

 NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 — “Semantic-based knowledge and content systems”

D2.1.2 The collaborative ontology design ontology (v2)

Deliverable Co-ordinator: Aldo Gangemi

Deliverable Co-ordinating Institution: Consiglio Nazionale delle Ricerche
(CNR)

Other Authors: Valentina Presutti (CNR)

This deliverable presents a substantial update of the C-ODO ontology design metamodel, called
codolight. Codolight is now linked to requirements and application tasks, has been used for tool
descriptions, aligned to external vocabularies, is lighter in complexity, and improves association
between the social and software layers of ontology design aspects.

Document Identifier: NEON/2007/D2.1.2/v1.0 Date due: February 28th, 2009
Class Deliverable: NEON EU-IST-2005-027595 Submission date: February 28th, 2009
Project start date March 1, 2006 Version: v1.0
Project duration: 4 years State: Final

Distribution: Public

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 2 of 86 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is part of the NeOn research project funded by the IST Programme of the Commission of the
European Communities by the grant number IST-2005-027595. The following partners are involved in the
project:

Open University (OU) – Coordinator Universität Karlsruhe – TH (UKARL)
Knowledge Media Institute – KMi Institut für Angewandte Informatik und Formale
Berrill Building, Walton Hall Beschreibungsverfahren – AIFB
Milton Keynes, MK7 6AA Englerstrasse 11
United Kingdom D-76128 Karlsruhe, Germany
Contact person: Martin Dzbor, Enrico Motta Contact person: Peter Haase
E-mail address: {m.dzbor, e.motta}@open.ac.uk E-mail address: pha@aifb.uni-karlsruhe.de
Universidad Politécnica de Madrid (UPM) Software AG (SAG)
Campus de Montegancedo Uhlandstrasse 12
28660 Boadilla del Monte 64297 Darmstadt
Spain Germany
Contact person: Asunción Gómez Pérez Contact person: Walter Waterfeld
E-mail address: asun@fi.ump.es E-mail address: walter.waterfeld@softwareag.com
Intelligent Software Components S.A. (ISOCO) Institut ‘Jožef Stefan’ (JSI)
Calle de Pedro de Valdivia 10 Jamova 39
28006 Madrid SL–1000 Ljubljana
Spain Slovenia
Contact person: Jesús Contreras Contact person: Marko Grobelnik
E-mail address: jcontreras@isoco.com E-mail address: marko.grobelnik@ijs.si
Institut National de Recherche en Informatique University of Sheffield (USFD)
et en Automatique (INRIA) Dept. of Computer Science
ZIRST – 665 avenue de l’Europe Regent Court
Montbonnot Saint Martin 211 Portobello street
38334 Saint-Ismier, France S14DP Sheffield, United Kingdom
Contact person: Jérôme Euzenat Contact person: Hamish Cunningham
E-mail address: jerome.euzenat@inrialpes.fr E-mail address: hamish@dcs.shef.ac.uk
Universität Kolenz-Landau (UKO-LD) Consiglio Nazionale delle Ricerche (CNR)
Universitätsstrasse 1 Institute of cognitive sciences and technologies
56070 Koblenz Via S. Marino della Battaglia
Germany 44 – 00185 Roma-Lazio Italy
Contact person: Steffen Staab Contact person: Aldo Gangemi
E-mail address: staab@uni-koblenz.de E-mail address: aldo.gangemi@istc.cnr.it
Ontoprise GmbH. (ONTO) Food and Agriculture Organization
Amalienbadstr. 36 of the United Nations (FAO)
(Raumfabrik 29) Viale delle Terme di Caracalla
76227 Karlsruhe 00100 Rome
Germany Italy
Contact person: Jürgen Angele Contact person: Marta Iglesias
E-mail address: angele@ontoprise.de E-mail address: marta.iglesias@fao.org
Atos Origin S.A. (ATOS) Laboratorios KIN, S.A. (KIN)
Calle de Albarracín, 25 C/Ciudad de Granada, 123
28037 Madrid 08018 Barcelona
Spain Spain
Contact person: Tomás Pariente Lobo Contact person: Antonio López
E-mail address: tomas.parientelobo@atosorigin.com E-mail address: alopez@kin.es

D2.1.2 The collaborative ontology design ontology (v2) Page 3 of 86

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this document, even
if they might not have directly contributed to the writing of this document or its parts:

• CNR

Change Log

Version Date Amended by Changes
0.1 27-01-2009 Valentina Presutti Created Outline
0.2 01-02-2009 Aldo Gangemi Filled in Introduction and preliminary de-

scription of sections
0.3 10-02-2009 Valentina Presutti Add section 1.2 and organized overall

structure
0.4 17-02-2009 Valentina Presutti and Aldo

Gangemi
revised chapters introduction, kernel, and
workflows

0.5 19-02-2009 Valentina Presutti and Aldo
Gangemi

introductions of chapters added, formal
descriptions of entities added in chapters
workflows and tools, figures added (draft
sent to QA)

0.7 20-02-2009 Valentina Presutti and Aldo
Gangemi

chapters revised, formal descriptions of
entities added in chapter data, figures re-
vised.

0.8 25-02-2009 Valentina Presutti and Aldo
Gangemi

introduction and kernel revision.

0.9 27-02-2009 Valentina Presutti added formal descriptions in data,
projects and interfaces, added alignment
tables.

1.0 28-02-2009 Valentina Presutti and Aldo
Gangemi

final version

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 4 of 86 NeOn Integrated Project EU-IST-027595

Executive Summary

This deliverable introduces the new light version of C-ODO network of ontologies, called codolight. We
describe codolight modular architecture, each module separately, its alignments to commonly used and
NeOn proper vocabularies, and a summary of its applications that are fully described in D2.3.2.

D2.1.2 The collaborative ontology design ontology (v2) Page 5 of 86

Contents

1 Introduction 11
1.1 Collaborative Ontology Design and C-ODO Light . 12

1.2 Architecture and main modules of codolight . 14

1.3 Conventions for modules description . 17

1.3.1 Notation and prefixes . 17

1.3.2 Figures . 17

2 CODO Kernel: the core concepts 21
2.1 Patterns reused in codolight kernel module . 21

2.2 Entities of codolight kernel module . 22

2.2.1 Knowledge resource . 22

2.2.2 Knowledge type . 23

2.2.3 Ontology element . 23

2.2.4 Ontology . 23

2.2.5 Project . 24

2.2.6 Ontology project . 24

2.2.7 Design workflow . 25

2.2.8 Design rationale . 26

2.2.9 Design solution . 26

2.2.10 Design functionality . 26

2.2.11 Design tool . 27

2.2.12 Design operation . 27

2.2.13 Software engineering pattern . 27

2.2.14 Interface object . 28

2.2.15 Interaction pattern . 28

2.2.16 User type . 28

2.2.17 Needs . 28

2.2.18 Reuses . 29

3 The Data module 30
3.1 Patterns reused in codolight data module . 30

3.2 Entities of codolight data module . 31

3.2.1 Ontology mapping . 31

3.2.2 Ontology module . 32

3.2.3 Networked ontology . 33

3.2.4 Network of ontologies . 33

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 6 of 86 NeOn Integrated Project EU-IST-027595

3.2.5 Ontology library . 34

3.2.6 Ontology axiom . 35

3.2.7 Ontology topic . 35

3.2.8 Data structure . 35

3.2.9 Knowledge Organization System (KOS) . 36

3.2.10 KOS element . 36

3.2.11 Logical language . 37

3.2.12 Encoding syntax . 37

3.2.13 Annotation . 37

3.2.14 Query . 38

3.2.15 Rule . 38

3.2.16 Has networked ontology . 39

3.2.17 Has encoding . 39

3.2.18 Has logical language . 40

3.2.19 Related to ontology . 40

3.2.20 Has version . 40

3.2.21 Is about ontology project . 41

3.3 Axioms extending kernel entities . 41

4 The Projects module 44

4.1 Patterns reused in codolight projects module . 44

4.2 Entities of codolight projects module . 45

4.2.1 Project description . 45

4.2.2 Ontology project execution . 46

4.2.3 Has intended output . 46

4.3 Axioms extending kernel entities . 46

5 The Workflows module 48

5.1 Patterns reused in codolight workflows module . 48

5.2 Entities of codolight workflow module . 49

5.2.1 Workflow description . 49

5.2.2 Collaborative workflow . 50

5.2.3 Accountable agent . 50

5.2.4 NonAccountableAgent . 51

5.2.5 Needs agent . 51

5.2.6 Is involved in the design of . 51

5.2.7 Includes functionality . 52

5.3 Axioms extending kernel entities . 52

6 The Argumentation module 53

6.1 Patterns reused in codolight argumentation module . 53

6.2 Entities of codolight argumentation module . 54

6.2.1 Argument . 54

6.2.2 Argumentation thread . 55

6.2.3 Idea . 56

D2.1.2 The collaborative ontology design ontology (v2) Page 7 of 86

6.2.4 Position . 56

6.2.5 Motivates . 57

6.2.6 Supports . 57

7 The Solutions module 58
7.1 Entities of codolight solutions module . 58

7.1.1 Ontology requirement . 58

7.1.2 Competency question . 59

7.1.3 Ontology design pattern . 60

7.1.4 Unit test . 60

7.1.5 Fits . 60

7.1.6 Applies . 60

7.2 Axioms extending kernel entities . 61

8 The Tools module 62
8.1 Entities of codolight tools module . 62

8.1.1 Technique . 62

8.1.2 Piece of software . 63

8.1.3 Ontology application task . 64

8.1.4 Programming language . 64

8.1.5 Code entity . 65

8.1.6 Has input type . 65

8.1.7 Has output type . 65

8.1.8 Applies technique . 66

8.1.9 Applies code . 66

8.1.10 Has output data . 66

8.1.11 Has input data . 66

8.1.12 Implements . 67

8.1.13 Has user type . 67

8.1.14 Applies pattern . 68

8.1.15 Has programming language . 68

8.1.16 Includes capability . 68

8.2 Axioms extending kernel entities . 69

9 The Interfaces module 71
9.1 Entities of codolight interfaces module . 71

9.1.1 Interface object type . 71

9.1.2 Button and Widget . 72

9.1.3 Interface object attribute . 73

10 The Interaction module 74
10.1 Entities of codolight interaction module . 74

10.1.1 Slideshow . 75

10.1.2 Computational design task . 76

10.2 Axioms extending kernel entities . 76

10.3 Extending axioms for codkernel:SoftwareEngineeringPattern 76

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 8 of 86 NeOn Integrated Project EU-IST-027595

10.4 Extending axioms for codkernel:InteractionPattern 77

11 Alignments 78
11.1 Alignments to OWL . 78

11.2 Alignment to OMV . 79

11.3 Alignment to DOAP . 79

11.4 Alignment to Access Rights model . 80

11.5 Alignment to Sweet Tools model . 81

11.6 Alignments to Protégé workflow model . 81

11.7 Alignment to Software Ontology Model . 81

12 Conclusion and remarks 84

Bibliography 85

D2.1.2 The collaborative ontology design ontology (v2) Page 9 of 86

List of Tables

1.1 Prefixes used in place of namespaces for codolight proper modules. 17

1.2 Prefixes used in place of namespaces for Content Ontology Design Patterns. 18

1.3 Prefixes used in place of namespaces for external vocabularies. 18

11.1 Prefixes used for the aligned ontologies. 78

11.2 Alignments between codolight and OWL . 79

11.3 Alignments between OWL 1 and codolight. 79

11.4 Alignments between OWL 2 and codolight entity. 80

11.5 Alignments between OMV classes and codolight classes. 80

11.6 Alignments between OMV properties and codolight properties. 81

11.7 Alignments between Description Of A Project (DOAP) classes and codolight classes. 81

11.8 Alignments between Description Of A Project (DOAP) properties and codolight properties. . . . 82

11.9 Alignments between Access Rights classes and codolight classes. 82

11.10Alignments between Access Rights properties and codolight properties. 83

11.11Alignments between Sweet Tools ontology and codolight. 83

11.12Alignments between Protégé Workflow classes and codolight classes. 83

11.13Alignments between Protégé Workflow properties and codolight properties. 83

11.14Alignments between Software Ontology Model (SOM) and codolight. 83

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 10 of 86 NeOn Integrated Project EU-IST-027595

List of Figures

1.1 The codolight network. 13

1.2 The pattern layer in the codolight network. 13

1.3 The core layer in the codolight network. 14

1.4 The plugin layer in the codolight network, with imports from codolight library and from align-
ments to external vocabularies. 14

1.5 The dashboard layer in the codolight network. 15

1.6 The alignment layer in the codolight network: external vocabularies are aligned to codolight
library. 15

1.7 The vocabulary for the class DesignTool in codolight. 15

1.8 The codolight network corolla architecture. 16

2.1 A simple graph of ontology elements from codolight kernel module. 22

3.1 An example of a codolight description for knowledge resources in the context of the “Open
Rating System” tool as described in [PPG+09]. 31

3.2 A simple graph of ontology elements from codolight data module. 32

4.1 A simple graph of ontology elements from codolight projects module. 45

5.1 A simple graph of ontology elements from codolight workflows module. 49

6.1 A simple graph of ontology elements from codolight argumentation module. 54

7.1 A simple graph of ontology elements from codolight solutions module. 59

8.1 A simple graph of ontology elements from codolight tools module. 63

9.1 A simple graph of ontology elements from codolight interfaces module. 72

10.1 A simple graph of ontology elements from codolight interaction module. 75

10.2 Matching requirements and tools through interaction pattern specification. 76

D2.1.2 The collaborative ontology design ontology (v2) Page 11 of 86

Chapter 1

Introduction

When the first version of C-ODO was developed in 2006 [GLP+07], not much had been developed in order
to model ontology design requirements and descriptions. As of today, this is still true, although at least one
attempt [SNTM08] has been made to model ontology engineering workflows, partly by reusing the basic
approach of C-ODO.

C-ODO is a set of ontologies that attempt to provide a vocabulary to talk about ontology design requirements
and descriptions. When dealing with ontology design, however, most of the activities are carried out with the
help of software tools, so that the worlds of ontology design and software design have a reasonable overlap,
which goes well beyond the need of good software tools in order to perform good ontology design.

As the recent history of the Web of Data shows, the development of RDF datasets, their reengineering
practices, the usage of OWL vocabularies to reason on them, and now also their visualization and interaction
aspects are partly interrelated, and while becoming prominent, they largely overlap web design aspects.

Similarly, we found that few advancements can be made for boosting the creation and usage of elegant, effi-
cient, and practical ontologies, if few attention is given to a healthy analysis of design activities, requirements,
and the relations between human ontology design, and ontology design tools.

It is no surprise then that after the first release of C-ODO in 2006 [CGL+06, GLP+07], which was focused
on describing the practices of ontology design as a mainly human-centered set of activities, we started
realizing that more effort should be involved in describing the actual pieces of software that accompany
those activities, and the actual data (“knowledge types”) that are managed computationally in order to create,
maintain, and annotate an ontology or a network of ontologies. In the first release we had already discussed
the differences and complementarity between “social” and “computational” aspects of ontology design. The
ontology developed at that time was however limited on the computational side. This time, we have tried
to allow correspondences for each pair of aspects, e.g. ontology projects (social side) are associated with
(digital) projects, like Eclipse or SourceForge ones; workflow/planning (social side) can be specialized as a
computational workflow; conceptual requirements and conceptual solutions (social side) can be expressed
as competency questions/queries respectively ontology design patterns (computational side).

This deliverable presents the results of the new developments on C-ODO Light (codolight hereafter), lever-
aging its application to the description of several design tools developed in NeOn as plugins to the NeOn
Toolkit. The deliverable also introduces the alignments made between codolight and several commonly used
and newly proposed ontologies that are related to ontology design.

Tool descriptions and alignments have played the role of “use cases” for codolight, helping its design a
lot. One use case has in particular speeded up codolight design: the development of the Kali-ma tool
[PPG+09], which is supposed to provide new ways of composing implemented ontology design functionalities
(“capabilities”) according to explicit design needs. Kali-ma is being developed as a programmatical realization
of codolight in a distributed space of ontology design tools.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 12 of 86 NeOn Integrated Project EU-IST-027595

1.1 Collaborative Ontology Design and C-ODO Light

Codolight takes into account new ontology requirements that make it departing from the original C-ODO.
These requirements have been acquired from experience in modeling tool descriptions, in alignments to
existing vocabularies, and after user feedback:

1. Ability to formalize ontology design tool descriptions in terms of input/output data (knowledge types),
functionalities, interface objects and interaction patterns

2. Smooth integration between human-oriented and tool-oriented descriptions of ontology design aspects

3. Alignment to existing vocabularies such as DOAP, OMV, etc.

4. Lighter axiomatization (e.g. no anonymous classes in restrictions)

5. Modular development according to pattern-based design, which reuses the ontologydesignpatterns.org
practices

Besides ontology requirements, we have also addressed several ontology application tasks that codolight is
supposed to help achieving:

i Browsing semantic data about ontology projects, tools, data, repositories, solutions, discussions, eval-
uations, etc.

ii Searching and selecting design components based on design aspects, knowledge types, individual
needs, user profiles, etc.

iii Creating design configuration interfaces that help/automatize the previous task

iv Help collecting ontology requirements, design functionalities, and ontology application tasks for an
ontology project

v Providing a shared network of vocabularies to create/query/reason on annotations and data related
to ontology projects, including integration between annotations that have heterogeneous provenance,
like in annotations coming from collaborative discussions, mixed with annotation produced by change
management.

