

 NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 — “Semantic-based knowledge and content systems”

D1.3.2 Change management to support collaborative
workflows

Deliverable Co-ordinator: Raul Palma

Deliverable Co-ordinating Institution: UPM

Other Authors: Peter Haase; Qiu Ji

In this deliverable we present the implementation of the methods and strategies for propagating
networked ontologies that we proposed in NeOn deliverable D1.3.1 in order to support the collab-
orative ontology development based on editorial workflows. Our implementation realises a major
component for case study task T7.4 that we used as a test case. We also present the experi-
ments we conducted to evaluate our approach and the results of the evaluations. In particular,
the implementation was tested by the FAO case study partner in the development of fisheries
ontologies produced within WP7 that will underpin the Fisheries Stock Depletion Assessment
System (FSDAS).

Document Identifier: NEON/2008/D1.3.2/v1.0 Date due: December 31, 2008
Class Deliverable: NEON EU-IST-2005-027595 Submission date: December 31, 2008
Project start date March 1, 2006 Version: v1.0
Project duration: 4 years State: Final

Distribution: Public

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 2 of 52 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is part of the NeOn research project funded by the IST Programme of the Commission of the
European Communities by the grant number IST-2005-027595. The following partners are involved in the
project:

Open University (OU) – Coordinator Universität Karlsruhe – TH (UKARL)
Knowledge Media Institute – KMi Institut für Angewandte Informatik und Formale
Berrill Building, Walton Hall Beschreibungsverfahren – AIFB
Milton Keynes, MK7 6AA Englerstrasse 11
United Kingdom D-76128 Karlsruhe, Germany
Contact person: Martin Dzbor, Enrico Motta Contact person: Peter Haase
E-mail address: {m.dzbor, e.motta}@open.ac.uk E-mail address: pha@aifb.uni-karlsruhe.de
Universidad Politécnica de Madrid (UPM) Software AG (SAG)
Campus de Montegancedo Uhlandstrasse 12
28660 Boadilla del Monte 64297 Darmstadt
Spain Germany
Contact person: Asunción Gómez Pérez Contact person: Walter Waterfeld
E-mail address: asun@fi.ump.es E-mail address: walter.waterfeld@softwareag.com
Intelligent Software Components S.A. (ISOCO) Institut ‘Jožef Stefan’ (JSI)
Calle de Pedro de Valdivia 10 Jamova 39
28006 Madrid SL–1000 Ljubljana
Spain Slovenia
Contact person: Jesús Contreras Contact person: Marko Grobelnik
E-mail address: jcontreras@isoco.com E-mail address: marko.grobelnik@ijs.si
Institut National de Recherche en Informatique University of Sheffield (USFD)
et en Automatique (INRIA) Dept. of Computer Science
ZIRST – 665 avenue de l’Europe Regent Court
Montbonnot Saint Martin 211 Portobello street
38334 Saint-Ismier, France S14DP Sheffield, United Kingdom
Contact person: Jérôme Euzenat Contact person: Hamish Cunningham
E-mail address: jerome.euzenat@inrialpes.fr E-mail address: hamish@dcs.shef.ac.uk
Universität Kolenz-Landau (UKO-LD) Consiglio Nazionale delle Ricerche (CNR)
Universitätsstrasse 1 Institute of cognitive sciences and technologies
56070 Koblenz Via S. Marino della Battaglia
Germany 44 – 00185 Roma-Lazio Italy
Contact person: Steffen Staab Contact person: Aldo Gangemi
E-mail address: staab@uni-koblenz.de E-mail address: aldo.gangemi@istc.cnr.it
Ontoprise GmbH. (ONTO) Food and Agriculture Organization
Amalienbadstr. 36 of the United Nations (FAO)
(Raumfabrik 29) Viale delle Terme di Caracalla
76227 Karlsruhe 00100 Rome
Germany Italy
Contact person: Jürgen Angele Contact person: Marta Iglesias
E-mail address: angele@ontoprise.de E-mail address: marta.iglesias@fao.org
Atos Origin S.A. (ATOS) Laboratorios KIN, S.A. (KIN)
Calle de Albarracín, 25 C/Ciudad de Granada, 123
28037 Madrid 08018 Barcelona
Spain Spain
Contact person: Tomás Pariente Lobo Contact person: Antonio López
E-mail address: tomas.parientelobo@atosorigin.com E-mail address: alopez@kin.es

D1.3.2 Change management to support collaborative workflows Page 3 of 52

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this document, even
if they might not have directly contributed to the writing of this document or its parts:

• Universidad Politécnica de Madrid (UPM)

• University of Karlsruhe (UKARL)

• Ontoprise (ONTO)

Change Log

Version Date Amended by Changes
0.1 01-09-2008 Raul Palma Creation
0.2 05-09-2008 Raul Palma TOC
0.3 10-09-2008 Raul Palma Experiment design
0.4 01-10-2008 Raul Palma Introduction
0.5 05-10-2008 Raul Palma Implementation section
0.6 31-10-2008 Raul Palma Execution of experiment
0.7 05-11-2008 Raul Palma Analysis of completeness
0.8 15-11-2008 Raul Palma Analysis of experiments results
0.9 15-11-2008 Raul Palma conclusions

0.95 15-12-2008 Peter Haase proof reading, minor corrections
1.0 15-01-2009 Peter Haase, Raul Palma corrections after review

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 4 of 52 NeOn Integrated Project EU-IST-027595

Executive Summary

In this deliverable we present the implementation of the methods and strategies for propagating networked
ontologies that we proposed in NeOn deliverable D1.3.1 ([PHWd07]) to support the collaborative ontology
development based on editorial workflows. Collaborative ontology development is one of the most significant
problems in ontological engineering. It is especially important when developing large scale and/or multidis-
ciplinary ontologies. Our implementation provides a complete infrastructure that addresses this problem by
modelling the process followed by organisations to coordinate the collaborative ontology development. Addi-
tionally, our solution fits the requirement from case study workpackages and in particular, it realises a major
component for case study task T7.4.

Providing a complete solution to support the collaborative ontology development process involves on the one
hand conceptual models that provide the foundations to represent the required information for the solution
(presented in D1.3.1) and on the other hand several components that support related aspects including the
following:

• Change Management Components

• Workflow Management Components

• Ontology Editing and Visualization Components

• Distributed Registry

We first present our prototype framework to support the collaborative ontology development by providing a
detailed description of each of its components. The prototype consists of a set of plugins for the NeOn Toolkit.
Then, we describe the experiments we conducted in collaboration with FAO case study partner to evaluate
our framework. In particular, the implementation was tested by FAO ontology editors for the development
of fisheries ontologies produced within WP7 that will underpin the Fisheries Stock Depletion Assessment
System (FSDAS). Finally, we present the results of the evaluation and analyse our next steps accordingly.

In a nutshell, this deliverable reports the first comprehensive software prototype as part of the NeOn Toolkit
that implements the methods and strategies presented in D1.3.1 to support the collaborative ontology devel-
opment process. The planned next step is to improve the prototype based on the evaluation results.

D1.3.2 Change management to support collaborative workflows Page 5 of 52

Contents

1 Introduction 8
1.1 Motivation . 9

1.2 Overview of the deliverable . 9

2 An editorial workflow approach for collaborative ontology development 10
2.1 Conceptual Models Overview . 10

2.2 Implementation . 15

2.2.1 Implementation Support . 15

2.2.2 Possible scenarios and configurations of the framework 19

3 Evaluation 25
3.1 Completeness of the change representation model with respect to the OWL 2 ontology language 25

3.2 Experiments . 27

3.2.1 Plan phase . 27

3.2.2 Experiment Phase . 30

3.2.3 Analysis Phase . 32

3.3 Evaluation Summary and Recommendations . 45

4 Conclusions and Outlook 49
4.1 Summary . 49

4.2 Future Work . 50

Bibliography 51

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 6 of 52 NeOn Integrated Project EU-IST-027595

List of Tables

3.1 Software versions . 31

D1.3.2 Change management to support collaborative workflows Page 7 of 52

List of Figures

2.1 Main Classes and Properties of Change Ontology for OWL 2 11

2.2 OWL 2 Axioms . 12

2.3 OWL 2 Entities . 12

2.4 Editorial workflow at the element level . 13

2.5 Editorial workflow at the ontology level . 13

2.6 Workflow ontology . 15

2.7 Conceptual architecture for the collaborative ontology development support 16

2.8 Change log view . 17

2.9 Draft View in the NeOn Toolkit . 18

2.10 Configuration A . 20

2.11 Configuration B . 21

2.12 Configuration C . 23

3.1 Online Survey . 33

3.2 Survey Question 6-4 . 34

3.3 Survey Question 6-5 . 35

3.4 Survey Question 6-2 . 36

3.5 Survey Question 6-3 . 37

3.6 Collaborative Ontology Development Survey . 39

3.7 Survey Question 6-1 . 40

3.8 Survey Question 6-8 . 41

3.9 Survey Question 6-6 . 42

3.10 Survey Question 6-7 . 43

3.11 Global Efficiency . 44

3.12 Global Affect . 45

3.13 Global Helpfulness . 46

3.14 Global Control . 47

3.15 Global Learnability . 48

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 8 of 52 NeOn Integrated Project EU-IST-027595

Chapter 1

Introduction

The growing use and application of ontologies in the last years has led to an increased interest of researchers
in the development of ontologies, either from scratch or by reusing existing ones. This situation, however,
demands also a bigger effort in the maintenance and management of ontologies. Ontology development
and maintenance activities are addressed by many different methodologies (e.g. Methontology[FPJ97], On-
To-Knowledge[SSSS01], DILIGENT[Tem06], etc.). However, most of them only consider the development of
ontologies by single users or a small group of ontology engineers placed in the same location. More important
is that even though they address the methodological aspects, in general they focus less on the process
followed by organisations to coordinate the collaborative ontology development. In practice ontologies may be
distributed, and a whole team of ontology engineers with different roles may collaborate in the development
and maintenance, usually following a well defined process. Examples of such collaborative development
processes can be found in international institutions like the United Nations Food and Agriculture Organisation
(FAO), who are developing and maintaining large ontologies in the fishery domain [MGGPISK07]. Other
similar examples are those of the Gene Ontology (GO) project1, which addresses the need for consistent
descriptions of gene products in different databases, the caGrid project2, which aims at providing a virtual
informatics infrastructure that connects data, research tools, scientists, and organizations, etc.

Consequently, in this collaborative organisational setting, existing approaches are not enough to support all
ontology development and maintenance needs. Furthermore, although recently some proposals and tools
have been designed specifically to support collaborative ontology development (e.g. client-server mode in
Protégé along with the PROMPT and change-management plugins), they generally only address parts of the
overall problem (see NeOn Deliverable 1.3.1). Most of the existing advanced ontology tools (e.g. Protégé
core system, SWOOP, etc.) support only the single-user scenario, where there is just one user involved in
the development and later modification of the ontologies. With such tools, a typical scenario of collaborative
ontology development would look as follows: An editor changes an ontology using his ontology editor system
and then sends (e.g. using email or uploading it to an ontology repository) his locally changed ontology to
other users (i.e. to add more changes using their own Protégé system, or review current changes). Even in
the scenario where all users are editing the same ontology stored in a central server (e.g. using client-server
mode in Protégé), the coordination of the actions of the editors (e.g. when editors want their changes to be
reviewed or what kind of actions they can perform) is not yet fully supported.

As we can see from the previous discussion, in this type of collaborative scenario, change management is
central. Dealing with the ontology changes involves the execution of many related tasks identified in the
context of the ontology evolution process. For instance, among these tasks are the capturing and formal
representation of ontology changes, the verification of the ontology consistency after the changes are per-
formed and the propagation of those changes to the ontology related entities3. Hence, we need appropriate
procedures (and corresponding infrastructure) to control and support the management of ontology changes.

