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Executive Summary

Next generation semantic applications are characterized by a large number of ontologies, some of them
constantly evolving. As the complexity of semantic applications increases, more and more knowledge are
embedded in applications, typically drawn from a wide variety of sources. This new generation of applications
thus likely rely on ontologies embedded in a network of already existing ontologies. Ontologies and metadata
have to be kept up to date when application environments and users’ needs change. One of the major
challenges in managing these networked and dynamic ontologies is to handle potential inconsistencies.

We proposed a general approach to repairing a single ontology in NeOn deliverable D1.2.1 [QHJ07] and pro-
vided evaluation results on our approach in NeOn deliverable D1.2.2 [QHJV07]. We then gave an approach
to repairing networked ontologies in NeOn deliverable D1.2.3 [QHJ08]. However, it is not always desirable to
drop information in ontologies to resolve inconsistencies. Instead, an inconsistency-tolerant approach may
be interesting in some cases. For example, when integrating ontologies connected by mappings, we may not
have right to repair either ontologies or mappings. It has also been argued that repairing a knowledge base
may cause unintended loss of important information by some researchers [Hun06].

In this deliverable, we discuss the problem of reasoning with inconsistent networked ontologies. We first
extend the semantics of description logic ALC with a four-valued semantics. It introduces additional truth
values standing for unkown (i.e. neither true nor false) and contradiction (i.e. both true and false). This
will allow us to reasoning with inconsistent ontologies non-trivially. Syntactically, four-valued logic is very
similar to classical logic. Syntactically, ALC4 hardly differs from ALC. Complex concepts and assertions
are defined in exactly the same way. For class inclusion, however, the question arises how to interpret the
underlying implication connective in the four-valued setting. We thus allow three kinds of class inclusions:
C 7→ D,C ⊃ D,C → D, called material inclusion axiom, internal inclusion axiom, and strong inclusion
axiom, respectively. We implement an algorithm for reasoning with the four-valued semantics and provide
a prototype. We then propose a bilattice-based semantics to generalize the four-valued semantics. The
bilattice-based semantics is very useful when we want to integrate networked ontologies. We propose an
approach for obtaining bilattices. We extend SROIQ, the description logic underlying the proposed OWL2
[GM08], to SROIQ− T evaluated on a logical bilattice. The bilattice-based semantics can be used to
reasoning with trust information and deal with inconsistency. The bilattice-based semantics is applied to a
single ontology which is integrated by networked ontologies. Therefore, we propose another approach for
reasoning with distributed ontologies which is based on concept forgetting.

2006–2008 c© Copyright lies with the respective authors and their institutions.
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Chapter 1

Introduction

1.1 The NeOn Big Picture

Next generation semantic applications will be characterized by a large number of ontologies, some of them
constantly evolving. As the complexity of semantic applications increases, more and more knowledge will be
embedded in applications, typically drawn from a wide variety of sources. This new generation of applications
will thus likely rely on ontologies embedded in a network of already existing ontologies. Ontologies and
metadata will have to be kept up to date when application environments and users’ needs change. We argue
that in this scenario it will become prohibitively expensive for people to directly adopt the current approach
to semantic integration, where the expectation is to produce a single, globally consistent semantic model
that serves the needs of application developers and fully integrates a number of pre-existing ontologies. In
contrast to the current model, future applications will very likely rely on networks of contextualized ontologies,
which are usually locally, but not globally consistent.

This report is part of the work performed in WP 1 on “Dynamics of Networked Ontologies”. The goal of this
work package is to develop an integrated approach for the evolution process of networked ontologies and
related metadata. As shown in Figure 1.1, WP1 belongs to the central part of the research and development
WPs in NeOn. The tasks of WP1 are heavily inter-related with other work packages. For the individual
phases of the process we will develop new methods that consider the complex relationships in a network of
ontologies. These include dependencies, mappings, different versions and also take possible inconsistencies
into account.

Specific goals in this workpackage include support for:

1. representing, managing and interpreting dependencies between multiple networked ontologies

2. evolution of networked ontologies in exploiting various models of change propagation, which have
different applicabilities depending on the model of coordination and control

3. maintaining partial/local consistency of a set of networked ontologies, which might not be globally
consistent

4. evolving metadata along with changing ontologies and predicting future structural changes in ontolo-
gies.

