which was not negligible. The
overall most active user was Patrick accounting for 19.3% of the total number, by performing
6,980 page edits in the Wiki. User graph was formed by connecting the users who contributed to
the same aggregated concepts, i.e. who had edited pages belonging to the same group of pages.
The edges were associated with weights, corresponding to the number of different concept groups
that were edited by the same two users. The user graph has 86,401 edges, which is less than 1%
of the maximum possible number of edges. Hence, it can be considered a sparse graph. Only
about 5% of these edges have a weight of more than one. About 9.7% of the graph consists of
isolated nodes. The pages that were edited by these users were not edited by any other user.
Most of them were pages about the users themselves (so, most of these users didn’t participate in
building the wiki any more than making an entry about themselves or their coworkers). However,
there were also some exceptions, such as concepts Ontology learning, RELAX SEO Services and
Category: Czech person. These were only edited by users Dmanzano, Webmissile and Tom,
respectively. In the user graph there are 30 connected components having at least two nodes, but
the biggest component comprises most of the users (84%). Average distance among reachable
pairs in the graph is 2.23.

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 39 of 105

P
AN

Figure 25: Graph of the most collaborative users (min. edge weight=4, min. Vertex
degree=3) showing an isolated group of four anonymous users actively working on a group
of 9 wiki pages (top right).

3000
2500 \

2000 \
1500 \

1000 \\
500

number of users

Figure 26: Distribution of degree centrality among the Semantic Web Wiki users

Centrality was calculated for all the users and is presented in Figure 26. It is immediately apparent
that there is a small number of very active users in the centre of the network, and a lot of less well
centred users. The betweenness centralization achieved in the user network is 0.15. It is
interesting to compare the top five users according to these different criteria. Such a comparison is
given in Table 1. The users Patrick, Markus Krotzsch and Denny occur at the top in all three lists,

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 40 of 105 NeOn Integrated Project EU-IST-027595

with some difference in their ranking. As can be seen in Table 1, while Patrick has the highest
number of revisions, Markus Krotzsch has the highest degree of centrality and betweenness.

Number of revisions | Degree centrality | Betweenness
1.Patrick 1. Markus Krotzsch | 1. Markus Krotzsch
2.Markus Krotzsch 2. Patrick 2.Patrick

3.Denny 3. MovGPO 3.Denny
4.Skierpage 4. Denny 4 .MovGPO

5.Joris Gillis 5. Knud 5.WikiSym

Table 1Top five users according to three importance criteria from social network analysis

4.6.3 Brief overview of methods for Social Network Analysis

Social network analysis enables analysis of connections between the ontology engineers working
on the same ontology or on similar ontologies. The idea is that the system is storing different
information that is useful for sharing and information on the sharing process itself. In general,
social network analysis deals with mapping and measuring of relationships between nodes in the
network. Nodes of the social network might be people, organizations, computers or other
information processing agents. Methods provide for visual and for mathematical analysis of
relationships between the social network agents.

A method to understand networks and their participants is to evaluate the location of actors in the
network. Measuring the network location is finding the centrality of a node. These measures help
determine the importance, or prominence, of a node in the network. There are different measures
that are commonly used in social network analysis such as betweenness, centrality closeness,
centrality degree, centralization, clustering coefficient, cohesion, reach, etc.

e Degree Centrality. A node is central in a network, if it is active enough in the sense that it has
a lot of links to other nodes.

e Closeness Centrality. The most central nodes according to closeness centrality can quickly
interact to all others because they are, on average, close to all others.

e Betweenness Centrality. A node is central, if it lies on several shortest paths among other
pairs of nodes.

¢ Network Centralization. Computed node centralities in a network can have large or small
variance. A network where a low number of nodes have much higher centrality than other
nodes is highly centralized.

e Network Reach. The degree any member of a network can reach other members of the
network.

e Network clustering coefficient. The clustering coefficient is a measure of the likelihood that
two associates of a node are associates themselves. A higher clustering coefficient indicates a
greater 'cliquishness' of the network.

e Network cohesion. Refers to the degree to which actors are connected directly to each other
by cohesive bonds. Groups are identified as 'cliques' if every actor is directly tied to every other
actor or 'social circles' if there is less stringency of direct contact.

e Modularity. Modularity is a property of a network and a specific proposed division of that
network into communities. It measures when the division is a good one, in the sense that there
are many edges within communities and only a few between them.

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 41 of 105

We present several selected measures for social network analysis in more details, namely network
cohesion, centrality, betweenness and ranking as presented in [11, 16].

4.6.3.1 Cohesion

Network cohesion is an attractive force between individuals. Solidarity, shared norms, identity,
collective behaviour, and social cohesion are considered to emerge from social relations.
Therefore, the first concern of social network analysis is to investigate who is related and who is
not. Why are some people related, whereas others are not? The general hypothesis here states
that people who match on social characteristics will interact more often and people who interact
regularly will foster a common attitude or identity.

Social networks usually contain dense pockets of people who “'stick together". We call them
cohesive subgroups and we hypothesize that the people involved are joined by more than
interaction. We expect similar people to interact a lot, at least more often than with dissimilar
people. This phenomenon is called homophily: birds of a feather flock together.

The ultimate goal is to test whether structurally delineated subgroups differ with respect to other
social characteristics, for instance, norms, behaviour, or identity. There are a number of techniques
to detect cohesive subgroups in social networks, all of which are based on the ways in which
vertices are interconnected. Several techniques can be used to detect cohesive subgroups in a
network including density, degree, components and cores.

Density. Intuitively, cohesion means that a social network contains many ties. In network analysis
the density represents the number of lines in a simple network, expressed as a proportion of the
maximum possible number of lines. It is inversely related to network size: the larger the social
network, the lower the density because the number of possible lines increases rapidly with the
number of vertices, whereas the number of ties which each person can maintain is limited. This is
a problem if you want to interpret or compare network density.

Network density is not very useful because it depends on the size of the network. It is better to look
at the number of ties in which each vertex is involved. This is called the degree of a vertex. A
higher degree of vertices yields a denser network, because vertices have more ties.

Degree. The degree of a vertex is the number of lines of an individual vertex. Degree is a discrete
attribute of a vertex (it is always an integer), so it is stored as a partition.

Components. Components identify cohesive subgroups in a straightforward manner: each vertex
belongs to exactly one component. Networks are connected weakly or strongly. A network is
weakly connected if all vertices are connected by a semipath. A semipath is a semiwalk in which
no vertex in between the first and last vertex of the semiwalk occurs more than once. A semiwalk
from vertex u to vertex v is a sequence of lines such that the end of one line is starting vertex of the
next line and the sequence starts at vertex u and ends at vertex v. A network is strongly connected
if each pair of vertices is connected by a path. Strong connectedness is more restricted than weak
connectedness: each strongly connected network is also weakly connected but a weakly
connected network is not necessarily strongly connected. In an undirected network, components
are isolated from one another; there are no lines between vertices of different components.

Cores. When we try to find cores we pay no attention to the degree of one vertex but to the degree
of all vertices within a cluster. These clusters are called k-cores, where k indicates the minimum
degree of each vertex within the core. A k-core is though a maximal subnetwork in which each
vertex has at least degree k within the subnetwork. K-Cores are nested, which means that higher
k-cores are always contained in lower k-cores, so a vertex may belong to several k-cores
simultaneously. A k-core is not necessarily a cohesive group itself.

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 42 of 105 NeOn Integrated Project EU-IST-027595

4.6.3.2 Centre and periphery

When we talk about centre and periphery in social network (the term social network usual refers to
a network of people or organizations) we are discovering who's got better access to information or
better opportunity to spread the information. The term centrality is used for referring to the position
of individual vertices within an observed network with undirected edges. A network is highly
centralized if there are clear boundaries between the centre and periphery, which means that
information can be distributed very quickly between subjects on one hand and on the other side of
the centre. It is indispensable for the transition of information.

The larger the number of sources accessible to a subject the easier it is to obtain the information.
Hence, the simplest indicator of centrality is the number of connection of vertices to its neighbour
vertices (i.e. more sources of information are available). The star network is known to be the most
efficient structure given the fixed number of lines (connections). The centralization is much more
apparent in star network than in a line network. The vertices vary more with respect to their
centrality. Degree of centralization is the variation of the degree of vertices divided by the
maximum degree variation which is possible in the network of the same size.

Distance. In an undirected network the distance between two vertices is the number of lines or
steps in the shortest path that connects the vertices and is called geodesic distance. In a directed
network, the geodesic distance from one vertex to the other may differ from the geodesic distance
in the reverse direction so the distance may be different.

Closeness. With concept of distance, we can define closeness centrality. The closer the vertex is
to all other vertices the easier information may reach it (i.e., the higher its centrality).

Betweenness. Degree and closeness centrality are based on the reachability of a vertex within a
network. Another approach to centrality and centralization is based on an idea that specific vertices
are more important as an intermediary in the communication network. This approach is based on
the concept of betweenness. Betweenness centralization is the variation in the betweenness
centrality of vertices divided by the maximum variation in betweenness centrality scores possible in
the network of the same size.

4.6.3.3 Bridges

It is discovered by network analysts that strong ties with people that are themselves related yield
less useful information than weak ties with people who do not know each other. Having a lot of ties
within a group exposes a person to the same information again and again, whereas ties outside
one's group yield more diverse information that is worth passing on. On the basis of this we have
to pay more attention to ties between a person’s contacts. A person who is connected to people
who are not directly connected has opportunity to act as a bridge. It is also hypothesized that
people who bridge structural holes have more control and perform better.

In an organization, the social system of the ties is relevant to the diffusion of the information. Can
information reach all members of the organization or is it more likely to circulate in one segment of
the network. We are interested in who are the bottlenecks (if any) who are vital to the flow of the
information. Who may prohibit the spread of the information? That kind of line is called bridge.
Removing that kind of line produces segments that are unreachable with information between each
other.

A bridge is a line whose removal increases the number of components in the network. When
translating to vertices: deleting a vertex from a network means that the vertex and all lines
connecting with this vertex are removed from the network. A cut-vertex is a vertex whose deletion
increases the number of components in the network. In the same way we can define a part of
network that are relatively more invulnerable to the withdrawal or the manipulation of a single

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 43 of 105

vertex. They are called bi-component. A bi-component is a component of minimum size 3 that does
not contain a cut-vertex.

4.6.3.4 Ranking

Prestige. In directed networks, people who receive many positive inlinks are considered
prestigious. When dealing with social networks, many techniques to calculate the so called
structural prestige of a person are at hand. Note, however, that structural prestige is not identical to
the concept of social prestige (or social status), but from the data at hand we are sometimes able
to infer a structure so that the structural prestige of a person reflects his/her social prestige. But
how do we measure the alignment of a structural prestige to the actual social prestige? For this
purpose we can calculate the correlation between the structural and the social prestige using the
well-known correlation measures such as the Pearson's correlation coefficient and the Spearman's
rank correlation coefficient. The difference between the two is in the fact that the Pearson's
coefficient takes the exact numerical scores of the two prestige perspectives into account while the
Spearman's coefficient only considers the rankings of the two characteristics. A correlation
coefficient has the value between -1 and 1. A value of -1 means that the two characteristics are in
a perfect negative correlation (if one is high the other is low and vice versa), a value of 1
represents a perfect positive correlation (if one characteristic is high, so is the other), and a value
of 0 represents no correlation between the two characteristics. By the rule of thumb, we partition
the correlation coefficient interval into the following classes of association:

e No association. The absolute value of the correlation coefficient is below 0.05.

e Weak association. The absolute value of the correlation coefficient is between 0.05 and

0.25.
e Moderate association. The absolute value of the correlation coefficient is between 0.25
and 0.60.
e Strong association. The absolute value of the correlation coefficient is above 0.60.

These classes help us interpret correlations in a less technical manner. Another need-to-know
heuristic is that we can use the Pearson's coefficient only if its results do not diverge too much
from the Spearman's coefficient. If the results are very different, the data contain irregularities. The
following sections discuss several measures of structural prestige.

Popularity or indegree. The indegree of a vertex represents the popularity of the person the
vertex represents. To measure popularity, we need to have a directed network; in an undirected
network the degree of a vertex represents a simple centrality measure.

Domains. Domains represent an effort to extend prestige to indirect inlinks so that the overall
structure of the network is taken into account. The input domain of a vertex is defined as the
number or percentage of all other vertices that are connected by a path to this vertex. We talk
about a restricted input domain when paths are restricted to a certain number of maximum steps.
In a well-connected network, the input domain of a vertex often contains (almost) all other vertices
so it does not distinguish very well between them. This means that it is better to limit the input
domain to direct neighbours (i.e., to use popularity instead) or to those at a predefined maximum
distance (e.g., 2).

Proximity prestige. The choice of a maximum distance from neighbours within a restricted input
domain is quite arbitrary - the concept of proximity prestige overcomes this problem. When
calculating the proximity prestige of a vertex, all vertices within the input domain are considered,
but closer neighbours are deemed more important (i.e., the neighbours are weighted by their path-
distance to the vertex). More specifically, the proximity prestige of a vertex is defined as the
proportion of all vertices (except itself) in its input domain divided by the mean distance from all
vertices in its input domain. It ranges from 0 (no proximity prestige) to 1 (highest proximity
prestige).

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 44 of 105 NeOn Integrated Project EU-IST-027595

Triad analysis and acyclic decomposition In this section we discuss techniques to extract
discrete ranks from social relations. We will first discuss triad analysis as the triad analysis helps
us determine whether our network is biased toward unrelated clusters, ranked clusters, or
hierarchical clusters. Then we will present a recipe for determining the hierarchy in the social
network, namely acyclic decomposition.

Triad analysis. Triads are atomic network structures based on three vertices. There are 16
different types of triads. The triads are named according to the M-A-N naming convention.
According to the M-A-N convention, each triad is named with three numbers. The first number
denotes the number of the triad vertex pairs that are connected both ways (mutual arcs), the
second number denotes the number of the triad vertex pairs that are connected only in one
direction (asymmetric arcs), and the third number denotes the number of the triad vertex pairs that
are not connected (null arcs). In addition to these three numbers, each triad can have another
specifier denoting whether the triad is U, C, or T (we will not go into details about this additional
property herein). According to the types of triads that are discovered in a social network, we
distinguish between five (or six) balance-theoretic models. The simplest one is the balance model
which is limited to only two types of triads, namely triads of type 102 and triads of type 300. The
next less restricted model is the clusterability model, followed by the ranked clusters, transitivity,
and hierarchical clusters models. The last of these five is still restricted to certain types of triads.
Therefore we can add another model to the list - the theoretic model. This model is completely
unrestricted. Many algorithms however require the model to be more or less restricted therefore
the theoretic model is not used in practice. This discussion has led us to the concept of the triad
census. The triad census is a report about all the triads found in the network. The discovered triads
are arranged according to the balance-theoretic models to which they belong.

Acyclic decomposition. Once we have determined the nature of our network, we can start
discovering the clusters and/or the hierarchy. The first approach we discuss is the so called acyclic
decomposition. While cyclic sub-networks (i.e., strong components) represent clusters of equals,
acyclic sub-networks perfectly reflect the hierarchy. The recipe for determining the hierarchy is thus
as follows:

1. Partition the network into strong components (i.e.clusters of equals).

2. Create a new network in which each vertex represents one cluster.

3. Compute the maximum depth of each vertex to determine the hierarchy.

4.6.3.5 Divisive method based algorithms

Girvan Newman algorithm [13] - Algorithm progressively removes edges with highest edge
betweenness from the original graph. If a network contains communities or groups that are only
loosely connected by few inter-group edges, then all shortest paths between different communities
must go along one of these few edges. Thus, the edges connecting communities will have high
edge betweenness. By removing these edges, we separate groups from one another and so reveal
the underlying community structure of the graph.

The algorithm of Radicchi et al. [14]. removes edges that belong to a relatively low number of
loops, for they are likely to be edges between communities.

4.6.3.6 Agglomerative hierarchical clustering method based algorithms

The modularity optimization algorithm [12] works as follows. Starting with a state in which each
vertex is the sole member of one of n communities, we repeatedly join communities together in
pairs, choosing at each step the join that results in the greatest increase (or smallest decrease) in
modularity. This method can be applied to very large networks.

The idea behind single linkage methods is to develop a measure of similarity between pairs of
vertices, based on the network structure one is given. Many different such similarity measures are

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 45 of 105

possible. Once one has such a measure then, starting with an empty network of n vertices and no
edges, one adds edges between pairs of vertices in order of decreasing similarity, starting with the
pair with strongest similarity. Structural equivalence is an example of a similarity measure. Two
vertices are said to be structurally equivalent if they have the same set of neighbours.

4.6.3.7 Other algorithms

The spectral bisection algorithm [12] is a method based on the eigendecomposition of the
Laplacian matrix. The eigenvector that corresponds to the second lowest eigenvalue determines a
partition of nodes into two communities. Some approaches enable combining structure analysis
with content analysis as described in [10].

4.6.4 SocialOnto C-ODO Light model

LRI

IR oy DesignTool

v DataStructure @Craph?mpeny A

o
GraphPrepertyDatak Type
subClassOf [resrtibedBy hasOutpytType

W Graph

subClagsOf

EXPIESSES jsClas€ifiedRy AnalysisOfMultiple @ntolodyEditorsActivity
P U OntologyProjectExecution

URI
‘o GraphPropertyData & Timelnterval

hasOuthutType
isClassifiedBy ¢\ hclyssOf putive _ . subClassOf
hasingutType @Omulugy

. A A5 Multiple OntologyEditorsActivity
A OntelogyEditingLogFileKType .
GCraphKType isSettimgFor
LRI
isClassifiedBy teAbout ~ar Agent

URI

g OntologyEditingLogFileLine
5 OntologyEditingLogFile W

OntologyEditingLegFileLine K Type

%W LRI

UserldKType iy Userld

A5 OntologyElementld

isClasSifiedBy

OntologyElementldk Type

Figure 27: SocialOnto in C-ODO Light

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 46 of 105 NeOn Integrated Project EU-IST-027595

4.7 COAT: Collaborative Ontology-based text Annotation Tool (USFD)

4.7.1 Introduction

COAT has been developed as NeOn plug-in to address distributed collaboration amongst
annotators. Annotators need to be able to flexibly work on any number of documents associated
with a particular task, for which activity they do not necessarily have to share the same location
when performing the annotation tasks.

The text annotation tasks are performed within the GATE4 system. GATE [18] is a framework and
graphical development environment, which enables users to develop and deploy language
engineering components and resources in a robust fashion.

GATE supports the following text formats: XML, PDF, RTF, Microsoft Word, HTML, SGML, email
and plain text. Not all versions of PDF and Microsoft Word are supported.

Whenever a document is created or opened in GATE, the format is analysed and converted into a
single unified model of annotation.

The annotation format is a modified form of the TIPSTER format [19], which has been made largely
compatible with the Atlas format [20], and uses the now standard mechanism of ‘stand-off mark-

up®’ [21].

The user of COAT will be able to access and process documents in this format on the GATE
annotation server.

4.7.2 The Functionality of COAT in CODO Light terms

This section describes the functionality of the COAT web service. In a nutshell, COAT enables
annotators to load and annotate documents with annotation types, which either refers to ontology
classes, or to new candidate classes for categorization.
Coat enables the manual semantic annotation of texts with references to a browsable ontology.
The human text annotators can collaboratively extend and amend the text annotations by adding,
deleting or modifying annotations and annotation types.

4 See http://gate.ac.uk/

5 For more information, please see http://gate.ac.uk/sale/tao/index.html#x1-1450006

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 47 of 105

part of
Annotator Collaborative Collective

Document

manages

part of
has range) incorporates design functionality)

Text span Annotation OntologyPopulation

instance of

AnnotationAddition

Ontology element

AnnotationModification

AnnotationDeletion

Figure 28: a simplified overview of COAT’s functionality

A description in terms of the more fine-grained CODO Light conceptualization of COAT’s workflow
follows below. The elements from the CODO Light ontology used in this description are in italics.

The main functionality of COAT is ontology population. This is achieved by defining a workflow that
involves human text annotators, and the distributed collaborative annotation of text spans to
ontology classes as instances. The human text annotators can collaboratively extend and amend
the text annotations by accessing the files, and adding, deleting or modifying annotations. The
details of the annotation process are described below in section 4.7.2 below.