1http://www.geneontology.org/
2http://www.cagrid.org/
3For the particular case of propagation of changes between ontologies and related semantic metadata(annotations) we refer the

reader to NeOn Deliverable 1.5.2 [MAP+08]

http://www.geneontology.org/
http://www.cagrid.org/

D1.3.2 Change management to support collaborative workflows Page 9 of 52

This procedure can be modelled as a collaborative workflow, which according to [GLP+07], is a special case
of epistemic workflow characterized by the ultimate goal of designing networked ontologies and by specific
relations among designers, ontology elements, and collaborative tasks. The need for such workflows has
also been acknowledged in the past by other related works (e.g. [TN07]). An example of such workflow is
that followed by the FAO (described in [MGGPISK07]), which we take as a use case in our work, in order to
derive a generic set of required activities to support it.

1.1 Motivation

One of the goals of the FAO use case partner is that fisheries ontologies produced within WP7 will underpin
the Fisheries Stock Depletion Assessment System (FSDAS).

However, for such a dynamic domain like fisheries that is continuously evolving, we will need to provide the
appropriate support for a successful implementation and service delivery of the FSDAS. In particular, it will
be crucial to support ontology editing and maintenance activities in order to incorporate and continuously
reflect changes in the domain in the related ontologies.

The full lifecycle of the fisheries ontologies is introduced in [MGKS+07]. It consists of six major steps: First,
ontology engineers organize and structure the domain information (i.e. from the Fisheries FIGIS databases,
Fisheries fact sheets and other information system and documents) into meaningful models at the knowl-
edge level (conceptualize). In the next step, ontology engineers perform the knowledge acquisition activities
with various manual or (semi)automatic methods various methods to transform unstructured, semi-structured
and/or structured data sources into ontology instances (population). The third step is the iteration of concep-
tualization and population processes until getting a populated ontology that satisfies all requirements and it
is considered stable. Once achieved, in step four, the ontology will enter into the test and maintenance en-
vironment, implemented through the editorial workflow in step five. The editorial workflow will allow ontology
editors to consult, validate and modify the ontology keeping track of all changes in a controlled and coherent
manner. Finally, once ontology editors in charge of validation consider the ontology final, they are authorized
to release it on the Internet and make it available to end users and systems.

In this context, we will need to support a distributed team of ontology editors that is working collaboratively in
the development of one ontology following a well defined process and maintaining a log history of its changes.
However, the situation can become even more complex if the management of ontologies and related changes
is also distributed e.g. distributed copies of the same ontology are edited locally and changes are propagated
between copies in such a way that all copies are kept synchronized.

1.2 Overview of the deliverable

In the remainder of this deliverable we present our solution for the management of collaborative ontology
development in a distributed scenario by means of an editorial workflow based on the methods and
strategies that we proposed in NeOn deliverable D1.3.1. In particular, based on the proposed models for the
representation of the workflow and ontology changes and the proposed strategies for the management of
changes in distributed environments we present the implementation of the proposed solution. The remainder
of this deliverable is organised as follows: In section 2 we present a brief overview of our proposed models
and the implementation that provides the technological support to the models and methods presented in
NeOn Deliverable 1.3.1. Section 3 introduces the way we evaluated our work: section 3.1 describes how we
tested the completeness of our representation model and section 3.2 describes the experiments setting that
was conducted at FAO. We present and analyze the results of the experiment and we conclude in section 4.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 10 of 52 NeOn Integrated Project EU-IST-027595

Chapter 2

An editorial workflow approach for
collaborative ontology development

In this section we present our solution to support the collaborative ontology development and describe how
it tackles the requirements identified in NeOn deliverable 1.3.1. We first present an overview of the revised
conceptual models1 that were originally presented in D1.3.1 that provide the foundations to represent the
required information in our solution and then we present the implementation support. Finally, we describe
different collaborative scenarios supported by our solution.

2.1 Conceptual Models Overview

2.1.0.1 Change Representation

A core element in our approach is the representation of changes (c.f. change management requirement). In
D1.3.1 we presented our proposal for the representation of changes which integrates many of the features of
the existing approaches (e.g. [Sto04], [Kle04]) in a consistent layered manner. In this deliverable we highlight
only the most relevant parts of our representation of changes: We refine and extend existing work and
propose a layered approach for the representation of changes that consists of a generic ontology that models
generic operations in a taxonomy of changes that are expected to be supported by any ontology language
and that can be specialized for specific ontology languages (e.g. OWL) while still providing a common,
independent model for the representation of ontology changes. It comprises three levels for the classification
of changes: Atomic (i.e. the smallest and indivisible operation that can be performed in a specific ontology
model), Entity (i.e. basic operations that can be performed over ontology elements usually from an ontology
editor) and Composite (i.e. group of changes applied together that constitute a logical entity). It also provides
the link to capture the argumentation of changes and it relies and uses some of the knowledge defined in
our early work, the Ontology Metadata Vocabulary (OMV) [HP05] to refer to ontologies and users. OMV
is a metadata schema that captures relevant information about ontologies such as provenance, availability,
statistics, etc. Besides the main class Ontology, OMV also models additional classes and properties required
to support the reuse of ontologies, such as Organisation, Person, LicenseModel, OntologyLanguage and
OntologyTask among others. Our change ontology has been implemented as an OMV extension because it
models specific ontology metadata (i.e. ontology changes).

Furthermore, the change ontology provides the means to support not only the tracking of changes but also
the information that identifies the original and the current version of the ontology after applying the changes
(versioning requirement). This is not a trivial issue: even though ontologies are in general identified by an
URI, in practice it is not enough to identify a particular ontology version (i.e. different versions of the same
ontology have the same URI). Hence, the management of ontology versions requires a clear definition of the
ontology identification. In our solution, we rely on the identification of ontologies that we presented in [HP05],

1Our conceptual models are available in OWL at http://omv.ontoware.org

http://omv.ontoware.org

D1.3.2 Change management to support collaborative workflows Page 11 of 52

0:n hasChange

omv-c:changeSpecification
• timestamp

lexOMV v.0.1

Class Name

DatatypeProperty

ObjectProperty

Range

Domain

MIN:MAX Cardinality
omv-c:Change

owlodm:Class

owlodm:DataType

owlodm:Individual

owlodm:ObjectProperty

owlodm:DataProperty

1:n hasAuthor

0:n fromVersion
0:n toVersion

owlodm:OWLEntity

omv-c:EntityChangeomv-c:AtomicChange 0:n relatedEntity

omv-c:CompositeChange

lexOMV v.0.1

owlodm:ClassAxiom

owlodm:Fact

owlodm:Declaration

owlodm:ObjectPropertyAxiom

owlodm:DataPropertyAxiom

owlodm:OWLAxiom

omv-c:Removalomv-c:Addition

0:n appliedAxiom

omv:Party

omv:Ontology

Generic
 Class

Class Name

DatatypeProperty

 OWL
Specialised
 Class

subClassOf

Figure 2.1: Main Classes and Properties of Change Ontology for OWL 2

which consists of a tripartite identifier: the ontology URI, the ontology version (if present), and the ontology
location.

Finally, to keep track of the actual sequence of changes (i.e. the order in which changes were performed),
our ontology relies on two elements: each change is linked to its predecessor via the "hasPreviousChange"
object property and a "Log" class provides the pointer to the last change in the ontology history.

OWL Change Ontology Extension
The main classes and properties of the change ontology for OWL 2 are illustrated in Figure 2.1

The taxonomy of entity-level changes has been extended to model the particular changes for the OWL 2
ontology language based on the OWL 2 metamodel described in NeOn Deliverable 1.1.2 [HBP+07]. Hence,
the extended taxonomy includes changes for OWL elements such as objectProperties (e.g. add/remove
EquivalentObjectProperties, functionalObjectProperty, etc.) or dataProperties (e.g. add/remove disjointDat-
aProperties, functionalDataProperty, etc.) among others. Furthermore, the atomic-level changes are associ-
ated to the corresponding OWL axioms as described below. Note that the composite-level changes were not

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 12 of 52 NeOn Integrated Project EU-IST-027595

Figure 2.2: OWL 2 Axioms

Figure 2.3: OWL 2 Entities

extended as they represent composite operations that are expected to be supported in any ontology repre-
sentation language (such as move element or remove tree) and therefore they are modelled in the generic
change ontology.

According to the specification of the OWL 2 Web Ontology Language in the W3C Working Draft 11 April 2008
(http://www.w3.org/TR/2008/WD-owl2-syntax-20080411/), OWL axioms can be classified
into six main types as shown in Figure 2.2.

Four out of the six main axiom types (i.e. classAxiom, objectPropertyAxiom, dataPropertyAxiom and fact)
are further specialized into subtypes: 4 class axioms, 13 objectProperty axioms, 6 dataProperty axioms and
7 fact axioms. For a complete description of all axioms we refer the reader to the NeOn Deliverable 1.1.2
[HBP+07]).

The two main axiom types not specialized (i.e. declaration and entityAnnotation) plus all the axiom subtypes
represent the possible atomic operations that can be performed over an OWL 2 ontology (i.e. add/remove
axiom). Consequently we have 32 different types of atomic operations.

Furthermore, axioms are always associated to one or more OWL entities or descriptions. An OWL 2 entity
can be classified into five different types as illustrated in Figure 2.3.

OWL 2 provides an expressive language for forming descriptions. A description is an abstract superclass for
all class definition constructs and it is specialized into 18 different types (an owlClass is both a type of entity
and a type of description). Again, we refer the reader to NeOn Deliverable 1.1.2 [HBP+07] for additional
information.

http://www.w3.org/TR/2008/WD-owl2-syntax-20080411/

D1.3.2 Change management to support collaborative workflows Page 13 of 52

Draft

To Be Deleted

ApprovedTo Be Approved

Send to be approved Send to approved

Send to
be
deleted

Reject to
approved

Reject to draft Reject to be approved

UpdateInsert

Delete

Delete

Update

Update

(SE)

(SE)

(SE)

(SE)

(V)

(V)

(V)

(V)

(SE)

(SE, V)
(V)

(V)

Figure 2.4: Editorial workflow at the element level

Published
Publish

Approved

Move to
be
approved

Draft
Approval

To Be
Approved

Move to
draft

(V)(-)(-)(-)

Move to draft (-)

Figure 2.5: Editorial workflow at the ontology level

2.1.0.2 Workflow Model

In D1.3.1 we presented our model for the representation of the workflow. Hence, in this deliverable we
briefly highlight the main contributions: Based on the analysis of the requirements presented in D1.3.1, our
solution considers the editorial workflow at two levels: ontology level and ontology element level. Although
the workflows can be used independently of the underlying ontology model, the specific set of ontology
elements depend on the ontology model. In our approach we are mainly considering the OWL ontology
model, in which an OWL ontology consists of a set of axioms and facts2. Facts and axioms can relate to
classes, properties or individuals, and hence that is the set of ontology elements we are considering.

As previously discussed, the workflow details (e.g. the specific roles, actions, etc.) depend on the organi-
sation setting. To exemplify, in the rest of this section we discuss our solution for the particular scenario in
FAO. Figures 2.4 and 2.5 show the two different workflow levels (i.e. element and ontology level). States are
denoted by rectangles and actions by arrows. The information in parenthesis specifies the actions that an
editor can perform depending on its role, where "SE" denotes Subject Expert, "V" denotes Validator and "-"
denotes that the action is performed automatically by the system.

The possible states (see Figure 2.4) that can be assigned to ontology elements are:

• Draft : This is the status assigned to any element when it passes first into the editorial workflow, or
when it was approved and then updated by a subject expert.

