

 NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 — “Semantic-based knowledge and content systems”

D2.2.2 Methods and Tools Supporting Re-engineering

Deliverable Co-ordinator: Boris Villazón-Terrazas

Deliverable Co-ordinating Institution: Universidad Politécnica de Madrid
(UPM)

Other Authors: Sofia Angeletou (OU), Andrés García-Silva (UPM), Asunción
Gómez-Pérez (UPM), Diana Maynard (USFD), Mari Carmen Suárez-Figueroa
(UPM), and Wim Peters (USFD)

This deliverable describes methods and tools for re-engineering a wide range of knowledge-
aware resources (e.g. classification schemes, thesauri, folksonomies, text) into ontologies so
that they can be integrated in the development of ontologies.

Document Identifier: NEON/2008/D2.2.2/v2.0 Date due: December 31, 2008
Class Deliverable: NEON EU-IST-2005-027595 Submission date: February 13, 2009
Project start date March 1, 2006 Version: v2.0
Project duration: 4 years State: Final

Distribution: Public

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 2 of 124 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is part of the NeOn research project funded by the IST Programme of the Commission of the
European Communities by the grant number IST-2005-027595. The following partners are involved in the
project:

Open University (OU) – Coordinator Universität Karlsruhe – TH (UKARL)
Knowledge Media Institute – KMi Institut für Angewandte Informatik und Formale
Berrill Building, Walton Hall Beschreibungsverfahren – AIFB
Milton Keynes, MK7 6AA Englerstrasse 11
United Kingdom D-76128 Karlsruhe, Germany
Contact person: Martin Dzbor, Enrico Motta Contact person: Peter Haase
E-mail address: {m.dzbor, e.motta}@open.ac.uk E-mail address: pha@aifb.uni-karlsruhe.de
Universidad Politécnica de Madrid (UPM) Software AG (SAG)
Campus de Montegancedo Uhlandstrasse 12
28660 Boadilla del Monte 64297 Darmstadt
Spain Germany
Contact person: Asunción Gómez Pérez Contact person: Walter Waterfeld
E-mail address: asun@fi.upm.es E-mail address: walter.waterfeld@softwareag.com
Intelligent Software Components S.A. (ISOCO) Institut ‘Jožef Stefan’ (JSI)
Calle de Pedro de Valdivia 10 Jamova 39
28006 Madrid SL–1000 Ljubljana
Spain Slovenia
Contact person: Jesús Contreras Contact person: Marko Grobelnik
E-mail address: jcontreras@isoco.com E-mail address: marko.grobelnik@ijs.si
Institut National de Recherche en Informatique University of Sheffield (USFD)
et en Automatique (INRIA) Dept. of Computer Science
ZIRST – 665 avenue de l’Europe Regent Court
Montbonnot Saint Martin 211 Portobello street
38334 Saint-Ismier, France S14DP Sheffield, United Kingdom
Contact person: Jérôme Euzenat Contact person: Hamish Cunningham
E-mail address: jerome.euzenat@inrialpes.fr E-mail address: hamish@dcs.shef.ac.uk
Universität Kolenz-Landau (UKO-LD) Consiglio Nazionale delle Ricerche (CNR)
Universitätsstrasse 1 Institute of cognitive sciences and technologies
56070 Koblenz Via S. Marino della Battaglia
Germany 44 – 00185 Roma-Lazio Italy
Contact person: Steffen Staab Contact person: Aldo Gangemi
E-mail address: staab@uni-koblenz.de E-mail address: aldo.gangemi@istc.cnr.it
Ontoprise GmbH. (ONTO) Food and Agriculture Organization
Amalienbadstr. 36 of the United Nations (FAO)
(Raumfabrik 29) Viale delle Terme di Caracalla
76227 Karlsruhe 00100 Rome
Germany Italy
Contact person: Jürgen Angele Contact person: Marta Iglesias
E-mail address: angele@ontoprise.de E-mail address: marta.iglesias@fao.org
Atos Origin S.A. (ATOS) Laboratorios KIN, S.A. (KIN)
Calle de Albarracín, 25 C/Ciudad de Granada, 123
28037 Madrid 08018 Barcelona
Spain Spain
Contact person: Tomás Pariente Lobo Contact person: Antonio López
E-mail address: tomas.parientelobo@atosorigin.com E-mail address: alopez@kin.es

D2.2.2 Methods and Tools Supporting Re-engineering Page 3 of 124

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this document, even
if they might not have directly contributed to the writing of this document or its parts:

• Universidad Politécnica de Madrid (UPM)

• Open University (OU)

• University of Sheffield (USFD)

Change Log

Version Date Amended by Changes
0.1 21-07-2008 Boris Villazón-Terrazas TOC
0.2 07-09-2008 Boris Villazón-Terrazas The Introduction and State of the Art

chapters added
0.3 08-09-2008 Sofia Angeletou The Folksonomy chapter added
0.4 17-09-2008 Boris Villazón-Terrazas and

Mari Carmen Suárez-Figueroa
Internal revision

0.5 19-09-2008 Diana Maynard The Named Entities chapter added
0.6 30-09-2008 Sofia Angeletou The Folksonomy chapter updated
0.7 07-10-2008 Boris Villazón-Terrazas The Classification Scheme chapter added
0.8 15-10-2008 Diana Maynard The Named Entities chapter updated
0.9 15-11-2008 Boris Villazón-Terrazas and

Mari Carmen Suárez-Figueroa
Internal revision

1.0 18-11-2008 Diana Maynard The Named Entities chapter updated
1.1 26-11-2008 Diana Maynard The Named Entities chapter updated
1.2 01-12-2008 Boris Villazón-Terrazas The Thesauri chapter added
1.3 16-12-2008 Diana Maynard The Named Entities chapter updated
1.4 16-12-2008 Diana Maynard The Conclusions chapter updated
1.5 16-12-2008 Sofia Angeletou The Conclusions chapter updated
1.7 19-12-2008 Boris Villazón-Terrazas The Introduction and Conclusions chap-

ters updated
1.8 10-01-2009 Boris Villazón-Terrazas and

Asunción Gómez-Pérez
Internal revision

1.9 20-01-2009 Boris Villazón-Terrazas and
Asunción Gómez-Pérez

Internal revision

2.0 13-02-2009 Boris Villazón-Terrazas Updates based on comments from the in-
ternal reviewer

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 4 of 124 NeOn Integrated Project EU-IST-027595

Executive Summary

With the goal of speeding up the ontology development process, ontology engineers are starting to reuse
as much as possible available ontological resources and non-ontological resources, such as classification
schemes, thesauri, and folksonomies that already have some degree of consensus. The reuse of such non-
ontological resources necessarily involves their re-engineering into ontological resources. Non-ontological
resources are highly heterogeneous in their data models and contents: they encode different types of knowl-
edge, and can be modeled and implemented in different ways. In order to support and promote such reuse
and re-engineering based approach, new methods, techniques and tools are needed.

The main goal of this deliverable is to present a set of methods and tools for re-engineering non-ontological
resources into ontologies. Thus

• As for classification schemes and thesauri, we present methods based on a re-engineering model that
we have adapted from the general model for software re-engineering. The methods rely on the use of
Patterns for Re-engineering Non-ontological Resources (PR-NOR). These methods are extensions of
the methods presented on D.5.4.1 [SFdCB+08].

• With respect to folksonomies, we present a method with its respective tool that creates an ontological
structure for a folksonomy of a specific domain by employing automatically selected knowledge from
online available ontologies.

• With respect to corpora, we present a method and a tool that identify patterns for the extraction of
entities from unstructured text, and re-engineers these entities into concepts and instances (ontology
creation and population).

D2.2.2 Methods and Tools Supporting Re-engineering Page 5 of 124

Contents

1 Introduction 10
1.1 WP2 Objectives and Main Tasks . 10

1.2 Deliverable Main Goals and Contributions . 11

1.3 Deliverable Structure . 11

1.4 Relation with the Rest of WPs within the NeOn Project . 12

2 State of the Art 13
2.1 Types of Non-Ontological Resources . 13

2.2 Evaluation Framework . 15

2.2.1 Characteristics of the Non-ontological Resource . 15

2.2.2 Characteristics of the Transformation Process . 16

2.2.3 Characteristics of the Resultant Ontology . 17

2.3 Non-ontological Resource Re-engineering Methods . 17

2.3.1 Methods Centered on the Non-ontological Resource Type 17

2.3.2 Methods Centered in the Non-ontological Resource Implementation 26

2.3.3 Comparison of the Methods . 30

2.4 Non-ontological Resource Re-engineering Tools . 34

2.4.1 Tools Centered in the Non-ontological Resource Type 34

2.4.2 Tools Centered in the non-ontological resource implementation 34

2.4.3 Comparison of the Tools . 38

2.5 Results and Conclusions . 40

2.5.1 Results According to Non-ontological Resource . 40

2.5.2 Results According to Transformation Process . 42

2.5.3 Results According to the Ontology . 44

3 NeOn Method for Re-engineering Non-ontological Resources 45
3.1 NeOn Method for Re-engineering Non-ontological Resources 45

3.1.1 Re-engineering Patterns . 46

3.1.2 Patterns for Re-engineering Non-Ontological Resources 46

3.1.3 General Model for Non-Ontological Resource Re-engineering 47

3.1.4 Non-ontological Resources Re-engineering Process 48

4 Methods for Re-engineering Classification Schemes 51
4.1 Introduction . 51

4.2 Classification Scheme . 51

4.2.1 Classification Scheme Data Models . 52

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 6 of 124 NeOn Integrated Project EU-IST-027595

4.2.2 Classification Scheme Implementations . 54

4.3 Patterns for Re-engineering Classification Schemes into Ontologies 55

4.3.1 Patterns for Re-engineering Classification Schemes into Taxonomies 56

4.3.2 Patterns for Re-engineering Classification Schemes into Lightweight Ontologies 66

4.4 NeOn Method for Re-engineering Classification Schemes . 72

4.4.1 Classification Scheme Transformation . 72

5 Methods for Re-engineering Thesauri 74

5.1 Introduction . 74

5.2 Thesaurus Standards . 74

5.3 Components of a Thesaurus . 75

5.4 Types of Thesaurus . 76

5.4.1 Term-based Thesaurus . 76

5.4.2 Concept-based Thesaurus . 77

5.4.3 Thesaurus Data Models . 78

5.4.4 Thesaurus Implementations . 81

5.5 Patterns for Re-engineering Thesauri into Ontologies . 82

5.5.1 Patterns for re-engineering Thesauri into Lightweight Ontologies 82

5.6 NeOn Method for Re-engineering Thesauri . 92

5.6.1 Thesaurus Transformation . 92

6 Method and tool for re-engineering folksonomies 94

6.1 Semantic Enrichment of Tags with FLOR . 94

6.1.1 STEP 1: Lexical Processing . 95

6.1.2 STEP 2: Sense Definition and Semantic Expansion 96

6.1.3 STEP 3: Semantic Enrichment . 97

6.1.4 Example: FLOR Enrichment . 98

6.1.5 Experiments: Applying FLOR on a Flickr dataset . 100

7 Methods and tools for extracting entities from unstructured text 103

7.1 Introduction . 103

7.1.1 NE Recognition with GATE and ANNIE . 104

7.1.2 Ontology population . 104

7.2 Patterns for entity recognition . 105

7.2.1 Hearst patterns . 106

7.2.2 Lexico-Syntactic Patterns . 106

7.2.3 Contextual patterns . 107

7.3 SPRAT application . 108

7.3.1 Implementation of patterns . 109

7.3.2 NEBOnE . 110

7.3.3 Implementation of NEBOnE . 112

7.3.4 NEBOnE functions . 112

7.4 Evaluation . 113

7.4.1 Subclass Relations . 113

7.4.2 Instances . 114

D2.2.2 Methods and Tools Supporting Re-engineering Page 7 of 124

7.4.3 Synonyms . 114

7.4.4 Properties . 114

7.5 Discussion . 114

7.6 Further Work . 116

8 Conclusions and future work 117

Bibliography 118

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 8 of 124 NeOn Integrated Project EU-IST-027595

List of Tables

2.1 Non-ontological resource characteristics of the methods . 31

2.2 Transformation process of the methods . 32

2.3 Ontology characteristics of the methods . 33

2.4 Non-ontological resource characteristics of the tools . 38

2.5 Transformation process of the tools . 39

2.6 Ontology characteristics of the tools . 40

3.1 Pattern for Re-engineering Non-Ontological Resource Template 47

4.1 Pattern for Re-engineering a Classification Scheme which follows the path enumeration data
model . 56

4.2 Pattern for Re-engineering a Classification Scheme which follows the adjacency list data model 59

4.3 Pattern for Re-engineering a Classification Scheme which follows the snowflake data model. . 61

4.4 Pattern for Re-engineering a Classification Scheme which follows the flattened data model. . . 64

4.5 Pattern for Re-engineering a Classification Scheme which follows the snowflake data model . . 67

4.6 Pattern for Re-engineering a Classification Scheme which follows the flattened model 69

5.1 Pattern for Re-engineering a term-based thesaurus which follows the record-based model . . . 83

5.2 Pattern for Re-engineering a term-based thesaurus which follows the relation-based model . . 85

5.3 Pattern for Re-engineering a concept-based thesaurus which follows the record-based model . 87

5.4 Pattern for Re-engineering a concept-based thesaurus which follows the relation-based data
model . 90

6.1 Evaluation of semantic enrichment for individual tags. 101

6.2 Evaluation of SWE assignment to photos. 102

7.1 Results of relation extraction on 25 wikipedia documents . 113

D2.2.2 Methods and Tools Supporting Re-engineering Page 9 of 124

List of Figures

2.1 Non-Ontological Resources Categorization . 14

2.2 Transformation approaches . 16

3.1 Re-engineering Model for Non-Ontological Resources . 48

3.2 Re-engineering process for Non-Ontological Resources . 49

4.1 UML representation of the classification scheme main components [ISO04] 52

4.2 Excerpt of the Water Area classification scheme. 52

4.3 Path enumeration data model. 53

4.4 Adjacency list data model. 53

4.5 Adjacency list data model. 53

4.6 Flattened data model. 54

4.7 Water Area Classification Scheme XML Implementation for the Adjacency List Data Model. . . 54

4.8 Water Area Classification Scheme Spreadsheet Implementation for the Path Enumeration
Data Model. 55

4.9 Classification Scheme Categorization . 55

5.1 Thesaurus Standards Evolution [Lab07] . 75

5.2 UML representation of the term-based thesaurus components [ISO86] 77

5.3 UML representation of the concept-based thesaurus components [BS 05c] 78

5.4 Excerpt of the AGROVOC thesaurus . 79

5.5 Record-based model . 80

5.6 Relation-based model . 80

5.7 Spreadsheet implementation of the record-based model of a term-based thesaurus 81

5.8 XML implementation of the record-based model of a term-based thesaurus 81

5.9 Thesauri Categorization . 82

6.1 FLOR Phases . 95

6.2 FLOR Steps Example . 95

6.3 Merging Strategy with threshold 0.5 . 98

6.4 Enriched FlorTag moon . 99

6.5 Enriched FlorTag lake . 100

7.1 Annotation in GATE . 110

7.2 Generated ontology in GATE . 111

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 10 of 124 NeOn Integrated Project EU-IST-027595

Chapter 1

Introduction

The development of ontologies in different international and national projects has revealed that there are
different alternative ways or possibilities to build ontologies. Just to name a few of them, in the Esperonto1

project ontologies were built from scratch; in Knowledge Web2 the issues dealt with were the aligning and
versioning of ontologies as well as the use of best practices or patterns related to W3C activities; in the
SEEMP3 project the development of ontologies is based on the reuse of non-ontological resources, e.g.,
human resources standards, language classifications, etc. Thus, it is not premature to affirm that a new
ontology development paradigm is being born, whose emphasis is placed on the reuse and subsequent re-
engineering of knowledge-aware resources, as opposed to custom-building new ontologies from scratch. In
order to support and promote such re-engineering-based approach, new methods, techniques, and tools are
needed. Therefore, the main goal of this deliverable is to contribute to this new paradigm by presenting a set
of methods and tools for re-engineering non-ontological resources into ontologies.

1.1 WP2 Objectives and Main Tasks

Workpackage 2, Collaborative Aspects for Networked Ontologies, investigates the collaborative aspects of
ontology development and reuse. The main objectives of WP2 is, on the one hand, to analyze and describe
the activities underlying collaborative design of networked ontologies and, on the other hand, to produce
appropriate methods and tools for supporting the related workflow, by focusing on the collaborative aspects
underlying the work of a knowledge community. One of the tasks involved in this workpackage is T2.2
Methods and tools for collaborative engineering ontologies, which provides methods and tools to support
re-engineering, evaluation and selection in the context of building networked ontologies. Within T2.2 we can
distinguish the following two subtasks:

• T2.2a Methods and tools for evaluating and selecting ontology components, which includes (1) design
pattern based evaluation of ontology modules; (2) evaluation of ontology statements reuse in Wat-
son plugin; and (3) collaborative evaluation of knowledge assets using Open Rating Systems. The
associated deliverable of this task is D2.2.3 Methods and tools for ontology evaluation and selection.

• T2.2b Methods and tools for re-engineering non-ontological resources, which includes (1) implementa-
tion of methods for re-engineering folksonomies to ontologies; (2) creation of re-engineering patterns
for transforming non-ontolgical resources into an ontology; (3) extension of the R2O and ODEMap-
ster for re-engineering database content and populating ontologies with instances derived in this way;
(4) learning support for semi-automatic ontology construction; (5) implementation of term and named
entity extraction; (6) implementation of a component for LSA and sense tagging. The results of all

1http://www.esperonto.net
2http://knowledgeweb.semanticweb.org
3http://www.seemp.org

http://www.esperonto.net
http://knowledgeweb.semanticweb.org
http://www.seemp.org

D2.2.2 Methods and Tools Supporting Re-engineering Page 11 of 124

these are reported in this deliverable, except (3), which is reported in D6.10.2 Updated NeOn Toolkit
plugins, and (6), which is reported in D2.5.2 Library of ontology design patterns and software support
for pattern-based design.

1.2 Deliverable Main Goals and Contributions

When compared with the previous version of this deliverable, it can be noted that the improvements of this
version are mainly centered on evolving existing methods and investigating novel ones for re-engineering
non-ontological resources into ontologies. Therefore, the main goal of this deliverable is to present a set of
methods and tools for re-engineering non-ontological resources into ontologies. Thus

• For handling classification schemes, and thesauri, we present methods based on a re-engineering
model for non-ontological resources that we have adapted from the general model for software re-
engineering. These methods rely on the use of Patterns for Re-engineering Non-ontological Resources
(PR-NOR). The methods are extensions of the methods presented on D.5.4.1 [SFdCB+08].

• With respect to folksonomies, we present a method with its respective tool that creates an ontological
structure for a folksonomy of a specific domain by utilising automatically selected knowledge from
online available ontologies.

• For corpora we present a method and a tool that identify patterns for the extraction of entities from
unstructured text and re-engineer these entities into concepts and instances (ontology creation and
population).

1.3 Deliverable Structure

The material of this deliverable is structured as follows:

• Chapter 2 presents a review of the state of the art of methods and tools for re-engineering non-
ontological resources into ontologies.

• Chapter 3 introduces the general method, based on patterns, we follow in NeOn for re-engineering
non-ontological resources. We apply this method to classification schemes (chapter 4), and thesauri
(chapter 5).

• Chapter 4 presents a method for re-engineering classification schemes into ontologies. The method
proposes the use of a set of patterns for re-engineering classification schemes into ontologies.

• Chapter 5 describes a method for re-engineering thesauri into ontologies. The method proposes the
use of a set of patterns for re-engineering thesauri into ontologies.

• Chapter 6 describes a method and a tool to create an ontological structure for a folksonomy of a
specific domain by utilising automatically selected knowledge from online available ontologies. Since
folksonomies are unstructured non-ontological resources, this chapter do not follow the pattern based
method.

• Chapter 7 presents a description of the methods we use in order to identify patterns for the extraction of
entities from unstructured text, and to re-engineer these into concepts and instances (ontology creation
and population). Since unstructured text is unstructured non-ontological resource, this chapter do not
follow the pattern based method.

• Chapter 8 describes the conclusions and future work.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 12 of 124 NeOn Integrated Project EU-IST-027595

1.4 Relation with the Rest of WPs within the NeOn Project

It is notable that the work reported in this deliverable has been tightly integrated with the efforts of other work
packages in the project. In particular

• WP1. The resultant ontology, after the re-engineering process, will follow the networked model pro-
posed on WP1.

• WP5. The methods proposed within this deliverable will be included in the NeOn Methodology for
building ontology networks, specifically in the scenario for reusing and re-engineering non-ontological
resources.

• WP6. The tools proposed in this deliverable, which give technological support to the methods, will be
integrated into the NeOn ToolKit.

• WP7 and WP8. Methods and tools provided in this deliverable will be applied to the NeOn Project use
cases.

D2.2.2 Methods and Tools Supporting Re-engineering Page 13 of 124

Chapter 2

State of the Art

During the last years, the research community has been very active in the ontology engineering field, and
more recently, in reusing and re-engineering knowledge-aware resources for building ontologies rather than
building them from scratch. In this document knowledge-aware resources include classification schemes,
thesauri, lexica, and folksonomies. The aim of this deliverable is to look for new methods, techniques, and
tools for reusing and re-engineering the terminology contained in the available knowledge-aware resources.

In this chapter we present a comparative study of the most outstanding methods and tools for re-engineering
non-ontological resources into ontologies. To carry out this study we have established a common framework
with which to compare the main characteristics of the different methods and tools. This chapter is partially
based on the D2.2.1 [SAd+07], and includes additional research works not considered in D2.2.1.

The chapter is organized as follows: first we present the non-ontological resource typology. In section 2.2,
we introduce a framework for evaluating the methods and tools employed for re-engineering non-ontological
resources. Section 2.3 describes the methods for re-engineering non-ontological resources. Section 2.4
deals with the tools available for re-engineering non-ontological resources. Finally, section 2.5 presents the
results and conclusions of the methods and tools evaluated.

2.1 Types of Non-Ontological Resources

Non-ontological resources (NORs), which were defined in D5.4.1 [SFdCB+08], are knowledge-aware re-
sources whose semantics have not been formalized yet by an ontology. There is a big amount of non-
ontological resources that embody knowledge about some particular domains and that represent some de-
gree of consensus for a user community. These resources are present the form of textual corpora, classifica-
tions, thesauri, lexicons and folksonomies, among others. Non-ontological resources have related semantics
that allows interpreting the knowledge they contain. Regardless of whether the semantics is explicit or not,
the main problem is that the semantics of non-ontological resources is not always formalized, and this lack of
formalization prevents them from being used as ontologies. Using the non-ontological resources as ontolo-
gies can have several benefits, e.g. interoperability, browsing/searching, and reuse among others.

The analysis of the literature has revealed that there are different ways of categorizing non-ontological re-
sources [MS01, SAd+07, GPS98, Hod00]. Thus Maedche et al. [MS01] and Sabou et al. [SAd+07] clas-
sify non-ontological resources into unstructured (e.g. free text), semi-structured (e.g. folksonomies) and
structured (e.g. databases) resources; whereas Gangemi et al. [GPS98] distinguish catalogues of normal-
ized terms, glossed catalogues, and taxonomies; finally, Hodge [Hod00] proposes characteristics such as
structure, complexity, relationships among terms, and historical functions for classifying them. However, an
accepted and agreed on typology of non-ontological resources does not exist yet.

In this deliverable we have updated the previous typology presented in D5.4.1 [SFdCB+08], included dictio-
naries within the lexicon category. The categorization of non-ontological resources is presented according to
three different features: (1) the type of non-ontological resource, which refers to the type of inner organiza-

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 14 of 124 NeOn Integrated Project EU-IST-027595

tion of the information; (2) the data model, that is, the design data model used to represent the knowledge
encoded by the resource; and (3) the resource implementation.

Fig. 2.1 shows the three levels of the categorization of non-ontological resources: type, data model and
implementation levels.

Figure 2.1: Non-Ontological Resources Categorization

1. According to the type of non-ontological resource we classify them into

• Glossaries: A glossary is an alphabetical list of terms or words found in or relating to a specific
topic or text. It may or may not include explanations, and its vocabulary may be monolingual,
bilingual or multilingual [WB97]. An example of glossary is the FAO Fisheries Glossary1.

• Lexicons: In a restricted sense, a computational lexicon is considered as a list of words or lex-
emes hierarchically organized and normally accompanied by meaning and linguistic behaviour
information [Hir04]. An example is WordNet2, the best known computational lexicon of English.

• Classification schemes: A classification scheme is the descriptive information for an arrange-
ment or division of objects into groups based on characteristics that the objects have in common
[ISO04]. For example, the Fishery International Standard Statistical Classification of Aquatic
Animals and Plants (ISSCAAP)3.

• Thesauri : Thesauri are controlled vocabularies of terms in a particular domain with hierarchical,
associative and equivalence relations between terms. Thesauri are mainly used for indexing and
retrieving of articles in large databases [ISO86]. An example of thesaurus is the AGROVOC4

thesaurus.

• Folksonomies: Folksonomies are Web 2.0 systems that allow users to upload and annotate their
content effortlessly and without requiring any expert knowledge. This simplicity has made folk-
sonomies widely successful that has resulted in a massive amount of user-generated and user-
annotated web content. The main advantage of folksonomies is the implicit knowledge they con-
tain. When users tag resources with one or more tags, they assign these resources the meaning

1http://www.fao.org/fi/glossary/default.asp
2http://wordnet.princeton.edu/
3http://www.fao.org/figis/servlet/RefServlet
4http://www.fao.org/agrovoc/

D2.2.2 Methods and Tools Supporting Re-engineering Page 15 of 124

of the tag. Furthermore, the co-occurrence of tags implies a semantic correlation among them.
An example of how folksonomies are used can be seen in the del.icio.us5 website.

2. There are different ways of representing the knowledge encoded by the resource. A data model [Car02]
is an abstract model that describes how data is represented and accessed. There are three basic styles
of a data model: (1) the conceptual data model, which presents the primary entities and relationships
of concern to a specific domain, (2) the logical data model, which depicts the logical entity types, the
data attributes describing those entities, and the relationships between entities, and (3) the physical
data model, which is related to a specific implementation of the resource. In this deliverable we will use
the term data model when referring to the logical data model. In the following chapters we present
several data models for each of the non-ontological resources, i.e. the data model can be different
even for the same type of non-ontological resource.

3. According to the implementation we can classify non-ontological resources into

• Databases: A database is a structured collection of records or data that is stored in a computer
system.

• XML file: eXtensible Markup Language is a simple, open, and flexible format used to exchange
a wide variety of data on and off the Web. XML is a tree structure of nodes and nested nodes of
information in which the user defines the names of the nodes.

• Flat file: A flat file is a file that is usually read or written sequentially. In general, a flat file is a file
containing records that have no structured inter-relationships.

• Spreadsheets: An electronic spreadsheet consists of a matrix of cells into which a user can enter
formulas and values.

2.2 Evaluation Framework

The goal of this section is to set up a framework for comparing the existing research works (methods and
tools) and re-engineering non-ontological resources. Next, we present the identified characteristics grouped
according to the non-ontological resource, the transformation process, and the resultant ontology.

2.2.1 Characteristics of the Non-ontological Resource

• Type of the non-ontological resource. According to the typology introduced in [SFdCB+08], and up-
dated in section 2.1 of this document, non-ontological resources can be (1) classification schemes, (2)
folksonomies, (3) glossaries, (4) lexica and (5) thesauri.

• Implementation of the non-ontological resource. According to the typology presented in [SFdCB+08],
and updated in section 2.1, non-ontological resources can be implemented in (1) databases, (2) XML
files, (3) flat files, or (4) spreadsheets.

• The research work has the ability to transform a specific non-ontological resource into an ontology or
to transform any non-ontological resource.

• The research work tackles the non-ontological resource data model information. The data model
depicts the logical entity types, the data attributes describing those entities, and the relationships
between entities [Car02].

• The research work deals with the provenance information of the non-ontological resource. Prove-
nance focuses on describing and understanding where and how data is produced, the actors involved

5http://del.icio.us/

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 16 of 124 NeOn Integrated Project EU-IST-027595

in its production, and the processes applied before data arrived in the collection from which it is now
accessed [GPC08]. In the context of this deliverable we define provenance as the reference to the
non-ontological resource component for every generated ontology element, e.g., class, property, etc.
For instance, an ontology attribute holds the reference to the non-ontological resource component.

2.2.2 Characteristics of the Transformation Process

This section presents the identified characteristics that are related to the transformation process. This section
is divided in specific and general characteristics.

• Specific characteristics

– The transformation process follows either (1) a one-step transformation of the resource, that is,
it converts the overall non-ontological resource into an ontology, or (2) an incremental transfor-
mation, that is, it converts specific components of the resource into an ontology, without applying
a whole transformation.

– The transformation process follows the transformation approach of (1) transforming the re-
source schema into an ontology schema, and the resource content, into ontology instances; (2)
transforming the resource content into an ontology schema; or (3) transforming the resource con-
tent into instances of an existing ontology. Figure 2.2 depicts each of the possible transformation
approaches.

Figure 2.2: Transformation approaches

– The transformation process can be (1) automatic, (2) semi-automatic or (3) manual .

D2.2.2 Methods and Tools Supporting Re-engineering Page 17 of 124

– The transformation process is carried out by using either (1) an ad-hoc wrapper , or (2) a formal
specification of the conversions between entities of the resources (a non-ontological resource
and ontology) with an associated transformation condition that defines complex rules (in which
case it is necessary a processor or interpreter). The formal specification of the conversions could
be declarative or not.

– The transformation process handles the semantics of the non-ontological resource relation-
ships between the non-ontological resource components (e.g. subClassOf, partOf, etc).

– The transformation process performs a full conversion of the resource. Full conversion implies
that all queries that are possible on the original source are also possible on the resultant ontology
[vAGS06].

– The transformation process uses additional resources to carry out the conversion.

• General characteristics

– The transformation aspects are contemplated at the (1) syntactic or (2) semantic levels. The
syntactic level deals with the ability to structure the representation in structured sentences,
formulas or assertions. The syntactic level includes the transformations of resource component
definitions, according to the grammars of the source and target formats [Cor05]. The semantic
level deals with the ability to construct the propositional meaning of the representation [Cor05].

– The research work provides some methodological guidelines to support the transformation
process.

– The list of employed techniques serves to guide the transformation process, e.g., mapping
rules, re-engineering patterns.

– If a specific tool is provided, then it should give technological support to the transformation
process.

2.2.3 Characteristics of the Resultant Ontology

• The generated ontology components are classes, attributes, relations, or instances.

• The ontology implementation language: OWL, RDF(S).

• The research work generates a single ontology or several ontologies. We do not distinguish if the
ontologies generated are interconnected or not.

2.3 Non-ontological Resource Re-engineering Methods

In this section, we describe the most significant methods for re-engineering non-ontological resources taking
into account the characteristics identified in section 2.2. This section is divided in two subsections: methods
centered on the non-ontological resource type, section 2.3.1, and methods centered on the non-ontological
resource implementation, section 2.3.2.

2.3.1 Methods Centered on the Non-ontological Resource Type

In this section we present the most outstanding methods we have found in the literature relating to the
re-engineering of the following non-ontological resources: classification schemes, folksonomies, lexica and
thesauri.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 18 of 124 NeOn Integrated Project EU-IST-027595

Methods for Transforming Classification Schemes into Ontologies

The two main methods for transforming classification schemes are GenTax [HdB07] and Hakkarainen et al.’s
method [HHST06]. Next both methods are described.

• GenTax is a method presented by Hepp et al. in [HdB07] for semi-automatically deriving consistent
RDF(S) and OWL ontologies from hierarchical classifications, thesauri and informal taxonomies. These
authors subsume all three types (taxonomies, thesauri, and hierarchical classifications) under the
term hierarchical categorization schema; the three types have in common that they include a set of
categories and some form of a hierarchical order. Hepp et al. have implemented a preliminary tool,
named SKOS2GenTax, to support their method. Their prototype consists of a Java program that
expects the informal categorization schema to be stored in a RDBMS. The program accesses the
categories via an ODBC link.

GenTax transforms semi-automatically the entire resource content into an ontology schema.
Human intervention in the transformation is limited to checking some conceptual properties and iden-
tifying frequent anomalies. The basic idea of this method is to derive two ontology classes (1) one
generic concept and (2) one broader taxonomic concept from each category. The method employs
an ad-hoc wrapper for the transformation. Gentax deals with syntactic transformation aspects
and how symbols are structured in the non-ontological resource and ontology formats. Further, Gentax
contemplates semantic transformation aspects and the semantic interpretation of the resource ele-
ments when defining transformations to ontology elements. However, this method does not tackle the
internal data model of the resource. On the other hand, how the resource data is represented and
accessed for the transformation is not described. GenTax does not keep the resource provenance
information, so the resultant ontology does not keep the reference to the non-ontological resource.

GenTax consists of the following steps:

– To pre-process and create a formal representation of the resource.

– To derive classes from each category and set an ad-hoc relation among classes according to a
given context.

– To derive a class from each category and set a taxonomic relation among them.

– To generate the ontology in an ontology language.

This method produces one single ontology. The ontology components generated are classes and
relations. The ontology is expressed in OWL-DLP or RDF(S).

