

 NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 — “Semantic-based knowledge and content systems”

D1.5.3 Advanced Methods for Change Propagation
between Networked Ontologies and Metadata

Deliverable Co-ordinator: Diana Maynard

Deliverable Co-ordinating Institution: University of Sheffield (USFD)

Other Authors: Niraj Aswani (USFD); Wim Peters (USFD); Fouad Zablith
(OU); Mathieu d’Aquin (OU)

This document describes the implementation of the approach to modelling some of the dynamics
of (semantic) metadata that were described in D1.5.1 [MPD+07] and D1.5.2 [MPAD08]. We
focus here specifically on the interaction between the example clients and the NeOn toolkit,
such that changes in networked ontologies can be propagated to the semantic metadata, and
vice versa. This means that, for example, changes made to an ontology using GATE services
can be propagated to the NeOn toolkit where other users can access them, and that changes
made to ontologies by other users via the toolkit can be accessed by users of GATE services.
The deliverable comprises two main parts. First, we describe the implementation of ontology
change between GATE and the NeOn Toolkit, and second, we describe the Evolva plugin which
enables ontological changes to be captured and propagated to the toolkit from folksonomy data.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Document Identifier: NEON/2009/D1.5.3/v1.0 Date due: February 28, 2009
Class Deliverable: NEON EU-IST-2005-027595 Submission date: February 28, 2009
Project start date March 1, 2006 Version: v1.0
Project duration: 4 years State: Final

Distribution: Public

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this document, even
if they might not have directly contributed to the writing of this document or its parts:

• University of Sheffield

• Open University

• University of Karlsruhe

Change Log

Version Date Amended by Changes
0.1 12-01-2009 Diana Maynard First template
0.2 29-01-2009 Diana Maynard First version sent for QA
0.3 19-01-2009 Niraj Aswani Edits after QA comments
0.4 23-01-2009 Fouad Zablith Edits after QA comments
0.5 23-01-2009 Diana Maynard Final version

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 4 of 27 NeOn Integrated Project EU-IST-027595

Executive Summary

This document describes the implementation of the approach to modelling some of the dynamics of (seman-
tic) metadata that were described in D1.5.1 [MPD+07] and D1.5.2 [MPAD08]. We focus here specifically on
the interaction between the example clients and the NeOn toolkit, such that changes in networked ontolo-
gies can be propagated to the semantic metadata, and vice versa. This means that, for example, changes
made to an ontology using GATE services can be propagated to the NeOn toolkit where other users can
access them, and that changes made to ontologies by other users via the toolkit can be accessed by users
of GATE services. The deliverable comprises two main parts. First, we describe the implementation of ontol-
ogy change between GATE and the NeOn Toolkit, and second, we describe the Evolva plugin which enables
ontological changes to be captured and propagated to the toolkit from folksonomy data.

The objectives of this deliverable are twofold:

1. to achieve interoperability of NeOn Toolkit and GATE ontology change management at the change log
level, in close cooperation with T1.3, and to finalise the implementation of two-way change propagation,
such that ontology changes in GATE can be propagated to the NeOn Toolkit and vice versa;

2. the development of an ontology evolution plugin for the NeOn Toolkit which enables ontologies in the
toolkit to be modified and extended by means of semantic metadata found in textual documents and
folksonomies.

D1.5.3 Advanced Methods for Change Propagation between Networked Ontologies and Metadata Page 5 of 27

Contents

1 Introduction 7
1.1 Related Deliverables . 8

2 GATE Change log 9
2.1 Introduction . 9

2.2 Recording and interpreting changes . 12

2.3 Compatibility Testing . 15

2.4 Download . 16

2.5 Licencing and Technical Support . 18

3 Evolva: Ontology Evolution Plugin for the NeOn Toolkit 19
3.1 Introduction . 19

3.2 Approach and Implementation . 19

3.2.1 Ontology Evolution Framework . 20

3.2.2 The Role of Background Knowledge in Evolva . 21

3.2.3 Implementation of Evolva’s Relation Discovery . 22

3.2.4 Implementation of the NeOn toolkit Plugin . 23

3.3 Download and Documentation . 23

3.4 Future Work . 24

4 Conclusions and Future Work 25

Bibliography 26

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 6 of 27 NeOn Integrated Project EU-IST-027595

List of Figures

2.1 Part of the OWLChanges ontology loaded in GATE . 10

2.2 Interaction between GATE, the change logs and the NeOn toolkit 11

2.3 Change log saved after modifications to the initial ontology 13

2.4 Ontology in GATE before change log application . 16

2.5 Ontology in GATE after change log application . 17

3.1 Evolva Pilot System Screenshot . 20

3.2 The Main Components of Evolva . 21

3.3 Finding relations between new terms and the base ontology in Evolva. 22

D1.5.3 Advanced Methods for Change Propagation between Networked Ontologies and Metadata Page 7 of 27

Chapter 1

Introduction

Ontology evolution is increasingly getting research momentum in the Semantic Web field. This is due to the
fact that ontologies, forming the backbone of Semantic Web systems, need to be kept up-to-date so that
ontology-based systems remain usable. In D1.5.2, we described the implementation of some methodologies
for dealing with ontology and metadata change in text. These are motivated by the need to propagate
changes in an ontology to its instances and properties, and vice versa. For example, if a user deletes
concepts from the ontology, it is important to have a mechanism for dealing with any associated semantic
metadata, in order not to lose vital information. If a user adds new concepts to the ontology, then it may be
necessary to return to the text to check whether additional instances can be found which should be used
to populate these new concepts in the ontology. We call this the top-down approach to ontology change.
Furthermore, not only are ontologies dynamic and subject to structural change, but so are the texts and
instances from which the ontologies may be derived. If we get additional relevant textual material and/or find
new instances in that text, it may be necessary to modify the ontology to take into consideration this new
information (for example, adding new concepts or new relations between existing concepts in the ontology).
We call this the bottom-up approach to ontology change.