• To be approved : Once a "SE" is confident with a change in draft status the element is passed to the

2In our current implementation we support the upcoming OWL 2 language. See http://www.w3.org/TR/owl2-syntax/

2006–2008 c© Copyright lies with the respective authors and their institutions.

http://www.w3.org/TR/owl2-syntax/

Page 14 of 52 NeOn Integrated Project EU-IST-027595

"To Be Approved" status, and remains there until a "V" approves/rejects it.

• Approved : If a "V" approves a change in an element in the "To Be Approved" status, it passes to the
"Approved" status. Additionally, this is the default state for every element of the initial version of a
stable ontology.

• To be deleted : If a "SE" or "V" consider that an element needs to be deleted, he proposes a change to
delete it. The element will be flagged with the "To Be Deleted" status and removed from the ontology,
although only a "V" will be able to definitively delete it.

The ontology has a state (see Figure 2.5) that is automatically assigned by the system (denoted by "-" in
Figure 2.5), except for the "published" state as described below:

• Draft : Any change to an ontology in any state automatically sends it into draft state.

• To be approved : When all changes to an ontology version are in the "To Be Approved" state (or
Deleted) the ontology is automatically sent to the "To Be Approved" state.

• Approved : When all changes to an ontology version are in "Approved" state (or Deleted) the ontology
is automatically send to "Approved" state. Additionally, this is the default state of the initial version of a
stable ontology.

• Published : Only when the ontology is in "Approved" state, can it be sent by a validator to "Published"
state.

As described in NeOn deliverable 1.3.1, the editorial workflow starts after getting a stable populated ontology
that satisfies all the organizational requirements. Hence, we assume that the initial state of this stable
ontology (and all its elements) is "Approved"3.

Note that during the editorial workflow, actions are performed either implicitly or explicitly. For instance,
when a user updates (i.e. modifies) an element he does not explicitly perform an update action. In this
case the action has to be captured from the user interface and recorded when the ontology is saved. In
contrast, Validators explicitly approve/reject proposed changes and the action is recorded immediately when
performed.

Workflow ontology Similarly to our change ontology, we decided to model the workflow elements (i.e.
roles, status, actions) using an (OWL-Lite) ontology (i.e. a workflow ontology) that allows the formal and
explicit representation of knowledge in a machine-understandable format. Furthermore, having both models
(i.e. ontology changes and workflow) formalized as ontologies will facilitate the representation of the tight
relationship that exists between them. For instance, consider a user with role "subject expert" who "inserts"
a new ontology "class" into the ontology. That "class" will receive automatically the "draft" state. All the
information related to the process of inserting a new ontology element will be captured by the workflow
ontology, while the information related to the particular element inserted, along with the information about
the ontology before and after the change is captured by the change ontology. Additionally, the workflow
process also relies on OMV to refer to ontologies and users.

The main classes and properties of the workflow ontology and its relationships with the other ontologies in
our approach are shown in Figure 2.6.

In a nutshell (for a complete description please refer to D1.3.1), the different roles of the ontology edi-
tors are modelled as individuals of the Role class that is related to the Person class of the OMV core
ontology (i.e. a person has a role). Similarly to the roles, the possible values of the states (for enti-
ties and ontologies) are modelled as individuals of EntityState and OntologyState respectively.

3In a different scenario, the workflow could start with an empty ontology (without elements), which we could assume that will be
by default in "Approved" state

D1.3.2 Change management to support collaborative workflows Page 15 of 52

omv:Ontology

omv:Person

hasCreator
hasContributor

hasRole

Role

Subject Expert

Validator

Viewer

ChangeSpecification Change

EntityChange
hasChange

...

OMV Core Change Ontology

Action

OntologyAction EntityAction

State

EntityState OntologyState

Publish Delete

 Send to be
deleted

 Insert

 Reject to
Approved

 Reject to be
Approved

 Reject to
Draft

 Send to be
Approved

 Send to
Approved

 Update

Draft

To Be
Approved

Approved

To Be
Deleted

Deleted

DraftOnto

To Be App-
rovedOnto

Approved

Published
Onto

Onto

relatedChange
hasState

hasOntologyState

performedBy

hasAuthor

From/To PublicVersion

Class Name

ObjectProperty

Range

Domain

Class

subClassOf

InstanceOf

nameIndividual

Figure 2.6: Workflow ontology

The properties hasEntityState and hasOntologyState model the relationship between the on-
tology element/ontology and its appropriate state. Finally, the possible entity and ontology actions are
modelled accordingly as subclasses of EntityAction and OntologyAction and their relationship
with the corresponding ontology element/ontology is represented with the properties relatedChange and
relatedOntology.

2.2 Implementation

2.2.1 Implementation Support

Our approach has been implemented within the NeOn Toolkit4, an extensible ontology engineering environ-
ment based on Eclipse, by means of a set of plugins and extensions. A high level conceptual architectural

4http://www.neon-toolkit.org/

2006–2008 c© Copyright lies with the respective authors and their institutions.

http://www.neon-toolkit.org/

Page 16 of 52 NeOn Integrated Project EU-IST-027595

niamoD
ygolotnO

egnahC
ygolotnO

wolfkroW
ygolotnO

Change Capturing

Individuals Metadata Individuals

Workflow Managment

Oyster Distributed Registry

Ontology Editor

Figure 2.7: Conceptual architecture for the collaborative ontology development support

diagram of the involved components is shown in Figure 2.7. We present in the following, first the change cap-
turing related components (i.e. left side of the figure), then the workflow management related components
(right side of the figure), next the user related components for editing and visualizing ontologies (and related
information) in the editorial workflow (upper part of the figure) and finally our distributed registry implemen-
tation (bottom part of the figure). Unlike similar existing tools (see NeOn Deliverable 1.3.1), our solution
provides a flexible mechanism to supports different collaborative scenarios as we describe in detail at the
end of this section. For example, in addition to the typical scenario where a team of ontology editors are
working collaboratively with a centralized copy of an ontology, we also support scenarios in which ontology
editors are working collaboratively with distributed copies of the same ontology.

2.2.1.1 Change Capturing Components

Once the ontology editor specifies that he wants to monitor an ontology, changes are automatically captured
(change management requirement) from the ontology editor by a change capturing plugin. This plugin is
notified about events that consist of ontology changes performed by the user in the ontology editor. For
each of these events, the change is represented according to the change ontology by creating the appropri-
ate individual. For example, adding a class individual in the ontology editor creates the entity change "Add
Individual" and the two corresponding atomic changes (OWL 2 axioms): "Add Declaration" and "Add Class-
Member". As described by the change ontology, each individual includes relevant information such as the
author, the time, the related ontology, etc. The individuals are stored in the Oyster distributed registry [PH05]
5.

This plugin is also in charge of applying changes received from other clients to the same ontology after
Oyster synchronizes the changes in the distributed environment (see last subsection). Finally, this plugin
extends the NeOn Toolkit with a view to display the history of ontology changes (see Figure 2.8) (visualisation
requirements).

2.2.1.2 Workflow Management Components

In our implementation, the workflow management component (i) takes care of enforcing the constraints im-
posed by the collaborative workflow, (ii) creates the appropriate action individuals of the workflow ontology

5In a different scenario, if the system is presented with two versions of the same ontology without their change history, ontology
changes could be derived according to the change ontology, similar to the PROMPT tool[NM02]

D1.3.2 Change management to support collaborative workflows Page 17 of 52

Figure 2.8: Change log view

and (iii) registers them into the distributed registry. Hence, whenever a new workflow action is performed, the
component performs the following tasks:

• It gets the identity and role of the user performing the action (if it is an explicit action) e.g. send to
approve, or the associated change (if it is an implicit action) e.g. adding a new class implicitly creates
an insert action.

• It gets the status of the ontology element associated to the action/change.

• It verifies that the role associated to the user can perform the requested action when the ontology
element is in that particular status.

• If the verification succeeds, it creates the workflow action and registers it.

• If the verification fails, it undoes the associated change(s) for the implicit actions because the complete
operation (e.g. adding a new class) failed.

2.2.1.3 Ontology Editing and Visualization Components

To support the workflow activities (workflow activities requirements) we rely on the NeOn Toolkit which comes
with an ontology editor that allows the editing of ontology elements. Additionally, according to the visualisation
requirements the NeOn Toolkit is extended with a set of views that allow editors to (i) see the appropriate
information of ontologies in the editorial workflow and (ii) perform (as described in 2.1.0.2) the applicable
workflow actions (approve, reject, etc.), depending on their role. There are four views6:

6Subject experts see the first two views, validators see the latter three.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 18 of 52 NeOn Integrated Project EU-IST-027595

Figure 2.9: Draft View in the NeOn Toolkit

• Draft view : Shows all proposed changes (from all editors) to that ontology version. In accordance to
FAO scenario the changes of the current editor are editable while changes from other editors are non
editable (see Figure 2.9).

• Approved view : Shows the approved changes.

• To Be Approved view : Shows all changes (from all editors) pending to be approved.

• To Be Deleted view : Shows all proposed deletions (from all editors).

2.2.1.4 Distributed Registry

Ontologies are stored within a repository and their metadata is managed by the Oyster distributed registry7

(change management requirement). The metadata includes information about ontologies and users (rep-
resented using OMV), the changes to the ontology (represented using the change ontology) and about the
actions performed (represented using the workflow ontology). For each change the status is also kept to
support the editorial workflow. When a new change is registered into an Oyster node, Oyster automatically
updates the log history keeping track of the chronological order of changes. In particular, it performs the
following actions:

• gets the last registered change (using the "Log" class)

7http://ontoware.org/projects/oyster2/

http://ontoware.org/projects/oyster2/

D1.3.2 Change management to support collaborative workflows Page 19 of 52

• adds it as the previous change of the current one

• updates the "Log" class to point to the current change

The local Oyster nodes contact each other creating a distributed ontology registry. In this distributed en-
vironment, Oyster also propagates the ontology changes, thus allowing the notification of new changes to
ontology editors (change management requirement). That is, once we have the required changes in a
machine-understandable format, the system propagates them to the distributed copies of the ontology. In
other words, changes are propagated to each node in the distributed network that maintains a copy of the
ontology (and wants to receive those changes). There are two possible approaches for the propagation:
push or pull. The benefits and disadvantages of both approaches have been already analyzed (e.g. [Sto04]).
Since we are considering a distributed environment where we cannot guarantee the availability of nodes,
we follow a combination approach of a push and pull mechanism that we call synchronization. During the
synchronization, nodes periodically contact other nodes in the network to exchange updated information (pull
changes) and optionally they can push their changes to a specific node (called the super node) such that if
a node goes offline before all other nodes pull the new changes, the node changes are not lost. In this way,
Oyster minimizes the conflicts or inconsistencies due to concurrent editing as it automatically synchronizes
changes periodically (and it allows to force the synchronization immediately) in the distributed environment
such that every editor will have an up-to-date copy of the ontology with the proposed changes (concurrency
control and conflict resolution requirement). Nevertheless, conflicts in the collaborative workflow could still
occur as logical conflicts in the form of inconsistencies or conflicts due to concurrent editing of an ontology.
The strategies to deal with those potential problems are discussed in D1.3.1.

2.2.2 Possible scenarios and configurations of the framework

2.2.2.1 Configuration A

In this scenario, the team of ontology editors will be maintaining collaboratively the ontology "A" following a
well defined process (i.e. workflow). The following characteristics describe the environment (see figure 2.10):

• There is only one copy of the ontology which is stored in a central server.

• Ontology editors are working in a distributed manner (i.e. they are localized at different PCs).

• Ontology editors are working concurrently.

• Each ontology editor uses his own NeOn Toolkit installation and connects to the central server.

• Each ontology editor specifies his credentials (e.g. name and role) in his NeOn Toolkit.

• The ontologies metadata (including change information) from all ontology editors are stored at one
specific place.

• Each NeOn Toolkit has configured that metadata is stored at a specific location (i.e. a specific ontology
registry -Oyster-) and connects to it.

Configuration of machines

• One PC is configured as the server. This PC has to be running the NeOn collaboration server.