Part of these tasks are being implemented within NeOn in the Kali-ma tool (see [PPG+09]).

The C-ODO Light network of ontologies (Fig. 1.1) is currently organized according to a 5-layer architecture:

Pattern layer : it contains reusable content ontology design patterns (Content ODP) [PG08] that include
e.g. sequence, partof, situation, collectionentity, etc. The patterns (Fig. 1.2) are reused in the design
of the ontologies constituting the “corolla” architecture of codolight.

Core codolight layer : it contains the nine modules of the codolight core network of ontologies, organized
as in a corolla, with codkernel module in the center, and the modules: coddata, codprojects, codwork-
flows, codarg, codsolutions, codtools, codinterfaces, and codinteraction importing codkernel (Fig. 1.3).

Plugin layer : it consists of the modules containing the descriptions of the NeOn plugins related to ontology
design, formalized in OWL by reusing the codolight vocabulary and some of the alignment modules
(Fig. 1.4).

Dashboard inference layer : it consists of the modules containing the definition of the design aspects
according to which tools, knowledge types, and functionalities are organized, as well as the closure of
inferences derived from the reasoners applied to the previous layers (Fig. 1.5).

D2.1.2 The collaborative ontology design ontology (v2) Page 13 of 86

Figure 1.1: The codolight network.

Figure 1.2: The pattern layer in the codolight network.

Alignment layer : it consists of the modules containing mapping axioms between codolight and related

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 14 of 86 NeOn Integrated Project EU-IST-027595

Figure 1.3: The core layer in the codolight network.

Figure 1.4: The plugin layer in the codolight network, with imports from codolight library and from alignments
to external vocabularies.

vocabularies, currently: OMV, DOAP, FOAF, NeOn Access Rights ontology, NeOn OWL1.0 metamodel,
NeOn OWL2 metamodel, the RDF-OWL datamodel, and the SweetTools vocabulary (Fig. 1.6).

The transitive closure of all modules in the five layers is loadable through the OWL ontology:
http://www.ontologydesignpatterns.org/cpont/codo/allcodomappings.owl, which only contains owl:import ax-
ioms.

A relevant fragment of codolight is depicted in Fig. 1.7.

1.2 Architecture and main modules of codolight

Codolight ontology network encodes the main aspects of ontology design by following an architectural on-
tology design pattern called corolla. The corolla pattern suggests an overall (externally observable) shape
for the network composed of a kernel module, which includes the definition of core concepts of the domain
of interest, and a set of petal modules, each defining a specific aspect of the domain of interest. The kernel
module defines core concepts, shared by all aspects and is imported by all petal modules. Petal modules

D2.1.2 The collaborative ontology design ontology (v2) Page 15 of 86

Figure 1.5: The dashboard layer in the codolight network.

Figure 1.6: The alignment layer in the codolight network: external vocabularies are aligned to codolight
library.

Figure 1.7: The vocabulary for the class DesignTool in codolight.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 16 of 86 NeOn Integrated Project EU-IST-027595

Figure 1.8: The codolight network corolla architecture.

refine the axiomatization of at least one of the core concepts, i.e. they add detail for at least one aspect.
The corolla pattern allows to minimize dependencies between different modules of an ontology network; i.e.
modules are loosely coupled, and suggests an organization of the network, by which different aspects of the
domain of interest are represented by each petal module.
The general competency question for a corolla-based ontology network can be the following: what are the
main aspects of the domain described by the ontology network?
In the case of codolight the following petal modules are defined, as depicted in Figure 1.8:

Data. This module, detailed in chapter 3, contains the main notions classifying the data managed when
designing an ontology: ontologies, ontology elements, Knowledge Organization Systems (KOS), KOS ele-
ments, rules, modules, encoding syntaxes, etc. For each class of knowledge resources, a knowledge type
instance is provided. This module has a greater detail compared to the original C-ODO one

Project. This module, detailed in chapter 4, contains the minimal vocabulary for representing ontology
design projects and their executions. An ontology project is here taken as a social entity, whose computational
counterpart (e.g. a “project” created in the NeOn Toolkit) is a software entity that collects resources and
descriptions related to an ontology project. This module has a minor detail compared to the original C-ODO
one

Workflows. This module, detailed in chapter 5, contains classes and properties to represent workflows
from within ontology projects: collaborative workflows, accountable agents, need for an agent or a design
functionality, etc. This module has a minor detail compared to the original C-ODO one, where the main focus
was on talking about workflow collaboration types

Argumentation. This module, detailed in chapter 6, contains the basic classes and properties to represent
argumentation concepts: arguments, threads, ideas, positions, rationales, etc. Also here, the module has a
minor detail compared to the original C-ODO one

Solutions. This module, detailed in chapter 7, contains classes and properties to represent ontology design
solutions: competency questions, ontology design patterns, ontology requirements, unit tests, etc. This
module has a greater detail compared to the original C-ODO one

D2.1.2 The collaborative ontology design ontology (v2) Page 17 of 86

Tools. This module, detailed in chapter 8, contains classes and properties to represent ontology design
tools: tools, pieces of code, code entities, computational tasks, input and output data relations, etc. This
module has a much greater detail compared to the original C-ODO one

Interaction. This module, detailed in chapter 10, contains classes and properties that represent some
typical interaction entities: user types, computational tasks and workflows, etc. This moduleis totally new
with respect to the original C-ODO library

Interfaces. This module, detailed in chapter 9, contains classes and properties that represent some typical
interface entities: interface objects, panes, windows, etc. This module is totally new with respect to the
original C-ODO library.

1.3 Conventions for modules description

In the following chapters we describe in detail codolight modules. For each module, we describe what content
patterns have been reused as building blocks, what entities and axioms the module defines locally, and what
relations, if any, the module has with the other codolight petals. In this section, we define the conventions
that are used in the next chapters.

1.3.1 Notation and prefixes

First of all we use the n3 (“turtle”) notation [BLC08] for describing the formal definition of entities and for
any additional axioms asserted in a module. In a specific module, the entities defined locally have no prefix,
while the entities defined externally have a prefix according to tables 1.1, 1.2, and 1.3. For example, the
class Ontology is referred to in the kernel module without any prefix because it is defined locally, while the
same class in the data module is referred with the prefix data: because it is externally defined with respect
to that module.

Table 1.1: Prefixes used in place of namespaces for codolight proper modules.
prefix namespace

coddata: http:www.ontologydesignpatterns.orgcpontcodocoddata.owl#
codkernel: http:www.ontologydesignpatterns.orgcpontcodocodkernel.owl#

codprojects: http:www.ontologydesignpatterns.orgcpontcodo.owl#
codworkflows: http:www.ontologydesignpatterns.orgcpontcodo.owl#

codargumentation: http:www.ontologydesignpatterns.orgcpontcodo.owl#
codsolutions: http:www.ontologydesignpatterns.orgcpontcodo.owl#

codtools: http:www.ontologydesignpatterns.orgcpontcodo.owl#
codinterfaces: http:www.ontologydesignpatterns.orgcpontcodo.owl#
codinteraction: http:www.ontologydesignpatterns.orgcpontcodo.owl#

1.3.2 Figures

Diagrams for each codolight module and for each alignment module are provided by using a new graph-
based ontology visualization approach, which is briefly explained later in this sectionİ. The reason for the
use of a new approach is the substantial lack of intuitive graphic visualization patterns for concept-level
associations within ontologies. Existing tools cover the matter with many different solutions, and most of
them can be grouped under four grossly defined classes. The intent of this classification, which is by no

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 18 of 86 NeOn Integrated Project EU-IST-027595

Table 1.2: Prefixes used in place of namespaces for Content Ontology Design Patterns.
prefix namespace

descriptionandsituation: http:www.ontologydesignpatterns.orgcpowldescriptionandsituation.owl#
representation: http:www.ontologydesignpatterns.orgcpowlinformationobjectsandrepresentationlanguages.owl#

taskexecution: http://www.ontologydesignpatterns.org/cp/owl/taskexecution.owl#
topic: http:www.ontologydesignpatterns.orgcpowltopic.owl#

objectrole: http:www.ontologydesignpatterns.orgcpowlobjectrole.owl#
classification: http:www.ontologydesignpatterns.orgcpowlclassification.owl#
description: http:www.ontologydesignpatterns.orgcpowldescription.owl#
agentrole: http:www.ontologydesignpatterns.orgcpowlagentrole.owl#
taskrole: http:www.ontologydesignpatterns.orgcpowltaskrole.owl#

intensionextension: http:www.ontologydesignpatterns.orgcpowlintensionextension.owl#
situation: http:www.ontologydesignpatterns.orgcpowlsituation.owl#

partof: http:www.ontologydesignpatterns.orgcpowlpartof.owl#
sequence: http:www.ontologydesignpatterns.orgcpowlsequence.owl#
collection: http:www.ontologydesignpatterns.orgcpowlcollectionentity.owl#

place: http:www.ontologydesignpatterns.orgcpowlplace.owl#

Table 1.3: Prefixes used in place of namespaces for external vocabularies.
prefix namespace
xsd: http:www.w3.org2001XMLSchema#
rdfs http:www.w3.org200001/rdf-schema#
owl: http:www.w3.org200207/owl#

means exhaustive, is to explicitate the choices with respect to what graph should be visualized of an ontology
content, and why we chose a custom one:

1. RDF visualizers: an OWL-RDF graph is not filtered, and all its triples are visualized as node-edge-node
visual constructs. A typical example is RDF Gravity1, which however provides very nice filtering options
for hiding parts of the graph.

2. Partial-order visualizers: an OWL-RDF graph is here filtered so that only rdfs:subClassOf triples
between owl:Class instances are retained, usually filtering out also owl:Restriction in-
stances. The most frequent visual semantics assumes that nodes represent owl:Class instances,
and edges (labeled or not) represent rdfs:subClassOf instances. A typical example of this group
is OWLViz 2. In some cases, the approach is used to visualize taxonomies of properties other than
rdfs:subClassOf.

3. RDFS visualizers: an OWL-RDF graph is here filtered so that (typically) rdfs:subClassOf triples
between owl:Class instances are retained (and represented similarly to taxonomy visualizers),
while rdfs:domain and rdfs:range axioms are retained, but transformed into edges between
the domain class and the range class, labeled with the rdfs:Property name. All the other ax-
ioms/triples are filtered out (except disjointFrom in some cases). A typical example is TGViz.

4. DL visualizers: an OWL-RDF graph is not filtered out, but different visual semantics are exploited
in order to visualize all description logic constructs present in the graph. For example, Top Braid
Composer 3 has a diagrammatic tool that used an OWL profile for UML, which e.g. represents
owl:Restriction instances as UML objects.

1http://semweb.salzburgresearch.at/apps/rdf-gravity/index.html
2http:protegewiki.stanford.eduindex.phpOWLViz
3http:www.topquadrant.comproductsTB_Suite.html

D2.1.2 The collaborative ontology design ontology (v2) Page 19 of 86

Each approach in the list has severe problems for the intuitiveness of the visualization. Plain RDF visu-
alizers make very difficult to single out the core content of an ontology, and filtering requires much effort.
Partial-order and RDFS visualizers miss a lot of important information that characterizes and ontology, e.g.
owl:Restriction instances. DL visualizers do not miss any information, but visual semantics mirrors
description logics datamodel, which is not very intuitive for the average expert that wants to make sense of
the basic structure of an ontology.
At least one tool, the Ontology Visualization4 plugin for the NeOn Toolkit5, tries to get an intuitive visualization
semantics for domain experts by defining appropriate rules (hard-coded):

• Root Node (Red): A starting node, selected in Ontology Navigator.

• Mandatory Node (Blue): A node that has direct relations to an ontology node, and belongs to the same
ontology as the Root Node.

• Import Node (Light blue): A node that has relations to an ontology node, and does not belong to the
same ontology as the Root Node.

• Inherit Node (Light brown): A node that has relations to the parents of an ontology node.

The effect is much better in general, but yet we cannot customize the graph to be visualized, because
the rules are not changeable. For example, the relations are taken only from the domains and ranges of
properties, but not from the restrictions declared for the root class or one of its parents, and one cannot
change this setting. if customizable, this kind of simple graphs for intuitive OWL visualization would be
satisfactory.
In order to overcome those problems, we have defined an approach, based on SPARQL CONSTRUCT
queries, which retains all the relevant information characterizing core parts of an ontology. It consists in
firstly running a filtering query (this one worked well for this ontology project, but different ones can be written
for different requirements and visualization detail):

CONSTRUCT { ?subject1 ?subject2 ?subject3 }
WHERE
{
{ ?subject1 rdf:type owl:Class .
?subject1 rdfs:subClassOf owl:Thing }

UNION
{
{ ?subject2 rdf:type owl:ObjectProperty }
UNION

{ ?subject2 rdf:type owl:DataProperty }
}
UNION
{ ?subject2 rdfs:domain ?subject1 .
?subject2 rdfs:range ?subject3 .}

UNION
{ ?subject1 rdfs:subClassOf ?z .

?z owl:onProperty ?subject2 .
?z owl:someValuesFrom ?subject3 }

UNION
{ ?subject1 rdfs:subClassOf ?z .

?z owl:onProperty ?subject2 .
?z owl:minCardinality ?q .

4http://www.neon-toolkit.org/wiki/index.php/Plugin_for_OWL_Ontology_Visualization
5http://www.neon-toolkit.org

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 20 of 86 NeOn Integrated Project EU-IST-027595

?subject2 rdfs:range ?subject3 }
UNION
{ ?subject1 rdfs:subClassOf ?z .

?z owl:onProperty ?subject2 .
?z owl:cardinality ?q .
?subject2 rdfs:range ?subject3 }

}

Secondly, the resulting triples are asserted in a separate RDF graph.
Thirdly, the graph is visualized with a good RDF visualizer, in this case RDF Gravity 6. Visual semantics is
owl:Class for nodes, and rdfs:Property or rdf:subClassOf for edges (red vs. blue). In some
figures, we also have triangle nodes for individuals.
Fourthly, the visualization on RDF Gravity is filtered manually for fine-tuning.
All the graphs visualized in the next sections have been produced with this approach. They lack full DL
semantics (because e.g. cardinality is not visualizable in RDF Gravity), but the converse advantage is to get
an intuitive and compact visualization of the entities in the ontologies, similar to concept maps. However,
figures are always accompanied by actual OWL code in N3 encoding.

6http:semweb.salzburgresearch.atappsrdf-gravity

D2.1.2 The collaborative ontology design ontology (v2) Page 21 of 86

Chapter 2

CODO Kernel: the core concepts

The Kernel1 module of codolight defines core entities of the ontology network, the core vocabulary of on-
tology design. It only contains the main classes of codolight, that are aligned to content ontology design
patterns that have been used as its building blocks.
Core entities represent the concepts that the other petals share by including this module. Each petal details

a specific aspect of ontology design by exploiting the core concepts defined in the kernel, without the need of
depending on other petals. By means of its classes, the kernel module traverses all core aspects of ontology
design. Informally, the situation of an ontology design team approaching the design of an ontology can be
described as follows: there is a set of knowledge resources about a certain domain i.e. data, available to
the designer team. Such data have to be analyzed to the aim of producing design solutions. The designer
team creates an ontology project, organized by means of workflows including discussions and evaluations.
Hence, at least a very simple argumentation model is actually performed in any ontology project: a person
has a certain position about an idea (data and/or solution), which is supported by some motivation i.e. its
design rationale. The goal is either to produce or find (reuse) solutions. The whole situation and its parts can
be supported by specific tools.
The codolight kernel covers the basics of such situation’s vocabulary by defining the following entities.

2.1 Patterns reused in codolight kernel module

The kernel module of codolight has been built by reusing the following Content Ontology Design Patterns
(CPs) as building blocks [PG08, PGGPF07].

Description and situation. This CP represents conceptualizations i.e., descriptions, and corresponding
groundings i.e., situations. The pattern is extracted from DOLCE+DnS Ultralite2 by partial cloning of ele-
ments, and is composed of three other CPs: description, situation, and classification.

Information objects and representation languages. This CP represents possible types of representation
languages and the respective information objects that can be represented by them. It is the composition of
and specializes the intension extension and the part of CPs.

Task execution. This CP represents actions through which tasks are executed. It allows designers to make
assertions on roles played by agents without involving the agents that play that roles, and vice versa. It allows
to express neither the context type in which tasks are defined, not the particular context in which the action is
carried out. Moreover, it does not allow to express the time at which the task is executed through the action
(for actions that do not solely executed that certain task).

1http://www.ontologydesignpatterns.org/cpont/codo/codkernel.owl
2http://www.ontologydesignpatterns.org/ont/dul/DUL.owl

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 22 of 86 NeOn Integrated Project EU-IST-027595

Figure 2.1: A simple graph of ontology elements from codolight kernel module.

Topic. This CP represents relation between things such as documents and their topic. It also represents
typical relationships between topics, and between concepts and topics. Here a concept is conceptualized as
a social objects, while a topic has a semiotic notion, and can be a collection of concepts.
The class encoding the conceptualization of a concept is defined in other CPs that are involved in the
codolight ontology network, hence the following alignment axioms are included in this module.