Our top-down approach enables changes made to the ontology to be propagated to the metadata so that as
little information as possible is lost. For example, when a concept is deleted from the ontology, usually any
semantic metadata (instances) belonging to that concept would be deleted with it, but this is not always desir-
able behaviour because often we would prefer to reclassify the instance at a more general level. We therefore
created a methodology for change propagation (as described in D1.5.1), on which the implementation of our
ontology change typology was based (as described in D1.5.2).

However, while the resulting implementation enabled a user to be aware of changes to the ontology made
by another person at a distributed location (thereby aiding collaborative annotation), this was only possible
if all such changes were made in GATE. Changes made to an ontology in the NeOn toolkit could not be
propagated to the GATE ontology management system, and vice versa. In the first part of this deliverable,
we describe the work undertaken to rectify this problem, by linking the change log created by GATE to
the change log in the NeOn toolkit, such that changes can be propagated in both directions. This is very
important for collaborative distributed ontology management.

In D1.5.2 we also described methodologies for capturing changes to ontologies based on data from folk-
sonomies and from textual documents (bottom-up approach). In this deliverable, we describe the practical
implementation of this work in the form of Evolva, an ontology evolution system that can extend an ontology
based on information extracted from various data sources. It supports both textual sources, from which it
extracts representative terms, and folksonomies, from which it extracts tags which frequently co-occur with a
given concept. The extracted tags and terms are then used to extend the given ontology. In order to perform
this linking, various background knowledge sources are used such as WordNet [Fel98] and the Semantic
Web.

The objectives of this deliverable are thus twofold:

1. to achieve interoperability of NeOn Toolkit and GATE ontology change management at the change log

2006–2009 c© Copyright lies with the respective authors and their institutions.

level, in close cooperation with T1.3, and to finalise the implementation of two-way change propagation,
such that ontology changes in GATE can be propagated to the NeOn Toolkit and vice versa;

2. the development of an ontology evolution plugin for the NeOn Toolkit which enables ontologies in the
toolkit to be modified and extended by means of semantic metadata found in textual documents and
folksonomies.

1.1 Related Deliverables

The work in this deliverable is strongly related to a number of other deliverables in NeOn:

1. It describes the implementation of the methods for ontology change management proposed in D1.5.1
and D1.5.2;

2. It is closely related to the work on change management to support collaborative workflows described
in D1.3.2. The implementation of our change log system in GATE is designed specifically to interact
with the change log and workflows implemented there.

3. The bottom-up approaches to ontology change management such as Evolva, SPRAT and SARDINE
are closely related to work carried out in WP2 and WP7. SPRAT is described in more detail in D2.2.2.
All these approaches are also designed to interact with the change log system implemented.

D1.5.3 Advanced Methods for Change Propagation between Networked Ontologies and Metadata Page 9 of 27

Chapter 2

GATE Change log

2.1 Introduction

In previous deliverables [PHWD08, PHJ09] we described an ontology change log management system de-
veloped for the NeOn Toolkit which allows the managing of changes made by users in a collaborative envi-
ronment. This is necessary because different people, who may be experts in their domain, sometimes end
up making changes to the same ontology, often at distributed locations. Where it is not possible to have
access to a shared repository, other people wishing to make changes to the same ontology have to wait for
others to finish their tasks. Changes made to an ontology can involve additions, deletions and modifications
(see [MPD+07] for more details).

The basic idea behind producing a change log is to allow people to share their changes with others and
thus collaborate on manipulating ontology data. This essentially allows them to work independently as well
as simultaneously on the same ontology. However, some ontologies can be extremely large and unwieldy,
whereas the changes made to such ontologies may be only very minor. Instead of exchanging different
versions of ontologies, it makes it easier to exchange change logs which can then be applied over to the
original ontology to get the modified version.

As an extension to the OMV1, a taxonomy has been defined called OWLChanges, consisting of a concept
in the ontology representing each different type of change possible. Figure 2.1 shows a snapshot of part
of this ontology, loaded in GATE. This includes concepts such as AddClass, RemoveClass, AddIndividual,
RemoveIndividual etc. In the case of the NeOn Toolkit change log, every change made to an ontology is
recorded as an instance of the relevant concept in the OWLChanges ontology. Recording changes this way
makes it possible to carry the final change log as a separate ontology where every instance refers to a change
made in the ontology. The change log, in addition to the information about changes made by users, contains
other useful information such as who made those changes, when and in which order etc. Since the change
log is a valid OWL ontology, it can be then loaded as well as queried independently.

GATE has several different plugins useful for carrying out different types of information extraction tasks.
It also has its own ontology API, which can be used together with these resources to take the maximum
advantage of the combination. There are several applications that use these resources and manipulate
ontologies (automatically) using the ontology API. We implemented GATE Ontology Services to allow people
to connect to a central repository and manage ontologies centrally. It has been implemented in such way that
it can be used with other resources available in GATE. In D1.5.2 [MPAD08], we described a plugin called the
NeonOntologyServiceClient that allows connecting to the GATE Ontology Services (GOS).

GOS supports storing ontologies on a shared repository on a remote server. GOS is based on OWLIM which
is a high performance semantic repository developed in Java. It is packaged as a Storage and Inference layer
(SAIL) for the Sesame2 RDF database. It has its own published API that a user can use to make changes
to the ontologies stored on the server. Software clients such as the NeonOntologyServiceClient allow users

1http://ontoware.org/projects/omv/
2http://www.openrdf.org/

2006–2009 c© Copyright lies with the respective authors and their institutions.

Figure 2.1: Part of the OWLChanges ontology loaded in GATE

to connect to this server, upload new ontologies or use existing ones and manipulate data using the service
methods published by the GOS. Similar to the NeOn Toolkit, GOS also produces a change log that describes
changes made by the various users.

When making changes to the ontology, users contribute to the change log maintained on the server. The
GOS maintains only one instance of change log per repository and accumulates changes made by different
users in the same change log. Users wishing to download the entire change log can do so by selecting one
of the options provided in the NeonOntologyServiceClient. When users download a change log, it not only
contains changes made by them but the changes that took place ever since the server was started.