• One PC (probably the same as above) is configured as the metadata provider (also known as the
"super-node"). This PC has to be running Oyster (it is an Oyster node). In this scenario, Oyster is
running in server mode, although it can be running in any of the possible ways e.g. within a NeOn
Toolkit installation, as the Oyster java GUI, or within any other application via its API. For additional
information about the push-node see Section 2.2.1.4.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 20 of 52 NeOn Integrated Project EU-IST-027595

Editor

Validator

Change Capturing Workflow Managment

 Editor

Change Capturing Workflow Managment

Change Capturing Workflow Managment

Oyster Registry

Figure 2.10: Configuration A

• The PCs used by the ontology editors are only running a NeOn Toolkit installation configured as de-
scribed above.

Key benefits of configuration A

• Ontology editors are able to work concurrently. The NeOn collaboration server allows multiple clients
for the same ontology at the same time.

• Conflicts are automatically handled by the NeOn collaboration server.

Drawbacks of configuration A

• The collaboration server has to be online at every moment or ontology editors won’t be able to work.

• If the collaboration server (or the metadata provider) becomes permanently unavailable, the ontology
(or the metadata) is lost.

• The network connection between the clients (PCs running NeOn Toolkit) and the collaboration server
has to be fast and reliable because clients are communicating to the server at every moment they are
maintaining the ontology.

• The collaboration server does not provide (at this moment) relevant information regarding the prove-
nance of ontology changes or identity of clients.

D1.3.2 Change management to support collaborative workflows Page 21 of 52

Editor

Validator

Change Capturing Workflow Managment

Oyster Distributed Registry

Change Capturing Workflow Managment

Oyster Distributed Registry

 Editor

Change Capturing Workflow Managment

Oyster Distributed Registry

Figure 2.11: Configuration B

Recommended use of configuration A
This configuration is the most suitable for the cases when the members of the team of ontology editors are

closely located (e.g. organization LAN) and when there are many ontology editors that are usually working
at similar times.

2.2.2.2 Configuration B

In this scenario, the team of ontology editors will be maintaining collaboratively the ontology "B" following a
well defined process (i.e. workflow). The following characteristics describe the environment (see figure 2.11):

• There are "n" copies of ontology "B", where "n" is the number of ontology editors working on that
ontology. Each ontology editor has its own copy located at his PC.

• Ontology editors are working in a distributed manner (i.e. they are localized at different PCs).

• Ontology editors are not working concurrently.

• Each ontology editor uses his own NeOn Toolkit installation to work with his local copy of the ontology.

• Each ontology editor specifies his credentials (e.g. name and role) in his NeOn Toolkit.

• Each NeOn Toolkit is running a local ontology registry (i.e. Oyster).

• The ontology metadata (including change information) is stored in the local registry.

• The local registries (i.e. each Oyster node) exchange information about ontology metadata and syn-
chronize the ontology changes. Changes received from other nodes are applied locally in the ontology
copy to keep the distributed copies also synchronized (the synchronization process is described in
Section 2.2.1.4).

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 22 of 52 NeOn Integrated Project EU-IST-027595

Machines configuration

• The PCs used by the ontology editors are running a NeOn Toolkit installation.

• Each PC is running the ontology registry Oyster (i.e. it is an Oyster node).

• Optionally, one PC is configured as the "push-node". This PC is running Oyster. In this scenario,
Oyster is running in server mode, although it can be running in any of the possible ways e.g. within a
NeOn Toolkit installation, as the Oyster java GUI, or within any other application via its API. The push-
node guaranties that no changes are lost even if the clients are going frequently offline (See section
2.2.1.4 for additional information about the push-node).

Key benefits of configuration B

• Ontology editors do not need a permanent network connection: they are working locally.

• The network connection does not have to be fast: it is used only during the synchronization process.

• There is no one single point of failure. The ontology (and metadata) is available in many different
locations (i.e. each PC).

• Ontology editors can work independently. They dont’t need to have another machine online (i.e. server)
to work.

Drawbacks of configuration B

• There is no support for conflict resolution (at this moment) and therefore ontology editors cannot work
concurrently.

Recommended use of configuration B
This configuration is the most suitable for the cases when the members of the team of ontology editors are

geographically distributed (e.g. different organizations, different countries, etc.), without a reliable and fast
network connection and when they are not working usually at similar times (e.g. when people are working
on different countries with different time zones, or when they coordinate to work at different times).

2.2.2.3 Configuration C

In this scenario, the team of ontology editors will be maintaining collaboratively the ontology "C" following a
well defined process (i.e. workflow). This scenario is a hybrid between scenarios "A" and "B". In this scenario,
the team of ontology editors can be divided in at least two different groups: "X" and "Y". Each of these groups
is working in an environment with the characteristics and machine configuration of scenario A. Additionally,
the groups have between them an environment with the characteristics and machine configuration of scenario
B. That is, each group has a collaboration server (and metadata provider), which in turn are treated as the
ontology editor’s PCs in configuration B (see figure 2.12).

Key benefits of configuration C

• The groups do not need a permanent network connection between each other.

• The network connection does not have to be fast between the groups: it is used only during the
synchronization process.

D1.3.2 Change management to support collaborative workflows Page 23 of 52

Editor

Validator

Change Capturing Workflow Managment

 Editor

Change Capturing Workflow Managment

Change Capturing Workflow Managment

Oyster Registry

Editor

Validator

Change Capturing Workflow Managment

 Editor

Change Capturing Workflow Managment

Change Capturing Workflow Managment

Oyster Registry

Figure 2.12: Configuration C

• There is no one single point of failure. The ontology (and metadata) is available in many different
locations (i.e. each collaboration server (and metadata provider)).

• Ontology editors of each group can work independently.

• Ontology editors are able to work concurrently within each group. The NeOn collaboration server
allows multiple clients for the same ontology at the same time.

• Conflicts are automatically handled by the NeOn collaboration server within each group.

Drawbacks of configuration C

• There is no support for conflict resolution between groups (at this moment) and therefore groups cannot
work concurrently.

• The collaboration server has to be online at each group every moment or ontology editors won’t be
able to work.

• The network connection between the clients (PCs running NeOn Toolkit) and the collaboration server
in each group has to be fast and reliable because clients are communicating to the server at every
moment they are maintaining the ontology.

• The collaboration server in each group does not provide (at this moment) relevant information regarding
the provenance of ontology changes or identity of clients.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 24 of 52 NeOn Integrated Project EU-IST-027595

Recommended use of configuration C
This configuration is the most suitable for the cases when the members of the team of ontology editors

are affiliated to different parties. At each party, the ontology editors are closely located (e.g. organization
LAN) and there are many ontology editors that are usually working at similar times. Additionally the parties
are geographically distributed (e.g. different organizations, different countries, etc.), without a reliable and
fast network connection and they are not working usually at similar times (e.g. when people are working on
different countries with different time zones, or when they coordinate to work at different times). A typical
example is a team composed of ontology editors from different organizations e.g. two universities. Within
each university the editors are working at similar times but each university has a different schedule.

D1.3.2 Change management to support collaborative workflows Page 25 of 52

Chapter 3

Evaluation

We evaluated the components of our infrastructure using WP7 case study as test case. First, we prove the
completeness of the change representation model (see 3.1). We analyzed the full set of possible changes
for the OWL 2 ontology language and verified that every possible change can be represented in our model
using as baseline the OWL 2 metamodel. Second, we conducted an experiment in FAO headquarters with a
set of representative users that we describe in section 3.2.

3.1 Completeness of the change representation model with respect to the
OWL 2 ontology language

To measure the completeness of the change representation model, we programmatically provided the sys-
tem1 with a set of changes consisting of at least one for each possible axiom and at least one associated
for every possible type of entity/description. In particular, we simulated programmatically the changes in a
test ontology2 and let our system capture and represent each change (i.e. generate the change ontology
instances). However, it was not possible to simulate all of them because a few of them are not yet supported
by the NeOn Toolkit. For those few changes, we had to register them directly into the registry (programmati-
cally) to simulate their execution to the ontology. In detail, we could simulate the following set of 52 changes
as if they had happened in the ontology:

• 20 class axioms

– (4) one for each possible axiom

– (16) one for each possible description, except for owlClass because it was used in the previous
4 and objectExistsSelf because KAON2 does not serialize it correctly and the OWL file becomes
corrupt).

• 5 declaration axioms

– (4) one for each possible entity, except for datatype declaration that is not supported.

– (1) one for the special type of entity called AnnotationProperty. It is mentioned in the specification
but it was not still officially a type of entity.

• 5 dataProperty axioms (one for each possible axiom, except disjointDataProperties which is not sup-
ported).

• 12 objectProperty axioms (one for each possible axiom, except disjointObjectProperties which is not
supported).

1The code is available as a JUNIT test (AllOWLChangesTest.java) included in the Change Logging plugin release
2For the test we used the pizza ontology http://www.co-ode.org/ontologies/pizza/pizza_20041007.owl

2006–2008 c© Copyright lies with the respective authors and their institutions.

http://www.co-ode.org/ontologies/pizza/pizza_20041007.owl

Page 26 of 52 NeOn Integrated Project EU-IST-027595

• 5 fact axioms (one for each possible axiom, except for negativeObjectPropertyAssertion and negative-
DataPropertyAssertion which are not supported).

• 5 entityAnnotation axioms (one for each possible entity)

Therefore, the set of 6 changes that we had to register directly into the registry (programmatically) was:

• one class axiom associated to a objectExistsSelf description.

• Declaration of datatype.

• disjointDataProperties.

• disjointObjectProperties.

• negativeObjectPropertyAssertion.

• negativeDataPropertyAssertion.

After the test was completed, we verified that each of the 58 changes could be correctly represented in our
representation model. For this task, we visualized the contents of the registry (190 KB) (i.e. the captured
changes) from the Change Log View (c.f. 2.8) and the Draft View (c.f. 2.9) of our infrastructure. The con-
clusion is that every change was successfully represented in our model. That is for each of the 58
changes, we had 58 correct instances of the atomicChange concept of our model and 57 correct instances
of the EntityChange concept of our model. Note that the relationship between atomicChange and Entity-
Change is almost 1 to 1 in this scenario. This is due to the way changes are captured and notified within the
NeOn toolkit. The only atomicChange that didn’t have a corresponding EntityChange was the declaration of
individual, because within the NeOn toolkit a declaration of an individual is followed always by the assertion
of this individual as a member of a class.

Finally to verify if the changes that could be made programmatically to the ontology were successfully exe-
cuted, we opened the resulting ontology3 within the NeOn toolkit. The conclusion was that all changes made
(and that could be displayed by the GUI of the NeOn toolkit) to the ontology were successfully executed.
Some changes such as adding the axiom asymetricObjectProperty are correctly captured in the OWL file but
it is not possible to visualize them in the GUI at this moment.

3Available at http://torresq.dia.fi.upm.es/neon/results/pizzaAll.owl.

http://torresq.dia.fi.upm.es/neon/results/pizzaAll.owl

D1.3.2 Change management to support collaborative workflows Page 27 of 52

3.2 Experiments

Following the phases considered in most software experimentation approaches[BSH86],[Pfl95],[KPP+02],
the experiment was performed in the following three consecutive phases:

• Plan phase: describes the definition and design of the experiment (see 3.2.1)

• Experiment phase: describes the experiment execution (see 3.2.2)

• Analysis phase: describes the analysis of the experiment results (see 3.2.3)

3.2.1 Plan phase

3.2.1.1 Experiment Definition

Motivation
The main motivation of this experiment was to evaluate the models and strategies proposed for the man-

agement of ontology changes to support the development and maintenance of ontologies in a collaborative
scenario.