The COAT workflow involves the following participants:
1. a number of human text annotators who populate an ontology;

2. an optional ontology containing the allowed classes to be used as annotations (either populated
with instances from the documents or not);

3. a collection of documents.

The main restriction on COAT’s collaborative process is that two annotators cannot simultaneously
work on the same file. Once one annotator is working on a file, it remains locked until she finishes
her session.

The distributed nature of the annotation process implies that annotators do not necessarily have to
share the same location when performing the annotation tasks (ComputationalDesignTasks).

The texts may have been pre-processed by any annotation tool, the result of which can be used in
the annotation task.

Also, given the fact that annotators can work on each others products, the annotation process
involves manual creation and verification of ontology instances.

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 48 of 105 NeOn Integrated Project EU-IST-027595

The tool allows the annotators to work on a collection of documents, each of which can be selected
and processed, and an ontology containing the allowed classes to be used as annotations (either
populated with instances from the documents or not).

Figure 29 below illustrates the CODO-based conceptual design of COAT.

% Knowledge Type %% LinguisticObject

LRI

URT Colour
r o DesignTool o UserType]
5 ComputationalDesignTask subClassOf
% DesignFunctionality ' hasGolour
% DesignWorkflow subClhssof
@TextSpan
M
Ontology
@Text

AnnotationAddition

TextAnndtator

24\

ElementAsscciation

TextSpanSelection

Figure 29: C-ODO Light model of COAT

4.7.3 How to use COAT
Since, we present its user manual in this section, since COAT is an integral part of this deliverable.

Invoke the web service through the NeOn Toolkit by clicking on the “GATE Services” menu item,
and the “select COAT” option.

A web browser will open the COAT main page (http://safekeeper1.dcs.shef.ac.uk/neon/coat/).

The main page offers two options:

1. View corpora

2. Upload documents into corpus.

. Main page option 1: view (and create) corpora
The page will show a list of available corpora with the documents they contain.

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 49 of 105

It is possible to create a new corpus on the bottom half of this page. A newly created corpus needs
a name and an optional description.

II. Main page option 2: load documents into corpus
The documents need to be compressed into a zip file. Each zip file should contain at least one
document.

As mentioned above, COAT accepts the following document formats:

e Plain Text

e HTML
e SGML
e XML
e RTF
e Email

e PDF (some documents)

e Microsoft Word (some documents)

For each document in the zip file, COAT will list whether it has accepted the file and loaded it into
the corpus.

lll. Corpus details and choice of document and ontology
When you click on a corpus after choosing main page option 1, a new page shows the list of
documents contained in the corpus. Clicking on one of the documents selects it as the document
you are going to annotate.

The “Select ontology” box shows a list of ontologies available on the GATE annotation server.
Choosing the option “Other, enter an ontology URL in the box below” in this list allows you to select
either a web based ontology (e.g. http://proton.semanticweb.org/2005/04/protonu), or an ontology
from your local file system (e.g. file:///c:/ontologies/protonu.owl). You can choose this option
automatically by clicking in the "enter an ontology URL" box.

IV. Activation of the annotator GUI
Pressing “Open” will activate the annotation service, which starts up as a Java Webstart
application.

If your browser asks you to open the application, press “yes”.

A new application window, the Annotator GUI, will now show the text in the left hand pane, and the
(expandable) ontology in the right hand pane (see Fig.30). The ontology loaded for this example is
the Proton® ontology.

In this mode, the top left pane will remain empty and can be minimised by clicking on the little black
triangle at the bottom of the pane, in order to maximise your view of the text.

The “Options” tab in the right hand ontology pane has a number of useful options:

8 http://proton.semanticweb.org/

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 50 of 105 NeOn Integrated Project EU-IST-027595

Case sensitive “Annotate all”: annotate all text spans identical to the present one with the

ontology class.

“Disable filtering” will list all ontology classes. Filters can be applied by ticking either “Classes to
omit”, or “Classes to show”, which both allow loading a file with ontology class labels (one per line).

The user is advised to ignore the other options on this tab.

V. Text annotation
Select a text span by double-clicking the text span if it consists of one word, or dragging the cursor
over the text span if multiple words are within this span.

Associate an ontology class with it by either:

- selecting the appropriate class from the drop-down menu, or

- typing in the name of the class in the pop-up window and pressing enter, or

- typing the name and selecting from a drop down menu filtered by the characters you have
typed in. This feature is useful if you are working with large ontologies.

- double-clicking on the class in the ontology pane, ignoring the pop up window.

VI. Attribute instantiation and creation

In the pop-up window, attributes of the ontology class can be instantiated by selecting the
appropriate ones from a drop down menu, and typing the value of the attribute in the value box. If
you wish to create a new attribute, this can be performed by typing the attribute name in the empty
field marked by a yellow “C” in the attribute list, and filling in the value.

When finished with the annotation of the text span, the text span will now be highlighted with the
colour of the concept of which it is deemed an instance.

The pop-up window can be discarded by either

“y, "

- pressing the “x” in the top right corner, or
- highlighting another text span for annotation

Once the annotation has been created, the pop-up window will come up again when the cursor is
hovering over a coloured text span. This window will disappear again if the cursor is moved to
another annotated text span. It can be permanently displayed by pushing the red peg.

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2)

Page 51 of 105

& Annotator GUI [Connected in DIRECT mode: factsheetixml__1232545713770___3846] i =1=x]
HECIEE
Pacument Editor |
Type| Start| End] Id| Features| Oﬂlﬂfﬂwaﬂe(ﬁlloplmnsl
protonu ¥
protonu B
Annotations (0 selected) E
Mozambigue
Zorro cauda longa
L
Oceanic and coastal, virtually circurnglobal in tropical to cold-temperate seas but commonest in temperate waters. =
[Western Atlantic (including Gulf of Mexico). Canada (Newfoundland, Nova Scotia, New Brunswick, and - north to the Bay of Chaleur, Gulf of St. 1
Lawrence), USA (entire Atlantic Coast but rare south of New England; Gulf Coast off Florida, Mississippi and Texas), Cuba, Mexico (Veracruz to 3 1
ICampeche), Venezuela, Brazil to Argentina. Eastern Atlantic: Norway and British Isles to Mediterranean and Black Seas, Moroceo, Madeira, the Azores, . -"
IGhana, Céte d'lvoire, Angola, Namibia, and South Africa (Western Cape and probably Noithern Cape). Indo-West Pacific: South Africa (Eastern Cape . [1 F
land KwaZulu-Natal}, Tanzania, Somalia, Maldives, Chagos Archipelago, Gulf of Aden, possibly Oman, Pakistan, India, Sri Lanka, Sumatra, Japan, - | |
IRepublic of Korea, China, Taiwan (Province of China), Australia , New Zealand, - | |
[INew Caledonia. Central Pacific. Sociely Islands, Fannii x " | |
loregon and California) and Mexico (Baja Galiforniay. &f 4 * ’Z 4 » [Apply To All I Create Instance [Dehighiight - B WaterBar
rom land in temperate to tropical waters, most abund - B Peninsula
he intertidal to at least 366 m, often near the surface. | Country LI [B Mountain
the northwestern Indian Ocean and off the west coast = " mEa
(and probably elsewhere) the spacies is seasonally mil| | @ntelogy T || httpiiigate.ac.uklowlim = X & = BiogeographicRegion
it ke leping o ftaa) ol e aorhwai] o fo class ¥ | | nttp:iproton.semanticweb. org/2005/04/protonusCountny ¥ | X B
[warm-temperate inshore waters, |y off south — — B
ladults, and seldom range narth of central California. B4|O) | versioninfo aali] \ X B VvilitaryAreas
Ispring and summer. Behaviour is otherwise poorly kns f— " =
been demaonstrated, and there may be separate popul{|() [1abel w | \ »°% J "
[Ocean, and possibly elsewhere, butthis remains to be L = B Country
i and rarely 6 in a litter off California (usually 2 to 4, commenly 4), and 3 to 7 in the eastern Atlantic. This species apparently uses inshere nursery areas [] M
lin temperate waters (east coast of the United States, California, South Africa, the northeastern Atlantic and western Mediterranean, and probably =8 Wale(Regum
lelsewhara) with vouna sharks oectiring in shallow havs (Califomia_South Africal In the sastern North Pacifie (California) the snecies mates in summer T & 7 B Eacility Lul
- T T r T T
h Africa (Western Cape and probably Morthern Cape). Indo-West Facific: South Africa (Eastern Cape ;
bs, Chagos Archipelage, Gulf of Aden, possibly Oman, Pakistan, India, Sri Lanka, Sumatra, Japan,
hina), Australia . MNew Zealand,
Fanning Islands)z =
i 1) 1 ¢ [¥ Apply To All Create Instance [~ Dehighlight
hia), south to Pa] ¥ Apply O O anlig
pundant near lar
ace. 366 0 Ana I Province e
joast of North Al : - -
new_attribute - | Mediterranean_climate - | X [

hily migratory, an

an females and (|7 | systemPrimitive ﬂ new _attribute

louthern Californ

hia. Both adults 4|0 | seeAlso Al \
Iy knowmn, and li
populations with(| | 1abel i ‘. x

to be determing

4 commonly 4), and 3 to 7 in the eastern Atlantic. This species apparently uses inshore nursery areas
es, California, Scuth Africa, the northeastern Atlantic and western Mediterranean, and probably
b hiavs (California South Africal_n the eastern Morth Pacific (Californial the snecies mates in sumimer ;I

S

Figure 31: Addition of attributes

VII. Addition of new annotation types

If you do not want to annotate text spans with ontology classes, but want to identify interesting
informally defined categorizations in the text, you can opt for adding new annotation types. These
are categories that are not part of any ontology, but are either agreed upon by the annotators, or
defined ad hoc by the annotator. They can serve as candidates for future inclusion into an

ontology.

You can go about this in two ways.

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 52 of 105 NeOn Integrated Project EU-IST-027595

1. “without ontology” mode: You can start off with the annotation process without an ontology
by opening an application, for which you select a document without loading an ontology
(choose the “No ontology” option in the “select ontology” box. New annotation types can be
created by typing their name in the pop-up window. Any text spans previously annotated as
class instances are now displayed as members of the class Mention, which has the
ontology class as an attribute for each text span.

2. If you are working on text annotation with ontology classes (“‘with ontology” mode, as
described in V above), but want to switch to adding annotation types, you press the
“Connect to Document Service” button on the top left of the Annotator GUI (see encircled
option in Figure 21).

Then delete the value in the “Ontology URL” field and press “Connect”. This will change the

operation of the application to “without ontology” mode, and displays, in the same vein as

in 1. above, any existing ontology classes as instances of “Mention”.

Switching back to “with ontology” mode can be done by pressing the “Connect to Document
Service” button again, putting the ontology URL back in the “Ontology URL” field, and
pressing “Connect”. Alternatively, you can exit the application, and start up again in “with

ontology” mode as described in Ill. above.

Figure 32: Buttons in Annotator GUI

For each new annotation type any number of attributes can be added and instantiated with a value.

Figure 33 below illustrates this for the newly created annotation type ScientificTerm (with
“‘oophagous” as instance), which has been enriched with the attribute “root”. The pink text spans in
the figure are all ontology instances whose creation is described above. The top pane shows that
these instances of the “mention” class have the class URI as feature.

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 53 of 105

Annotator GUI [Ce in DIRECT mode: et = EEIES

= [SIEIEIRS

2 ~
Document Editor |

Type Set| Start| End | 1d Features j -
Mention 6403|64 18{425|{class=hitp:Nproton.semanticweb.org/2005/04/protonu#Province, ontology=http:#igate.ac.uklowlim, systemPrimitive=[J} ;l ¥ FishAttribute
Mention 6420|6428(426/{class=httpNproton. semanticweb org/2005/04/protonu#Province, ontology=hitp:iigate ac ukfowlim} [7]
Mention 6430|6438|427|{class=hltp:/iproton. semanticweb org/2005/04/protonu#Province, ontology=hitp /igate ac ukfowiim} ¥ ScientificTerm
Mention 6440/6455(428|{class=http://proton.semanticweb.orgi2005/04/protenu#Province, ontology=hitp iigate ac uklowliim} } Original markups
Mention 458 64 {class=http./iproton. ticweb.org/2005/04/protonu#Country, ontolegy=hitp:/igate.ac.uk/owlim}
ScientificTerm| 8179|8192|432|{root=greek}

ST anazlnncalanaln : Llll

Annotations (1selected)

‘Oceanic and ceastal, virtually circumglebal in trepical to cold: seas but in waters. Western Atlantic (including Gulf of
Mexico): Canada (Newfoundland, Nova Scotia, New Brunswick, and Quebec, north to the Bay of Chaleur, Gulf of St. Lawrence), USA (entire Allantic Coast but rare south of New
England; Gulf Ceast off Florida, Mississippi and Texas), Cuba, Mexico (Veracruz to Campeche), Venezuela, Brazil to Argentina. Eastern Atlantic: Norway and British Isles to
Mediterranean and Black Seas, Morocco, Madeira, the Azores, Ghana, Cédte d'voire, Angola, Namibia and South Africa (Western Cape and probably Northern Cape). Indo-Wast
Pacific: South Africa (Eastern Cape and KwaZulu-Natal), Tanzania, Somalia, Maldives, Chagos Archipelago, Gulf of Aden, possibly Oman, Pakistan, India, Sri Lanka, Sumatra, Japan,
Republic of Korea, China, Taiwan (Province of China), Australia (Quesnsiand, New South Wales, Victoria, Tasmania, South Australia), New Zealand, New Caledonia. Central Pacific:
Sociely Islands, Fanning Islands, Hawaiian Islands. Eastern Pacific: Canada (British Columbia), the USA (Washington, Oregen and Califernia) and Mexico (Baja Califernia), south to
Panama and Chile. Coastal over the continental and insular shelves and epipelagic far from land in temperate to tropical waters, mest abundant near land; yeung often close inshore
\and in shallow bays. Depth range frem the surface and the intertidal to at least 366 m, often near the surface. 366 0 An active, strong-swimming shark, sometimes leaping out of the
\water. Thresher sharks in the noithwestern Indian Ocean and off the west coast of North America show spatial and depth segregation by sex. Off the west ceast of Noith America (and
probably elsewhere) the species is seasonally migratory, and moves northward from Baja California inte California waters during the spring, with adult males tending to travel farither
northward than females and reaching the coast of British Columbia. Juveniles are mostly found in shallow warm-temperate inshore waters, particularly off southern California where
an important nursery area occurs. Juveniles may be less cold-tolerant than adults, and seldom range north of central Califernia. Both adults and juveniles congregate in inshore
waters of southern California, primarily during spring and summer. Behaviour is atherwise poorly known, and litle is known of sociobiology and behaviour patterns. Transoceanic
migrations have not been demonstrated, and there may be separate populations with slightly different fecundily and size at maturity in the eastern Pacific and western Indian Ocean,
and possibly elsewhere, but this remains to be determined. Ovoviviparous and apparently a uterine cannibal (eophageus), number of young 2 to 4 and rarely & in a lilter off California

(usually 2 to 4, commonly 4}, and 3 to 7 in the eastern Atlantic. This species app y USes in: % Hnited States, California,

South Africa, the northeastern Atlantic and western Mediterranean, and probably elsewhere), w4 ¥)Z LI] , h Africa). In the eastern

MNorth Pacific (Califernia) the species mates in summer, has a gestation peried of nine month: n 3 and 8 years old, with a

maximum age estimated at 45 to 50 years (Cailliet et al, 1983). Feeds mostly on small schooli | ScientificTerm LI s, shad , pilchards and

menhaden (Clupeidae), anchovies (Engraulidae), lanternfishes (Myctophidae), i rus , Carangidae),

mackerels (Scombridae), bluefishes (Pomatomidae), plaice and flsunder (Pleuronactidae } | root LI | greek LI ﬂ [staceans, and rarely J

Iseabirds. Herds and stuns its prey with its long, whip-like caudal fin, and is often caught on long| I L” LI 5! lind schools of small fishes,

isplashing water with its caudal fin and compressing the school, then strikes and injures fishes and killing small fish =l Now

P Open Search & Annotate tool

Document: factsheet! xml___ 1232545713770 3846

Figure 33: Annotation Types

VIIl. Saving the annotations

The annotations can be saved at any time by pressing the save button (second from left on top
pane see Fig.21). The documents and their annotations will be saved on the server, and will be
accessible. There is no option yet to save the documents locally. This functionality will be provided
in the next version of COAT.

IX. Remaining Annotator GUI buttons

The other buttons on this pane that are not yet discussed are the following:

Nl

-

=

sets the look and feel of the interface

shows the application log

@ shows this manual in a pop-up window

X. Housekeeping
Metadata about corpora, documents and annotations are not visible within the Annotator GUI.

Behind the scenes, each corpus and document receives a time stamp with the date of
creation/upload.

Also, the GATE web server keeps track of access, and records time and agent.

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 54 of 105 NeOn Integrated Project EU-IST-027595

We expect to integrate these data in version 2 of COAT.

XI. Future work

The next version of COAT will incorporate the following additional functionalities:
- The deletion of files and corpora if the user does not want the data to stay on the server,
from which they are openly accessible. At present, any data can be removed solely by the
GATE team.
- The creation of an export facility that allows the user to save the annotated text locally.

4.8 C-ODO Light-based ODP repository management (CNR)

The eXtreme Design tool for NeOn toolkit (XD) offers the possibility to make operations on
ontology design patterns (ODPs). XD has its own conceptual definition according with the C-ODO
light ontology, implemented as an OWL file. XD uses C-ODO Light as a reference model for
implementing its functionalities. Furthermore, part of its behaviour is determined by C-ODO Light-
based ontologies. Concepts such as OntologyLibrary, Ontology, OntologyDesignPattern, Content
Ontology Design Pattern (ContentOP) are sample items that the XD plug-in manages. The concept
of networked ontology is native in XD. It provides the user with pattern-based operations, such as
specialization, composition, instantiation, etc [cf. NeOn D2.5.1] instead of operations based on a
certain logical language such as subclassOf, etc.

4.8.1 Use of C-ODO for managing Ontology Repositories: the ODP library browser

The ODP library browser (Fig. 35) is integrated in XD. It allows the user to directly access the ODP
repository of patterns. The ODP repository (Fig. 34) is modelled itself as an OWL ontology based
on C-ODO-light and it is used by the XD plug-in of the NeOn toolkit for browsing the ODP
repository. Accessing the ODP repository by the ODP library browser offers to the user direct
access to the patterns/ontologies that can be (re)used within the XD tool.

The use of C-ODO light in the ODP repository instance has been done by generating an OWL
representation of the folder structure of the file repository. In the ODP case, each folder has been
represented as a coddata:OntologyLibrary (according with the C-ODO definition), which can host a
collection of codkernel:Ontology instances. This ontology” represents the whole content of the
ODP repository. XD uses this representation to build the navigation tree of its ODP library browser,
as depicted in figure 35. The ODP library browser shows the folder structure of the repository, but
at the core level it is reading the OWL representation. Other kinds of representations of the
repository can be provided by means of the C-ODO description.

Using OWL modelling and the C-ODO ontology to represent the repository brings various benefits.
First of all, it provides flexibility, since any repository can be described through a codolight-based
ontology, and this would be enough for making it available through the XD tool. XD tools allow,
through the C-ODO light support, the reuse of ontology libraries from external providers.

XD can be implemented providing different functionalities depending on the ontologies described in
the library. Within the C-ODO light description of the repository, providers can describe an ontology
as a ContentOP, defining which functionalities XD tool can enable. A ContentOP can be described
as a specialization or composition of other patterns, describing also the relations of a certain
ontology to others in the library.

All this information can be provided by the repository ontology in order to describe how an ontology
library is organized. This information can be also exploited by the tool for customizing operations
on the library. The XD tool will also use C-ODO light annotations to navigate the library by means
of the relations described.

7 hosted at http://www.ontologydesignpatterns.org/schemas/repository.owl

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 55 of 105

@ schemas_repository
versionInfo = 0.2

“"'Et"’:'S‘ZJ”K‘EQ?’C"‘ Tdf :ibype c.-.x.-l:nl(-cu ks rdfitype
| & schemas | codkernel:Ontology «3 <http:/fwww.ontologydesignpatterns. orgfrepository/data. owl =
comment = Here: a {usually com... versionlnfo = 0.2
4 Repository meta-level schema, to be used to represent the whole ODP repository | © owl:ontology |
versionInfo = 0.2
versionlnfo = Created by Enrico Da...