In its current version, GOS inherits Sesame’s repository management system which allows giving different
rights to different users on different repositories. In other words if proper rights are assigned, multiple users
can connect to the same repository from different locations and make changes. It is up to the system using
OWLIM/Sesame as backend to utilise this functionality and restrict multiple users from editing the same
ontology at the same time.

In GOS, currenly, only one user is allowed to modify the ontology at a time. Other users are given read only
access if they connect to a repository which is already being edited by another user. However, since the
different repositories are stored on the same central server, different users connecting to the same reposi-
tory one after the other, see the latest modified version. If simultaneous access is needed, one can carefully
distribute or make copies of the same ontology across different repositories and ask users to connect to a
different copy. Users wishing to make changes can then contribute by adding new instances or deleting exist-
ing ones in their copy. GOS does not allow making changes to the implicit resources (imported ontologies).

This helps in restricting users from making changes to the basic taxonomy. Since making changes produces
change logs, these change logs can be investigated for debugging purposes. More information on GOS, how
to access it, its methods and the change log can be found in D1.5.2 [MPAD08].

One of the problems with the GOS change log described previously is that it restricts users to use it only
within GOS and is not directly compatible with the NeOn Toolkit. Change logs produced by GOS could be
interpreted by GOS only. The same is true for NeOn Toolkit change logs which could not be interpreted by
GOS. This meant that users of GATE who modify an ontology could not publish their changes to the NeOn
Toolkit so that toolkit users having access to the same ontology could make use of them. Similarly if a toolkit
user modified an ontology, the change log was not applicable in GATE.

We have tried to solve this problem through this deliverable. What we provide is an implementation in the
GOS that not only understands but also produces the changelogs that are compatible with NeOn Toolkil.
In other words, it bridges the gap between the GOS and the NeOn Toolkil that will allow people to carry
changelogs (instead of the entire ontologies) across the two systems. Figure 2.2 shows the interaction
between GATE application, the change log created and the Neon Toolkit.

Figure 2.2: Interaction between GATE, the change logs and the NeOn toolkit

The system works in both directions. Given this setup, users can choose to work on a system of their choice
(NeOn Toolkit or GOS) and produce a change log that can be interpreted by both the toolkit and GOS to
bring the ontologies in the same state.

As described in the deliverable D1.5.2, the NeonOntologyServiceClient uses the graphical interface of Gate
Ontology Editor to allow users to create and populate new and existing ontologies. The same Ontology

2006–2009 c© Copyright lies with the respective authors and their institutions.

editor is also used by a standalone resource known as OWLIMOntologyLR 3 which is a part of the core
GATE system. For testing purposes only, the new development has been carried out within the core GATE
environment. Both the NeonOntologyServiceClient and the OWLIMOntologyLR are implementations of the
same interface, the only difference between the two being that the former requires access to a server running
GOS where it can create, store and edit ontologies, whereas the latter creates repositories in memory which
are destroyed as soon as the LR is closed. Once the new changes in OWLIMOntologyLR have been tested,
the next step will be to integrate these changes within the NeONOntologyServiceClient.

Changes in Change logs The basic difference between the two change logs (the previous version of GOS
vs the current version) is the type of information included in the change logs. The earlier change logs focused
on providing information on the affected triples (subject, predicate, objects). For example, if an instance was
deleted in the earlier version, the following three entries were added into the change log:

<instanceURI> <*> <*>
<*> <instanceURI> <*>
<*> <*> <instanceURI>

What it meant was that all the statements where <instanceUri> appeared as either subject, predicate or
object were deleted. However, it lacked the information about what the other two elements were apart from
the <instanceURI> in those deleted triples. Although such an arrangement helped in keeping the change
logs simple and easy to read, it omitted to mention what statements (with full details on subject, predicate
and object) were present before the deletion of this particular instance.

In a scenario where different people are contributing their efforts into the final outcome, it is very important
to know what was contributed by whom. The earlier version of GOS did not record any information about
the authors responsible for changes. The newer version adds information about the authors along with the
timestamps to record when the changes occurred.

In the new version, change logs are produced as valid RDF/XML documents where every change made to
an ontology is an instance of some appropriate class.

2.2 Recording and interpreting changes

Below, we first give some details about the change ontology (OWLChanges.owl) that was developed in the
previous deliverables D1.3.1 and D1.3.2, and explain various parts of it. We then provide more information
on how changes are recorded by explaining a step-by-step process for some example changes. Finally, we
explain the process of interpreting it back.

The change ontology, as explained earlier, has several concepts that define every possible change in the
ontology. For example, whenever a new class is added, an instance of AddClass is created and added to the
change log. This instance has several properties such as when the change occurred, who made the change,
which ontology this change belongs to, the URI(s) of the affected resource(s) and so on.

Every change in the ontology can be classified as either an Addition or a Removal. An instance of a concept
called ChangeSpecification is created for every Addition or Removal made to the ontology. This instance is
associated with the axiom (such as the one explained above) that provides more details about the change
itself. Since the changes are recorded in the ontology, it is difficult to say which change occurred first.
However, in order to apply the changes, it is very important to know the order in which changes occurred. To
solve this problem, every change is associated with the change that took place just before the latest change,
using a property called hasPreviousChange. Iterating over the values of these properties helps in identifying
the correct order in which these changes occurred.

3http://gate.ac.uk/sale/tao/splitch10.html#x12-34800010.3

Figure 2.3: Change log saved after modifications to the initial ontology

In order to illustrate this process, let us consider an example. For example, a user wants to create a concept
called Person with an instance person1. Below we describe the statements that are added at every step
taken to register the change.