• Hakkarainen et al. [HHST06] present a study of the semantic relationship between the ISO 15926-
26 and OWL DL. The ISO 15926-2 specifies a data model that semi-formally defines the meaning
of the life-cycle information in a single context supporting the views engineers, equipment engineers,
operators, maintenance engineers and other specialists. The ISO 15926-2 is built on EXPRESS7, and
stored in a flat file, to specify its data model. The standard consists of 201 entity data types; the
top level entity data type is thing, with its subtypes possible_individual and abstract_object. All other
entities are subtypes of them.

This method consists of (a) two transformation protocols, which are based on transformation rules,
and (b) two inverse transformation protocols, with the purpose of examining the possible loss of seman-
tics. Transformation protocols include a formal specification of the conversions. These protocols
are based on the approach to transforming resource schema into an ontology schema, and re-
source content into instances of the ontology. Then, the protocols translate the relations between
resource components into subClassOf and ad-hoc relations. However, not a single specific tool is

6http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=29557
7the EXPRESS file is a computer-interpretable of ISO 15926-2 http://www.iso.org/iso/iso_catalogue/

catalogue_tc/catalogue_detail.htm?csnumber=38047

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=29557
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=38047

D2.2.2 Methods and Tools Supporting Re-engineering Page 19 of 124

mentioned. This method does not keep the provenance information of the resource, and therefore,
the resultant ontology does not keep the reference to the non-ontological resource.

The defined transformation protocols are

– TM1, which considers semantic interpretation of the ISO 15926-2 components straightforward;
basically, one ISO 15926-2 component corresponds to exactly one OWL primitive. TM1 is most
appropriate if a one-to-one mapping is desired.

– TM2, which considers extended semantic interpretation; it also takes into account the semantics
of each instance of the components; basically, one ISO 15926-2 component corresponds to sev-
eral OWL primitives and viceversa. TM2 is most appropriate if the transformation is performed to
take advantage of the reasoning facilities provided by OWL, thus adding functionality not natively
present in ISO 5926-2.

The transformation protocols manage a single ontology. The ontology components generated are
classes, attributes, and relations. The resultant ontology is expressed in OWL DL.

Methods for Transforming Folksonomies into Ontologies

The two main methods for transforming folksonomies are T-ORG [ASC07], by Abbasi et al., and [MDA07a]
by Maala et al. Next we describe both of them.

• Abbasi et al. [ASC07] present a mechanism to transform a set of tags of a given folksonomy into
instances of an existing ontology. However, they do not mention at all the implementation of the
resource.

The purpose of this method is to organize resources by classifying their tags into concepts of the
ontology. This process is done by selecting concepts from single or multiple ontologies related to
the required categories. The authors use lexico-syntactic patterns and Google API for searching
the appropriate categories of the tags. This method follows the approach to transforming the re-
source content into instances of an existing ontology, and their authors have implemented the
T-ORG tool, described in section 2.4, to support this method. However, the method does not tackle
the internal data model of the folksonomy. On the other hand, how the resource data is repre-
sented and accessed for the transformation is not described. This method does not keep the re-
source provenance information, therefore, the resultant ontology does not keep the reference to the
non-ontological resource. The method employs an ad-hoc wrapper for discovering the conversions
between the ontologies and the tags. This method consists in

– Selecting the ontology. The user selects the ontologies relevant to the categories. Concepts
from these ontologies are used as categories. The authors rely on Swoogle8 for the selection of
ontologies.

– Pruning and refining the ontology. Ontologies must be pruned and refined for the desired cate-
gories. Unwanted concepts are pruned, whereas redundant and conflicting concepts are refined,
and missing concepts are added to the given ontology.

– Classifying the tags. The authors propose a new classification algorithm for classifying the tags,
namely, the T-KNOW algorithm. This algorithm classifies the tags into categories using its pattern
library (lexico-syntactic patterns), and categories extracted from a given ontology and Google
search results.

– Browsing the resources. After classifying each tag, resources may be browsed according to the
categories assigned to their tags.

8http://swoogle.umbc.edu

2006–2008 c© Copyright lies with the respective authors and their institutions.

http://swoogle.umbc.edu

Page 20 of 124 NeOn Integrated Project EU-IST-027595

This method manages several ontologies and the ontology components generated are instances.
The method does not use any specific ontology language, but light weight ontologies instead.

• Maala et al.’s method [MDA07a] depicts a conversion process from Flickr9 tags to RDF descriptions.
The authors present a method to automatically convert a set of tags into a RDF description in the
context of photos on Flickr. However, it must be noted that they do not mention at all the implementation
of the Flickr tags.

In this method the authors analyze the tagging habits and the tagging content of the photos. To ac-
complish this, they rely on additional resources for the conversion such as (1) WordNet, which has
been completed with extra information, and (2) place resources, a database containing geographical
locations and an ontology of things. This method follows the approach to transforming the resource
content into ontology instances, an automatic method; however, not a single specific tool is men-
tioned. The method uses a formal specification of the conversion between entities of the resource
and the ontology. It does not tackle the internal data model of the folksonomy, and nor does
it describe how the resource data is represented and accessed for the transformation. This method
does not keep the resource provenance information, so the resultant ontology does not keep the
reference to the non-ontological resource. The method takes into account syntactic transformation
aspects, and considers how symbols are structured in the non-ontological resource and ontology for-
mats, but it does not consider fully semantic transformation aspects, it only considers a small
set of the semantic interpretation of the resource elements when defining transformations to ontology
elements. The steps of the method are the following:

– A tag is transformed into its non inflectional form using a stemmer.

– Then, each tag is categorized in one of the following six categories: location, time, event, people,
camera, and activity.

– All tags grouped in the aforementioned categories are ordered from the smallest to the largest, a
precise order measure is not provided.

– For each tag a triple (r,category,e) is created; where the photo is denoted by r, the category can
be one the six aforementioned categories, and the tag is denoted by e.

This method generates a single ontology and the ontology components generated are instances;
these are expressed in RDF.

Methods for Transforming Lexica into Ontologies

The two main methods for transforming lexica are presented in [vAGS06] and [GNV03, GGMO03] and both
of them are focused in WordNet. In the following both methods are described.

• van Assem et al.’s method [vAGS06] proposes a standard conversion of WordNet [Fel98] into the
RDF/OWL representation language. WordNet is used mainly for annotation and retrieval in different
domains and it is also used to ground other vocabularies such as FOAF10. The three core concepts
in WordNet are the following: (1) the synset, which groups word senses with a synonymous meaning
and has four disjoint types of synset: nouns, verbs, adjectives and adverbs; (2) the word sense, which
gives a specific sense to a word when it is used; and the word. WordNet defines seventeen relations,
of which ten define relations between synsets, five between word senses, one between a synset and
a sentence, and one between a sysnset and a verb construction pattern.

This method is based on version 2.0 of Princenton’s WordNet Prolog distribution11. The version con-
tains documentation of the source files, of which there are eighteen: one file represents synsets, word

9http://www.flickr.com/
10http://xmlns.com/foaf/0.1/
11http://wordnet.princeton.edu/obtain

http://www.flickr.com/
http://xmlns.com/foaf/0.1/
http://wordnet.princeton.edu/obtain

D2.2.2 Methods and Tools Supporting Re-engineering Page 21 of 124

senses and words and seventeen for each relationship. This method tackles the internal data model
of the lexicon, and devises how the lexicon data is represented and accessed for the transformation.
The method also provides resource provenance information, so the resultant ontology keeps the
reference to WordNet.

The process for designing the conversion consists in (1) analyzing existing conversions, which helps
to understand the different ways in which WordNet is used on the Semantic Web; (2) formulating the
requirements; (3) analyzing the source files and documentation; (4) designing the RDF/OWL schema;
(5) designing a program for converting Prolog data to RDF/OWL; (6) drafting a Working Group Note
explaining the requirements and design choices; and (7) reviewing the draft note and schema/data
fields.

The authors have been established the following requirements: (a) the method should be a full con-
version; (b) it should be convenient to work with; (c) it should reflect as mush as possible the original
structure of WordNet; and (d) it should provide OWL semantics while still being interpretable by pure
RDF(S) tools.

The method follows the approach to transforming resource schema into an ontology schema and
resource content into instances of the ontology; for the transformation an ad-hoc wrapper has
been employed. The method takes into account syntactic transformation aspects, how symbols
are structured in WordNet and ontology formats. But, this method does not consider fully seman-
tic transformation aspects, since one of the requirements stipulates that interpretation should be
avoided (requirement c). The transformation is performed automatically with the Swi-Prolog12 tool.

The method consists in

– Creating a set of classes for each of the main components of WordNet including classes for word,
synset and sense.

– Modelling words, synsets and senses belonging to WordNet as instances of the previously cre-
ated classes.

– Coding part of the semantics related to each instance by means of the URIs used to identify each
instance.

The method produces one single ontology. The ontology components generated are classes, at-
tributes, relations, and instances. The resultant ontology is expressed in RDF(S)/OWL Full.

• Gangemi et al. [GNV03, GGMO03] present a method that explains how WordNet information can be
bootstrapped, mapped, refined and modularized. This method employs with WordNet 1.6, which is
stored in relational databases. This is a hybrid method because it employs top-down techniques
and tools from formal ontology and bottom-up techniques from computational linguistics and machine
learning. This hybrid method can automatically extract association relations from WordNet, and in-
terpret those associations in terms of a set of conceptual relations, formally defined in the DOLCE13

ontology. It follows the approach to transforming the resource content into an ontology schema.
The method uses a formal specification of the conversions between WordNet components and the
ontology ones. It takes into account syntactic transformation aspects, as well as how symbols
are structured in the lexicon and ontology formats. It also takes into account semantic transforma-
tion aspects, and the semantic interpretation of the resource elements when defining transformations
to ontology elements. The method tackles the internal data model of the resource, and describes
how the resource data is represented and accessed for the transformation. This method does not pro-
vide the resource provenance information, so the resultant ontology does not keep the reference to
WordNet. The method consists of the following two steps:

12http://www.swi-prolog.org/packages/semweb.html
13http://www.loa-cnr.it/DOLCE.html

2006–2008 c© Copyright lies with the respective authors and their institutions.

http://www.swi-prolog.org/packages/semweb.html
http://www.loa-cnr.it/DOLCE.html

Page 22 of 124 NeOn Integrated Project EU-IST-027595

– Bottom-up learning of association links (A-links). In this step WordNet glosses (natural language
definitions) are analysed and A-links, between a synset and the synsets in its gloss, are created.
For each gloss the following tasks are performed: (1) POS-tagging of glosses with the ARIOSTO
Natural Language processor, and extraction of relevant words; (2) disambiguation of glosses by
an algorithm; and (3) creation of explicit association links (A-links) from synsets.

– Top-down learning. In this step the foundational top ontology DOLCE is used to interpret A-links
(i.e. association links) in terms of axiomatic conceptual relations. This is a technique partly
automatic that involves generating solutions on the basis of the available axioms and creating a
specialized partition of the axioms in order to capture more domain-specific knowledge. In this
step a description-logic classifier, e.g. LOOM14, is used.

The method manages one single ontology. The generated ontology components are classes, at-
tributes, and relations and the ontology is implemented in DAML+OIL.

Methods for Transforming Thesauri into Ontologies

The six main methods for transforming thesauri are presented in [Hah03, HS03, vAMSW04, vAMMS06,
WSWS01, HVTS08, SLL+04, LS06]. They are described next.

• Hahn et al. in [Hah03, HS03] present a method that extracts conceptual knowledge from an informal
medical thesaurus, UMLS15, and semi-automatically converts this conceptual knowledge into a for-
mal description logics, LOOM16. It is an interesting to note that this method join the massive coverage
offered by informal medical terminologies with the high level of expressiveness and reasoning capabil-
ities supported by rigid knowledge representation systems in order to develop formally solid medical
knowledge bases on a larger scale. The authors formalize a model of partonomic reasoning that does
not exceed the expressiveness of the well-understood concept language ALC17. Hahn et al. aim to
extract conceptual knowledge from two major subdomains of the UMLS, anatomy and pathology, in
order to construct a formally sound knowledge base based on ALC-type description logic language.

Hahn et al.’s method follows the approach used for transforming resource content into an ontology
schema, and employs an ad-hoc wrapper for the transformation. In the whole transformation process
the ontology engineer has to take decisions relating to the syntax and semantics of the resulting
representation. This method contemplates how symbols are structured in the non-ontological re-
source and ontology formats, and the semantic interpretation of the resource elements when defining
transformations to ontology elements. It also contemplates the internal data model of the thesaurus.
The method provides a description of how the resource data is represented and accessed for the trans-
formation; however, it does not provide the resource provenance information, so the resultant ontology
does not keep the reference to the thesaurus. This method consists of the following steps:

– Automatic generation of terminological expressions. Terminological axioms at the level of de-
scription logics are generated from the relational table structures (MS Access) imported from
UMLS (ASCII files). In this step relations such as partOf/hasPart, isA or hasLocation are taken
into account. For partonomic modelling, Ontology Design Patterns are used.

– Automatic consistency checking by the LOOM classifier. The raw knowledge base is then im-
mediately checked by the description logic classifier to see whether it contains definitional cycles
and inconsistencies.

14http://www.isi.edu/isd/LOOM/
15http://www.nlm.nih.gov/research/umls/
16http://www.isi.edu/isd/LOOM/
17ALC allows for the construction of concept hierarchies.

http://www.isi.edu/isd/LOOM/
http://www.nlm.nih.gov/research/umls/
http://www.isi.edu/isd/LOOM/

D2.2.2 Methods and Tools Supporting Re-engineering Page 23 of 124

– Manual restitution of consistency. If inconsistencies or cyclic knowledge structures are encoun-
tered, a biomedical domain expert resolves the inconsistencies or cycles. After that, the classi-
fier has to be re-run for checking whether the modified knowledge base is inconsistent with the
changes made.

– Manual modification of the knowledge base. In this step relations that were not taking into account
in previous steps (e.g. siblingOf or associatedWith) are included.

The method produces a single ontology. The ontology components generated are classes and rela-
tions. and they are expressed in a formal description logic system, LOOM.

• van Assem et al. in [vAMSW04] present a method for converting thesauri from their native format
to RDF(S) and OWL Full. This method deals with resources implemented in (1) a proprietary text
format, (2) a relational database, and (3) an XML representation.

The method semi-automatically transforms the entire resource content into an ontology schema.
The authors use an ad-hoc wrapper for the transformation. The method does not contemplate the
internal data model of the thesaurus nor does it explain how the resource data is represented and
accessed for the transformation. Nor does it inform about the resource provenance information,
so the resultant ontology does not keep the reference to the thesaurus. This method consists of the
following steps:

– Preparation. The following characteristics of a thesaurus are analysed: (1) conceptual model, (2)
relation between the conceptual and digital model, (3) relations to standards, and (4) identification
of multilinguality issues.

– Syntactic conversion. This step focuses on the syntactic aspects of the conversion process
from the source implementation to RDF(S). This step consists of the following substeps: (1) a
structure-preserving translation that should reflect the source structure as closely as possible
and should be complete; and (2) explication of the syntax of the resource.

– Semantic conversion. In this step the class and property definitions are augmented with addi-
tional RDF(S) and OWL constraints. The output of this step should be used in applications as a
specific interpretation of the thesaurus, not as a standard conversion. This step consists of (1)
explication of semantics, which is similar to the explication of syntax one, but now more expres-
sive RDF(S) and OWL constructs may be used; and (2) specific interpretations are introduced
as some application-specific requirement, e.g. an application wants to treat a broaderTerm
hierarchy as a class hierarchy.

– Standardization. This optional step consists of mapping a thesaurus onto a standard schema.
One possible option is to map to SKOS [MB05].

The method produces one single ontology. The ontology components generated are classes, at-
tributes, and relations and they are expressed in RDF(S)/OWL Full.

• van Assem et al. in [vAMMS06] present a method for converting thesauri to the SKOS [MB05]
RDF/OWL schema. This SKOS schema is a proposal for a standard being developed by W3Cs Se-
mantic Web Best Practices Working Group.

The development of this method is based on a process with the following components:

– The general goal of this method is to support interoperability of thesauri encoded in RDF/OWL.
The requirements are the following: (1) To produce programs that convert the digital representa-
tions of a specific thesaurus to SKOS. The resulting conversion program should produce SKOS
RDF. (2) To perform a full conversion of the thesaurus (i.e. the resultant ontology has all in-
formation that is present in the original thesaurus) as long as this does not violate the previous
requirement.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 24 of 124 NeOn Integrated Project EU-IST-027595

– Comparison with existing methods. Here the authors compare the goals and requirements to
those existing methods to choose a suitable one. The authors compared the methods of Soergel
et al. [SLL+04], Miles et al. [Mil05], and van Assem et al. [vAMSW04].

– Developing steps of the method. The method by Miles et al. [Mil05], which has a comparable goal
and requirements was employed as starting point and adapted to this purpose. The outcoming
steps are

∗ To analyze the digital format and the documentation of the resource. The output of this step
is a catalogue of data items and constraints and a list of thesaurus features.

∗ To define a mapping between input data items and output SKOS RDF. The output of this step
are tables that map data items to schema items.

∗ To develop an algorithm for the transformation program. The output of this step is a conver-
sion program.

– Applying the method. The method has been applied to three thesauri: IPSV18, GTAA19 and
MeSH20 because they are used in practice and represent progressively complex thesauri.

– Evaluating the method. The case studies showed that the method gives appropriate guidance
in identifying common features of thesauri. However, the authors point out that conversion of
concept-based thesauri should be simpler than term-based thesauri as SKOS is concept-based.

This method follows the approach used for transforming resource content into an ontology
schema and an ad-hoc wrapper is used for the transformation. This method contemplates syn-
tactic transformation aspects and how symbols are structured in the thesaurus and ontology for-
mats. On the other hand, the method contemplates the semantic transformation aspects and the
semantic interpretation of the resource elements when defining transformations to ontology elements.
However, it does not tackle the internal data model of the thesaurus, nor does it explains how the
resource data is represented and accessed for the transformation. It does not provide the resource
provenance information, so the resultant ontology does not keep the reference to the thesaurus.

The method produces one single ontology. The ontology components generated are classes, at-
tributes, and relations and they are expressed in SKOS RDF.

• Wielinga et al. in [WSWS01] present a method for transforming the Art and Architecture The-
saurus (AAT) into an RDF(S) ontology. The AAT is the most elaborate and most standardized body
of knowledge concerning classifications of art objects. AAT is published via a searchable online Web
interface21 and it is also available in XML files.

This method is based on the approach for transforming resource content into an ontology schema
and employs an ad-hoc wrapper. This method contemplates syntactic transformation aspects and
how symbols are structured in the thesaurus and ontology formats. It, also contemplates semantic
transformation aspects since it considers the semantic interpretation of the resource elements when
defining transformations to ontology elements. It tackles the internal data model of the thesaurus
and describes how the resource data is represented and accessed for the transformation. However,
it does not inform about the resource provenance information, so the resultant ontology does not
keep the reference to the thesaurus. The method consists of the following steps:

– To convert the full AAT hierarchy into a hierarchy of concepts where each concept has a label
slot corresponding with the main term in AAT and a synonyms slot where alternate terms are
represented.

18Integrated Public Sector Vocabulary http://www.esd.org.uk/standards/ipsv/
19Common Thesaurus for Audiovisual Archives http://informatieprofessional.googlepages.com/gtaa
20Medical Subject Headings http://www.nlm.nih.gov/mesh/
21http://www.getty.edu/research/conducting_research/vocabularies/aat/

http://www.esd.org.uk/standards/ipsv/
http://informatieprofessional.googlepages.com/gtaa
http://www.nlm.nih.gov/mesh/
http://www.getty.edu/research/conducting_research/vocabularies/aat/

D2.2.2 Methods and Tools Supporting Re-engineering Page 25 of 124

– To augment a number of concepts with additional slots and fillers, for example, concepts repre-
senting a style or period were augmented with slots time period from, time period to, general style
and region.

– To add knowledge of the relation between possible values of fields and nodes in the knowledge
base.

The method produces one ontology. The ontology components generated are classes, attributes,
and relations and they are implemented in RDF(S).

• Hyvönen et al. in [HVTS08] present a method for transforming thesauri into ontologies. The method
has been applied to the YSA thesaurus22. DOLCE23 was employed for the transformation. The
authors point out that although a syntactic transformation into SKOS [MB05] can be useful, it is not
enough from a semantic viewpoint. They also stated that unless the meaning of the semantic relations
of a thesaurus is made more explicit and accurate for the computer to interpret, the SKOS version is as
confusing to the computer as the original thesaurus. Therefore, this method for thesaurus to ontology
transformation is not a syntactic one since it is done by refining and enriching the semantic structures
of a thesaurus. It follows the approach used for transforming resource content into an ontology
schema. To accomplish this, the transformation is made automatically with an ad-hoc tool, and then is
refined by hand in order to distinguish multiple meanings and to build a full subClassOf hierarchy based
on NT/RT relationships of thesauri. However, no information about the implementation of the YSA the-
saurus is provided. This method contemplates syntactic transformation aspects and how symbols
are structured in the thesaurus and ontology formats. It also contemplates semantic transformation
aspects and the semantic interpretation of the resource elements when defining transformations to
ontology elements. This method tackle the internal data model of the thesaurus, since it describes
how the resource data is represented and accessed for the transformation. The method provides
resource provenance information, so the resultant ontology keeps the reference to the thesaurus. It
is based on the following semantic refinements and extensions in the thesaurus structure:

– Missing links in the subClassOf hierarchy. The Broader Term (BT) relations do not, usually,
structure the terms into a full-blown hierarchy but into a forest of separate smaller subhierarchies.
Their central structuring principle in constructing the hierarchies is to avoid multiple inheritance.

– Ambiguity of the BT relations. BT relation may mean either subClassOf relation, partOf relation
or instanceOf relation.

– Non-transitivity of the BT relation. The transitivity of the BT relation chains is not guaranteed from
the instance-class-relation point of view.

– Ambiguity of concept meanings. Many terms in thesauri are ambiguous and cannot be related
properly to each other in the hierarchy using the subClassOf relation.

The resultant ontology, based on the YSA thesaurus, is the General Finnish Ontology YSO24. The
ontology components generated are classes, attributes, and relations and they are expressed in
RDF(S).

• Soergel et al. in [SLL+04], and Lauser et al. in [LS06] present a method for the re-engineering of
traditional thesaurus, AGROVOC25, into a fully-fledged ontology. The original AGROVOC thesaurus
is stored in a database.

Soergel et al. explore the applicability of the rules-as-you-go approach to improve the re-engineering
process. The method is based on the approach to transforming resource content into an ontology

22http://vesa.lib.helsinki.fi/
23http://www.loa-cnr.it/DOLCE.html
24http://www.yso.fi/onto/yso
25http://www.fao.org/aims/ag_intro.htm

2006–2008 c© Copyright lies with the respective authors and their institutions.

http://vesa.lib.helsinki.fi/
http://www.loa-cnr.it/DOLCE.html
http://www.yso.fi/onto/yso
http://www.fao.org/aims/ag_intro.htm

Page 26 of 124 NeOn Integrated Project EU-IST-027595

schema. The method employs an ad-hoc wrapper. It contemplates, on the one hand, syntactic
transformation aspects, and on the other, how symbols are structured in the thesaurus and ontology
formats. It also contemplates semantic transformation aspects and the semantic interpretation
of the resource elements when defining transformations to ontology elements. The method tackles
the internal data model of the thesaurus and describes how the resource data is represented and
accessed for the transformation. This method does not provide the resource provenance informa-
tion, so the resultant ontology does not keep the reference to the thesaurus. The purpose here is to
have a computer-assisted approach where a human editor teaches a computer program rules for the
refinement of relationship, FAO26 has a program where some of the re-engineering is done primarily
by people.

The steps of the transformation process are

– To define the ontology structure.

– To fill in values from one or more legacy KOS to the extent possible.

– To edit manually using an ontology editor and make existing information more precise by adding
new information.

In order to automate the process Soerger et al. plan to build an inventory of patterns, namely,
content ontology design patterns specific for the agricultural domain. They also review a set of specific
relationships, e.g. subClassOf and ad-hoc relations, that can be included in the resultant ontology.

Lauser et al. present the basic OWL model, which was extracted manually from the analysis of
AGROVOC schema, using the results of the Soergel et al.’s work; and they point out as future work the
conversion of the AGROVOC content into ontology instances. They plan to develop a Web based tool
for maintaining the resultant ontology.

The method produces one ontology. The generated ontology components are classes, attributes,
and relations and they are expressed in OWL DL.

2.3.2 Methods Centered in the Non-ontological Resource Implementation

In this section we present the most relevant methods we have found in the literature related with the re-
engineering of non-ontological resources centered in their implementation. Research works to transform
databases, XML files, flat files and spreadsheet files into ontologies are commented in this section.

Methods for Transforming Databases into Ontologies

The three main method for transforming databases are presented in [SSV02, BCGP04, Bar07]. Next we
describe them.

• Stojanovic et al. in [SSV02] present an integrated and semi-automatic approach to generating shared-
understable metadata of data-intensive Web applications.

This method is based on mapping the given relational schema into ontologies using a reverse engi-
neering process. The method deals with any non-ontological resources stored in a database and
transforms the database content into instances of an existing ontology (in form of RDF files) on
demand dynamically by applying the generic mapping rules specified by the authors. A formal spec-
ification of the conversions between entities of the resource and the ontology is used. This method
creates mapping rules for (1)concepts, (2)inheritance, and (3) relations. The method contem-
plates syntactic transformation aspects and how symbols are structured in the database and ontol-
ogy formats. It also contemplates semantic transformation aspects and semantic interpretation of

26http://www.fao.org

http://www.fao.org

D2.2.2 Methods and Tools Supporting Re-engineering Page 27 of 124

the resource elements when defining transformations to ontology elements. This method tackles the
internal data model of the resource and describes how the resource data is represented and ac-
cessed for the transformation. It does not provide the resource provenance information, therefore
the resultant ontology does not keep the reference to the database. The proposed method consists of
the following steps:

– To capture information from relational schema through reverse engineering, user interaction is
necessary in this step.

– To analyze the information obtained and map database entities into ontological entities, by using
a set of mapping rules. This step consists of: (1) alignment of the top-level terms; (2) use of
concept creation rules to determine the set of relations in relational schema related to a concept;
and (3) use of attribute creation rules to assign relation’s attributes to the attributes of a concept.

– To evaluate, validate and refine the mapping.

– To create a knowledge base, i.e. data migration. This step consists of: (1) creation of the
instances; and (2) definition of the relations between instances.

The intranet of the AIFB Institute27 is here presented as a case study. For the automation of the
mapping process they used KAON-REVERSE28 a tool for semi-automatically connecting relational
database to ontologies.

This method produces one ontology and generates ontology instances. The resultant ontology is
expressed in F-Logic29, the ontology instances are expressed in RDF.

• Barrasa et al. in [BCGP04, Bar07] present an integrated framework for the formal specification,
evaluation and exploitation of the semantic correspondences between ontologies and relational data
sources.

The framework consists of the following two main components:

– R2O, which is a declarative language for the description of arbitrarily complex mapping expres-
sions between ontology elements (concepts, attributes and relations) and relational elements
(relations and attributes). The strength of the R2O language lies in its expressivity and in its
DBMS independence. The elements of the language providing such qualities are conditions,
operations, and the rule-style mapping definition for attributes.

– ODEMapster processor, which generates Semantic Web instances from relational instances
based on the mapping description expressed in an R2O document. ODEMapster offers two
operation modes: query driven upgrade (on demand query translation) and massive upgrade
batch process that generates all possible Semantic Web individuals from the data repository.

This method follows the approach to transforming resource content into instances of an existing
ontology and uses a formal specification of the conversions between entities of the resource and
the ontology.

This method contemplates syntactic transformation aspects and how symbols are structured in
the database and ontology formats. It also contemplates semantic transformation aspects and the
semantic interpretation of the resource elements when defining transformations to ontology elements.
The method tackles the internal data model of the resource, and it describes how the resource data
is represented and accessed for the transformation. This method does not provide the resource
provenance information, so the resultant ontology does not keep the reference to the database. This
method consists in

27http://www.aifb.uni-karlsruhe.de
28http://kaon.semanticweb.org/alphaworld/reverse/
29http://flora.sourceforge.net/aboutFlogic.php

2006–2008 c© Copyright lies with the respective authors and their institutions.

http://www.aifb.uni-karlsruhe.de
http://kaon.semanticweb.org/alphaworld/reverse/
http://flora.sourceforge.net/aboutFlogic.php

Page 28 of 124 NeOn Integrated Project EU-IST-027595

– Discovering semi-automatically mappings between the database and ontology elements, user
interaction is necessary in some special cases.

– Expressing those mappings in a formal language, R2O.

– Evaluating and verifying those mappings, this is done manually.

– Exploiting those mappings for retrieving the data using ODEMapster.

This method produces one single ontology and generates ontology instances. The ontology in-
stances are expressed in RDF.

Methods for Transforming XML Files into Ontologies

The three main methods for transforming XML files into ontologies are presented in [GC05, AM05, CXH04].
Next, we describe them.

• García et al. in [GC05] introduce a method to create an ontology from the XML schema and populate
it with instances created from the XML data.

This method follows the approach for transforming the resource schema into the ontology
schema, and then resource content into instances of the ontology. It uses a formal specifi-
cation of the conversions between entities of the resource and the ontology. The method consists of
the following steps:

– XSD2OWL Mapping. In this step the semantics implicit in the schema is captured. This semantics
is determined by the combination of XML Schema constructs. This step is quite transparent
and captures a great part of XML Schema semantics. To check the resulting ontologies OWL
validators have been used; it has also been used the XSD2OWL tool. For checking the resulting
ontologies, the user interaction is necessary.

– XML2RDF Mapping. In this step a structure-mapping approach has been selected. This ap-
proach is based on translating XML metadata instances to RDF instances that instantiate the
corresponding constructs in OWL. To do this, the XML2RDF tool has been used

This method has been applied to the MPEG-730 XML Schemas generating a MPEG-7 ontology31. The
only adjustment that has been made to the automatically generated ontology has been done to resolve
a name collision between OWL class and a RDF property.

The method produces one single ontology. The ontology components generated are classes, at-
tributes, relations, and instances and they are expressed in RDF/OWL Full.

• An et al. in [AM05] An et al. present a method to translating an XML web document into an instance
of an OWL-DL ontology.

Here the authors take advantage of the semi-automatic mapping discovery tool [ABM05] for the rela-
tionship between XML schema and the ontology. They define a formal model for the mapping formulas.
This method follows the approach to transforming the resource schema into the ontology schema,
and the resource content into instances of the ontology. The method uses a formal specifica-
tion of the conversions between entities of the XML and the ontology. It contemplates syntactic
transformation aspects, and how symbols are structured in the XML and ontology formats. It also
contemplates semantic transformation aspects, and the semantic interpretation of the resource
elements when defining transformations to ontology elements.

The method produces one single ontology. The ontology components generated are classes, at-
tributes, relations, and instances and they are expressed in OWL-DL.

30http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm
31http://rhzomik.upf.edu/ontologies/mpeg7ontos

http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm
http://rhzomik.upf.edu/ontologies/mpeg7ontos

D2.2.2 Methods and Tools Supporting Re-engineering Page 29 of 124

• Cruz et al. in [CXH04] present a method to transforming XML schema into RDF(S) ontology preserving
the XML document structure, i.e., modelling the knowledge implicit in XML schema using RDF(S).

This method follows the approach to transforming the resource schema into the ontology schema,
and resource content into ontology instances. The method uses a formal specification of the
conversions between entities of the XML and the ontology. A specific tool for supporting the method
has been developed for this purpose. This method contemplates syntactic transformation aspects,
and how symbols are structured in the XML and ontology formats. It also contemplates seman-
tic transformation aspects and the semantic interpretation of the resource elements when defining
transformations to ontology elements. It does not tackle the internal data model of the resource,
nor does it describe how the resource data is represented and accessed for the transformation. This
method does not provide the resource provenance information, therefore the resultant ontology
does not keep the reference to the XML.

The method consists of

– Element-level transformation, which defines the basic classes and properties of the RDF(S) on-
tology according to the following transformations: (1) XML attribute is mapped to a Property;
(2) XML Simple-type element is mapped to a Property; and (3) XML complex-type element is
mapped to a Class.

– Structure-level transformation, which encodes the hierarchical structures of the XML schema
into the RDF(S) ontology. The element-attribute relationship is encoded as class-to-literal rela-
tionship, and the element-subelement relationship is encoded as class-to-class relationship in
RDF(S). Besides, the authors have defined a new RDF(S) predicate rdfx:contain to represent the
class-to-class relationship.

– Query driven data migration, which transforms the query expressed in RDQL32 into XQuery33

query and creates the RDF instances that satisfies the query.

The method produces a single ontology. The ontology components generated are classes, at-
tributes, and relations and they are expressed in RDF(S).

Methods for Transforming Flat Files into Ontologies

The main method to transforming flat file is presented in [FB06] and described next.

• Foxvog et al. in [FB06] present a method to transforming Electronic Data Interchange (EDI)34 mes-
sages into ontologies. EDI is intended to handle all aspects of business transactions such as ordering,
acknowledgements, pricing, status, scheduling, shipping, receiving, invoices, payments, and financial
reporting. Hundreds of standard message types are defined with specified formats. There are two
major EDI standards EDIFACT [Ber94], defined as an open standard by the United Nations, and ASC
X1235, primarily used in the United States. ASC X12 calls message types Transaction Sets which
are composed of strings and loops of Data Segments in a specified format. Each Data Segment has
a specified format of Data Elements. The method is centered on the ASC X12 standard. ASC X12
messages are stored in flat files.