Figure 34: the ODP repository

i T

@& ODF Library Browser i i

B

= [= ODPRepository

¥ = cp
b = cp_examples =
¥ (= cp_owl |
K agentrale. ow

agentroleOR. owl
albumcritiquesituation. owl
allcodomappingsdl. owl
basicplan. owl
basicplandescription. owl
basicplanexecution. owl
classification. owl
classificationOR. owl
cognitivetrust. owl
collectionentity: owl
communities. owl
componency. owl
constituency: owl
controffiow. owl)

=
& ODF Ontology Metadata

comment: "Any agentive Object, either physical, or social.”
label: "agent role"
(%] versioninfo: "Created by Aldo Gangemi and Valentina Presutti"*string

[<] mn [>]
Figure 35: the ODP library browser

The XD description as a C-ODO ontology can be found at the following url:

2006-2009 © Copyright lies with the respective authors and their institutions.

Page 56 of 105 NeOn Integrated Project EU-IST-027595

http://www.ontologydesignpatterns.org/cpont/codo/xd.owl

http://www.ontologydesignpatterns.org/cpont/codo/xd2codo.owl holds alignments to the C-ODO
knowledge types.

The ODP repository can be browsed at http://www.ontologydesignpatterns.org/repository.

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 57 of 105

5. Conceptual navigation of design tools and the Kali-ma plugin

Most of the design-oriented tools presented in this paper come with a conceptual model based on
C-ODO Light. Each of these models provides several arguments for supporting the assessment
and organization of the respective tools with regard to ontology design principles, yet software
support for design-oriented ontology authoring within the NeOn Toolkit is scarce. This chapter
presents the Kali-ma plug-in for the NeOn Toolkit, which leverages C-ODO Light-based
descriptions in order to support end-users in managing ontology lifecycles based on design
principles. While a detailed description of the plug-in: its architecture, implementation, and testing,
is deferred to a dedicated deliverable planned for Y4 (D2.3.3), outlining some of its key features
here is useful due to the fact that Kali-ma exploits the formal descriptions outlined in this
deliverable to present design tools on a uniform level that can be shared in a collaborative
environment.

5.1 Querying the tool space

Codolight models of tools can be used in several application tasks, including:

1) browsing semantic data about ontology projects

2) smart searching and selecting of design components
creating custom design configuration interfaces
helping ontology requirement collection

providing a shared network of vocabularies.

— N — —

3
4
5

(1) The network of ontologies emerging from the models of plugins presented in this deliverable
conveniently allows us to know more about the plugins: what knowledge types do they take in
input or produce in output? What functionalities are implemented? What user types are allowed
for a certain functionality? What sequence, if any, exists between functionalities? And once
tools are used in real ontology projects, we can also mix the basic data with data produced by
the tool, e.g.: what users have actually used a functionality on what knowledge resources?
What tools can take as input a certain knowledge resource?

(2) With existing tools, it is not trivial to find the right functionality from the viewpoint of a user,
especially if that user is not an expert in ontology design, in implementing semantic
technologies, in using Eclipse, etc. A healthy direction is to semi-automatically check what
functionality can be used for what design operation. This can require different approaches:

a. a way to classify tools and functionalities

b. to obtain a perspective on what pieces of software within a tool can support what
functionality

c. to eventually be able to access tools at a method-API level

Goal (a) can be achieved with an extension of codolight called designaspects.owl,8 which
implements some (customizable) axioms that allow a DL reasoner to automatically classify a
tool (or a functionality) within an aspect, mostly based on input/output knowledge types. An
example of an axiom is the following (in N3 encoding):

:ReuseReengineeringTool
a owl:Class ;
rdfs:label ""Reuse or reengineering tool {@en}""xsd:string ;
rdfs:subClassOf codkernel:DesignTool ;
owl:equivalentClass
[a owl:Class ;
owl:intersectionOf (codkernel:DesignTool [a owl:Restriction ;

8 http://www.ontologydesignpatterns.org/cpont/codo/designaspects.owl

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 58 of 105 NeOn Integrated Project EU-IST-027595

owl:onProperty codtools:hasOutputType ;
owl :someValuesFrom
[a owl:Class ;
owl :oneOf (coddata:NetworkedOntologyKType
coddata:NetworkOfOntologiesKType coddata:OntologyAxiomKType
coddata:OntologyElementKType coddata:OntologyKType coddata:OntologyMappingKType
coddata:OntologyModuleKType)
1

D
1.

In practice, each owl:equivalentClass axiom establishes some knowledge types that, if in input
and/or output, make a tool classifiable in a certain way. The variety of design aspects is of
course open to customization: the current one follows understandability considerations and
personal experience in administering ontology design tutorials.

However, given the axioms and e.g. the plugin models, a DL reasoner like Pellet 2 can infer
that e.g. CiceroWiki and COAT are tools for reuse or reengineering knowledge resources.

(3) Given (2), a smart tool can try and produce a custom configuration of an ontology design
toolkit, provided that some behavioral access to plugins is allowed and they are arranged in a
way meaningful to interaction patterns.

(4) From the social viewpoint, codolight can be used to gather requirements, which can more
easily matched against existing functionalities.

(5) From the semantic web viewpoint, codolight has been aligned to several vocabularies, as
reported in [NeOnD2.1.2]: OWL, OMV (Ontology Metadata Vocabulary), DOAP (Description Of
A Project), Protégé Workflow ontology, NeOn Access Rights ontology, SOM (Software
Ontology Model), Sweet Tools, and the NeOn Trust ontology. This means that the data
available in those vocabularies (e.g., Sweet Tools has almost 800 semantic web tools
described), and the functionalities available with them (SOM is used with the OWL version of
the MIT Process Handbook) can be in principle reused more easily, and more easily links can
be established. This is also true for NTK plugins, where commonalities can be found, e.g. in
terms of the knowledge types in input or output.

5.2 Beyond the logic-driven approach to modelling ontologies

One of the benefits of providing a model for collaborative ontology design, such as the C-ODO
Light ontology, is to allow for a data-driven and design-oriented presentation of functionalities
available in an ontology engineering environment. As with dataflow computer architectures, where
the execution of instructions exclusively depends on the availability of their input arguments, in a
design-oriented environment it is no longer the logical language but the actual bulk of data
presented by design tools in the system that governs the execution of engineering tasks. The
model for ontology design then becomes a backbone for mutual integration of the functionalities
exposed by design tools, with particular attention on supporting collaboration-oriented tasks.

From this angle, the standard integration mechanisms provided by the Eclipse platform may not
suffice. The most common criterion for classifying NeOn Toolkit (NTK) plug-ins in a way that is
accessible to end-users is to group their views?, where available, into custom categories. Apart
from that, actual design operations are mostly performed with respect to the language, in that
users directly interact with items that are a metaphor of OWL or F-Logic elements. As a matter of
fact, users may not even know certain functionality is available unless an access point to its
implementing plug-in is provided in the form of an item within the user interface.

9 As in Eclipse Workbench views, see Eclipse Rich Client Platform (RCP).

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 59 of 105

Most NeOn Toolkit plug-ins, as well as ontology design tools of any other kind, can help overcome
this hurdle by providing a reference to a model describing them using the C-ODO Light ontology.
One of the means to leverage these descriptions will be provided by a NeOn Toolkit plug-in,
hereinafter referred to as Kali-ma.

The Kali-ma plug-in will equip the NeOn Toolkit with a design-oriented, rather than language-
oriented user interface. This aims at facilitating the integration of existing NeOn Toolkit plug-ins in
anticipation of their use in a collaborative context, for which Kali-ma can provide an environment.
The plug-in will be able to classify design tools with regard to those aspects of ontology design that
they are known to cover. These aspects are generic functionalities of ontology design
management, including use of design patterns, reuse and reengineering of existing modules,
project management, workflow management, discussion and evaluation of the end product. Note
that, given the nature of C-ODO Light, the notion of a NTK plug-in disappears in this context.
Everything that implements functionality or supports certain design activities is a design tool,
regardless of its concrete implementation.

Project

*HTE core
Management
Woaorkflow
r‘u‘lanagement
Design Patterns I prug-in
i KALI-MA _ . wCOaT
\k_) Reuse and ¥ g
Reengineering | *Watsan plug:in
. =atsa i S
Discussion and | "Erere Wik
i rCiepre plug-in
Evaluation) scupbaard
unclassified SHTE Plagin
NTK core || NTK Plugin x Watsad Jatsan Eliene. COAT || Cupboard Clcera Cicero
it | plugin || service Design (XD} | | | Wiki || plugin
e —— ——p o _ " p y e N —
¥ e % £ v o Ak

—{ NTK2cODO H Watson2cop0 [¥02c0D0 | COAT2CODO)| Cupboard2CODD M Ciceroacomnd |
| } @ leesseraeessas ‘eeinpersys
) 1 ",
i i f
1 1

' ¥
------------- el atz C-ODD Light b
o T L R T

Figure 36: C-ODO Light-based organization of design tools as performed by Kali-ma.

Figure 36 depicts an example scenario where ontology design tools are automatically presented by
Kali-ma in an integrated view according to their formal descriptions. Each description is a light
ontology stating how a tool relates to design aspects exposed by the C-ODO Light ontology, which
is a dependency of every single plug-in description. These design aspects are not hardcoded into
Kali-ma, as it is entirely dependent on C-ODO Light, and therefore Kali-ma is unaware of such
definitions until runtime. The user is then partially relieved from the tiresome task of figuring out
what interface controls are used to trigger the execution of a tool, e.g. an Eclipse perspective, a
wizard or a context menu item.

In addition to grouping known design tools with respect to these criteria, Kali-ma organizes all
functionalities as widgets populating its interface, or dashboard. A widget is generated for each tool

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 60 of 105 NeOn Integrated Project EU-IST-027595

that conforms to the Kali-ma specifications, which are described below. These widgets provide an
access point to the tools and, at a later stage, will act as proxies for them, meaning that users will
be able to use some of the functionalities provided by a tool through the widget rather than the tool
itself. For instance, the results of a Watson keyword-based query will be displayed in a lightweight
form directly on the widget for the Watson plug-in, and if further user input is required, e.g. adding
a relation between the target ontology and an entry in the Watson results, appropriate controls can
be displayed on the same widget.

5.3 Benefits of C-ODO Light-based plug-in descriptions

Although the Kali-ma plug-in ultimately pursues other goals, most prominently the enhancement of
user interaction with the NTK, exploiting the conceptual integration offered by C-ODO Light
remains a key task. As it follows an iterative design process, the plug-in is evolving towards an
alternative interaction approach that may involve any set of NTK functionalities. In order for these
functionalities to be integrated, the key requirement is that their role in an ontology design process
must be clearly stated, no matter how intrinsically collaboration-oriented they are. That is to say,
any tool that is described by means of C-ODO Light can be plugged into the model provided by
Kali-ma, which can be thought of as an object model for a subset of C-ODO elements. If a tool fails
to provide a description that links it with some design aspect, it will be grouped with other
“unclassified” or “miscellaneous” tools.

One effect of defining the tasks and operations involved with a particular tool is that Kali-ma can
aggregate them with respect to available functionalities, and subsequently organize them into sets
for user convenience, called profiles. From a collaborative standpoint, profile management is being
designed so that the profiles generated by Kali-ma can be shared across ontology development
projects and instances of the NeOn Toolkit.

Another advantage can be derived from the C-ODO Light module for the description of user
interfaces, i.e. the codinterfaces ontology. Plug-in providers can utilize this module to describe
interface components for their tools. Instances for this module can describe a standard interface for
a plug-in as well as its appearance as a Kali-ma dashboard widget. Also, a third-party plug-in is
given a means to share a formal definition of the types of resources that are involved in the task(s)
it was designed for. A description based on the C-ODO kernel' (see NeOn deliverable 2.1.2:
“Model for collaborative design of networked ontologies” for a detailed description) allows a tool to
define the codkernel:KnowledgeResource(s) that are reused by workflows and projects involving
the tool. A particular KnowledgeResource, or type thereof, can be declared as serving as input or
output for anything that may use it, i.e. tasks, design operations, design tools or workflows. With
such knowledge, a Kali-ma widget representing a tool could trigger a particular operation when an
instance of its expected input type is presented to the system through another widget.

We are considering that description elements not strictly related to interaction might nonetheless
have an impact on the widget interface. To clarify with an example, let us consider a tool such as
Cicero. This tool describes a workflow associated to it as a sequence of operations to be executed,
or the tasks realized by them, in a given order. If such a workflow can be executed by using this
tool, then its widget could display these operations or tasks as elements in a tabbed pane and grey
out those tabs representing operations that cannot be performed until their pre-requisites are met.

10 http://www.ontologydesignpatterns.org/cpont/codo/codkernel.ow!

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 61 of 105

5.4 Operational requirements

The examples related to C-ODO Light descriptions presented so far show some advantages
offered by Kali-ma with regard to organizing and presenting NeOn Toolkit plug-ins. However, they
offer little help when it comes to accessing plug-in functionalities operationally, i.e. by executing the
procedures that implement them. Although the organization of functionalities by design principles
does not depend on this operational aspect, it is useful to give an insight as to how the issue will be
addressed in subsequent versions of Kali-ma.

It would not be wise to enlarge the C-ODO Light model with excessive technicalities beyond its
scope, such as Eclipse framework components or Java language constructs, only for allowing Kali-
ma to locate the methods to be called and the parameters to be passed on to them. It has
therefore been established that most operational requirements will have to be satisfied by enriching
plug-in manifests (i.e. plugin.xml files provided by all Eclipse user interface plug-ins) and
integrating additional Java classes in the plug-in code. This approach follows Eclipse plug-in
development standards, hence it should entail a minimum of programming effort from plug-in
developers.

T R PR T KRRy
XD widget
i}

L

Watson XD widget Visualization Cicero
widget 2 widget widget

WianpactatiemaTsk

KALI-MA
RS gtare E} BI et Confhgusat fon

Watﬁpn e:{ltreme _Ontglng:,r Cicero plugin . . .
_ plugin J _ Design (XD) | | Visualization L)
WatsanCamputaton ailask -SE0oompuiationsl Teskl O Conirputatiors| Tesk CizerelampptatearaiTa sk

X0 putat o TeskZ et Donlpurat o
i dge i Condi g miion

Figure 37: Usage of extension points provided by Kali-ma for the generation of plug-in
widgets.

An outline of the extension mechanisms provided by Kali-ma for the generation of dashboard
widgets is provided in fig.37. Kali-ma exposes its own Eclipse extension point (leftmost socket),
currently called computationalTask after the C-ODO Light class it is based on. This extension point
is associated with the Java interface IComputationalTask, consisting of a single execute() method
having generic Objects as types for its input parameters and return value. Developers wishing to
allow Kali-ma to execute a task provided by their plug-ins will have to provide an extension to the
computationalTask extension point and an implementation of the IComputationalTask interface.
The execute() method will have to be implemented so as to perform a task the plug-in has been
designed for, and for which the related Java code is assumed to already exist. Additionally, plug-in
developers may wish to override default widget generation heuristics by providing custom controls
or settings through the IWidgetConfiguration interface (rightmost socket), although this will
obviously imply a greater creative and programming effort. Multiple computationalTask extensions
may be provided so as to generate multiple widgets or a group.

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 62 of 105 NeOn Integrated Project EU-IST-027595

A NeOn Toolkit plug-in developer will also be required to specify the actual types of the parameters
expected by its computational task, as well as the value returned, if any. This can be achieved by
annotating its execute() method implementation with a Java 1.5 annotation called Signature, also
provided by Kali-ma. There, developers can specify Java classes for the returned value and as
many arguments as required. Kali-ma is then able to use Java reflection in order to provide such
typed arguments. Obviously, Kali-ma will be able to instantiate solely those types available in its
own classpath, therefore only a restricted set of types will be allowed, including the OWL API
datamodel and all the Java 5 SE classes.

5.5 Interoperability Support

The notion of design tool as it is described in C-ODO Light is not restricted to NeOn Toolkit plug-
ins. As a matter of fact, it encompasses any piece of software that can implement functionality,
cover an aspect, realize a workflow or contribute in any way to an ontology engineering process,
no matter whether it is a standalone application, a plug-in or a web application. Kali-ma is intended
to exploit this generalization provided by C-ODO Light.

In addition to the descriptions provided by individual NeOn Toolkit plug-ins, Kali-ma may be able to
classify any set of C-ODO Light-compliant tools and present their descriptions to the user. In cases
where these tools are not available as NTK plug-ins, Kali-ma is still able to present them to the
user and provide a method for obtaining them, e.g. the corresponding project page or download
page on the Web. This means that Kali-ma can provide an overview of a broad span of ontology
development tools that are known to contribute to some design aspect, even when they have been
developed to run within a framework that has no connection with Eclipse or the NeOn Toolkit. In
turn, such a view can be stored and shared for reuse among other collaboration-oriented tools,
including multiple running instances of Kali-ma. As an example, suffice it to say that C-ODO Light
is aligned with the Collaborative Protégé ontology, therefore Kali-ma is likely to evolve to be
interoperable with the Protégé toolkit and its collaborative features.

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 63 of 105

6. Conclusions and future work

In this deliverable, we have provided descriptions of the functionality of a number of NeOn Toolkit
plug-ins in terms of both informal characterization and the C-ODO Light ontology, which enables
the integration of tools in a collaborative workflow.

Further, we have sketched a picture of an upcoming NeOn Toolkit plug-in that is able to present a
design-driven uniform view on ontology design tools and, in doing so, depends on a formal
semantic model that is the C-ODO Light ontology and the design tool descriptions based thereon.
This plug-in will be able to help users overcome the problem of locating available functionalities
within the NTK framework. It will also offer users a design-centred interaction approach, as
opposed to the traditional approach that relies on the language used for representing knowledge.
Users will be able to customize their interaction experience, as well as share their environment
settings in collaborative contexts.

The Kali-ma features so far exposed lay but the first stepping-stones towards an array of future
development scenarios concerning both collaboration and interaction support. Organizing and
presenting design tools that can be related to C-ODO Light is merely a starting point. For one step
further, once a tool can be described as a workflow or part of one, users could be given the choice
to assemble the toolchain that realizes this workflow on the basis of specific tasks or operations. If
a user can reasonably argue that a third-party tool is able to realize a design task better than the
one provided by the tool currently used, they may want to replace specific functionalities in the
workflow as if they were standalone service bundles. This desirable feature shares several points,
yet it is different from workflow realization support. The latter is another feature that has been set
as a goal of future Kali-ma releases, and it is the capability of arranging NeOn Toolkit plug-in
widgets so as to assemble a step-by-step supply chain.

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 64 of 105 NeOn Integrated Project EU-IST-027595

References

[1] Buitelaar, P., Cimiano, P., Magnini, B. (2005). Ontology Learning from Text: Methods,
Applications and Evaluation, Frontiers in Artificial Intelligence and Applications, IOS Press.

[2] Grobelnik, M., Mladenic, D. (2006). Knowledge discovery for ontology construction. In: Davies,
J., Studer, R., Warren, P., (eds.) Semantic web technologies: trends and research in ontology-
based systems. Chichester: John Wiley & Sons, cop. pp. 9-27, 2006.

[3] Maedche, A. and Staab, S. (2004). Ontology Learning. In Staab, S. and Studer, R., editors
Handbook on Ontologies. International Handbooks on Information Systems. Springer-Verlag.,
pages 173 — 190.

[4] Buitelaar, P., Olejnik, D., and Sintek, M. (2004b). A Protege Plug-In for Ontology Extraction
from Text Based on Linguistic Analysis. In Bussler, C., Davies, J., Fensel, D., and Studer, R.,
editors, Proceedings of the First European Semantic Web Symposium (ESWS2004), volume 3053
of LNCS. Springer-Verlag, Heraklion, Crete, Greece.

[5] Cimiano, P. and Voelker, J. (2005). Text20nto - A Framework for Ontology Learning and Data
driven Change Discovery. In Proceedings of the 10th International Conference on Applications of
Natural Language to Information Systems (NLDB’2005).

[6] Gomez-Perez, A. and Manzano-Mancho, D. (2003). A Survey of Ontology Learning Methods
and Techniques. OntoWeb Delieverable 1.5.