Alignment axioms

classification:Concept
owl:equivalentClass description:Concept , topic:Concept .

For further details on the above mentioned CPs, please refer either to [PGGPF07] or the web portal of
ontology design patterns3.
Please note that, such CPs can be in turn composed by other CPs, hence in codolight modules possible
entities defined in additional CPs can be found. In those cases we will briefly introduce the entity reused and
refer to CP where it is defined4.

2.2 Entities of codolight kernel module

The following entities are defined in this module.

2.2.1 Knowledge resource

The class KnowledgeResource represents knowledge objects used as resources in an ontology project.
Examples of knowledge resources are ontologies, thesauri, etc.

Formal definition.

:KnowledgeResource
a owl:Class ;
rdfs:subClassOf intensionextension:InformationObject .

Such class is defined as a sub-class of intensionextension:InformationObject, a class of the
CP “intension extension”, representing a piece of information, such as a musical composition, a text, a word,
a picture, independently from how it is concretely realized.

3http://www.ontologydesignpatterns.org
4All CPs are available for download, the URI identifying their namespaces and listed in table 1.2 are also resolvable and allow

any user to download the owl file.

D2.1.2 The collaborative ontology design ontology (v2) Page 23 of 86

2.2.2 Knowledge type

The class KnowledgeType identifies types of knowledge resources. It is used as the reification of the
intension for any class of knowledge resources. Within codolight, knowledge types are very relevant, because
they are used to annotate tools, workflows and functionalities with input and output types, to obtain awareness
of design aspects covered by design tools, and finally to determine what kind of annotations are maintained
across the ontology design lifecycle.

Formal definition.

:KnowledgeType
a owl:Class ;
rdfs:subClassOf classification:Concept> .

The class KnowledgeType is formally defined as a sub-class of classification:Concept defined
in the CP classification and aligned to other classes as explained in section 2.1. A concept is a social object,
and is defined in some description.

2.2.3 Ontology element

The class OntologyElement represents (identified) elements from an ontology.

Formal definition.

:OntologyElement
a owl:Class ;
rdfs:subClassOf representation:FormalExpression , :KnowledgeResource ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty partof:isPartOf ;
owl:someValuesFrom :Ontology

] .

The class OntologyElement is formally defined as sub-class of :KnowledgeResource, defined in
section 2.2.1, and representation:FormalExpression, which is a class entity of the CP “informa-
tion objects and representation languages”. representation:FormalExpression represents any
information object represented in a formal language, usually having a formal interpretation, and used to for-
mally represent any entity. Additionally, an ontology element is part of an ontology; the class Ontology is
defined in section 2.2.4. The relation partof:isPartOf is defined in the CP “part of”, which represents
a transitive relation expressing parthood between any entities, e.g. “brain is a part of the human body”.

2.2.4 Ontology

In this context, an ontology is conceptualized as a (usually complex) typed formal expression, which can be
realized either analogically or as a non-executable digital object. An ontology is a typed logical theory, i.e. its
characteristic elements are named after a non-logical vocabulary. Ontology is taken here independently from
a particular logical language, but excludes languages that do not have a formal semantics (e.g. folksonomies,
lexicons, thesauri).

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 24 of 86 NeOn Integrated Project EU-IST-027595

Formal definition.

:Ontology
a owl:Class ;
rdfs:subClassOf representation:FormalExpression , :KnowledgeResource ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty topic:hasTopic ;
owl:someValuesFrom topic:Topic

] .

In codolight, the class of ontologies is a sub-class of representation:FormalExpression and
:KnowledgeResource, and it has some associated topic. The class topic:Topic, representing a
subject, argument, domain, theme, subject area, etc., and the relation topic:hasTopic that associates
anything that can have a topic with the topic itself, come from the CP topic.

2.2.5 Project

Here a project is conceptualized as it is intended in ontology engineering, softwate engineering tools, or in
an open source platform such as Sourceforge. In the context of codolight, a project collects all data related
to an ontology project.

Formal definition.

:Project
a owl:Class ;
rdfs:subClassOf owl:Thing , :KnowledgeResource .

Formally, a project is a knowledge resource.

2.2.6 Ontology project

The class OntologyProject represents any project that aims to manage the lifecycle of an ontology. As
all projects, ontology projects inherit the typical characteristics and constraints of projects: teams, persons,
schedules, time, funding, strategical considerations, etc.

Formal definition.

:OntologyProject
a owl:Class ;
rdfs:subClassOf description:Description ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty partof:hasPart> ;
owl:someValuesFrom :DesignWorkflow

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty :needs ;
owl:someValuesFrom agentrole:Agent>

] ;

D2.1.2 The collaborative ontology design ontology (v2) Page 25 of 86

rdfs:subClassOf
[a owl:Restriction ;

owl:onProperty :reuses ;
owl:someValuesFrom :KnowledgeResource

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty :needs ;
owl:someValuesFrom :DesignFunctionality

] .

In codolight, an ontology project is a description that needs some agent and some design functionality (see
section 2.2.10). A description, defined by the class description:Description in the CP description,
represents a conceptualization; it can be thought also as a “descriptive context” that defines concepts in order
to see a “relational context” out of a set of data or observations. The class agentrole:Agent, from the
CP agent role, represents any agentive object, either physical, or social. Furthermore, an ontology project
reuses some knowledge resource (see section 2.2.1) and includes, as its part, some design workflows (see
section 2.2.7). Relations needs, and reuses are defined in sections 2.2.17 and 2.2.18, respectively.

2.2.7 Design workflow

The class DesignWorkflow represents any workflow that guides the interaction between ontology de-
signers.

Formal definition.

:DesignWorkflow
a owl:Class ;
rdfs:subClassOf description:Description ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty :needs ;
owl:someValuesFrom agentrole:Agent>

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty :reuses ;
owl:someValuesFrom :KnowledgeResource

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty :needs ;
owl:someValuesFrom :DesignFunctionality

] .

DesignWorkflow is defined in terms of the classes agentrole:Agent and
description:Description. Specifically, a DesignWorkflow is a description that “needs” some
agent, meaning that some agent has to be involved in its description. Additionally, a DesignWorkflow
“needs” also some DesignFunctionality and “reuses” some KnowledgeResource. The concepts
of DesignFunctionality and KnowledgeResource are defined in sections 2.2.10 and 2.2.1
respectively.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 26 of 86 NeOn Integrated Project EU-IST-027595

2.2.8 Design rationale

Design rationales are the principles behind the motivations underlying design making, involving design oper-
ations, patterns, and rational agents (the designers). An argument (see chapter 6) is usually an application
of a design rationale.
Ontology design rationales typically include different types of semantics (extensional, intensional, lin-
guistic, approximate, etc.), best practices, etc. For example, when argumenting about the sub-
class axiom: EuropeanCountry rdfs:subClassOf (hasTerritory all (hasLocation
Europe)), someone can have a negative position motivated by the counterexample argument: “Turkey
is a European country but has territories outside Europe”. This argument is motivated by the design ra-
tionale: “extensional semantics”, by which all instances of a class must have the properties asserted as
axioms for the class. Notice that a different rationale, e.g. “approximate semantics”, might support the axiom,
although this may lead to inconsistencies when a crisp OWL reasoner is applied to the ontology.

Formal definition.

:DesignRationale
a owl:Class ;
rdfs:subClassOf description:Description .

In the context of the kernel module, the class DesignRationale is defined as sub-class of
description:Description.

2.2.9 Design solution

The class DesignSolution represents structural situations (states) of a (part of an) ontology, which
include only formal expressions and their relations. For example, the occurrence of a rdfs:subClassOf
axiom (which is an ontology entity) and its elements, as included in a design solution complying to the OWL
Macro: “subClassOf an intersection between a Class and a Restriction”, where OWL Macros are ontology
design patterns. Notice that not all states of an ontology or its parts are design solutions.

Formal definition.

:DesignSolution
a owl:Class ;

rdfs:subClassOf situation:Situation .

Such class is formally defined as sub-class of situation:Situation, a class of the CP situation, rep-
resenting a view on a set of entities. It can be seen as a “relational context”, reifying a relation. For example,
the execution of a plan is a context including some actions executed by agents according to certain parame-
ters and expected tasks to be achieved from a plan; a diagnosed situation is a context of observed entities
that is interpreted on the basis of a diagnosis, etc.

2.2.10 Design functionality

An ontology design functionality is considered here as a task to be performed within an ontology project,
e.g. an “evaluation” functionality. Not all functionalities are expected to be types of specific design operations
i.e.they can involve more than one type, neither computational tasks i.e. functionalities that are implemented
in a tool.

D2.1.2 The collaborative ontology design ontology (v2) Page 27 of 86

Formal definition.

:DesignFunctionality
a owl:Class ;
rdfs:subClassOf taskrole:Task .

It can be noticed, in its formal definition, that DesignFunctionality is a sub-class of
taskrole:Task, a class of the CP task role identifying a piece of work to be done or undertaken. A
task is assigned to only roles, such as UserType instances.

2.2.11 Design tool

The class DesignTool represents a tool that implements ontology design functionalities. It has at least
one input type, a user type, implements at least one functionality, with at least one interaction pattern.

Formal definition.

:DesignTool
a owl:Class ;
rdfs:subClassOf objectrole:Object> .

In the context of this module, a design tool is formally defined as an object, in terms of the class
objectrole:Object of CP object role.

2.2.12 Design operation

The class DesignOperation represents actions carried out to accomplish some required functionality.
Design operations are the prominent entities in a design making situation. In the requirement-specification-
implementation cycle, ideally, each design operation should be performed, assisted, or represented by a
computational operation.

Formal definition.

:DesignOperation
a owl:Class ;
rdfs:subClassOf taskexecution:Action .

In this context, the class DesignOperation is formally defined as sub-class of
taskexecution:Action. The latter is a class defined in the CP task execution and represents
events with at least one agent that participates in it, and that executes a task that typically is defined in a
plan, workflow, project, etc.

2.2.13 Software engineering pattern

The class SoftwareEngineeringPattern represents general reusable solutions to commonly occur-
ring problems in software design.

Formal definition.

:SoftwareEngineeringPattern
a owl:Class ;
rdfs:subClassOf description:Description .

In this context, a software engineering pattern is formally defined as a description.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 28 of 86 NeOn Integrated Project EU-IST-027595

2.2.14 Interface object

The class InterfaceObject identifies the visual elements of a graphical user interface (GUI).

Formal definition.

:InterfaceObject
a owl:Class ;
rdfs:subClassOf representation:IconicObject .

The class is formally described in this context as a sub-class of representation:IconicObject, a
class defined in the CP information objects and representation languages representing information objects
expressed in terms of some iconic language.

2.2.15 Interaction pattern

An interaction pattern is a software engineering pattern that describes how some configurations of interface
object(s) can be implemented for a certain computational task and user type. Some examples are provided
from an online library of patterns for interaction design5.

Formal definition.

:InteractionPattern
a owl:Class ;
rdfs:subClassOf :SoftwareEngineeringPattern .

The class InteractionPattern is formally described as a sub-class of
SoftwareEngineeringPattern.

2.2.16 User type

The class UserType includes all possible types of users, which can be involved in the design of ontologies.
Examples of its instances would be “ontology designer”, “domain expert”, etc. It can be compared to the
notion of “actor” in UML.

Formal definition.

:UserType
a owl:Class ;
rdfs:subClassOf objectrole:Role> .

The class UserType is formally defined in terms of the class objectrole:Role of the CP object
role[PGGPF07], that encodes a concept that classifies any object e.g. physical, social, or mental object,
or a substance.

2.2.17 Needs

The object property needs (inverse isNeededBy) represents the relation that holds between any entity
that has to be involved in the description of either an ontology project, a design workflow, or a software
engineering pattern.

5http://www.welie.com

D2.1.2 The collaborative ontology design ontology (v2) Page 29 of 86

Formal definition.

:needs
a owl:ObjectProperty ;
rdfs:domain _:b1 ;
rdfs:range owl:Thing ;
rdfs:subPropertyOf descriptionandsituation:describes ;
owl:inverseOf :isNeededBy .

_:b1 a owl:Class ;
owl:unionOf (:OntologyProject :DesignWorkflow :SoftwareEngineeringPattern) .

In codolight, the needs object property has the class owl:Thing as domain, and the union of classes
OntologyProject, DesignWorkflow, and SoftwareEngineeringPattern as range.

2.2.18 Reuses

The object property reuses (inverse isReusedBy encodes the relation that can occur between an existing
knowledge resource that is involved in the execution of either an ontology projects or design workflows as
reusable object.

Formal definition.

:reuses
a owl:ObjectProperty ;
rdfs:domain _:b2 ;
rdfs:range :KnowledgeResource ;
rdfs:subPropertyOf descriptionandsituation:describes ;
owl:inverseOf :isReusedBy .

_:b2 a owl:Class ;
owl:unionOf (:OntologyProject :DesignWorkflow) .

In codolight, the object property reuses has the class KnowledgeResource as domain and the union
of classes OntologyProject and DesignWorkflow as range.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 30 of 86 NeOn Integrated Project EU-IST-027595

Chapter 3

The Data module

The Data1 module of codolight contains a minimal set of classes and properties to represent the data, or
knowledge resources that are typically involved in ontology projects: ontologies and their entities, mappings,
modules, non-ontological resources, etc.
Data-related aspects of ontology design are mandatory, because designing and applying ontologies without
them is not possible.
In [CGL+06] the vocabulary for talking about data was sketchy. On the contrary, codolight tries to extend
the support for ontology design data description, which is needed by its applications in NeOn [PPG+09].
In chapter 11, several alignments to other vocabularies describing knowledge resources add scope to this
module.
The key classes and properties in codolight data module are illustrated by means of a simple la-
beled graph 3.2. The central notion is codkernel:KnowledgeResource. Knowledge resources
are input or output data for design tools, workflows, or functionalities; each class of knowledge re-
source has an associated knowledge type; some of them are represented in a logical language. No-
table subclasses of codkernel:KnowledgeResource are: Ontology, OntologyElement, KOS,
NetworkOfOntologies, etc.
For example, by using entities defined in this module, it is possible to relate an ontology element such as the
class foaf:Person to the ontology it belongs to e.g. “the FOAF ontology”.
An example of a codolight description for knowledge resources is given in figure 3.1. The picture shows a
fragment of the codolight-based description of the “Open Rating System” tool as given in [PPG+09]. The
tool is extensively described in [SCd+09]. The classes Review and ReviewRank are formally described
as sub-classes of the class Annotation. All of them are subclasses of KnowledgeResource. Further-
more, a review rank is about a review, which in turn is about a certain ontology.
For additional, more detailed examples the reader can refer to [PPG+09].
In section 3.2, entities defined in this module are described in detail, while next section 3.1 describes CPs

reused in codolight data module. Axioms added to kernel entities are described in section 3.3.

3.1 Patterns reused in codolight data module

The data module of codolight has been built by reusing the following Content Ontology Design Patterns (CPs)
as building blocks [PG08, PGGPF07].

Collection. This CP, also called “membership”, aims at representing any container for entities that share
one or more common properties and relations between the container and its entities. E.g. “stone objects”,
“the nurses”, “the Louvre Aegyptian collection”. A collection is not a logical class: a collection is a first-order
entity, while a class is a second-order one. A relation between collections and entities is a non-transitive

1http://www.ontologydesignpatterns.org/cpont/codo/coddata.owl

D2.1.2 The collaborative ontology design ontology (v2) Page 31 of 86

Figure 3.1: An example of a codolight description for knowledge resources in the context of the “Open Rating
System” tool as described in [PPG+09].

relation (opposed to the “part of relation” described later in this section), e.g. “my collection of saxophones
includes an old Adolphe Sax original alto” (i.e. my collection has member an Adolphe Sax alto).

Part of. This CP aims at representing a transitive relation expressing parthood between any entities, e.g.
“the human body has a brain as part”.

3.2 Entities of codolight data module

The following entities are defined in this module.

3.2.1 Ontology mapping

The class OntologyMapping represents any set of axioms that include ontology elements from two dif-
ferent ontologies.

Formal definition.

:OntologyMapping
a owl:Class ;
rdfs:subClassOf collectionentity:Collection , codkernel:KnowledgeResource ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty intensionextension:isAbout ;
owl:someValuesFrom :NetworkOfOntologies

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty collectionentity:hasMember ;
owl:someValuesFrom :OntologyAxiom

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:hasValue :OntologyMappingKType ;
owl:onProperty classification:isClassifiedBy

] .

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 32 of 86 NeOn Integrated Project EU-IST-027595

Figure 3.2: A simple graph of ontology elements from codolight data module.

In codolight, an ontology mapping is a knowledge resource about some network of ontologies. It is
also a collection including some ontology axiom. Furthermore, the intensional meaning of the class
OntologyMapping is encoded by the knowledge type OntologyMappingKType, formally described
by the following axiom as an instance of the class textttcodkernel:KnowledgeType:

:OntologyMappingKType
a codkernel:KnowledgeType ;

3.2.2 Ontology module

The class OntologyModule represents ontologies that are considered modularly, i.e. within a composi-
tional architecture. Each module in a compositional network is supposed to cover a domain aspect, a task,
etc.

Formal definition.