Constraints
The infrastructure is constrained to be used by organizations with a defined process that coordinate the

collaborative ontology development. The users, which are usually geographically distributed, are required
to belong to the same organization i.e. they know each other and have associated permissions to perform
some tasks based on their expertise and responsibilities. A representative organization for this scenario is
FAO.

Goals
The goal of the experiment was to evaluate the benefits of using the infrastructure that implements the

models and strategies described in this deliverable (and NeOn Deliverable 1.3.1) for the management of
ontology changes to support the development and maintenance of ontologies collaboratively by a team of
ontology editors with different roles and following a well-defined process for the proposal of ontology changes.

Beneficiaries of the experiment
Ontology editors at any organization following a well-defined process in the development and maintenance

of ontologies.

Experiment subject
In particular, we evaluated the following items:

• The change representation model

• The workflow model

• The system implementation

3.2.1.2 Experiment Design

Relevant characteristics
We studied on the one hand the conceptual models that provide the foundations to represent the required

information and on the other hand the implementation support. The following attributes were studied:

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 28 of 52 NeOn Integrated Project EU-IST-027595

1. Conceptual Models

• Change representation model:

– The adequacy with respect to the users’ requirements

• Workflow model

– The adequacy of the model with respect to the users’ actions

2. System Implementation

• The overall usability and performance of the system. According to the ISO standard 9241-
11[ISO98], usability4 refers to:

– Effectiveness
– Efficiency
– User satisfaction

Metrics and criteria

• To measure the adequacy of the change representation model we analyzed the set of changes that
ontology editors are usually required to perform. For every change proposed, we verified that it could
be represented by our model and that it captured all the information required by the ontology editors.

• To measure the adequacy of the workflow model we analyzed if ontology editors were able to perform
all of the required workflow actions. For each possible action, we verified that it could be represented
with our model and that it captured all the information required by the ontology editors.

• To measure the effectiveness of the system we requested ontology editors to perform a set of tasks
and we analyzed:

– Percent of tasks completed

– Ratio of successes to failures

– Number of features or commands used

• To measure the efficiency of the system we used the same set of tasks as above and we determined:

– Time to complete a task:

∗ Change the ontology: Time required to perform all requested changes to the ontology taking
into account the number of proposed changes.

∗ Complete process: All the required actions (and proposed changes) to change one ontology
from one stable version to another stable version (i.e. time to complete all tasks of the
experiment) taking into account the number of proposed changes.

– Time to learn

– Percent or number of errors

– Frequency of help or documentation use

• To measure the user satisfaction, we used as basis the Software Usability Measurement Inventory5

(SUMI) which is a rigorously tested and proven method of measuring software quality from the end
user’s point of view. SUMI[vV98] studies the following 5 dimensions:

4" The extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency, and
satisfaction in a specified context of use"

5http://sumi.ucc.ie/index.html

http://sumi.ucc.ie/index.html

D1.3.2 Change management to support collaborative workflows Page 29 of 52

– Efficiency: measures the degree to which users feel that the software assists them in their work
and is related to the concept of transparency.

– Affect: measures the user’s general emotional reaction to the software (aka Likeability).

– Helpfulness: measures the degree to which the software is self-explanatory, as well as more
specific things like the adequacy of help facilities and documentation.

– Control: measures the extent to which the user feels in control of the software, as opposed to
being controlled by the software, when carrying out the task.

– Learnability: measures the speed and facility with which the user feels that they have been able
to master the system, or to learn how to use new features when necessary.

Hence, for this task we requested ontology editors to fulfill an online survey (e.g. at
http://www.surveymonkey.com/) which included the de facto industry standard evaluation SUMI ques-
tionnaire consisting of 50 statements (10 for each dimension) to which the user had to reply either
Agree, Don’t know, or Disagree. The option (Don’t know) is selected if the user is undecided, canŠt
make up his mind, or if the statement has no relevance to the software or to the situation. Furthermore,
in addition to the standard SUMI questions, the survey included 10 questions specific to the collabora-
tive ontology development process to assess the user’s satisfaction when using the infrastructure for
this purpose.

Variables

1. Controlled

• The experience and the background level of the ontology editors performing the experiments.
Ontology editors were chosen from two major groups, Subject Experts and Validators. Subject
experts know about specific aspects of the ontology domain and are in charge of adding or
modifying ontology content. They usually know little or nothing about ontology software or design
issues. Validators revise, approve or reject changes made by subject experts, and they are the
only ones who can copy changes into the production environment for external availability. They
have a broader knowledge of the ontology domain and have at least some knowledge about
design issues.

2. Not controlled

• The learning capabilities of the ontology editors could affect the result, but due to time and the
ontology editors’ availability restrictions, it was not used as a factor of the experiment.

• Similarly, the motivation that ontology editors had to learn a new system can affect the result.
In this case the effect was at leat reduced by an appropriate introduction of the system and the
expected improvements.

Data collection process
To collect the required data regarding the adequacy of our models and the overall usability and perfor-

mance of the system we conducted an experiment with a set of appropriate users. In particular, the experi-
ment was carried out by a team of representative users from FAO, who carried out a series of representative
tasks as follows:

• The team was provided with a stable version of a fishery ontology (e.g. v1).

• They were asked to perform collaboratively a set of typical changes and actions to the ontology in order
to reach a new stable version (e.g. v2). The tasks included:

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 30 of 52 NeOn Integrated Project EU-IST-027595

– Add new ontology elements;

– Modify ontology elements;

– Delete ontology elements;

– Approve proposed changes (including the previous required actions);

– Reject proposed changes (including the previous required actions);

• Users were asked to visualize all the information recorded by the system for each of the performed
changes and actions to confirm that all the required information is available.

• One person (the tester) was recording and documenting the time users take to accomplish the different
tasks, the possible problems/errors and the users’ comments during the process.

• At the end of the experiment, the editors were presented with a survey to evaluate their experience to
perform the requested tasks.

• All the results were stored and documented by the tester person.

Requirements
At leat one complete execution of the experiment with a team of ontology editors working collaboratively

on the maintenance of an ontology. The team was required to include at least one ontology editor for each
possible role in the workflow i.e. one Subject Expert and one Validator. Additionally, the ontology used for
the experiment was required to be one of the most frequently used fishery ontologies at FAO.

Analysis procedure
The collected data was validated to ensure that the ontology editors performed the required actions to

reach the new stable version of the ontology (v2). The analysis of the data was performed with a combi-
nation of manual and automatic techniques. We analyzed if our models were adequate to represent the
corresponding changes and actions based on the user’s feedback and we computed the required ratios, per-
centages and times (e.g. time to complete a specific task) summarizing the individual results. We also used
some of the automatic reporting tools (e.g. http://www.surveymonkey.com/) to analyze the results
of the surveys about the user’s satisfaction. We analyzed the possible reasons that affected those results
and we compared them with the current time and efforts that takes to FAO ontology editors to accomplish the
same task without the proposed infrastructure.

3.2.2 Experiment Phase

The experiment was conducted at FAO headquarters during the last week of October, 2008. We needed
two days, one for the set-up of the collaborative infrastructure in FAO computers and one for running the
experiment. Following the typical behavior of the ontology editors in FAO and because of time constraints,
during the first day, the tester configured the collaborative infrastructure as the configuration A described in
2.2.2.1. The particular configuration was:

• One server running:

– NeOn Collaboration Server

– Oyster (server mode)

• Three clients, each running:

– NeOn Toolkit extended with:

∗ Registry Plugins

http://www.surveymonkey.com/

D1.3.2 Change management to support collaborative workflows Page 31 of 52

∗ Change Management Plugin
∗ Collaboration Plugins

For the experiment the following software versions were used:

Table 3.1: Software versions
Software Version

NeOn Collaboration Server OntoBroker-Enterprise-5.2-B719
NeOn Toolkit NeOnToolkit-1.2.0-B766-extended

Oyster Oyster2APIv2.3.1
Registry Plugins org.neontoolkit.oyster.plugin.menu-1.8.0.jar

org.neontoolkit.registry.api-2.3.0.jar
Change Management Plugins org.neontoolkit.changelogging-1.8.0.jar

Collaboration Plugins org.neontoolkit.collab.preference-1.8.0.jar
org.neontoolkit.collab-1.8.0.jar

It is important to note that the version of the NeOn collaboration server used for the experiment has one
critical limitation (that will be fixed soon): When a change is performed to an ontology managed by the
server, no provenance information is available when the event is fired (i.e. it is not possible to know from
which client the change was originally performed). Nevertheless, our infrastructure provides a temporary
(but not perfect) solution to overcome this problem.

The ontology used for the experiment was species-v1.0-model.owl6. This ontology is the schema of one of
the most important ontologies of FAO for the fishery domain. The tester uploaded this ontology to the server
as part of the configuration.

On the second day, before running the actual experiment, the tester gave a brief introduction (30 min) of the
system and the goal of the experiment to the FAO team composed of three ontology editors (Subject Expert
A, Subject Expert B and Validator A). Each of the editors were in charge of maintaining the ontologies of the
fishery domain and they had a different background profile:

• Subject Expert A had a great knowledge about the fishery domain but has never used the NeOn toolkit
and in general he has a small knowledge of computer systems or modelling design issues.

• Subject Expert B had a fair knowledge about the fishery domain and the NeOn toolkit and some
knowledge about modelling design issues.

• Validator A had also a fair knowledge about the fishery domain, the NeOn toolkit and also about
modelling design issues.

All ontology editors were in the same room and each was provided with a detailed and personalized guide
of the tasks he had to perform including the initialization of his NeOn Toolkit installation (i.e. each of them
had to configure his client as in a real situation). The three complete guides are available at http://
torresq.dia.fi.upm.es/neon/guides. In a nutshell, each subject expert (SE) had to perform
6 main tasks while the validator (V) had to perform 4 main tasks, as follows: every ontology editor was
requested to configure and start the collaboration support within his NeOn toolkit (T1), then each subject
expert was requested to make several changes to the ontology concurrently (SE’s-T2), visualize the results
of their changes and analyze the information provided by the system (SE’s-T3) and submit their changes to
be approved (SE’s-T4). The chosen changes were 34 (17 changes for each SE) realistic modifications to the
ontology including real information according to FAO experts. Examples of those changes are:

• Add Individual 31005-10001 (Species)

• Add Individual 31005-10000 DataProperty hasCodeAlpha3 value: DCR. Type: string

6Available at http://www.fao.org/aims/neon.jsp

2006–2008 c© Copyright lies with the respective authors and their institutions.

http://torresq.dia.fi.upm.es/neon/guides
http://torresq.dia.fi.upm.es/neon/guides
http://www.fao.org/aims/neon.jsp

Page 32 of 52 NeOn Integrated Project EU-IST-027595

• Add Individual 31005-10001 DataProperty hasNameScientific value: Pterodroma wrong macroptera.
Type: string

• Add Root Class Speciation

• Add ObjectProperty hasScientificNameAuthor

Then the validator was requested to analyze the changes performed and to approve/reject them (V-T2). The
subject experts were then requested to perform some additional actions according to the workflow to test the
possible subject expert actions (e.g. delete a rejected change, modify an approved change, etc.) (SE’s-T5
and T6). Finally the validator was requested also to perform some additional actions to test the possible
validator actions (e.g. reject to be approved a change, delete an approved change, etc.) (V-T3 and T4).

As we explained in the previous section (see section 3.2.1.2), during the experiment the tester was taking
note of the behavior of the editors, their questions and problems, and at the end of the experiment, each
editor fulfilled an online survey consisting of 60 questions (50 of the standard SUMI questionnaire and 10
specific for the collaborative ontology development). The survey is available at http://torresq.dia.
fi.upm.es/neon/survey.htm (see Figure 3.1). Here are some example statements:

• This software responds too slowly to inputs (SUMI)

• The way that system information is presented is clear and understandable (SUMI)

• I can understand and act on the information provided by this software (SUMI)

• The time to build an ontology collaboratively decreases with this software (Collaborative Ontology
Development)

• The information captured for the ontology changes is enough (Collaborative Ontology Development)

The total time taken to complete the experiment was about two hours.