1. Addition of a concept Person

(a) A random atomicChange uri is created with the following format:

atomicChange = ontologyURL?location=ontologyBaseLocation;
ontologyName;change=randomUniqueNumber

(b) Based on the type of a change, the axiom is registered as an instance of either Addition or
Removal:

<atomicChange> <rdf:type> <Addition>

(c) Information about when this atomic change took place:

<atomicChange> <timestamp> <currentDateWithCurrentTime>

(d) Information about which ontology this change belongs to:

<atomicChange> <appliedToOntology> <ontologyURL>

(e) Information about the author who made this change:

<atomicChange> <hasAuthor> <userName>

2006–2009 c© Copyright lies with the respective authors and their institutions.

(f) The subject changeSpecification in the following statement acts as a register of changes. A user
wishing to read these changes should refer to this statement to obtain all the changes that took
place in the ontology:

<ontologyUrl;changeSpecification> <hasChange> <atomicChange>

(g) An axiom is defined that gives information about the related/affected entities:

axiomDeclaration = ontologyURL?location=ontologyBaseLocation;
ontologyName;axiom=randomUniqueNumber
<axiomDeclaration> <rdf:type> <Declaration>

(h) The following triple tells the system about some related entity:

<axiomDeclaration> <entity> <Person>

(i) Relation between the axiom and atomic change is defined with the following statement:

<atomicChange> <appliedAxiom> <axiomDeclaration>

(j) Creating an instance of specific type of concept that explains this atomic operation:

atomicOperation = ontologyURL?location=ontologyBaseLocation;
ontologyName;change=randomUniqueNumber
<atomicOperation> <rdf:type> <AddClass>

(k) Which ontology this atomic operation is applied to:

<atomicOperation> <appliedToOntology> <ontologyURL>

(l) Which entity this atomic operation refers to:

<atomicOperation> <hasRelatedEntity> <Person>

(m) Who is the author of this atomic operation:

<atomicOperation> <hasAuthor> <userName>

(n) Finally, when exactly this atomic operation was registered:

<atomicOperation> <timestamp> <currentDateWithCurrentTime>

2. person1 is an instance of Person. This operation consists of two atomic changes. The first change
specifies that person1 is an instance. The second change specifies that the person1 is an instance of
the concept Person.

(a) Repeat steps 1.1 to 1.7.

(b) In order to apply the change log it is necessary to know which operation took place first. The
following statement helps in identifying the correct order:

<atomicChange> <hasPreviousChange> <previousAtomicChange>

(c) The following triple tells the system about some related entity:

<axiomDeclaration> <entity> <person1>

(d) Relation between the axiom and atomic change is defined with the following statement:

<atomicChange> <appliedAxiom> <axiomDeclaration>

(e) Creating an instance of specific type of concept that explains this atomic operation:

atomicOperation = ontologyURL?location=ontologyBaseLocation;
ontologyName;change=randomUniqueNumber
<atomicOperation> <rdf:type> <AddIndividual>

(f) Repeat steps 1.11 to 1.14.

(g) Repeat steps 1 and 2.

(h) An axiom is defined that gives information about the related/affected entities:

<axiomDeclaration> <rdf:type> <ClassAssertion>

(i) What are the individual and superclass names:

<axiomDeclaration> <individual> <person1>
<axiomDeclaration> <class> <Person>
<atomicChange> <appliedAxiom> <axiomDeclaration>

Because every change log is an ontology, it is possible to store each one under a separate ontology repository
in GOS. As shown above, different statements are added to this repository for registering different changes
in the ontology. As explained in D1.5.2, GOS allows the exporting of ontologies in different formats. Thus the
change log can be exported in formats such as RDF/XML, NTriples, N3 and Turtle. By default, the change
logs are exported as RDF/XML. Having exported change logs in one of the above formats, one can easily
load them in any ontology editor to see the change log as a separate ontology. Figure 2.3 depicts a snapshot
of the change log in the GATE Ontology Editor. It shows details such as the timestamp, username, affected
resource etc. of the first change made to the ontology.

Having done this, the next task is to load such change logs back and apply them over to ontologies. GOS
has an option that allows users to perform this task. Below, we show how these changes are read from the
changelog..

Since the instances of the concept ChangeSpecification are used for recording the order in which these
changes took place, the first step is to obtain all the instances of this concept and sort them to find out which
change occurred first. As shown below, the first two triples are queried to obtain values of the ?change
variable. These are the values which provide pointers to the axioms and then to the atomicOperations (steps
4 and 5) with more information on changes. The third triple is used for finding out the order in which these
changes occurred. Based on the type of operations (e.g. AddClass or AddIndividual) relevant information is
obtained using the ?operationType.

?a <rdf:type> <ChangeSpecification>.
?a <hasChange> ?change.
?change <hasPreviousChange> ?previousChange.
?change <consistsOfAtomicOperation> ?atomicOperation.
?atomicOperation <rdf:type> ?operationType.

Figure 2.4 shows part of an ontology created automatically by the GATE application ANNIE (which performs
named entity recognition and translates these annotations into ontology elements) before the change log
was applied. It finds in text instances of the concepts Person, Organization, Location etc. and adds these to
an ontology. For example, we can see that it has found the names of people such as "Andrew Lloyd Webber"
and "Doctor Who". It has also erroneously identified some names such as "Peggy Sue What" and "F BBC".
After the ontology has been modified manually, removing the erroneous instances and adding some new
ones (such as the "John Smith" instance mentioned earlier), we save the change log and then apply it to the
previous version of the ontology. Figure 2.5 depicts a portion of the initial ontology after the change log was
applied. We can clearly see the additions, deletions and changes made to the instances of Person.

2.3 Compatibility Testing

The development of the GOS change logs presented in this chapter is very new and needs a thorough com-
patibility testing with both the GOS and the NeOn Toolkit systems. At least four tests need to be carried out

2006–2009 c© Copyright lies with the respective authors and their institutions.