This method follows the approach to transforming resource schema into an ontology schema, and
resource content into ontology instances. Such transformation is performed semi-automatically
with an ad-hoc conversion program developed for that purpose. This method does not tackle the
internal data model of the resource, nor does it describe how the resource data is represented and

32http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
33http://www.w3.org/TR/xquery/
34http://www.ifla.org/VI/5/reports/rep4/42.htm#chap2
35http://www.x12.org/

2006–2008 c© Copyright lies with the respective authors and their institutions.

http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
http://www.w3.org/TR/xquery/
http://www.ifla.org/VI/5/reports/rep4/42.htm#chap2
http://www.x12.org/

Page 30 of 124 NeOn Integrated Project EU-IST-027595

accessed for the transformation. It does not provide the resource provenance information, so the
resultant ontology does not keep the reference to the flat file.

The method for transforming ASC X12 messages into ontologies consists in

– Syntactic transformation. In this step it is necessary to define and encode a vocabulary, i.e. create
a set of classes, for specifying the formats of Transaction Sets, Data Segments, Data Elements
and Code Sets.

– Semantic transformation. In this step it is possible to create separated ontologies for different
Transaction Sets. Also classes or individuals are created for each Data Element Code that is
applicable for the chosen group of Transaction Sets. Classes or relations are created for each
applicable Data Element. Relations or rules are created for each Data segment.

The method produces several ontologies. The ontology components generated are classes, at-
tributes, relations, and instances and they are expressed in OWL Full, CycL, and WSML

2.3.3 Comparison of the Methods

Tables 2.1, 2.2 and 2.3 show the methods presented according to the characteristics related to the non-
ontological resource, the transformation process and the resultant ontology.

D2.2.2 Methods and Tools Supporting Re-engineering Page 31 of 124

Research Type of Resource Specific/Any Data Provenance
work resource implemented

in
model is
known

information

Hepp et al. [HdB07] Classification
scheme, thesauri

Database Any No No

Hakkarainen et al.
[HHST06]

Classification
scheme

Flat file ISO15926-2 Yes No

Abbasi et al. [ASC07] Folksonomy Any No No
Maala et al.
[MDA07a]

Folksonomy Flickr No No

van Assem et al.
[vAGS06]

Lexica Prolog WordNet
ver. 2.0

Yes Yes

Gangemi et al.
[GNV03, GGMO03]

Lexica Database WordNet
ver. 1.6

Yes No

Hahn et al. [Hah03,
HS03]

Thesauri ASCII files UMLS Yes No

van Assem et al.
[vAMSW04]

Thesauri proprietary text
format, rela-
tional database,
XML

Any No No

van Assem et al.
[vAMMS06]

Thesauri IPSV, GTAA,
MeSH

No No

Wielinga et al.
[WSWS01]

Thesauri XML AAT Yes No

Hyvönen et al.
[HVTS08]

Thesauri YSA Yes Yes

Soergel et al.
[SLL+04, LS06]

Thesauri Database AGROVOC Yes No

Stojanovic et al.
[SSV02]

Database Any Yes No

Barrasa et al.
[BCGP04, Bar07]

Database Any Yes No

García et al. [GC05] XML Any No No
An et al. [AM05] XML Any No No
Cruz et al. [CXH04] XML Any No No
Foxvog et al. [FB06] Flat file EDI X12 No No

Table 2.1: Non-ontological resource characteristics of the methods

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 32 of 124 NeOn Integrated Project EU-IST-027595

Table
2.2:

Transform
ation

process
ofthe

m
ethods

D2.2.2 Methods and Tools Supporting Re-engineering Page 33 of 124

Research Work Components Implementation
language

Single/Several

Hepp et al. [HdB07] classes, relations RDF(S) / OWL-
DLP

Single

Hakkarainen et al. [HHST06] classes, attributes, rela-
tions

OWL-DL Single

Abbasi et al. [ASC07] instances Several
Maala et al. [MDA07a] instances RDF Single
van Assem et al. [vAGS06] classes, attributes, rela-

tions, instances
RDF(S) / OWL
Full

Single

Gangemi et al. [GNV03,
GGMO03]

classes, attributes, rela-
tions, instances

DAML+OIL Single

Hahn et al. [Hah03, HS03] classes, relations LOOM / ALC Single
van Assem et al. [vAMSW04] classes, attributes, rela-

tions
RDF(S) / OWL
Full

Single

van Assem et al. [vAMMS06] classes, attributes, rela-
tions

SKOS RDF Single

Wielinga et al. [WSWS01] classes, attributes, rela-
tions

RDF(S) Single

Hyvönen et al. [HVTS08] classes, attributes, rela-
tions

RDF(S) Single

Soergel et al. [SLL+04, LS06] classes, attributes, rela-
tions

OWL-DL Single

Stojanovic et al. [SSV02] instances F-Logic / RDF Single
Barrasa et al. [BCGP04,
Bar07]

instances RDF Single

García et al. [GC05] classes, attributes, rela-
tions, instances

OWL Full/ RDF Single

An et al. [AM05] classes, attributes, rela-
tions, instances

OWL-DL Single

Cruz et al. [CXH04] classes, attributes, rela-
tions

RDF(S) Single

Foxvog et al. [FB06] classes, attributes, rela-
tions, instances

CycL / OWL Full /
WSML

Several

Table 2.3: Ontology characteristics of the methods

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 34 of 124 NeOn Integrated Project EU-IST-027595

2.4 Non-ontological Resource Re-engineering Tools

In this section, we describe the most significant non-ontological resource re-engineering tools according to
the characteristics identified in section 2.2. We organize this section in two subsections: tools centered in
the non-ontological resource type, section 2.4.1, and tools centered in the non-ontological resource imple-
mentation, section 2.4.2. Some of these tools give support to the methods presented in section 2.3.

2.4.1 Tools Centered in the Non-ontological Resource Type

In this section we present some of the tools we found in the literature relating to the building of ontologies
by re-engineering non-ontological resources. We introduce some tools to transform classification schemes,
folksonomies, lexica and thesauri into ontologies are described.

Tool for Transforming Classification Schemes into Ontologies

SKOS2GenTax36 is an online tool that converts hierarchical classifications available in the W3C SKOS37

format into RDF(S) or OWL DL ontologies. SKOS2GenTax uses the GenTax algorithm described in [HdB07].
The input resource can be specified by its URL or it can be uploaded directly to the Web site. This resource
has to be available in SKOS RDF format.

Tool for Transforming Folksonomies into Ontologies

T-ORG, a system to organize folksnomies by classifying the tags attached to them into predefined categories
is presented by Abbasi et al. in [ASC07]. The input resource is a flat folksonomy tagspace. T-ORG gives
technological support to the method described in [ASC07].

2.4.2 Tools Centered in the non-ontological resource implementation

In this section we present some of the tools we found in the literature related with the re-engineering of non-
ontological resources centered in their implementation. We introduce some research to transform databases,
XML files, spreadsheet files and flat files into ontologies.

Tools for Transforming Databases into Ontologies

The four main tools for transforming databases are KAON-REVERSE, ODEMapster, D2R Server and Top-
Braid Composer. In the following we describe each one of them.

• KAON-REVERSE38 is a tool that supports the reverse engineering method presented in [SSV02] for
transforming databases into ontologies.

• ODEMapster39 is the processor in charge of carrying out the exploitation of the mappings defined
using R2O [Bar07]. This tool is intended to create instances of an existing ontology on demand or in a
batch processing.

• D2R Server40 is a tool for publishing the content of relational databases on the Semantic Web.

36http://www.heppnetz.de/projects/skos2gentax/
37http://www.w3.org/2004/02/skos/
38http://kaon.semanticweb.org/alphaworld/reverse/
39http://parla.dia.fi.upm.es/software/index.jsp?sw=http//www.oeg-upm.net/software/

software.owl#ODEMapster
40http://www4.wiwiss.fu-berlin.de/bizer/d2r-server

http://www.heppnetz.de/projects/skos2gentax/
http://www.w3.org/2004/02/skos/
http://kaon.semanticweb.org/alphaworld/reverse/
http://parla.dia.fi.upm.es/software/index.jsp?sw=http//www.oeg-upm.net/software/software.owl#ODEMapster
http://parla.dia.fi.upm.es/software/index.jsp?sw=http//www.oeg-upm.net/software/software.owl#ODEMapster
http://www4.wiwiss.fu-berlin.de/bizer/d2r-server

D2.2.2 Methods and Tools Supporting Re-engineering Page 35 of 124

This tool is intended to create instances of an existing ontology on demand or in a batch process-
ing. Therefore, D2R supports the approach to transforming resource content into instances of an
existing ontology. D2R Server performs a semi-automatic conversion and uses a formal spec-
ification of the conversions between entities of the database schema and the ontology schema.
D2R Server contemplates syntactic transformation aspects, and how symbols are structured in
the database and ontology formats. It also contemplates semantic transformation aspects, and the
semantic interpretation of the resource elements when defining transformations to ontology elements.
However, D2R Server does not tackle the internal data model of the resource, nor does it describe
how the resource data is represented and accessed for the transformation. The tool does not provide
the resource provenance information, so the resultant ontology does not keep the reference to the
database. D2R Server consists of:

– A D2RQ mapping language, a declarative mapping language for describing the relation between
an ontology and a relational data model.

– A D2RQ engine, a plug-in for the Jena and Sesame Semantic Web toolkits, which uses the
mappings to rewrite Jena and Sesame API calls to SQL queries against the database and passes
query results up to the higher layers of the frameworks.

This tool produces one single ontology and generates ontology instances. The resultant ontology
instances are expressed in RDF.

• TopBraid Composer41 is an enterprise-class modeling environment for developing Semantic Web
Ontologies. TopBraid Composer can convert databases into ontologies. This tool has a relational
database importer, D2RQ42. It follows the approach to transforming resource schema into an on-
tology schema and the resource content into instances of the ontology. TopBraid Composer
performs a semi-automatic conversion and uses a formal specification of the conversions be-
tween entities of the database schema and the ontology schema. TopBraid Composer contemplates
syntactic transformation aspects, and how symbols are structured in the database and ontology for-
mats. It also contemplates semantic transformation aspects, and the semantic interpretation of the
resource elements when defining transformations to ontology elements. TopBraid Composer does not
tackle the internal data model of the resource, nor does it describe how the resource data is rep-
resented and accessed for the transformation. This tool does not provide the resource provenance
information, therefore the resultant ontology does not keep the reference to the database.

TopBraid Composer, for converting databases into ontologies, performs the following tasks:

– Static import schema, where tables become classes, columns become properties and link tables
become object properties.

– Dynamic import of actual data, where rows become instances on the fly, i.e. data can stay where
it is.

This tool follows, for converting XML into ontologies, the following two approaches:

– Transforming XML schema into an ontology schema and XML content into ontology in-
stances. In this case the tool employs a formal specification of the conversions between
entities of the resource and the ontology.

– Transforming XML content into an ontology schema. Here the tool employs an ad-hoc wrap-
per for transforming XML elements into ontology classes, and XML attributes into datatype prop-
erties.

41http://www.topbraidcomposer.com/
42http://www4.wiwiss.fu-berlin.de/bizer/d2rq/

2006–2008 c© Copyright lies with the respective authors and their institutions.

http://www.topbraidcomposer.com/
http://www4.wiwiss.fu-berlin.de/bizer/d2rq/

Page 36 of 124 NeOn Integrated Project EU-IST-027595

TopBraid Composer can also convert flat files into ontologies. It transforms the flat file columns into
an ontology schema and the flat file rows into instances of the ontology. It can also convert
spreadsheets into ontologies. Its input resources are Excel spreadsheets. This tool follows the
approach to transforming resource schema into an ontology schema and the resource content
into instances of the ontology.

This tool produces one single ontology. The ontology components generated are classes, at-
tributes, relations, and instances. The resultant ontology is expressed in RDF/OWL (Full, DL or
Lite).

Tools for Transforming XML Files into Ontologies

The main tools are XSD2OWL and XML2RDF, and TopBraid Composer, described above. In the following
section we describe XSD2OWL and XML2RDF.

• XSD2OWL and XML2RDF43 are tools that support the method for transforming XML files into ontolo-
gies [GC05]. The input files are (1) an xml schema definition (XSD) file, which describes the xml
schema; and (2) an xml file, which contains the xml instances.

Tools for Transforming Flat Files into Ontologies

The four main tools for transforming flat files are TopBraid Composer, described above, ConvertToRdf, flat2rdf
and Java BibTeX-To-RDF converter. Next we describe the remaining three.

• ConvertToRdf44 is a tool for automatically converting delimited text data into RDF via a simple
mapping mechanism.

The input resources are delimited text files. This tool supports the approach to transforming resource
content into instances of an existing ontology, performs a semi-automatic conversion and em-
ploys a formal specification of the conversions between entities of the resource and the ontology.
ConvertToRdf contemplates syntactic transformation aspects, and how symbols are structured
in the file and ontology formats. It also contemplates semantic transformation aspects, and the
semantic interpretation of the resource elements when defining transformations to ontology elements.

The tool produces one single ontology. The resultant ontology instances are expressed in RDF

• flat2rdf45 is a simple Perl script that converts classic unix text database files into RDF.

Its input resources are classic unix text files (e.g. /etc/passwd). This tool transforms the flat file
content into ontology instances. flat2rdf performs a semi-automatic conversion and employs a
formal specification of the conversions between entities of the resource and the ontology. flat2rdf
contemplates syntactic transformation aspects, and how symbols are structured in the file and
ontology formats.

The tool generates one single ontology. The resultant ontology instances are expressed in RDF.

• Java BibTeX-To-RDF Converter46 allows converting BibTeX files to an RDF format according the
SWRC ontology47.

The input resources are plain BiBTex files (i.e. text files). This tool transforms the text file content
into ontology instances and performs an automatic conversion. It employs an ad-hoc wrapper.

43http://rhizomik.net/redefer/
44http://www.mindswap.org/~mhgrove/convert/
45http://simile.mit.edu/repository/RDFizers/flat2rdf/
46http://www.aifb.uni-karlsruhe.de/WBS/pha/bib/index.html
47http://ontoware.org/projects/swrc/

http://rhizomik.net/redefer/
http://www.mindswap.org/~mhgrove/convert/
http://simile.mit.edu/repository/RDFizers/flat2rdf/
http://www.aifb.uni-karlsruhe.de/WBS/pha/bib/index.html
http://ontoware.org/projects/swrc/

D2.2.2 Methods and Tools Supporting Re-engineering Page 37 of 124

Java BibTeX-To-RDF Converter contemplates syntactic transformation aspects, and how symbols
are structured in the file and ontology formats.

This tool generates one single ontology. The resultant ontology instances are expressed in RDF.

Tools for Transforming Spreadsheet Files into Ontologies

The three main tools for transforming spreadsheet files are TopBraid Composer, described at the beginning
of this section, Excel2rdf, and RDF123. Next we describe the remaining two.

• Excel2rdf48 is a Microsoft Windows program that converts Excel files into valid RDF.

The input resource is an Excel spreadsheet. This tool supports the approach to transforming re-
source content into instances of an existing ontology and performs a semi-automatic conversion
with an ad-hoc wrapper. This tool contemplates syntactic transformation aspects, and how sym-
bols are structured in the spreadsheet and ontology formats.

The tool generates one single ontology. The resultant ontology instances are expressed in RDF.

• RDF123 is a highly flexible open source tool for transforming semi-automatically spreadsheet data
to RDF that works on CSV files and also Google spreadsheets. This tool was presented by Han et
al. in [HFP+06] and it was motivated by the fact that spreadsheets are easy to understand and use,
offer intuitive interfaces and have representational power adequate for most purposes. Also the liberty
that people take with spreadsheets will sometimes require different rows to be translated with differing
schemas. This tool works on CSV files and also Google spreadsheets.

This tool follows the approach used to transforming resource content into instances of an exist-
ing ontology. RDF123 defines a formal specification of the conversions between entities of the
resource and more than one ontology. It intends to create instances of existing ontologies. Every row
of a spreadsheet will generate a row graph, and the RDF graph produced for the whole spreadsheet is
the merge of all row graphs, eliminating duplicated resources and triples.

RDF123 consists of the following two components:

– RDF123 application, is component whose main purpose is to give users an interactive and easy-
to-use graphical interface for creating the map graph and outputting the map graph in RDF syntax.
It also supports a full work cycle of translating a spreadsheet into RDF and importing a CSV file
into a graphical spreadsheet editor and translating the spreadsheet into RDF by applying the map
graph. This application is composed of three internal frames: (1) the prefix definition frame which
works as a prefix library; (2) the spreadsheet editor which enable users to open a CSV file, edit
the file in a similar way to Excel, and save the file; and (3) the interactive graph editor that allows
users to create and remove a vertex/edge, drag a vertex, and change properties of a vertex/edge.

– RDF123 Web Service, which aims to provide a public service that translates online spreadsheets
into RDF. This component also functions as the host of RDF documents URIs coming from online
spreadsheets.

The tool enables to keep data in its original format, which provides two benefits (1) same data can be
available in different domains just by associating it with different map files; and (2) when the ontology
or the spreadsheet evolves and changes, to make the data adapt to that change it is only necessary to
modify the map file instead of regenerating the hard coded RDF document.

It should be added that this tool produces more than one ontology and that the resultant ontology
instances are expressed in RDF.

48http://www.mindswap.org/~Erreck/excel2rdf.shtml

2006–2008 c© Copyright lies with the respective authors and their institutions.

http://www.mindswap.org/~Erreck/excel2rdf.shtml

Page 38 of 124 NeOn Integrated Project EU-IST-027595

2.4.3 Comparison of the Tools

Tables 2.4, 2.5 and 2.6 show the tools presented according to the characteristics related to the non-
ontological resource, transformation process and resultant ontology.

Type of Resource Specific/Any Data Provenance
Tool resource implemented

in
model is
known

information

SKOS2GenTax Classification
schemes, thesauri

SKOS RDF Any No No

T-ORG Folksonomy Any No No
KAON-REVERSE Database Any Yes No
ODEMapster Database Any Yes No
D2R Server Database Any No No
TopBraid Composer Database,

XML, Flat file,
Spreadsheet

Any No No

XSD2OWL and
XML2RDF

XML Any No No

ConvertToRdf Delimited text
data file

Any No No

flat2rdf Flat file Unix text file No No
Java BibTeX-To-RDF
Converter

Flat file Bibtex file No No

Excel2rdf Spreadsheet Any No No
RDF123 Spreadsheet Any No No

Table 2.4: Non-ontological resource characteristics of the tools

D2.2.2 Methods and Tools Supporting Re-engineering Page 39 of 124

Ta
bl

e
2.

5:
Tr

an
sf

or
m

at
io

n
pr

oc
es

s
of

th
e

to
ol

s

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 40 of 124 NeOn Integrated Project EU-IST-027595

Tool Components Implementation
language

Single/Several

SKOS2GenTax classes, attributes, relations OWL DLP/
RDF(S)

Single

T-ORG instances Several
KAON-REVERSE classes, attributes, relations, in-

stances
F-Logic / RDF Single

ODEMapster instances RDF Single
D2R Server instances RDF Single
TopBraid Composer classes, attributes, relations, in-

stances
RDF/OWL (Full,
DL or Lite)

Single

XSD2OWL and XML2RDF classes, attributes, relations, in-
stances

OWL Full/ RDF Single

ConvertToRdf instances RDF Single
flat2rdf instances RDF Single
Java BibTeX-To-RDF Con-
verter

instances RDF Single

Excel2rdf instances RDF Single
RDF123 instances RDF Several

Table 2.6: Ontology characteristics of the tools

2.5 Results and Conclusions

After having analyzed the state of the art of methods and tools for re-engineering non-ontological resources,
we present the results of applying the evaluation framework described in section 2.2. The results are provided
according to the characteristics of the identified groups, that is, non-ontological resource, transformation
process, and resultant ontology.

2.5.1 Results According to Non-ontological Resource

Table 2.1 and table 2.4 summarize the methods and tools presented according to the characteristics of the
non-ontological resource: type of resource, resource implemented in, specific or any resource, whether the
data model is known, and the provenance information.

Methods

• According to the type of non-ontological resource: one method is focused on classification schemes,
other method on classification schemes and thesauri, two are focused on folksonomies, two are fo-
cused on lexica, six methods are focused on thesauri. The remaining six are not focused on the
non-ontological resource type since they are independent of the resource type.

• According to the implementation of the non-ontological resource. Five methods focused on resources
implemented in databases, four methods, on resources implemented in XML, three methods on re-
sources implemented in flat files, one method deals with resources implemented in Prolog, other
method deals with resources implemented in proprietary format, relational database and XML, and
four methods are independent of the resource implementation.

• According to the ability to transform a specific non-ontological resource or to transform any non-
ontological resource, there are ten methods with the ability to transform a specific non-ontological

D2.2.2 Methods and Tools Supporting Re-engineering Page 41 of 124

resource that follow: ISO15926-249, Flickr50, WordNet51, UMLS52, IPSV53, GTAA54, MeSH55, AAT56,
YSA57, AGROVOC58, and EDI X1259, and eight methods that deal with any non-ontological resource.

• According to the data model information. Nine methods tackle information about the internal data
model of the non-ontological resource, and nine methods do not include information about the internal
data model of the resource.

• According to the provenance information. Two methods keep the reference to the non-ontological
resource, and sixteen methods do not provide the provenance information about the resource after the
transformation.

Tools

• According to the type of non-ontological resource. One tool deals with classification schemes and
thesauri, one tool tackles folksonomies. The remaining ten tools are not focused on the non-ontological
resource type since they are independent of the resource type.

• According to the implementation of the non-ontological resource. One tool takes on resources imple-
mented in SKOS RDF; three tools operated on resources implemented in databases; one tool deals
with resources implemented in databases, XML, flat files, and spreadsheets; three tools tackle re-
source implemented in flat files; one tool deals with XML implementation; two tools deal with resources
implemented in spreadsheets. The remaining tool is not focused on the non-ontological resource im-
plementation.

• According to the ability to transform a specific non-ontological resource or to transform any non-
ontological resource. Two tools have the ability to transform a specific non-ontological resource, e.g.
Unix text files and Bibtex files. The remaining ten tools deal with any non-ontological resource.

• According to the data model information. Two tools take into account information about the internal
data model of the non-ontological resource. The remaining ten tools do not take information about the
internal data model of the resource.

• According to the provenance information. All of the tools do not keep the reference to the non-
ontological resource, they not provide the provenance information about the resource after the trans-
formation.

We can conclude that most of the methods and tools presented are based on ad-hoc transformations for
the resource type, the resource implementation or a specific resource. Only a few provide the provenance
information of the resource, and also a few take advantage of the resource data model, an important artifact
in the re-engineering process. In conclusion, we can state that there is a clear need for some sort of re-
engineering methods and tools that

• deal with the overall non-ontological resources, i.e. classification schemes, thesauri, and lexica,

• take into account the internal data model of the resource,
49http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=29557
50http://www.flickr.com/
51http://wordnet.princeton.edu/
52http://www.nlm.nih.gov/research/umls/
53Integrated Public Sector Vocabulary http://www.esd.org.uk/standards/ipsv/
54Common Thesaurus for Audiovisual Archives http://informatieprofessional.googlepages.com/gtaa
55Medical Subject Headings http://www.nlm.nih.gov/mesh/
56http://www.getty.edu/research/conducting_research/vocabularies/aat/
57http://vesa.lib.helsinki.fi/
58http://www.fao.org/agrovoc/
59http://www.ifla.org/VI/5/reports/rep4/42.htm#chap2

2006–2008 c© Copyright lies with the respective authors and their institutions.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=29557
http://www.flickr.com/
http://www.nlm.nih.gov/research/umls/
http://www.esd.org.uk/standards/ipsv/
http://informatieprofessional.googlepages.com/gtaa
http://www.nlm.nih.gov/mesh/
http://www.getty.edu/research/conducting_research/vocabularies/aat/
http://vesa.lib.helsinki.fi/
http://www.ifla.org/VI/5/reports/rep4/42.htm#chap2

Page 42 of 124 NeOn Integrated Project EU-IST-027595

• keep the provenance information of the resource.

2.5.2 Results According to Transformation Process

Table 2.2 and table 2.5 summarize the methods and tools presented according to the characteristics of the
transformation process: one-step or incremental transformation, transformation approach, automatic/semi-
automatic or manual, ad-hoc wrapper or formal specification, transformation aspects, semantics of NOR
relationships, full conversion of the resource, use of additional resources to carry out the transformation,
provision of methodological guidelines, employed technique, and tool support.

Methods

• According to the transformation process, one-step transformation or incremental transformation. The
eighteen methods perform one-step transformation of the non-ontological resource.

• According to transformation approach. Six methods follow the approach to transforming the resource
schema into an ontology schema and the resource content into ontology instances, eight methods
follow the approach to transforming the resource content into an ontology schema, four methods follow
the approach for transforming the resource content into instances of an existing ontology.

• According to whether the transformation process is automatic, semi-automatic, or manual. Three meth-
ods perform an automatic transformation, fourteen methods perform a semi-automatic transformation,
and one method performs a manual transformation.

• According to how the transformation process is carried out, using an ad-hoc wrapper or using a formal
specification of the conversions. Ten methods perform the transformation by using an ad-hoc wrapper,
seven methods perform the transformation by using a formal specification of the conversions, and one
method does not mention anything about how the transformation process is carried out.

• According to the transformation aspects contemplated, i.e. syntactic or semantic. Fifteen methods con-
template syntactic and semantic transformation aspects, since they tackle how symbols are structured
in the resource and ontology formats, as well the semantic interpretation of the resource elements
when defining transformations to ontology elements. Two methods contemplate syntactic and partially
semantic transformation aspects. The remaining method contemplates only the syntactic transforma-
tion aspects.

• According to the semantics of the non-ontological resource relationships. Four methods deal with
subClassOf and ad-hoc relations; one deals with subClassOf, partOf and ad-hoc relations; three
methods deal with ad-hoc relations. The remaining ten methods do not provide information about this
criteria.

• According to whether the method performs a full transformation or not. Fifteen methods perform a full
conversion of the resource, two methods perform a partial conversion of the resource, and one does
not provide information about this criteria.

• According to whether the method uses additional resources for the transformation or not. Four methods
use additional resources, such as, Swoogle, Google, WordNet, and DOLCE ontology, for the transfor-
mation. The remaining fourteen methods do not use any additional resource for the transformation.

• According to whether the method provides some methodological guidelines or not. Seventeen methods
provide methodological guidelines for the transformation, only one does not provide any methodologi-
cal guideline for the transformation.

D2.2.2 Methods and Tools Supporting Re-engineering Page 43 of 124

• According to the list of employed techniques. Four methods employ mapping rules for the transforma-
tion, one method employs transformation rules, other one method employs lexico syntactic patterns,
one employs natural language techniques, one method employs ontology design patterns. The re-
maining nine methods do not provide information about this criteria.

• According to the support tool for the transformation. Eight methods have a tool that provides tech-
nological support to the transformation, six methods have an ad-hoc tool for the transformation. The
remaining four methods do not provide information about a tool.

Tools

• According to the transformation process, i.e. one-step transformation or incremental transformation.
The twelve tools perform one-step transformation of the non-ontological resource.

• According to the transformation approach. One tool follows the approach to transforming the resource
schema into an ontology schema and the resource content into ontology instances, other tool follows
the approach for transforming the resource content into an ontology schema, other tool follows two
approaches (i) to transforming the resource schema into an ontology schema and the resource content
into ontology instances and (ii) to transforming the resource content into an ontology schema. The
remaining nine tools follow the approach to transforming the resource content into instances of an
existing ontology.

• According to whether the transformation process is automatic, semi-automatic, or manual. Three tools
perform an automatic transformation, and nine perform a semi-automatic transformation.

• According to how the transformation process is carried out, i.e. using an ad-hoc wrapper or using
a formal specification of the conversions. Four tools perform the transformation by using an ad-hoc
wrapper, and eight perform the transformation by using a formal specification of the conversions.

• According to the transformation aspects contemplated, i.e. syntactic or semantic. Eight tools take con-
template syntactic and semantic transformation aspects, since they tackle how symbols are structured
in the resource and ontology formats, as well the semantic interpretation of the resource elements
when defining transformations to ontology elements. Four tools contemplate only the syntactic trans-
formation aspects.

• According to the semantics of the non-ontological resource relationships. One tool deals with sub-
ClassOf and ad-hoc relations, ten deal with ad-hoc relations and the remaining tool does not provide
information about this criteria.

• According to whether the tool performs a full transformation or not. Six tools perform a full conversion
of the resource, and six do not provide information about this criteria.

• According to whether the method uses additional resources for the transformation or not. One tool uses
additional resources, such as, Swoogle, and Google for the transformation. The remaining eleven tools
do not use any addtional resource for the transformation.

• According to the list of employed techniques. Four tools employ mapping rules for the transforma-
tion, one tool employs lexico syntactic patterns, and seven tools do not provide information about this
criteria.

After having analyzed the characteristics related to the transformation process, we can conclude that re-
search efforts have been mostly centered on using ad-hoc wrappers for the transformation. Only a few
take into account the semantics of the non-ontological resource relationships. Also a few rely on additional
resources for performing the transformation.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 44 of 124 NeOn Integrated Project EU-IST-027595

Re-engineering patterns embody expertise about how to guide a re-engineering process, they improve the
efficiency of the re-engineering process, make the transformation process easier, and improve the reusability
of non-ontological resources. Therefore, re-engineering patterns are a suitable technique for the transforma-
tion. However, none of the methods use re-engineering patterns as a technique for the transformation.

In conclusion, we can state that there is a clear need for some sort of re-engineering methods and tools that

• propose a formal specification of the transformation between entities of the resource and the ontology,

• contemplate the semantics of the non-ontological resource relationships,

• propose re-engineering patterns to guide the re-engineering process,

• support the re-engineering process activities by using the aforementioned re-engineering patterns,

2.5.3 Results According to the Ontology

Table 2.3 and table 2.6 summarize the methods and tools presented according to the characteristics of the
resultant ontology: the ontology components, the ontology implementation language and whether one or
more ontologies are generated.

Methods

• According to the ontology components. Seven methods generate classes, attributes and relations; five
methods generate classes, attributes, relations and instances; two generate classes and relations; four
generate only instances.

• According to the ontology implementation language. One method deals with RDF(S) and OWL-DLP
ontologies; three methods deal OWL-DL ontologies; two deal with RDF instances; two deal with
RDF(S) and OWL Full ontologies; one method deals with DAML+OIL ontologies; other method deals
with LOOM/ACL ontologies; only one deals with SKOS RDF ontologies; three deal with RDF(S) on-
tologies; one deals with F-Logic/RDF ontologies, other deals with OWL Full/RDF ontologies; and one
deals with CycL, OWL Full and WSML ontologies.

• According to whether the method generates one or several ontologies. There are two methods which
generate several ontologies, the remaining sixteen methods generate one single ontology.

Tools

• According to the ontology components. One tool generates classes, attributes and relations; three
tools generate classes, attributes, relations and instances; and eight tools generate only instances.

• According to the ontology implementation language. One tool deals with RDF(S) and OWL-DLP on-
tologies; other tool deals with F-Logic and RDF ontologies; other deals with OWL Full and RDF ontolo-
gies; one tool deals with ontologies implemented in OWL (Full, DL or Lite) and RDF ontologies; the
remaining seven deal with RDF instances.

• According to whether the tool generates one or several ontologies. Two tools generate several ontolo-
gies, and ten tools generate one single ontology.

After having analyzed the characteristics related to the resultant ontology, we can conclude that there is a
lack of re-engineering methods and tools which support several ontologies. Most of the presented research
efforts only generate one single ontology.

D2.2.2 Methods and Tools Supporting Re-engineering Page 45 of 124

Chapter 3

NeOn Method for Re-engineering
Non-ontological Resources

In this chapter we provide a general overview of the NeOn pattern based approach for re-engineering non-
ontological resources, i.e., classification schemes, and thesauri. We outline the pattern-based method for
re-engineering non-ontological resources and present a template for describing the patterns.

3.1 NeOn Method for Re-engineering Non-ontological Resources

In this section we present our method for non-ontological resource re-engineering. We have opted for a
pattern-based approach to carrying out the non-ontological re-engineering process. This method will be
applied to classification schemes (chapter 4), and thesauri (chapter 5). Then, we present the proposed
template used to describe the patterns for re-engineering them.

In summary, the NeOn method for re-engineering non-ontological resources into ontologies aims to:

• perform a conversion, as fully as possible, of knowledge included in the resource into ontologies,

• transform the resource into an ontology in one single step,

• take advantage of the data model underlying the non-ontological resource to guide the re-engineering
process,

• employ re-engineering patterns to guide the transformation process; these re-engineering patterns
do not deal with the resource implementation since they are focused in the upper levels, i.e., non-
ontological resource types and non-ontological resource data models.

• generate two kinds of ontologies: taxonomies and lightweight ontologies.

– a taxonomy [SFBG+07] is the way of organizing an ontology as a hierarchical structure of classes
only related by subsumption relations.

– a lightweight ontology [SFBG+07] adds the following features to the taxonomy structure: (a) a
class can be related to other classes through an ad-hoc relation; (b) object and datatype prop-
erties can be defined and used to relate classes; and (c) a specific domain and range can be
associated with defined object and datatype properties.

• offer the user the possibility to choose what kind of ontology (s)he wants to generate,

• generate ontologies at a conceptualization level, independent of the ontology implementation lan-
guage,

• keep the provenance information of the resultant ontology.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 46 of 124 NeOn Integrated Project EU-IST-027595

Since folksonomies and free text are unstructured non-ontological resources, chapter 6 (folksonomies) and
7 (named entities) do not follow the pattern-based approach, they follow their own approach which is specific
for their kind of non-ontological resource.