:OntologyModule
a owl:Class ;
rdfs:subClassOf :DataStructure ;
rdfs:subClassOf

[a owl:Restriction ;
owl:hasValue :OntologyModuleKType ;
owl:onProperty classification:isClassifiedBy

] .

D2.1.2 The collaborative ontology design ontology (v2) Page 33 of 86

In codolight, an ontology module is a data structure; an ontology module is classified by the knowledge type
OntologyModuleKType, formally described by the following axiom:

:OntologyModuleKType
a codkernel:KnowledgeType ;

3.2.3 Networked ontology

The class NetworkedOntology represents ontologies that are member of an ontology network. In prac-
tice, an ontology is networked when it has some relation to other ontologies. An ontology can be networked
because it started a relation after its creation, or because it emerges from a (qualified) relation between other
ontologies, as in the case of qualified ontology networks. In the second case, it can be called a “inherently
networked” ontology. For example, two ontologies O1 and O2 that have an equivalence relation, are net-
worked ontologies. More interestingly, an ontology O3 that has been designed by reusing components from
two ontologies O4 and O5 is also a (distributed) networked ontology, like codolight. Modules and content
design patterns are also networked ontologies.

Formal definition.

:NetworkedOntology
a owl:Class ;
rdfs:subClassOf codkernel:Ontology ;
rdfs:subClassOf

[a owl:Restriction ;
owl:hasValue :NetworkedOntologyKType ;
owl:onProperty classification:isClassifiedBy

] ;
owl:equivalentClass

[a owl:Restriction ;
owl:onProperty :isPartOfNetwork ;
owl:someValuesFrom :NetworkOfOntologies

] .

In codolight, a networked ontology is an ontology belonging to a network of ontologies, meaning that it is
a component part of it. Furthermore, the class of networked ontologies is classified by the knowledge type
NetworkedOntologyKType, formally described by the following axiom:

:NetworkedOntologyKType
a codkernel:KnowledgeType ;
rdfs:comment "The NetworkedOntology knowledge type."^^xsd:string ;
rdfs:label "Networked ontology KType"@en .

3.2.4 Network of ontologies

The class NetworkOfOntologies represents networks of ontologies (or ontology network). A network
of ontologies is a set of ontologies with a specified unifying criterion (description), provided by (reifying a)
relation such as “being a version of”, “imports”, “identical to”, “equivalent to”, “is clone of”, “mapped to”,
“contains module”, etc.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 34 of 86 NeOn Integrated Project EU-IST-027595

Formal definition.

:NetworkOfOntologies
a owl:Class ;
rdfs:subClassOf codkernel:KnowledgeResource ;
rdfs:subClassOf

[a owl:Restriction ;
owl:hasValue :NetworkOfOntologiesKType ;
owl:onProperty classification:isClassifiedBy

] ;
owl:equivalentClass

[a owl:Restriction ;
owl:maxCardinality "2"^^xsd:int ;
owl:onProperty :hasNetworkedOntology

] ;
owl:equivalentClass

[a owl:Restriction ;
owl:allValuesFrom codkernel:Ontology ;
owl:onProperty :hasNetworkedOntology

] .

A network of ontologies is a knowledge resource composed of at least two ontologies. Also ontology ele-
ments can be part of an ontology network, however they do not characterize it, while the object property
hasNetworkedOntology (cf. sect. 3.2.16) identifies only ontologies that are part of the network. The
intensional meaning of this class is represented by the knowledge type NetworkOfOntologiesKType
formally described by the following axiom:

:NetworkOfOntologiesKType
a codkernel:KnowledgeType ;

3.2.5 Ontology library

A member of the class OntologyLibrary represents an ontology repository, a collection of ontologies.
An example can be a simple file system-based repository of ontologies.

Formal definition.

:OntologyLibrary
a owl:Class ;
rdfs:subClassOf collection:Collection ;
owl:equivalentClass

[a owl:Restriction ;
owl:minCardinality "1"^^xsd:int ;
owl:onProperty collectionentity:hasMember

] ;
owl:equivalentClass

[a owl:Restriction ;
owl:allValuesFrom codkernel:Ontology ;
owl:onProperty collectionentity:hasMember

] .

D2.1.2 The collaborative ontology design ontology (v2) Page 35 of 86

In codolight, the class OntologyLibrary is a sub-class of collection:Collection that has only
ontologies as members, and has at least one member.

3.2.6 Ontology axiom

The class OntologyAxiom represents axioms from within an ontology.

Formal definition.

:OntologyAxiom
a owl:Class ;
rdfs:subClassOf codkernel:OntologyElement ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty partof:hasPart ;
owl:someValuesFrom codkernel:OntologyElement

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:hasValue :OntologyAxiomKType ;
owl:onProperty classification:isClassifiedBy

] .

The class OntologyAxiom includes ontology elements composed of some other ontology element. Fur-
thermore, the intensional meaning of this class is encoded by the knowledge type OntologyAxiomKType,
as formally defined by the following axiom:

:OntologyAxiomKType
a codkernel:KnowledgeType ;

3.2.7 Ontology topic

The topic to be covered by an ontology.

Formal definition.

:OntologyTopic
a owl:Class ;
rdfs:subClassOf topic:Topic .

The class OntologyTopic is formally described as a sub-class of topic:Topic. An ontology topic
is related to an ontology by the object property topic:hasTopic, and every ontology has at least one
ontology topic (see section 3.3).

3.2.8 Data structure

Any data structure, including databases, schemas, lexica, knowledge organizations systems, etc.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 36 of 86 NeOn Integrated Project EU-IST-027595

Formal definition.

:DataStructure
a owl:Class ;
rdfs:subClassOf codkernel:KnowledgeResource ;
rdfs:subClassOf

[a owl:Restriction ;
owl:hasValue :DataStructureKType ;
owl:onProperty classification:isClassifiedBy

] .

The class DataStructure is defined as sub-class of codkernel:KnowledgeResource.
Furthermore, the class of data structures is intensionally represented by the knowledge type
DataStructureKType, formally defined as follows:

:DataStructureKType
a codkernel:KnowledgeType ;

3.2.9 Knowledge Organization System (KOS)

Any knowledge organization system such as: thesauri, terminologies, classification schemes, subject hierar-
chies, etc.

Formal definition.

:KOS a owl:Class ;
rdfs:subClassOf :DataStructure ;
rdfs:subClassOf

[a owl:Restriction ;
owl:hasValue :KOSKType ;
owl:onProperty classification:isClassifiedBy

] .

In codolight, a KOS is defined as a data structure. The intensional meaning of the class KOS is represented
by the knowledge type KOSKType, formally defined by the following axiom:

:KOSKType
a codkernel:KnowledgeType ;

3.2.10 KOS element

An (identified) element from a KOS.

Formal definition.

:KOSElement
a owl:Class ;
rdfs:subClassOf codkernel:KnowledgeResource ;
rdfs:subClassOf

[a owl:Restriction ;
owl:hasValue :KOSElementKType ;
owl:onProperty classification:isClassifiedBy

D2.1.2 The collaborative ontology design ontology (v2) Page 37 of 86

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty partof:isPartOf ;
owl:someValuesFrom :KOS

] .

A KOS element is formally described as a knowledge resource that is part of some KOS. The intensional
meaning of the class KOSElement is represented by the knowledge type KOSElementKType, formally
described by the following axiom:

:KOSElementKType
a codkernel:KnowledgeType ;

3.2.11 Logical language

The logical language, in which a knowledge resource is expressed.

Formal definition.

:LogicalLanguage
a owl:Class ;
rdfs:subClassOf resentation:FormalLanguage .

In codolight, a logical language is described as a formal language.

3.2.12 Encoding syntax

The syntax used for encoding a knowledge resource or in general a logical language; e.g. OWL-RDF.

Formal definition.

:EncodingSyntax
a owl:Class ;
rdfs:subClassOf representation:Language .

In codolight, an encoding syntax is a special kind of language.

3.2.13 Annotation

Any knowledge resource used to talk about another existing knowledge resource.

Formal definition.

:Annotation
a owl:Class ;
rdfs:subClassOf codkernel:KnowledgeResource ;
rdfs:subClassOf

[a owl:Restriction ;
owl:hasValue :AnnotationKType ;
owl:onProperty classification:isClassifiedBy

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 38 of 86 NeOn Integrated Project EU-IST-027595

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty intensionextension:isAbout ;
owl:someValuesFrom codkernel:KnowledgeResource

] .

In codolight, an annotation is a knowledge resource that is about some other knowledge resource. This class
is associated with the knowledge type AnnotationKType, formally described by the following axiom:

:AnnotationKType
a codkernel:KnowledgeType ;

3.2.14 Query

A query is a request for information from a database, a knowledge base, a search engine, etc.

Formal definition.

:Query
a owl:Class ;
rdfs:subClassOf codkernel:KnowledgeResource ;
rdfs:subClassOf

[a owl:Restriction ;
owl:hasValue :QueryKType ;
owl:onProperty classification:isClassifiedBy

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:minCardinality "1"^^xsd:int ;
owl:onProperty resentation:hasRepresentationLanguage

] ;

A query is described as a knowledge resource that has at least one representation language. It is associated
with the knowledge type QueryKType, formally defined by the following axiom:

:QueryKType
a codkernel:KnowledgeType ;

3.2.15 Rule

A rule is an axiom that is asserted independently from a specific ontology element, i.e. not within the axioms
that are proper to that element. Depending on the particular “style” of a logical language and its reasoning
system, rules (and axioms in general) can be considered within or outside other elements’ characterization.

Formal definition.

:Rule
a owl:Class ;
rdfs:subClassOf codkernel:KnowledgeResource ;
rdfs:subClassOf

D2.1.2 The collaborative ontology design ontology (v2) Page 39 of 86

[a owl:Restriction ;
owl:minCardinality "1"^^xsd:int ;
owl:onProperty :hasLogicalLanguage

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:hasValue :RuleKType ;
owl:onProperty classification:isClassifiedBy

] .

In this model, a rule is a knowledge resource that has at least one logical representation language. Fur-
thermore, the intensional meaning of the class Rule is represented by the knowledge type RuleKType,
formally described by the following axiom:

:RuleKType
a codkernel:KnowledgeType ;

3.2.16 Has networked ontology

A non transitive relation between a network of ontologies and its component parts, which are networked
ontologies.

Formal definition.

:hasNetworkedOntology
a owl:ObjectProperty ;
rdfs:domain :NetworkOfOntologies ;
rdfs:range codkernel:Ontology ;
rdfs:subPropertyOf partof:hasPart ;
owl:inverseOf :isPartOfNetwork .

The object property hasNetworkedOntology (inverse isPartOfNetwork) is formally described as
a sub-property of partof:hasPart. As such, it is non-transitive but implies the transitive part of relation
between its related entities. The class NetworkOfOntologies is its domain, while its range is the class
codkernel:Ontology.

3.2.17 Has encoding

A relation between a knowledge resource e.g. an ontology, or a logical language e.g., Description Logics,
and a syntactic language e.g. RDF-XML, or N3.

Formal definition.

:hasEncoding
a owl:ObjectProperty ;
rdfs:domain

[a owl:Class ;
owl:unionOf (codkernel:KnowledgeResource :LogicalLanguage)

] ;
rdfs:range :EncodingSyntax ;
rdfs:subPropertyOf representation:hasRepresentationLanguage ;
owl:inverseOf :isEncodingOf .

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 40 of 86 NeOn Integrated Project EU-IST-027595

In codolight, this relation is described by a sub-property of representation:hasRepresentationLanguage.
Its domain is the union of the classes codkernel:KnowledgeResource and LogicalLanguage,
while its range is the class EncodingSyntax.

3.2.18 Has logical language

A relation between a knowledge resource e.g., an ontology, and a logical language e.g., OWL-DL.

Formal definition.

:hasLogicalLanguage
a owl:ObjectProperty ;
rdfs:domain codkernel:KnowledgeResource ;
rdfs:range :LogicalLanguage ;
rdfs:subPropertyOf representation:hasRepresentationLanguage ;
owl:inverseOf :isLogicalLanguageOf .

In codolight, this relation is described by a sub-property of representation:hasRepresentationLanguage.
Its domain is the class codkernel:KnowledgeResource, while its range is the class
LogicalLanguage.

3.2.19 Related to ontology

Any relation between two (networked) ontologies.

Formal definition.

:relatedToOntology
a owl:ObjectProperty , owl:SymmetricProperty ;
rdfs:domain :NetworkedOntology ;
rdfs:range :NetworkedOntology ;
owl:inverseOf :relatedToOntology .

This relation is formally described as a symmetric object property between networked ontologies.

3.2.20 Has version

A relation between two different versions of an ontology. This assumes that an ontology abstracts from its
versions.

Formal definition.

:hasVersion
a owl:ObjectProperty ;
rdfs:subPropertyOf :relatedToOntology ;
owl:inverseOf :isVersionOf .

In codolight, this relation is described by the object property hasVersion (inverse isVersionOf), a
specialization of relatedToOntology.

D2.1.2 The collaborative ontology design ontology (v2) Page 41 of 86

3.2.21 Is about ontology project

A relation between a project and the ontology project it is about.

Formal definition.

:isAboutOntologyProject
a owl:ObjectProperty ;
rdfs:domain :Project ;
rdfs:range codkernel:OntologyProject ;
rdfs:subPropertyOf intensionextension:isAbout .

3.3 Axioms extending kernel entities

The codolight kernel module defines four classes that are further formally described in the data module.
Additionally, a class from the CP information objects and representation languages is formally characterized
in this context. In the following paragraphs such additional axioms are shown.

Extending axioms for codkernel:KnowledgeResource In the data module, the class of knowledge
resources is further described formally by the following axioms.

codkernel:KnowledgeResource
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty classification:isClassifiedBy ;
owl:someValuesFrom codkernel:KnowledgeType

] .

Extending axioms for codkernel:Project A Project is a data structure.

codkernel:Project
rdfs:subClassOf :DataStructure .

Extending axioms for representation:LinguisticObject The class
representation:LinguisticObject is classified by the LinguisticKType knowledge
type.

representation:LinguisticObject
rdfs:subClassOf

[a owl:Restriction ;
owl:hasValue :LinguisticKType ;
owl:onProperty classification:isClassifiedBy

] .

A knowledge resource is classified by only knowledge types, meaning that the intensional meaning of knowl-
edge resource classes is represented by knowledge types.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 42 of 86 NeOn Integrated Project EU-IST-027595

Extending axioms for codkernel:Ontology

codkernel:Ontology
rdfs:subClassOf :DataStructure;
rdfs:subClassOf

[a owl:Restriction ;
owl:minCardinality "1"^^xsd:int ;
owl:onProperty topic:hasTopic

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:allValuesFrom :OntologyTopic ;
owl:onProperty topic:hasTopic

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:hasValue :OntologyKType ;
owl:onProperty classification:isClassifiedBy

] .

An ontology is formally described as a data structure, covering at least one ontology topic, and classified by
the knowledge type OntologyKType, which is formally described by the following axiom:

:OntologyKType
a codkernel:KnowledgeType ;

Extending axioms for codkernel:OntologyElement

codkernel:OntologyElement
rdfs:subClassOf

[a owl:Restriction ;
owl:hasValue :OntologyElementKType ;
owl:onProperty classification:isClassifiedBy

] .

The class of ontology elements is classified by the knowledge type OntologyElementKType, which in
turn is formally described by the following axiom:

:OntologyElementKType
a codkernel:KnowledgeType ;

Extending axioms for codkernel:KnowledgeType

codkernel:KnowledgeType
rdfs:subClassOf

[a owl:Restriction ;
owl:allValuesFrom codkernel:KnowledgeResource ;
owl:onProperty classification:classifies

] .

A knowledge type classifies only knowledge resources.

D2.1.2 The collaborative ontology design ontology (v2) Page 43 of 86

Extending axioms for representation:LinguisticObject The class
representation:LinguisticObject is classified by the LinguisticKType knowledge
type.

representation:LinguisticObject
rdfs:subClassOf

[a owl:Restriction ;
owl:hasValue :LinguisticKType ;
owl:onProperty classification:isClassifiedBy

] .

The knowledge type LinguisticKType is formally defined by the following axiom:

:LinguisticKType
a codkernel:KnowledgeType ;

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 44 of 86 NeOn Integrated Project EU-IST-027595

Chapter 4

The Projects module

The Projects1 module of codolight contains a minimal set of classes and properties to represent the classes
of design project-related entities, and their relations.
Project aspects of ontology design are not mandatory, since, although each activity of ontology design can
be seen in the context of a project, not all design activities are contextualized with specific plans. However,
specific software support for ontology project execution has appeared with recent Eclipse-based tools, and
with approaches to ontology design that are analogous to software projects, specially in the open source
realm.
In [NeOnD2.1.1] the vocabulary for talking about projects was more sophisticated than the one proposed
here.
The key classes and properties in codolight projects module are illustrated by means of a simple labeled
graph 4.1.