[7] Fortuna, B., Mladenic, D., Grobelnik, M. (2006). Semi-automatic construction of topic
ontologies, In Knowledge Discovery and Ontologies, Berendt et al. (eds), Springer Lecture Notes.

[8] Miladenic, D., Grobelnik, M. Mapping documents onto web page ontology. In Berendt et al.
(eds.), Web mining : from web to semantic web, (Lecture notes in artificial inteligence, Lecture
notes in computer science, vol. 3209). Berlin; Heidelberg; New York: Springer, 2004, 77-96.

[9] Soumen Chakrabarti, Mining the Web: Discovering Knowledge from Hypertext Data,Morgan-
Kaufmann Publishers, 2002

[10] Matt Richardson, Pedro Domingos, Combining Link and Content Information in Web Search,
In M. Levene and A. Poulovassilis (eds.), Web Dynamics (pp. 179-193), 2004. New York: Springer.

[11] Stanley Wasserman, Katherine Faust, Social Network Analysis: Methods and Applications,
United Kingdom: Cambridge University Press, 1994

[12] Aaron Clauset, M. E. J. Newman, and Cristopher Moore: Finding community structure in very
large networks, Phys. Rev. E 70, 066111 (2004)

[13] M. Girvan and M. E. J. Newman, Community structure in social and biological networks. Proc.
Natl. Acad. Sci. USA 99, 7821-7826 (2002).

[14] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi, Defining and identifying
communities in networks. Preprint cond-mat/0309488 (2003)

[15] A. Pothen, H. Simon, and K.-P. Liou, Partitioning sparse matrices with eigenvectors of graphs.
SIAM J. Matrix Anal. Appl. 11, 430-452 (1990).

[16] S. Sabo, M. Gréar, D. A. Fabjan, P. Ljubi, N. Lavrac, Exploratory analysis of the ILPNet2 social
network, In Proceedings of the 10" International multi-conference Information society, SIKDD2007
(2007).

[17] V. Batagelj, A. Mrvar Pajek: Program for Analysis and Evaluation of Large Networks. 2003.

[18] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan. GATE: A Framework and Graphical
Development Environment for Robust NLP Tools and Applications. Proceedings of the 40th
Anniversary Meeting of the Association for Computational Linguistics (ACL'02). Philadelphia, July
2002

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 65 of 105

[19] R. Grishman. 1997. TIPSTER Architecture Design Document Version 2.3. Technical report,
DARPA. http://www.itl.nist.gov/-div894/894.02/related projects/tipster/.

[20] S. Bird, D. Day, J. Garofolo, J. Henderson, C. Laprun, and M. Liberman. 2000. ATLAS: A
flexible and extensible architecture for linguistic annotation. In Proceedings of the Second
International Conference on Language Resources and Evaluation, Athens.

[21] H. Thompson and D. McKelvie. 1997, semantics for standoff markup of read-only documents.
In Proceedings of SGML Europe’97, Barcelona.

[22] Presutti V., Gangemi A. (2008). Content Ontology Design Patterns as practical building blocks
for web ontologies. In Proceedings of ER2008 Barcelona, Spain.

[23] Gangemi, A., Presutti, V. (2007). C-ODO: an OWL meta-model for collaborative ontology
design. In Proceedings of CKC Workshop at WWW2007, Banff, Canada Berlin, Springer.

[24] Raul Palma, Peter Haase: Oyster - Sharing and Re-using Ontologies in a Peer-to-Peer
Community. International Semantic Web Conference 2005:1059-1062

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 66 of 105 NeOn Integrated Project EU-IST-027595

Appendix

This appendix contains the alignment models between the tools described in this deliverable and
the C-ODO Light framework. The ontologies are in N3 format.

The url of the owl versions is:
http://www.ontologydesignpatterns.org/cpont/codo/allcodoalignments.owl

Editorial Workflow

baseURI:
http://www.ontologydesignpatterns.org/cpont/codo/editorialworkflow2codo.owl
iImports: http://www.ontologydesignpatterns.org/cpont/codo/codolight.owl
iImports: http://www.ontologydesignpatterns.org/cp/owl/controlflow.owl

@prefix taskrole: <http://www.ontologydesignpatterns.org/cp/owl/taskrole.owl#>

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

@prefix precedence:
<http://www.ontologydesignpatterns.org/cp/owl/precedence.owl#> .

@prefix intensionextension:
<http://www.ontologydesignpatterns.org/cp/owl/intensionextension._owl#> .
@prefix codkernel:
<http://www.ontologydesignpatterns.org/cpont/codo/codkernel _.owl#> .
@prefix coddata:
<http://www.ontologydesignpatterns.org/cpont/codo/coddata.owl#> .
@prefix codtools:
<http://www.ontologydesignpatterns.org/cpont/codo/codtools.owl#> .
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

@prefix sequence: <http://www.ontologydesignpatterns.org/cp/owl/sequence.owl#>

@prefix owl: <http://www.w3.0rg/2002/07/owl#> .

@prefix codinteraction:
<http://www.ontologydesignpatterns.org/cpont/codo/codinteraction.owl#> .

@prefix controlflow:
<http://www.ontologydesignpatterns.org/cp/owl/controlflow.owl#> .

@prefix partof: <http://www.ontologydesignpatterns.org/cp/owl/partof._owl#> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .

@prefix :
<http://www.ontologydesignpatterns.org/cpont/codo/editorialworkflow2codo.owl#> .

:TransformOntologyAxiom
a controlflow:ActionTask , codinteraction:ComputationalDesignTask ;
rdfs:comment "Every change in the editor is transformed into instances of
the change representation model (Change Ontology)." ;
rdfs:label "Transform ontology axiom'@en ;
partof:isPartOf :Changelogging ;
sequence:directlyFollows
:CaptureOntologyAxiom ;
sequence:directlyPrecedes
:RegisterOntologyAxiom ;
sequence:follows :CaptureOntologyAxiom ;
sequence:precedes :RegisterOntologyAxiom ;
owl:differentFrom :RegisterWorkflowAction , :DeliverErrorMessageToUser ,
:DecidelfNewUser_No , :ChangelLogging , :DecidelfUserlisAllowed_Yes ,
:VisualizeChanges , :RegisterOntologyAxiom , :DecidelfUserlsAllowed ,
:DecidelfTaskRequiresOntologyChange No , :CaptureOntologyAxiom ,
:DecidelfNewUser_Yes , :ChangeOntology , :Register , :DecidelfUserlsAllowed No ,

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 67 of 105

:WorkflowVisualization , :Logln , :SynchronizeChanges ,
-DecidelfTaskRequiresOntologyChange , :WorkflowManagement , :Userldentification
, -DecidelfNewUser , :DecidelfTaskRequiresOntologyChange Yes .

:DecidelfNewUser_No
a controlflow:DeliberationTask ,
codinteraction:ComputationalDesignTask ;
rdfs:label "Decide if new user_No"@en ;
partof:isPartOf :Userldentification ;
sequence:directlyFollows
:DecidelfNewUser ;
sequence:directlyPrecedes
Logln ;
sequence:follows :DecidelfNewUser ;
sequence:precedes :Logiln ;
owl:differentFrom :DeliverErrorMessageToUser , :RegisterWorkflowAction ,
:TransformOntologyAxiom , :-VisualizeChanges , :ChangelLogging ,
RegisterOntologyAxiom , :DecidelfUserlsAllowed , :CaptureOntologyAxiom ,
:DecidelfNewUser_Yes , :ChangeOntology , :Register , :SynchronizeChanges ,
:WorkflowVisualization , :Logln , :DecidelfTaskRequiresOntologyChange ,
WorkflowManagement , :Userldentification , :zDecidelfNewUser .

:VisualizeChanges
a controlflow:ActionTask , codinteraction:ComputationalDesignTask ,
codkernel :DesignFunctionality ;
rdfs:comment "Visualize the ontologies that are being logged and for each
of them, the history of changes sorted in chronological order." ;
rdfs:label "Visualize changes'@en ;
codtools:haslnputType
:OntologyIDKType ;
codtools:hasOutputType
:OntologyChangeListKType ;
codtools:islmplementedin
:ChangeManagementTool ;
owl:differentFrom :DeliverErrorMessageToUser , :RegisterWorkflowAction ,
:TransformOntologyAxiom , :-DecidelfNewUser_No , :ChangelLogging ,
:DecidelfUserlisAllowed_Yes , :RegisterOntologyAxiom , :DecidelfUserisAllowed ,
:DecidelfTaskRequiresOntologyChange No , :CaptureOntologyAxiom ,
:DecidelfNewUser_Yes , :ChangeOntology , :Register , :DecidelfUserlsAllowed_No ,
:WorkflowVisualization , :SynchronizeChanges , :Logln ,
:DecidelfTaskRequiresOntologyChange , :WorkflowManagement , :Userldentification
, -DecidelfNewUser , :DecidelfTaskRequiresOntologyChange Yes .

:ChangelLogging
a controlflow:ActionTask , codinteraction:ComputationalDesignTask ,
codkernel :DesignFunctionality ;
rdfs:comment "'Capture ontology changes from the NTK editor and log them
into Oyster distributed registry" ;
rdfs:label "Change logging"@en ;
partof:hasPart :CaptureOntologyAxiom , :TransformOntologyAxiom ,
:RegisterOntologyAxiom ;
codtools:haslnputType
OntologyAxiomListKType ;
codtools:islmplementedin
:ChangeManagementTool ;
owl:differentFrom :DeliverErrorMessageToUser , :RegisterWorkflowAction ,
TransformOntologyAxiom , :DecidelfNewUser_No , :VisualizeChanges ,
:DecidelfUserlsAllowed Yes , :RegisterOntologyAxiom ,
:DecidelfTaskRequiresOntologyChange No , :DecidelfUserlsAllowed ,
:CaptureOntologyAxiom , :DecidelfNewUser_Yes , :ChangeOntology ,
:DecidelfUserlisAllowed_No , :Register , :WorkflowVisualization ,

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 68 of 105 NeOn Integrated Project EU-IST-027595

:SynchronizeChanges , :Logln , :DecidelfTaskRequiresOntologyChange ,
WorkflowManagement , :Userldentification , :zDecidelfNewUser ,
:DecidelfTaskRequiresOntologyChange Yes .

:RegisterOntologyAxiom

a controlflow:ActionTask , codinteraction:ComputationalDesignTask ;

rdfs:comment ""The instances of the change ontology are registered into
Oyster distributed registry" ;

rdfs:label "Register ontology axiom"@en ;

partof:isPartOf :ChangelLogging ;

sequence:directlyFollows

TransformOntologyAxiom ;

sequence:follows :CaptureOntologyAxiom , :TransformOntologyAxiom ;

owl:differentFrom :RegisterWorkflowAction , :DeliverErrorMessageToUser ,
:TransformOntologyAxiom , :DecidelfNewUser No , :ChangelLogging ,
:VisualizeChanges , :DecidelfUserlsAllowed _Yes ,
:DecidelfTaskRequiresOntologyChange No , :DecidelfUserlsAllowed ,
:CaptureOntologyAxiom , :DecidelfNewUser_Yes , :ChangeOntology , :Register ,
:DecidelfUserlsAllowed No , :SynchronizeChanges , :Logln ,
:WorkflowVisualization , :DecidelfTaskRequiresOntologyChange ,
-WorkflowManagement , :Userldentification , :zDecidelfNewUser ,
:Decidel fTaskRequiresOntologyChange Yes .

:UserInformationKType
a codkernel :KnowledgeType ;
rdfs:label "User information KType'@en ;
codtools:islnputTypeFor
:WorkflowVisualization , :WorkflowManagement ,
:WorkFflowSupportTool , :Userldentification .

:CaptureOntologyAxiom

a controlflow:ActionTask , codinteraction:ComputationalDesignTask ;

rdfs:comment "Every change from the NTK editor is captured" ;

rdfs:label "Capture ontology axiom'@en ;

partof:isPartOf :ChangelLogging ;

sequence:directlyPrecedes

TransformOntologyAxiom ;

sequence:precedes :TransformOntologyAxiom , :RegisterOntologyAxiom ;

owl:differentFrom :DeliverErrorMessageToUser , :RegisterWorkflowAction ,
:TransformOntologyAxiom , :DecidelfNewUser No , :DecidelfUserlsAllowed Yes ,
:VisualizeChanges , :ChangelLogging , :RegisterOntologyAxiom ,
:DecidelfTaskRequiresOntologyChange No , :DecidelfUserlsAllowed ,
:DecidelfNewUser_Yes , :ChangeOntology , :Register , :DecidelfUserlsAllowed No ,
:Logln , :WorkflowVisualization , :SynchronizeChanges ,
:DecidelfTaskRequiresOntologyChange , :WorkflowManagement , :Userldentification
, -DecidelfNewUser , :DecidelfTaskRequiresOntologyChange Yes .

:OntologyChangelnformation
a owl:Class ;
rdfs:label "Ontology change information'@en ;
rdfs:subClassOf :OntologyRelatedData ;
rdfs:subClassOf
[a owl:Restriction ;
owl :hasValue :OntologyChangelnformationKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

-:WorkflowManagement
a controlflow:ActionTask , codinteraction:ComputationalDesignTask ;

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 69 of 105

rdfs:comment """This task iIs executed when manipulating ontology changes
according to the role of a user and the workflow requirements.
In particular, it is composed of the following tasks:
,A¢ Verifies that the user is allowed to perform the requested workflow
action.
LA Evaluates if the requested workflow action requires performing a change in
the corresponding ontology.
,A¢ Registers the workflow action™"" ;

rdfs:label "Workflow management'@en ;

partof:hasPart :DeliverErrorMessageToUser , :RegisterWorkflowAction ,
:ChangeOntology , :DecidelfUserlsAllowed No ,
:DecidelfTaskRequiresOntologyChange , :DecidelfUserlsAllowed_Yes ,
:DecidelfTaskRequiresOntologyChange No , :DecidelfUserlsAllowed
:Decidel fTaskRequiresOntologyChange Yes ;

codtools:haslnputType

sUserInformationKType ;
codtools:isIimplementedin
WorkFflowSupportTool ;

owl:differentFrom :DeliverErrorMessageToUser , :RegisterWorkflowAction ,
:TransformOntologyAxiom , :DecidelfNewUser No , :DecidelfUserlsAllowed Yes ,
:ChangelLogging , :VisualizeChanges , :RegisterOntologyAxiom ,
:DecidelfTaskRequiresOntologyChange No , :DecidelfUserlsAllowed
:CaptureOntologyAxiom , :=DecidelfNewUser_Yes , :ChangeOntology ,
:DecidelfUserlsAllowed No , :Register , :SynchronizeChanges , :Logln ,
:WorkflowVisualization , :DecidelfTaskRequiresOntologyChange ,
:Userldentification , :DecidelfNewUser , :DecidelfTaskRequiresOntologyChange Yes

:OntologyRelatedData
a owl:Class ;
rdfs:label "Ontology related data'@en ;
rdfs:subClassOf coddata:Annotation ;
rdfs:subClassOf
[a owl:Restriction ;
owl:hasvValue :OntologyRelatedDataKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

:UserRole
a owl:Class ;
rdfs:label "User role"@en ;
rdfs:subClassOf codkernel:UserType .

:DecidelfTaskRequiresOntologyChange Yes
a controlflow:DeliberationTask ,
codinteraction:ComputationalDesignTask ;
rdfs:label "Decide if task requires ontology change_Yes'@en ;
partof:isPartOf :WorkflowManagement ;
sequence:directlyFollows
:DecidelfTaskRequiresOntologyChange ;
sequence:directlyPrecedes
:ChangeOntology ;
sequence:follows :DecidelfTaskRequiresOntologyChange ,
:DecidelfUserlsAllowed Yes , :DecidelfUserlsAllowed ;
sequence:precedes :ChangeOntology ;
owl:differentFrom :-RegisterWorkflowAction , :DeliverErrorMessageToUser ,
TransformOntologyAxiom , :VisualizeChanges , :ChangelLogging ,
:RegisterOntologyAxiom , :DecidelfTaskRequiresOntologyChange No ,
:DecidelfUserlisAllowed , :CaptureOntologyAxiom , :ChangeOntology , :Register ,
:WorkflowVisualization , :Logln , :SynchronizeChanges ,

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 70 of 105 NeOn Integrated Project EU-IST-027595

:DecidelfTaskRequiresOntologyChange , :WorkflowManagement , :Userldentification
, -DecidelfNewUser .

:DeliverErrorMessageToUser

a controlflow:ActionTask , codinteraction:ComputationalDesignTask ;

rdfs:label "Deliver error message to user'@en ;

partof:isPartOf :WorkflowManagement ;

sequence:directlyFollows

:DecidelfUserlisAllowed No ;

sequence:follows :DecidelfUserlsAllowed No , :DecidelfUserlsAllowed ;

owl:differentFrom :RegisterWorkflowAction , :TransformOntologyAxiom ,
:DecidelfNewUser_No , :DecidelfUserlsAllowed _Yes , :ChangelLogging ,
:VisualizeChanges , :RegisterOntologyAxiom ,
:Decidel fTaskRequiresOntologyChange No , :DecidelfUserlsAllowed ,
:CaptureOntologyAxiom , :DecidelfNewUser_Yes , :ChangeOntology , :Register ,
:DecidelfUserlisAllowed No , :Logln , :WorkflowVisualization ,
:SynchronizeChanges , :DecidelfTaskRequiresOntologyChange , :WorkflowManagement
, -Userldentification , :DecidelfNewUser ,
:Decidel fTaskRequiresOntologyChange Yes .

:OntologyAxiomList
a owl:Class ;
rdfs:label "Ontology axiom list'@en ;
rdfs:subClassOf
<http://www.ontologydesignpatterns.org/cp/owl/collectionentity.owl#Collection> ,
:OntologyRelatedData ;
rdfs:subClassOf
[a owl:Restriction ;
owl:allValuesFrom coddata:OntologyAxiom ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/collectionentity.owl#hasMember>

:WorkflowSupportTool
a codkernel :DesignTool ;
rdfs:label "Workflow support tool'@en ;
codtools:haslnputType
sUseriInformationKType , :WorkflowStateChangelnformationKType ;
codtools:implements :ChangeOntology , :WorkflowVisualization ,
:WorkflowManagement , :Userldentification .

:DecidelfUserlsAllowed

a controlflow:BooleanCaseTask ,
codinteraction:ComputationalDesignTask ;

rdfs:label "Decide if user is allowed"@en ;

partof:isPartOf :WorkflowManagement ;

sequence:directlyPrecedes

:DecidelfUserlisAllowed_No , :DecidelfUserlsAllowed_Yes ;

sequence:precedes :DeliverErrorMessageToUser , :RegisterWorkflowAction ,
:ChangeOntology , :DecidelfUserlisAllowed_No ,
:DecidelfTaskRequiresOntologyChange , :DecidelfUserlsAllowed_Yes ,
:DecidelfTaskRequiresOntologyChange No , :DecidelfTaskRequiresOntologyChange Yes

owl:differentFrom :DeliverErrorMessageToUser , :RegisterWorkflowAction ,
:TransformOntologyAxiom , :DecidelfNewUser No , :DecidelfUserlsAllowed Yes ,
:VisualizeChanges , :ChangelLogging , :RegisterOntologyAxiom ,
:DecidelfTaskRequiresOntologyChange No , :CaptureOntologyAxiom ,
:DecidelfNewUser_Yes , :ChangeOntology , :DecidelfUserlsAllowed No , :Register ,
:SynchronizeChanges , :WorkflowVisualization , :-Logln ,
:DecidelfTaskRequiresOntologyChange , :WorkflowManagement , :Userldentification
, -DecidelfNewUser , :DecidelfTaskRequiresOntologyChange_Yes .