3.1.1 Re-engineering Patterns

In software engineering, re-engineering patterns [PS98] are patterns that describe how to change a legacy
system into a new, refactored system that fits current conditions and requirements. Their main goal is to
offer a solution for re-engineering problems. They are also on a specific level of abstraction and describe a
process of re-engineering without proposing a complete methodology; the patterns can sometimes suggest
a type of tool that one could use.

Re-engineering patterns for ontology are defined in [PGD+08] as transformation rules applied to create a new
ontology (target model) from elements of a source model that can be either an ontology or a non-ontological
resource, e.g., a thesaurus concept, a data model pattern, a UML model, a linguistic structure, etc.

In the aforementioned work, re-engineering patterns are not integrated within a method to carry out the
re-engineering process. Moreover, a template to describe re-engineering patterns in a unified way is not pro-
posed. One of the goals of this deliverable is precisely to propose a method to carry out the re-engineering
process of non-ontological resources into ontologies using re-engineering patterns. These patterns will gen-
erate the ontologies at a conceptualization level, independent of the ontology implementation language.

According to [PGD+08], the use of re-engineering patterns for transforming non-ontological resources into
ontologies has several advantages. The most representative are

• To improve the efficiency of the re-engineering process.

• To make the transformation process easier for both ontology engineers and domain experts.

• To improve the reusability of non-ontological resources.

3.1.2 Patterns for Re-engineering Non-Ontological Resources

Patterns for re-engineering non-ontological resources (PR-NOR) define a procedure that transforms the
non-ontological resource components into ontology representational primitives. To this end, patterns take
advantage of the non-ontological resource underlying data model. The data model defines how the different
components of the non-ontological resource are represented.

According to the non-ontological resource categorization presented in section 2.1, the data model can be
different even for the same type of non-ontological resource. For every data model we can define a process
with a well-defined sequence of activities to extract the non-ontological resources components and then to
map these components to a conceptual model of an ontology. Each of these processes can be expressed
as a pattern for re-engineering non-ontological resources.

The resultant ontologies proposed by the patterns for re-engineering non-ontological resources are modeled
following the recommendations provided by some other ontological patterns such as logical and architectural
patterns [SFBG+07]. The current inventory of NeOn Ontology Modelling Components consider as Architec-
tural Patterns the following ones: taxonomy, lightweight ontology and modular architecture. The patterns for
re-engineering non-ontological resources deal only with taxonomies and lightweight ontologies. We decided
to model the resultant ontologies following these recommendations: taxonomy and lightweight ontology.
Moreover, the patterns for re-engineering non-ontological resources define the transformation process but
they do not provide an algorithm neither an implementation of the process. We plan to include the algorithms
and implementations later on in a framework which will implement the transformation process. Also we will
include a section to generate ontologies following the Linking Open Data1 recommendations.

1http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

D2.2.2 Methods and Tools Supporting Re-engineering Page 47 of 124

Next, we present the proposed template used to describe the patterns for re-engineering non-ontological
resources (PR-NOR). To present the patterns for re-engineering non-ontological resources we have adapted
the tabular template for ontology design patterns used in [SFBG+07]. The template adapted and the meaning
of each field is shown in Table 3.1.

Table 3.1: Pattern for Re-engineering Non-Ontological Resource Template

Slot Value

General Information

Name Name of the pattern

Identifier An acronym composed of component type + abbreviated name of the component + number

Component Type Pattern for Re-engineering Non-Ontological Resource (PR-NOR)

Use Case

General
Description in natural language of the re-engineering problem addressed by the pattern for

re-engineering non-ontological resources.

Example Description in natural language of an example of the re-engineering problem.

Pattern for Re-engineering Non-Ontological Resource

INPUT: Resource to be Re-engineered

General Description in natural language of the non-ontological resource.

Example Description in natural language of an example of the non-ontological resource.

Graphical Representation

General Graphical representation of the non-ontological resource.

Example Graphical representation of the example of non-ontological resource.

OUTPUT: Designed Ontology

General Description in natural language of the ontology created after applying the pattern for
re-engineering the non-ontological resource.

Graphical Representation

(UML) General Solution
Ontology

Graphical representation, using the UML profile [BH06], of the ontology created for the
non-ontological resource being re-engineered.

(UML) Example Solution
Ontology

Example showing a graphical representation, using the UML profile [BH06], of the ontology
created for the non-ontological resource being used.

PROCESS: How to Re-engineer

General
Description in natural language of the general re-engineering process, using a sequence of

activities.

Example
Description in natural language of the re-engineering process applied to the non-ontological

resource example, using the above sequence of activities.

Relationships (Optional)

Relations to other
modelling components

Description of any relation to other PR-NOR patterns or other ontology design patterns.

3.1.3 General Model for Non-Ontological Resource Re-engineering

In a nutshell, our method to non-ontological resource re-engineering considers as input a pool of non-
ontological resources and patterns for re-engineering non-ontological resources. The latter provide solutions
to the problem of transforming non-ontological resources into ontologies.

Based on the software re-engineering model presented in D.5.4.1 [SFdCB+08] we propose our re-
engineering model for non-ontological resource re-engineering in Fig.3.1.

The NOR re-engineering process consists of the following activities, which are defined in a Glossary of
Activities in the Ontology Engineering[SFGP08]:

1. Non-Ontological Resource Reverse Engineering, whose goal is to analyze a NOR to identify its un-

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 48 of 124 NeOn Integrated Project EU-IST-027595

Figure 3.1: Re-engineering Model for Non-Ontological Resources

derlying components and create representations of the resource at the different levels of abstraction
(design, requirements and conceptual). Since NORs can be implemented as XML files, databases or
spreadsheet among others, we can consider them as software resources, and therefore, we use the
software abstraction levels (implementation, design, requirements and conceptual) shown in Fig. 3.1
within this activity. Here the requirements and the essential design, structure and content of the NOR
must be recaptured.

2. Non-Ontological Resource Transformation, whose goal is to generate a conceptual model from the
NOR. We propose the use of Patterns for Re-engineering Non-Ontological Resources (PR-NOR) to
guide the transformation process. First, the non-ontological resource type has to be identified. Second,
the internal data model of the non-ontological resource has to be identified as well. Third, the semantics
of the relations between the non-ontological resource entities have to be identified, these semantics
can be a)subClassOf, b) an ad-hoc relation like partOf or c) a mix of subClassOf and ad-hoc relations.
Next, a pattern for re-engineering non-ontological resources has to be searched according to the type
of non-ontological resource, the internal data model and the semantics of the relations between the
non-ontological resource entities. Finally, the selected re-engineering pattern has to be applied to
transform the non-ontological resource into a conceptual model.

3. Ontology Forward Engineering, whose goal is to output a new implementation of the ontology on the
basis of the new conceptual model. We use the ontology levels of abstraction to depict this activity
because they are directly related to the ontology development process.

3.1.4 Non-ontological Resources Re-engineering Process

The non-ontological resource re-engineering process consists of the activities depicted in Fig.3.2. This pro-
cess is based on the one described in D.5.4.1 [SFdCB+08]. In general, we follow the same process, but use
the set of patterns for re-engineering non-ontological resources described in this deliverable.

1. Non-Ontological Resource Reverse Engineering, whose goal is to analyze a non-ontological re-
source to identify its underlying components and create representations of the resource at the different
levels of abstraction (design, requirements and conceptual).

• Task 1. Gather documentation. The goal of this task is to search and compile all the available
documentation about the non-ontological resource including purpose, components; data model
and implementation details.

• Task 2. Extract the conceptual schema of the non-ontological resource. The goal of this
task is to identify the schema of the non-ontological resource including the conceptual compo-
nents and their relationships. If the conceptual schema is not available in the documentation, the
schema should be reconstructed manually or by using a data modeling tool.

D2.2.2 Methods and Tools Supporting Re-engineering Page 49 of 124

Figure 3.2: Re-engineering process for Non-Ontological Resources

• Task 3. Extract the data model. The goal of this task is to find out how the conceptual schema
of the non-ontological resource and its content are represented in the data model. If the non-
ontological resource data model is not available in the documentation, the data model should be
reconstructed manually or by using a data modeling tool.

2. Non-Ontological Resource Transformation, whose goal is to generate a conceptual model from
the non-ontological resource. We propose the use of Patterns for Re-engineering Non-Ontological
Resources (PR-NOR) to guide the transformation process.

• Task 4. Search for a suitable pattern for re-engineering non-ontological resource. The
goal of this task is to find out if there is any applicable re-engineering pattern to transform
the non-ontological resource into a conceptual model. To search for a suitable pattern for re-
engineering non-ontological resource the NeOn library of patterns2 can be used, according to
the non-ontological resource, the data model, and the semantics of the relations between the
non-ontological resource entities. First, the non-ontological resource type has to be identified.
Second, the internal data model of the non-ontological resource has to be identified as well.
Third, the semantics of the relations between the non-ontological resource entities have to be
identified, these semantics can be a)subClassOf, b) an ad-hoc relation like partOf or c) a mix of

2http://www.ontologydesignpatterns.org

2006–2008 c© Copyright lies with the respective authors and their institutions.

http://www.ontologydesignpatterns.org

Page 50 of 124 NeOn Integrated Project EU-IST-027595

subClassOf and ad-hoc relations. Finally, a pattern for re-engineering non-ontological resources
has to be searched according to the type of non-ontological resource, the internal data model
and the semantics of the relations between the non-ontological resource entities.

• Task 5.a. Use patterns for re-engineering to guide the transformation. The goal of this task
is to apply the re-engineering pattern obtained in task 4 to transform the non-ontological resource
into a conceptual model. If a suitable pattern for re-engineering non-ontological resource is found
then the conceptual model is created from the non-ontological resource following the procedure
established in the pattern for re-engineering.

• Task 5.b. Perform and ad-hoc transformation. The goal of this task is to set up an ad-hoc
procedure to transform the non-ontological resource into a conceptual model, when a suitable
pattern for re-engineering was not found. This ad-hoc procedure may be generalized to create a
new pattern for re-engineering non-ontological resource.

3. Ontology Forward Engineering, whose goal is to generate the ontology. We use the ontology levels
of abstraction to depict this activity because they are directly related to the ontology development
process.

• Task 6. Formalize. The goal of this task is to transform the conceptual model obtained in task 5.a
or 5.b into a formalized model, according to a knowledge representation paradigm as description
logics, first order logic, etc.

• Task 7. Implement. The goal of this task is the ontology implementation in an ontology language.

D2.2.2 Methods and Tools Supporting Re-engineering Page 51 of 124

Chapter 4

Methods for Re-engineering Classification
Schemes

4.1 Introduction

Classification schemes [KBH+97] have a role in aiding information retrieval in a network environment, spe-
cially for providing browsing structures for subject-based information gateways on the Web. Advantages
of using classification schemes include improved subject browsing facilities, and improved interoperability
with other services. Classification schemes are likely the most valuable input for creating, at reasonable
cost, ontologies in many domains. They contain, readily available, a wealth of category definitions plus a
hierarchy, and they reflect some degree of community consensus [HdB07]. In this chapter we present a
definition of classification schemes, the data models for representing classification schemes and the method
for re-engineering classification schemes into ontologies.

4.2 Classification Scheme

A classification scheme [ISO04] is the descriptive information for an arrangement or division of objects into
groups based on characteristics, which the objects have in common. For example, the Fishery International
Standard Statistical Classification of Aquatic Animals and Plants (ISSCAAP)1.

Based on [ISO04] we identify the following classification scheme components in Figure 4.1:

• cs_name, which is the name of the classification scheme.

• Classification scheme item, which represents the individual item within a classification scheme. It has
the following elements:

– csi_name, which is the name of the classification scheme item.

– One or more csi_attributes

• Classification scheme item relationship, which is the relationship among items within a classification
scheme. Such relation serves to assist navigation through a large number of classification scheme
items. It has the csir_name element, which is the name of the classification scheme item relationship.

1http://www.fao.org/figis/servlet/RefServlet

2006–2008 c© Copyright lies with the respective authors and their institutions.

http://www.fao.org/figis/servlet/RefServlet

Page 52 of 124 NeOn Integrated Project EU-IST-027595

Figure 4.1: UML representation of the classification scheme main components [ISO04]

4.2.1 Classification Scheme Data Models

As we mentioned in section 2.1 there are different ways of representing the knowledge encoded by a par-
ticular resource. In this section we present the existing data models for classification schemes. In order to
exemplify the data models for classification schemes, we use an excerpt from the FAO classification scheme
of water areas2 presented in Figure 4.2.

Figure 4.2: Excerpt of the Water Area classification scheme.

Path Enumeration Data Model

A path enumeration data model [Bra05] is a recursive structure for hierarchy representations defined as
a model which stores for each node the path (as a string) from the root to the node. This string is the
concatenation of the nodes code in the path from the root to the node. In other words, every classification
scheme item has unique code (i.e. a key value), distinguishing it from the others. Also, every classification
scheme item has a path, consisting of the concatenated unique string codes of all the parents, until the root.
Figure 4.3 illustrates this data model.

2http://www.fao.org/figis/servlet/RefServlet

http://www.fao.org/figis/servlet/RefServlet

D2.2.2 Methods and Tools Supporting Re-engineering Page 53 of 124

Figure 4.3: Path enumeration data model.

Adjacency List Data Model

An adjacency list [Bra05] data model is a recursive structure for hierarchy representations comprising a list
of nodes with a linking column to their parent nodes. In this case, every classification scheme item has the
parent code. Figure 4.4 shows this data model.

Figure 4.4: Adjacency list data model.

Snowflake Data Model

A snowflake data model [MZ06] is a normalized structure for hierarchy representations. In this case, the
classification scheme items are grouped by levels or entities. There are as many groups as levels the
classification scheme has. In this model every classification scheme item has the parent code (i.e. parent key
value), just like the adjacency list data model. However, the difference is that in the snowflake data model the
classification scheme items are grouped by levels or entities, and therefore hierarchy levels must be known
in advance. Figure 4.5 illustrates this model. Optionally, a relation between the groups, or entities, can be
exist.

Figure 4.5: Adjacency list data model.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 54 of 124 NeOn Integrated Project EU-IST-027595

Flattened Data Model

A flattened data model [MZ06] is a denormalized structure for hierarchy representations. In this case, each
hierarchy level is represented on a different column. There are as many columns as levels the classification
scheme has. The hierarchy is represented using one single entity where each hierarchy level is stored on a
different column. In this case, hierarchy levels must be known in advance. Figure 4.6 depicts this model.

Figure 4.6: Flattened data model.

4.2.2 Classification Scheme Implementations

Finally these data models can be implemented as any of the identified types on section 2.1, i.e. databases,
XML files, flat files, and spreadsheets. A direct implementation would be as tables in a relational database
or in a spreadsheet. Figure 4.2.2 presents an XML implementation of the adjacency list model of the water
area classification, and Figure 4.2.2 presents a spreadsheet implementation of the path enumeration model
of the same classification scheme.

Figure 4.7: Water Area Classification Scheme XML
Implementation for the Adjacency List Data Model.

D2.2.2 Methods and Tools Supporting Re-engineering Page 55 of 124

Figure 4.8: Water Area Classification Scheme Spreadsheet
Implementation for the Path Enumeration Data Model.

In a nutshell, Figure 4.9 shows how a given type of Classification Scheme can be modeled following one or
more data models, each of which could be implemented in different ways at the implementation layer. As
an example, Figure 4.9 shows a classification scheme modeled following a path enumeration model. In this
case, the classification scheme is implemented in a database and in an XML file.

Figure 4.9: Classification Scheme Categorization

4.3 Patterns for Re-engineering Classification Schemes into Ontologies

In this section we present the re-engineering patterns (PR-NOR) for re-engineering classification schemes
into ontologies. These patterns come from the experience of ontology engineers in developing ontologies
using classification schemes in several projects (SEEMP3, NeOn4, and Knowledge Web5). The patterns are:

• PR-NOR-CLTX-01. Pattern for re-engineering a classification scheme which follows the path enumer-
ation data model, into a taxonomy. In that case, the semantics of the relations between classification

3http://www.seemp.org
4http://www.neon-project.org
5http://knowledgeweb.semanticweb.org

2006–2008 c© Copyright lies with the respective authors and their institutions.

http://www.seemp.org
http://www.neon-project.org
http://knowledgeweb.semanticweb.org

Page 56 of 124 NeOn Integrated Project EU-IST-027595

scheme items are subClassOf.

• PR-NOR-CLTX-02. Pattern for re-engineering a classification scheme which follows the adjacency list
data model, into a taxonomy. In that case, the semantics of the relations between classification scheme
items are subClassOf.

• PR-NOR-CLTX-03. Pattern for re-engineering a classification scheme which follows the snowflake data
model, into a taxonomy. In that case, the semantics of the relations between classification scheme
items are subClassOf.

• PR-NOR-CLTX-04. Pattern for re-engineering a classification scheme which follows the flattened data
model, into a taxonomy. In that case, the semantics of the relations between classification scheme
items are subClassOf.

• PR-NOR-CLLO-03. Pattern for re-engineering a classification scheme which follows the snowflake
data model, into a lightweight ontology. In that case, which the semantics of the relations between
classification scheme items are subClassOf, and ad-hoc relations.

• PR-NOR-CLLO-04. Pattern for re-engineering a classification scheme which follows the flattened data
model, into a lightweight ontology. In that case, which the semantics of the relations between classifi-
cation scheme items are subClassOf, and ad-hoc relations.

4.3.1 Patterns for Re-engineering Classification Schemes into Taxonomies

In this section we present four re-engineering patterns for re-engineering classification schemes into tax-
onomies. Since a taxonomy [SFBG+07] is a hierarchical structure of classes only related by subsumption
relations, these patterns follow the transformation approach, mentioned in section 2.2.2, for transforming re-
source content into an ontology schema, because it is the suitable for dealing with the resource data models
and the target taxonomies.

PR-NOR-CLTX-01. Pattern for re-engineering a classification scheme which follows the path enumer-
ation data model

The pattern for re-engineering non-ontological resource shown in Table 4.1 suggests a guide to transform
a classification scheme into an ontology. The classification scheme is modeled/represented with a path
enumeration data model. This pattern aims at creating a taxonomy from the classification scheme, being the
semantics of the relations between classification scheme items the subClassOf relationship.

Table 4.1: Pattern for Re-engineering a Classification Scheme which follows the
path enumeration data model

Slot Value

General Information

Name Classification scheme to Taxonomy (path enumeration model)

Identifier PR-NOR-CLTX-01

Type of Component Pattern for Re-engineering Non-Ontological Resource (PR-NOR)

Use Case

General
Re-engineering a classification scheme which follows the path enumeration model to design
a taxonomy.

Example

Suppose that someone wants to build an ontology based on the International Standard Clas-
sification of Occupations (for European Union purposes) ISCO-88 (COM). This classification
scheme follows the path enumeration data model.

Pattern for Re-engineering Non-Ontological Resource

INPUT: Resource to be Re-engineered

D2.2.2 Methods and Tools Supporting Re-engineering Page 57 of 124

Table 4.1: Pattern for Re-engineering a Classification Scheme which follows the
path enumeration data model(continued)

Slot Value

General

A non-ontological resource holds a classification scheme which follows the path
enumeration model.
A classification scheme is a rooted tree of concepts, in which each concept groups entities
by some particular degree of similarity. The semantics of the hierarchical relation between
parents and children concepts may vary depending of the context.
The path enumeration data model [Bra05] for classification schemes take advantage of that
there is one and only one path from the root to every item in the classification. The path
enumeration model stores that path as string by concatenating either the edges or the keys
of the classification scheme items in the path.

Example
The International Standard Classification of Occupations (for European Union purposes),
1988 version: ISCO-88 (COM) published by Eurostat6 is modeled with the path
enumeration data model.

Graphical Representation

General

Example

OUTPUT: Designed Ontology

General

The generated ontology will be based on the taxonomy architectural pattern (AP-TX-01)
[SFBG+07]. Each category in the classification scheme is mapped to a class, and the
semantics of the relationship between children and parent categories are mapped to
subClassOf relations.

Graphical Representation

(UML) General Solution
Ontology

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 58 of 124 NeOn Integrated Project EU-IST-027595

Table 4.1: Pattern for Re-engineering a Classification Scheme which follows the
path enumeration data model(continued)

Slot Value

(UML) Example Solution
Ontology

PROCESS: How to Re-engineer

General

1. Identify the classification scheme items whose their path enumeration values are
equal to their key values, i.e. classification scheme items without parents. Formally,
every cei ∈ CE, vpath = vk.

2. For each one of the above identified classification scheme items cei:

2.1. Create the corresponding ontology class, Ci class.

2.2. Identify the classification scheme items, cej , which are children of cei, by using
the path enumeration values.

2.3. For each one of the above identified classification scheme items cej :

2.3.1. Create the corresponding ontology class, Cj class.
2.3.2. Set up the subClassOf relation between Cj and Ci.
2.3.3. Repeat from step 2.2 for cej as a new cei.

3. If there are more than one classification scheme items without parent cei

3.1. Create an ad-hoc class as the root class of the ontology.

3.2. Set up the subClassOf relation between Ci class and the root class.

Example

1. Create the LEGISLATORS, SENIOR OFFICIALS AND MANAGERS class.

2. Create the Legislators and senior officials class, and set up the sub-
ClassOf relation between the Legislators and senior officials class
and the LEGISLATORS, SENIOR OFFICIALS AND MANAGERS class.

3. Create the Corporate managers class, and set up the subClassOf relation
between the Corporate managers class and the LEGISLATORS, SENIOR
OFFICIALS AND MANAGERS class.

4. Create the PROFESSIONALS class.

5. Create the Occupation class.

6. Set up the subClassOf relation between the LEGISLATORS, SENIOR
OFFICIALS AND MANAGERS class and the Occupation class.

7. Set up the subClassOf relation between the PROFESSIONALS class and the
Occupation class.

Relationships

Relations to other
modelling components Use the Architectural Pattern: TX-AP-01 [SFBG+07]

D2.2.2 Methods and Tools Supporting Re-engineering Page 59 of 124

PR-NOR-CLTX-02. Pattern for re-engineering a classification scheme which follows the adjacency list
data model

The pattern for re-engineering non-ontological resource shown in Table 4.2 suggests a guide to transform a
classification scheme into an ontology. The classification scheme is modeled/represented with an adjacency
list data model. This pattern aims at creating a taxonomy from the classification scheme, being the semantics
of the relations between classification scheme items the subClassOf relationship.

Table 4.2: Pattern for Re-engineering a Classification Scheme which follows the
adjacency list data model

Slot Value

General Information

Name Classification scheme to Taxonomy (adjacency list model)

Identifier PR-NOR-CLTX-02

Type of Component Pattern for Re-engineering Non-Ontological Resource (PR-NOR)

Use Case

General
Re-engineering a classification scheme which follows the adjacency list model to design a
taxonomy.

Example
Suppose that someone wants to build an ontology based on the water areas classification
published by FAO. This classification scheme follows the adjacency list data model.

Pattern for Re-engineering Non-Ontological Resource

INPUT: Resource to be Re-engineered

General

A non-ontological resource holds a classification scheme which follows the adjacency list
model.
A classification scheme is a rooted tree of concepts, in which each concept groups entities
by some particular degree of similarity.
The semantics of the hierarchical relation between parents and children concepts may vary
depending of the context.
The adjacency list data model [Bra05] for hierarchical classifications proposes to create an
entity which holds a list of items with a linking column associated to their parent items.

Example

The FAO classification for water areas groups them according to some different criteria as
environment, statistics, and jurisdiction, among others.
This classification scheme is available at
http://www.fao.org/figis/servlet/RefServlet

Graphical Representation

General

Example

OUTPUT: Designed Ontology

2006–2008 c© Copyright lies with the respective authors and their institutions.

http://www.fao.org/figis/servlet/RefServlet

Page 60 of 124 NeOn Integrated Project EU-IST-027595

Table 4.2: Pattern for Re-engineering a Classification Scheme which follows the
adjacency list data model(continued)

Slot Value

General

The generated ontology will be based on the taxonomy architectural pattern (AP-TX-01)
[SFBG+07]. Each category in the classification scheme is mapped to a class, and the
semantics of the relationship between children and parent categories are mapped to
subClassOf relations.

Graphical Representation

(UML) General Solution
Ontology

(UML) Example Solution
Ontology

PROCESS: How to Re-engineer

General

1. Identify the classification scheme items which do not have a parent key value, i.e.
classification scheme items without parents. Formally, every cei ∈ CE, which
caparentID = NULL.

2. For each one of the above identified classification scheme items cei:

2.1. Create the corresponding ontology class, Ci class.

2.2. Identify the classification scheme items, cej , which are children of cei, by using
the parent key values.

2.3. For each one of the above identified classification scheme items cej :

2.3.1. Create the corresponding ontology class, Cj class.
2.3.2. Set up the subClassOf relation between Cj and Ci.
2.3.3. Repeat from step 2.2 for cej as a new cei.

3. If there are more than one classification scheme items without parent cei

3.1. Create an ad-hoc class as the root class of the ontology.

3.2. Set up the subClassOf relation between Ci class and the root class.

D2.2.2 Methods and Tools Supporting Re-engineering Page 61 of 124

Table 4.2: Pattern for Re-engineering a Classification Scheme which follows the
adjacency list data model(continued)

Slot Value

Example

1. Create the Water area class.

2. Create the Fishing Statistical area class, and set up the subClassOf re-
lation between the Fishing Statistical area class and the Water area
class.

3. Create the Environmental area class, and set up the subClassOf relation be-
tween the Environmental area class and the Water area class.

3.1. Create the Inland/marine class, and set up the subClassOf relation be-
tween the Inland/marine class and the Environmental area class.

3.2. Create the Ocean class, and set up the subClassOf relation between the
Ocean class and the Environmental area class.

3.3. Create the North/South/Equatorial class, and set up the subClas-
sOf relation between the North a South a Equatorial class and the
Environmental area class.

3.4. Create the Sub Ocean class, and set up the subClassOf relation between
the Sub Ocean class and the Environmental area class.

3.5. Create the Large Marine ecosystem class, and set up the subClas-
sOf relation between the Large Marine ecosystem class and the
Environmental area class.

4. Create the Jurisdiction area class, and set up the subClassOf relation be-
tween the Jurisdiction area class and the Water area class.

Relationships

Relations to other
modelling components Use the Architectural Pattern: TX-AP-01 [SFBG+07]

PR-NOR-CLTX-03. Pattern for re-engineering a classification scheme which follows the snowflake
data model

The pattern for re-engineering non-ontological resource shown in Table 4.3 suggests a guide to transform a
classification scheme into an ontology. The classification scheme is modeled/represented with a snowflake
data model. This pattern aims at creating a taxonomy from the classification scheme, being the semantics
of the relations between classification scheme items the subClassOf relationship.

Table 4.3: Pattern for Re-engineering a Classification Scheme which follows the
snowflake data model.

Slot Value

General Information

Name Classification scheme to Taxonomy (snowflake model)

Identifier PR-NOR-CLTX-03

Type of Component Pattern for Re-engineering Non-Ontological Resource (PR-NOR)

Use Case

General
Re-engineering a classification scheme which follows the snowflake model to design a tax-
onomy.

Example
Suppose that someone wants to build an ontology based on an occupation hierarchical clas-
sification, which follows the snowflake data model.

Pattern for Re-engineering Non-Ontological Resource

INPUT: Resource to be Re-engineered

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 62 of 124 NeOn Integrated Project EU-IST-027595

Table 4.3: Pattern for Re-engineering a Classification Scheme which follows the
snowflake data model(continued)

Slot Value

General

A non-ontological resource holds a classification scheme which follows the snowflake
model.
A classification scheme is a rooted tree of concepts, in which each concept groups entities
by some particular degree of similarity. The semantics of the hierarchical relation between
parents and children concepts may vary depending of the context.
The snowflake data model [MZ06] is a normalized structure for hierarchy representations. In
this case, the classification scheme items are grouped by levels or entities. There are as
many groups as levels the classification scheme has.

Example

Snowflakes models are widely used on data warehouses to build hierarchical classifications
on structures known as dimensions. Some examples of dimension are Time, Product
Category, Geography, Occupations, etc.
In this pattern the example is a occupation hierarchical classification hold on four different
tables, one for each level (PROFESSIONI_0, PROFESSIONI_1, PROFESSIONI_2,
PROFESSIONI_3).

Graphical Representation

General

Example

OUTPUT: Designed Ontology

General

The generated ontology will be based on the taxonomy architectural pattern (AP-TX-01)
[SFBG+07]. Each category in the classification scheme is mapped to a class, and the
semantics of the relationship between children and parent categories are mapped to
subClassOf relations.

Graphical Representation

D2.2.2 Methods and Tools Supporting Re-engineering Page 63 of 124

Table 4.3: Pattern for Re-engineering a Classification Scheme which follows the
snowflake data model(continued)

Slot Value

(UML) General Solution
Ontology

(UML) Example Solution
Ontology

PROCESS: How to Re-engineer

General

1. Select all the classification scheme items from the first level.

2. For each one of the above selected classification scheme items cei:

2.1. Create the corresponding ontology class, Ci class.

2.2. Identify the classification scheme items, cej , on the next level, which are chil-
dren of cei, by using the parent key values.

2.3. For each one of the above identified classification scheme items cej :

2.3.1. Create the corresponding ontology class, Cj class.
2.3.2. Set up the subClassOf relation between Cj and Ci.
2.3.3. Repeat from step 2.2 for cej as a new cei.

3. If there are more than one classification scheme items from the first level cei

3.1. Create an ad-hoc class as the root class of the ontology.

3.2. Set up the subClassOf relation between Ci class and the root class.

Example

1. Create the Professioni specialistiche e tecniche class.

1.1. Create the Specialist e tecnici delle scienze
informatiche class and set up the subClassOf relation between the
Specialist e tecnici delle scienze informatiche class
and the Professioni specialistiche e tecniche class.

1.2. Create the Specialist e tecnici delle gestione dimpresa
class and set up the subClassOf relation between the Specialist e
tecnici delle gestione dimpresa class and the Professioni
specialistiche e tecniche class.

2. Create the Professioni operative della gestione dimpresa class.

3. Create the Occupation class.

4. Set up the subClassOf relation between the Professioni specialistiche
e tecniche class and the Occupation class.

5. Set up the subClassOf relation between the Professioni operative della
gestione dimpresa class and the Occupation class.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 64 of 124 NeOn Integrated Project EU-IST-027595

Table 4.3: Pattern for Re-engineering a Classification Scheme which follows the
snowflake data model(continued)

Slot Value

Relationships

Relations to other
modelling components Use the Architectural Pattern: TX-AP-01 [SFBG+07]

PR-NOR-CLTX-04. Pattern for re-engineering a classification scheme which follows the flattened data
model

The pattern for re-engineering non-ontological resource shown in Table 4.4 suggests a guide to transform a
classification scheme into an ontology. The classification scheme is modeled/represented with a flattened
data model. This pattern aims at creating a taxonomy from the classification scheme, being the semantics
of the relations between classification scheme items the subClassOf relationship.

Table 4.4: Pattern for Re-engineering a Classification Scheme which follows the
flattened data model.

Slot Value

General Information

Name Classification scheme to Taxonomy (flattened model)

Identifier PR-NOR-CLTX-04

Type of Component Pattern for Re-engineering Non-Ontological Resource (PR-NOR)

Use Case

General
Re-engineering a classification scheme which follows the flattened model to design a taxon-
omy.

Example Suppose that someone wants to build an ontology based on a classification published as one
table with a column for each classification level.

Pattern for Re-engineering Non-Ontological Resource

INPUT: Resource to be Re-engineered

General

A non-ontological resource holds a classification scheme which follows the flattened data
model.
A classification scheme is a rooted tree of concepts, in which each concept groups entities
by some particular degree of similarity. The semantics of the hierarchical relation between
parents and children concepts may vary depending of the context.
The flattened data model [MZ06] is a denormalized structure for hierarchy representations.
In this case, each hierarchy level is represented on a different column. There are as many
columns as levels the classification scheme has. Therefore each row has the complete path
from the root to a leaf node.

Example

The Classification of Italian Education Titles published by the National Institute of Statistics
(ISTAT) is represented following a flattened model. The first level of the classification (level
code) is related to the education title level which comprises values as elementary, media,
university, master, etc. The second level of the classification is the type of school or institute
which offers the education title. The last level is the education title itself; it has a specific
specialization code and also a code which is the concatenation of the previous code levels.

Graphical Representation

General

D2.2.2 Methods and Tools Supporting Re-engineering Page 65 of 124

Table 4.4: Pattern for Re-engineering a Classification Scheme which follows the
flattened data model(continued)

Slot Value

Example

OUTPUT: Designed Ontology

General

The generated ontology will be based on the taxonomy architectural pattern (AP-TX-01)
[SFBG+07]. Each category in the classification scheme is mapped to a class, and the
semantics of the relationship between children and parent classification scheme items are
mapped to subClassOf relations.

Graphical Representation

(UML) General Solution
Ontology

(UML) Example Solution
Ontology

PROCESS: How to Re-engineer

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 66 of 124 NeOn Integrated Project EU-IST-027595

Table 4.4: Pattern for Re-engineering a Classification Scheme which follows the
flattened data model(continued)

Slot Value

General

1. Select all the classification scheme items from the first level, using the level column
and taking care to avoid duplicity.

2. For each one of the above selected classification scheme items cei:

2.1. Create the corresponding ontology class, Ci class.

2.2. Identify the classification scheme items, cej , on the next level, which are chil-
dren of cei, by using the path and level columns.