3.2.3 Analysis Phase

3.2.3.1 Adequacy of the change representation model with respect to the ontology editors needs

To measure the adequacy of the change representation model, we requested ontology editors of our case
study at FAO to perform a set of representative changes and asked them to analyze the captured information
for the change. The chosen set of changes was carefully selected with the cooperation of FAO experts to
reflect valid modifications and using real data.

Based on those changes, we verified during the experiment that none of the ontology editors had problems
to perform the changes to the ontology, and consequently that all proposed changes could be captured
by our representation model.
Additionally, the survey that ontology editors had to fulfil after the experiment (see previous section) included
two questions to verify the adequacy of the model from the ontology editors’ perspective. From the three
possible answers in the survey (i.e. Agree, Don’t know, Disagree), we are mainly interested in the first and
the third one. According to the three possible meanings of the option Don’t know explained above (see
3.2.1.2), in this particular situation it could only mean that either the user is undecided or that he can’t make
up his mind, because the statement is relevant to the software and the situation. Consequently, if the user
did not provide additional feedback or comments, we ignored it. In the following we analyze the results of the
two statements:

• Some changes were not captured correctly. The result for this statement shows (see Figure 3.2) that
nobody agreed with it, one person didn’t know and the other two disagreed. Since, there was no
additional feedback from the undecided user, we can affirm that all proposed changes could be
captured by our representation model, since nobody disagreed.

http://torresq.dia.fi.upm.es/neon/survey.htm
http://torresq.dia.fi.upm.es/neon/survey.htm

D1.3.2 Change management to support collaborative workflows Page 33 of 52

Figure 3.1: Online Survey

• The information captured for the ontology changes is enough. In this case, the result for the statement
shows (see Figure 3.3) that one person agreed, one didn’t know and one disagreed. Similar to the
previous statement, the undecided user didn’t give any additional feedback and so, we concentrate in
the negative answer. For this survey item, we explicitly requested users to provide some feedback in
the case they disagreed. The comments from the user were the following (textually):

– "Would be nice to have some formatting, it’s rather hard to read and takes a bit to figure out what
the change actually was".

– "Would be nice if you could click on a change and go to the relevant part of the ontology".

– "The Change log view lacks a column present in the other views that tells you the concept or
property associated to the change".

As we can see from the comments, the user was providing feedback regarding the visualization of the
changes rather than the information captured for the changes (i.e. the author, the date and time, the
related entity, etc.). Therefore, as we don’t have any request for additional information that should be
captured for the changes, we can argue that the information captured for the ontology changes is
enough.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 34 of 52 NeOn Integrated Project EU-IST-027595

0

10

20

30

40

50

60

70

Agree Undecided Disagree

Some changes were not captured correctly

Figure 3.2: Survey Question 6-4

3.2.3.2 Adequacy of the workflow model with respect to the ontology editors’ needs

Similarly to the previous metric, to measure the adequacy of the workflow model, we requested that the
ontology editors of our case study at FAO perform every possible action according to their role, and asked
them to verify that their actions were correctly executed i.e. to see the consequences of their actions (e.g.
when a change draft state is sent to be validated, it should no longer appear in the list of draft changes) which
in turn would confirm that the action captured all the required information.

During the experiment, we verified that none of the ontology editors had problems performing the set of
possible actions according to his role and consequently that all workflow actions could be captured and
represented by our workflow model.
Also like in the previous metric, the survey that ontology editors had to fulfil after the experiment included two
questions to verify the adequacy of the model from the ontology editors’ perspective. For the same reasons
explained above, we focus our attention to the Agree or Disagree answers, and ignore the Don’t know answer
if the user did not provide additional feedback or comments. In the following we analyze the results of the
two statements:

• The software allows to perform all the required actions of our workflow. The result for this statement
shows (see Figure 3.4) that everyone agreed with it. Hence, we can affirm that all workflow actions
could be captured and represented by our workflow model. Furthermore, if all ontology editors
could perform all the required actions of the workflow, means that they could also verify the expected
consequences of the actions. So, we can affirm that actions captured all the required information.

• Users are able to perform all the actions they could perform according to their role and only those.
In this case, the result for the statement shows (see Figure 3.5) that nobody disagreed with it, one
person didn’t know and the other two agreed. Since, there was no additional feedback from the un-
decided user, we can affirm that all workflow actions could be captured and represented by our
representation model, since nobody disagreed.

D1.3.2 Change management to support collaborative workflows Page 35 of 52

0
5

10
15
20
25
30
35

Agree Undecided Disagree

The informa�on captured for the ontology
changes is enough

Figure 3.3: Survey Question 6-5

3.2.3.3 Effectiveness of the system

The experiment gave the following results for the effectiveness of the system:

Percent of tasks completed
Each ontology editor completed 100% of his assigned tasks (6 tasks for each subject expert and 4 for the

validator). However after analyzing the log of changes of the experiment, it reveals that for the task 2 of the
subject experts that consisted in making 17 changes to the ontology, one of the subject experts was author
of only 13 of the required changes (76% individually or 92% globally). The other 4 changes were not present
in the log, so either the user forgot to made them or there was a failure in the system. Since there was no
report or complain during the experiment that a change was not created, we we assume there was no system
failure. Furthermore, we found 13 changes that were not part of the guide. After analyzing each of them, we
concluded that:

• 5 changes were performed to provide additional information or to test other possible changes.

• 5 changes were consequence of a human error (e.g. one SE created a subClass instead of a root
class, some individuals were removed and then added again)

• 3 changes were incorrectly generated as a consequence of the limitation of the collaboration server
described in the previous section.

Ratio of successes to failures
For this measure we analyzed the following two functionalities:

• Change logging: We consider it a success if a change performed was correctly captured, represented
and registered, and a failure otherwise. We analyzed the 30 logged changes (from the guide) (17 from
SE1 and 13 from SE2) and we verified that all of them were successfully logged. However, 3 of them
were incorrectly logged twice due to the NeOn collaboration server limitation. Therefore, we have a
90% rate of success.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 36 of 52 NeOn Integrated Project EU-IST-027595

0

20

40

60

80

100

120

Agree Undecided Disagree

The so�ware allows to perform all the
required ac�ons of our workflow

Figure 3.4: Survey Question 6-2

• Workflow management: We consider it a success if a workflow action (i) was correctly created, rep-
resented and registered and (ii) had the expected consequences (e.g. adding an ontology element,
should create an insert workflow action and set to draft the element state). As we explained in section
2.1.0.2, actions are performed either implicitly (e.g. add element) or explicitly (e.g. submit change to
be approved). During the experiment, SE1 performed 17 implicit actions and 20 explicit ones (from the
guide), SE2 performed 13 implicit actions and 16 explicit ones (from the guide) and V1 performed 7
explicit actions. The total number of actions was 73. We analyzed each of them and verified that they
were a success, giving a 100% rate of success.

Number of features or commands used
During the experiment ontology editors used the following 18 features or commands (classified according

to the infrastructure components):

• Registry

– Registry support

– Remote storage location

• Change logging

– Log changes

• Workflow management

– Workflow actions (9): Insert, Update, Delete, Submit to Be Approved, Submit to Approved, Submit
to Be Deleted, Reject to Approve, Reject to Be Approved, Reject to Draft.

– Enforcement of workflow constraints

• Visualization components

– Change log view

D1.3.2 Change management to support collaborative workflows Page 37 of 52

0
10
20
30
40
50
60
70

Agree Undecided Disagree

Users are able to perform all the ac�ons they could
perform according to their role and only those

Figure 3.5: Survey Question 6-3

– Draft view

– To Be Approved view

– Approved view

– To Be Deleted view

Only the following two features of the infrastructure were not tested during the experiment (2 out of 20, or
10%) due to the configuration of our scenario (configuration A described in 2.2.2):

• Registry

– Synchronization of changes

• Change logging

– Propagation of changes to local ontology

3.2.3.4 Efficiency of the system

In the following we present the results of the times analyzed based on the log of changes, the information in
the registry and the notes taken during the experiment.

Time to complete a task
As we explained in section 3.2.1.2, we analyzed two tasks (i.e. changing the ontology and the complete

process). The results are:

• Change the ontology: The time required by both SEs to perform 40 changes concurrently (30 from the
guide plus 10 they wished to test or had to repeat after they made a mistake) took 47 minutes and 47
seconds (47:47).

• Complete process: The time required by all ontology editors to complete the experiment i.e change
the ontology, send changes to be approved, approve/reject changes and all additional workflow actions
from the guide, was 1 hour and 50 minutes (1:50:03). During the experiment, the NeOn collaboration
server crashed once and it took around 5 minutes to restart it since it was in a remote location.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 38 of 52 NeOn Integrated Project EU-IST-027595

Time to learn
As we described in the previous section, before starting the experiment we gave a brief introduction (30

minutes) of the system and the goal of the experiment to the FAO team. Then, during the experiment, users
asked a few times for assistance when they had a problem or wanted to know additional information.

Percent or number of errors
During the experiment, we did not get any errors from the infrastructure. However, we got the following

problems:

• The NeOn Collaboration server crashed once. After analyzing the log of the server, we found out that
the problem was that the server was out of memory.

• After the server crashed, the SEs had to repeat the last change they were performing when it crashed.

• One of the SEs had to repeat his first 5 changes because they were not logged at all. In this case, the
SE didn’t configure correctly his NeOn Toolkit and had to restart it.

Frequency of help or documentation use
Throughout the experiment, ontology editors asked regularly for assistance of the tester. However, in

general they wanted either to ask how to do something on the ontology editor (i.e. which is provided by
the NeOn toolkit not by us), or to provide some feedback. In general, they didn’t have problems using the
features of the infrastructure. In any case, taking into account that users had only a brief introduction to the
collaborative infrastructure (and the experiment), in addition to the fact that they did not use the NeOn toolkit
regularly, it is totally understandable that they needed some help during the experiment.

3.2.3.5 User satisfaction

In the following we analyze the results of the 60 questions of the survey filled by the ontology editors at the
end of the experiment. First, we focus on the 10 questions specific to the collaborative ontology development
and then we present the results for the 5 SUMI dimensions, consisting of 10 questions each.

Collaborative Ontology Development
Out of the 10 questions of the survey specific for this matter, 8 required the user to reply either Agree, Don’t

know, or Disagree. The last 2 questions requested written information from the user: the best and worst part
of the infrastructure and any final feedback/comments.

The general impression of the infrastructure to support the collaborative ontology development process was
calculated as the average of the first 8 questions and it is shown in Figure 3.6.

As we can see from the figure, the impression of the users was around 63% positive, around 29% was un-
decided and only around 8% was negative. The 29% reflects the cases when the user is undecided or when
he can’t make up his mind and, as we explained above, if the user does not provide additional feedback
or comments we ignore it. After analyzing the feedback received from the users on the negative answers
and undecided answers when available (see the detailed analysis of each question below), we found that in
general they refer only to desired improvements in the GUI to facilitate or make some tasks more intuitive.
Nevertheless, feedback also showed that users were in general highly satisfied with the infrastructure and
they agreed on its usefulness and correctness. Hence, taking into account that this is the first implementation
(at the best of our knowledge) of a complete infrastructure that addresses the collaborative ontology develop-
ment in organizations with a well-defined edition process, we claim that the results are highly encouraging
and motivational. In particular, the results provide an indication of the real value and practical usabil-
ity of the models and methods proposed in this work. Nevertheless, we need additional experiments
and more users to draw full conclusions.

D1.3.2 Change management to support collaborative workflows Page 39 of 52

0

10

20

30

40

50

60

70

Posi�ve Undecided Nega�ve

General Impression of Collabora�ve
Ontology Edi�ng

Figure 3.6: Collaborative Ontology Development Survey

In the rest of this section, we analyze the individual questions grouped by their relationship. Note that
questions 2 to 5 were already analyzed in the previous sections.