The central notion is codkernel:OntologyProject. Ontology projects are abstract descriptions
(“plans”) of actual projects executions (that are expected to satisfy the project), in which designers typically
envisage the resources and procedures needed to achieve a certain goal. Ontology projects need design
functionalities and agents, have ontologies and other knowledge resources as intended output, have design
workflows as parts, and are described by project descriptions.
Consider for example the ontology project that aims at producing a network of ontologies for the FSDAS
system of the NeOn case study in the fishery domain2. The FSDAS ontology project can be described as
an instance of the class OntologyProject, and it can be associated with some report describing the
plan and expected results of the project, i.e. it is expressed by a ProjectDescription, has typical
workflows that FAO experts are used to perform for taking decisions i.e. DesignWorkflows, reuses
XSD KnowledgeResources that need a reengineering DesignFunctionality, etc. Moreover,
several (digital) Projects have been created on NeOn Toolkit and other tools in order to maintain
the workspace of ontologies, annotations, documents, diagrams, etc. that are in the context of the
OntologyProjectExecution.
In section 4.2, entities defined in this module are described in detail, while next section 4.1 describes CPs
reused in codolight projects module. Axioms added to kernel entities are described in section 4.3.

4.1 Patterns reused in codolight projects module

Place. This CP, also called “location”, aims at representing locations and the relations between things and
their locations. Location is here intended in a very generic sense: a political geographic entity (Roma,
Lesotho), a location determined by the presence of other entities (“the area close to Roma”), pivot events
or signs (“the area where the helicopter fell”), complements of other entities (“the area under the table”), as
well as physical objects conceptualized as locations as their main identity criterion (“the territory of Italy”). In

1http://www.ontologydesignpatterns.org/cpont/codo/codprojects.owl
2http://ontologydesignpatterns.org/cp/owl/fsdas/fsdasnetwork.owl

D2.1.2 The collaborative ontology design ontology (v2) Page 45 of 86

Figure 4.1: A simple graph of ontology elements from codolight projects module.

this generic sense, a place is an “approximate”, relative location. Formally, a Place is defined by the fact of
having something located in it; a place is located in itself. The relation between entities and their location is
defined as a generic, relative localization, holding between any entities. E.g. “the cat is on the mat”, “Omar
is in Samarcanda”, “the wound is close to the femural artery”.

4.2 Entities of codolight projects module

4.2.1 Project description

A project description is an information object describing an ontology project. For example, a document
describing an ontology project in natural language.

Formal definition.

:ProjectDescription
a owl:Class ;
rdfs:subClassOf codkernel:KnowledgeResource ;
rdfs:subClassOf

[a owl:Restriction ;
owl:hasValue :ProjectDescriptionKType ;
owl:onProperty classification:isClassifiedBy

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty intensionextension:isAbout ;
owl:someValuesFrom codkernel:OntologyProject

] .

In codolight, a project description is a knowledge resource about some ontology project. It is classified by
the knowledge type ProjectDescriptionKType formally described by the following axiom.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 46 of 86 NeOn Integrated Project EU-IST-027595

:ProjectDescriptionKType
a codkernel:KnowledgeType ;
rdfs:label "Project description KType"^^xsd:string .

4.2.2 Ontology project execution

An execution of an ontology project (its schema). Execution can be more or less precisely specified according
to the constraints, preferences, and resources declared in the ontology project (schema).

Formal definition.

:OntologyProjectExecution
a owl:Class ;
rdfs:subClassOf situation:Situation ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty situation:isSettingFor ;
owl:someValuesFrom codkernel:DesignOperation

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty descriptionandsituation:satisfies ;
owl:someValuesFrom codkernel:OntologyProject

] .

In codolight, an ontology project execution is a situation that satisfies some ontology project and that includes
some design operation in its setting.

4.2.3 Has intended output

A relation between an ontology project and the knowledge resources it is supposed to produce.

Formal definition.

:hasIntendedOutput
a owl:ObjectProperty ;
rdfs:domain codkernel:OntologyProject ;
rdfs:range codkernel:KnowledgeResource ;
rdfs:subPropertyOf descriptionandsituation:describes ;
owl:inverseOf :isIntendedOutputOf .

In codolight, this relation is described by the object property hasIntendedOutput (inverse
isIntendedOutputOf), sub-property of descriptionandsituation:describes from the CP
description and situation. The property has the class codkernel:OntologyProject as domain, and
the class codkernel:KnowledgeResource as its range.

4.3 Axioms extending kernel entities

The kernel module defines two classes that are further characterized in the codolight projects module by the
following axioms.

D2.1.2 The collaborative ontology design ontology (v2) Page 47 of 86

Extending axioms for codkernel:Project A project is in created in the context of some ontology
project execution.

codkernel:Project
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty situation:hasSetting ;
owl:someValuesFrom :OntologyProjectExecution

] .

Extending axioms for codkernel:OntologyProject An ontology project is the reference of some
project description and has an ontology as intended output.

codkernel:OntologyProject
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty intensionextension:isReferenceOf ;
owl:someValuesFrom :ProjectDescription

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty :hasIntendedOutput ;
owl:someValuesFrom codkernel:Ontology

] .

Extending axioms for codkernel:DesignWorkflow A design workflow is a description having some
ontology project as its part.

codkernel:DesignWorkflow
rdfs:subClassOf description:Description ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty partof:isPartOf ;
owl:someValuesFrom codkernel:OntologyProject

] .

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 48 of 86 NeOn Integrated Project EU-IST-027595

Chapter 5

The Workflows module

The Workflow1 module of codolight contains a minimal set of classes and properties to represent workflows
from within ontology projects: collaborative workflows, accountable agents, need for an agent, etc.
As for all aspects of ontology design, except data-related ones, workflow aspects of ontology design are not
mandatory. They are usually taken into account in the following cases:

• when an ontology project is explicitly created and reusable plans are envisaged for its execution

• when a method that requires several, interdependent tasks is used

• when a team or an informal group needs collaboration procedures

• when an individual needs to keep track of her own activities in the development of an ontology or a
network of ontologies

In [CGL+06] a detailed analysis of collaborative aspects and a more in-depth vocabulary for talking about
them has been presented. The support in codolight is however basic, in order to provide a lightweight entry-
level to the description of ontology design workflows.
In [SNTM08], a project for adding workflow support to Protégé, partly based on our pre-
vious work on C-ODO, is described, and a preliminary ontology is also sketched. In
http://www.ontologydesignpatterns.org/cpont/codo/protege2codo.owl, and alignment between that ontology
and codolight is provided (section 11.6).
The key classes and properties in codworkflows.owl are illustrated by means of a simple labeled graph
5.1. The central notion is codkernel:DesignWorkflow. Design workflows are part of some ontology
project, include at least one functionality, reuse at least one knowledge resource, and need at least one
agent. An important subclass of codkernel:DesignWorkflow is CollaborativeWorkflow. Fully
computational workflows (like Protégé ones) are included in this class.
Consider for example the codolight model of the CiceroWiki tool presented in [PPG+09]. The model
has axioms that assert e.g. that CiceroWikiWorkflow is a CollaborativeWorkflow, that it
includesFunctionalities such as ProvideArgument, ProposeSolution, TakeDecision,
etc., that the task DiscussDesignRationale precedes DecideOnSolution, etc. In section 5.2,
entities defined in this module are described in detail, while next section 5.1 describes CPs reused in
codolight workflows module. Axioms added to kernel entities are described in section 5.3.

5.1 Patterns reused in codolight workflows module

The workflows module of codolight has been built by reusing the following CP as building block [PG08,
PGGPF07].

1http://www.ontologydesignpatterns.org/cpont/codo/codworkflows.owl

D2.1.2 The collaborative ontology design ontology (v2) Page 49 of 86

Figure 5.1: A simple graph of ontology elements from codolight workflows module.

Sequence. This CP is aimed at representing sequence schemas. It defines the notion of transitive and
intransitive precedence and their inverses. It can then be used between tasks, processes, time intervals,
spatially locate objects, situations, etc. It is also referred to as “ordering” or “precedence”. Details about this
CP can be found in the semantic wiki of ontology design patterns2 or in [PGGPF07].

5.2 Entities of codolight workflow module

The following entities are defined in this module.

5.2.1 Workflow description

A workflow description is a set of entities that are involved in the definition of a workflow schema and the
relations between them. Typically a workflow description includes knowledge resources, tasks, roles, etc.

Formal definition.

:WorkflowDescription
a owl:Class ;
rdfs:subClassOf codkernel:KnowledgeResource ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty intensionextension:isAbout> ;
owl:someValuesFrom codkernel:DesignWorkflow

] ;
rdfs:subClassOf

2http://www.ontologydesignpatterns.org

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 50 of 86 NeOn Integrated Project EU-IST-027595

[a owl:Restriction ;
owl:hasValue :WorkflowDescriptionKType ;
owl:onProperty classification:isClassifiedBy>

] .

In codolight, a workflow description is a knowledge resource about some design workflow (see sec-
tion 2.2.7), that is classified by a specific knowledge type i.e. WorkflowDescriptionKType.
Codolight defines a set of knowledge types that represent the intensional meaning of knowledge resources,
WorkflowDescriptionKType is one of them. The aim of such entities is explained in chapter 3.

5.2.2 Collaborative workflow

The class CollaborativeWorkflow represents design workflows, where all main participating agents
are accountable for the sake of the project, where the workflow is executed. Note that the concept of design
workflow is defined in the kernel module, but it is in this context further characterized by additional axioms
as shown in section 5.3 later in this chapter.

Formal definition.

:CollaborativeWorkflow
a owl:Class ;
rdfs:subClassOf codkernel:DesignWorkflow ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty :needsAgent ;
owl:someValuesFrom :AccountableAgent

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty description:usesConcept ;
owl:someValuesFrom codkernel:DesignFunctionality

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:minCardinality "2"^^xsd:int ;
owl:onProperty :needsAgent

] .

In codolight, a collaborative workflow is a design workflow that needs at least two accountable agents, and
uses some design functionality.

5.2.3 Accountable agent

The class AccountableAgent represent any rational agent that adopts the goal of the collaborative work-
flow where it is needed (this axiom cannot be expressed in OWL).

Formal definition.

:AccountableAgent
a owl:Class ;
rdfs:subClassOf agentrole:Agent ;
owl:disjointWith :NonAccountableAgent .

D2.1.2 The collaborative ontology design ontology (v2) Page 51 of 86

In codolight, the class AccountableAgent is defined as sub-class of agentrole:Agent and is disjoint
with NonAccountableAgent.

5.2.4 NonAccountableAgent

The class NonAccountableAgent represents rational agents that do not necessarily adopt the goal of
the collaborative workflow in which they are involved (this axiom cannot be expressed in OWL).

Formal definition.

:NonAccountableAgent
a owl:Class ;
rdfs:subClassOf agentrole:Agent ;
owl:disjointWith :AccountableAgent .

In codolight, the class NonAccountableAgent is defined as sub-class of agentrole:Agent and is
disjoint with AccountableAgent.

5.2.5 Needs agent

The object property needsAgent relates a design workflow to agents needed in order to describe it. It is a
more specific property with respect to the codkernel:needs property. By this relation a design workflow
or an ontology project are specifically associated with an agent rather than a generic thing.

Formal definition.

:needsAgent
a owl:ObjectProperty ;
rdfs:domain _:b1 ;
rdfs:range agentrole:Agent> ;
rdfs:subPropertyOf codkernel:needs ;
owl:inverseOf :isAgentNeededBy .

_:b1 a owl:Class ;
owl:unionOf (codkernel:OntologyProject codkernel:DesignWorkflow) .

Formally, the object property needsAgent (inverse isAgentNeededBy) specializes the
codkernel:needs object property and its range is the class agentrole:Agent.

5.2.6 Is involved in the design of

This relation associates an agent with a knowledge resource it contributed to design.

Formal definition.

:isInvolvedInTheDesignOf
a owl:ObjectProperty ;
rdfs:domain agentrole:Agent ;
rdfs:range codkernel:KnowledgeResource ;
owl:inverseOf :isInvolvedInDesignOperationsBy .

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 52 of 86 NeOn Integrated Project EU-IST-027595

The object property isInvolvedInTheDesignOf (inverse isInvolvedInDesignOperationsBy)
formally holds between the class agentrole:Agent, its domain and the class
codkernel:KnowledgeResource, its range.

5.2.7 Includes functionality

The includesFunctionality object property relates design workflows and the functionalities involved
in their description.

Formal definition.

:includesFunctionality
a owl:ObjectProperty ;
rdfs:domain codkernel:DesignWorkflow ;
rdfs:range codkernel:DesignFunctionality ;
rdfs:subPropertyOf description:usesConcept ;
owl:inverseOf :isFunctionalityIncludedIn .

In codolight, this object property is defined as the specialization of description:usesConcept.
Its domain is the class codkernel:DesignWorkflow and its range is the class
codkernel:DesignFunctionality.

5.3 Axioms extending kernel entities

The codolight workflows module is mainly about design workflows and its related entities. In fact, in this
module, typical entities that depend on and are in general related to design workflows are defined. The class
codkernel:DesignWorkflow is defined in the kernel module in order to comply to the design choices
of building codolight with the architectural shape of a corolla (see section 1.2). In this module, such class is
further described by the following additional axioms.

codkernel:DesignWorkflow
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty intensionextension:isReferenceOf ;
owl:someValuesFrom :WorkflowDescription

] .

A design workflow is the reference of some workflow description, meaning that it is associated to some
description that in turn can be used e.g. by some tools in order to support its execution. Reference here is
meant as the relation that holds between information objects and any entity (including information objects).
It can be used to talk about e.g. entities that are references of proper nouns: “the proper noun ’Leonardo da
Vinci’ is about the person Leonardo da Vinci”, as well as to talk about sets of entities that can be described
by a common noun: “the common noun ’person’ is about the set of all persons in a domain of discourse”. In
this case, given a design workflow, there is some workflow description that refers to it.

D2.1.2 The collaborative ontology design ontology (v2) Page 53 of 86

Chapter 6

The Argumentation module

The Argumentation1 module of codolight contains a minimal set of classes and properties to represent the
classes of argumentation entities and their relations.
Argumentation aspects of ontology design are not mandatory, since, although some form of argumentation
is always present in ontology design, only recently annotation of the discussions and decisions has become
an object of study in ontology engineering.
In [NeOnD2.1.1] the vocabulary for talking about argumentation was quite extensive. After some attempt to
apply it to different argumentation theories, evidence from successful experiences such as Compendium
[SSS+01] and DILIGENT [PST04] brought us to the decision of providing a much lighter vocabulary in
codolight.
The key classes and properties in codolight argumentation module are illustrated by means of a simple
labeled graph 6.1.

The central notion is Position. Positions are situations where agents provide ideas, arguments to ideas,
and motivate arguments with possible design rationales. Arguments can be organized into threads. A thread
can support a design solution (cf. chapter 7).
As an example, let’s consider again the codolight model of the CiceroWiki tool presented in [PPG+09]. The
codolight argumentation notions of ArgumentationThread, Idea, Argument, etc. are specialized
in Cicero as respectively CiceroIssue, CiceroSolutionProposal, CiceroArgument. Specific
instances of issues or arguments appear in actual CiceroWiki sessions.

In section 6.2, entities defined in this module are described in detail, while next section 6.1 describes CPs
reused in codolight argumentation module.

6.1 Patterns reused in codolight argumentation module

The argumentation module of codolight has been built by reusing the CP situation as building block [PG08,
PGGPF07].

Situation. This CP allows to represent a view on a set of entities. It can be seen as a “relational context”,
reifying a relation. For example, a plan execution is a context including some actions executed by agents
according to certain parameters and expected tasks to be achieved from a plan. The pattern is extracted
from DOLCE+DnS Ultralite2 by partial cloning of elements.

1http://www.ontologydesignpatterns.org/cpont/codo/codarg.owl
2http://www.ontologydesignpatterns.org/ont/dul/DUL.owl

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 54 of 86 NeOn Integrated Project EU-IST-027595

Figure 6.1: A simple graph of ontology elements from codolight argumentation module.

6.2 Entities of codolight argumentation module

6.2.1 Argument

An Argument is a situation in which a rationale is provided for a position towards an idea. For example,
“I disagree with idea i” is a position that states the position type “disagreement” made by an agent that
disagrees, the Idea i, the time at which the position statement occurs, etc. However, the position can include
also a rationale that justifies the position. For example, the position can be: “your idea conflicts with the
basic assumptions of our theory”. In this case, an agent is providing a rationale for his/her position, and
this rationale is called here (based on e.g. IBIS model) “Argument”. On their turn, arguments are usually
motivated by design rationales, intended as principles or best practices for modelling.

Formal definition.

The following entities are defined in this module.
:Argument

a owl:Class ;
rdfs:subClassOf situation:Situation , codkernel:KnowledgeResource ;
rdfs:subClassOf

[a owl:Restriction ;

D2.1.2 The collaborative ontology design ontology (v2) Page 55 of 86

owl:onProperty situation:hasSetting ;
owl:someValuesFrom :Position

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty :isMotivatedBy ;
owl:someValuesFrom codkernel:DesignRationale

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:hasValue :ArgumentKType ;
owl:onProperty classification:isClassifiedBy

] .

In codolight, the class Argument is described as sub-class of situation:Situation and
codkernel:KnowledgeResource, that includes in its setting some position and is motivated by
some design rationale. Furthermore, its intended meaning is formally represented by the knowledge type
ArgumentKType, which is described by the following axiom:

:ArgumentKType
a codkernel:KnowledgeType ;

6.2.2 Argumentation thread

A complex (information) situation that includes a certain amount of positions organized as a thread that can
have one or more ideas as subjects.

Formal definition.