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 71 of 105

:DecidelfTaskRequiresOntologyChange No
a controlflow:DeliberationTask ,
codinteraction:ComputationalDesignTask ;
rdfs:label "Decide if task requires ontology change No'@en ;
partof:isPartOf :WorkflowManagement ;
sequence:directlyFollows
:DecidelfTaskRequiresOntologyChange ;
sequence:directlyPrecedes
:RegisterWorkflowAction ;
sequence:follows :DecidelfTaskRequiresOntologyChange ,
:DecidelfUserlsAllowed Yes , :DecidelfUserlsAllowed ;
sequence:precedes :RegisterWorkflowAction ;
owl:differentFrom :RegisterWorkflowAction , :DeliverErrorMessageToUser ,
:TransformOntologyAxiom , :VisualizeChanges , :ChangelLogging ,
RegisterOntologyAxiom , :DecidelfUserlsAllowed , :CaptureOntologyAxiom ,
:ChangeOntology , :-Register , :WorkflowVisualization , :SynchronizeChanges ,
:Logln , :DecidelfTaskRequiresOntologyChange , :WorkflowManagement ,
:Userldentification , :DecidelfNewUser , :DecidelfTaskRequiresOntologyChange Yes

:OntologyAxiomListKType
a codkernel :KnowledgeType ;
rdfs:label "Ontology axiom list KType"@en ;
codtools:islnputTypeFor
:ChangelLogging , :ChangeManagementTool .

Logln

a controlflow:ActionTask , codinteraction:ComputationalDesignTask ;

rdfs:label "Log in"@en ;

partof:isPartOf :Userldentification ;

sequence:directlyFollows

:DecidelfNewUser_No ;

sequence:follows :DecidelfNewUser_ No , :DecidelfNewUser ;

owl:differentFrom :RegisterWorkflowAction , :DeliverErrorMessageToUser ,
:TransformOntologyAxiom , :-DecidelfNewUser_No , :ChangelLogging ,
:VisualizeChanges , :DecidelfUserlsAllowed Yes , :RegisterOntologyAxiom ,
:DecidelfTaskRequiresOntologyChange No , :DecidelfUserlsAllowed ,
:CaptureOntologyAxiom , :DecidelfNewUser_Yes , :ChangeOntology ,
:DecidelfUserlsAllowed No , :Register , :SynchronizeChanges ,
-WorkflowVisualization , :DecidelfTaskRequiresOntologyChange ,
:WorkflowManagement , :Userldentification , :DecidelfNewUser ,
:DecidelfTaskRequiresOntologyChange Yes .

:OntologyIDKType
a codkernel :KnowledgeType ;
rdfs:label "Ontology IDKType'@en ;
codtools:islnputTypeFor
:VisualizeChanges , :ChangeManagementTool .

:OntologylID
a owl:Class ;
rdfs:label "Ontology ID"@en ;
rdfs:subClassOf :OntologyRelatedData ;
rdfs:subClassOf
[a owl:Restriction ;
owl :hasValue :0OntologylDKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 72 of 105 NeOn Integrated Project EU-IST-027595

sUserldentification
a controlflow:ActionTask , codinteraction:ComputationalDesignTask ;
a [a owl:Restriction ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/description.owl#isConceptUsedin> ;
owl :someValuesFrom
<http://www.ontologydesignpatterns.org/cpont/codo/codworkflows.owl#Collaborative
Workflow>

rdfs:comment "This task is executed when identifying a user to the system
and logging-in. The user information includes user firstname, lastname, and user
role." ;
rdfs:label "User identification'"@en ;
partof:hasPart :DecidelfNewUser_Yes , :Register , :DecidelfNewUser No ,
:Logln , :DecidelfNewUser ;
codtools:haslnputType
sUserInformationKType ;
codtools:islmplementedin
:WorkFflowSupportTool ;
owl:differentFrom :RegisterWorkflowAction , :DeliverErrorMessageToUser ,
:TransformOntologyAxiom , :-DecidelfNewUser_No , :ChangelLogging ,
:VisualizeChanges , :DecidelfUserlsAllowed Yes , :RegisterOntologyAxiom ,
:DecidelfUserlsAllowed , :DecidelfTaskRequiresOntologyChange No ,
:CaptureOntologyAxiom , :DecidelfNewUser_Yes , :ChangeOntology ,
:DecidelfUserlsAllowed No , :Register , :Logln , :WorkflowVisualization ,
:SynchronizeChanges , :DecidelfTaskRequiresOntologyChange , :WorkflowManagement
, -DecidelfNewUser , :DecidelfTaskRequiresOntologyChange Yes .

:Decidel fNewUser

a controlflow:BooleanCaseTask ,
codinteraction:ComputationalDesignTask ;

rdfs:label "Decide if new user'@en ;

partof:isPartOf :Userldentification ;

sequence:directlyPrecedes

:DecidelfNewUser_Yes , :DecidelfNewUser No ;

sequence:precedes :DecidelfNewUser_Yes , :Register , :DecidelfNewUser_No ,
Logln ;

owl:differentFrom :-RegisterWorkflowAction , :DeliverErrorMessageToUser ,
:TransformOntologyAxiom , :DecidelfNewUser No , :ChangelLogging ,
:VisualizeChanges , :DecidelfUserlsAllowed Yes , :RegisterOntologyAxiom ,
:DecidelfUserlsAllowed , :DecidelfTaskRequiresOntologyChange No ,
:CaptureOntologyAxiom , :=DecidelfNewUser_Yes , :ChangeOntology ,
:DecidelfUserlisAllowed_No , :Register , :-Logln , :WorkflowVisualization ,
:SynchronizeChanges , :WorkflowManagement , :Userldentification ,
:DecidelfTaskRequiresOntologyChange Yes .

WorkFflowStateChangelnformationKType
a codkernel :KnowledgeType ;
rdfs:label "Workflow state change information KType'@en ;
codtools:islnputTypeFor
:WorkflowVisualization , :WorkflowSupportTool .

:DecidelfNewUser_Yes
a controlflow:DeliberationTask ,
codinteraction:ComputationalDesignTask ;
rdfs:label ""Decide 1f new user_Yes'@en ;
partof:isPartOf :Userldentification ;
sequence:directlyFollows
:DecidelfNewUser ;
sequence:directlyPrecedes
:Register ;

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 73 of 105

sequence:follows :DecidelfNewUser ;

sequence:precedes :Register ;

owl:differentFrom :DeliverErrorMessageToUser , :RegisterWorkflowAction ,
:TransformOntologyAxiom , :DecidelfNewUser No , :ChangelLogging ,
:VisualizeChanges , :RegisterOntologyAxiom , :DecidelfUserlsAllowed ,
:CaptureOntologyAxiom , :ChangeOntology , :Register , :SynchronizeChanges ,
:Logln , :WorkflowVisualization , :-DecidelfTaskRequiresOntologyChange ,
:WorkflowManagement , :Userldentification , :DecidelfNewUser .

:ChangeOntology

a controlflow:ActionTask , codinteraction:ComputationalDesignTask ,
codkernel :DesignFunctionality ;

rdfs:label "Change ontology"@en ;

partof:isPartOf :WorkflowManagement ;

sequence:directlyFollows

:DecidelfTaskRequiresOntologyChange Yes ;

sequence:follows :DecidelfTaskRequiresOntologyChange ,
:DecidelfUserlisAllowed_Yes , :DecidelfUserlsAllowed ,
:Decidel fTaskRequiresOntologyChange Yes ;

codtools:islmplementedin

:WorkflowSupportTool ;

owl:differentFrom :-RegisterWorkflowAction , :DeliverErrorMessageToUser ,
TransformOntologyAxiom , :DecidelfNewUser_No , :=DecidelfUserlsAllowed_Yes ,
:VisualizeChanges , :ChangelLogging , :RegisterOntologyAxiom ,
:DecidelfUserlsAllowed , :DecidelfTaskRequiresOntologyChange No ,
:CaptureOntologyAxiom , :DecidelfNewUser_Yes , :Register ,
:DecidelfUserlisAllowed_No , :SynchronizeChanges , :WorkflowVisualization ,
:Logln , :DecidelfTaskRequiresOntologyChange , :WorkflowManagement ,
:Userldentification , :DecidelfNewUser , :DecidelfTaskRequiresOntologyChange Yes

:DecidelfUserlisAllowed_No
a controlflow:DeliberationTask ,
codinteraction:ComputationalDesignTask ;
rdfs:label "Decide if user is allowed No"@en ;
partof:isPartOf :WorkflowManagement ;
sequence:directlyFollows
:DecidelfUserlisAllowed ;
sequence:directlyPrecedes
:DeliverErrorMessageToUser ;
sequence:follows :DecidelfUserlsAllowed ;
sequence:precedes :DeliverErrorMessageToUser ;
owl:differentFrom :DeliverErrorMessageToUser , :RegisterWorkflowAction ,
:TransformOntologyAxiom , :VisualizeChanges , :DecidelfUserlsAllowed Yes ,
:ChangelLogging , :RegisterOntologyAxiom , :DecidelfUserlsAllowed ,
:CaptureOntologyAxiom , :ChangeOntology , :Register , :SynchronizeChanges ,
:WorkflowVisualization , :Logln , :DecidelfTaskRequiresOntologyChange ,
:WorkflowManagement , :Userldentification , :DecidelfNewUser .

:WorkFflowVisualization
a controlflow:ActionTask , codinteraction:ComputationalDesignTask ,
codkernel :DesignFunctionality ;
rdfs:comment "This task is executed when visualizing changes within the
workflow that are in a particular state." ;
rdfs:label "Workflow visualization"@en ;
codtools:haslnputType
sUseriInformationKType , :WorkflowStateChangelnformationKType ;
codtools:hasOutputType
:OntologyChangelnformationKType ;
codtools:isImplementedin
WorkflowSupportTool

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 74 of 105 NeOn Integrated Project EU-IST-027595

owl:differentFrom :RegisterWorkflowAction , :DeliverErrorMessageToUser ,
:TransformOntologyAxiom , :-DecidelfNewUser_No , :VisualizeChanges ,
:DecidelfUserlsAllowed _Yes , :ChangeLogging , :RegisterOntologyAxiom ,
:DecidelfUserlsAllowed , :DecidelfTaskRequiresOntologyChange No ,
:CaptureOntologyAxiom , :DecidelfNewUser_Yes , :ChangeOntology , :Register ,
:DecidelfUserlsAllowed No , :Logln , :SynchronizeChanges ,
:DecidelfTaskRequiresOntologyChange , :WorkflowManagement , :Userldentification
, -DecidelfNewUser , :DecidelfTaskRequiresOntologyChange Yes .

:SynchronizeChanges

a controlflow:ActionTask , codinteraction:ComputationalDesignTask ,
codkernel :DesignFunctionality ;

rdfs:comment "'Start Oyster synchronization process in the distributed
environment and apply changes received from other clients to the same
ontologies." ;

rdfs:label "Synchronize changes'@en ;

codtools:isIimplementedin

:ChangeManagementTool ;

owl:differentFrom :DeliverErrorMessageToUser , :RegisterWorkflowAction ,
:TransformOntologyAxiom , :DecidelfNewUser No , :ChangelLogging ,
:VisualizeChanges , :DecidelfUserlsAllowed_Yes , :RegisterOntologyAxiom ,
:DecidelfTaskRequiresOntologyChange No , :DecidelfUserlsAllowed ,
:CaptureOntologyAxiom , :DecidelfNewUser_Yes , :ChangeOntology , :Register ,
:DecidelfUserlsAllowed No , :Logln , :WorkflowVisualization ,
:DecidelfTaskRequiresOntologyChange , :WorkflowManagement , :Userldentification
, -DecidelfNewUser , :DecidelfTaskRequiresOntologyChange Yes .

:WorkFflowStateChangelnformation
a owl:Class ;
rdfs:label "Workflow state change information"@en ;
rdfs:subClassOf :OntologyRelatedData ;
rdfs:subClassOf
[a owl:Restriction ;
owl :hasValue :WorkflowStateChangelnformationKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

:RegisterWorkflowAction

a controlflow:ActionTask , codinteraction:ComputationalDesignTask ;

rdfs:label "Register workflow action'@en ;

partof:isPartOf :WorkflowManagement ;

sequence:directlyFollows

:DecidelfTaskRequiresOntologyChange No ;

sequence:follows :DecidelfTaskRequiresOntologyChange ,
:DecidelfUserlsAllowed_Yes , :DecidelfTaskRequiresOntologyChange No ,
:DecidelfUserlisAllowed ;

owl:differentFrom :DeliverErrorMessageToUser , :TransformOntologyAxiom ,
:DecidelfNewUser_No , :ChangelLogging , :DecidelfUserlisAllowed_Yes ,
:VisualizeChanges , :RegisterOntologyAxiom ,
:DecidelfTaskRequiresOntologyChange No , :DecidelfUserlsAllowed ,
:CaptureOntologyAxiom , :=DecidelfNewUser_Yes , :ChangeOntology ,
:DecidelfUserlisAllowed_No , :-Register , :-Logln , :WorkflowVisualization ,
:SynchronizeChanges , :DecidelfTaskRequiresOntologyChange , :WorkflowManagement
, -Userldentification , :DecidelfNewUser ,
:DecidelfTaskRequiresOntologyChange Yes .

:OntologyChangelnformationKType
a codkernel :KnowledgeType ;
rdfs:label "Ontology change information KType'@en ;
codtools: isOutputTypeFor

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 75 of 105

:WorkflowVisualization .

:DecidelfUserlisAllowed Yes
a controlflow:DeliberationTask ,
codinteraction:ComputationalDesignTask ;
rdfs:label "Decide if user is allowed Yes'@en ;
partof:isPartOf :WorkflowManagement ;
sequence:directlyFollows
:DecidelfUserlisAllowed ;
sequence:directlyPrecedes
:DecidelfTaskRequiresOntologyChange ;
sequence:follows :DecidelfUserlsAllowed ;
sequence:precedes :-RegisterWorkflowAction , :ChangeOntology ,
:DecidelfTaskRequiresOntologyChange , :DecidelfTaskRequiresOntologyChange No ,
:DecidelfTaskRequiresOntologyChange Yes ;
owl:differentFrom :DeliverErrorMessageToUser , :RegisterWorkflowAction ,
:TransformOntologyAxiom , :-VisualizeChanges , :ChangelLogging ,
RegisterOntologyAxiom , :DecidelfUserlsAllowed , :CaptureOntologyAxiom ,
:ChangeOntology , :DecidelfUserlsAllowed_No , :Register , :WorkflowVisualization
, -Logln , :SynchronizeChanges , :DecidelfTaskRequiresOntologyChange ,
WorkflowManagement , :Userldentification , :zDecidelfNewUser .

:OntologyChangeL istKType
a codkernel :KnowledgeType ;
rdfs:label "Ontology change list KType'@en ;
codtools: isOutputTypeFor
:VisualizeChanges .

sUserInformation
a owl:Class ;
rdfs:comment "The user information includes user firstname, lastname, and
user role." ;
rdfs:label "User information'@en ;
rdfs:subClassOf :OntologyRelatedData ;
rdfs:subClassOf
[a owl:Restriction ;
owl:hasValue :UserlInformationKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

rdfs:subClassOf
[a owl:Restriction ;
owl :onProperty partof:hasPart ;
owl :someValuesFrom :UserRole

1 -
<http://www.ontologydesignpatterns.org/cpont/codo/editorialworkflow2codo.owl>
a owl:Ontology ;

owl :imports <http://www.ontologydesignpatterns.org/cp/owl/controlflow.owl>
, <http://www.ontologydesignpatterns.org/cpont/codo/codolight.owl> ;
owl:versioninfo """0.1: Derived by Aldo Gangemi from Raul Palma“s
description of Workflow Management and Change Management tools.
0.2: added labels and knowledge types''"'"xsd:string .

:Register
a controlflow:ActionTask , codinteraction:ComputationalDesignTask ;
rdfs:label "Register'@en ;
partof:isPartOf :Userldentification ;
sequence:directlyFollows
:DecidelfNewUser_Yes ;
sequence:follows :DecidelfNewUser_Yes , :DecidelfNewUser ;

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 76 of 105 NeOn Integrated Project EU-IST-027595

owl:differentFrom :DeliverErrorMessageToUser , :RegisterWorkflowAction ,
:TransformOntologyAxiom , :-DecidelfNewUser_No , :VisualizeChanges ,
:ChangelLogging , :DecidelfUserlsAllowed_Yes , :RegisterOntologyAxiom ,

:Decidel fTaskRequiresOntologyChange No , :DecidelfUserlsAllowed ,
:CaptureOntologyAxiom , :DecidelfNewUser_Yes , :ChangeOntology ,
:DecidelfUserlsAllowed_No , :SynchronizeChanges , :WorkflowVisualization ,
:Logln , :DecidelfTaskRequiresOntologyChange , :WorkflowManagement ,
:Userldentification , :DecidelfNewUser , :DecidelfTaskRequiresOntologyChange Yes

:OntologyRelatedDataKType
a codkernel :KnowledgeType ;
rdfs:label "Ontology related data KType'@en .

:DecidelfTaskRequiresOntologyChange

a controlflow:BooleanCaseTask ,
codinteraction:ComputationalDesignTask ;

rdfs:label "Decide if task requires ontology change'@en ;

partof:isPartOf :WorkflowManagement ;

sequence:directlyFollows

:DecidelfUserlisAllowed Yes ;
sequence:directlyPrecedes
:DecidelfTaskRequiresOntologyChange No ,

:Decidel fTaskRequiresOntologyChange Yes ;

sequence:follows :DecidelfUserlsAllowed Yes , :DecidelfUserlsAllowed ;

sequence:precedes :RegisterWorkflowAction , :ChangeOntology ,
:DecidelfTaskRequiresOntologyChange No , :DecidelfTaskRequiresOntologyChange Yes

owl:differentFrom :DeliverErrorMessageToUser , :RegisterWorkflowAction ,
:TransformOntologyAxiom , :DecidelfNewUser No , :VisualizeChanges ,
:DecidelfUserlsAllowed_Yes , :ChangeLogging , :RegisterOntologyAxiom ,
:DecidelfTaskRequiresOntologyChange No , :DecidelfUserlsAllowed ,
:CaptureOntologyAxiom , :=DecidelfNewUser_Yes , :ChangeOntology ,
:DecidelfUserlsAllowed No , :Register , :WorkflowVisualization , :Logln ,
:SynchronizeChanges , :WorkflowManagement , :Userldentification ,
:DecidelfTaskRequiresOntologyChange Yes .

:OntologyChangelList
a owl:Class ;
rdfs:label "Ontology change list"@en ;
rdfs:subClassOf
<http://www.ontologydesignpatterns.org/cp/owl/collectionentity.owl#Collection> ,
:OntologyRelatedData ;
rdfs:subClassOf
[a owl:Restriction ;
owl:allValuesFrom :OntologyChangelnformation ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/collectionentity.owl#hasMember>

:ChangeManagementTool
a codkernel :DesignTool ;
rdfs:label "Change management tool''@en ;
codtools:haslnputType
:OntologyAxiomListKType , :OntologylDKType ;
codtools:implements :SynchronizeChanges , :VisualizeChanges ,
:ChangelLogging .

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 77 of 105

Open Rating System

baseURI: http://www.ontologydesignpatterns.org/cpont/codo/tsors2codo.owl
Imports: http://www.ontologydesignpatterns.org/cpont/codo/codolight._owl
Imports: http://www.ontologydesignpatterns.org/cpont/codo/odm2codo.owl

@prefix owl2xml: <http://www.w3.0rg/2006/12/owl2-xml#> .

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

@prefix intensionextension:
<http://www.ontologydesignpatterns.org/cp/owl/intensionextension._owl#> .
@prefix codkernel:
<http://www.ontologydesignpatterns.org/cpont/codo/codkernel .owl#> .
@prefix coddata:
<http://www.ontologydesignpatterns.org/cpont/codo/coddata.owl#> .
@prefix codtools:
<http://www.ontologydesignpatterns.org/cpont/codo/codtools.owl#> .
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

@prefix owl: <http://www.w3.0rg/2002/07/owl#> .

@prefix codinteraction:
<http://www.ontologydesignpatterns.org/cpont/codo/codinteraction.owl#> .
@prefix description:
<http://www.ontologydesignpatterns.org/cp/owl/description.owl#> .
@prefix agentrole:
<http://www.ontologydesignpatterns.org/cp/owl/agentrole_owl#> .

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix :
<http://www.ontologydesignpatterns.org/cpont/codo/tsors2codo.owl#> .
:ReviewRank

a owl:Class ;

rdfs:label "Review rank'@en ;
rdfs:subClassOf coddata:Annotation ;
rdfs:subClassOf
[a owl:Restriction ;
owl:hasValue :ReviewRankKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

1:;
rdfs:subClassOf
[a owl:Restriction ;
owl:hasvValue :ReviewRanking ;
owl :onProperty codtools:isOutputDataFor

rdfs:subClassOf
[a owl:Restriction ;
owl:onProperty intensionextension:isAbout ;
owl :someValuesFrom :Review

1 .
s TrustAnnotationKType
a codkernel :KnowledgeType ;

rdfs:label "Trust annotation KType'@en ;
codtools:islnputTypeFor
:TS-ORS , :ReviewRanking , :OntologyRanking .