Statements related to the usability and helpfulness of the infrastructure

• The time to build an ontology collaboratively decreases with this software. The result for this statement
shows (see Figure 3.7) that everybody agreed with it. Therefore, we can affirm in a straightforward
manner that users agree that the infrastructure supports and improves the time required to
develop ontologies collaboratively.

• I prefer to use this software when developing an ontology collaboratively rather than the previous
approach. In this case, the result for the statement shows (see Figure 3.8) that nobody disagreed with
it, one person didn’t know and the other two agreed. Since, there was no additional feedback from the
undecided user, we can conclude that users prefer to use the presented infrastructure to develop
ontologies collaboratively rather than any previous approach.

Statements related to the user interfaces of the infrastructure

• The information shown in the workflow interfaces is what I expected. The result for this statement
shows (see Figure 3.9) that one person disagreed with it and the other two didn’t know. As we can
see, this was the only case when the answer was mainly negative. However, since users were re-
quested explicitly to provide feedback on this question, we found out that in general they didn’t think
that something was wrong, but that they desire additional features to make the interface more intuitive.
The comments from the users were the following (textually):

– "For validators, it would be useful a more compact way to summarize changes made by subject
experts"

– "The GUI is not enough intuitive, there should be the possibility of sorting by author and by time"

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 40 of 52 NeOn Integrated Project EU-IST-027595

0

20

40

60

80

100

120

Agree Undecided Disagree

The �me to build an ontology collabora�vely
decreases with this so�ware

Figure 3.7: Survey Question 6-1

– "Would be nice if the view could be grouped around concepts to help understand the changes
more easily, maybe a tree view"

Hence, we can learn from the previous comments that the workflow interfaces can be improved still
in order to satisfy users. Nevertheless, the feedback was critical as it is the exact kind of information
we needed from the actual users that couldn’t be anticipated in our first implementation. Moreover,
most of these desired improvements are simple modifications easy to implement. So, we can conclude
that although the workflow interfaces can be improved they provide a good and correct starting
point.

• The software takes the user role correctly into account when displaying information. In this case, the
result for the statement shows (see Figure 3.10) that nobody disagreed with it, one person didn’t know
and the other two agreed. Since, there was no additional feedback from the undecided user, we can
conclude that the workflow interfaces take correctly into account the user role when displaying
information.

The best and worst thing of the software
The comments from the users were the following (textually):

• Best

– "Seeing changes of others"

– "A unified view of everything happening in the workflow"

– "Great capability and real time update"

• Worst

– "Log messages hard to read"

– "Presentation of list of changes can be improved. No connection between graphical visualization
of the ontology and changes made/proposed."

D1.3.2 Change management to support collaborative workflows Page 41 of 52

0

20

40

60

80

Agree Undecided Disagree

I prefer to use this so�ware when developing
an ontology collabora�vely rather than the

previous approach

Figure 3.8: Survey Question 6-8

– "Slow, difficult to add class and instance"

Note that the comments regarding the best things refer to more fundamental matters than the worst things
i.e. our main goal is to provide a practical and usable infrastructure that offers a unified view of everything that
is happening in the workflow, supporting users in the collaborative ontology development. This relies on the
management of changes in distributed environments where users can access and see changes from every
editor. Furthermore, the worst things are not criticizing or in disagreement with the goal of the infrastructure.
Therefore, from the previous comments, we can conclude that although some things can be improved (in
particular in the visualization), in general users are satisfied and find useful the whole infrastructure
for the development of ontologies collaboratively in a real scenario.

Additional feedback
Some of the final comments received from the users were (textually):

• "Grouping of changes (by: change type, user, related entity etc.) would be useful"

• "An hour glass should be shown when the application is taking time to update a data submission or
whatever action..."

• "It should be possible to sort by author and time and by default it should by descending time"

• "A button saying "submit all" may help"

• "Really useful would be to be able to view the ontology and have the changed areas highlighted in
some way together with their current change state"

• "When first opening a view would be nice if it automatically refreshed itself"

• "...when going into the workflow a wizard could lead you through the various steps that involve access-
ing several different functional areas of the toolkit"

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 42 of 52 NeOn Integrated Project EU-IST-027595

0
10
20
30
40
50
60
70

Agree Undecided Disagree

The informa�on shown in the workflow
interfaces is what I expected

Figure 3.9: Survey Question 6-6

• "When adding an instance, since there is a lag time as the ontology is being accessed remotely, the
instance label shows a strange string until updated which is disconcerting"

Similar to the previous question, all these comments (except the last two) are desired improvements to the
interfaces to make it more user friendly. The penultimate item, which suggests the creation of a wizard to
guide editors when using the NeOn toolkit functionalities, would require not only support in our infrastructure
but from the toolkit itself. Finally, the last item refers to a small issue with the NeOn collaboration server that
we discuss in the analysis of the efficiency dimension.

Efficiency
The global efficiency was calculated as the average of the 10 SUMI questions for this dimension. According

to the definition of efficiency in SUMI[vV98], users felt in 50% of the times that the software assisted them
in their work (aka. transparency), in around 23% they were undecided and in around 27% of the times they
disagreed (see Figure 3.11). After analyzing each of the 10 questions for this dimension, we found out that
the following two contributed in particular to the 27% of disagreement:

• "The software has at some time stopped unexpectedly". As was explained above, the NeOn collabo-
ration server crashed once during the experiment. However, after analyzing the server log, we learned
that the reason was that the process ran out of memory. Additionally, although we decided to use the
NeOn collaboration server for this scenario, it is not part of the implementation of our work in T1.3, and
hence we consider it an external component for this evaluation.

• "This software responds too slowly to inputs". In this case, it is true that sometimes the interaction with
the NeOn collaboration server was slow. In fact, the last comment of the previous section refers to
this issue. However, as we explained in the previous paragraph, the server was not running with the
required memory (that was the reason it crashed). Consequently, it is very likely that the interaction
with the server can be improved by assigning additional memory to the server process. In any case,
this is still an issue related to an external component for this evaluation.

From the previous analysis, we can conclude that most of the 27% of disagreement was caused by an
external component of the infrastructure. Moreover, the result consists of 50% of positive answers and

D1.3.2 Change management to support collaborative workflows Page 43 of 52

0
10
20
30
40
50
60
70

Agree Undecided Disagree

The so�ware takes correctly into account the
user role when displaying informa�on

Figure 3.10: Survey Question 6-7

only about one fourth of the total (27%) were negative answers. Therefore, we consider the evaluation on
efficiency satisfactory, as users didn’t feel that the software does not help them in their work.

Affect
The global Affect was calculated as the average of the 10 SUMI questions for this dimension. As we can

see from Figure 3.12, users had a positive emotional reaction to the software (i.e. they liked it) in around
63% of the cases, they didn’t know in around 27% and only in 10% of the cases they had a negative reaction.
After analyzing each of the 10 questions for this dimension, we found out that one of the few questions with
negative answers was the following:

• The way that system information is presented is clear and understandable. As we can see this is a
question related to the visualization of the information and as we already analyzed previously, this was
one of the aspects where users gave some comments on how to improve it.

Moreover, from the others questions for this dimension, the results show that users found the software satis-
fying and stimulating. Therefore, we can conclude that in general users liked the infrastructure.

Helpfulness
The global Helpfulness was calculated as the average of the 10 SUMI questions for this dimension. In

this case, as we can see in Figure 3.13, users agreed 50% of the time that the software is self-explanatory
(including things like adequate help facilities and documentation), 30% of the time they were not sure and
only 20% of the time they disagreed. We analyzed each of the 10 questions for this dimension, and we found
that the only question where most of the answers were negative (2 out of 3) was the following:

• The speed of this software is fast enough. In this case, like it was explained above it is true that
sometimes it was slow the interaction with the NeOn collaboration server, but this is an issue external
to our implementation and therefore it is not part of this evaluation.

Furthermore, from the other questions for this dimension, we found out that all of the users considered that
the software was consistent and that they could understand and act on the information provided by the

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 44 of 52 NeOn Integrated Project EU-IST-027595

0

10

20

30

40

50

60

Posi�ve Undecided Nega�ve

Global Efficiency

Figure 3.11: Global Efficiency

software. So, from the previous analysis and having 80% of non-negative answers, we can conclude that in
general users find the software self-explanatory.

Control
The global Control was calculated as the average of the 10 SUMI questions for this dimension. Figure 3.14

shows that users felt in control of the software in 50% of the times, in around 27% they were not sure and
in around 23% of the times they disagreed. After analyzing each of the 10 questions for this dimension, we
found out that the only questions where most of the answers were negative (2 out of 3) are the following:

• There have been times in using this software when I have felt quite tense. In this case, taking into
account that it was the first time for the users using the infrastructure after a brief introduction of 30
minutes and that they knew they were being monitored to performed several tasks, it is understandable
they felt tense.

• Error prevention messages are not adequate. This issue is something that can be improved in the
interfaces. For instance, when the NeOn collaboration server crashed, user didn’t get any message
preventing them from continuing their work because the server was down. So, similar to our previous
analysis, this means that some aspects of the visualization can be improved.

Nevertheless, none of the users thought they would never learn to use all that is offered in this software. In
fact most of them thought that the organization of the menus or information lists seems quite logical and that
the software allows the user to be economic of keystrokes. So, similar to the previous dimension, based on
the previous analysis and having more than 75% of non-negative answers, we can conclude that in general
users didn’t feel as being controlled by the software, when carrying out the task.

Learnability
The global Learnability was calculated as the average of the 10 SUMI questions for this dimension. As

we can see from Figure 3.15, 50% of the time, the users felt positive with the speed and facility needed to
master the system or to learn new features, around 27% of the time they were not sure and around 23%
of the time they disagreed. After analyzing each of the 10 questions for this dimension, we found out that
none of the questions had a majority of negative answers (at least 2 out of 3). In contrast, most of the users

D1.3.2 Change management to support collaborative workflows Page 45 of 52

0

10

20

30

40

50

60

70

Posi�ve Undecided Nega�ve

Global Affect

Figure 3.12: Global Affect

considered that most times when they use this software, they didn’t have to look for assistance, that this
software behaves in an understandable way and that the software behaved as expected (to mention a few).

Based on the previous analysis, and taking into account the more than 75% of non-negative answers, we
can conclude that in general users didn’t think that it is difficult to master the system or to learn new
features.

3.3 Evaluation Summary and Recommendations

As a general conclusion we can say that the results of the evaluation are very positive. First, we showed
that our layered approach for the representation of changes can be easily instantiated for a specific ontology
language (e.g. OWL) and we proved the completeness of the change ontology extension with respect to the
OWL 2 ontology language i.e. every change was successfully represented in our model.

Second, the analysis of the results of the experiment that we conducted at FAO shows several good points
of the infrastructure as well as some issues that could be improved as part of our future work. In particular,
the results showed:

• Our models (change representation, workflow model) are adequate with respect to the ontology editors
needs. That is, representative changes and workflow operations from our use case could be captured
and represented correctly by our models along with their required information.

• The overall system effectiveness was positive (90% or above) which demonstrates the good capability
of our infrastructure to produce the overall goal i.e. collaborative ontology development.

• The efficiency of the system was in general satisfactory. A very positive point is that the time users
required to complete their tasks was better than with their previous approach (see results of question
1 of the part of the survey specific to collaborative ontology development). Regarding the frequency
of help use, it is understandable that users asked frequently for assistance, taking into account that
they had only a brief introduction to the collaborative infrastructure (and the experiment) (30 min), in
addition to the fact that they did not use the NeOn toolkit regularly. Finally, as most of the problems we
found during the experiment were related to the NeOn Collaboration server, which is not part of this

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 46 of 52 NeOn Integrated Project EU-IST-027595

0

10

20

30

40

50

60

Posi�ve Undecided Nega�ve

Global Helpfulness

Figure 3.13: Global Helpfulness

work, we feel satisfied with the results. Note that the problem related to the server crash was just a
lack of memory of the process which can be easily fixed.