:ArgumentationThread
a owl:Class ;
rdfs:subClassOf situation:Situation , codkernel:KnowledgeResource ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty partof:hasPart ;
owl:someValuesFrom :Position

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:hasValue :ArgumentationThreadKType ;
owl:onProperty classification:isClassifiedBy

] .

The class ArgumentationThread is formally described as sub-class of situation:Situation
and codkernel:KnowledgeResource, having some position as its parts. Additionally, the knowledge
type ArgumentationThreadKType represents the intensional meaning of this class and is formally de-
scribed by the following axiom:

:ArgumentationThreadKType
a codkernel:KnowledgeType ;

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 56 of 86 NeOn Integrated Project EU-IST-027595

6.2.3 Idea

An Idea is a description of something, either expressed by a formal expression, or by any other, informal
information object. All kinds of ontology axioms are the typical subjects of ontology design argumentation,
and they can be considered as ideas when they assume that role. Ideas are typically discussed by agents
that provide an argument, i.e. a rationale that either challenges or justifies a position during an argumentation
session. For example, an agent A can provide a counter-example (argument): “Turkey has territories out-
side Europe” that clarifies the rationale for its (negative) position P towards a rdfs:subClassOf axiom:
EuropeanCountry subClassOf (hasTerritory all (hasLocation Europe)).

Formal definition.

:Idea
a owl:Class ;
rdfs:subClassOf codkernel:KnowledgeResource ;
rdfs:subClassOf

[a owl:Restriction ;
owl:hasValue :IdeaKType ;
owl:onProperty classification:isClassifiedBy

] .

An idea is a knowledge resource. The intensional meaning of the class Idea is represented by the knowl-
edge type IdeaKType, formally described by the following axiom:

:IdeaKType
a codkernel:KnowledgeType ;

6.2.4 Position

A position is a situation, in which an agent provides an argument that responds to some idea, conveyed in a
knowledge resource, either formal (e.g. an ontology element), or informal (e.g. a claim made in Italian). E.g.,
according to the “IBIS” model, an argument, possibly including a rationale, can respond to an idea, either by
supporting it, or objecting to it. Arguments are argued by agents within a position.

Formal definition.

:Position
a owl:Class ;
rdfs:subClassOf situation:Situation , codkernel:KnowledgeResource ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty situation:isSettingFor ;
owl:someValuesFrom :Idea

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty situation:isSettingFor ;
owl:someValuesFrom agentrole:Agent

] ;
rdfs:subClassOf

[a owl:Restriction ;

D2.1.2 The collaborative ontology design ontology (v2) Page 57 of 86

owl:onProperty situation:isSettingFor ;
owl:someValuesFrom :Argument

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:hasValue :PositionKType ;
owl:onProperty classification:isClassifiedBy

] .

In codolight, the class Position is a sub-class of the classes situation:Situation and
codkernel:KnowledgeResource, it includes in its setting some ideas, some agent and some argu-
ment. Additionally, its intended meaning is represented by the knowledge type PositionKType, formally
described by the following axiom:

:PositionKType
a codkernel:KnowledgeType ;

6.2.5 Motivates

Design rationales motivate arguments: given an idea, someone can have a position including an argument,
motivated by a design rationale.

Formal definition.

:motivates
a owl:ObjectProperty ;
rdfs:domain codkernel:DesignRationale ;
rdfs:range :Argument ;
owl:inverseOf :isMotivatedBy .

The domain of the motivates object property (inverse isMotivatedBy) is the class
codkernel:DesignRationale, while its range is the class Argument.

6.2.6 Supports

After the exchange of some positions towards an idea, such thread can be said to support a certain design
solution.

Formal definition.

:supports
a owl:ObjectProperty ;
rdfs:domain :ArgumentationThread ;
rdfs:range codkernel:DesignSolution ;
owl:inverseOf :isSupportedBy .

The domain of the supports object property (inverse isSupportedBy) is the class
ArgumentationThread, while its range is the class codkernel:DesignSolution

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 58 of 86 NeOn Integrated Project EU-IST-027595

Chapter 7

The Solutions module

The Solutions1 module of codolight contains a minimal set of classes and properties to represent the classes
of design solution-related entities, and their relations.
Solution aspects of ontology design are not mandatory, since, although some form of solution is usually
provided in ontology design, only recently repositories of reusable solutions have become an object of study
in ontology engineering.
In [NeOnD2.1.1] the vocabulary for talking about solutions was quite limited. On the contrary, codolight tries
to extend the support for ontology design solution description, which is needed by its applications in NeOn (cf.
[PPG+09]). NeOn applications have being developed that reuse this vocabulary, including the XD (eXtreme
Design) plugin and some functionalities from the ODP (Ontology Design Patterns) portal.
The key classes and properties in codolight solutions module are illustrated by means of a simple labeled
graph 7.1.

The central notion is codkernel:DesignSolution. Design solutions are design situations, in which
designers typically apply ontology design patterns (reusable models, good practices) to ontology elements
that have been previously selected, reengineered, argumented, etc. Design solutions are matched against
ontology requirements, which are typically expressed by competency questions. Patterns and competency
questions are knowledge resources just like ontologies and ontology elements.
As an example, let’s consider the XD plugin description2, which specializes several sub-
classes of codsolutions:OntologyDesignPatterns, such as LogicalPattern,
ReengineeringPattern, ContentPattern, etc., and instantiates them in the management of
the ODP portal filesystem, which is controlled by means of an appropriate codolight module [PPG+09].

In section 7.1, entities defined in this module are described in detail. Axioms added to kernel entities are
described in section 7.2.

7.1 Entities of codolight solutions module

This module defines the following entities.

7.1.1 Ontology requirement

The requirements expected to be fulfilled by an ontology. They are usually expressed by competency ques-
tions.

Formal definition.

1http://www.ontologydesignpatterns.org/cpont/codo/codsolutions.owl
2http://www.ontologydesignpatterns.org/cpont/codo/xd2codo.owl

D2.1.2 The collaborative ontology design ontology (v2) Page 59 of 86

Figure 7.1: A simple graph of ontology elements from codolight solutions module.

:OntologyRequirement
a owl:Class ;
rdfs:subClassOf taskrole:Task .

In codolight, an ontology requirement is a task.

7.1.2 Competency question

Queries (either in natural language or some query language) that express a requirement for an ontology to
be fulfilled.

Formal definition.

:CompetencyQuestion
a owl:Class ;
rdfs:subClassOf codkernel:KnowledgeResource ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty intensionextension:expresses ;
owl:someValuesFrom :OntologyRequirement

] .

A competency question is formally described as a knowledge resource that expresses some ontology re-
quirement.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 60 of 86 NeOn Integrated Project EU-IST-027595

7.1.3 Ontology design pattern

A class for holding together different kinds of solutions to ontology design.

Formal definition.

:OntologyDesignPattern
a owl:Class ;
rdfs:subClassOf codkernel:KnowledgeResource .

An ontology design pattern is a knowledge resource.

7.1.4 Unit test

A unit test is any formal expression that can be used (e.g. adding a pattern, submitting a query, etc.) to an
existing ontology, in order to measure its fitness to some task. Unit tests are closely related to ’qoods’ and
especially to design pattern schemas that can be used to formalize ontology design patterns and use them
as assembly components.

Formal definition.

:UnitTest
a owl:Class ;
rdfs:subClassOf codkernel:KnowledgeResource ;
rdfs:subClassOf

[a owl:Restriction ;
owl:allValuesFrom representation:FormalLanguage ;
owl:onProperty resentation:hasRepresentationLanguage

] .

A unit test is formally described as a knowledge resource that has only formal language as representation
language.

7.1.5 Fits

A relation between an ontology design pattern and the competency questions it addresses.

Formal definition.

:fits
a owl:ObjectProperty ;
rdfs:domain :OntologyDesignPattern ;
rdfs:range :CompetencyQuestion ;
owl:inverseOf :canBeAnsweredByApplying .

The domain of the object property fits (inverse canBeAnsweredByApplying) is the class
OntologyDesignPattern, while its range is the class CompetencyQuestion.

7.1.6 Applies

A relation between a design solution and the ontology design pattern it applies.

D2.1.2 The collaborative ontology design ontology (v2) Page 61 of 86

Formal definition.

:applies
a owl:ObjectProperty ;
rdfs:domain codkernel:DesignSolution ;
rdfs:range :OntologyDesignPattern ;
rdfs:subPropertyOf descriptionandsituation:satisfies ;
owl:inverseOf :isAppliedIn .

In codolight, applies is described as an object property (inverse isAppliedIn) having the class
codkernel:DesignSolution as its domain and the class OntologyDesignPattern as its range.

7.2 Axioms extending kernel entities

The kernel module defines one class that is extended in the codolight solutions module by the following
axioms.

codkernel:DesignSolution
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty situation:isSettingFor ;
owl:someValuesFrom codkernel:OntologyElement

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty :applies ;
owl:someValuesFrom :OntologyDesignPattern

] .

A design solution applies some ontology design pattern, and includes some ontology element in its setting.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 62 of 86 NeOn Integrated Project EU-IST-027595

Chapter 8

The Tools module

The Tools1 module of codolight contains a minimal set of classes and properties to represent workflows from
within ontology projects: collaborative workflows, accountable agents, need for an agent, etc.
As for all aspects of ontology design, except data-related ones, tool-related aspects of ontology design are
not mandatory, but on the Semantic Web and in semantic technologies in general, designing and applying
ontologies without using tools is de facto impossible.
In [CGL+06] the vocabulary for talking about tools was very limited. On the contrary, codolight tries to ex-
tend the support for design tool description, which is needed by its applications in NeOn (cf. [PPG+09]). In
chapter 11, several alignments to other vocabularies describing tools and software projects or solutions add
scope to this module.
The key classes and properties in codtools.owl are illustrated by means of a simple labeled graph 8.1. The
central notion is codkernel:DesignTool. Design tools have knowledge types as their input and output
types, have user types, have a programming language, and include capabilities from the pieces of software
that are used in the tool. PieceOfSoftware is a class for all pieces of software, be them independent
software modules, or just segments of them. Pieces of software apply code “entities”, and apply software
engineering techniques and patterns, notably interaction patterns.
Examples of a codolight descriptions for design tools are included for many NeOn Toolkit plugins in the de-
liverable [PPG+09]: they are quite detailed in representing relations between tools and workflows, workflows
and functionalities, functionalities and knowledge/user types, etc. In addition, a section in [PPG+09] explains
how tools are classified according to the knowledge types they have in input and/or output.

In section 8.1, entities defined in this module are described in detail. Axioms added to kernel entities are
described in section 8.2.

8.1 Entities of codolight tools module

The following entities are defined in this module.

8.1.1 Technique

The class Technique represents the way a particular software task or procedure is carried out.

Formal definition.

:Technique
a owl:Class ;
rdfs:subClassOf description:Description> .

1http://www.ontologydesignpatterns.org/cpont/codo/codtools.owl

D2.1.2 The collaborative ontology design ontology (v2) Page 63 of 86

Figure 8.1: A simple graph of ontology elements from codolight tools module.

In codolight, a technique is defined as sub-class of description:Description.

8.1.2 Piece of software

A piece of software is a program or a library that enables a computer to perform a specific task. In this design
context, it implements exactly one functionality by applying techniques or patterns, with specific code entities
(behavioral, structural, or containers).

Formal definition.

:PieceOfSoftware
a owl:Class ;
rdfs:subClassOf objectrole:Object ;
rdfs:subClassOf

[a owl:Restriction ;
owl:minCardinality "1"^^xsd:int ;
owl:onProperty :appliesCode

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 64 of 86 NeOn Integrated Project EU-IST-027595

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:cardinality "1"^^xsd:int ;
owl:onProperty :implements

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty :implements ;
owl:someValuesFrom codkernel:DesignFunctionality

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:minCardinality "0"^^xsd:int ;
owl:onProperty :appliesPattern

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:minCardinality "0"^^xsd:int ;
owl:onProperty :appliesTechnique

] .

In codolight, a piece of software is defined as an object that applies at least a piece of code e.g. a class,
method, etc., and that implements exactly one functionality and can apply some software engineering pattern
and/or technique.

8.1.3 Ontology application task

The class OntologyApplicationTask represent the tasks of an ontology within an application (e.g.
retrieval, extraction, matching, etc.). It is distinguished from an ontology requirement, which is the content-
oriented task that must be supported by an ontology. An ontology application task is also distinguished from
a design functionality, which is a task that an application must support in order to perform ontology design
operations.

Formal definition.

:OntologyApplicationTask
a owl:Class ;
rdfs:subClassOf taskrole:Task ;
owl:disjointWith codkernel:DesignFunctionality .

In codolight, an ontology application task is described as a task, the class is disjoint with the class of design
functionalities.

8.1.4 Programming language

A programming language is a machine-readable language designed to express computations that can be
performed by a machine, particularly a computer. Programming languages can be used to create programs
that specify the behavior of a machine, to express algorithms precisely, or as a mode of human communica-
tion.

D2.1.2 The collaborative ontology design ontology (v2) Page 65 of 86

Formal definition.

:ProgrammingLanguage
a owl:Class ;
rdfs:subClassOf representation:Language .

In codolight, a programming language is described as a special kind of language.

8.1.5 Code entity

The class CodeEntity represents pieces of code with a proper identity (class, method, function, file,
attribute, etc.).

Formal definition.

:CodeEntity
a owl:Class ;
rdfs:subClassOf objectrole:Object .

In codolight, a code entity is defined as an object.

8.1.6 Has input type

The object property hasInputType (inverse isInputTypeFor) defines a relation between tools, tasks,
workflows, etc., and types of information objects that they take as input.

Formal definition.

:hasInputType
a owl:ObjectProperty ;
rdfs:domain owl:Thing ;
rdfs:range codkernel:KnowledgeType ;
owl:inverseOf :isInputTypeFor .

In codolight, the domain of hasInputType is the class owl:Thing, while its range is the class
codkernel:KnowledgeType.

8.1.7 Has output type

The object property hasOutputType (inverse isOutputTypeFor) defines a relation between tools,
tasks, workflows, etc., and types of information objects

Formal definition.

:hasOutputType
a owl:ObjectProperty ;
rdfs:domain owl:Thing ;
rdfs:range codkernel:KnowledgeType ;
owl:inverseOf :isOutputTypeFor .

In codolight, the domain of hasOutputType is the class owl:Thing, while its range is the class
codkernel:KnowledgeType.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 66 of 86 NeOn Integrated Project EU-IST-027595

8.1.8 Applies technique

The object property appliesTechnique (inverse isTechniqueAppliedIn) represents the relation
between a design tool or a piece of software and the techniques that they apply.

Formal definition.

:appliesTechnique
a owl:ObjectProperty ;
rdfs:domain _:b1 ;
rdfs:range :Technique ;
owl:inverseOf :isTechniqueAppliedIn .

_:b1 a owl:Class ;
owl:unionOf (codkernel:DesignTool :PieceOfSoftware) .

This object property has the class Technique as range, while its range is the union of classes
codkernel:DesignTool and PieceOfSoftware.

8.1.9 Applies code

The relation between a piece of software and the code it applies.

Formal definition.

:appliesCode
a owl:ObjectProperty ;
rdfs:domain :PieceOfSoftware ;
rdfs:range :CodeEntity ;
owl:inverseOf :isCodeAppliedBy .

The domain of the object property appliesCode (inverse isCodeAppliedBy) is the class
PieceOfSoftware, while its range is the class CodeEntity.

8.1.10 Has output data

A relation between tools, tasks, workflows, etc., and information objects representing their output data.

Formal definition.

:hasOutputData
a owl:ObjectProperty ;
rdfs:domain owl:Thing ;
rdfs:range intensionextension:InformationObject ;
owl:inverseOf :isOutputDataFor .

The domain of the object property hasOutputData (inverse isOutputDataFor) is the class
owl:Thing, while its range is the class intensionextension:InformationObject.

8.1.11 Has input data

A relation between tools, tasks, workflows, etc., and information objects representing their input data.

D2.1.2 The collaborative ontology design ontology (v2) Page 67 of 86

Formal definition.

:hasInputData
a owl:ObjectProperty ;
rdfs:domain owl:Thing ;
rdfs:range intensionextension:InformationObject ;
owl:inverseOf :isInputDataFor .

The domain of the object property hasInputData (inverse isInputDataFor) is the class owl:Thing,
while its range is the class intensionextension:InformationObject.

8.1.12 Implements

A relation between either a design tool or a piece of software and the logics it implements. Such logics in this
context can be either a design functionality or a design workflow.

Formal definition.

:implements
a owl:ObjectProperty ;
rdfs:domain _:b2 ;
rdfs:range _:b3 ;
owl:inverseOf :isImplementedIn .

_:b2 a owl:Class ;
owl:unionOf (codkernel:DesignTool :PieceOfSoftware) .

_:b3 a owl:Class ;
owl:unionOf (codkernel:DesignFunctionality codkernel:DesignWorkflow) .

In codolight, two anonymous classes are defined as domain and range of the object property implements
(inverse isImplementedIn). Its domain is the union of the classes codkernel:DesignTool
and PieceOfSoftware, while its range is the union of codkernel:DesignFunctionality and
codkernel:DesignWorkflow.

8.1.13 Has user type

A relation between anything (typically a tool in this context) and its target user type. It is important for
describing interaction situations involving users and tools with their interfaces.