:TrustAnnotation
a owl:Class ;
rdfs:comment "‘Users express trust in other users.” ;
rdfs:label "Trust annotation'@en ;

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 78 of 105 NeOn Integrated Project EU-IST-027595

rdfs:subClassOf coddata:Annotation ;
rdfs:subClassOf
[a owl:Restriction ;
owl:onProperty intensionextension:isAbout ;
owl :someValuesFrom agentrole:Agent

1:;
rdfs:subClassOf
[a owl:Restriction ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/informationobjectsandrepresentatio
nlanguages.owl#isConceptualizedBy> ;
owl :someValuesFrom agentrole:Agent

1:;
rdfs:subClassOf
[a owl:Restriction ;
owl:hasValue :TrustAnnotationKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

rdfs:subClassOf
[a owl:Restriction ;
owl:onProperty intensionextension:isAbout ;
owl :someValuesFrom :Review

] -

coddata:OntologyKType
codtools:islnputTypeFor
:TS-ORS , :OntologyRanking .

:OntologyRankKType
a codkernel :KnowledgeType ;
rdfs:label "Ontology rank KType'@en ;
codtools: isOutputTypeFor
:TS-ORS , :OntologyRanking .

ReviewKType
a codkernel :KnowledgeType ;
rdfs:label "Review KType"@en ;
codtools:islnputTypeFor
:TS-ORS , :ReviewRanking , :OntologyRanking ;
codtools: isOutputTypeFor
:TS-0ORS .

agentrole:Agent
rdfs:comment ""Agents in the TS-ORS are reviewers as well as users
commenting on the reviews." .

:TS-ORS
a codkernel :DesignTool ;
rdfs:label "TS-ORS"@en ;
codtools:haslnputType
TrustAnnotationKType , coddata:OntologyKType , :ReviewKType ;
codtools:hasOutputType
:OntologyRankKType , :ReviewRankKType , :ReviewKType ;
codtools:implements :ReviewRanking , :OntologyRanking .

Review
a owl:Class ;
rdfs:comment "A review consists of a star rating (1-5) and a textual
description justifying this rating. It covers an OntologyProperty." ;
rdfs:label "Review'@en ;

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 79 of 105

rdfs:subClassOf coddata:Annotation ;
rdfs:subClassOf
[a owl:Restriction ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/informationobjectsandrepresentatio
nlanguages.owl#isConceptualizedBy> ;
owl :someValuesFrom agentrole:Agent

rdfs:subClassOf
[a owl:Restriction ;
owl:hasValue :ReviewKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

rdfs:subClassOf
[a owl:Restriction ;
owl:onProperty intensionextension:isAbout ;
owl :someValuesFrom codkernel:Ontology

1 -
:ReviewRankKType
a codkernel :KnowledgeType ;

rdfs:label "Review rank KType'@en ;
codtools: isOutputTypeFor
:TS-ORS , :ReviewRanking .

<http://www.ontologydesignpatterns.org/cpont/codo/tsors2codo.owl>

a owl:Ontology ;

rdfs:comment ""The Topic-Specific Open Rating System (TS-ORS) allows users
to rate properties of ontologies. Furthermore, other users can then express
trust on these reviews, producing an underlying web of trust. This can be
exploited to personlize the ranking of reviews and ontologies.™ ;

owl - imports
<http://www.ontologydesignpatterns.org/cpont/codo/odm2codo.owl> ,
<http://www.ontologydesignpatterns.org/cpont/codo/codolight.owl> ;

owl:versionlnfo """0.1: Created by Holger Lewen
0.2: Revised by Aldo Gangemi
0.3: Changed name of Trust class to TrustAnnotation, added labels

0.4: added labels and knowledge types .

:ReviewRanking
a codinteraction:ComputationalDesignTask ;
rdfs:comment ""‘Based on the reviews available and the web of trust computed
by the TS-ORS, the reviews are ranked." ;
rdfs:label "Review ranking'@en ;
codtools:haslnputType
TrustAnnotationKType , :ReviewKType ;
codtools:hasOutputType
:ReviewRankKType ;
codtools:isImplementedin
:TS-ORS .

:OntologyRank

a owl:Class ;

rdfs:label "Ontology rank'@en ;

rdfs:subClassOf coddata:Annotation ;

rdfs:subClassOf

[a owl:Restriction ;
owl :hasValue :OntologyRanking ;

owl:onProperty codtools:isOutputDataFor

1:

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 80 of 105 NeOn Integrated Project EU-IST-027595

rdfs:subClassOf
[a owl:Restriction ;
owl :hasValue :OntologyRankKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

1:;
rdfs:subClassOf
[a owl:Restriction ;
owl:onProperty intensionextension:isAbout ;
owl :someValuesFrom codkernel :Ontology

1 -
:OntologyRanking
a codinteraction:ComputationalDesignTask ;

rdfs:comment "The ranking of ontologies is based on the trust expressed by
agents in other agents and the reviews available." ;

rdfs:label "Ontology ranking'@en ;
codtools:haslnputType

:TrustAnnotationKType , coddata:OntologyKType , :ReviewKType ;
codtools:hasOutputType

:OntologyRankKType ;
codtools:islmplementedin

:TS-ORS .

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 81 of 105

Cicero

baseURI: http://www.ontologydesignpatterns.org/cpont/codo/cicero2codo.owl
Imports: http://www.ontologydesignpatterns.org/cpont/codo/codolight._owl
Imports: http://www.ontologydesignpatterns.org/cp/owl/specialization.owl

@prefix codworkflows:
<http://www.ontologydesignpatterns.org/cpont/codo/codworkflows.owl#> .

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

@prefix coddata:
<http://www.ontologydesignpatterns.org/cpont/codo/coddata.owl#> .

@prefix specialization:
<http://www.ontologydesignpatterns.org/cp/owl/specialization.owl#> .

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

@prefix sequence: <http://www.ontologydesignpatterns.org/cp/owl/sequence.owl#>

@prefix descriptionandsituation:
<http://www.ontologydesignpatterns.org/cp/owl/descriptionandsituation.owl#> .
@prefix owl: <http://www.w3.0rg/2002/07/owl#> .

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .

@prefix owl2xml: <http://www.w3.0rg/2006/12/owl2-xml#> .

@prefix objectrole:
<http://www.ontologydesignpatterns.org/cp/owl/objectrole._owl#> .

@prefix taskrole: <http://www.ontologydesignpatterns.org/cp/owl/taskrole._owl#>

@prefix taskexecution:
<http://www.ontologydesignpatterns.org/cp/owl/taskexecution.owl#> .

@prefix intensionextension:
<http://www.ontologydesignpatterns.org/cp/owl/intensionextension._owl#> .
@prefix codkernel:
<http://www.ontologydesignpatterns.org/cpont/codo/codkernel .owl#> .

@prefix codarg: <http://www.ontologydesignpatterns.org/cpont/codo/codarg.owl#>
@prefix codtools:
<http://www.ontologydesignpatterns.org/cpont/codo/codtools.owl#> .

@prefix codinteraction:
<http://www.ontologydesignpatterns.org/cpont/codo/codinteraction.owl#> .
@prefix situation:
<http://www.ontologydesignpatterns.org/cp/owl/situation.owl#> .

@prefix codprojects:
<http://www.ontologydesignpatterns.org/cpont/codo/codprojects.owl#> .

@prefix description:
<http://www.ontologydesignpatterns.org/cp/owl/description.owl#> .

@prefix informationobjectsandrepresentationlanguages:
<http://www.ontologydesignpatterns.org/cp/owl/informationobjectsandrepresentatio
nlanguages.owl#> .

@prefix partof: <http://www.ontologydesignpatterns.org/cp/owl/partof._owl#> .
@prefix :

<http://www.ontologydesignpatterns.org/cpont/codo/cicero2codo.owl#> .

codarg:ArgumentKType
specialization:isSpecializedBy

:CiceroArgumentKType .
:CastVote
a codkernel :DesignFunctionality ;
rdfs:comment ******
Casting a single vote for one of the proposed solutions.'""xsd:string ;

rdfs:label "Cast vote'@en ;

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 82 of 105

NeOn Integrated Project EU-IST-027595

partof:isPartOf :PreferentialVoting ;
codtools:haslnputType
:CiceroArgumentKType ;
codtools:hasOutputType
codarg:PositionKType ;
codworkflows: isFunctionalitylncludedln
:CiceroToolkitPluginWorkflow ,
owl:differentFrom :CiceroAdministrator

:IssueModerator , :ProjectMember .
codarg: ldea

a owl:Class .
:CiceroWiki

a codkernel :DesignTool ;

rdfs:comment

:CiceroWikiWorkflow ;
, -ProjectModerator ,

The Cicero Argumentation Wiki can be used for discussing issues that are raised
during an OntologyProject with regard to the development of the

ontology.""""xsd:string ;
rdfs:label "Cicero wiki"@en ;
codtools:hasUserType
:ProjectMember ;

codtools:implements :PreferentialVoting ,

:DiscussDesignRationale ,
:TakeDecision ,

:ProposeSolution ,
:CiceroWikiWorkflow ,
:CastVote , :Createlssue ,

: IssueModerator

a codkernel :UserType ;

rdfs:label "lIssue moderator'@en ;

specialization:isRequiredBy
:CiceroAdministrator ;

specialization:requires
:ProjectModerator ;

taskrole:hasTask :DecideOnSolution ,

owl :differentFrom codinteraction:GuidedTour ,
ProvideArgument , codinteraction:ActionButton ,

:ProposeSolution ,

:DecideOnSolution ,
codinteraction:PulldownButton ,
:CiceroWikiWorkflow ,

codinteraction:Slideshow

codinteraction:Paging , codinteraction:Wizard ,

:CiceroArgumentKType
a codkernel :KnowledgeType ;
rdfs:label "Cicero argument KType'@en
specialization:specializes
codarg:ArgumentKType ;
codtools:islnputTypeFor
:CastVote ;
codtools: isOutputTypeFor
ProvideArgument .

ProjectMember

a codkernel :UserType ;

rdfs:label "Project member'@en ;

specialization:isRequiredBy
:ProjectModerator ;

taskrole:hasTask :PreferentialVoting ,

codtools:isUserTypeFor
:CiceroToolkitPlugin ,

:DecideOnSolution ,
:StartPreferentialVoting .

:CreateProject ,
:CiceroToolkitPluginWorkflow , codinteraction:Stepping ,

:CreateProject ,
:ProvideArgument ,
:CreateAnnotation ,

:StartPreferentialVoting ;

codinteraction:Breadcrumbs ,

, codinteraction:Accordion ,
:DiscussDesignRationale ,

:StartPreferentialVoting .

:DiscussDesignRationale ;

:CiceroWiki

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 83 of 105

owl:differentFrom codinteraction:GuidedTour , codinteraction:Breadcrumbs ,
ProposeSolution , :ProvideArgument , codinteraction:ActionButton ,
:DecideOnSolution , codinteraction:Accordion , codinteraction:Slideshow ,
codinteraction:PulldownButton , :CreateProject , :DiscussDesignRationale ,
:CiceroToolkitPluginWorkflow , :CiceroWikiWorkflow , codinteraction:Stepping ,
codinteraction:Paging , codinteraction:Wizard , :StartPreferentialVoting .

coddata:AnnotationKType
codtools: isOutputTypeFor
:CreateAnnotation .

:CiceroSolutionProposal
a owl:Class ;
rdfs:label "Cicero solution proposal'@en ;
rdfs:subClassOf codarg:ldea ;
rdfs:subClassOf
[a owl:Restriction ;
owl:hasValue :CiceroSolutionProposalKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

1:;
rdfs:subClassOf
[a owl:Restriction ;
owl:allvValuesFrom
informationobjectsandrepresentationlanguages:LinguisticObject ;
owl:onProperty intensionextension:isExpressedBy

1 -
<http://www.ontologydesignpatterns.org/cpont/codo/cicero2codo.owl>
a owl:Ontology ;
rdfs:comment ""'*'0.1: Description of Cicero created by Klaas Dellschaft

0.2: Adapted by Aldo Gangemi for linking to codolight
0.3: Revised a redundant axiom for CiceroWikiWorkflow
0.4: Made broad refactoring after more careful analysis. Refactored UserType
subclasses as individuals; also refactored the anonymous typing dependent on
those classes as simple object values; added import of specialization.owl
pattern; refactored rdf:type axioms to DesignOperation as inputType axioms to
DesignFunctionality; also refactored the executesTask axioms dependent on those
individuals as isPartOf axioms.
0.5: added labels and knowledge types
0.6: corrected bug in type of CiceroWikiWorkfow™ " ;

owl - imports
<http://www.ontologydesignpatterns.org/cp/owl/specialization.owl> ,
<http://www.ontologydesignpatterns.org/cpont/codo/codolight.owl> .

:CiceroAdministrator

a codkernel :UserType ;

rdfs:label "Cicero administrator'@en ;

specialization:requires

: IssueModerator ;

taskrole:hasTask :CreateProject ;

owl:differentFrom codinteraction:GuidedTour , codinteraction:Breadcrumbs ,
:ProposeSolution , codinteraction:ActionButton , :ProvideArgument ,
:DecideOnSolution , codinteraction:Slideshow , codinteraction:Accordion ,
codinteraction:PulldownButton , :CreateProject , :DiscussDesignRationale ,
:CiceroToolkitPluginWorkflow , :CiceroWikiWorkflow , codinteraction:Stepping ,
codinteraction:Paging , codinteraction:Wizard , :StartPreferentialVoting .

:CiceroToolkitPluginWorkflow
a codworkflows:Col laborativeWorkflow ;
rdfs:label "Cicero toolkit plugin workflow"@en ;

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 84 of 105 NeOn Integrated Project EU-IST-027595

codtools:islimplementedin
:CiceroToolkitPlugin ;
codworkflows: includesFunctional ity
:PreferentialVoting , :CreateProject , :ProposeSolution ,
:ProvideArgument , :DiscussDesignRationale , :TakeDecision , :CreateAnnotation ,
:DecideOnSolution , :CastVote , :Createlssue , :StartPreferentialVoting ;
owl:differentFrom :CreateProject , :DecideOnSolution , :ProjectModerator ,
:StartPreferentialVoting .

:CreateAnnotation
a codkernel :DesignFunctionality ;
rdfs:comment """
Annotating ontology elements with a discussion in the Cicero
Wiki."""Mxsd:string ;
rdfs:label "Create annotation'@en ;
codtools:haslnputType
:CicerolssueKType , coddata:OntologyElementKType ;
codtools:hasOutputType
coddata:AnnotationKType ;
codworkflows: isFunctionalitylncludedIn
:CiceroWikiWorkflow , :CiceroToolkitPluginWorkflow ;
owl:differentFrom codinteraction:GuidedTour , codinteraction:Breadcrumbs ,
codinteraction:ActionButton , :lssueModerator , codinteraction:Slideshow ,
codinteraction:Accordion , codinteraction:PulldownButton , :ProjectMember ,
:CiceroAdministrator , :CiceroToolkitPluginWorkflow , :CiceroWikiWorkflow ,
codinteraction:Stepping , :ProjectModerator , codinteraction:Paging ,
codinteraction:Wizard .

:CiceroArgument
a owl:Class ;
rdfs:label "Cicero argument'@en ;
rdfs:subClassOf codarg:Argument ;
rdfs:subClassOf
[a owl:Restriction ;
owl:hasValue :CiceroArgumentKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

intensionextension: isExpressedBy
a owl:ObjectProperty .

coddata:OntologyElementKType
codtools:islnputTypeFor

:CreateAnnotation .
PreferentialVoting
a codkernel :DesignFunctionality ;

rdfs:comment
The preferential voting is an optional phase in the workflow of the Cicero
Wiki.""""Mxsd:string ;
rdfs:label "Preferential voting'@en ;
partof:hasPart :CastVote ;
sequence:directlyFollows
:StartPreferentialVoting ;
sequence:follows :CreateProject , :DiscussDesignRationale ,
:StartPreferentialVoting ;
sequence:precedes :DecideOnSolution ;
taskrole:isTaskOf :ProjectMember ;
codworkflows: isFunctionalitylncludedlIn
:CiceroWikiWorkflow , :CiceroToolkitPluginWorkflow ;

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 85 of 105

owl:differentFrom codinteraction:GuidedTour , codinteraction:Breadcrumbs ,
codinteraction:ActionButton , :lssueModerator , codinteraction:Slideshow ,
codinteraction:Accordion , codinteraction:PulldownButton , :ProjectMember ,
:CiceroAdministrator , :CiceroWikiWorkflow , :CiceroToolkitPluginWorkflow ,
:ProjectModerator , codinteraction:Stepping , codinteraction:Paging ,
codinteraction:Wizard .

:CiceroToolkitPlugin

a codkernel :DesignTool ;

rdfs:comment "The Cicero Plugin for the NeOn Toolkit can be used for
annotating ontology elements with related discussions in a Cicero Argumentation
Wiki."Mxsd:string ;

rdfs:label "Cicero toolkit plugin'@en ;

codtools:hasUserType

:ProjectMember ;
codtools:implements :PreferentialVoting , :CreateProject ,

ProposeSolution , :DiscussDesignRationale , :ProvideArgument ,
:CiceroToolkitPluginWorkflow , :TakeDecision , :DecideOnSolution ,
:CreateAnnotation , :CastVote , :Createlssue , :StartPreferentialVoting .

:CicerolssueKType
a codkernel :KnowledgeType ;
rdfs:label "Cicero issue KType'@en ;
specialization:specializes
codarg:ArgumentationThreadKType ;
codtools:islnputTypeFor
:ProposeSolution , :CreateAnnotation ;
codtools: isOutputTypeFor

:Createlssue .
:ProposeSolution
a codkernel :DesignFunctionality ;

rdfs:comment
A single solution is proposed how to solve the previously raised
issue."""Mxsd:string ;
rdfs:label "Propose solution@en ;
partof:isPartOf :DiscussDesignRationale ;
sequence:follows :Createlssue ;
sequence:precedes :ProvideArgument ;
codtools:haslnputType
:CicerolssueKType ;
codtools:hasOutputType
:CiceroSolutionProposalKType ;
codworkflows: isFunctionalitylncludedln
:CiceroToolkitPluginWorkflow , :CiceroWikiWorkflow ;
owl:differentFrom :ProjectModerator .

:ProvideArgument
a codkernel :DesignFunctionality ;
rdfs:comment "'
A supporting or objecting argument with regard to a specific solution proposal
is given.'""""Mxsd:string ;
rdfs:label "Provide argument'@en ;
partof:isPartOf :DiscussDesignRationale ;
sequence:follows :ProposeSolution , :Createlssue ;
codtools:haslnputType
:CiceroSolutionProposalKType ;
codtools:hasOutputType
:CiceroArgumentKType ;
codworkflows: isFunctionalitylncludedlIn
:CiceroToolkitPluginWorkflow , :CiceroWikiWorkflow ;

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 86 of 105 NeOn Integrated Project EU-IST-027595

owl:differentFrom :ProjectModerator .

codarg:Argument

a owl:Class .
- TakeDecision
a codkernel :DesignFunctionality ;

rdfs:label "Take decision™@en ;
partof:isPartOf :DecideOnSolution ;
codworkflows: isFunctionalitylncludedlIn
:CiceroWikiWorkflow , :CiceroToolkitPluginWorkflow ;
owl:differentFrom :CiceroAdministrator , :ProjectModerator ,

:IssueModerator , :-ProjectMember .
:DecideOnSolution
a codkernel :DesignFunctionality ;

rdfs:comment
An Issue Moderator decides, which solution should be implemented in the ontology
project. The decision is based on the previous discussion and may be based on a
previously held preferential voting.'"""xsd:string ;
rdfs:label "Decide on solution'@en ;
partof:hasPart :TakeDecision ;
sequence:follows :PreferentialVoting , :CreateProject ,
:DiscussDesignRationale , :StartPreferentialVoting ;
taskrole:isTaskOf :lssueModerator ;
codtools:haslnputType
codarg:PositionKType ;
codworkflows:isFunctionalitylncludedln
:CiceroWikiWorkflow , :CiceroToolkitPluginWorkflow ;
owl:differentFrom codinteraction:GuidedTour , codinteraction:Breadcrumbs ,
codinteraction:ActionButton , :CiceroToolkitPluginWorkflow ,
codinteraction:Stepping , :ProjectModerator , codinteraction:Paging ,
codinteraction:Accordion , codinteraction:Slideshow , codinteraction:Wizard ,
codinteraction:PulldownButton .

informationobjectsandrepresentationlanguages:LinguisticObject
a owl:Class .