Figure 2.4: Ontology in GATE before change log application

to test the system. One of these involves producing a change log from GOS and checking if it is a valid
RDF/XML. Since all the statements are added to a separate ontology repository, adding an invalid state-
ment would cause immediate complaint. Since they do not produce complaint, we know that the ontologies
(change logs) are guaranteed to be valid RDF/XMLs. The second test is to produce a change log from GOS
and apply it back in GOS. The test would be successful if the changes registered in the change log are ap-
plied successfully in the correct order. Our system has successfully passed this test. The third test is to take
a change log produced from the NeOn Toolkit and apply it over to the ontology in GOS. Finally, the fourth test
is to take a change log produced from GOS and apply it over to the ontology in NeOn Toolkit. The last two
changes are yet to be carried out and will form part of the work planned for the coming months.

2.4 Download

As described earlier, the decision was made to make these changes available from the OWLIMOntologyLR
for now. This is because not only is it easier to test new changes with the OWLIMOntologyLR, which does not
require setting up the GOS server, but also it makes it simpler for other people to try the new changes. There-
fore the current download does not include an implementation of the NeonOntologyServiceClient. Once the
changes in OWLIMOntologyLR have been fully tested, the new changes will be integrated in the NeonOntol-
ogyServiceClient, which will be the final outcome of this work.

In order to download and test the new changes, the following steps shold be taken:

Figure 2.5: Ontology in GATE after change log application

Get the sources

1. Download a copy of GATE from http://gate.ac.uk/download/index.html.

2. Download the OWLIM zip file from http://www.gate.ac.uk/projects/neon/changelog.html

3. Unzip this file to replace the Java files in src/gate/creole/ontology folder.

4. Rebuild gate by calling "bin/ant all".

Note that the software needs to be built by the user before running because it makes some changes to
the default GATE code. For reasons of backwards compatibility and possible influences on other GATE
behaviour, it is better to keep these changes separate rather than rolling them into the default GATE code. It
is standard behaviour that external GATE plugins are downloaded and built in this way.

Generating and Exporting Change logs

1. Start Gate by callling “bin/ant run”.

2. Load the "Ontology Tools" plugin.

3. Right click on the "Language Resources" and select the "OWLIM Ontology LR". This will bring up a
window that will allow you to load an ontology. More information on how to use this Language Resource
is available at http://gate.ac.uk/sale/tao/splitch10.html#x12-34800010.3.

2006–2009 c© Copyright lies with the respective authors and their institutions.

4. As you make changes in the ontology, the changes are recorded in the background. For this prototype
only, the changes are recorded in memory. You can download these changes any time by right clicking
on the instance of ontology under "Language Resources" and selecting the "Save Ontology Event
Log" option. When asked, select a location and filename to save the changes to a file. This file is an
ontology itself which can be loaded in the same way that other ontologies are loaded in GATE.

5. In order to test the application of change logs, close GATE and repeat the steps from 1 to 3. This will
load the original ontology. In order to apply the previously saved change log, right click on the instance
of ontology under "Language Resources" and select the "Load Ontology Event Log" option. When
asked, select the change log and click on the "Open" button. The changes in the change log will be
applied and the editor will refresh it to show the modified ontology.

2.5 Licencing and Technical Support

Since the software forms part of the GATE architecture, it is supported by the regular GATE support infras-
tructure. This is detailed more explicitly on the GATE website at http://gate.ac.uk/support.html. Primarily, the
GATE team should be contacted via the links on the website, or via the GATE users mailing list4. There is
also detailed documentation provided on the main GATE web pages5 and in the User Guide6. With respect to
licencing, GATE is available under the LGPL licence and is available to use for both commercial and research
purposes.

4http://gate.ac.uk/mail/index.html
5http://gate.ac.uk
6http://gate.ac.uk/sale/tao

D1.5.3 Advanced Methods for Change Propagation between Networked Ontologies and Metadata Page 19 of 27

Chapter 3

Evolva: Ontology Evolution Plugin for the
NeOn Toolkit

3.1 Introduction

Ontology evolution is increasingly getting research momentum in the Semantic Web field. This is due to the
fact that ontologies, forming the backbone of Semantic Web systems, need to be kept up-to-date so that
ontology-based systems remain usable. We highlight two research approaches in the domain. The first con-
siders ontology evolution as a pure management of changes performed by the user [Kle04, NCLM06, Sto04,
VPST05], while the second takes into account dynamically updating and learning ontologies without handling
the management of changes and ontology consistency [AHO06, BHSV06, NLH07]. We understand ontology
evolution as the “timely adaptation of an ontology to the arisen changes and the consistent management
of these changes” [HS05]. This definition indirectly reflects the need of combining the two aforementioned
approaches for achieving a successful evolution. Yet no practical and complete solutions exist that cover all
stages of evolution.

We describe in this chapter our ontology evolution framework with a pilot system implemented as a NeOn
toolkit plugin. We focus on the evolution of ontologies from external data sources (e.g. text documents and
folksonomy), through mainly relying on background knowledge sources to lift user input. While in deliver-
able 1.6.1, machine learning techniques are used to predict ontology structure changes from a corpus of
documents, here we rely on knowledge reuse from external background knowledge sources for linking new
knowledge to the ontology. Our proposed framework, described in the next section, is designed to cover a
complete ontology evolution cycle. However, being aware of the amount of research involved in each step,
some of the features are planned to be reused from existing work (e.g. change recording and propagation in
D1.3.1).

3.2 Approach and Implementation

We are planning to close the above gap by proposing Evolva, a complete ontology evolution framework that
covers the entire evolution cycle, and makes use of background knowledge to potentially decrease, or even
eliminate, user involvement. The need for Evolva emerged from the tedious and time consuming update
and evolution of our KMi Semantic Web portal1 ontology. Being highly user dependent and occurring in a
dynamic domain, the ontology was left outdated. Figure 3.1 illustrates a screenshot of Evolva’s pilot system.

1http://semanticweb.kmi.open.ac.uk/

2006–2009 c© Copyright lies with the respective authors and their institutions.

Figure 3.1: Evolva Pilot System Screenshot

3.2.1 Ontology Evolution Framework

Evolva is a complete ontology evolution framework that relies on various sources of background knowledge
to support its process. Below we provide a brief overview of its five components design, depicted also in
Figure 3.2, which is partially implemented. More details are available in [Zab08].