Formal definition.

:hasUserType
a owl:ObjectProperty ;
rdfs:domain owl:Thing ;
rdfs:range codkernel:UserType ;
owl:inverseOf :isUserTypeFor .

The object property hasUserType (inverse isUserTypeFor) has the class owl:Thing as domain and
the class UserType as range.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 68 of 86 NeOn Integrated Project EU-IST-027595

8.1.14 Applies pattern

A relation between a software and software design patterns applied for implementing it.

Formal definition.

:appliesPattern
a owl:ObjectProperty ;
rdfs:domain _:b4 ;
rdfs:range codkernel:SoftwareEngineeringPattern ;
owl:inverseOf :isPatternAppliedIn .

_:b4 a owl:Class ;
owl:unionOf (codkernel:DesignTool :PieceOfSoftware) .

The domain of the object property appliesPattern (inverse isPatternAppliedIn) is the union
of the classes codkernel:DesignTool and PieceOfSoftware, while its range is the class
codkernel:SoftwareEngineeringPattern.

8.1.15 Has programming language

A relation between a design tool and the programming language used for encoding its implementation.

Formal definition.

:hasProgrammingLanguage
a owl:ObjectProperty ;
rdfs:domain codkernel:DesignTool ;
rdfs:range :ProgrammingLanguage ;
owl:inverseOf :isProgrammingLanguageOf .

The domain of the object property hasProgrammingLanguage (inverse
isProgrammingLanguageOf) is the class codkernel:DesignTool while its range is the
class ProgrammingLanguage.

8.1.16 Includes capability

A relation between a design tool and the software parts that its implementation is composed of.

Formal definition.

:includesCapability
a owl:ObjectProperty ;
rdfs:domain codkernel:DesignTool ;
rdfs:range :PieceOfSoftware ;
owl:inverseOf :isCapabilityIncludedIn .

The domain of the object property includesCapability (inverse isCapabilityIncludedIn)is
the class codkernel:DesignTool while its range is the class PieceOfSoftware.

D2.1.2 The collaborative ontology design ontology (v2) Page 69 of 86

8.2 Axioms extending kernel entities

The codolight kernel module defines three classes that are further formally described in the tools module; in
the following paragraphs such additional axioms are shown.

Extending axioms for codkernel:DesignFunctionality

codkernel:DesignFunctionality
rdfs:subClassOf

[a owl:Restriction ;
owl:allValuesFrom codkernel:DesignOperation ;
owl:onProperty taskexecution:isExecutedIn

] .

In this context, the description of design functionality is further detailed by an axiom asserting that design
functionalities can be executed in only design operations.

Extending axioms for codkernel:DesignOperation

codkernel:DesignOperation
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty taskexecution:executesTask ;
owl:someValuesFrom codkernel:DesignFunctionality

] .

A design operation is an action that executes some design functionality.

Extending axioms for codkernel:DesignTool

codkernel:DesignTool
rdfs:subClassOf

[a owl:Restriction ;
owl:minCardinality "1"^^xsd:int ;
owl:onProperty :implements

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:minCardinality "1"^^xsd:int ;
owl:onProperty :hasInputType

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:minCardinality "1"^^xsd:int ;
owl:onProperty :hasUserType

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:minCardinality "1"^^xsd:int ;
owl:onProperty :hasProgrammingLanguage

] .

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 70 of 86 NeOn Integrated Project EU-IST-027595

In the tool module, the class representing design tools is further described. From the kernel module we only
know that a design tool is an object. Furthermore, a design tool takes at least one input type, is implemented
in at least one programing language, is targeted at at least one type of users and implements at least one
design functionality or design workflow.

D2.1.2 The collaborative ontology design ontology (v2) Page 71 of 86

Chapter 9

The Interfaces module

The Interfaces1 module of codolight contains some sample classes and properties to talk about interface
objects, with exemplar instances.
Interface aspects of ontology design are not mandatory in the description of ontology design, but due the
de facto dependency of design on tools, associating adequate interface objects to knowledge types and
interaction patterns used in tools, it is relevant to have a vocabulary with which one can talk explicitly of those
associations. A future alignment with W3C Fresnel vocabulary [BPKL06] is planned.
In [NeOnD2.1.1] vocabulary there was no coverage for talking about interfaces.
The key classes and properties in codolight interfaces module are illustrated by means of a simple labeled
graph 9.1.

The central notion is codkernel:InterfaceObject. Interface objects are iconic objects that appear
in actually running applications; they are classified as interface object types (that are actually used in tool
descriptions), can have typical attributes, like having positions in a window, can have parts, and even a
representation language. Sample subclasses include windows, tabs, widgets, buttons, item lists, etc.

In section 9.1, entities defined in this module are described in detail

9.1 Entities of codolight interfaces module

In this module several entities useful for interfaces are formally described, as it is shown in Figure 9.1. Several
types of interface object are included as well as specific relations between them. Such interface objects are
representatives for typical elements of a GUI and each of them is associated with a concept representing
its intensional meaning. Such concepts are called “interface object types” and are formally defined by the
following axioms:

9.1.1 Interface object type

A type of interface object. Used as the reification for the intension for any class of interface objects.

Formal definition.

:InterfaceObjectType
a owl:Class ;
rdfs:subClassOf classification:Concept ;
rdfs:subClassOf

[a owl:Restriction ;
owl:allValuesFrom codkernel:KnowledgeResource ;

1http://www.ontologydesignpatterns.org/cpont/codo/codinterfaces.owl

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 72 of 86 NeOn Integrated Project EU-IST-027595

Figure 9.1: A simple graph of ontology elements from codolight interfaces module.

owl:onProperty classification:classifies
] .

In codolight, an interface object type is described as a concept that classifies a knowledge resource.
Among the others, in the codolight interface module, the classes Button and Widget are formally defined
by the following axioms. We report their formal description as a sample of special types of interface objects,
the others are defined analogously:

9.1.2 Button and Widget

A button, a GUI element. It is classified by the concept ButtonInterfaceObjectType.

:Button
a owl:Class ;
rdfs:subClassOf codkernel:InterfaceObject ;
rdfs:subClassOf

[a owl:Restriction ;
owl:hasValue :ButtonInterfaceObjectType ;
owl:onProperty classification:isClassifiedBy

] .

A widget, a GUI element. It is classified by the concept WidgetInterfaceObjectType.

:Widget

D2.1.2 The collaborative ontology design ontology (v2) Page 73 of 86

a owl:Class ;
rdfs:subClassOf codkernel:InterfaceObject ;
rdfs:subClassOf

[a owl:Restriction ;
owl:hasValue :WidgetInterfaceObjectType ;
owl:onProperty classification:isClassifiedBy

] .

9.1.3 Interface object attribute

Formal definition.

:InterfaceObjectAttribute
a owl:Class ;

This class represents attributes of interface objects, such as colour, position, etc. For example, we report
here an entity of the interface object attribute taxonomy i.e. the class Colour.

:Colour
a owl:Class ;
rdfs:subClassOf :InterfaceObjectAttribute .

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 74 of 86 NeOn Integrated Project EU-IST-027595

Chapter 10

The Interaction module

The Interaction1 module of codolight contains some sample classes and properties to talk about interaction
patterns, with exemplar instances taken from a reference software engineering site, welie.com.
Interaction aspects of ontology design are not mandatory in the description of ontology design, but due the
de facto dependency of design on tools, with (currently most implicit) associations of knowledge types and
design workflows with interaction patterns used in tools, it is relevant to have a vocabulary with which one can
talk explicitly of those associations. Recent initiatives have actually created a scientific area for interaction
aspects of semantic technologies [HHT09].
In [CGL+06] vocabulary there was no coverage for talking about interaction.
The key classes and properties in codolight interaction module are illustrated by means of a simple labeled
graph 10.1.

The central notion is codkernel:InteractionPattern. Interaction patterns are software engi-
neeering patterns that are used in the design of tools; they use concepts such as UserType and
ComputationalDesignTask, and need interface objects. An interface object is linked to ontology
projects through the class codkernel:DesignFunctionality: the computational task used by an
interaction pattern is a design functionality, and in this way a design functionality is made computationally
meaningful in the context of an interaction pattern. In other words, a system designer (or integrator or as-
sembler) can (1) gather the requirements of an ontology project in terms of design functionalities, user types,
and knowledge types, and (2) convert functionalities in computational tasks, and devise the best interaction
pattern and interface objects for the task, the user types, and the knowledge types (cf. Fig. 10.2).
Sample interaction patterns are included in the OWL file of this module, e.g. Accordion, Breadcrumbs,
etc.

In section 10.1, entities defined in this module are described in detail. Axioms added to kernel entities are
described in section 10.2.

10.1 Entities of codolight interaction module

In order to make the ontology clearer, in this module are defined a set of instances of the class
codkernel:InteractionPattern taken from a repository patterns for interaction design2. An ex-
ample is given by the element Slideshow that is briefly explained as follows:

• Problem: the user wants to view a series of images/photos;

• Solution: Show each image for some seconds and provide controls to manually navigate back and
forward, pause/resume and stop/return;

1http://www.ontologydesignpatterns.org/cpont/codo/codinteraction.owl
2http://www.welie.com

D2.1.2 The collaborative ontology design ontology (v2) Page 75 of 86

Figure 10.1: A simple graph of ontology elements from codolight interaction module.

• How: Usually the screen-estate is maximized for the photos and only a minimal representation of the
required controls are used. The controls must be placed either at the top of the photo or below it. Make
sure the following aspects are covered:

– The controls should fade out in time if they are placed over the image;

– The time between the photos must be configurable;

– The user must be able to exit the slideshow mode;

– Use a nice transition between photos! It make it a lot nicer;

– Consider adding captions for the image title or comments.

The Slideshow element is formally described by the following axiom:

10.1.1 Slideshow

Formal definition.

:Slideshow
a codkernel:InteractionPattern .

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 76 of 86 NeOn Integrated Project EU-IST-027595

Figure 10.2: Matching requirements and tools through interaction pattern specification.

Additionally, in this module the class ComputationalDesignTask is formally described by the following
axioms:

10.1.2 Computational design task

Formal definition.

:ComputationalDesignTask
a owl:Class ;
rdfs:subClassOf codkernel:DesignFunctionality .

A computational design task is any type of design operation (i.e. a functionality) that needs to be performed
with tool support.

10.2 Axioms extending kernel entities

The kernel module defines two classes that are further characterize in the codolight interaction module. They
are formally described by the following axioms.

10.3 Extending axioms for codkernel:SoftwareEngineeringPattern

A software engineering pattern is a description that uses some computational design task and some user
type.

codkernel:SoftwareEngineeringPattern
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty description:usesConcept ;
owl:someValuesFrom :ComputationalDesignTask

] ;
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty description:usesConcept ;
owl:someValuesFrom codkernel:UserType

] .

D2.1.2 The collaborative ontology design ontology (v2) Page 77 of 86

10.4 Extending axioms for codkernel:InteractionPattern

An interaction pattern needs some interface object.

codkernel:InteractionPattern
rdfs:subClassOf

[a owl:Restriction ;
owl:onProperty codkernel:needs ;
owl:someValuesFrom codkernel:InterfaceObject

] .

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 78 of 86 NeOn Integrated Project EU-IST-027595

Chapter 11

Alignments

In this chapter, we present some alignments that we have made between codolight, and other vocabularies
that are widely used on the Semantic Web, or have been recently introduced by NeOn. We firstly present
alignments to OWL metamodels (11.1), then to the Ontology Metadata Vocabulary (OMV) (11.2), to Descrip-
tion Of A Project (DOAP) (11.3), to the Access Rights ontology (11.4), to the Sweet Tools MIT vocabulary
(11.5), to the Protégé workflow ontology (11.6), and finally to the Software Ontology Model (11.7). The
prefixes for the aligned vocabularies are listed in Table 11.1.

Table 11.1: Prefixes used for the aligned ontologies.
Prefix namespace
omv: http://omv.ontoware.org/2005/05/ontology Ontology Metadata Vocabulary

access-rights: http://www.uni-koblenz.de/ bercovici/owl/2008/7/accessRight.owl Access Rights Ontology
ar-agents: http://www.uni-koblenz.de/ schwagereit/owl/agents.owl Access Rights (agents module)
ar-entity: http://www.uni-koblenz.de/ bercovici/owl/2008/7/entity.owl Access Rights (entity module)
ar-action: http://www.uni-koblenz.de/ bercovici/owl/2008/8/action.owl Access Rights (action module)

foaf: http://xmlns.com/foaf/0.1/ FOAF ontology
doap: http://usefulinc.com/ns/doap/ DOAP ontology

workflow: http://protege.stanford.edu/rdf/workflow/ Protégé Workflow Ontology
owlodm1: http://www.ontologydesignpatterns.org/ont/odm/owl10b.owl OWL 1 Metamodel
owlodm2: http://owlodm.ontoware.org/OWL2 OWL 2 Metamodel

owl: http://www.w3.org/2002/07/owl/ OWL
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns RDF
rdfs: http://www.w3.org/2000/01/rdf-schema/ RDF Schema

sweet-tools: http://www.ontologydesignpatterns.org/ont/sweettools.owl Sweet Tools Ontology
som: http://www.ifi.unizh.ch/ddis/evoont/2008/02/som Software Ontology Model

11.1 Alignments to OWL

In this section, we report the alignments made between codolight and OWL entities. We have considered
three different vocabularies:

• the original W3C RDF, RDFS, and OWL vocabularies 11.2

• the OWL1 metamodel designed by Peter Haase for NeOn [Haa06], and subsequently revised and
enriched by Aldo Gangemi (this is the reason why it has a non-UKARL namespace) 11.3

• the OWL2 metamodel designed by Peter Haase for NeOn [HP09] 11.4

D2.1.2 The collaborative ontology design ontology (v2) Page 79 of 86

The reason why so many different vocabularies talk about entities from a same language is mainly due to
pragmatical evolution of semantic technologies. The original vocabularies by W3C are not extremely detailed
in distinguishing the constructs available in OWL (and RDF, RDFS); for example, it is difficult to talk explicitly
about “existential restrictions”, because these are just instances of owl:Restriction. On the other
hand, W3C vocabularies are implemented in all APIs and tools for ontology engineering, and a ontology
design vocabulary like codolight must be aligned to the main data vocabularies for maximal interoperability.
The OWL metamodels developed in NeOn try to overcome the referential coarseness of OWL constructs,
e.g. by providing a class owlodm1:ExistentialRestriction. On the other hand, these metamodels are not a
substitute for W3C OWL datamodel.

Table 11.2: Alignments between codolight and OWL
codolight entity type of alignment OWL entity

rdf:Statement rdfs:subClassOf codkernel:OntologyElement
rdfs:Container rdfs:subClassOf codkernel:OntologyElement
owl:DataRange rdfs:subClassOf codkernel:OntologyElement
owl:Ontology rdfs:subClassOf codkernel:Ontology
rdf:Property rdfs:subClassOf codkernel:OntologyElement

owl:AllDifferent rdfs:subClassOf codkernel:OntologyElement
rdfs:Class rdfs:subClassOf codkernel:OntologyElement

rdf:XMLLiteral rdfs:subClassOf codkernel:OntologyElement
rdf:List rdfs:subClassOf codkernel:OntologyElement

rdfs:Literal rdfs:subClassOf codkernel:OntologyElement

Table 11.3: Alignments between OWL 1 and codolight.
OWL 1 entity type of alignment codolight entity

owlodm1:OntologyProperty rdfs:subClassOf codkernel:OntologyElement
owlodm1:AnnotationProperty rdfs:subClassOf codkernel:OntologyElement

owlodm1:Annotation rdfs:subClassOf coddata:Annotation
owlodm1:DataRange rdfs:subClassOf codkernel:OntologyElement

owlodm1:URI rdfs:subClassOf intensionextension:InformationObject
owlodm1:OntologyElement rdfs:subClassOf codkernel:OntologyElement

owlodm1:AllDifferent rdfs:subClassOf codkernel:OntologyElement
owlodm1:Ontology rdfs:subClassOf codkernel:Ontology

11.2 Alignment to OMV

In this section, we report the alignments made between codolight and OMV (Ontology Metadata Vocabulary)
entities [HSH+05]. OMV is vocabulary for annotating ontologies with time, authors, tools, languages, etc. and
it is used to provide support with ontology registries. However, from a design viewpoint the metadata provided
by OMV have a semantics that is potentially compatible to that of other metamodels, and this alignment helps
with metadata interoperability.