:CiceroSolutionProposalKType
a codkernel :KnowledgeType ;
rdfs:label "Cicero solution proposal KType'@en ;
specialization:specializes
codarg: ldeaKType ;
codtools:islnputTypeFor
:ProvideArgument ;
codtools: isOutputTypeFor
:ProposeSolution .

:CreateProject

a codkernel :DesignFunctionality ;

rdfs:comment """
Creating a new discussion project that groups all discussions related to a
specific ontology project.'"""'xsd:string ;

rdfs:label "Create project'@en ;

sequence:precedes :PreferentialVoting , :DiscussDesignRationale ,
:DecideOnSolution , :StartPreferentialVoting ;

taskrole:isTaskOf :CiceroAdministrator ;

codworkflows: isFunctionalitylncludedln

:CiceroWikiWorkflow , :CiceroToolkitPluginWorkflow ;

owl:differentFrom codinteraction:GuidedTour , codinteraction:Breadcrumbs ,

codinteraction:ActionButton , :CiceroToolkitPluginWorkflow ,

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 87 of 105

codinteraction:Stepping , :-ProjectModerator , codinteraction:Paging ,
codinteraction:Accordion , codinteraction:Slideshow ,
codinteraction:PulldownButton , codinteraction:Wizard .

:DiscussDesignRationale

a codkernel :DesignFunctionality ;

rdfs:comment """
During the discussion of an issue, the members of a project exchange solution
proposals and arguments.'""'xsd:string ;

rdfs:label "Discuss design rationale"@en ;

partof:hasPart :-ProposeSolution , :ProvideArgument , :Createlssue ;

sequence:directlyPrecedes

:StartPreferentialVoting ;

sequence:follows :CreateProject ;

sequence:precedes :PreferentialVoting , :DecideOnSolution ,
:StartPreferentialVoting ;

taskrole:isTaskOf :ProjectMember ;

codworkflows: isFunctionalitylncludedln

:CiceroWikiWorkflow , :CiceroToolkitPluginWorkflow ;

owl:differentFrom codinteraction:GuidedTour , codinteraction:Breadcrumbs ,
codinteraction:ActionButton , codinteraction:Slideshow ,
codinteraction:Accordion , codinteraction:PulldownButton , :ProjectMember ,
:CiceroWikiWorkflow , :CiceroToolkitPluginWorkflow , :ProjectModerator ,
codinteraction:Stepping , codinteraction:Paging , codinteraction:Wizard .

:CiceroWikiWorkflow
a codworkflows:Col laborativeWorkflow ;
rdfs:label "Cicero wiki workflow"@en ;
codtools:isimplementedin
:CiceroWiki ;
codworkflows: includesFunctional ity
:PreferentialVoting , :CreateProject , :ProposeSolution ,
ProvideArgument , :DiscussDesignRationale , :TakeDecision , :CreateAnnotation
:DecideOnSolution , :CastVote , :Createlssue , :StartPreferentialVoting ;
owl:differentFrom :CreateProject , :DecideOnSolution , :ProjectModerator ,
:StartPreferentialVoting .

:Cicerolssue
a owl:Class ;
rdfs:label "Cicero issue'@en ;
rdfs:subClassOf codarg:ArgumentationThread ;
rdfs:subClassOf
[a owl:Restriction ;
owl:hasValue :CicerolssueKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

:ProjectModerator
a codkernel :UserType ;
rdfs:label "Project moderator'@en ;
specialization:isRequiredBy
- IssueModerator ;
specialization:requires
:ProjectMember ;
owl:differentFrom codinteraction:GuidedTour , codinteraction:Breadcrumbs ,
ProvideArgument , codinteraction:ActionButton , :DecideOnSolution ,
codinteraction:Accordion , codinteraction:Slideshow ,
codinteraction:PulldownButton , :CreateProject , :CiceroToolkitPluginWorkflow ,
codinteraction:Stepping , codinteraction:Paging , codinteraction:Wizard ,
:StartPreferentialVoting .

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 88 of 105 NeOn Integrated Project EU-IST-027595

codarg:ArgumentationThreadKType
specialization:isSpecializedBy
:CicerolssueKType .

codarg: ldeaKType
specialization:isSpecializedBy
:CiceroSolutionProposalKType .

:Createlssue
a codkernel :DesignFunctionality ;
rdfs:comment """
Creating a new issue that should be discussed in the following.'""'xsd:string ;
rdfs:label "Create issue'@en ;
partof:isPartOf :DiscussDesignRationale ;
sequence:precedes :ProposeSolution , :ProvideArgument ;
codtools:hasOutputType
:CicerolssueKType ;
codworkflows: isFunctionalitylncludedln
:CiceroToolkitPluginWorkflow , :CiceroWikiWorkflow ;
owl:differentFrom :CiceroAdministrator , :ProjectModerator ,
:IssueModerator , :-ProjectMember .

codkernel :KnowledgeResource
a owl:Class .

:StartPreferentialVoting
a codkernel :DesignFunctionality ;
rdfs:comment "'
An Issue Moderator explicitly starts a preferential voting. This phase is
optional, i.e. either an Issue Moderator can directly take a decision or an
automatic transistion into the PreferentialVoting phase is triggered after a
certain time."""xsd:string ;
rdfs:label "Start preferential voting"@en ;
sequence:directlyFollows
:DiscussDesignRationale ;
sequence:directlyPrecedes
:PreferentialVoting ;
sequence:follows :CreateProject , :DiscussDesignRationale
sequence:precedes :PreferentialVoting , :DecideOnSolution
taskrole:isTaskOf :lssueModerator ;
codworkflows: isFunctionalitylncludedln
:CiceroToolkitPluginWorkflow , :CiceroWikiWorkflow ;
owl:differentFrom codinteraction:GuidedTour , codinteraction:Breadcrumbs ,
codinteraction:ActionButton , :CiceroToolkitPluginWorkflow , :ProjectModerator ,
codinteraction:Stepping , codinteraction:Paging , codinteraction:Accordion ,
codinteraction:Slideshow , codinteraction:PulldownButton , codinteraction:Wizard

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 89 of 105

Collaboration Server

baseURI:
http://www.ontologydesignpatterns.org/cpont/codo/collaborationserver2codo.owl
Imports: http://www.ontologydesignpatterns.org/cpont/codo/codolight.owl

Imports: http://www.ontologydesignpatterns.org/cpont/codo/odm2codo.owl

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

@prefix owllodm:
<http://www.ontologydesignpatterns.org/cpont/codo/odm2codo.owl#> .

@prefix codkernel:
<http://www.ontologydesignpatterns.org/cpont/codo/codkernel _.owl#> .

@prefix coddata:
<http://www.ontologydesignpatterns.org/cpont/codo/coddata.owl#> .

@prefix codtools:
<http://www.ontologydesignpatterns.org/cpont/codo/codtools.owl#> .

@prefix sequence: <http://www.ontologydesignpatterns.org/cp/owl/sequence.owl#>

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix :
<http://www.ontologydesignpatterns.org/cpont/codo/col laborationserver2codo.owl#>
@prefix owl: <http://www.w3.0rg/2002/07/owl#> .
:OWLOntology
a owl:Class ;

rdfs:label "OWLOntology'@en ;
rdfs:subClassOf codkernel:Ontology ;
rdfs:subClassOf
[a owl:Restriction ;
owl:hasValue :0OWLOntologyKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

owllodm:OWL1DatatypePropertyKType
codtools:islnputTypeFor
:CreateAndEditDatatypePropertiesRemotely ;
codtools: isOutputTypeFor
:CreateAndEditDatatypePropertiesRemotely .

:F-LogicMappingRuleKType
a codkernel :KnowledgeType ;
rdfs:comment "A F-logic mapping rule is a special case of a F-logic rule.”

rdfs:label "F-Logic mapping rule KType'@en ;

codtools:islnputTypeFor
:CreateAndEditMappingRulesRemotely ;

codtools: isOutputTypeFor
:CreateAndEditMappingRulesRemotely .

:F-LogicRelationKType
a codkernel :KnowledgeType ;
rdfs:label "F-Logic relation KType'@en .

:F-LogicConcept
a owl:Class ;
rdfs:label "F-Logic concept'@en ;

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 90 of 105 NeOn Integrated Project EU-IST-027595

rdfs:subClassOf
<http://www.ontologydesignpatterns.org/ont/odm/owl10b.owl#0ntologyElement> ;
rdfs:subClassOf
[a owl:Restriction ;
owl:hasValue :F-LogicConceptKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

<http://www.ontologydesignpatterns.org/ont/odm/owl10b.owl#DatatypeProperty>
rdfs:subClassOf
[a owl:Restriction ;
owl :hasValue owllodm:OWL1DatatypePropertyKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

:F-LogicRule
a owl:Class ;
rdfs:label "F-Logic rule"@en ;
rdfs:subClassOf coddata:Rule ;
rdfs:subClassOf
[a owl:Restriction ;
owl:hasValue :F-LogicRuleKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

:CreateOntologiesRemotely
a codkernel :DesignFunctionality ;
rdfs:comment "Multiple users may create ontologies ontologies remotely." ;
rdfs:label "Create ontologies remotely'@en ;
sequence:follows :CreateProjectsRemotely ;
sequence:precedes :CreateAndEditMappingRulesRemotely ,
:AccessSharedOntologiesRemotely , :CreateAndEditRulesRemotely ,
:ExecuteQueriesRemotely , :CreateAndEditObjectPropertiesRemotely ,
:CreateAndEditDatatypePropertiesRemotely , :CreateAndEditClassesRemotely ,
:CreateAndEditQueriesRemotely ;
codtools:hasOutputType
:OWLOntologyKType , :F-LogicOntologyKType ;
codtools:islimplementedin
:CollaborationServer .

:F-LogicRuleKType
a codkernel :KnowledgeType ;
rdfs:comment "F-logic rules consist of a rule body and a rule head." ;
rdfs:label "F-Logic rule KType'@en .

:AccessSharedOntologiesRemotely

a codkernel :DesignFunctionality ;
rdfs:comment "Multiple users may access shared ontologies remotely." ;
rdfs:label "Access shared ontologies remotely"@en ;
sequence:follows :CreateProjectsRemotely , :CreateOntologiesRemotely ;
codtools:hasOutputType

:OWLOntologyKType , :F-LogicOntologyKType ;
codtools:isImplementedin

:CollaborationServer .

:F-LogicConceptKType
a codkernel :KnowledgeType ;
rdfs:label "F-Logic concept KType'@en .

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 91 of 105

:F-LogicOntologyKType

a codkernel :KnowledgeType ;
rdfs:label "F-Logic ontology KType'@en ;
codtools: isOutputTypeFor

:AccessSharedOntologiesRemotely , :CreateOntologiesRemotely .

F-LogicAttribute
a owl:Class ;
rdfs:label "F-Logic attribute'@en ;
rdfs:subClassOf
<http://www.ontologydesignpatterns.org/ont/odm/owl10b.owl#0ntologyElement> ;
rdfs:subClassOf
[a owl:Restriction ;
owl:hasValue :F-LogicAttributeKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

:CreateAndEditDatatypePropertiesRemotely
a codkernel :DesignFunctionality ;
rdfs:comment "Multiple users may create and edit datatype properties in
shared ontologies remotely." ;

rdfs:label "Create and edit datatype properties remotely"@en ;
sequence:follows :CreateProjectsRemotely , :CreateOntologiesRemotely ;
sequence:precedes :CreateAndEditMappingRulesRemotely ,
:CreateAndEditRulesRemotely , :ExecuteQueriesRemotely ,
:CreateAndEditQueriesRemotely ;
codtools:haslnputType
owllodm:OWL1DatatypePropertyKType ;
codtools:hasOutputType
owllodm:OWL1DatatypePropertyKType ;
codtools:islmplementedin

:CollaborationServer .

owllodm:OWL1ObjectPropertyKType
codtools: isOutputTypeFor
:CreateAndEditObjectPropertiesRemotely .

:CreateAndEditMappingRulesRemotely
a codkernel :DesignFunctionality ;
rdfs:comment "Multiple users may create and edit mapping rules in shared
ontologies remotely." ;

rdfs:label "Create and edit mapping rules remotely"@en ;
sequence:follows :CreateAndEditObjectPropertiesRemotely ,
:CreateProjectsRemotely , :CreateAndEditDatatypePropertiesRemotely ,
:CreateAndEditClassesRemotely , :CreateOntologiesRemotely ;
codtools:haslnputType
:F-LogicMappingRuleKType ;
codtools:hasOutputType
F-LogicMappingRuleKType ;
codtools:islmplementedin
:CollaborationServer .

:SPARQLQuery
a owl:Class ;
rdfs:label "SPARQLQuery'@en ;
rdfs:subClassOf coddata:Query ;
rdfs:subClassOf
[a owl:Restriction ;

owl:hasValue :SPARQLQueryKType ;

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 92 of 105 NeOn Integrated Project EU-IST-027595

owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

:CollaborationServer
a codkernel :DesignTool ;

rdfs:label "Collaboration server''@en ;

codtools:implements :CreateAndEditMappingRulesRemotely ,
:AccessSharedOntologiesRemotely , :CreateAndEditRulesRemotely ,
:ExecuteQueriesRemotely , :CreateAndEditObjectPropertiesRemotely ,
:CreateProjectsRemotely , :CreateAndEditDatatypePropertiesRemotely ,
:CreateAndEditClassesRemotely , :CreateOntologiesRemotely ,
:CreateAndEditQueriesRemotely .

:ExecuteQueriesRemotely
a codkernel :DesignFunctionality ;
rdfs:comment "Multiple users may execute queries remotely." ;
rdfs:label "Execute queries remotely'@en ;
sequence:follows :CreateAndEditObjectPropertiesRemotely ,
:CreateProjectsRemotely , :CreateAndEditDatatypePropertiesRemotely ,
:CreateAndEditClassesRemotely , :CreateOntologiesRemotely ,
:CreateAndEditQueriesRemotely ;
codtools:haslnputType
:SPARQLQueryKType , :F-LogicQueryKType ;
codtools:isImplementedin
:CollaborationServer .

:CreateAndEditClassesRemotely
a codkernel :DesignFunctionality ;

rdfs:comment "Multiple users may create and edit classes in shared
ontologies remotely." ;

rdfs:label "Create and edit classes remotely'@en ;
sequence:follows :CreateProjectsRemotely , :CreateOntologiesRemotely ;
sequence:precedes :CreateAndEditMappingRulesRemotely ,
:CreateAndEditRulesRemotely , :ExecuteQueriesRemotely ,
:CreateAndEditQueriesRemotely ;
codtools:haslnputType
owllodm:OWL1ClassKType ;
codtools:hasOutputType
owllodm:OWL1ClassKType ;
codtools:islimplementedin

:CollaborationServer .

:OWLONntologyKType

a codkernel :KnowledgeType ;
rdfs:label "OWLOntology KType'@en ;
codtools: isOutputTypeFor

:AccessSharedOntologiesRemotely , :CreateOntologiesRemotely .

:F-LogicQuery
a owl:Class ;
rdfs:label "F-Logic query'@en
rdfs:subClassOf coddata:Query
rdfs:subClassOf
[a owl:Restriction ;
owl:hasValue :F-LogicQueryKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

:F-LogicOntology

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 93 of 105

a owl:Class ;
rdfs:label "F-Logic ontology'@en ;
rdfs:subClassOf codkernel:Ontology ;
rdfs:subClassOf
[a owl:Restriction ;
owl:hasValue :F-LogicOntologyKType ;
owl :onProperty

<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

:F-LogicProjectKType
a codkernel :KnowledgeType ;
rdfs:label "F-Logic project KType'@en ;
codtools: isOutputTypeFor
:CreateProjectsRemotely .

:F-LogicMappingRule
a owl:Class ;
rdfs:label "F-Logic mapping rule"@en ;
rdfs:subClassOf coddata:Rule ;
rdfs:subClassOf
[a owl:Restriction ;
owl:hasValue :F-LogicMappingRuleKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

:OWLProjectKType
a codkernel :KnowledgeType ;
rdfs:label "OWLProject KType'@en ;
codtools: isOutputTypeFor
:CreateProjectsRemotely .

:F-LogicQueryKType
a codkernel :KnowledgeType ;
rdfs:label "F-Logic query KType'@en ;
codtools:islnputTypeFor
:ExecuteQueriesRemotely , :CreateAndEditQueriesRemotely ;
codtools: isOutputTypeFor
:CreateAndEditQueriesRemotely .

<http://www.ontologydesignpatterns.org/ont/odm/owl10b.owl#Class>
rdfs:subClassOf
[a owl:Restriction ;
owl :hasvValue owllodm:0OWL1ClassKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

coddata:RuleKType
codtools: isOutputTypeFor
:CreateAndEditRulesRemotely .

:CreateProjectsRemotely

a codkernel :DesignFunctionality ;

rdfs:comment "Multiple users may create projects remotely." ;

rdfs:label "Create projects remotely'@en ;

sequence:precedes :CreateAndEditMappingRulesRemotely ,
:AccessSharedOntologiesRemotely , :CreateAndEditRulesRemotely ,
:ExecuteQueriesRemotely , :CreateAndEditObjectPropertiesRemotely ,

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 94 of 105 NeOn Integrated Project EU-IST-027595

:CreateAndEditDatatypePropertiesRemotely , :CreateAndEditClassesRemotely ,
:CreateOntologiesRemotely , :CreateAndEditQueriesRemotely ;
codtools:hasOutputType
:F-LogicProjectKType , :OWLProjectKType ;
codtools:isImplementedin
:CollaborationServer .

<http://www.ontologydesignpatterns.org/cpont/codo/col laborationserver2codo.owl>
a owl:Ontology ;
owl : imports
<http://www.ontologydesignpatterns.org/cpont/codo/odm2codo.owl> ,
<http://www.ontologydesignpatterns.org/cpont/codo/codolight._owl> ;
owl:versionlnfo """'0.1: Created by Anne Becker and Michael Erdmann
0.2: Revised by Aldo Gangemi (finetuned types, added relations between
functionalities and kowledge types, added design tool)'""""'xsd:string .

:F-LogicRelation
a owl:Class ;
rdfs:label "F-Logic relation"@en ;
rdfs:subClassOf
<http://www.ontologydesignpatterns.org/ont/odm/owl10b.owl#0ntologyElement> ;
rdfs:subClassOf
[a owl:Restriction ;
owl:hasValue :F-LogicRelationKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

:CreateAndEditObjectPropertiesRemotely
a codkernel :DesignFunctionality ;
rdfs:comment "Multiple users may create and edit object properties in
shared ontologies remotely." ;
rdfs:label "Create and edit object properties remotely'@en ;
sequence:follows :CreateProjectsRemotely , :CreateOntologiesRemotely ;
sequence:precedes :CreateAndEditMappingRulesRemotely ,
ExecuteQueriesRemotely , :CreateAndEditRulesRemotely ,
:CreateAndEditQueriesRemotely ;
codtools:hasOutputType
owllodm:0OWL1ObjectPropertyKType ;
codtools:isImplementedin
:CollaborationServer .

:CreateAndEditQueriesRemotely
a codkernel :DesignFunctionality ;
rdfs:comment "Multiple users may create and edit queries in shared
ontologies remotely." ;
rdfs:label "Create and edit queries remotely'@en ;
sequence:follows :CreateAndEditObjectPropertiesRemotely ,
:CreateAndEditDatatypePropertiesRemotely , :CreateProjectsRemotely ,
:CreateOntologiesRemotely , :CreateAndEditClassesRemotely ;
sequence:precedes :ExecuteQueriesRemotely ;
codtools:haslnputType
:F-LogicQueryKType ;
codtools:hasOutputType
:F-LogicQueryKType ;
codtools:isImplementedin
:CollaborationServer .