2.3. For each one of the above identified classification scheme items cej :

2.3.1. Create the corresponding ontology class, Cj class.
2.3.2. Set up the subClassOf relation between Cj and Ci.
2.3.3. Repeat from step 2.2 for cej as a new cei.

3. If there are more than one classification scheme items from the first level cei

3.1. Create an ad-hoc class as the root class of the ontology.

3.2. Set up the subClassOf relation between Ci class and the root class.

Example

1. Create the HIGHER SECONDARY EDUCATION class.

1.1. Create the Istituto professionale agrario class and set up the
subClassOf relation between the Istituto professionale agrario
class and the HIGHER SECONDARY EDUCATION class.

1.1.1. Create the Esperto frutticoltore class and set up the subClas-
sOf relation between the Esperto frutticoltore class and the
Istituto professionale agrario class.

1.1.2. Create the Esperto olivicoltore class and set up the subClas-
sOf relation between the Esperto olivicoltore class and the
Istituto professionale agrario class.

2. Create the HIGHER SECONDARY EDUCATION - ALLOWS ACCESS TO
UNIVERSITIES class.

3. Create the Education Title class.

4. Set up the subClassOf relation between the HIGHER SECONDARY EDUCATION
class and the Education Title class.

5. Set up the subClassOf relation between the HIGHER SECONDARY EDUCATION
- ALLOWS ACCESS TO UNIVERSITIES class and the Education Title
class.

Relationships

Relations to other
modelling components Use the Architectural Pattern: TX-AP-01 [SFBG+07]

4.3.2 Patterns for Re-engineering Classification Schemes into Lightweight Ontologies

In this section we present the re-engineering patterns (PR-NOR) for re-engineering classification schemes
into lightweight ontologies. Since a lightweight ontology [SFBG+07] has additional ad-hoc relations between
classes, and, path enumeration and adjacency list data models only deal with one relationship, the patterns
proposed in this section are only based on snowflake and flattened data models, because they deal with
more than one relation. These patterns follow the transformation approach, mentioned in section 2.2.2,
for transforming resource schema into an ontology schema, and resource content into ontology instances,
because it is the suitable for dealing with the resource data models and the target lightweight ontologies.

D2.2.2 Methods and Tools Supporting Re-engineering Page 67 of 124

PR-NOR-CLLO-03. Pattern for re-engineering a classification scheme which follows the snowflake
data model

The pattern for re-engineering classification scheme shown in Table 4.5 suggests a guide to transform a
classification scheme into a lightweight ontology. The classification scheme is modeled with a snowflake
data model. This pattern aims at creating a lightweight ontology from the classification scheme, which the
semantics of the relations between classification scheme items are subClassOf and ad-hoc relations.

Table 4.5: Pattern for Re-engineering a Classification Scheme which follows the
snowflake data model

Slot Value

General Information

Name Classification scheme to Lightweight Ontology (snowflake model)

Identifier PR-NOR-CLLO-03

Type of Component Pattern for Re-engineering Non-Ontological Resources (PR-NOR)

Use Case

General
Re-engineering a classification scheme which follows the snowflake model to design a
Lightweight Ontology.

Example

Suppose that someone wants to build a lightweight ontology based on the ISO 3166 standard
for the representation of names of countries and their subdivisions. This standard is divided
in ISO 3166-1 for countries, and ISO 3166-2 for subdivisions (regions).

Pattern for Re-engineering Non-Ontological Resources

INPUT: Resource to be Re-engineered

General

A non-ontological resource holds a classification scheme which follows the snowflake
model.
A classification scheme is a rooted tree of concepts, in which each concept groups entities
by some particular degree of similarity. The semantics of the hierarchical relation between
parents and children concepts may vary depending on the context.
The snowflake data model [MZ06] is a normalized structure for hierarchy representations. In
this case, the classification scheme items are grouped by levels or entities. There are as
many groups as levels the classification scheme has.

Example

The ISO 3166 standard (codes for the representation of names of countries and their
subdivisions) is divided in ISO 3166-1 for countries, and ISO 3166-2 for country
subdivisions (regions).
For the example, ISO 3166-1 and ISO 3166-2 are holding on different entities. The relation
semantics between the sub-ordinate and the super-ordinate concepts is partOf.

Graphical Representation

General

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 68 of 124 NeOn Integrated Project EU-IST-027595

Table 4.5: Pattern for Re-engineering a Classification Scheme which follows the
snowflake data model(continued)

Slot Value

Example

OUTPUT: Designed Ontology

General

The generated ontology will be based on the lightweight ontology architectural pattern
(AP-LW-01)[SFBG+07]. Each classification scheme item group (i.e. entity) is mapped to a
class. An ad-hoc binary relation is defined between the new classes according to the
semantics of the relation between super-ordinate and sub-ordinate classification scheme
items. Each classification scheme item included on an entity is mapped to an instance of
the entity class. The semantics of the relationship between sub-ordinate and super-ordinate
instances are mapped to an ad-hoc binary relation instance.

Graphical Representation

(UML) General Solution
Ontology

(UML) Example Solution
Ontology

PROCESS: How to Re-engineer

D2.2.2 Methods and Tools Supporting Re-engineering Page 69 of 124

Table 4.5: Pattern for Re-engineering a Classification Scheme which follows the
snowflake data model(continued)

Slot Value

General

1. Identify the different classification scheme item groups, Gi, i.e. entities, and create a
class for each entity, Ci.

2. If there is a relationship between the entity classes then create it as an ad-hoc binary
relation, ri ∈ R.

3. If there is a super-class for the new entity related classes then create it and set the
appropriate subClassOf relation between the entity classes and the super-class.

4. For each classification scheme item, cei on each entity of the snowflake model, cre-
ate an instance of the appropriate entity class, Ij .

5. If you have created an ad-hoc binary relation between the entity classes then you
have to create the relation instance between the entity class instance.

Example

1. Create a COUNTRY class for the ISO 3166-1 Countries entity and a REGION class
for the ISO 3166-2 Subdivisions entity.

2. Create the hasRegion binary relation with COUNTRY as domain and REGION as
range.

3. Create a LOCATION class and assert that COUNTRY and REGION are subClassOf
LOCATION.

4. For each classification scheme item on the ISO 3166-1 Countries entity create an
instance of the COUNTRY class.

5. For each COUNTRY instance look for its REGION on the ISO 3166-2 Subdivisions
entity and create an instance of REGION for each subdivision found. Also create
an instance of the hasRegion relation associated to the current country instance and
related to the current region instance.

Relationships

Relations to other
modelling components Use the Architectural Pattern: AP-LW-01 [SFBG+07]

PR-NOR-CLLO-04. Pattern for re-engineering a classification scheme which follows the flattened data
model

The pattern for re-engineering classification scheme shown in Table 4.6 suggests a guide to transform a
classification scheme into a lightweight ontology. The classification scheme is modeled with a flattened
data model. This pattern aims at creating a lightweight ontology from the classification scheme, being the
semantics of the relations between classification scheme items the subClassOf and ad-hoc relationships.

Table 4.6: Pattern for Re-engineering a Classification Scheme which follows the
flattened model

Slot Value

General Information

Name Classification scheme to Lightweight Ontology (flattened model)

Identifier PR-NOR-CLLO-04

Type of Component Pattern for Re-engineering Non-Ontological Resources (PR-NOR)

Use Case

General
Re-engineering a classification scheme which follows the flattened model to design a
Lightweight Ontology.

Example

Suppose that someone wants to build a lightweight ontology based on the ISTAT7 standard
called Codes and Names of geographical areas, provinces and regions. This standard fol-
lows the flattened data model.

Pattern for Re-engineering Non-Ontological Resources

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 70 of 124 NeOn Integrated Project EU-IST-027595

Table 4.6: Pattern for Re-engineering a Classification Scheme which follows the
flattened model(continued)

Slot Value

INPUT: Resource to be Re-engineered

General

A non-ontological resource holds a classification scheme which follows the flattened model.
A classification scheme is a rooted tree of concepts, in which each concept groups entities
by some particular degree of similarity. The semantics of the hierarchical relation between
parents and children concepts may vary depending on the context.
A flattened data model [MZ06] is a denormalized structure for hierarchy representations. In
this case, each hierarchy level is represented on a different column. There are as many
columns as levels the classification scheme has.

Example

The ISTAT standard, Codes and names of geographical areas, provinces and regions,
provides codes and names of Italian geographical areas, provinces and regions and it
follows a flattened data model in a single denormalized table with six attributes (geography
area, province and region codes and names).

Graphical Representation

General

Example

OUTPUT: Designed Ontology

General

The generated ontology will be based on the lightweight ontology architectural pattern
(AP-LW-01)[SFBG+07]. Each flattened model level is mapped to a class. If there is a
superclass related to the new entity classes it has to be created as the root and the
subClassOf relation has to be set between the entity classes and the root class. Optionally
an ad-hoc binary relation is defined between the new classes according to the semantics of
the relationship between super-ordinate and subordinate categories. Each data related to a
classification scheme item level is mapped to an instance of the classification scheme item
level class. Because of the denormalized nature of the model, it is necessary to avoid the
instance duplicity. The semantics of the relationship between subordinate and
super-ordinate instances is mapped to an ad-hoc binary relation instance.

Graphical Representation

(UML) General Solution
Ontology

D2.2.2 Methods and Tools Supporting Re-engineering Page 71 of 124

Table 4.6: Pattern for Re-engineering a Classification Scheme which follows the
flattened model(continued)

Slot Value

(UML) Example Solution
Ontology

PROCESS: How to Re-engineer

General

1. Identify the different classification scheme item groups, i.e. Gi levels, and create a
class for each level, Ci.

2. If there is a relationship between the entity classes then create it as an ad-hoc binary
relation, ri ∈ R.

3. If there is a super-class for the new entity related classes then create it and set the
appropriate subClassOf relation between the entity classes and the super-class.

4. Identify the classification scheme items from the first level, cei ∈ G1 , using the level
column and taking care to avoid duplicity.

5. For each one of the above selected classification scheme items cei:

5.1. Create the corresponding instance of the appropriate entity class, Ii.

5.2. Identify the classification scheme items, cej , on the next level, which are chil-
dren of cei, using the path and level columns.

5.3. For each one of the identified classification scheme items, cej :

5.3.1. Create the corresponding instance of the appropriate entity class, Ij .
5.3.2. If there is a relation between the entity classes, Ci and Cj , create the

relation instance between Ii and Ij .
5.3.3. Repeat from step 5.2 for cej as a new cei.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 72 of 124 NeOn Integrated Project EU-IST-027595

Table 4.6: Pattern for Re-engineering a Classification Scheme which follows the
flattened model(continued)

Slot Value

Example

1. Create the Geographical Area, Region, Province classes, according to the
ISTAT entities.

2. Create the hasRegion binary relation with Geographical Area as domain and
Region as range.

3. Create the hasProvince binary relation with Region as domain and Province as
range.

4. Create the LOCATION class and assert that Geographical Area, Region, and
Province are subClassOf LOCATION.

5. Create an instance of Geographical Area class for each distinct ISTAT geo-
graphical area.

6. Look for the Regions of each Geographical Area instance in the ISTAT regions
and create an instance of REGION for each distinct region. Create an instance of the
hasRegion relation associated to the current Geographical Area instance and
related to the current Region instance.

7. Look for the Provinces of each Region instances in the ISTAT provinces and cre-
ate an instance of Province for each distinct province. Create an instance of the
hasProvince relation associated to the current region instance and related to the
current province instance.

Relationships

Relations to other
modelling components Use the Architectural Pattern: AP-LW-01 [SFBG+07]

4.4 NeOn Method for Re-engineering Classification Schemes

The goal of the classification scheme re-engineering process is to transform a classification scheme into an
ontology. The activities of this process are based on the ones presented in 3.1.4: (1) non-ontological resource
reverse engineering, which includes tasks 1 to 3, (2) non-ontological resource transformation, which includes
tasks 4 and 5, and (3) ontology forward engineering, which includes tasks 6 and 7.

4.4.1 Classification Scheme Transformation

In the following, we outline the specialization of the non-ontological resource transformation activity for classi-
fication schemes, and consequently how to carry out tasks 4 and 5 included in Figure 3.2. The classification
scheme transformation consists of the following tasks:

• Task 4. Search for a suitable pattern for re-engineering classification scheme. The goal of
this task is to find out if there is any applicable re-engineering pattern for re-engineering classifica-
tion scheme useful to transform the classification scheme into a conceptual model. The search for
a suitable pattern for re-engineering classification scheme should be done using the NeOn library of
patterns8. For this search, the following search criteria can be used by the ontology developer:

– Type of non-ontological resource: classification scheme.

– Data model: one of the aforementioned data models, e.g.: path enumeration, adjacency list,
snowflake, or flattened.

– Target ontology: taxonomy or lightweight ontology.

– The semantics of the relations between classification scheme items: subClassOf, parOf, or other
ad-hoc relation.

8http://www.ontologydesignpatterns.org

http://www.ontologydesignpatterns.org

D2.2.2 Methods and Tools Supporting Re-engineering Page 73 of 124

• Task 5.a. Use patterns for re-engineering to guide the transformation. The goal of this task
is to apply the re-engineering pattern obtained in task 4 to transform the classification scheme into
a conceptual model. If a suitable pattern for re-engineering classification scheme is found then the
conceptual model is created from the classification scheme following the procedure established in the
pattern for re-engineering.

• Task 5.b. Perform and ad-hoc transformation. The goal of this task is to set up an ad-hoc pro-
cedure to transform the classification scheme into a conceptual model, when a suitable pattern for
re-engineering was not found. This ad-hoc procedure may be generalized to create a new pattern for
re-engineering classification scheme.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 74 of 124 NeOn Integrated Project EU-IST-027595

Chapter 5

Methods for Re-engineering Thesauri

5.1 Introduction

A thesaurus represents the knowledge of a domain with a collection of terms and a limited set of relations
between them. Thesauri are the most valuable input for creating, at reasonable cost, ontologies in many
domains. They contain, readily available, a wealth of category definitions plus a hierarchy, and they reflect
some degree of community consensus [HdB07]. In this chapter we present a definition of thesauri, the
existing standards for thesauri, the data models for representing thesauri and the method for re-engineering
thesauri into ontologies. Although we recognize that multilinguality is an important and complicating factor in
thesaurus conversion, it is no treated in this deliverable.

5.2 Thesaurus Standards

In the field of thesaurus development there are several standards. These standards also provide some
guidelines about how the thesaurus should be structured. Figure 5.1, taken from [Lab07], depicts the the-
saurus standards evolution. The ISO 2788:1986 standard is the seed of the rest of the standards. The ISO
5964:1985 extends the scope of the ISO 2788:1986 adding a multilingual context. The ANSI/NISO Z39.19-
2003 adds management guidelines to principles of monolingual thesauri. The ANSI/NISO Z39.19-2003 was
superseded by ANSI/NISO Z39.19-2005. The BS 8723-1:2005 and BS 8723-2:2005 are the british version
of the ISO 2788.

In the following we briefly describe the most important thesaurus standards.

• ISO 2788:1986, guidelines for the establishment and development of monolingual thesauri [ISO86].
This standard covers some aspects of the selection of indexing terms, the procedures for the control of
the vocabulary, and specifically, the way of establishing relationships among these terms (particularly
those relations that are used, a priori, in the thesauri), as well as the inclusion and suppression of
terms, the methods of compilation, the form and the content of the thesauri, the use of automatic
data processing, etc. The indications established in this standard ensure the uniformity of each of the
indexing areas or entities. The techniques described by the standard are based on general principles
that can be applicable to any kind of subject.

• ISO 5964:1985, guidelines for the establishment and development of multilingual thesauri [ISO85].
The guidelines given in this International Standard should be used in conjunction with ISO 2788, and
regarded as an extension of the scope of the monolingual guidelines. The majority of procedures and
recommendations contained in ISO 2788 are equally valid for a multilingual thesaurus. This applies
particularly to general procedures, for example, the forms of terms, the basic thesauri relationships, and
management operations such a evaluation and maintenance. Distinction is made between preferred
terms and non-preferred terms.

D2.2.2 Methods and Tools Supporting Re-engineering Page 75 of 124

Figure 5.1: Thesaurus Standards Evolution [Lab07]

• ANSI/NISO Z39.19-2005, guidelines for the construction, format, and management of monolingual
controlled vocabularies [ANS05]. This standard is related to ISO 2788. It presents guidelines and con-
ventions for the contents, display, construction, testing, maintenance, and management of monolingual
controlled vocabularies. It focuses on controlled vocabularies that are used for the representation of
content objects in knowledge organization systems including lists, synonym rings, taxonomies, and
thesauri.

• BS 8723-1:2005 and BS 8723-2:2005 [BS 05a, BS 05b]. The British Standard BS 8723-1 defines
the terminology used throughout the rest of the BS 8723 series. It provides an excellent glossary for
terminology relating to the use of thesauri for indexing and retrieval. The British Standard BS 8723-
2 provides guidelines for the construction and maintenance of thesauri that are intended as retrieval
tools. Guidance is also given for designers of software supporting the creation and maintenance
process.

5.3 Components of a Thesaurus

According to the ANSI/NISO Z39.19-2005 [ANS05] a thesaurus is a controlled vocabulary in a known order
and structured so that various relationships among terms are displayed clearly and identified by standardized
relationships indicators. There are three types of relationships used in thesaurus:

• Equivalency. When the same concept can be expressed by two or more terms, one of these is selected
as the preferred term. The relationship between preferred and non-preferred terms is an equivalence
relationship in which each term is regarded as referring to the same concept. The equivalence rela-
tionship is expressed by the following conventions:

– U or USE, which leads from a non-preferred term to the preferred term.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 76 of 124 NeOn Integrated Project EU-IST-027595

– UF or USED FOR, the reciprocal relationship, which leads from the preferred term to the non-
preferred term(s).

According to the [ANS05] the equivalence relationship covers five basic types: (a) synonyms, (b) lexical
variants, (c) near-synonyms, (d) generic posting, and (e) cross reference to elements of compound
terms.

• Hierarchy. This relationship is based on degrees or levels of superordination and subordination, where
the superordinate term represents a class or a whole, and subordinate terms refer to its members or
parts. Reciprocity should be expressed by the following relationship indicators: (a) Broader Term (BT),
a label for the superordinate (parent) term, and (b) Narrower Term (NT), a label for the subordinate
(child) term. Hierarchical relationships cover three logically different and mutually exclusive situations:

– Generic relationship. This relationship identifies the link between class and its members or
species. The generic nature of a relationship may be identified by the following abbreviations:
(a) BTG = Broader term (generic) and (b) NTG = Narrower term (generic).

– Instance relationship. This relationship identifies between a general category of things or events
expressed by a common noun, and an individual instance of that category, often a proper name.
The hierarchical instance relationship may be indicated by the following abbreviations: (a) BTI =
Broader term (instance) and (b) NTI = Narrower term (instance).

– Whole-part relationship. This relationship covers situations in which one concept is inherently
included in another, regardless of context, so that the terms can be organized into logical hier-
archies, with the whole treated as a broader term. The hierarchical whole-part relationship may
be indicated by the following abbreviations: (a) BTP = Broader term (partitive) and (b) NTP =
Narrower term (partitive).

• Association. This relationship covers associations between terms that are neither equivalent nor hier-
archical. The most common associative relationship used in thesauri is symmetrical and is generally
indicated by the abbreviation RT (related term).

A thesaurus captures many relationships among terms, between terms and concepts, and among concepts.
A term is a linguistic entity, a character string with meaning in a given language. A concept can be opera-
tionally defined as such a group of normalized terms.

5.4 Types of Thesaurus

Soergel [Soe95] identified two types of thesaurus: (1) term-based thesaurus, and (2) concept-based the-
saurus. Next, we will describe each one of them.

5.4.1 Term-based Thesaurus

The term-based thesaurus is a collection of terms. Terms are the only type of entity considered. Terms
may be related to other terms traditionally using aforementioned relationships, such as: Broader Term (BT),
Narrower Term (NT), Related Term (RT), Use For (UF), and Use (U/USE). The ISO 2788:1986 [ISO86]
standard proposes a term-based thesaurus structure. Based on ISO 2788:1986 [ISO86] we identify the
following thesaurus components (see Figure 5.2):

• PreferredTerm, also known as descriptor, it is used consistently to represent concepts when indexing
documents. It has the following elements: (1) LexicalValue, and (2) identifier.

• Term, which is not assigned to documents when indexing, but provided as user’s entry point. It has the
following elements: (1) LexicalValue, and (2) identifier.

D2.2.2 Methods and Tools Supporting Re-engineering Page 77 of 124

• ScopeNote, which is a note following a term explaining its coverage, specialized usage, or rules for
assigning it. The ScopeNote has a lexicalValue element.

• HierarchicalRelationship, which is a relationship between or among terms in the thesaurus that depicts
broader (generic) to narrower (specific) or whole-part relationships.

• AssociativeRelationship, which is a relationship between or among terms in the thesaurus that leads
from one term to other terms that are related to or associated with it.

• Equivalence, which is a relationship between or among terms in the thesaurus that leads to one or
more terms that are to be used instead of the term from which the cross-reference is made.

Figure 5.2: UML representation of the term-based thesaurus components [ISO86]

5.4.2 Concept-based Thesaurus

The concept-based thesaurus consists of two types of entity, concepts and terms. A concept is defined as a
unit of thought, something which exists in the mind of a person. Relationships such as ’broader’ ’narrower’
and ’related’ are considered to be concept-to-concept relationships, because they convey information about
the structure of the concept-space being described. That is, they convey information about meaning. The BS
8723-2:2005 [BS 05b] standard proposes a thesaurus structure that allows for a clear separation of concept
information and term information, i.e. a concept-based thesaurus. Based on BS 8723-5:2005 [BS 05c] we
identify the following thesaurus components (see Figure 5.3):

• ThesaurusConcept, which represents the individual concept within the thesaurus. It has the following
elements: (1) identifier, and (2) notation. Additionally, a ThesaurusConcept has the following compo-
nents: (1) SimpleNonPreferredTerm, (2) PreferredTerm and (3) ScopeNote.

• ThesaurusTerm, which represents an individual term whithin the thesaurus. It has the following ele-
ments: (1) LexicalValue, and (2) identifier. A ThesaurusTerm can be a SimpleNonPreferredTerm or a
PreferredTerm.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 78 of 124 NeOn Integrated Project EU-IST-027595

• SimpleNonPreferredTerm, which represents the non-preferred expression of a concept. It is included
in a thesaurus mainly to help users find the appropriate preferred term. It inherits all the elements of
the ThesaurusTerm.

• PreferredTerm, which express the preferred form of a concept, as used in the thesaurus. It inherits all
the elements of the ThesaurusTerm.

• ScopeNote, which is a note following a concept explaining its coverage, specialized usage, or rules for
assigning it. The ScopeNote has the lexicalValue element.

• HierarchicalRelationship, which is a relationship between or among concepts in the thesaurus that
depicts broader (generic) to narrower (specific) or whole-part relationships.

• AssociativeRelationship, which is a relationship between or among concepts in the thesaurus that
leads from one concept to other concepts that are related to or associated with it.

• Equivalence, which is a relationship between or among terms in the thesaurus that leads to one or
more terms that are to be used instead of the term from which the cross-reference is made.

Figure 5.3: UML representation of the concept-based thesaurus components [BS 05c]

5.4.3 Thesaurus Data Models

As we mentioned in section 2.1 there are different ways of representing the knowledge encoded by a partic-
ular resource. In this section we present the data models we found for thesauri. Soergel [Soe95] identifies

D2.2.2 Methods and Tools Supporting Re-engineering Page 79 of 124

two ways of representing the knowledge encoded by the thesauri: (1) record-based model, and (2) relation-
based model. In order to exemplify the data models for thesauri, we use an excerpt from the FAO Thesaurus,
AGROVOC1 presented in Figure 5.4. This Figure shows the terms: Oryza and Rice. Next, we describe the
data models for thesauri.

Figure 5.4: Excerpt of the AGROVOC thesaurus

Record-based Model

The record-based model, which is a denormalized structure, uses a record for every term with the information
about the term, such as synonyms, broader, narrower and related terms. In this model, the information is
stored in large packages, and to access or change any piece of information we must get into the appropriate
package. This model looks like the flattened model presented in section 4.2.1. We can apply this model to
a term-based thesaurus (Figure 5.5-a)) and to a concept-based thesaurus (Figure 5.5-b)). In the case of the
concept-based thesaurus, the information about the concepts is added to each record.

Relation-based Model

The relation-based model leads to a more elegant and efficient structure. Information is stored in individual
pieces that can be arranged in different ways. Relationship types are not defined as fields in a record, but they
are simply data values in a relationship record, thus new relationship types can be introduced with ease. In
the case of the term-based thesaurus, Figure 5.6-a) ,there are three entities: (1) a term entity, which contains
the overall set of terms, (2) a term-term relationship entity, in which each record contains two different term
codes and the relationship between them, and (3) a relationship source entity, which contains the overall
thesaurus relationships. In the case of the concept-based thesaurus, Figure 5.6-b), there are four entities:
(1) a concept entity, which links each term with exactly one concept, thus this entity has one record for each
term and for each concept as many records as there are terms, (2) a concept-concept relationship entity, in
which BT, NT and RT are established explicitly between concepts, (3) a term-term relationship entity, in which
UF and USE relations are established explicitly between terms, this is an optional entity, (4) a relationship
source entity, which contains the overall thesaurus relationships.

1http://www.fao.org/agrovoc/

2006–2008 c© Copyright lies with the respective authors and their institutions.

http://www.fao.org/agrovoc/

Page 80 of 124 NeOn Integrated Project EU-IST-027595

a) Term Based Thesaurus

b) Concept Based Thesaurus

Figure 5.5: Record-based model

a) Term Based Thesaurus

b) Concept Based Thesaurus

Figure 5.6: Relation-based model

D2.2.2 Methods and Tools Supporting Re-engineering Page 81 of 124

5.4.4 Thesaurus Implementations

Finally these data models can be implemented as any of the identified types on section 2.1, i.e. databases,
XML files, flat files, and spreadsheets. A direct implementation would be as tables in a relational database
or in a spreadsheet. Figure 5.4.4 presents a spreadsheet implementation of the record-based model of a
term-based thesaurus, and Figure 5.4.4 presents an XML implementation of the record-based model of a
term-based thesaurus. Both figures present the same excerpt of the AGROVOC thesaurus represented in
different implementations.

Figure 5.7: Spreadsheet implementation of the record-based
model of a term-based thesaurus

Figure 5.8: XML implementation of the record-based model
of a term-based thesaurus

Figure 5.9 shows how a given type of thesauri can be modeled following one or more data models, each of
which could be implemented in different ways at the implementation layer. As an example, Figure 5.9 shows
a term-based thesaurus modeled following a record-based model. In this case, the thesaurus is implemented
in a database and in an XML file.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 82 of 124 NeOn Integrated Project EU-IST-027595

Figure 5.9: Thesauri Categorization

5.5 Patterns for Re-engineering Thesauri into Ontologies

In this section we present the re-engineering patterns (PR-NOR) for re-engineering thesauri into ontologies.
These patterns come from the experience of ontology engineers in developing ontologies using thesauri.
The patterns are:

• PR-NOR-TSLO-01. Pattern for re-engineering a term-based thesaurus which follows the record-based
data model, into a lightweight ontology. In that case, the semantics of the BT/NT relations between
terms are subClassOf.

• PR-NOR-TSLO-02. Pattern for re-engineering a term-based thesaurus which follows the relation-
based data model, into a lightweight ontology. In that case, the semantics of the BT/NT relations
between terms are subClassOf.

• PR-NOR-TSLO-03. Pattern for re-engineering a concept-based thesaurus which follows the record-
based data model, into a lightweight ontology. In that case, the semantics of the BT/NT relations
between concepts are subClassOf.

• PR-NOR-TSLO-04. Pattern for re-engineering a concept-based thesaurus which follows the relation-
based data model, into a lightweight ontology. In that case, which the semantics of the BT/NT relations
between concepts are subClassOf.

5.5.1 Patterns for re-engineering Thesauri into Lightweight Ontologies

In this section we present the re-engineering patterns (PR-NOR) for re-engineering thesauri into lightweight
ontologies. In spite of these patterns consider the semantics of the BT/NT relations as subClassOf, it is
possible to adapt these patterns for dealing with other relations, e.g. partOf, ad-hoc. These patterns follow
the transformation approach, mentioned in section 2.2.2, for transforming resource schema into an ontology
schema, because it is the suitable for dealing with the resource data models and the target lightweight
ontologies.

D2.2.2 Methods and Tools Supporting Re-engineering Page 83 of 124

PR-NOR-TSLO-01. Pattern for re-engineering a term-based thesaurus which follows the record-based
data model

The pattern for re-engineering thesaurus shown in Table 5.1 suggests a guide to transform a thesaurus into
a lightweight ontology. The thesaurus is a term-based one and it is modeled with a record-based data model.
This pattern aims at creating a lightweight ontology from the thesaurus, being the semantics of the BT/NT
relations between terms the subClassOf relationship.

Table 5.1: Pattern for Re-engineering a term-based thesaurus which follows the
record-based model

Slot Value

General Information

Name Term-based Thesaurus to Lightweight Ontology (record-based model)

Identifier PR-NOR-TSLO-01

Type of Component Pattern for Re-engineering Non-Ontological Resources (PR-NOR)

Use Case

General
Re-engineering a term-based thesaurus which follows the record-based model to design a
Lightweight Ontology.

Example
Suppose that someone wants to build a lightweight ontology based on the European Training
Thesaurus (ETT), which is a term-based thesaurus and it follows the record-based model.

Pattern for Re-engineering Non-Ontological Resources

INPUT: Resource to be Re-engineered

General

A non-ontological resource holds a term-based thesaurus which follows the record-based
model.
A thesaurus represents the knowledge of a domain with a collection of terms and a limited
set of relations between them.
The record-based data model [Soe95] is a denormalized structure, uses a record for every
term with the information about the term, such as synonyms, broader, narrower and related
terms.

Example

The European Training Thesaurus (ETT) constitutes the controlled vocabulary of reference
in the field of vocational education and training (VET) in Europe.
The relation semantics between the sub-ordinate and the super-ordinate concepts is
subClassOf.

Graphical Representation

General

Example

OUTPUT: Designed Ontology

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 84 of 124 NeOn Integrated Project EU-IST-027595

Table 5.1: Pattern for Re-engineering a term-based thesaurus which follows the
record-based model(continued)

Slot Value

General

The generated ontology will be based on the lightweight ontology architectural pattern
(AP-LW-01)[SFBG+07]. Each thesaurus term is mapped to a class. A subClassOf relation
is defined between the new classes for the BT/NT relation. A relatedClass relation is
defined between the new classes for the RT relation. A equivalentClass relation is defined
between the new classes for the UF/USE relation.

Graphical Representation

(UML) General Solution
Ontology

(UML) Example Solution
Ontology

PROCESS: How to Re-engineer

General

1. Identify the records which contain thesaurus terms without a broader term.

2. For each one of the above identified thesaurus terms ti:

2.1. Create the corresponding ontology class, Ci class, if it is not created yet.

2.2. Identify the thesaurus term, tj , which are narrower terms of ti. They are refer-
enced in the same record which contains ti.

2.3. For each one of the above identified thesaurus term tj :

2.3.1. Create the corresponding ontology class, Cj class, if it is not created yet.
2.3.2. Set up the subClassOf relation between Cj and Ci

2.3.3. Repeat from step 2.2 for cj as a new ci

2.4. Identify the thesaurus term, tr , which are related terms of ti. They are refer-
enced in the same record which contains ti.

2.5. For each one of the above identified thesaurus term tr :

2.5.1. Create the corresponding ontology class, Cr class, if it is not created yet.
2.5.2. Set up the relatedClass relation between Cr and Ci

2.5.3. Repeat from step 2.4 for cr as a new ci

2.6. Identify the thesaurus term, tq , which are equivalent terms of ti. They are
referenced in the same record which contains ti.

2.7. For each one of the above identified thesaurus term tq :

2.7.1. Create the corresponding ontology class, Cq class, if it is not created yet.
2.7.2. Set up the equivalentClass relation between Cq and Ci

2.7.3. Repeat from step 2.6 for cq as a new ci.

D2.2.2 Methods and Tools Supporting Re-engineering Page 85 of 124

Table 5.1: Pattern for Re-engineering a term-based thesaurus which follows the
record-based model(continued)

Slot Value

Example

1. Create the learning class and the personal development class.

2. Create the competence class and assert that competence is subClassOf
learning.

3. Create the performance class and assert that performance is subClassOf
development.

4. Create the achievement class and assert that achievement is equivalentClass
of performance.

5. Assert that competence is relatedClass of performance.

6. Create the learning class and assert that learning is equivalentClass of
competence.

6.1. Create the efficiency class and assert that efficiency is subClassOf
performance.t’

6.2. Create the failure class and assert that failure is subClassOf
performance.

6.3. Create the success class and assert that success is subClassOf
performance.

Relationships

Relations to other
modelling components Use the Architectural Pattern: AP-LW-01 [SFBG+07]

PR-NOR-TSLO-02. Pattern for re-engineering a term-based thesaurus which follows the relation-
based data model

The pattern for re-engineering thesaurus shown in Table 5.2 suggests a guide to transform a thesaurus into a
lightweight ontology. The thesaurus is a term-based one and it is modeled with a relation- based data model.
This pattern aims at creating a lightweight ontology from the thesaurus, being the semantics of the BT/NT
relations between terms the subClassOf relationship.