1. Information Discovery. Our approach starts with discovering potentially new information from the
data sources associated with the information system. Contrasting the ontology with the content of
these sources is a way of detecting new knowledge that should be reflected by the base ontology. Data
sources exist in various formats from unstructured data such as text documents or tags, to structured
data such as databases and ontologies. This component handles each data source differently. (1)
Text documents are processed using information extraction, ontology learning or entity recognition
techniques. (2) Other external ontologies are subject to translation for language compatibility with the
base ontology, and (3) database content is translated into ontology languages.

2. Data Validation. Discovered information is validated in this component. We rely on a set of heuristic
rules such as the length of the extracted terms. This is especially needed for information discovered
from text documents, as information extraction techniques are likely to introduce noise. For example,
most of the two-letter terms extracted from KMi’s news corpora are meaningless and should be dis-
carded. In the case of structured data, this validation is less necessary as the type of information is
explicitly defined.

3. Ontological Changes. This component is in charge of establishing relations between the extracted
terms and the concepts in the base ontology. These relations are identified by exploring a variety of
background knowledge sources, as we will describe in the next section. Appropriate changes will be
represented and performed to the base ontology, generating a new ontology version.

4. Evolution Validation. Performing ontology changes automatically may introduce inconsistencies and
incoherences in the base ontology. Also, due to having multiple data sources, data duplication is
likely to arise. Conflicting knowledge is highly possible to occur and should be handled by automated
reasoning. As evolution is an ongoing process, many statements are time dependent and should be
treated accordingly by applying temporal reasoning techniques.

5. Evolution Management. Managing the evolution will be about giving the ontology curator a degree
of control over the evolution, as well as propagating changes to the dependent components of the

ontology such as other ontologies or applications. User control will deal with tracking ontology changes,
spotting and solving unresolved problems.

IE / OL /

NER

Extracted

Schema/
Instances

Relation

Discovery

Evolved

Ontology

Schema/

Instances
Changes

Performing

Changes

Consistency

Check

Approved

Ontology

Recording

Changes

Admin

Control

Change

Propagation
Transform-

ation

Quality

Check

Raw

Data

Information

Discovery

Data

Validation

Ontological

Changes

Evolution

Management

Translation

Duplication

Check

Evolution

Validation

Temporal

Reasoning

Un-

structured
Data

External

Ontologies

Databases
Backgrnd

Knowledge

Base

Ontology

= I/O Data

= Processes

Figure 3.2: The Main Components of Evolva

3.2.2 The Role of Background Knowledge in Evolva

A core task in most ontology evolution scenarios is the integration of new knowledge into the base ontology.
We focus on those scenarios in which such new knowledge is extracted as a set of emerging terms from tex-
tual corpora, databases, or domain ontologies. Traditionally this process of integrating a new set of emerging
terms is performed by the ontology curator. For a given term, they would rely on their own knowledge of
the domain to identify in the base ontology elements related to the term, as well as the actual relations they
share. As such, it is a time consuming process, which requires the ontology curator to know well the ontology,
as well as being an expert in the domain it covers.

Evolva makes use of various background knowledge sources to identify relations between new terms and
ontology elements. The hypothesis is that a large part of the process of updating an ontology with new terms
can be automated by using these sources as an alternative to the curator’s domain knowledge.

We have identified several potential sources of background knowledge. For example, thesauri such as Word-
Net [Fel98] have been long used as a reference resource for establishing relations between two given con-
cepts, based on the relation that exists between their synsets. Because WordNet’s dictionary can be down-
loaded and accessed locally by the system and because a variety of relation discovery techniques have
been proposed and optimized, exploring this resource is quite fast. Online ontologies constitute another
source of background knowledge which has been recently explored to support various tasks such as on-
tology matching [SdM08] or enrichment [ASSM07]. While the initial results in employing these ontologies
are encouraging, these techniques are still novel and in need of further optimizations (in particular regarding
time-performance). Finally, the Web itself has been recognised as a vast source of information that can be
exploited for relation discovery through the use of so-called lexico-syntactic patterns [CHS04]. Because they
rely on unstructured textual sources, these techniques are more likely to introduce noise than the previously
mentioned techniques which rely on already formalized knowledge. Additionally, these techniques can be
time consuming given that they operate at Web scale.

Taking into account these considerations, we have devised a relation discovery process that combines vari-
ous background knowledge sources with the goal of optimising time-performance and precision. As shown
in Figure 3.3, the relation discovery starts from quick methods that are likely to return good results, and

2006–2009 c© Copyright lies with the respective authors and their institutions.

continues with slower methods which are likely to introduce a higher percentage of noise, via the following
steps.

1. The process begins with string matching for detecting already existing terms in the ontology. This will
identify equivalence relations between the new terms and the ontology elements.

2. Extracted elements that do not exist in the base ontology are passed to a module that performs relation
discovery by exploring WordNet’s synset hierarchy.

3. Terms that could not be incorporated by using WordNet are passed to the next module which explores
Semantic Web ontologies.

4. If no relation is found, we resort to the slower and more noisy methods which explore the Web itself
through search engine APIs and lexico-syntactic patterns [CHS04]. In case no relation is found at the
final level, the extracted term is discarded or, optionally, forwarded for manual check.

String

Matching

Equivalence

LexicalDBs

Matching

Relation

Base

Ontology
Terms

Extracted

Terms

Ontology

Matching

Performing

Changes

Relation

Path

Relation

Web base

MatchingNo

Relation

No

Relation

Discard

Term

Relation

No

Equivalence

Extracted

Term
Exists

Lexical

DBs

SW

Ontologies
Web

No

Relation

Background Knowledge

Figure 3.3: Finding relations between new terms and the base ontology in Evolva.