:SPARQLQueryKType
a codkernel :KnowledgeType ;
rdfs:label "SPARQLQuery KType'@en ;

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 95 of 105

codtools:islnputTypeFor
ExecuteQueriesRemotely .

:F-LogicAttributeKType
a codkernel :KnowledgeType ;
rdfs:label "F-Logic attribute KType"@en .

owllodm:OWL1ClassKType
codtools:islnputTypeFor
:CreateAndEditClassesRemotely ;
codtools: isOutputTypeFor
:CreateAndEditClassesRemotely .

<http://www.ontologydesignpatterns.org/ont/odm/owl10b.owl#0bjectProperty>
rdfs:subClassOf
[a owl:Restriction ;
owl:hasValue owllodm:0OWL1O0bjectPropertyKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

:CreateAndEditRulesRemotely
a codkernel :DesignFunctionality ;
rdfs:comment "Multiple users may create and edit rules in shared
ontologies remotely." ;
rdfs:label "Create and edit rules remotely'@en ;
sequence:follows :CreateAndEditObjectPropertiesRemotely ,
:CreateProjectsRemotely , :CreateAndEditDatatypePropertiesRemotely ,
:CreateAndEditClassesRemotely , :CreateOntologiesRemotely ;
codtools:hasOutputType
coddata:RuleKType ;
codtools:islmplementedin
:CollaborationServer .

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 96 of 105 NeOn Integrated Project EU-IST-027595

OntoConto

baseURI:
http://www.ontologydesignpatterns.org/cpont/codo/facebookmapper2codo.owl
Imports: http://www.ontologydesignpatterns.org/cpont/codo/codolight.owl

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

@prefix codkernel:
<http://www.ontologydesignpatterns.org/cpont/codo/codkernel .owl#> .
@prefix codtools:
<http://www.ontologydesignpatterns.org/cpont/codo/codtools.owl#> .

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .

@prefix :
<http://www.ontologydesignpatterns.org/cpont/codo/facebookmapper2codo.owl#> .
@prefix owl: <http://www.w3.0rg/2002/07/owl#> .

<http://www.ontologydesignpatterns.org/cpont/codo/facebookmapper2codo.owl>
a owl:Ontology ;
owl : imports
<http://www.ontologydesignpatterns.org/cpont/codo/codolight.owl> ;
owl:versionlnfo ™" 0.1: Derived by Aldo Gangemi from Dunja Mladenic*®
description of Facebook application plugin to NTK.
0.2: added labels and knowledge types'''"'"xsd:string .

<http://www.ontologydesignpatterns.org/cpont/codo/coddata.owl#NetworkOfOntologie
sKType>
codtools:islnputTypeFor
:FacebookBasedMapper .

<http://www.ontologydesignpatterns.org/cpont/codo/coddata.owl#0ntologyMappingKTy
pe>
codtools: isOutputTypeFor
:FacebookBasedMapper .

:FacebookBasedMapper

a codkernel :DesignTool

rdfs:comment "''"‘Facebook-based application, integrated with alignment
server [JSI1, D3.2.2]
The main goal of this application is to support collaborative mapping on
networked onotologies. The application consists of server side and client side.
- Server side takes ontologies as input, creates mappings
between them and stores the ontologies and mappings into a database.
- Client side get data from the server side and enables
ontology editing, mappings editing and visualization of ontologies and mappings
between them. Client side is written in FLASH ActionScript and integrated into
Facebook as standard application using Facebook plug-in architecture." " ;

rdfs:label "Facebook based mapper'@en ;

codtools:haslnputType

<http://www.ontologydesignpatterns.org/cpont/codo/coddata.owl#NetworkOfOntologie
sKType> ;
codtools:hasOutputType

<http://www.ontologydesignpatterns.org/cpont/codo/coddata.owl#0ntologyMappingKTy
pe> .

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 97 of 105

SocialOnto

baseURI: http://www.ontologydesignpatterns.org/cpont/codo/logsna2codo.owl
Imports: http://www.ontologydesignpatterns.org/cpont/codo/codolight._owl
Imports: http://www.ontologydesignpatterns.org/cp/owl/timeinterval .owl

@prefix codinteraction:
<http://www.ontologydesignpatterns.org/cpont/codo/codinteraction._owl#> .
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

@prefix codkernel:
<http://www.ontologydesignpatterns.org/cpont/codo/codkernel .owl#> .
@prefix coddata:
<http://www.ontologydesignpatterns.org/cpont/codo/coddata.owl#> .
@prefix timeinterval:
<http://www.ontologydesignpatterns.org/cp/owl/timeinterval .owl#> .
@prefix codtools:
<http://www.ontologydesignpatterns.org/cpont/codo/codtools.owl#> .
@prefix specialization:
<http://www.ontologydesignpatterns.org/cp/owl/specialization.owl#> .

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix :
<http://www.ontologydesignpatterns.org/cpont/codo/logsna2codo.owl#> .
@prefix owl: <http://www.w3.0rg/2002/07/owl#> .
“Userld

a owl:Class ;

rdfs:label "User i1d"@en ;
rdfs:subClassOf codkernel :KnowledgeResource ;
rdfs:subClassOf
[a owl:Restriction ;
owl:hasValue :UserldKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

:OntologyElementld
a owl:Class ;
rdfs:label "Ontology element id"@en ;
rdfs:subClassOf codkernel :KnowledgeResource ;
rdfs:subClassOf
[a owl:Restriction ;
owl:hasValue :OntologyElementldKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

:GraphKType
a codkernel :KnowledgeType ;
rdfs:label "Graph KType'@en ;
codtools: isOutputTypeFor
:AnalysisOfMultipleOntologyEditorsActivity .

:Graph
a owl:Class ;
rdfs:label "Graph"@en ;
rdfs:subClassOf coddata:DataStructure ;
rdfs:subClassOf
[a owl:Restriction ;

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 98 of 105 NeOn Integrated Project EU-IST-027595

owl:hasValue :GraphKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

rdfs:subClassOf
[a owl:Restriction ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/descriptionandsituation.owl#isDesc
ribedBy> ;
owl :someValuesFrom :GraphProperty

1 -

-User1dKType
a codkernel :KnowledgeType ;
rdfs:label "User id KType'@en .

:OntologyEditingLogFileKType
a codkernel :KnowledgeType ;
rdfs:label "Ontology editing log file KType"@en ;
codtools:islnputTypeFor
:LogFileSocialNetworkAnalysisTool ,
:AnalysisOfMultipleOntologyEditorsActivity .

:MultipleOntologyEditorsActivity
a owl:Class ;
rdfs:label "Multiple ontology editors activity'@en ;
rdfs:subClassOf
<http://www.ontologydesignpatterns.org/cpont/codo/codprojects.owl#0ntologyProjec
tExecution> ;
rdfs:subClassOf
[a owl:Restriction ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/situation.owl#isSettingFor> ;
owl :someValuesFrom timeinterval:Timelnterval

rdfs:subClassOf
[a owl:Restriction ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/situation.owl#isSettingFor> ;
owl :someValuesFrom codkernel :Ontology

rdfs:subClassOf
[a owl:Restriction ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/situation.owl#isSettingFor> ;
owl :someValuesFrom
<http://www.ontologydesignpatterns.org/cp/owl/agentrole._owl#Agent>
1

:AnalysisOfMultipleOntologyEditorsActivity
a codinteraction:ComputationalDesignTask ,
codkernel :DesignFunctionality ;
rdfs:label "Analysis of multiple ontology editors activity'@en ;
codtools:haslnputType
:OntologyEditingLogFileKType ;
codtools:hasOutputType
:GraphKType , :GraphPropertyDataKType ;
codtools:islmplementedin
:LogFileSocialNetworkAnalysisTool .

:OntologyEditingLogFileLine

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 99 of 105

a owl:Class ;
rdfs:label "Ontology editing log file line"@en ;
rdfs:subClassOf coddata:DataStructure ;
rdfs:subClassOf
[a owl:Restriction ;
owl:hasValue :OntologyEditingLogFilelLineKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

1:
rdfs:subClassOf
[a owl:Restriction ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/partof.owl#hasPart> ;
owl :someValuesFrom :Userld

rdfs:subClassOf
[a owl:Restriction ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/partof.owl#hasPart> ;
owl :someValuesFrom :OntologyElementid

1 -
:GraphPropertyData
a owl:Class ;

rdfs:label "Graph property data'@en ;
rdfs:subClassOf coddata:DataStructure ;
rdfs:subClassOf
[a owl:Restriction ;
owl :hasValue :GraphPropertyDataKType ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/classification.owl#isClassifiedBy>

1:
rdfs:subClassOf
[a owl:Restriction ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/intensionextension.owl#expresses>

owl :someValuesFrom :GraphProperty

1 -
:OntologyEditingLogFile
a owl:Class ;

rdfs:comment "Each line of the log-file contains at least timestamp,
userld, conceptld or relationld (that the user has edited)" ;
rdfs:label "Ontology editing log file"@en ;
rdfs:subClassOf coddata:DataStructure ;
rdfs:subClassOf
[a owl:Restriction ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/intensionextension.owl#isAbout> ;
owl :someValuesFrom :MultipleOntologyEditorsActivity

rdfs:subClassOf
[a owl:Restriction ;
owl:hasvValue :OntologyEditingLogFileKType ;
owl :onProperty
<http://www.ontologydesignpatterns._.org/cp/owl/classification.owl#isClassifiedBy>

] 7
rdfs:subClassOf
[a owl:Restriction ;
owl:allvValuesFrom :OntologyEditingLogFileLine ;

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 100 of 105 NeOn Integrated Project EU-IST-027595

owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/collectionentity.owl#hasMember>

:LogFileSocialNetworkAnalysisTool

a codkernel :DesignTool ;

rdfs:comment "*"*'The main goal of this tool is analysis of activity of
different users when editing the same ontology.
Social network analysis tool takes a log-file of ontology editing as input,
where each line of the log-file contains at least timestamp, userld, conceptild
or relationld (that the user has edited). It outputs:
- graph (vertex=userld, link=linking similar users, weight on the link =
similarity of two users)
- graph properties obtained by social network analysis
(centrality,components,a€})"""" ;

rdfs:label "Log file social network analysis tool"@en ;

codtools:haslnputType

OntologyEditingLogFileKType ;
codtools:implements :AnalysisOfMultipleOntologyEditorsActivity .

:GraphPropertyDataKType
a codkernel :KnowledgeType ;
rdfs:label "Graph property data KType"@en ;
codtools: isOutputTypeFor
:AnalysisOfMultipleOntologyEditorsActivity .

<http://www.ontologydesignpatterns.org/cpont/codo/logsna2codo.owl>
a owl:Ontology ;
owl : imports
<http://www.ontologydesignpatterns.org/cpont/codo/codolight.owl> ,
<http://www.ontologydesignpatterns.org/cp/owl/timeinterval .owl> ;
owl:versioninfo """0.1: Derived by Aldo Gangemi from Dunja Mladenic*®
description of the SNA NTK plugin.
0.2: added labels and knowledge types''"'"xsd:string .

:OntologyEditingLogFileLineKType
a codkernel :KnowledgeType ;
rdfs:label "Ontology editing log file line KType'@en .

:GraphProperty

a owl:Class ;

rdfs:label "Graph property'@en ;

rdfs:subClassOf
<http://www.ontologydesignpatterns.org/cp/owl/description.owl#Description> .

:OntologyElementldKType
a codkernel :KnowledgeType ;
rdfs:label "Ontology element id KType'@en .

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 101 of 105

COAT

baseURI: http://www.ontologydesignpatterns.org/cpont/codo/coat2codo.owl
Imports: http://www.ontologydesignpatterns.org/cpont/codo/codolight._owl

@prefix codinteraction:
<http://www.ontologydesignpatterns.org/cpont/codo/codinteraction.owl#> .
@prefix taskrole: <http://www.ontologydesignpatterns.org/cp/owl/taskrole._owl#>

@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#> .

@prefix description:
<http://www.ontologydesignpatterns.org/cp/owl/description.owl#> .

@prefix codkernel:
<http://www.ontologydesignpatterns.org/cpont/codo/codkernel _.owl#> .

@prefix coddata:
<http://www.ontologydesignpatterns.org/cpont/codo/coddata.owl#> .

@prefix codtools:
<http://www.ontologydesignpatterns.org/cpont/codo/codtools.owl#> .

@prefix sequence: <http://www.ontologydesignpatterns.org/cp/owl/sequence.owl#>

@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix :
<http://www.ontologydesignpatterns.org/cpont/codo/coat2codo.owl#> .
@prefix owl: <http://www.w3.0rg/2002/07/owl#> .
:AnnotationDeletion

a codkernel :DesignFunctionality ;

rdfs:label "Annotation deletion”@en , "Annotation deletion”/xsd:string ;
codtools:islmplementedin
COAT .

:ClickingOnClass

a codinteraction:ComputationalDesignTask ;
rdfs:label "Clicking on class”@en , "Clicking"™xsd:string ;
description:isConceptUsedin

:COATWorkFlow ;
sequence:directlyFollows

- TextSpanSelection ;
sequence:directlyPrecedes

:ElementAssociation ;
sequence:follows :TextSpanSelection ;
sequence:precedes :ElementAssociation ;
taskrole:isTaskOf :TextAnnotator .

- TextSpan
a owl:Class ;
rdfs:label "Text span'@en , "Text span'/~xsd:string ;
rdfs:subClassOf
<http://www.ontologydesignpatterns.org/cp/owl/informationobjectsandrepresentatio
nlanguages.owl#LinguisticObject> ;
rdfs:subClassOf
[a owl:Restriction ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cpont/codo/codinterfaces.owl#hasColour> ;
owl :someValuesFrom
<http://www.ontologydesignpatterns.org/cpont/codo/codinterfaces.owl#Colour>

rdfs:subCIéssOf

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 102 of 105 NeOn Integrated Project EU-IST-027595

[a owl:Restriction ;
owl :onProperty
<http://www.ontologydesignpatterns.org/cp/owl/partof.owl#isPartOf> ;
owl :someValuesFrom :Text

1 .

coddata:OntologyKType
codtools:islnputTypeFor

cCOAT .
ElementAssociation
a codinteraction:ComputationalDesignTask ;

rdfs:label "Element association'@en , "Annotation generation"”~xsd:string

sequence:directlyFollows
:ClickingOnClass ;
sequence:follows :ClickingOnClass , :TextSpanSelection .

:AnnotationModification
a codkernel :DesignFunctionality ;
rdfs:label "Annotation modification"@en , "Annotation
modification"Mxsd:string ;
codtools:islmplementedin
COAT .

Text

a owl:Class ;

rdfs:label "Text"@en , "Text'"xsd:string ;

rdfs:subClassOf
<http://www.ontologydesignpatterns.org/cp/owl/informationobjectsandrepresentatio
nlanguages.owl#LinguisticObject> .

coddata:AnnotationKType
codtools: isOutputTypeFor
:COAT .

:TextAnnotator
a codkernel :UserType ;
rdfs:label "Text annotator''@en , "Text annotator'/~xsd:string ;
description:isConceptUsedin
:COATWorkflow ;
taskrole:hasTask :ClickingOnClass , :TextSpanSelection ;
codtools:isUserTypeFor
SCOAT .

TextSpanKType
a codkernel :KnowledgeType
rdfs:label "Text span KType'@en
codtools:islnputTypeFor

SCOAT .
:AnnotationAddition
a codkernel :DesignFunctionality ;

rdfs:label "Annotation addition'@en , "Annotation addition"xsd:string ;
codtools:isImplementedin

:COAT .
<http://www.ontologydesignpatterns.org/cpont/codo/coat2codo.owl>
a owl:Ontology ;
rdfs:comment """"'The USFD collaborative text annotation tool COAT is a web

service for the annotation of TextSpan(s) as ontology instances. The main

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 103 of 105

codkernel :DesignFunctionality of this tool is OntologyPopulation according to a
pre-defined ontology.

User types: a number of text annotators who populate an ontology

Input data: Ontology containing the allowed classes to be used as annotations.
Input data: LinguisticObjects within a collection of documents

Output data: Annotations

The text annotators participate by adding text annotation within a possibly
distributive environment. They do not necessarily have to share the same
location when performing the annotation tasks.

The ontology is set within a multilingual situation, i.e. texts in multiple
languages can be annotated with concepts from the same ontology.

On the screen, the window is divided into two panes. The text is represented in
the left pane, whereas the ontology is displayed in the right pane, with
different colours for each concept. The annotator selects a span of text and
then clicks on the ontology class of which this span is deemed an instance. The
text span will then assume the same colour as the concept within the ontology
pane, which indicates that the Annotation has been associated with the text
span.

The tool allows manual creation and verification of ontology instances. The
annotators can work from scratch by manually creating annotations, or on the
basis of existing annotations provided by eco-annotators with whom they, in C-
ODO terms, co-participate. These are either human or automatic annotation
procedures. Both are covered by C-0DO:Agent.

The creation and verification activities include:

- the addition of annotations using the current ontology;

- the deletion of annotations;

- the modification of annotations in terms of span size and ontology class.

The annotation process can raise issues regarding e.g. the granularity of the
ontology concepts with respect to the coverage of relevant concepts in the
documents.
IT after an argumentation round a new ontology version is created, the
annotation process needs to be iteratively applied to those instances whose
classification has been refined in this newer ontology version. For new concepts
that represent an addition to the conceptual coverage of the ontology, and
therefore do not represent a refinement, the annotation process needs to be
performed from scratch. " ;
owl - imports
<http://www.ontologydesignpatterns.org/cpont/codo/codolight._owl> ;
owl:versioninfo """Created by Aldo Gangemi based on specs by Wim Peters
(see comment)
0.2: added assertion of inferences

0.3: broadened domain for hasColour in order to include linguistic objects
0.4: added labels and knowledge types
0.5: corrected bug in type of COAT Workflow'"'~xsd:string .
:OntologyPopulation

a codkernel :DesignFunctionality ;

rdfs:label "Ontology population'@en ;

codtools:islmplementedin

COAT .

:COAT

a codkernel :DesignTool ;

rdfs:comment """"'COAT is a web service for the annotation of TextSpan(s) as

ontology instances. The main codkernel:DesignFunctionality of this tool is
OntologyPopulation according to a pre-defined ontology.

2006—-2009 © Copyright lies with the respective authors and their institutions.

Page 104 of 105 NeOn Integrated Project EU-IST-027595

User types: a number of text annotators who populate an ontology

Input data: Ontology containing the allowed classes to be used as annotations.
Input data: LinguisticObjects within a collection of documents

Output data: Annotations

The text annotators participate by adding text annotation within a possibly
distributive environment. They do not necessarily have to share the same
location when performing the annotation tasks.
The ontology is set within a multilingual situation, i.e. texts in multiple
languages can be annotated with concepts from the same ontology."""" ;
rdfs:label "COAT"@en , ""Collaborative Ontology Annotation Tool
{@en}"™Mxsd:string ;
codtools:haslnputType
:TextSpanKType , coddata:OntologyKType ;
codtools:hasOutputType
coddata:AnnotationKType ;
codtools:hasUserType
TextAnnotator ;
codtools:implements :AnnotationDeletion , :AnnotationAddition ,
:OntologyPopulation , :AnnotationModification .

:TextSpanSelection
a codinteraction:ComputationalDesignTask ;
rdfs:label "Text span selection'@en , "Selection"xsd:string ;
description:isConceptUsedin
:COATWorkflow ;
sequence:directlyPrecedes
:ClickingOnClass ;
sequence:precedes :ClickingOnClass , :ElementAssociation ;
taskrole:isTaskOf :TextAnnotator .

:COATWorkflow
a codkernel :DesignWorkflow ;
rdfs:comment "The workflow of COAT includes two computational tasks:
CickingOnClass and TextSpanSelection, and one role: TextAnnotator" ;
rdfs:label "COAT Workflow'@en ;
description:usesConcept
:TextAnnotator , :ClickingOnClass , :TextSpanSelection .

D2.3.2 Practical Methods to Support Collaborative Ontology Design (V2) Page 105 of 105

Document Identifier: NEON/2009/D2.3.2/v0.2
Class Deliverable: NEON EU-IST-2005-027595
Version: V0.2

Date: February 09, 2009

State: Draft

Distribution: Public, Restricted, Confidential

2006—-2009 © Copyright lies with the respective authors and their institutions.