Table 5.2: Pattern for Re-engineering a term-based thesaurus which follows the
relation-based model

Slot Value

General Information

Name Term-based Thesaurus to Lightweight Ontology (record-based model)

Identifier PR-NOR-TSLO-02

Type of Component Pattern for Re-engineering Non-Ontological Resources (PR-NOR)

Use Case

General
Re-engineering a term-based thesaurus which follows the relation-based model to design a
Lightweight Ontology.

Example

Suppose that someone wants to build a lightweight ontology based on earlier version of the
AGROVOC Thesaurus, which is a term-based thesaurus and it follows the relation-based
model.

Pattern for Re-engineering Non-Ontological Resources

INPUT: Resource to be Re-engineered

General

A non-ontological resource holds a term-based thesaurus which follows the relation-based
model.
A thesaurus represents the knowledge of a domain with a collection of terms and a limited
set of relations between them.
The relation-based data model [Soe95] is a normalized structure, in which relationship
types are not defined as fields in a record, but they are simply data values in a relationship
record, thus new relationship types can be introduced with ease.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 86 of 124 NeOn Integrated Project EU-IST-027595

Table 5.2: Pattern for Re-engineering a Thesaurus(continued)

Slot Value

Example

The AGROVOC Thesaurus is an structured and controlled vocabulary designed to cover the
terminology of all subject fields in agriculture, forestry, fisheries, food and related domains.
The relation semantics between the sub-ordinate and the super-ordinate concepts is
subClassOf.

Graphical Representation

General

Example

OUTPUT: Designed Ontology

General

The generated ontology will be based on the lightweight ontology architectural pattern
(AP-LW-01)[SFBG+07]. Each thesaurus term is mapped to a class. A subClassOf relation
is defined between the new classes for the BT/NT relation. A relatedClass relation is
defined between the new classes for the RT relation. A equivalentClass relation is defined
between the new classes for the UF/USE relation.

Graphical Representation

(UML) General Solution
Ontology

(UML) Example Solution
Ontology

PROCESS: How to Re-engineer

D2.2.2 Methods and Tools Supporting Re-engineering Page 87 of 124

Table 5.2: Pattern for Re-engineering a Thesaurus(continued)

Slot Value

General

1. Identify the records which contain thesaurus terms without a broader term, within the
term-term relationship entity.

2. For each one of the above identified thesaurus terms ti:

2.1. Obtain the thesaurus term within the term entity.

2.2. Create the corresponding ontology class, Ci class, if it is not created yet.

2.3. Identify the thesaurus term, tj , which are narrower terms of ti, within the term-
term relationship entity.

2.4. For each one of the above identified thesaurus terms tj :

2.4.1. Obtain the thesaurus term within the term entity.
2.4.2. Create the corresponding ontology class, Cj class, if it is not created yet.
2.4.3. Set up the subClassOf relation between Cj and Ci

2.4.4. Repeat from step 2.2 for cj as a new ci

2.5. Identify the thesaurus term, tr , which are related terms of ti, within the term-
term relationship entity.

2.6. For each one of the above identified thesaurus term tr :

2.6.1. Obtain the thesaurus term within the term entity.
2.6.2. Create the corresponding ontology class, Cr class, if it is not created yet.
2.6.3. Set up the relatedClass relation between Cr and Ci

2.6.4. Repeat from step 2.4 for cr as a new ci

2.7. Identify the thesaurus term, tq , which are equivalent terms of ti, within the
term-term relationship entity.

2.8. For each one of the above identified thesaurus term tq :

2.8.1. Obtain the thesaurus term within the term entity.
2.8.2. Create the corresponding ontology class, Cq class, if it is not created yet.
2.8.3. Set up the equivalentClass relation between Cq and Ci

2.8.4. Repeat from step 2.6 for cq as a new ci

Example

1. Create the Poaceae class.

1.1. Create the Oryza class and assert that Oryza is subClassOf Poaceae.

1.1.1. Create the Rice class and assert that Rice is relatedClass of Oryza.

2. Create the Cereals class.

2.1. Assert that Rice is subClassOf Cereals.

2.2. Create the Paddy class and assert that Paddy is equivalentClass of Rice.

Relationships

Relations to other
modelling components Use the Architectural Pattern: AP-LW-01 [SFBG+07]

PR-NOR-TSLO-03. Pattern for re-engineering a concept-based thesaurus which follows the record-
based data model

The pattern for re-engineering thesaurus shown in Table 5.3 suggests a guide to transform a thesaurus into
a lightweight ontology. The thesaurus is a concept-based one and it is modeled with a record-based data
model. This pattern aims at creating a lightweight ontology from the thesaurus, being the semantics of the
BT/NT relations between terms the subClassOf relationship.

Table 5.3: Pattern for Re-engineering a concept-based thesaurus which follows
the record-based model

Slot Value

General Information

Name Concept-based Thesaurus to Lightweight Ontology (record-based model)

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 88 of 124 NeOn Integrated Project EU-IST-027595

Table 5.3: Pattern for Re-engineering a Thesaurus(continued)

Slot Value

Identifier PR-NOR-TSLO-03

Type of Component Pattern for Re-engineering Non-Ontological Resources (PR-NOR)

Use Case

General
Re-engineering a concept-based thesaurus which follows the record-based model to design
a Lightweight Ontology.

Example

Suppose that someone wants to build a lightweight ontology based on the Integrated Public
Sector Vocabulary (IPSV), used in UK for indexing government documents. This thesaurus
is a concept-based thesaurus and it follows the record-based model.

Pattern for Re-engineering Non-Ontological Resources

INPUT: Resource to be Re-engineered

General

A non-ontological resource holds a concept-based thesaurus which follows the
record-based model.
A thesaurus represents the knowledge of a domain with a collection of terms and a limited
set of relations between them.
The record-based data model [Soe95] is a denormalized structure, uses a record for every
term with the information about the term, such as synonyms, broader, narrower and related
terms.

Example

The Integrated Public Sector Vocabulary (IPSV) is used in UK for indexing government
documents.
The relation semantics between the sub-ordinate and the super-ordinate concepts is
subClassOf.

Graphical Representation

General

Example

OUTPUT: Designed Ontology

General

The generated ontology will be based on the lightweight ontology architectural pattern
(AP-LW-01)[SFBG+07]. Each thesaurus concept is mapped to a class. A subClassOf
relation is defined between the new classes for the BC (Broader Concept)/NC (Narrower
Concept) relation. A relatedClass relation is defined between the new classes for the RT
relation. A label is created for every non-preferred term of a concept.

Graphical Representation

D2.2.2 Methods and Tools Supporting Re-engineering Page 89 of 124

Table 5.3: Pattern for Re-engineering a Thesaurus(continued)

Slot Value

(UML) General Solution
Ontology

(UML) Example Solution
Ontology

PROCESS: How to Re-engineer

General

1. Identify the records which contain thesaurus concepts without a broader concept.

2. For each one of the above identified thesaurus concepts ti:

2.1. Create the corresponding ontology class, Ci class, if it is not created yet.

2.2. Identify the thesaurus concept, tj , which are narrower concepts of ti. They
are referenced in the same record which contains ti.

2.3. For each one of the above identified thesaurus concept tj :

2.3.1. Create the corresponding ontology class, Cj class, if it is not created yet.
2.3.2. Set up the subClassOf relation between Cj and Ci

2.3.3. Repeat from step 2.2 for cj as a new ci

2.4. Identify the thesaurus concept, tr , which are related concepts of ti. They are
referenced in the same record which contains ti.

2.5. For each one of the above identified thesaurus concept tr :

2.5.1. Create the corresponding ontology class, Cr class, if it is not created yet.
2.5.2. Set up the relatedClass relation between Cr and Ci

2.5.3. Repeat from step 2.4 for cr as a new ci

2.6. Identify the non-preferred terms for the concept ti. They are referenced in the
same record which contains ti.

2.7. For each one of the above identified thesaurus term tq :

2.7.1. Create the corresponding label lq for the concept ti.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 90 of 124 NeOn Integrated Project EU-IST-027595

Table 5.3: Pattern for Re-engineering a Thesaurus(continued)

Slot Value

Example

1. Create the Environment class.

2. Create the Mineral resources class and assert that Mineral resources
is subClassOf Environment.

2.1. Create the Fossil fuels class and assert that Fossil fuels is sub-
ClassOf Mineral resources.

2.2. Create the Mineralogy class and assert that Mineralogy is relatedClass
Mineral resources.

2.3. Create the Minerals label and assert that Minerals is label of Mineral
resources.

2.4. Create the Mining class and assert that Mining is subClassOf Fossil
fuels.

2.5. Create the Coal label and assert that Coal is label of Fossiel fuels.

Relationships

Relations to other
modelling components Use the Architectural Pattern: AP-LW-01 [SFBG+07]

PR-NOR-TSLO-04. Pattern for re-engineering a concept-based thesaurus which follows the relation-
based data model

The pattern for re-engineering thesaurus shown in Table 5.4 suggests a guide to transform a thesaurus into
a lightweight ontology. The thesaurus is a concept-based one and it is modeled with a relation-based data
model. This pattern aims at creating a lightweight ontology from the thesaurus, being the semantics of the
BT/NT relations between terms the subClassOf relationship.

Table 5.4: Pattern for Re-engineering a concept-based thesaurus which follows
the relation-based data model

Slot Value

General Information

Name Concept-based Thesaurus to Lightweight Ontology (relation-based model)

Identifier PR-NOR-TSLO-04

Type of Component Pattern for Re-engineering Non-Ontological Resources (PR-NOR)

Use Case

General
Re-engineering a concept-based thesaurus which follows the relation-based model to design
a Lightweight Ontology.

Example
Suppose that someone wants to build a lightweight ontology based on the Art and Architec-
ture Thesaurus (AAT), which is used to describe art, material culture, and archival materials.

Pattern for Re-engineering Non-Ontological Resources

INPUT: Resource to be Re-engineered

General

A non-ontological resource holds a concept-based thesaurus which follows the
relation-based model.
A thesaurus represents the knowledge of a domain with a collection of terms and a limited
set of relations between them.
The relation-based data model [Soe95] is a normalized structure, in which relationship
types are not defined as fields in a record, but they are simply data values in a relationship
record, thus new relationship types can be introduced with ease.

Example

The Art and Architecture Thesaurus (AAT) is used to describe art, material culture, and
archival materials.
The relation semantics between the sub-ordinate and the super-ordinate concepts is
subClassOf.

Graphical Representation

D2.2.2 Methods and Tools Supporting Re-engineering Page 91 of 124

Table 5.4: Pattern for Re-engineering a Thesaurus(continued)

Slot Value

General

Example

OUTPUT: Designed Ontology

General

The generated ontology will be based on the lightweight ontology architectural pattern
(AP-LW-01)[SFBG+07]. Each thesaurus concept is mapped to a class. A subClassOf
relation is defined between the new classes for the BC (Broader Concept)/NC (Narrower
Concept) relation. A relatedClass relation is defined between the new classes for the RT
relation. A label is created for every non-preferred term of a concept.

Graphical Representation

(UML) General Solution
Ontology

(UML) Example Solution
Ontology

PROCESS: How to Re-engineer

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 92 of 124 NeOn Integrated Project EU-IST-027595

Table 5.4: Pattern for Re-engineering a Thesaurus(continued)

Slot Value

General

1. Identify the records which contain thesaurus concepts without a broader concept,
within the concept-concept relationship entity.

2. For each one of the above identified thesaurus concepts ti:

2.1. Obtain the thesaurus concept ti within the concept entity.

2.2. Create the corresponding ontology class, Ci class, if it is not created yet.

2.3. Identify the thesaurus concept, tj , which are narrower concepts of ti, within
the concept-concept relationship entity.

2.4. For each one of the above identified thesaurus concept tj :

2.4.1. Obtain the thesaurus concept tj within the concept entity.
2.4.2. Create the corresponding ontology class, Cj class, if it is not created yet.
2.4.3. Set up the subClassOf relation between Cj and Ci

2.4.4. Repeat from step 2.2 for cj as a new ci

2.5. Identify the thesaurus concept, tr , which are related concepts of ti, within the
concept-concept relationship entity.

2.6. For each one of the above identified thesaurus concept tr :

2.6.1. Obtain the thesaurus concept tr within the concept entity.
2.6.2. Create the corresponding ontology class, Cr class, if it is not created yet.
2.6.3. Set up the relatedClass relation between Cr and Ci

2.6.4. Repeat from step 2.4 for cr as a new ci

2.7. Identify the non-preferred terms for the concept ti. They are referenced in the
same records which contain ti, within the concept entity.

2.8. For each one of the above identified thesaurus term tq :

2.8.1. Create the corresponding label lq for the concept ti.

Example

1. Create the European class.

2. Create the Dada class and assert that Dada is subClassOf European.

2.1. Create the Merz class and assert that Dada is relatedClass of Dada.

2.2. Create the Dadaism label and assert that Dadaism is label of Dada.

Relationships

Relations to other
modelling components Use the Architectural Pattern: AP-LW-01 [SFBG+07]

5.6 NeOn Method for Re-engineering Thesauri

The goal of the thesaurus re-engineering process is to transform a thesaurus into an ontology. The activities
of this process are based on the ones presented in 3.1.4: (1) non-ontological resource reverse engineering,
which includes tasks 1 to 3, (2) non-ontological resource transformation, which includes tasks 4 and 5, and
(3) ontology forward engineering, which includes tasks 6 and 7.

5.6.1 Thesaurus Transformation

In the following, we outline the specialization of the non-ontological resource transformation activity for the-
sauri, and consequently how to carry out tasks 4 and 5 included in Figure 3.2. The thesaurus transformation
consists of the following tasks:

• Task 4. Search for a suitable pattern for re-engineering thesaurus. The goal of this task is to find
out if there is any applicable re-engineering pattern for re-engineering thesaurus useful to transform
the thesaurus into a conceptual model. The search for a suitable pattern for re-engineering thesaurus

D2.2.2 Methods and Tools Supporting Re-engineering Page 93 of 124

should be done into the NeOn library of patterns2. For this search, we have to define the following
search criteria:

– Type of non-ontological resource: thesaurus.

– Type of thesaurus: term-based thesaurus or concept-based thesaurus.

– Data model: record-based, or relation-based.

– Target ontology: lightweight ontology.

– The semantics of the BT/NT relations between thesaurus terms: subClassOf, parOf, or other
ad-hoc relation.

• Task 5.a. Use patterns for re-engineering to guide the transformation. The goal of this task is to
apply the re-engineering pattern obtained in task 4 to transform the thesaurus into a conceptual model.
If a suitable pattern for re-engineering thesaurus is found then the conceptual model is created from
the thesaurus following the procedure established in the re-engineering pattern.

• Task 5.b. Perform and ad-hoc transformation. The goal of this task is to set up an ad-hoc procedure
to transform the thesaurus into a conceptual model, when a suitable pattern for re-engineering was not
found. This ad-hoc procedure may be generalized to create a new pattern for re-engineering thesaurus.

• Task 5.c. Manual refinement. We add this task for dealing with thesauri transformation. Within this
task, software developers and ontology practitioners with the domain experts support can perform the
following refinements:

– Some related term relations can be transformed into more specific kinds of relations.

– If there will be the case where some BT ambiguous relations are present. These BT relations
can be disambiguated. They may mean either subClassOf, partOf or instanceOf.

2http://www.ontologydesignpatterns.org

2006–2008 c© Copyright lies with the respective authors and their institutions.

http://www.ontologydesignpatterns.org

Page 94 of 124 NeOn Integrated Project EU-IST-027595

Chapter 6

Method and tool for re-engineering
folksonomies

The re-engineering of resources on a specific domain aims at lowering the cost and effort of creating domain
ontologies from scratch. The goal of this work is to create an ontological structure for a folksonomy of a
specific domain by utilising automatically selected knowledge from online available ontologies.

In the following we describe the process of transforming a folksonomy tagset over a specific domain into an
ontology covering this domain. Our folksonomy semantic enrichment tool, FLOR, described in Section 6.1,
can operate on any tagspace independently thus the selection of folksonomy tagspaces depends on the
domain of interest. For example many organisations have introduced folksonomies as part of their content
management procedures. The tags of these close-world corporate folksonomies are provided by the employ-
ees of these organisations thus describe relevant domain concepts. The re-engineering of these corporate
folksonomies can result to corporate ontologies for the related organisation.

Alternatively, in cases where the domain of interest is more generic or independent of specific organisations
e.g., Flora or Fauna, the large scale open folksonomies freely available on the web i.e. Flickr or delicious
provide social network information such as user groups of interest on specific domains such as Flowers1 or
Animals2. The extraction of these groups’ tags provide a domain related folksonomy tagspace to re-engineer
and acquire the relevant ontology.

6.1 Semantic Enrichment of Tags with FLOR

We introduce FLOR, a tool for automatic folksonomy enrichment by combining knowledge from WordNet
and online ontologies. The goal of FLOR is to transform a flat folksonomy tagspace into a rich semantic
representation by assigning relevant Semantic Web Entities (SWEs) to each tag. A SWE is an ontological
entity (class, relation, instance) defined in an online available ontology. While here we describe the process
of enriching a set of tags with SWEs, the ultimate goal of our FLOR is not just to connect to SWE’s but also to
bring in other knowledge related to these SWE’s. An example of the inputs and expected outcomes of FLOR
is demonstrated in Fig. 6.1. The input consists a set of tags and the output is a set of semantically enriched
tags, connected with each other to an ontological structure. Note that FLOR is agnostic to the way in which
this tagset was obtained. It can either be the set of all tags associated to a domain specific resource, or a
cluster of related tags obtained through co-occurrence based clustering over the total domain tagspace. The
experiments reported in this work used sets of tags associated with a given resource.

Intuitively, FLOR performs three basic steps (see Fig. 6.1 and 6.2). First, during the Lexical Processing
the input tagset is cleaned and all potentially meaningless tags are excluded. We rely on a set of heuristics
to decide which tags are likely to be meaningless. Second, during the Sense Definition and Semantic

1http://www.flickr.com/groups/florus/
2http://www.flickr.com/groups/animal_planet/

http://www.flickr.com/groups/florus/
http://www.flickr.com/groups/animal_planet/

D2.2.2 Methods and Tools Supporting Re-engineering Page 95 of 124

Figure 6.1: FLOR Phases

Figure 6.2: FLOR Steps Example

Expansion we attempt to assign a WordNet sense to each tag based on its context (i.e., the other tags in its
cluster) and to extract all relevant synonyms and hypernyms so that we migrate to a richer representation of
the tag. Finally, during the Semantic Enrichment step each tag is associated to the appropriate SWE.

The first step results in the Lexical Representations which is a list of lexical forms for the tag, such as plural
and singular forms for nouns, or various delimited types of compound tags (sanFrancisco, san.Francisco,
etc). The second step identifies Synonyms and Hypernyms for each tag. The last step generates the list of
Entities containing the associated SWE’s. Note that a tag can be associated to several relevant SWE’s.

6.1.1 STEP 1: Lexical Processing

Due to the freedom of tagging as a basic rule of folksonomies, a wide variety of different tag types are in use.
Understanding the types of tags used is the first step in deciding which of them are meaningful and should be
taken into account as a basis of a semantic enrichment process. Previous work ([ASSM07, GH06, MDA07b])
has identified different conceptual categories of tags (event, location, person), as well as tag categories
that can be described by syntactic characteristics. For example, there are many tags containing special
characters (e.g., :P), numbers (e.g., aug07), plurals as well as singular forms of the same word (e.g.,
building, buildings), concatenated tags (e.g., littlegirl) or tags with spaces (e.g., little
girl) and a big number of non-English tags (e.g., sillon). The role of the lexical processing step is to
identify these different categories of tags and exclude those that are meaningless and should not be further

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 96 of 124 NeOn Integrated Project EU-IST-027595

included in the semantic enrichment process. This is done in two sub-steps.

SUB-STEP 1.1: The Lexical Isolation

This sub-step identifies sets of tags that should be excluded as well as those that can be further processed.
Currently we isolate and exclude all tags with numbers, special characters and non English tags. The reason
for excluding non-English tags is that our method explores various external knowledge sources (WordNet,
Semantic Web ontologies) that are primarily in English. As future work, we will extend FLOR to isolate
additional types of tags as well and deal with non-English tags.

SUB-STEP 1.2: The Lexical Normalisation

This sub-step aims to solve the incompatibility between different naming conventions used in folksonomies,
ontologies and other lexical databases, such as WordNet. This phase produces a list of possible Lexical
Representations for each tag aiming to maximise the coverage of this tag by different resources. For ex-
ample, the compound tag santabarbara in folksonomies appears as Santa-Barbara or Santa+Barbara in
various ontologies and as Santa Barbara in WordNet. However, as the lexical anchoring to these resources
is a quite complex problem, we try to address it by producing all the possible lexical representations for each
tag such as: {santaBarbara, santa.barbara, santa_barbara, santa barbara, santa-barbara, santa+barbara,
...}.

6.1.2 STEP 2: Sense Definition and Semantic Expansion

Due to polysemy, the same tag can have different meanings in different contexts. For example, the tag
jaguar can describe either a car or an animal depending on the context in which it appears. Before
connecting a tag with a relevant SWE, it is important to determine its intended sense in the given context.
This task is performed in the first sub-step, which is the Sense Definition and Disambiguation sub-step.

Another issue to take into account is that, despite its significant growth, the Semantic Web is still sparse. A
direct implication is that while online ontologies might not contain concepts that are syntactically equivalent
to a given tag, they might contain concepts that are labeled with one of its synonyms. To overcome this
limitation, we perform a semantic expansion for each tag, based on its previously identified sense, in the
second sub-step.

SUB-STEP 2.1: The Sense Definition and Disambiguation

This sub-step discovers the intended sense of a tag in the context it appears. As context we consider the
set of tags with which the given tag co-occurs when describing a resource. For example, in the tagset:
{panther, jaguar, jungle, wild} the context of jaguar is {panther, jungle, wild}. We use
WordNet as a sense repository and rely on its hierarchy of senses to compute the similarities between the
senses of all tags in the tagset and thus achieve their disambiguation. WordNet also provides rich sense
definitions which facilitate the semantic expansion in the next sub-step.

To define the senses of the tags in a tagset, we identify all the lexical representations for each tag in WordNet.
In the cases that a tag has more than one senses in WordNet (synsets) we exploit the contextual information
of the tagset to identify the most relevant sense. For this, we calculate the similarity between all the com-
binations of tags in the tagset using the Wu and Palmer similarity formula ([WP94]) on the WordNet graph.
The similarity degree between two senses is calculated based on the number of common ancestors between
them in the WordNet hierarchy and the length of their connecting path. The result for each calculation is a
couple of senses and a similarity degree for these senses. We select the two senses of the tags that return
the highest similarity degree provided that this is higher than a specified threshold. If a tag has low similarities
when compared to all the other tags in its cluster, then it is assigned to the most popular WordNet sense.

D2.2.2 Methods and Tools Supporting Re-engineering Page 97 of 124

We currently use a threshold value of 0.8 which we observed to correctly indicate relatedness in most of
the cases. Indeed, as high values as 0.7 are often assigned to unrelated tags. For example, in the tagset:
{girl, eating, red, apple} the similarity between red and girl is 0.7 for the senses:

Bolshevik, Marxist, Pinko, Red, Bolshie (emotionally charged terms used to refer to extreme radicals or
revolutionaries)

Girlfriend, Girl, Lady_friend (a girl or young woman with whom a man is romantically involved)

These two senses are connected through the concept Person in the WordNet hierarchy, however the two
tags are unrelated in the context of this tag cluster. While this empirically established 0.8 value lead to
reasonable results and was sufficient for this proof of concept prototype, we plan to establish an optimal
value through systematic experiments.

Thanks to the modular architecture of FLOR, the disambiguation and sense selection method can be re-
placed by other methods (e.g., such as those used in [TGEM07] and [YGS07]). Or our current method could
be modified to exploit a different similarity measure between two concepts such as the Google Similarity
Distance [CV07].

Another possible improvement could be achieved by further expanding the resource tagset with more related
tags. These can be discovered with statistical measures based on tag co-occurrence as described in [SM07].
For example, the expanded tagset of {apple, mac} could be {apple, mac, computer, macOs}. So
instead of trying to disambiguate with two tags we increase the possibilities of finding the correct sense by
disambiguating with a more specific context.

SUB-STEP 2.2: The Semantic Expansion

expands the tag with its synonyms and hypernyms (see Fig. 6.2). For the purpose of this work we used
WordNet to extract the synonyms of the correct sense and the synonyms of this sense’s hypernym in Word-
Net. For example, if in the specific context the tag jaguar refers to an animal then the semantic expansion
would include a list of synonyms: {Panther, Panthera onca, Felis onca} and a list of hypernyms: {Big cat,
Feline, Carnivore}.

6.1.3 STEP 3: Semantic Enrichment

The final phase of FLOR identifies the SWEs that are relevant for each tag by leveraging the results of
lexical cleaning and semantic expansion performed in the previous two phases. The final output of FLOR
is produced by this phase (see Fig. 6.1) and it is an enriched tagset with relevant SWEs and their semantic
neighbourhood (e.g., parents, children, relations).

SUB-STEP 3.1 and 3.2: Entity Discovery and Selection

The relevant SWEs are discovered by querying the WATSON semantic web gateway [M. 07], which gives
access to all online ontologies. We search for all ontological entities (Classes, Properties, Individuals) that
contain in their local name or in their label(s) one of the lexical representations or the synonyms of a tag.

Such queries often result in several SWEs some of which are very similar (or the same when they appear in
ontologies that are versions of each other). To reduce the number of SWEs, we perform an entity integration
process similar to the one described in [TGEM07]. The goal of this process is to “collapse" entities that have
a high similarity into a single semantic object, thus reducing redundancy. To compute similarity between two
entities we compare their semantic neighbourhoods (superclasses, subclasses, disjoint classes for classes;
domain, range, superproperties, subproperties for properties) and their localnames and labels. The similarity
simDgr for two SWEs e1 and e2 is calculated as:

simDgr = Wl ∗ simLexical(e1, e2) + Wg ∗ simGraph(e1, e2)

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 98 of 124 NeOn Integrated Project EU-IST-027595

Figure 6.3: Merging Strategy with threshold 0.5

simLexical(e1, e2) is the similarity between the lexical information of two entities, i.e., their labels and lo-
calnames, computed with the Levenshtein distance metric. simGraph(e1, e2) is the similarity of the entities’
neighbourhoods, where the similarity of each neighbourhood element is computed based on string similarity.
Because we consider the similarity of the semantic neighbourhoods more important than the similarity of the
labels, we set the weights as Wl = 0.3 and Wg = 0.7. Note that these weights will be fine-tuned through
systematic experiments.

If the similarity between two entities is higher than a threshold we merge them in one entity by integrating
their neighbourhoods into one. Then we repeat the process until all entities are sufficiently different from
each other, i.e., their similarity falls under a chosen threshold.

Consider for example Fig. 6.3 where five SWEs e1,5 are compared against a threshold value of 0.5. We start
by performing their pair-wise comparison and observe that the pairs (e1, e4), (e1, e5), (e2, e3) and (e2, e5)
have a similarity equal or above the set threshold. We proceed by merging the first two entities with the
highest similarity, e1 and e5, to one entity e1+e5 and compute the similarities between the new entity and the
remaining ones. This process continues until all similarities are lower than the set threshold, which implies
that the obtained entities are sufficiently different.

Once the merged entities are created we enrich the tag with the relevant entities. This is done by comparing
the ontological parents of the merged entity with the hypernyms retrieved from WordNet. The ontological
parents are the superclasses of classes, the superproperties of properties and the classes of individuals.
For example, as shown in Fig. 6.4, the tag moon is enriched with two entities. The superclasses of both the
entities have as localname one of the hypernyms extracted from the WordNet sense of moon. Also, apart
from the semantic definition of the tag with the respective entity, we further enrich the tag with the information
carried by the entity, EarthsMoon TypeOf Moon.

As depicted in Fig. 6.1 Phase 3 of FLOR includes also the Relation Discovery Step. This is done by the
SCARLET 3 Relation Discovery tool. SCARLET is able to take as input any two SWEs and identify the
relations between them by searching in online ontologies. At the moment SCARLET and FLOR haven’t been
integrated yet in order to provide an interconnected semantically enriched tagset as a proper ontological
structure. This is part of our future work. Currently the output of FLOR is a tagset enriched with a set of
SWEs describing it as depicted in Fig. 6.1.

6.1.4 Example: FLOR Enrichment

In this section we present a full cycle of the FLOR semantic enrichment method for the tag lake, which was
found in the following five tagsets:

• {rush, lake, pakistan, rakaposhi, mountain, asia, kashmir, snow, glacier, green,

3http://scarlet.open.ac.uk/

http://scarlet.open.ac.uk/

D2.2.2 Methods and Tools Supporting Re-engineering Page 99 of 124

Figure 6.4: Enriched FlorTag moon

white, sky, blue, clouds, water},

• {moraine, alberta, banff, canada, lake, lac, rockies, scan},

• {rising, sunlight, lake, quality, bravo}, {lake, nature, landscape, sunset,
water, organisms}

• {lake, finland, suomi, beach, bubbles, blue, sunlight, kids, natural}

Note that these tagsets contain the tags that remain after the lexical processing performed in the first phase.
Fig. 6.5 shows the information contained in the automatically obtained FlorTag.

For the second phase of FLOR, Sense Definition and Semantic Expansion using WordNet, the available
WordNet senses for Lake are considered. These are the following:

WordNet 1: Lake→Body of water, Water→Thing→Entity
(a body of (usually fresh) water surrounded by land)

WordNet 2: Lake→Pigment→Coloring material→Material
→ Substance→Entity
(a purplish red pigment prepared from lac or cochineal)

WordNet 3: Lake→Pigment→Coloring material→Material
→Substance→Entity
(any of numerous bright translucent organic pigments)

Applying the Wu and Palmer formula for the senses of lake and the senses of the rest of the tags in these
tagsets we obtained variable similarities from 0 to 0.86. The zero similarities were obtained for location
names such as banf, pakistan, suomi and for generally unrelated tags such as quality, scan,
sunlight, sunset. Interestingly, lake returned zero similarity for the tags glacier and mountain
while they should be related. This is due to the fact that, in WordNet, Glacier and Mountain are hyponyms
of Geological formation which is a hyponym of Natural object while Lake is a hyponym of Body of water
which is a direct hyponym of Thing. Furthermore Glacier is a hyponym of Ice mass but there is no sub-
sumption relation between Ice mass and Ice or Water that would allow for a connecting path between Lake
and Glacier. This fact motivates further research on how to identify similarities between tags of a tagset
beyond the subsumption relations provided by WordNet.

The highest similarity, 0.86, for lake was obtained with the tag water, because Sense 1 of Lake is related
to Body of water (Sense 2 of Water) with a direct hyponymy relation. Note that, in most of tagsets the first
sense of Water, Liquid, is selected as this is the most common sense in which the tag is used. Therefore,
this is a nice example of phase 2 identifying a non-trivial correlation.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 100 of 124 NeOn Integrated Project EU-IST-027595

Figure 6.5: Enriched FlorTag lake

Sense 1. Water, H2O: (binary compound that occurs at room temperature as a clear colorless odorless
tasteless liquid)→ Binary Compound AND→ Liquid

Sense 2. Body of water, Water : (the part of the earth’s surface covered with water)→ Thing

Once the correct sense is selected and the tag is semantically expanded with hypernyms (there are no syn-
onyms for this sense of Lake) then the third phase of FLOR queries the online ontologies through WATSON
and selects the SWEs that correspond to this sense. As shown in Fig. 6.5 both selected entities have the
term Lake in their localname and their superclass in the ontology contains one or more of the hypernyms
returned by WordNet, Water and Thing, as a whole or as a compound. This example shows that our an-
choring to ontologies is strict for the tags to be defined (their lexical representations and synonyms) and the
localnames and labels of the entities and flexible for the ontological parents and hypernyms. Note also that
the selected SWEs carry additional information about two superclasses of Lake (Waterway, Waterfeature)
and an instance of Lake (Lake Baikal) thus further enriching the tag.

6.1.5 Experiments: Applying FLOR on a Flickr dataset

To assess the correctness of FLOR enrichment (i.e., whether tags were linked to relevant SWEs) we applied
FLOR on a Flickr data set comprised of 250 randomly selected photos with a total of 2819 individual tags.
During the Lexical Isolation we removed 59% of the initial tags resulting to 1146 tags in total. We isolated 45
tags with two characters (e.g., pb, ak), 333 tags with numbers (e.g., 356days, tag1), 86 tags with special
characters (e.g., :P, (raw → jpg)), and 818 non English tags (e.g., turdus, arbol). Then we filtered
out the photos that exclusively contained the isolated tags (24 photos) and obtained a dataset of 226 photos
with a total of 1146 tags. After running the FLOR enrichment algorithm for these 226 photos, one of the
authors manually checked all the assignments between tags and SWE’s.

The assignment of a SWE to a tag is considered correct if the concept described by the SWE is the same
as the concept of the tag in the context of its tagset. To decide that the evaluator was given a tagset and
the SWEs linked to its tags. She evaluated each tag enrichment as CORRECT if the tag was linked to the
appropriate SWE and INCORRECT otherwise. In cases when she was not sure about the intended meaning
of the tag, she rated the enrichment as UNDETERMINED. Finally, a NON ENRICHED value was assigned
to tags that were not associated to any SWE. The results are displayed in Table 6.1.