3.2.3 Implementation of Evolva’s Relation Discovery

We have partially implemented the algorithm presented in Figure 3.3 by making use of methods for exploring
two main background knowledge sources: WordNet and online ontologies. We have not yet implemented
methods for exploiting the Web as a source of knowledge. The first part of the implementation performs the
string matching between the extracted terms and the ontology elements. We rely on the Jaro distance metric
similarity [CRF03] which takes into account the number and positions of the common characters between a
term and an ontology concept label. This string similarity technique performs well on short strings, and offers
a way to find a match between strings that are slightly different only because of typographical errors or the
use of different naming conventions.

For the WordNet based relation discovery, we derive a relation by exploring WordNet’s hierarchy using a
functionality built into its Java library2. This will result in a relation between a term, as well as an inference
path which lead to its discovery.

The terms that could not be related to the base ontology are forwarded to the next module which makes use
of online ontologies. For this component, we rely on the Scarlet relation discovery engine3. It is worth noting
that we handle ontologies at the level of statements, i.e. ontologies are not processed as one block of state-
ments. Thus we focus on knowledge reuse without taking care of the validation of the sources as a whole with

2http://jwordnet.sourceforge.net/
3http://scarlet.open.ac.uk/

respect to the base ontology. Scarlet [SdM08] automatically selects and explores online ontologies to dis-
cover relations between two given concepts. For example, when relating two concepts labelled Researcher
and AcademicStaff, Scarlet identifies (at run-time) online ontologies that can provide information about how
these two concepts inter-relate and then combines this information to infer their relation. [SdM08] describes
two increasingly sophisticated strategies to identify and exploit online ontologies for relation discovery. We
rely on the first strategy which derives a relation between two concepts if this relation is defined within a sin-
gle online ontology, e.g. stating that Researcher v AcademicStaff. Besides subsumption relations, Scarlet
is also able to identify disjoint and named relations. All relations are obtained by using derivation rules which
explore not only direct relations but also relations deduced by applying subsumption reasoning within a given
ontology. For example, when matching two concepts labelled Drinking Water and tap_water, appropriate an-
chor terms are discovered in the TAP ontology4 and the following subsumption chain in the external ontology
is used to deduce a subsumption relation: DrinkingWater v FlatDrinkingWater v TapWater. Note, that as in
the case of WordNet, the derived relations are accompanied by a path of inferences that lead to them.

We performed an experiment about the potential use of such background knowledge sources for relation
discovery, and they proved to have a high precision of around 77%. Further details of the experiment can be
found in [ZSdM08].

3.2.4 Implementation of the NeOn toolkit Plugin

The Evolva NeOn toolkit plugin is a concrete implementation of our framework (see screenshot in Figure
3.1). Currently, the plugin supports the first three steps depicted in Figure 3.2.

In the Information Discovery step, Text2Onto is used to identify concepts in a corpus of text documents
(selected in the "Data Sources" panel). Data validation relies on string similarity and term length measures.
We use a customizable Jaro-based [CRF03] calculation to compute the similarity of the extracted and existing
concepts. Concepts with a similarity under a given threshold are considered new and are validated based on
their length. The user can set the parameters of the validation techniques and also manually indicate which
concepts should be considered for integration ("Data Validation").

Ontological changes are identified by finding links between validated terms and ontology concepts. We use
two main sources of background knowledge: WordNet and online ontologies accessed through Scarlet5. As
with WordNet, the derived relations are accompanied by a path of inferences that lead to them ("Relation
Discovery" panel). Figure 3.1 shows an example of how WordNet helped linking the new concept Applicant
as a subClassOf Person (a concept in the base ontology). A second example shows how Scarlet links
Website to Organization, through a hasWebsite relation. One of the challenges at this level is to validate
the relations efficiently, prior to applying any changes on the base ontology. For example, we need to know
how to select the right synset in WordNet, or how to determine whether a relation discovered from online
ontologies conflicts with the existing knowledge in the base ontology. Currently we are relying on the web-
based distance similarity measure [CV07] as a step to check the possibility of two terms being related,
before performing relation discovery. Part of our future plan is to use other validation techniques such as the
base ontology itself as a validator, as well as word sense disambiguation. In addition to these automated
validation methods, the user can manually exclude irrelevant relations. The user is allowed to manually
select the relations to be used. A list of ontology changes is deduced from these relations and applied to the
ontology. Changes are represented and performed using the Change Ontology developed within the NeOn
toolkit and discussed in Section 2.1. For further details of the ontology, see D 1.3.1.

3.3 Download and Documentation

The current pilot Evolva plugin is still under major development and testing. Tests have currently been per-
formed only on MacOS, and we are in the process of testing the plugin in other environments. The pilot plugin

4http://139.91.183.30:9090/RDF/VRP/Examples/tap.rdf
5http://scarlet.open.ac.uk/

2006–2009 c© Copyright lies with the respective authors and their institutions.

is available for download, with online installation procedures and user documentation which includes how to
start Evolva and proceed throughout the ontology evolution process. The download and documentation are
available on the Evolva website6.

3.4 Future Work

Part of our future plan is to study automated techniques for relation validation, crucial to increase Evolva’s
precision. We also plan to fine-tune and extend our prototype to cover the remaining framework components.
This includes (1) evolution validation for consistency and duplication checks that could have occurred as an
evolution side effect, and (2) the evolution management for recording changes and handling change propa-
gation to the dependent components such as applications, or imported and aligned ontologies. Recording
changes will be based on the Change Capturing plugin of the NeOn toolkit (see D1.3.1).

We plan to test Evolva in real domains such as the UN’s Food and Agriculture Organization (FAO)7, linking
with work performed in WP7. This would give us firstly qualitative measures, which reflect the correctness
of the content added to the ontology; and secondly, quantitative measures to analyze the performance of
Evolva in terms of time, number of ontology entities added, and number of sources analyzed.