11.3 Alignment to DOAP

In this section, we report the alignments made between codolight and DOAP (Description Of A Project)
vocabulary1. DOAP is a vocabulary for creating profiles of software projects with time, authors, FOAF (Friend

1http:trac.usefulinc.comdoap

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 80 of 86 NeOn Integrated Project EU-IST-027595

Table 11.4: Alignments between OWL 2 and codolight entity.
OWL 2 entity type of alignment codolight entity
owlodm2:URI rdfs:subClassOf intensionextension:InformationObject

owlodm2:DataPropertyExpression rdfs:subClassOf codkernel:OntologyElement
owlodm2:DataRange rdfs:subClassOf codkernel:OntologyElement

owlodm2:AbbreviatedURI rdfs:subClassOf intensionextension:InformationObject
owlodm2:Axiom rdfs:subClassOf coddata:OntologyAxiom

owlodm2:Ontology rdfs:subClassOf codkernel:Ontology
owlodm2:ObjectPropertyExpression rdfs:subClassOf codkernel:OntologyElement

owlodm2:ClassExpression rdfs:subClassOf codkernel:OntologyElement
owlodm2:Annotation rdfs:subClassOf coddata:Annotation
owlodm2:Constant rdfs:subClassOf http://www.w3.org/2002/07:Thing
owlodm2:Constant rdfs:subClassOf intensionextension:InformationObject
owlodm2:FullURI rdfs:subClassOf intensionextension:InformationObject

owlodm2:SubObjectProperty rdfs:subClassOf codkernel:OntologyElement
owlodm2:FacetConstantPair rdfs:subClassOf intensionextension:InformationObject

owlodm2:Entity rdfs:subClassOf codkernel:OntologyElement
owlodm2:Individual rdfs:subClassOf codkernel:OntologyElement

Table 11.5: Alignments between OMV classes and codolight classes.
OMV class type of alignment codolight class

omv:OntologyDomain rdfs:subClassOf coddata:OntologyTopic
omv:OntologyEngineeringTool rdfs:subClassOf codkernel:DesignTool

omv:OntologySyntax rdfs:subClassOf coddata:EncodingSyntax
omv:LicenseModel rdfs:subClassOf description:Description
omv:OntologyTask rdfs:subClassOf codtools:OntologyApplicationTask

omv:OntologyEngineeringMethodology rdfs:subClassOf codkernel:DesignWorkflow
omv:KnowledgeRepresentationParadigm rdfs:subClassOf collection:Collection

omv:Location rdfs:subClassOf place:Place
omv:OntologyLanguage rdfs:subClassOf coddata:LogicalLanguage

omv:Ontology rdfs:subClassOf coddata:DataStructure
omv:FormalityLevel rdfs:subClassOf classification:Concept

omv:Party rdfs:subClassOf agentrole:Agent
omv:OntologyType rdfs:subClassOf classification:Concept

Of A Friend) vocabulary profiles, etc. The doap:Project notion addressed here is computational, and not
social, therefore it has been aligned to codkernel:Project.

11.4 Alignment to Access Rights model

In this section, we report the alignments made between codolight and OWL entities. We have considered
three different vocabularies:

D2.1.2 The collaborative ontology design ontology (v2) Page 81 of 86

Table 11.6: Alignments between OMV properties and codolight properties.
OMV property type of alignment codolight property

omv:contributesToOntology rdfs:subPropertyOf codworkflows:isInvolvedInTheDesignOf
omv:hasFormalityLevel rdfs:subPropertyOf classification:isClassifiedBy
omv:isIncompatibleWith rdfs:subPropertyOf coddata:relatedToOntology

omv:isSubDomainOf rdfs:subPropertyOf topic:isSubTopicOf
omv:hasSyntax rdfs:subPropertyOf coddata:hasEncoding

omv:hasOntologySyntax rdfs:subPropertyOf coddata:hasEncoding
omv:hasPriorVersion rdfs:subPropertyOf coddata:relatedToOntology
omv:hasContributor rdfs:subPropertyOf codworkflows:isInvolvedInDesignOperationsBy

omv:isOfType rdfs:subPropertyOf classification:isClassifiedBy
omv:hasDomain rdfs:subPropertyOf topic:hasTopic
omv:useImports rdfs:subPropertyOf coddata:imports
omv:isLocatedAt rdfs:subPropertyOf place:hasLocation

omv:hasOntologyLanguage rdfs:subPropertyOf coddata:hasLogicalLanguage
omv:endorsedBy rdfs:subPropertyOf codworkflows:isInvolvedInDesignOperationsBy
omv:hasCreator rdfs:subPropertyOf codworkflows:isInvolvedInDesignOperationsBy

omv:isBackwardCompatibleWith rdfs:subPropertyOf coddata:relatedToOntology
omv:usedOntologyEngineeringMethodology rdfs:subPropertyOf codprojects:isIntendedOutputOf

omv:hasLicense rdfs:subPropertyOf descriptionandsituation:isDescribedBy
omv:createsOntology rdfs:subPropertyOf codworkflows:isInvolvedInTheDesignOf

omv:endorses rdfs:subPropertyOf codworkflows:isInvolvedInTheDesignOf

Table 11.7: Alignments between Description Of A Project (DOAP) classes and codolight classes.
DOAP class type of alignment codolight class

doap:Repository rdfs:subClassOf collectionentity:Collection
doap:Project rdfs:subClassOf codkernel:Project
doap:Version rdfs:subClassOf coddata:Annotation

foaf:Document rdfs:subClassOf intensionextension:InformationObject

11.5 Alignment to Sweet Tools model

In this section, we report the alignments made between codolight and the Sweet Tools vocabulary, designed
by Mike Bergman, which is used for a constantly updated repository of semantic web tools, available at 2.

11.6 Alignments to Protégé workflow model

In this section, we report the alignments made between codolight and the Protégé Workflow ontology
[SNTM08]. As with the doap:Project alignment, the notion of workflow:Project addressed here is
computational, and not social, therefore it has been aligned to codkernel:Project.

11.7 Alignment to Software Ontology Model

In this section, we report the alignment made between codolight and the SOM (Software Ontology Model)
vocabulary, designed in order to represent Object-Oriented entities in the EvoOnt project 3. Since SOM

2http:www.mkbergman.com/?page_id=325
3http://www.ifi.uzh.ch/ddis/evo/

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 82 of 86 NeOn Integrated Project EU-IST-027595

Table 11.8: Alignments between Description Of A Project (DOAP) properties and codolight properties.
DOAP property type of alignment codolight property

foaf:topic rdfs:subPropertyOf topic:hasTopic
foaf:member rdfs:subPropertyOf collection:hasMember

foaf:page rdfs:subPropertyOf topic:isTopicOf

Table 11.9: Alignments between Access Rights classes and codolight classes.
Access rights class type of alignment codolight class
access-rights:Right rdfs:subClassOf description:Description

ar-entity:Module rdfs:subClassOf coddata:OntologyModule
ar-agents:Agent rdfs:subClassOf agentrole:Agent

ar-entity:Document rdfs:subClassOf intensionextension:InformationObject
ar-entity:Axiom rdfs:subClassOf coddata:OntologyAxiom

ar-entity:Content rdfs:subClassOf intensionextension:InformationObject

covers software code entities, these are linked to the codtools:CodeEntity class, which is associatable
with pieces of software, tools, functionalities, etc. In line with the EvoOnt project goals, future developments
can make it easier to access e.g. methods and functions in a semantic application at a much finer granularity.

D2.1.2 The collaborative ontology design ontology (v2) Page 83 of 86

Table 11.10: Alignments between Access Rights properties and codolight properties.
Access rights property type of alignment codolight property

ar-agents:subgroupOf rdfs:subPropertyOf partof:isPartOf
ar-agents:hasSubgroup rdfs:subPropertyOf partof:hasPart

Table 11.11: Alignments between Sweet Tools ontology and codolight.
Sweet Tools entity type of alignment codolight entity

sweet-tools:ToolLanguage rdfs:subClassOf codtools:ProgrammingLanguage
sweet-tools:Category rdfs:subPropertyOf classification:isClassifiedBy

sweet-tools:ToolCategory rdfs:subClassOf classification:Concept
sweet-tools:Item rdfs:subClassOf codkernel:DesignTool

Table 11.12: Alignments between Protégé Workflow classes and codolight classes.
Protégé workflow class type of alignment codolight class

workflow:Timestamp rdfs:subClassOf timeinterval:TimeInterval
workflow:Project rdfs:subClassOf codkernel:Project

workflow:Ontology_Component rdfs:subClassOf codkernel:OntologyElement
workflow:UIComponent rdfs:subClassOf codkernel:InterfaceObject
workflow:InitiationForm rdfs:subClassOf codkernel:InterfaceObject

workflow:Operation rdfs:subClassOf codkernel:DesignFunctionality
workflow:AnnotatableThing rdfs:subClassOf codkernel:KnowledgeResource

workflow:Server rdfs:subClassOf objectrole:Object
workflow:User rdfs:subClassOf codworkflows:AccountableAgent

workflow:GroupOperation rdfs:subClassOf codkernel:DesignFunctionality
workflow:Group rdfs:subClassOf collectionentity:Collection

workflow:Workflow rdfs:subClassOf codkernel:DesignWorkflow
workflow:Annotation rdfs:subClassOf coddata:Annotation

workflow:Activity rdfs:subClassOf taskrole:Task

Table 11.13: Alignments between Protégé Workflow properties and codolight properties.
Protégé workflow property type of alignment codolight property

workflow:activities rdfs:subPropertyOf partof:hasPart
workflow:performer rdfs:subPropertyOf participation:hasParticipant
workflow:member rdfs:subPropertyOf collectionentity:hasMember

workflow:group rdfs:subPropertyOf collectionentity:isMemberOf
workflow:next rdfs:subPropertyOf sequence:directlyPrecedes

workflow:annotates rdfs:subPropertyOf intensionextension:isAbout
workflow:associatedAnnotations rdfs:subPropertyOf intensionextension:isReferenceOf

Table 11.14: Alignments between Software Ontology Model (SOM) and codolight.
SOM entity type of alignment codolight entity
som:Entity owl:equivalentClass codtools:CodeEntity

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 84 of 86 NeOn Integrated Project EU-IST-027595

Chapter 12

Conclusion and remarks

This deliverable has presented a deep revision and update of the C-ODO ontology design metamodel, called
codolight. Codolight is dependent on explicit requirements and application tasks, it has been used for tool
descriptions, aligned to external vocabularies, is lighter in complexity, and better associates the social and
software layers of ontology design aspects.
We have provided a complete report, including: architectural considerations and the corolla/layering choices;
commented OWL code and figures for each module of the codolight network; commented alignment axioms
between codolight and several external vocabularies: OWL, OMV, DOAP, SOM, etc.
Codolight is actively used in some application tasks, including: browsing semantic data about ontology
projects, smart searching and selecting of design components, creating custom design configuration in-
terfaces, help collecting ontology requirements, providing a shared network of vocabularies.
Part of these functionalities are being implemented within NeOn in the Kali-ma tool (see [PPG+09]).

D2.1.2 The collaborative ontology design ontology (v2) Page 85 of 86

Bibliography

[BLC08] Tim Berners-Lee and Dan Connolly. Notation3 (n3): A readable rdf syntax. W3C Team Submis-
sion, W3C, January 2008.

[BPKL06] Christian Bizer, Emmanuel Pietriga, David Karger, and Ryan Lee. Fresnel: A Browser-
Independent Presentation Vocabulary for RDF. In 5th International Semantic Web Conference,
Athens, GA, USA, November 5-9, 2006.

[CGL+06] Carola Catenacci, Aldo Gangemi, Jos Lehmann, Malvina Nissim, Valentina Presutti, and Ger-
ardo Steve. D2.1.1: Design Rationales for collaborative development of networked ontologies Ð
State of the art and the Collaborative Ontology Design Ontology. Technical report, NeOn, 2006.

[GLP+07] Aldo Gangemi, Jos Lehmann, Valentina Presutti, Malvina Nissim, and Carola Catenacci.
CODO: an OWL Metamodel for Collaborative Ontology Design. In Workshop on Social and
Collaborative Construction of Structured Knowledge, May 2007.

[Haa06] Peter Haase. D1.1.1: Networked ontology model. Technical report, NeOn, 2006.

[HHT09] Siegfried Handschuh, Tom Heath, and VinhTuan Thai. Visual interfaces to the social and the
semantic web (VISSW 2009). In IUI ’09: Proceedings of the 13th international conference on
Intelligent user interfaces, pages 499–500, New York, NY, USA, 2009. ACM.

[HP09] Peter Haase and Raul Palma. D1.1.5: Networked ontology model. Technical report, NeOn,
2009.

[HSH+05] Jens Hartmann, York Sure, Peter Haase, Raul Palma, and Mari del Carmen Suárez-Figueroa.
OMV – Ontology Metadata Vocabulary. In Chris Welty, editor, Ontology Patterns for the Seman-
tic Web Workshop, Galway, Ireland, 2005.

[PG08] Valentina Presutti and Aldo Gangemi. Content Ontology Design Patterns as Practical Building
Blocks for Web Ontologies. In Qing Li, Stefano Spaccapietra, Eric Yu, and Antoni Olivé, editors,
ER, volume 5231 of Lecture Notes in Computer Science, pages 128–141. Springer, 2008.

[PGGPF07] Valentina Presutti, Aldo Gangemi, Asuncion Gomez-Perez, and Mari-Carmen Suarez Figueroa.
Library of Design Patterns for Collaborative Development of Networked Ontologies. Deliverable
D2.5.1, NeOn project, 2007.

[PPG+09] Wim Peters, Valentina Presutti, Aldo Gangemi, Dunja Mladenic, Raul Palma, Klaas Dellschaft,
Holger Lewen, Alessandro Adamou, and Enrico Daga. D2.3.2 Practical Methods to Support
Collaborative Ontology Design (v2). Technical report, NeOn, 2009.

[PST04] H. Pinto, S. Staab, and C. Tempich. DILIGENT: Towards a fine-grained methodology for DIs-
tributed, Loosely-controlled and evolvInG Engineering of oNTologies. In Proceedings of the 16th
European Conference on Artificial Intelligence (ECAI 2004), Valencia, Spain, 2004.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 86 of 86 NeOn Integrated Project EU-IST-027595

[SCd+09] Marta Sabou, Guadalupe Aguadode Cea, Mathieu d’Aquin, Enrico Daga, Holger Lewen, Elena
Montiel-Ponsoda, Valentina Presutti, and Mari Carmen Suarez-Figueroa. NeOn D2.2.3 Methods
and Tools for the Evaluation and Selection of Knowledge Components. Technical report, NeOn,
2009.

[SNTM08] Abraham Sebastian, Natalya Fridman Noy, Tania Tudorache, and Mark A. Musen. A Generic
Ontology for Collaborative Ontology-Development Workflows. In Aldo Gangemi and Jérome
Euzenat, editors, EKAW, volume 5268 of Lecture Notes in Computer Science, pages 318–328.
Springer, 2008.

[SSS+01] Albert Selvin, Simon Buckingham Shum, Maarten Sierhuis, Jeff Conklin, Beatrix Zimmermann,
Charles Palus, Wilfred Drath, David Horth, John Domin, and Gangmin Li. Compendium: Making
Meetings into Knowledge Events. In Knowledge Technologies 2001, 2001.

	Introduction
	Collaborative Ontology Design and C-ODO Light
	Architecture and main modules of codolight
	Conventions for modules description
	Notation and prefixes
	Figures

	CODO Kernel: the core concepts
	Patterns reused in codolight kernel module
	Entities of codolight kernel module
	Knowledge resource
	Knowledge type
	Ontology element
	Ontology
	Project
	Ontology project
	Design workflow
	Design rationale
	Design solution
	Design functionality
	Design tool
	Design operation
	Software engineering pattern
	Interface object
	Interaction pattern
	User type
	Needs
	Reuses

	The Data module
	Patterns reused in codolight data module
	Entities of codolight data module
	Ontology mapping
	Ontology module
	Networked ontology
	Network of ontologies
	Ontology library
	Ontology axiom
	Ontology topic
	Data structure
	Knowledge Organization System (KOS)
	KOS element
	Logical language
	Encoding syntax
	Annotation
	Query
	Rule
	Has networked ontology
	Has encoding
	Has logical language
	Related to ontology
	Has version
	Is about ontology project

	Axioms extending kernel entities

	The Projects module
	Patterns reused in codolight projects module
	Entities of codolight projects module
	Project description
	Ontology project execution
	Has intended output

	Axioms extending kernel entities

	The Workflows module
	Patterns reused in codolight workflows module
	Entities of codolight workflow module
	Workflow description
	Collaborative workflow
	Accountable agent
	NonAccountableAgent
	Needs agent
	Is involved in the design of
	Includes functionality

	Axioms extending kernel entities

	The Argumentation module
	Patterns reused in codolight argumentation module
	Entities of codolight argumentation module
	Argument
	Argumentation thread
	Idea
	Position
	Motivates
	Supports

	The Solutions module
	Entities of codolight solutions module
	Ontology requirement
	Competency question
	Ontology design pattern
	Unit test
	Fits
	Applies

	Axioms extending kernel entities

	The Tools module
	Entities of codolight tools module
	Technique
	Piece of software
	Ontology application task
	Programming language
	Code entity
	Has input type
	Has output type
	Applies technique
	Applies code
	Has output data
	Has input data
	Implements
	Has user type
	Applies pattern
	Has programming language
	Includes capability

	Axioms extending kernel entities

	The Interfaces module
	Entities of codolight interfaces module
	Interface object type
	Button and Widget
	Interface object attribute

	The Interaction module
	Entities of codolight interaction module
	Slideshow
	Computational design task

	Axioms extending kernel entities
	Extending axioms for codkernel:SoftwareEngineeringPattern
	Extending axioms for codkernel:InteractionPattern

	Alignments
	Alignments to OWL
	Alignment to OMV
	Alignment to DOAP
	Alignment to Access Rights model
	Alignment to Sweet Tools model
	Alignments to Protégé workflow model
	Alignment to Software Ontology Model

	Conclusion and remarks
	Bibliography