Out of the individual 1146 lexically processed tags, FLOR correctly enriched 281 tags and incorrectly en-
riched 20 tags thus leading to precision results of 93%. An example of incorrect enrichment is that of
square in the context {street, square, film, color, documentary}. While its intended mean-
ing is Geographical area, because during the disambiguation phase square did not return high similarity

D2.2.2 Methods and Tools Supporting Re-engineering Page 101 of 124

Enrichment Result # of Tags Percentage
CORRECT 281 24.5%
INCORRECT 20 1.7%
UNDETERMINED 4 0.3%
NON ENRICHED 841 73.4%
Total 1146 100%

Table 6.1: Evaluation of semantic enrichment for individual tags.

with any of the rest of the tags, the WordNet sense assigned to it was the most popular one, Geometrical
shape. This lead to the assignment of non-relevant SWE’s namely, Square SubClassOf Rectangle and
Square SubClassOf RegularPolygonShaped. Despite this error, the rest of the tags in this tagset were
correctly enriched.

FLOR failed to enrich 841 tags, i.e., 73.4% of the tags (see Table 6.1). Because this is a significant amount
of tags, we wished to understand whether the enrichment failed because of FLOR’s recall or because most
of the tags have no equivalent coverage in online ontologies. To that end we selected a random 10% of the
841 tags (85 tags) and manually identified appropriate SWE(s) using WATSON and taking into account the
context(s) of the tags in the tagset(s) they appear. Out of the 85 tags we manually enriched 29. We therefore
estimate that the number of tags that could have been enriched by FLOR (i.e., those for which an appropriate
SWE exists) is approximately 287. Thus, taking into account that the overall number of tags that should be
correctly enriched was 568 (281+287) but only 281 were enriched by FLOR this leads to an approximate
recall rate of 49%. While this is quite a low recall, these results are highly superior to the ones we have
obtained in previous experiments where phase 2 was not part of FLOR, i.e., we directly searched for SWEs
for the tags without relying on WordNet as an intermediary step. Indeed, the WordNet sense definition and
expansion of the tags with synonyms and hypernyms (FLOR phase 2) increased the tag discovery in the
Semantic Web thus having a positive effect on recall.

FLOR failed to enrich the above 29 tags due to the following reasons. The majority of the failures (55%) was
due to different definition in terms of superclasses in WordNet and in online ontologies For example, the
definition of love in WordNet and the relevant entity found in the Semantic Web are:

WordNet: Love→Emotion→Feeling→Psychological feature
(a strong positive emotion of regard and affection)

Semantic Web: Love SubClassOf Affection

Although both these definitions refer to the same sense, and additionally the superclass Affection belongs to
the gloss of Love in WordNet, they were not matched because Affection does not appear as a hypernym of
Love. Current work investigates alternative ways of Semantic Expansion.

A further 24% of the tags not connected to any SWE were assigned to the wrong sense during phase 2.
For example, bulb referring to light bulb in its tagset is assigned the incorrect sense Bulb→ Stalk→
Stem→ Plant organ. The rest of the unenriched tags are due to failures in anchoring them into appropriate
SWE’s. For example, the sense of butterfly was correctly identified, but non of its lexical forms matched
the label of the appropriate SWE (Butterfly_Insect):

WordNet: Butterfly→Lepidopterous insect→ Lepidopteron→ Lepidopteran→ Insect

Semantic Web: Identified entity with localname Butterfly_Insect

In the case of 4 tags the evaluator could not determine whether the enrichment was correct or incorrect
(Table 6.1). This is because the meaning of the tag was unclear even when considering its context and the
actual photo.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 102 of 124 NeOn Integrated Project EU-IST-027595

Enrichment Result # of Photos Percentage
CORRECT 179 79.2%
INCORRECT 3 1.3%
MIXED 17 7.5%
UNDETERMINED 4 1.8%
NON ENRICHED 23 10.2%
Total 226 100%

Table 6.2: Evaluation of SWE assignment to photos.

After evaluating the individual tag enrichments the evaluator was able to draw conclusions on the overall
enrichment of the tagset i.e., by photo. The evaluation output is displayed in Table 6.2. This would result
to {CORRECT, INCORRECT, MIXED, UNDETERMINED, NON ENRICHED}. According to this table, 179
enrichments (about 80%) were {CORRECT}, i.e., all the enriched tags of the photo are enriched correctly.
Note that the {CORRECT} enrichment results are much higher from a photo-centric perspective as many
tags may appear in many photos. For the total of 20 {INCORRECT} and {MIXED} enrichments, 3 of the
photos had all enriched tags incorrect and 17 had at least one tag incorrectly enriched. Finally the above 4
{UNDETERMINED} tags resulted to 4 {UNDETERMINED} enrichments. Finally if no enriched tag appears in
the photo then the result for the photo is {NON ENRICHED}.

D2.2.2 Methods and Tools Supporting Re-engineering Page 103 of 124

Chapter 7

Methods and tools for extracting entities
from unstructured text

7.1 Introduction

Named entity recognition (NE) from textual sources has been the subject of research for the last two decades,
and is crucial for many Natural Language Processing (NLP) tasks as well as other applications. NE is
the cornerstone of tasks such as information extraction, which rely on the initial extraction of entities be-
fore identifying relations, co-reference etc. Traditional methods and tools for NE have been described and
discussed widely in the past, so we shall not reiterate here – the interested reader can see for example
[MLP08]. Both rule-based methods such as [MBC, MTB+03, AM99, Chi98] and statistical methods such as
[BON03, Col02, IK02] have proved very successful. For a closed and concise set of named entities, both
approaches are much easier, not only because ambiguity is less and the task is more constrained, but also
because for rule-based approaches, only a relatively small number of rules needs to be written, while for
machine learning approaches, it is relatively easy to create sufficient annotated data for training.

In recent years, research has turned towards a more fine grained classification of named entities, generally
in the form of Ontology-based Information Extraction (OBIE), where the task requires annotating text on the
basis of a much wider ranger of concepts, according to an ontology. So instead of just identifying entitled
that fall into the category "Organisation", the system must distinguish between different types of Organisation
such as Religious Organisation, Charity, Company, Financial Institution, and so on. Early work on this began
with an attempt simply to subcategorise the standard named entities further [FH02] or to involve a more
semantically-based decision process [MBC03], and progressed towards a full ontology-based approach -
either with standard types of named entities [PEK03] or in a more confined scenario [MYKK05, MSY+07].

The work described here combines aspects from both traditional named entity recognition and ontology-
based information extraction, in order to identify patterns for the extraction of a variety of entity types and
relations between them, and to re-engineer them into concepts and instances via ontology creation and
population. The entities extracted include both traditional named entities such as Person, Location and
Organisation, and single or multi-word terms such as "Pacific flounder" and "shark". In the following chapter,
we investigate the identification of patterns in text for entity and relation extraction. We then look at the
process of ontology population and creation using a modified version of the CLONE technology in GATE
[CMBT02]. The system is embodied in an application called SPRAT (Semantic Pattern Recognition and
Annotation Tool) which takes as input a set of texts and optionally an existing ontology, and outputs an
annotated version of the texts and either a new ontology or a modified version of the existing ontology, as
appropriate. SPRAT will be available in the Neon Toolkit as part of the SAFE web services plugin.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 104 of 124 NeOn Integrated Project EU-IST-027595

7.1.1 NE Recognition with GATE and ANNIE

GATE, the General Architecture for Text Engineering, is a framework providing support for a variety of lan-
guage engineering tasks. It includes a vanilla information extraction system, ANNIE, and a large number of
plugins for various tasks and applications, such as ontology support, information retrieval, support for differ-
ent languages, WordNet, machine learning algorithms, and so on. There are many publications about GATE
and ANNIE – see for example [MTC+02]. We summarise briefly below the components and method used for
rule-based information extraction in GATE.

ANNIE consists of the following set of processing resources: tokeniser, sentence splitter, POS tagger,
gazetteer, finite state transduction grammar and orthomatcher. The resources communicate via GATE’s
annotation API, which is a directed graph of arcs bearing arbitrary feature/value data, and nodes rooting this
data into document content (in this case text).

The tokeniser splits text into simple tokens, such as numbers, punctuation, symbols, and words of different
types (e.g. with an initial capital, all upper case, etc.), adding a "Token" annotation to each. It does not need
to be modified for different applications or text types.

The sentence splitter is a cascade of finite-state transducers which segments the text into sentences.
This module is required for the tagger. Both the splitter and tagger are generally domain and application-
independent.

The tagger is a modified version of the Brill tagger, which adds a part-of-speech tag as a feature to each
Token annotation. Neither the splitter nor the tagger is a mandatory part of the NE system, but the annotations
they produce can be used by the semantic tagger (described below), in order to increase its power and
coverage.

The gazetteer consists of lists such as cities, organisations, days of the week, etc. It contains some entities,
but also names of useful key words, such as company designators (e.g. "Ltd."), titles (e.g. "Dr."), etc. The
lists are compiled into finite state machines, which can match text tokens.

The semantic tagger (or JAPE transducer) consists of hand-crafted rules written in the JAPE pattern lan-
guage [CMB+02], which describe patterns to be matched and annotations to be created. Patterns can be
specified by describing a specific text string or annotation (e.g. those created by the tokeniser, gazetteer,
document format analysis, etc.).

The orthomatcher performs coreference, or entity tracking, by recognising relations between entities. It also
has a secondary role in improving NE recognition by assigning annotations to previously unclassified names,
based on relations with existing entities.

ANNIE has been adapted to many different uses and applications: see [MC03, MTBC03, May03] for some
examples. In terms of adapting to new tasks, the processing resources in ANNIE fall into two main categories:
those that are domain-independent, and those that are not. For example, in most cases, the tokeniser,
sentence splitter, POS tagger and orthographic coreference modules fall into the former category, while
resources such as gazetteers and JAPE grammars will need to be modified according to the application.
Similarly, some resources, such as the tokeniser and sentence splitter, are largely language-independent
(exceptions may include some Asian languages, for example), and some resources are more language-
dependent, such as gazetteers. The feasibility of reusing grammars and other components for named entity
recognition tasks is discussed at length in [PMC+02]; the conclusions drawn were very positive given 4
factors: use of a flexible and robust architecture (such as GATE), use of an appropriate rule formalism (such
as JAPE), the nature of the application(s) in question, and the languages used.

7.1.2 Ontology population

Ontology population is a crucial part of knowledge base construction and maintenance that enables us to
relate text to ontologies, providing on the one hand a customised ontology related to the data and domain
with which we are concerned, and on the other hand a richer ontology which can be used for a variety
of semantic web-related tasks such as knowledge management, information retrieval, question answering,

D2.2.2 Methods and Tools Supporting Re-engineering Page 105 of 124

semantic desktop applications, and so on.

Ontology population is generally performed by means of some kind of ontology-based information extraction
(OBIE). This consists of identifying the key terms in the text (such as named entities and technical terms)
and then relating them to concepts in the ontology. Typically, the core information extraction is carried out by
linguistic pre-processing (tokenisation, POS tagging etc.), followed by a named entity recognition component,
such as a gazetteer and rule-based grammar or machine learning techniques. Named entity recognition
(using such approaches) and automatic term recognition are generally performed in a mutually exclusive
way: i.e. one or other technique is used depending on the ultimate goal. However, it makes sense to use a
combination of the two techniques in order to maximise the benefits of both. For example, term extraction
generally makes use of frequency-based information, whereas typically named entity recognition uses a more
linguistic basis. Note also that a "term" refers to a specific concept characteristic of a domain, so while a
named entity such as Person or Location is generic across all domains, a technical term such as "myocardial
infarction" is only considered a relevant term when it occurs in a medical domain: if we were interested in
sporting terms then it would probably not be considered a relevant term, even if it occurred in a sports article.
As with named entities, however, terms are generally formed from noun phrases (though in some contexts,
verbs may also be considered as terms).

7.2 Patterns for entity recognition

Traditional NE recognition and even ontology-based information extraction applications in GATE rely on a
fairly small set of patterns which aim to identify the relevant entities in text. These rely largely on gazetteer
lists which provide all or part of the entity in question, in combination with linguistic patterns (see for example
[MMG99] for a discussion of the importance of gazetteers in pattern-based NE recognition). For example,
a typical rule to identify a person’s name consists of matching the first name of the person with an entry
in the gazetteer (e.g. "John" is listed as a possible first name), followed by an unknown proper noun (e.g.
"Smith", which is recognised as a proper name by the POS tagger). Most patterns include some combination
of proper noun or word with an initial capital letter (for English) and either some gazetteer entry or linguistic
feature.

However, identifying ontological concepts and/or relations requires a slightly different strategy. While we can
still make use of known lists of terms (either via a gazetteer or by accessing the class, instance and property
labels in an existing ontology), this is often not sufficient for a variety of reasons:

• The concept may not be in the ontology already

• The concept may exist in the ontology only as a synonym or linguistic variation (singular instead of
plural, for example)

• The concept may be ambiguous

• Only a superclass of the concept may exist in the ontology

We therefore need to make more use of linguistic patterns and also contextual clues, rather than relying on
gazetteer lists as with traditional recognition. Lexico-syntactic pattern-based ontology population has proven
to be reasonably successful for a variety of tasks [ECD+04]. The idea of acquiring semantic infomration
from texts dates back to the early 1960s with Harris’ distributional hypothesis [Har68] and Hirschman and
Sager’s work in the 1970s [HGS75], which focused on determining sets of sublanguage-specific word classes
using syntactic patterns from domain-specific corpora. A detailed description and comparison of lexical and
syntactic pattern matching can be found in [May00], In particular, research in this area has been used in
specific domains such as medicine, where a relatively small number of syntactic structures is often found, for
example in patient reports. Here the structures are also quite simple, with short and relatively unambiguous
sentences typically found: this makes syntactic pattern matching much easier.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 106 of 124 NeOn Integrated Project EU-IST-027595

Text2Onto [CV05] performs synonym extraction on the basis of patterns. It combines machine learning
approaches with basic linguistic processing such as tokenisation or lemmatisation and shallow parsing. Since
like SPRAT it is based on the GATE framework, it offers flexibility in the choice of algorithms to be applied.
Compared with our work, it has a smaller number of lexico-syntactic patterns. On the other hand, it applies
additional statistical clustering and parsing for relation extraction All in all, this leads to more data, but not
necessarily to an improvement in the resulting ontology in terms of precision.

We have identified three sets of patterns which can help us identify concepts, instances and properties to
extend the ontology: the well-known Hearst patterns (Section 7.2.1), the Lexico-Syntactic Patterns developed
in NeOn corresponding to Ontology Design Patterns (Section 7.2.2), and some new contextual patterns
defined by us which take into account contextual information (Section 7.2.3).

7.2.1 Hearst patterns

The Hearst patterns are a set of lexico-syntactic patterns that indicate hyponymic relations [Hea92], and
have been widely used by other researchers. Typically they achieve a very high level of precision, but quite
low recall: in other words, they are very accurate but only cover a small subset of the possible patterns for
finding hyponyms and hypernyms. The patterns can be described by the following rules, where NP stands
for a Noun Phrase and the regular expression symbols have their usual meanings1:

• such NP as (NP,)* (or|and) NP
Example: . . . works by such authors as Herrick, Goldsmith, and Shakespeare.

• NP (,NP)* (,)? (or|and) (other|another) NP
Example: Bruises, wounds, or other injuries. . .

• NP (,)? (including|especially) (NP,)* (or|and) NP
Example: All common-law countries, including Canada and England . . .

Hearst actually defined five different patterns, but we have condensed some of them into a single rule. Also,
where Hearst defines the relations as hyponym-hypernym, we need to be more specific when translating
this to an ontology, as they could represent either instance-class or subclass-superclass relations. To make
this distinction, we tested various methods. In principle, POS-tagging should be sufficient, since proper
nouns generally indicate instances, but our tagger mistags capitalised common nouns (at the beginning of
sentences) as proper nouns frequently enough that we cannot rely on it for this purpose. We also looked
at the presence or absence of a determiner preceding the noun (since proper nouns in English rarely have
determiners) and whether the noun is singular or plural, but this still left the problem of the sentence-initial
nouns. Finally, we decided to pre-process the text with the named entity recognition application ANNIE, and
only consider certain types of named entities (Person, Location, Organization, and potentially some unknown
entity types) as candidates for instances; all other NPs are considered to be classes. This gave much better
results, occasionally missing an instance but almost never overgenerating.

7.2.2 Lexico-Syntactic Patterns

The second type of patterns investigated was the set of Lexico-Syntactic Patterns (LSPs) corresponding to
Ontology Design Patterns [dCGPMPSF08]. We implemented a number of these patterns in our application
(for the time being, we ignored some of the more complex relation types because we were not able to
implement them easily). For each relation, there are several possible patterns: mostly these are all combined
into a single rule in our grammars, but we separate them here for ease of comprehension. The grammars
are written in JAPE [CMT00]: further details are discussed in Section 7.3.1.

1() for grouping; | for disjunction; *, +, and ? for iteration.

D2.2.2 Methods and Tools Supporting Re-engineering Page 107 of 124

In the following rules, <sub> and <super> are like variable names for the subclasses and superclasses
to be generated; CN means class of, group of, etc.; CATV is a classification verb2; PUNCT is punctuation;
NPlist is a conjoined list of NPs (“X, Y and Z”).

1. Subclass rules

• NP<sub> be NP<super>

• NPlist<sub> be CN NP<super>

• NPlist<sub> (group (in|into|as) | (fall into) | (belong to)) [CN]
NP<super>

• NP<super> CATV CV? CN? PUNCT? NPlist<sub>

Example: Frogs and toads are kinds of amphibian.

2. Equivalence rules

• NP<class> be (the same as|equivalent to|equal to|like) NP<class>

• NP<class> (call | denominate | (designate by|as) | name)
NP<class> (where the verb is passive)

• NP<class> have (the same|equal) (characteristic | feature |
attribute | quality | property) as NP<class>

Example: Poison dart frogs are also called poison arrow frogs.

3. Properties

• NP<class> have NP<property>

• NP<instance> have NP <property>

Example: Birds have feathers.

While these patterns are quite productive (for example X is a Y), most of them are potentially ambiguous
and susceptible to overgeneration. For example, in the following sentence:

Mistakenly, some artists and writers have penguins based at the North Pole.

the patterns produced the inference that writers have penguins, recognising penguin as a property of writer.
Clearly it is ludicrous that every expression of the form X has Y should result in the relation Y is a property
of X. The difficulty is deciding where to draw the line between acceptable patterns and those that just over-
generate. To start with, we took the simple patterns which generated new basic instances, subclasses and
properties, described below.

7.2.3 Contextual patterns

We also defined a set of rules designed to make use of contextual information in the text about known entities
already existing in the ontology (unlike the lexico-syntactic patterns which assume no previous ontological
information is present). These rules are used in conjunction with the OntoRootGazetteer plugin in GATE,
which enables any morphological variant of any class, instance or label in the ontology to be matched with
(any morphological variant of) any word or words in the text. Which elements from the ontology are to be
considered (e.g., whether to include properties, and if so which ones) is determined in advance by the user
when setting up the application. Initially we use the following rules to find new classes and instances:

2E.g., classify in/into, comprise, contain, compose (of), group in/into, divide in/into, fall in/into, belong (to).

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 108 of 124 NeOn Integrated Project EU-IST-027595

1. Add a new subclass: (Adj|N) NP<class>→ NP<subclass>.

This matches a class name aready in the ontology preceded by an adjective or noun, such as adjective
preceding a known type of fish, which we assume is a more specific type. For example, when we
encounter the phrase . . . Japanese flounder. . . in a text and flounder is already in the ontology, we
add Japanese flounder as a subclass of flounder.

2. Add a new class (a more generic version of the Hearst patterns). Here we postulate that an unknown
entity amidst a list of known entities is likely to be also an entity of the same type. For example, if we
have a list of classes of fish, and there is an unknown noun phrase in amongst the list, we can presume
that this is also a class of fish. To decide where to add this new class in the ontology, we can look for
the Most Specific Common Abstraction (MSCA) of all the other items in the list (i.e. the lowest common
superclass of all the classes in the list) and add the new entity as a subclass of this class. However,
this has not currently been implemented due to the complexities of implementation in NEBOnE, but is
planned for the future. Currently therefore, we just add it as a new subclass of Thing (top level) and
leave it to the user to move it to a more appropriate place.

Example: Hornsharks, leopard sharks and catsharks can survive in aquarium conditions for up to a
year or more.
where hornshark and leopard shark are classes in the ontology and catshark is unknown, so we can
recognise catshark as a subclass with the same parent as that of hornshark and leopard shark, in this
case shark.

3. Add an alternative name as a synonym: a name followed by an alternative name in brackets is a
very common pattern in some kinds of text. For example in texts about flora and fauna we often get
the common name followed by the Latin name in brackets, as in the following sentence:

Example: Mummichogs (Fundulus heteroclitus) were the most common single prey item.

If we know that one of the two NPs is a class or instance in the ontology, we can predict fairly accurately
that the other NP is a synonym.

7.3 SPRAT application

SPRAT (Semantic Pattern Recognition and Annotation Tool) is composed of a number of GATE components:
some linguistic pre-processing followed by a set of gazetteer lists and the JAPE grammars described above.
The components are as follows:

• Tokeniser: divides the text into tokens

• Sentence Splitter: divides the text into sentences

• POS-Tagger: adds part-of-speech information to tokens

• Morphological Analyser: adds morphological information (root, lemma etc.) to tokens

• NP chunker: divides the text into noun phrase chunks

• Gazetteers: looks up various items in lists

• OntoRootGazetteer (optional): looks up items from the ontology and matches them with the text, based
on root forms

• JAPE transducers: annotates text and adds new items to the ontology

D2.2.2 Methods and Tools Supporting Re-engineering Page 109 of 124

The application can either create an ontology from scratch, or modify an existing ontology. The ontology
must be loaded with the application (in the former case, a blank ontology is loaded; in the latter, the ontology
to be modified) and referenced by the grammar via the runtime parameter. The ontology used is the same
one for the whole corpus: this means that if a number of documents are to be processed, the same ontology
will be modified. If this is not the desired behaviour, then there are two options:

1. A separate corpus is created for each document or group of documents corresponding to a single
output ontology. The application must be run separately for each corpus.

2. A processing resource can be added to the application that clears the ontology before re-running on
the next document. This of course requires that the ontology is saved at the end of the application,
after processing each document.

7.3.1 Implementation of patterns

The patterns themselves are implemented as JAPE rules. On the LHS of the rule is the pattern to be
annotated. This consists of a number of pre-existing annotations which have been created as a result of
pre-processing components (such as POS tagging, gazetteer lookup and so on) and earlier JAPE rules. The
example below shows a pattern for matching a subclass relation, such as "Frogs are a kind of amphibian"
where "frog" is a subclass of "amphibian".

Rule:Subclass1

(
({CloneNP}):sub
(
{Lookup.minorType == be}
{Token.category == DT}
{Lookup.majorType == kind}
)
({CloneNP}):super

) -->

This pattern matches a noun phrase (identified by a previous JAPE grammar), followed by the verb "to be"
in some format (identified via the gazetteer lookup), a determiner (identified via the POS tagger), some
word indicating a "kind of" relation (identified via the gazetteer lookup) followed by another noun phrase
(identified by a previous JAPE grammar). The two noun phrases (corresponding ultimately to the subclass
and superclass) are given labels ("sub" and "super" which will used in the second part of the rule.

The right hand side of the rule invokes NEBOnE and creates the new items in the ontology, as well as adding
annotations to the document itself. NEBOnE is responsible also for ensuring that the resulting changes to
the ontology are wellformed: this is described in more detail in Section 7.3.2.

{
// get the relevant annotations
gate.AnnotationSet subSet = (gate.AnnotationSet)bindings.get("sub");
gate.Annotation subAnn = (gate.Annotation)subSet.iterator().next();
AnnotationSet superSet = (gate.AnnotationSet)bindings.get("super");
gate.Annotation superAnn = (gate.Annotation)superSet.iterator().next();

// add a new class just below the root class
try {
neon.nebone.Nebone.createOrLinkClass(ontology, doc, superAnn, null);

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 110 of 124 NeOn Integrated Project EU-IST-027595

}
catch (ClassCastException e) {

System.err.println("Warning: ClassCastException in createOrLinkClass!");
superAnn.getFeatures().put("debugInfo", "CCE in cOLC");

}

// add a new subclass of the class just added
try {

neon.nebone.Nebone.createOrLinkClass(ontology, doc, subAnn, superAnn);
}
catch (ClassCastException e) {

System.err.println("Warning: ClassCastException in createOrLinkClass!");
superAnn.getFeatures().put("debugInfo", "CCE in cOLC");

}
},

// create the annotations on the documents
:sub.Subclass = {rule=Subclass1},
:super.Superclass = {rule=Subclass1}

The RHS of the rule first gets the relevant information from the annotations (using the labels assigned on
the LHS of the rule), then adds a new class below the root class for the superconcept (labelled "amphibian"
in our example), a new subclass of this (labelled "frog" in our example), and finally adds annotations to the
entities in the document.

Figure 7.1 shows a screenshot from GATE of annotations added, while Figure 7.2 shows a screenshot from
GATE of an ontology created.

Figure 7.1: Annotation in GATE

7.3.2 NEBOnE

The SPRAT application uses the specially developed NEBOnE plugin for GATE in order to generate the
changes to the ontology. NEBOnE (Named Entity Based ONtology Editing) is an implementation for pro-
cessing natural language text and manipulating an ontology. It is derived from the CLOnE plugin [FTB+07]
for GATE.

In CLOnE, input sentences are analysed deterministically and compositionally with respect to a given ontol-
ogy, which the software consults in order to interpret the input semantics. CLOnE allows users to design,

D2.2.2 Methods and Tools Supporting Re-engineering Page 111 of 124

Figure 7.2: Generated ontology in GATE

create, and manage information without knowledge of complicated standards (such as XML, RDF and OWL)
or ontology engineering tools. It is implemented as a simplified natural language processor that allows the
specification of logical data for semantic knowledge technology purposes in normal language, but with high
accuracy and reliability. The components are based on GATE’s existing tools for IE (information extraction)
and NLP (natural language processing). Because the parsing process is deterministic, accuracy is not an
issue: as long as the user specifies their input in correct controlled language, the system always produces
correct output.

Because CLOnE was designed to be used with Controlled Language textual input, it is quite restricted in
the patterns it can process and in how it generates the ontological data from them. We therefore developed
NEBOnE in order to deal specifically with free text input. As its name suggests, is based on named entity
recognition rather than a restricted set of keywords and noun phrases. For example, in CLOnE, the only way
to derive a new subclass is by using a specific pattern containing the restricted keywords type of followed
by the name of the class, e.g., “a dog is a type of animal”. In free text, however, there are many ways in which
a subclass could be stated, e.g., “animals such as dogs” or “dogs are animals”, and so on (as described
in Section 7.2); the use of a controlled language avoids ambiguity between syntactic structures. CLOnE
also imposed strict rules on the order of input sentences and the creation of resources in the ontology. For
example, the function to create a subclass required the superclass to exist already, and the function to create
an instance made the same stipulation about the new instance’s class. We cannot avoid this problem in
NEBOnE: this is the sacrifice made for the gain in flexibility of input, which is essential with real world texts.

NEBOnE is based on the same underlying principles as CLOnE and is realised as another GATE plugin. The
idea behind NEBOnE is that once a text has been annotated using Named Entity recognition techniques,
these annotations can be used to generate new concepts, instances and properties in the ontology. CLOnE
uses so-called chunks from the input sentences as candidates for inclusion in the ontology as classes, in-
stances and properties: these are noun phrases previously created by a chunker in GATE. In NEBOnE,
however, a chunk can be any annotation previously created, and does not need to correspond to a noun
phrase, thereby ensuring a great deal more flexibility. When the NEBOnE plugin is installed, actions con-
cerning the ontology are implemented on the RHS of JAPE rules, such as adding or deleting new classes,
instances, subclasses, properties and so on.

If an item is selected for addition to the ontology as a new class, NEBOnE first checks to see whether the
item in question already exists in the ontology: if it already exists in the place where it is scheduled to be
added, NEBOnE will do nothing. If the item exists as a class elsewhere in the ontology, NEBOnE will add the
new class (because it supports multiple inheritance). If the requested parent class and subclass both exist
and are class names, NEBOnE will make the second a subclass of the first and print a message. If either is
already an instance, or the parent class does not exist yet, NEBOnE will print a warning message.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 112 of 124 NeOn Integrated Project EU-IST-027595

Similarly for an instance, if it exists elsewhere as an instance, NEBOnE will add the new instance but generate
a notification message. If the item already exists as a class, and an instance of the same name is to be added,
or vice versa, then NEBOnE will not generate the new instance/class and will produce a warning message.
Thus NEBOnE ensures consistency in the ontology, avoiding the need to run a checker after the ontology
has been modified. A user can of course choose to ignore any potential inconsistencies, by checking the
generated messages and then manually adding any offending items or making other changes to the ontology.

7.3.3 Implementation of NEBOnE

Once the text has been pre-processed, a JAPE transducer processes each sentence in the input text and
manipulates the ontology appropriately. This PR refers to the contents of the ontology in order to analyse
the input sentences and check for errors; some syntactically identical sentences may have different results if
they refer to existing classes, existing instances, or non-existent names, for example.

The canonical feature—from which the name of a new class or instance is derived—is the concatenation of
the string values of the tokens and underscores for the space-tokens (which can represent literal spaces,
tabs or newlines), or the token lemmas.

The Java code that tests chunks in the input text against existing classes and instances in the ontology
returns a match if any of the three features of the chunk (canonical, root or string) is case-insensitively
equal to any of those features of an existing class or instance; for example, the chunks ’multiword
expressions’ and Multiword expressions match each other, although the class name in the
ontology varies according to which one is first used to create the class.

7.3.4 NEBOnE functions

In this section, we describe the main functions from NEBOnE that we use in our application. These are
based on the functions developed for CLOnE, but with some differences (described below).

Create a new class

e.g., There are universities.
For each chunk, create a new class (University) immediately under the top class.

Create a new instance

e.g., ’University of Sheffield’ is a university.
For each chunk, create an instance (University_of_Sheffield of the class (University). If the
class University does not exist in the ontology, create it spontaneously (immediately under the top class).
If the instance and class already exist, make the instance a member of the specified class (in addition to other
classes it already belongs to—both NEBOnE and the GATE Ontology API allow this).

Create a new subclass

e.g., Dogs are a type of mammal.
Make each chunk (Dog) a subclass of the superclass chunk (Mammal); create any required classes that
do not already exist in the ontology. This function creates subclass-superclass relations between existing
classes too (both NEBOnE and the GATE Ontology API support multiple inheritance).

University_of_Sheffield

D2.2.2 Methods and Tools Supporting Re-engineering Page 113 of 124

Create a new property

CLASSES/INSTANCES have CLASSES/INSTANCES.
e.g., Dolphins have acute eyesight and few natural enemies.
Iterate through the cross-product of the chunks in the two chunk-lists. For each pair, if both are classes, create
a property of the form Domain_has_Range. If both are instances, find a suitable property and instantiate it
with those instances; if there is a class-instance mismatch or a suitable property does not exist, generate an
error. (Unlike the others above, this function requires the classes or instances to exist already—it would be
impossible to determine what to create otherwise.)

Changes from CLOnE

Because CLOnE was designed to interpret without ambiguity a controlled language that users wrote de-
liberately for the purposes of creating and editing ontologies, it imposed strict rules on the order of input
sentences and the creation of resources in the ontology. For example, the function to create a subclass
required the superclass to exist already, and the function to create an instance made the same stipulation
about the new instance’s class. NEBOnE, however, processes uncontrolled natural language so we cannot
impose such restrictions. The NEBOnE library does, however, reject function calls that would otherwise try
to create an instance with the same name as an existing class, or the other way round.

7.4 Evaluation

We evaluated the accuracy of the lexical patterns using a corpus of 25 randomly selected wikipedia articles
about animals, such as the entries for rabbit, sheep etc. We ran SPRAT and examined the results in some
detail. In total, SPRAT generated 201 classes, 21 instances, and 98 synonyms, and 107 other properties.
Table 7.1 shows the results for each type. Note that, unlike in traditional named entity recognition evaluation,
we use a strict method of scoring where a partially correct response, i.e. one where the span of the extracted
entity is too short or too long, is considered as incorrect. This is because for ontology population, having an
incorrect span is generally a more serious error than in named entity recognition.

7.4.1 Subclass Relations

In total, 163 subclass relations were generated, of which 79 were correct (48%). However, 15 of these were
not really useful classifications: e.g., turtle as subclass of local creature makes sense only in a very specific
context. Of the subclass relations, 69 were found by the Hearst patterns, of which 58 were correct (84%).
Of the incorrect relations generated, most contained at least one correct subclass out of a list. For example,
in the phrase “by disturbing the natural state of pasture, sheep and other livestock. . . ” both natural state of
pasture and sheep were recognised as subclasses of livestock, of which the former is incorrect but the latter
is correct. Some refinement of the rules (for example, avoiding NPs containing of) could help improve the
results. The remaining patterns accounted for 94 of the subclass relations, of which 21 were correct (22%).

Relation Total Extracted Correct Precision
Subclass 163 79 48.5%
Instance 21 10 47.6%
Synonym 98 47 48.0%
Property 107 24 22.4%

Table 7.1: Results of relation extraction on 25 wikipedia documents

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 114 of 124 NeOn Integrated Project EU-IST-027595

We experimented also with restricting possible classes and subclasses to terms found by TermRaider, a
term selection algorithm based on linguistic filtering and tf-idf scoring. If we narrow the results to match
only subclasses which are also terms, this improves the precision but lower the recall a little. Adjusting
TermRaider’s parameters to be a little more flexible with patterns should improve the recall, however. For
subclass relations which are also terms, we find 50 occurrences, of which 31 are correct (62%). Of these,
the Hearst patterns are almost entirely correct, though lacking a little in recall (95% correct, but only 20 are
found in total), while the patterns found by the other rules are 40% correct, which is double the previous
score, although only 30 are found in total.