6http://evolva.kmi.open.ac.uk
7http://www.fao.org

D1.5.3 Advanced Methods for Change Propagation between Networked Ontologies and Metadata Page 25 of 27

Chapter 4

Conclusions and Future Work

In this deliverable we have described the implementation of the approach to modelling some of the dynamics
of (semantic) metadata that were described in previous NeOn deliverables. On the one hand, we have
achieved interoperability between the NeOn toolkit and the GATE architecture where ontology changes are
concerned, so that changes to an ontology made by different users can be merged and/or made available
to others. The reason that this is necessary is because although GATE services such as SPRAT, SARDINE
and ANNIE can be run as NeOn toolkit plugins, these are only loosely coupled.

On the other hand, we have implemented another plugin, Evolva, which demonstrates the bottom-up ap-
proach to ontology change, through the use of evolving metadata from text and folksonomies. In future work,
we hope to incorporate into Evolva some of the approaches proposed in the previous deliverable D1.5.2,
such as that used in the SPRAT application (described more fully in [VTSFGP+08]).

One thing which is still missing in this work is a proper integration of the change management process and
the GATE web service applications such as SPRAT and SARDINE. When for example SPRAT is run on a
set of documents, and a previously existing ontology is modified, the change log is not automatically saved
but must be manually created. In future, this will be incorporated into the application when appropriate, so
that the changelog is saved as well as the new version of the ontology, and thus when loaded in the toolkit,
a previous version of the original ontology (stored on another server by another user, for instance) can be
modified with the new version. This is important for collaborative ontology development work.

2006–2009 c© Copyright lies with the respective authors and their institutions.

Page 26 of 27 NeOn Integrated Project EU-IST-027595

Bibliography

[AHO06] H. Alani, S. Harris, and B. O’Neil. Winnowing ontologies based on application use. In Pro-
ceedings of ESWC, 2006.

[ASSM07] S. Angeletou, M. Sabou, L. Specia, and E. Motta. Bridging the gap between folksonomies
and the semantic web: An experience report. In Proc. of the ESWC Workshop on Bridging
the Gap between Semantic Web and Web 2.0, 2007.

[BHSV06] Stephan Bloehdorn, Peter Haase, York Sure, and Johanna Voelker. Ontology evolution. In
Semantic Web Technologies - Trends and Research in Ontology-based Systems, pages 51–
70. John Wiley & Sons, June 2006.

[CHS04] P. Cimiano, S. Handschuh, and S. Staab. Towards the self-annotating web. In Proceedings
of the 13th international conference on World Wide Web, pages 462–471, 2004.

[CRF03] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A comparison of string distance metrics for
name-matching tasks. In Proceedings of the IJCAI-2003 Workshop on Information Integration
on the Web (IIWeb-03), 2003.

[CV07] R. L. Cilibrasi and P. M. B. Vitányi. The google similarity distance. In IEEE Transactions on
Knowledge and Data Engineering, pages 370–383, 2007.

[Fel98] Christiane Fellbaum, editor. WordNet - An Electronic Lexical Database. MIT Press, 1998.

[HS05] P. Haase and L. Stojanovic. Consistent evolution of owl ontologies. In Proceedings of ESWC,
pages 182–197, 2005.

[Kle04] M. Klein. Change Management for Distributed Ontologies. PhD thesis, Vrije Universiteit in
Amsterdam, 2004.

[MPAD08] D. Maynard, W. Peters, S. Angeletou, and M. D’Aquin. Implementation of metadata evolution.
Technical Report D1.5.2, NeOn Project Deliverable, 2008.

[MPD+07] D. Maynard, W. Peters, M. D’Aquin, M. Sabou, and N. Aswani. Dynamics of metadata.
Technical Report D1.5.1, NeOn Project Deliverable, 2007.

[NCLM06] N. F. Noy, A. Chugh, W. Liu, and M. A. Musen. A framework for ontology evolution in collab-
orative environments. In Proc. of ISWC, pages 544–558, 2006.

[NLH07] V. Novacek, L. Laera, and S. Handschuh. Semi-automatic integration of learned ontologies
into a collaborative framework. In International Workshop on Ontology Dynamics, 2007.

[PHJ09] R. Palma, P. Haase, and Q. Ji. Change management to support collaborative workflows.
Technical Report D1.3.2, NeOn Project Deliverable, 2009.

[PHWD08] R. Palma, P. Haase, Y. Wang, and M. D’Aquin. Propagation models and strategies. Technical
Report D1.3.1, NeOn Project Deliverable, 2008.

[SdM08] M. Sabou, M. d’Aquin, and E. Motta. Exploring the semantic web as background knowledge
for ontology matching. Journal on Data Semantics, 2008.

[Sto04] L. Stojanovic. Methods and Tools for Ontology Evolution. PhD thesis, FZI, 2004.

[VPST05] D. Vrandecic, H. S. Pinto, Y. Sure, and C. Tempich. The diligent knowledge processes.
Journal of Knowledge Management, 9:85–96, 2005.

[VTSFGP+08] B. Villazón-Terrazas, M. Suárez-Figueroa, A. Gómez-Pérez, A. García-Silva, and D. May-
nard. Methods and tools for re-engineering non-ontological resources. Technical Report
D2.2.2, NeOn Project Deliverable, 2008.

[Zab08] F. Zablith. Dynamic ontology evolution. In ISWC Doctoral Consortium, 2008.

[ZSdM08] F. Zablith, M. Sabou, M. d’Aquin, and E. Motta. Using background knowledge for ontology
evolution. In International Workshop on Ontology Dynamics, 2008.

2006–2009 c© Copyright lies with the respective authors and their institutions.

	Introduction
	Related Deliverables

	GATE Change log
	Introduction
	Recording and interpreting changes
	Compatibility Testing
	Download
	Licencing and Technical Support

	Evolva: Ontology Evolution Plugin for the NeOn Toolkit
	Introduction
	Approach and Implementation
	Ontology Evolution Framework
	The Role of Background Knowledge in Evolva
	Implementation of Evolva's Relation Discovery
	Implementation of the NeOn toolkit Plugin

	Download and Documentation
	Future Work

	Conclusions and Future Work
	Bibliography