Finally, the results of the survey to measure the user satisfaction showed that users were in general highly
satisfied with the infrastructure and they agreed on its usefulness and correctness. For instance, the ques-
tions of the survey that evaluated the editors’s satisfaction regarding the collaborative ontology development,
show that editors think our infrastructure is better than the previous approach i.e. it is faster and they prefer
it. Moreover, ontology editors actually liked the main features of the system (e.g. the integrated view of the
workflow, the management of changes in a collaborative environment, etc.) as we can see from the feedback
received in the textual answers. Nevertheless, the feedback received also shows some aspects that can be
improved. In general those aspects are related to improvements in the user interfaces (which are very useful
for our future work) such as being able to select multiple changes in one click, being able to sort the changes
according to different criteria, or improving the readability of the change information. We also received a few
comments regarding the NeOn collaboration server such as speed issues when performing some operations
(e.g. adding individuals), or the problem when the server crashed. However, although we used the NeOn
collaboration server in this scenario, it is not part of the work we are evaluating.

The overall results for each of the five SUMI dimensions have a similar pattern. In all cases, only around
one fourth (25%) of the total answers were negative, another 25% (approximately) were undecided and at
least half of the answers (50%) were always positive. So, in general we concluded that the results were fairly
satisfying, specially if we take into account that users had only a brief introduction to the system before the
experiment and none of them had much experience with the NeOn toolkit. The results show that in general
users liked the infrastructure and that they find it self-explanatory. Furthermore, users didn’t feel that the
software does not help them in their work, or that they are being controlled by the software when carrying out
a task or it is difficult to master the system (i.e. learn new features).

During the experiment and as part of the analysis of the results, we learned important lessons from which
we can get some recommendations. For instance, we found out that sometimes users were interested to see
only specific changes (e.g. from specific users, from specific type, etc.), in specific order or grouped by some
criteria, instead of having the complete history of changes in chronological order (as it is at this moment).
Another interesting observation is that users wanted to have a quick view of the changes related to a specific
ontology element instead of having again a complete list of changes. Also, we could observe that users can
easily get doubtful (i.e. try to repeat the action) whenever there is a small delay with the communication with

D1.3.2 Change management to support collaborative workflows Page 47 of 52

0

10

20

30

40

50

60

Posi�ve Undecided Nega�ve

Global Control

Figure 3.14: Global Control

the server. From these (and other) observations we got some recommendations to improve our infrastructure,
specifically at the GUI level. First we should improve our views with additional features such as: sorting,
grouping and filtering. Second, we should also add additional user-friendly features to our interfaces such
as the ability to select several changes in one click or refreshing automatically the views when opening
them. Third, we should provide a tighter link between the ontology navigator and the information displayed
in our views. Finally, in the case of the NeOn collaboration server, as it is an external component of our
infrastructure, we learned that we should provide additional resources (memory) to avoid any crash and to
improve the speed of the communications.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 48 of 52 NeOn Integrated Project EU-IST-027595

0

10

20

30

40

50

60

Posi�ve Undecided Nega�ve

Global Learnability

Figure 3.15: Global Learnability

D1.3.2 Change management to support collaborative workflows Page 49 of 52

Chapter 4

Conclusions and Outlook

4.1 Summary

In this deliverable, we presented our implementation of the methods and strategies for propagating networked
ontologies that we proposed in NeOn deliverable D1.3.1 in order to support the collaborative ontology devel-
opment based on editorial workflows. In particular, we presented:

• the updated conceptual models, originally presented in D1.3.1, that provide the foundations to repre-
sent the required information in our solution, including:

– A brief overview of the Change representation model we introduced in D1.3.1 and an extended
description of the OWL Change Ontology Extension.

– A brief overview of the updated workflow model and the corresponding workflow ontology.

• the implementation support of our models and strategies as components of the NeOn toolkit. We
provided the description of the architecture of our infrastructure, which includes:

– Change Capturing Components

– Workflow Management Components

– Ontology Editing and Visualization Components

– Distributed Registry

• the possible scenarios and configurations of the infrastructure. We show how the different components
can be configured to support different organizational requirements.

It is interesting to note that although there exists already some methodological and technological support for
the collaborative ontology development, our infrastructure is (to the best of our knowledge) the first complete
implementation that addresses the collaborative ontology development in organizations with a well-defined
edition process. Moreover, from all the possible scenarios in which our infrastructure can be used, only one
has been considered up to now in the literature and tools (configuration A in 2.2.2.1). There is no support for
the development of ontology collaboratively in a complete distributed environments.

We also presented a detailed description of the evaluation of our work. First, we tested the completeness of
our representation model with respect to the OWL 2 ontology language. Second we described the experiment
that we conducted at FAO following the phases considered in most software experimentation approaches.
Hence, we explained the plan of our experiment (the definition and the design) and how we executed it. In a
nutshell, a team of representative ontology editors performed a set of representative actions and operations
collaboratively on one of the FAO ontologies from the fishery domain. During the experiment, one person
was taking notes of the events and feedback received from the editors, and after the experiment editors had
to fulfil a survey, to measure the user’s satisfaction, which consisted of 60 statements : 50 from the standard

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 50 of 52 NeOn Integrated Project EU-IST-027595

SUMI questionnaire (10 for each SUMI dimension) and 10 specific statements for the collaborative ontology
development experience.

Finally, we presented the analysis of the results of the experiment. The general conclusion we got of the
evaluation is very positive. The results are highly encouraging and motivational. In particular, the results
provide an indication of the real value and practical usability of the models and methods proposed in this
work. Nevertheless, we need additional experiments and more users to draw full conclusions. Moreover, we
also learned some points that can be improved and that we hope to address in the future.

4.2 Future Work

There are still some challenges that we have to address in the future. First we need to improve some aspects
of our infrastructure according to the results of the experiment and feedback received. Second, we should
integrate our work with other threads of work within NeOn addressing collaborative aspects. In fact, currently
we are testing the integration of our work with the argumentation support from WP2. Some of these aspects
are:

• Improve some GUI aspects of our visualization components

• Finish and evaluate the integration of the argumentation support with our infrastructure

• Improve our synchronization process to support the resolution of conflicts and consequently the con-
current editing of distributed copies of one ontology

• Support configurable workflows

Finally, we would like to conduct additional experiments in other organizations and in particular we would like
to evaluate the other configurations supported by our infrastructure.

D1.3.2 Change management to support collaborative workflows Page 51 of 52

Bibliography

[BSH86] Victor R. Basili, Richard W. Selby, and David H. Hutchens. Experimentation in software
engineering. IEEE Trans. Software Eng., 12(7):733–743, 1986.

[FPJ97] Mariano Fernandez, Asuncion G. Perez, and Natalia Juristo. Methontology: from ontological
art towards ontological engineering. In Proceedings of the AAAI97 Spring Symposium Series
on Ontological Engineering, pages 33–40, Stanford, USA, March 1997.

[GLP+07] A. Gangemi, J. Lehmann, V. Presutti, M. Nissim, and C. Catenacci. C-ODO: an OWL meta-
model for collaborative ontology design. In Workshop on Social and Collaborative Construc-
tion of Structured Knowledge (CKC 2007) at WWW 2007, Banff, Canada, 2007.

[HBP+07] Peter Haase, Saartje Brockmans, Raul Palma, Jérôme Euzenat, and Mathieu d’Aquin. Up-
dated version of the networked ontology model. Technical Report D1.1.2, University of Karl-
sruhe, AUG 2007.

[HP05] J. Hartmann and R. Palma. OMV - Ontology Metadata Vocabulary for the Semantic Web,
2005. v. 1.0, available at http://omv.ontoware.org/.

[ISO98] ISO, editor. ISO 9241-11: Ergonomic requirements for office work with visual display termi-
nals (VDTs) – Part 11: Guidance on usability. 1998.

[Kle04] M. Klein. Change Management for Distributed Ontologies. PhD thesis, Vrije Universiteit,
Amsterdam), 2004.

[KPP+02] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, El, and J. Rosen-
berg. Preliminary guidelines for empirical research in software engineering. Software Engi-
neering, IEEE Transactions on, 28(8):721–734, 2002.

[MAP+08] D. Maynard, N. Aswani, W. Peters, S. Angeletou, and M. dâĂŹAquin. D1.5.2 implementa-
tion of metadata evolution. Technical Report D1.5.2, University of Sheffield (USFD); NeOn
Deliverable, FEB 2008.

[MGGPISK07] Ó. Muñoz-García, A. Gómez-Pérez, M. Iglesias-Sucasas, and S. Kim. A workflow for the
networked ontologies lifecycle. A case study in FAO of the UN. In Proceedings of the CAEPIA-
TTIA 2007, Spain, 2007. Springer.

[MGKS+07] O. Muñoz-García, S. Kim, M. Iglesias Sucasas, C. Caracciolo, A. Bagdanov, Y. Wang,
P. Haase, M. Suarez-Figueroa, and A. Gomez-Perez. Software architecture for managing
the fisheries ontologies lifecycle. Technical Report D7.4.1, NeOn Consortium, OCT 2007.

[NM02] Natalya F. Noy and Mark A. Musen. Promptdiff: A fixed-point algorithm for comparing ontol-
ogy versions. In National Conference on Artificial Intelligence and Fourteenth Conference on
Innovative Applications of Artificial Intelligence, pages 744–750, Edmonton, Alberta, Canada,
July 2002.

2006–2008 c© Copyright lies with the respective authors and their institutions.

http://omv.ontoware.org/

Page 52 of 52 NeOn Integrated Project EU-IST-027595

[Pfl95] Shari Lawrence Pfleeger. Experimental design and analysis in software engineering: Part 2:
how to set up and experiment. SIGSOFT Softw. Eng. Notes, 20(1):22–26, 1995.

[PH05] R. Palma and P. Haase. Oyster - sharing and re-using ontologies in a peer-to-peer community.
In International Semantic Web Conference, pages 1059–1062, 2005.

[PHWd07] R. Palma, P. Haase, Y. Wang, and M. d’Aquin. D1.3.1 propagation models and strategies.
Technical Report D1.3.1, UPM; NeOn Deliverable, NOV 2007.

[SSSS01] Steffen Staab, Rudi Studer, Hans-Peter Schnurr, and York Sure. Knowledge processes and
ontologies. IEEE Intelligent Systems, 16(1):26–34, 2001.

[Sto04] L. Stojanovic. Methods and Tools for Ontology Evolution. PhD thesis, University of Karlsruhe
(TH), Germany, August 2004.

[Tem06] C. Tempich. Ontology Engineering and Routing in Distributed Knowledge Management Ap-
plications. PhD thesis, University of Karlsruhe (TH), Germany, 2006.

[TN07] T. Tudorache and N. Noy. Collaborative protege. In Workshop on Social and Collaborative
Construction of Structured Knowledge (CKC 2007) at WWW 2007, Banff, Canada, 2007.

[vV98] Erik P.W.M van Veenendaal. Questionnaire based usability testing. In In Proceedings of the
European Software Quality Week, Brussels, 1998.

	Introduction
	Motivation
	Overview of the deliverable

	An editorial workflow approach for collaborative ontology development
	Conceptual Models Overview
	Implementation
	Implementation Support
	Possible scenarios and configurations of the framework

	Evaluation
	Completeness of the change representation model with respect to the OWL 2 ontology language
	Experiments
	Plan phase
	Experiment Phase
	Analysis Phase

	Evaluation Summary and Recommendations

	Conclusions and Outlook
	Summary
	Future Work

	Bibliography