7.4.2 Instances

The recognition of instances, on the other hand, was quite low in recall though with the same precision as
that of subclasses. In total, 21 instances were found, of which 10 were correct. Many of the incorrect results
were either as a result of erroneous named entity recognition (e.g. Harmonia axyridis Pupal stage eggs
Coccinellidae was wrongly extracted as a named entity) or due to instances which are somewhat irrelevant
(e.g. San Francisco Bay was extracted as an instance of principal area in the phrase “some of the principal
areas are San Francisco Bay, Richardson Bay, Tomales Bay and Humboldt”, which is factually correct but
not useful to extract). The main reason for missing instances is that they were wrongly extracted either as
subclasses or synonyms.

7.4.3 Synonyms

98 synonyms were found, of which 47 were correct (again 48%). Of the incorrect responses, some of the
so-called synonyms were actually instances. For example, “A talking dolphin called Howard”, where Howard
was identified as a synonym of talking dolphin rather than as an instance. This was found to be simply due
to a bug in the rule which prevented items identified as Entity from being classed as synonyms. Many of
the incorrect synonyms were due to the relationship between the two items only holding in a very particular
context. For example, in the sentence “A modified slit called a spiracle is located just behind the eye”, the
system identifies modified slit as a synonym of spiracle. Clearly not all modified slits are spiracles: in fact,
spiracle should be extracted as a subclass of modified slit. Since there are many of these examples, we need
to look more closely at the rules governing these.

7.4.4 Properties

Aside from synonyms, the system found 107 class and instance properties. Of these, we analysed the first
50, of which 17 were correct, 13 were incorrect, 5 correct but irrelevant, and 15 were correct but had the
wrong span of either the domain or range. An improvement to the results could be made by creating a stop
list of certain nouns which should not be included as possible ranges, perhaps restricting such nouns to
terms, as with the subclasses.

7.5 Discussion

We can see that the patterns implemented are far from foolproof, since unlike with a controlled language
such as CLOnE, we cannot rely on a one-to-one correspondence between a simple syntactic structure and
its semantics. First we have the problem of overgeneration. Already, we have discarded some potential
patterns (such as some of the LSPs) that we consider to generate too many errors. Further refinement is still
necessary here, either to remove other patterns or to reimplement them in a different way.

One of the main causes of overgeneration is caused by the span of the noun phrase describing the concept
to be added to the ontology. We have experimented with different possibilities. A larger span provides
finer distinctions and thus better classes, but overgenerates considerably, while a smaller span produces

D2.2.2 Methods and Tools Supporting Re-engineering Page 115 of 124

more general classes but better accuracy (does not overgenerate so much). For example, in the following
sentence:

The individuals communicate using a variety of clicks, whistles and other vocalizations.

variety of click is recognised as a subclass of vocalization. While this is technically correct, a better interpre-
tation would be simply the subclass click.

Similarly in the sentence:

A minor class of sheep are the dairy breeds.

minor class of sheep is recognised as a superclass, with subclass dairy breeds. Better would be to recognise
the superclass simply as sheep, since the subclass relation indicates the minor class relationship.

On the other hand, if we reduce the span of the noun phrase, we risk losing some important information. For
example, in the sentence:

Mygalomorph and Mesothelae spiders have two pairs of book lungs filled with haemolymph

if we do not identify the full noun phrase two pairs of book lungs, we can end up with the rather uninformative
property two pairs of the class Mesothelae spider. A closer analysis of the spans is needed, which may help
identify which patterns require longer spans than others, for example. Currently, the NP chunker decides the
span for all noun phrases, but it may be more appropriate to alter the functionality of the chunker depending
on the pattern, or to restrict the NPs to terms using TermRaider for some cases.

Second, lexical patterns tend to be quite ambiguous as to which relations they indicate. For example, NP
have NP could indicate an object property or a datatype property relationship. Also, English word order can
lead to inverse relations. For example, in the sentence “A traditional Cornish pilchard dish is the stargazy
pie”, stargazy pie is a kind of Cornish pilchard dish, but the sentence can equally be written “The stargazy pie
is a traditional Cornish pilchard dish”. Here, the use of the definite and indefinite determiner helps to identify
the correct relationship, but this is not always the case. Often, further context is also crucial. For example, in
the sentence “Both African males and females have external tusks”, it is not very useful to extract the concept
females with the property have external tusks unless you know that females actually refers to female African
elephants. To extract this information would require also coreference matching.

Care also needs to be taken to avoid actual erroneous (rather than simply spurious) results. For example,
if negatives are not taken into acount, the consequences can be disastrous. From the phrase “DAT is a
legitimate therapy”, we could easily deduce that DAT could be classified as an instance of therapy. How-
ever, further inspection of the wider context reveals that the opposite is true, as the sentence actually reads
“Reviews of this and other published dolphin-assisted therapy (DAT) studies have found important method-
ological flaws and have concluded that there is no compelling scientific evidence that DAT is a legitimate
therapy.” Of course, this is a common problem with shallow NLP systems.

To summarise, we are currently investigating a number of options to improve the recognition. First, we
are looking at the incorporation of deeper semantic relations using semantic classes from VerbNet[Sch05]
and WordNet[Fel98] in order to look for verbal patterns connecting terms in a sentence. We make use of
the ANNIC plugin in GATE [ATBC05] to search for frequently occurring annotation patterns. We are also
investigating the use of TermRaider for restricting the number of candidates for extraction. Also, we plan to
incorporate combinations of Hearst patterns and statistically derived collocational information, because its
combination with lexico-syntactic patterns has proven to improve precision and recall [CW03].

Integration of a full parser has also been investigated, but discarded on the grounds of speed (full parsing is
extremely computationally expensive in this situation). In particular, we found that the sentences in Wikipedia
articles, which we have used for training and testing, are quite hard to parse well, because they frequently
exhibit a long and complex sentence structure which is highly ambiguous to a parser. This causes not only
speed but also accuracy problems.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 116 of 124 NeOn Integrated Project EU-IST-027595

7.6 Further Work

Because the innovative character of this work lies in engineering rather than in research, we need to em-
phasise that, in this phase, the strength of the approach lies in its fundamental approach to linguistically
motivated ontology engineering. An increasing number of atomic ontology editing operations are associated
with lexico-syntactic patterns, according to the ontological information these patterns and the participating
entities contribute. The flexibility of this association enables us to approach the transformation of linguistic
structures into lightweight ontological knowledge in an incremental fashion. Also, the opportunity to incorpo-
rate any kind of additional knowledge into the system allows us to experiment with different settings, and use
SPRAT as a research platform rather than a black box product. This sets it apart from partial approaches
such as Hearst, because it offers a platform to dynamically include new algorithms.

In summary, the SPRAT tool assists the user in the generation and/or population of ontologies from text,
using linguistic patterns. We have developed a number of new GATE plugins, including NEBOnE for editing
the ontology, and TermRaider for finding new terms. In general, the rules give good recall, but precision
is a little low. The idea behind this work is to investigate the extent to which such patterns can be used
either on their own or in conjunction with the user to generate or populate a more detailed ontology from
text. Currently, there is a good basis, but some work to go in improving the rules, and we have put forward a
number of suggestions for ways in which this might be done.

D2.2.2 Methods and Tools Supporting Re-engineering Page 117 of 124

Chapter 8

Conclusions and future work

During performing the work that is reported in this deliverable, the involved partners have drawn the following
major conclusions which will influence the further evolution of this task.

First, we have updated the three level categorization of NORs, introduced in [SFdCB+08], according to three
different features: type of NOR, data model and implementation. Moreover, we presented a pattern based
approach for re-engineering NORs into ontologies. We take advantage of the NOR data model to define
patterns for re-engineering NORs. This approach is covered in the following Chapters: 3, 4, and 5. This
approach will be extended to cover glossaries and lexicons, and create richer and more complex ontologies.
We plan to include the algorithms and implementations later on in a framework which will implement the
transformation process. Also we will include a section on the PR-NORs to generate ontologies following the
Linking Open Data1 recommendations. We also need to evaluate how much effort do we save re-engineering
NORs using patterns compared with re-engineering NORs without them.

Second, we presented FLOR, a tool for automatic enrichment of folksonomy tagspaces with Semantic Entities
automatically discovered from online ontologies. The experiments reported in Section 6.1.5 we demonstrated
FLOR’s functionalities and performance and provided additional insights for future work on the enhancement
of the FLOR enrichment algorithm. Finally as described in Section 6.1.3 the final step of FLOR, which is the
SCARLET Semantic Relation Discovery hasn’t yet been integrated with FLOR and thus is part of our future
work.

Finally, the SPRAT tool described in Chapter 7 uses a method for automatically extracting entities from
unstructured text in any domain, and generating and/or populating an ontology with the resulting information.
The method relies on the identification of syntactic and semantic linguistic patterns in unstructured text, in
combination with methods for generic named entity recognition and term extraction. The tool is deployed
as a plugin for the Neon Toolkit, and a domain-specific version of it, SARDINE, is used in WP8 for the
augmentation of fisheries ontologies. Currently, a number of patterns have been deployed, but ongoing work
is investigating the incorporation of deeper semantic information and further refinement of the patterns, in
order to improve precision.

1http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

2006–2008 c© Copyright lies with the respective authors and their institutions.

http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

Page 118 of 124 NeOn Integrated Project EU-IST-027595

Bibliography

[ABM05] Y. An, A. Borgida, and J. Mylopoulos. Constructing Complex Semantic Mappings Between
XML Data and Ontologies. In International Semantic Web Conference, pages 6–20, 2005.

[AM99] D. Appelt and D. Martin. Named entity extraction from speech: Approach and results using
the TextPro system. In Proceedings of DARPA Broadcast News Workshop, pages 51–54,
1999.

[AM05] Y. An and J. Mylopoulos. Translating XML Web Data into Ontologies. In OTM Workshops,
pages 967–976, 2005.

[ANS05] ANSI/NISO. Documentation – Guidelines for the construction, format, and management of
monolingual controlled vocabularies., 2005. Report ANSINISO Z3919.

[ASC07] R. Abbasi, S. Staab, and P. Cimiano. Organizing resources on tagging systems using t-org.
In In proceedings of Workshop on Bridging the Gap between Semantic Web and Web 2.0
at ESWC 2007, June 2007.

[ASSM07] S. Angeletou, M. Sabou, L. Specia, and E. Motta. Bridging the gap between folksonomies
and the semantic web: An experience report. In 4th European Semantic Web Conference,
pages 30–43, Innsbruck, Austria, 2007.

[ATBC05] N. Aswani, V. Tablan, K. Bontcheva, and H. Cunningham. Indexing and Querying Linguistic
Metadata and Document Content. In Proceedings of Fifth International Conference on Re-
cent Advances in Natural Language Processing (RANLP2005), Borovets, Bulgaria, 2005.

[Bar07] J. Barrasa. Modelo para la definición automática de correspondencias semánticas entre
ontologías y modelos relacionales. PhD thesis, Facultad de Informatica, Universidad Po-
litecnica de Madrid, Madrid, Spain, March 2007.

[BCGP04] J. Barrasa, O. Corcho, and A. Gómez-Pérez. R2O, an Extensible and Semantically Based
Database-to-Ontology Mapping Language. In Second Workshop on Semantic Web and
Databases (SWDB2004), 2004.

[Ber94] J. Berge. The EDIFACT Standards. Blackwell Publishers, Inc., Cambridge, MA, USA, 1994.

[BH06] S. Brockmans and P. Haase. A Metamodel and UML Profile for Networked Ontologies. A
Complete Reference. Technical report, Universität Karlsruhe„ 2006.

[BON03] Oliver Bender, Franz Josef Och, and Hermann Ney. Maximum entropy models for named
entity recognition. In Walter Daelemans and Miles Osborne, editors, Proceedings of
CoNLL-2003, pages 148–151. Edmonton, Canada, 2003.

[Bra05] D. Brandon. Recursive database structures. Journal of Computing Sciences in Colleges,
2005.

D2.2.2 Methods and Tools Supporting Re-engineering Page 119 of 124

[BS 05a] British Standards Institution, BSI. Documentation – Structured vocabularies for information
retrieval - Guide - Part 1: Definitions, symbols and abbreviations., 2005. Report BS 8723-1.

[BS 05b] British Standards Institution, BSI. Documentation – Structured vocabularies for information
retrieval - Guide - Part 2: Thesauri., 2005. Report BS 8723-2.

[BS 05c] British Standards Institution, BSI. Documentation – Structured vocabularies for information
retrieval - Guide - Part 5: Exchange formats and protocols for interoperability., 2005. Report
BS 8723-5.

[Car02] B. Carkenord. Why Build a Logical Data Model.
http://www.embarcadero.com/resources/tech_papers/datamodel.pdf, 2002.

[Chi98] Nancy A. Chinchor. Proceedings of the Seventh Message Understanding Conference
(MUC-7) named entity task definition. In Proceedings of the Seventh Message Under-
standing Conference (MUC-7), page 21 pages, Fairfax, VA, April 1998. version 3.5,
http://www.itl.nist.gov/iaui/894.02/related_projects/muc/.

[CMB+02] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, and C. Ursu. The GATE User Guide.
http://gate.ac.uk/, 2002.

[CMBT02] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: A Framework and Graph-
ical Development Environment for Robust NLP Tools and Applications. In Proceedings of
the 40th Anniversary Meeting of the Association for Computational Linguistics (ACL’02),
2002.

[CMT00] H. Cunningham, D. Maynard, and V. Tablan. JAPE: a Java Annotation Patterns Engine
(Second Edition). Research Memorandum CS–00–10, Department of Computer Science,
University of Sheffield, November 2000.

[Col02] M. Collins. Ranking algorithms for named entity extraction: Boosting and the voted percep-
tron. In Proceedings of the 40th Annual Annual Meeting of the Association for Computa-
tional Linguistics (ACL’02), Philadelphia,PA, 2002.

[Cor05] O. Corcho, editor. A Layered Declarative Approach to Ontology Translation with Knowledge
Preservation. IOS Press, 2005.

[CV05] P. Cimiano and J. Voelker. Text2Onto - A Framework for Ontology Learning and Data-driven
Change Discovery. In Proceedings of the 10th International Conference on Applications of
Natural Language to Information Systems (NLDB), Alicante, Spain, 2005.

[CV07] R. Cilibrasi and P. Vitanyi. The google similarity distance. Transactions on Knowledge and
Data Engineering, IEEE, 19(3):370–383, 2007.

[CW03] S. Cederberg and D. Widdows. Using lsa and noun coordination information to improve the
precision and recall of automatic hyponymy extraction. In Proceedings of the 7th conference
on Natural language learning at HLT-NAACL, pages 111–118, Morristown, NJ, 2003.

[CXH04] I. F. Cruz, H. Xiao, and F. Hsu. An ontology-based framework for xml semantic integration.
In IDEAS ’04: Proceedings of the International Database Engineering and Applications
Symposium, pages 217–226, Washington, DC, USA, 2004. IEEE Computer Society.

[dCGPMPSF08] G. Aguado de Cea, A. Gómez-Pérez, E. Montiel-Ponsoda, and M-C. Suárez-Figueroa. Nat-
ural language-based approach for helping in the reuse of ontology design patterns. In Pro-
ceedings of the 16th International Conference on Knowledge Engineering and Knowledge
Management Knowledge Patterns (EKAW 2008), pages 32–47, Acitrezza, Italy, September
2008.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 120 of 124 NeOn Integrated Project EU-IST-027595

[ECD+04] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu, T. Shaked,
S. Soderland, D. S. Weld, and A. Yates. Web-scale Informa-
tion Extraction in KnowItAll. In Proceedings of WWW-2004, 2004.
http://www.cs.washington.edu/research/knowitall/papers/www-paper.pdf.

[FB06] D. Foxvog and C. Bussler. Ontologizing EDI Semantics. In ER (Workshops), pages 301–
311, 2006.

[Fel98] Christiane Fellbaum, editor. WordNet - An Electronic Lexical Database. MIT Press, 1998.

[FH02] M. Fleischman and E. Hovy. Fine grained classification of named entities. In Proceedings
of the 19th International Conference on Computational Linguistics (COLING’02), Taipei,
Taiwan, 2002.

[FTB+07] A. Funk, V. Tablan, K. Bontcheva, H. Cunningham, B. Davis, and S. Handschuh. Clone:
Controlled language for ontology editing. In Proceedings of the 6th International Semantic
Web Conference (ISWC 2007), Busan, Korea, November 2007.

[GC05] R. García and O. Celma. Semantic Integration and Retrieval of Multimedia Metadata. In
Proceedings of the ISWC 2005 Workshop on Knowledge Markup and Semantic Annotation
(Semannot’2005), 2005.

[GGMO03] A. Gangemi, N. Guarino, C. Masolo, and A. Oltramari. Sweetening WORDNET with
DOLCE. AI Mag., 24(3):13–24, 2003.

[GH06] S. Golder and B. Huberman. Usage patterns of collaborative tagging systems. Journal of
Information Science, 32(2):198–208, 2006.

[GNV03] A. Gangemi, R. Navigli, and P. Velardi. The OntoWordNet Project: Extension and Axioma-
tization of Conceptual Relations in WordNet. In CoopIS/DOA/ODBASE, 2003.

[GPC08] Jose Manuel Gómez-Pérez and Oscar Corcho. Problem-solving methods for understanding
process executions. Computing in Science and Engg., 10(3):47–52, 2008.

[GPS98] A. Gangemi, D. Pisanelli, and G. Steve. Ontology integration: Experiences with medical
terminologies. Ontology in Information Systems, pages 163–178, 1998.

[Hah03] V. Hahn. Turning informal thesauri into formal ontologies: a feasibility study on biomedical
knowledge re-use. Comparative and Functional Genomics, 4:94–97(4), January/February
2003.

[Har68] Z.S. Harris. Mathematical Structures of Language. Wiley (Interscience), New York, 1968.

[HdB07] M. Hepp and J. de Brujin. GenTax: A generic Methodology for Deriving OWL and RDF-
S Ontologies from Hierarchical Classifications, Thesauri, and Inconsistent Taxonomies.
In Proceedings of the 4th European Semantic Web Conference (ESWC2007). Springer-
Verlag, 2007.

[Hea92] M. A. Hearst. Automatic acquisition of hyponyms from large text corpora. In Conference
on Computational Linguistics (COLING’92), Nantes, France, 1992. Association for Compu-
tational Linguistics.

[HFP+06] L. Han, T. Finin, C. Parr, J. Sachs, and A. Joshi. RDF123: a mechanism to transform
spreadsheets to RDF. In Proceedings of the Twenty-First National Conference on Artificial
Intelligence (AAAI-06), 2006.

D2.2.2 Methods and Tools Supporting Re-engineering Page 121 of 124

[HGS75] L. Hirschman, R. Grishman, and N. Sager. Grammatically based automatic word class
formation. Information Processing and Retrieval, 11:39–57, 1975.

[HHST06] S. Hakkarainen, L. Hella, D. Strasunskas, and S. Tuxen. A Semantic Transformation Ap-
proach for ISO 15926. In Proceedings of the OIS 2006 First International Workshop on
Ontologizing Industrial Standards, 2006.

[Hir04] G. Hirst. Ontology and the lexicon. In Handbook on Ontologies in Information Systems,
pages 209–230. Springer, 2004.

[Hod00] G. Hodge. Systems of Knowledge Organization for Digital Libraries: Beyond Traditional
Authority Files. http://www.clir.org/pubs/reports/pub91/contents.html, 2000.

[HS03] U. Hahn and S. Schulz. Towards a broad-coverage biomedical ontology based on descrip-
tion logics. pac symp biocomput. pages 577–588, 2003.

[HVTS08] E. Hyvönen, K. Viljanen, J. Tuominen, and K. Seppälä. Building a national semantic web
ontology and ontology service infrastructure -the finnonto approach. In ESWC, pages 95–
109, 2008.

[IK02] H. Isozaki and H. Kazawa. Efficient Support Vector Classifiers for Named Entity Recog-
nition. In Proceedings of the 19th International Conference on Computational Linguistics
(COLING’02), pages 390–396, Taipei, Taiwan, 2002.

[ISO85] International Standard Organization (ISO). Documentation – Guidelines for the establish-
ment and development of multilingual thesauri, 1985. Report ISO 5964.

[ISO86] International Standard Organization (ISO). Documentation – Guidelines for the establish-
ment and development of monolingual thesaurus, 1986. Report ISO 2788.

[ISO04] International Standard Organization (ISO). Information technology - Metadata registries -
Part 1: Framework, 2004. Report ISO/IEC FDIS 11179-1.

[KBH+97] T. Koch, A. Bummer, D. Hiom, M. Peereboom, A. Poulter, and E. Worsfold. Specification for
resource description methods Part 3. the role of classification schemes in Internet resource
description and discovery. Technical report, DESIRE project deliverable D3.2, 1997.

[Lab07] Lawrence Berkeley National Laboratory. eXtended MetaData Registry (XMDR) Project.
http://www.xmdr.org/standards/cmaps/Thesaurus Standards Relationships.html, 2007.

[LS06] B. Lauser and M. Sini. From agrovoc to the agricultural ontology service/concept server: an
owl model for creating ontologies in the agricultural domain. In DCMI ’06: Proceedings of
the 2006 international conference on Dublin Core and Metadata Applications, pages 76–88.
Dublin Core Metadata Initiative, 2006.

[M. 07] M. d Aquin and M. Sabou and M. Dzbor and C. Baldassarre and L. Gridinoc and S. An-
geletou and E. Motta. Watson: A gateway for the semantic web. In 4th European Semantic
Web Conference, Innsbruck, Austria, 2007.

[May00] D. G. Maynard. Term Recognition Using Combined Knowledge Sources. PhD thesis,
Manchester Metropolitan University, UK, 2000.

[May03] D. Maynard. Multi-source and multilingual information extraction. Expert Update, 2003.

[MB05] A. Miles and D. Brickley. SKOS Core Vocabulary Specification. Technical report, World
Wide Web Consortium (W3C), November 2005. http://www.w3.org/TR/2005/WD-swbp-
skos-core-spec-20051102/.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 122 of 124 NeOn Integrated Project EU-IST-027595

[MBC] D. Maynard, K. Bontcheva, and H. Cunningham. Towards a semantic extraction of named
entities. pages 255–261. http://gate.ac.uk/sale/ranlp03/ranlp03.pdf.

[MBC03] D. Maynard, K. Bontcheva, and H. Cunningham. Towards a semantic extraction of Named
Entities. In Recent Advances in Natural Language Processing, Bulgaria, 2003.

[MC03] D. Maynard and H. Cunningham. Multilingual Adaptations of a Reusable Information Ex-
traction Tool. In Proceedings of the Demo Sessions of EACL’03, Budapest, Hungary, 2003.
ACL.

[MDA07a] M. Zied Maala, A. Delteil, and A. Azough. A conversion process from flickr tags to rdf
descriptions. In SAW, 2007.

[MDA07b] M. Zied Maala, A. Delteil, and A. Azough. A conversion process from flickr tags to rdf
descriptions. In 10th International Conference on Business Information Systems, Poznan,
Poland, 2007.

[Mil05] A. Miles. Quick Guide to Publishing a Thesaurus on the Semantic Web. Technical report,
World Wide Web Consortium (W3C), May 2005. http://www.w3.org/TR/2005/WD-swbp-
thesaurus-pubguide-20050510/.

[MLP08] Diana Maynard, Yaoyong Li, and Wim Peters. Nlp techniques for term extraction and ontol-
ogy population. In P. Buitelaar and P. Cimiano, editors, Bridging the Gap between Text and
Knowledge - Selected Contributions to Ontology Learning and Population from Text. IOS
Press, 2008.

[MMG99] A. Mikheev, M. Moens, and C. Grover. Named Entity recognition without gazetteers. In
Proceedings of the Ninth Conference of the European Chapter of the Association for Com-
putational Linguistics (EACL’99), pages 1–8, 1999.

[MS01] A. Maedche and S. Staab. Ontology learning for the semantic web. IEEE Intelligent Sys-
tems, 2001.

[MSY+07] D. Maynard, H. Saggion, M. Yankova, K. Bontcheva, and W. Peters. Natural Language
Technology for Information Integration in Business Intelligence. In 10th International Con-
ference on Business Information Systems (BIS-07), Poznan, Poland, 25-27 April 2007.

[MTB+03] D. Maynard, V. Tablan, K. Bontcheva, H. Cunningham, and Y. Wilks. Muse: a multi-source
entity recognition system. Submitted to Computers and the Humanities, 2003.

[MTBC03] D. Maynard, V. Tablan, K. Bontcheva, and H. Cunningham. Rapid customisation of an
Information Extraction system for surprise languages. Special issue of ACM Transactions
on Asian Language Information Processing: Rapid Development of Language Capabilities:
The Surprise Languages, 2:295–300, 2003.

[MTC+02] D. Maynard, V. Tablan, H. Cunningham, C. Ursu, H. Saggion, K. Bontcheva, and Y. Wilks.
Architectural Elements of Language Engineering Robustness. Journal of Natural Language
Engineering – Special Issue on Robust Methods in Analysis of Natural Language Data,
8(2/3):257–274, 2002.

[MYKK05] D. Maynard, M. Yankova, A. Kourakis, and A. Kokossis. Ontology-based information extrac-
tion for market monitoring and technology watch. In ESWC Workshop "End User Aspects
of the Semantic Web"), Heraklion, Crete, 2005.

[MZ06] E. Malinowski and E. Zimányi. Hierarchies in a multidimensional model: From conceptual
modeling to logical representation. Data and Knowledge Engineering, 2006.

D2.2.2 Methods and Tools Supporting Re-engineering Page 123 of 124

[PEK03] A. Popescu, O. Etzioni, and H. Kautz. Towards a theory of natural language interfaces to
databases. In Proceedings of the International Conference on Intelligent User Interfaces
(IUI’03), 2003.

[PGD+08] V. Presutti, A. Gangemi, S. David, G. Aguado de Cea, M. C. Suárez-Figueroa, E. Montiel-
Ponsoda, and M. Poveda. NeOn Deliverable D2.5.1. A Library of Ontology Design Pat-
terns: reusable solutions for collaborative design of networked ontologies. In NeOn Project.
http://www.neon-project.org, 2008.

[PMC+02] K. Pastra, D. Maynard, H. Cunningham, O. Hamza, and Y. Wilks. How fea-
sible is the reuse of grammars for named entity recognition? In Pro-
ceedings of the 3rd Language Resources and Evaluation Conference, 2002.
http://gate.ac.uk/sale/lrec2002/reusability.ps.

[PS98] R. Pooley and P. Stevens. Software reengineering patterns. Technical report, 1998.

[SAd+07] M. Sabou, S. Angeletou, M. dAquin, J. Barrasa, K. Dellschaft, A. Gangemi, J. Lehman,
H. Lewen, D. Maynard, D. Mladenic, M. Nissim, W. Peters, V. Presutti, and B. Villazón.
Selection and integration of reusable components from formal or informal specifications.
Technical report, NeOn project deliverable D2.2.1, 2007.

[Sch05] Karin Kipper Schuler. VerbNet: A broad-coverage, comprehensive verb lexicon. PhD thesis,
University of Pennsylvania, 2005.

[SFBG+07] M. C. Suárez-Figueroa, S. Brockmans, A. Gangemi, A. Gómez-Pérez, J. Lehmann,
H. Lewen, V. Presutti, and M. Sabou. Neon modelling components. Technical report,
NeOn project deliverable D5.1.1, 2007.

[SFdCB+08] M.C. Suárez-Figueroa, G. Aguado de Cea, C. Buil, K. Dellschaft, M. Fernández-López,
A. García-Silva, A. Gómez-Pérez, G. Herrero, E. Montiel-Ponsoda, M. Sabou, B. Villazón-
Terrazas, and Z. Yufei. NeOn Methodology for Building Contextualized Ontology Networks.
Technical report, NeOn project deliverable D5.4.1, 2008.

[SFGP08] M.C. Suárez-Figueroa and A. Gómez-Pérez. Towards a Glossary of Activities in the On-
tology Engineering Field. In Proceedings of the 6th Language Resources and Evaluation
Conference (LREC 2008), 2008.

[SLL+04] D. Soergel, B. Lauser, A. Liang, F. Fisseha, J. Keizer, and S. Katz. Reengineering thesauri
for new applications: The agrovoc example. J. Digit. Inf., 4(4), 2004.

[SM07] L. Specia and E. Motta. Integrating folksonomies with the semantic web. In 4th European
Semantic Web Conference, pages 624–639, Innsbruck, Austria, 2007.

[Soe95] D. Soergel. Data models for an integrated thesaurus database. Comatibility and Integration
of Order Systems, 24(3):47–57, 1995.

[SSV02] L. Stojanovic, N. Stojanovic, and R. Volz. A Reverse Engineering Approach for Migrating
Data-intensive Web Sites to the Semantic Web. In Proceedings of the Conference on
Intelligent Information Processing, 2002.

[TGEM07] R. Trillo, J. Gracia, M. Espinoza, and E. Mena. Discovering the semantics of user keywords.
Journal of Universal Computer Science, 13(12):1908–1935, 2007.

[vAGS06] M. van Assem, A. Gangemi, and G. Schreiber. Conversion of WordNet to a standard
RDF/OWL representation. In Proceedings of the Fifth International Conference on Lan-
guage Resources and Evaluation (LREC’06), Genoa, Italy, May 2006.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 124 of 124 NeOn Integrated Project EU-IST-027595

[vAMMS06] M. van Assem, V. Malaisé, A. Miles, and G. Schreiber. A Method to Convert Thesauri to
SKOS. In The Semantic Web: Research and Applications, pages 95–109. 2006.

[vAMSW04] M. van Assem, M. Menken, G. Schreiber, and J. Wielemaker. A method for converting
thesauri to RDF/OWL. In Proceedings of the Third International Semantic Web Conference
(ISWC). Springer, 2004.

[WB97] S.E. Wright and G. Budin, editors. Handbook of terminology management, Basic aspects
of terminology management. John Benjamins Publishing Company, 1997.

[WP94] Z. Wu and M. Palmer. Verb semantics and lexical selection. In 32nd Annual Meeting of the
Association for Computational Linguistics, pages 133 –138, New Mexico, USA, 1994.

[WSWS01] B.J. Wielinga, A. Th. Schreiber, J. Wielemaker, and J.A.C. Sandberg. From thesaurus to
ontology. In K-CAP ’01: Proceedings of the 1st international conference on Knowledge
capture, pages 194–201, New York, NY, USA, 2001. ACM Press.

[YGS07] C. Yeung, N. Gibbins, and N. Shadbolt. Understanding the semantics of ambiguous tags in
folksonomies. In International Semantic Web Conference, Busan, South Korea, 2007.

	Introduction
	WP2 Objectives and Main Tasks
	Deliverable Main Goals and Contributions
	Deliverable Structure
	Relation with the Rest of WPs within the NeOn Project

	State of the Art
	Types of Non-Ontological Resources
	Evaluation Framework
	Characteristics of the Non-ontological Resource
	Characteristics of the Transformation Process
	Characteristics of the Resultant Ontology

	Non-ontological Resource Re-engineering Methods
	Methods Centered on the Non-ontological Resource Type
	Methods Centered in the Non-ontological Resource Implementation
	Comparison of the Methods

	Non-ontological Resource Re-engineering Tools
	Tools Centered in the Non-ontological Resource Type
	Tools Centered in the non-ontological resource implementation
	Comparison of the Tools

	Results and Conclusions
	Results According to Non-ontological Resource
	Results According to Transformation Process
	Results According to the Ontology

	NeOn Method for Re-engineering Non-ontological Resources
	NeOn Method for Re-engineering Non-ontological Resources
	Re-engineering Patterns
	Patterns for Re-engineering Non-Ontological Resources
	General Model for Non-Ontological Resource Re-engineering
	Non-ontological Resources Re-engineering Process

	Methods for Re-engineering Classification Schemes
	Introduction
	Classification Scheme
	Classification Scheme Data Models
	Classification Scheme Implementations

	Patterns for Re-engineering Classification Schemes into Ontologies
	Patterns for Re-engineering Classification Schemes into Taxonomies
	Patterns for Re-engineering Classification Schemes into Lightweight Ontologies

	NeOn Method for Re-engineering Classification Schemes
	Classification Scheme Transformation

	Methods for Re-engineering Thesauri
	Introduction
	Thesaurus Standards
	Components of a Thesaurus
	Types of Thesaurus
	Term-based Thesaurus
	Concept-based Thesaurus
	Thesaurus Data Models
	Thesaurus Implementations

	Patterns for Re-engineering Thesauri into Ontologies
	Patterns for re-engineering Thesauri into Lightweight Ontologies

	NeOn Method for Re-engineering Thesauri
	Thesaurus Transformation

	Method and tool for re-engineering folksonomies
	Semantic Enrichment of Tags with FLOR
	STEP 1: Lexical Processing
	STEP 2: Sense Definition and Semantic Expansion
	STEP 3: Semantic Enrichment
	Example: FLOR Enrichment
	Experiments: Applying FLOR on a Flickr dataset

	Methods and tools for extracting entities from unstructured text
	Introduction
	NE Recognition with GATE and ANNIE
	Ontology population

	Patterns for entity recognition
	Hearst patterns
	Lexico-Syntactic Patterns
	Contextual patterns

	SPRAT application
	Implementation of patterns
	NEBOnE
	Implementation of NEBOnE
	NEBOnE functions

	Evaluation
	Subclass Relations
	Instances
	Synonyms
	Properties

	Discussion
	Further Work

	Conclusions and future work
	Bibliography