1.2 Motivation and Goals of this Deliverable

Real knowledge bases and data for Semantic Web applications will rarely be perfect. They will be distributed
and multi-authored. They will be assembled from different sources and reused. It is unreasonable to expect
such reaslistic knowledge bases to be always logically consistent, and it is therefore important to study
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Figure 1.1: Relationships between different workpackages in NeOn

ways of dealing with inconsistent knowledge. This is particularly important if the full power of logic-based
approaches like the Web Ontology Language OWL shall be employed, as classical logic breaks down in
the presence of inconsistent knowledge. The study of inconsistency handling in Artificial Intelligence has a
long tradition, and corresponding results are recently being transferred to description logics, which underlay
OWL. Two fundamentally different approaches can be distinguished. The first is based on the assumption
that inconsistencies indicate erroneous data which is to be repaired in order to obtain a consistent knowledge
base, e.g. by selecting consistent subsets for the reasoning process [SC03, HvHH+05]. The other approach
yields to the insight that inconsistencies are a natural phenomenon in realistic data which are to be handled
by a logic which tolerates it [PS89, Str97, HvHtT05, MLL06]. Such logics are called paraconsistent, and the
most prominent of them are based on the use of additional truth values standing for underdefined (i.e. neither
true nor false) and overdefined (or contradictory, i.e. both true and false). Such logics are appropriately called
four-valued logics [Bel77]. We believe that either of the approaches is useful, depending on the application
scenario.

We proposed a general approach to repairing a single ontology in NeOn deliverable D1.2.1 [QHJ07] and pro-
vided evaluation results on our approach in NeOn deliverable D1.2.2 [QHJV07]. We then gave an approach
to repairing networked ontologies in NeOn deliverable D1.2.3 [QHJ08]. However, it is not always desirable to
drop information in ontologies to resolve inconsistencies. Instead, an inconsistency-tolerant approach may
be interesting in some cases. For example, when integrating ontologies connected by mappings, we may not
have right to repair either ontologies or mappings. It has also been argued that repairing a knowledge base
may cause unintended loss of important information by some researchers [Hun06].

2006–2008 c© Copyright lies with the respective authors and their institutions.



Page 12 of 50 NeOn Integrated Project EU-IST-027595

In this deliverable, we discuss the problem of reasoning with inconsistent networked ontologies. We first
extend the semantics of description logic ALC with a four-valued semantics. It introduces additional truth
values standing for unknown (i.e. neither true nor false) and contradiction (i.e. both true and false). This
will allow us to reasoning with inconsistent ontologies non-trivially. Syntactically, ALC4 hardly differs from
ALC. Complex concepts and assertions are defined in exactly the same way. For class inclusion, however,
the question arises how to interpret the underlying implication connective in the four-valued setting. We thus
allow three kinds of class inclusions: C 7→ D,C ⊃ D,C → D, called material inclusion axiom, internal
inclusion axiom, and strong inclusion axiom, respectively. We implement an algorithm for reasoning with the
four-valued semantics and provide a prototype. We then propose a bilattice-based semantics to generalize
the four-valued semantics. The bilattice-based semantics is very useful when we want to integrate networked
ontologies. We propose an approach for obtaining bilattices. We extend SROIQ, the description logic
underlying the proposed OWL2 [GM08], to SROIQ− T evaluated on a logical bilattice. The bilattice-
based semantics can be used to reasoning with trust information and deal with inconsistency. However, it
is only applied to a single ontology which is integrated by networked ontologies. Therefore, we propose an
approach for reasoning with distributed ontologies which is based on concept forgetting.

1.3 Overview of the Deliverable

This deliverable is structured as follows. We first present four-valued description logic ALC and provide a
description of an implementation of a paraconsistent reasoning algorithm and a plugin to the NeOn toolkit
in Chapter 2. We then generalize the four-valued semantics to bilattice based reasoning with description
logics in Chapter 3, and discuss applications of the logical bilattice. Finally, we propose another approach for
reasoning with distributed ontologies which is based on concept forgetting in Chapter 4.
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Chapter 2

Paraconsistent Reasoning with Description
Logics

Real knowledge bases and data for Semantic Web applications will rarely be perfect. They will be distributed
and multi-authored. They will be assembled from different sources and reused. It is unreasonable to expect
such realistic knowledge bases to be always logically consistent, and it is therefore important to study ways of
dealing with inconsistent knowledge. This is particularly important if the full power of logic-based approaches
like the Web Ontology Language OWL [PSH04] shall be employed, as classical logic breaks down in the
presence of inconsistent knowledge.

The study of inconsistency handling in Artificial Intelligence has a long tradition, and corresponding results
are recently being transferred to description logics, which underlay OWL. Two fundamentally different ap-
proaches can be distinguished. The first is based on the assumption that inconsistencies indicate erroneous
data which is to be repaired in order to obtain a consistent knowledge base, e.g. by selecting consistent
subsets for the reasoning process [SC03, HvHH+05]. The other approach yields to the insight that incon-
sistencies are a natural phenomenon in realistic data which are to be handled by a logic which tolerates it
[PS89, Str97, MLL06]. Such logics are called paraconsistent, and the most prominent of them are based
on the use of additional truth values standing for undefined (i.e. neither true nor false) and overdefined (or
contradictory, i.e. both true and false). Such logics are appropriately called four-valued logics [Bel77]. We
believe that either of the approaches is useful, depending on the application scenario.

In this chapter, we contribute to the paraconsistency approach. We indeed extend on the preliminary work in
[MLL06], which has the following features.

• It is grounded in prominent research results from Artificial Intelligence [AA98].

• It is very flexible in terms of design choices which can be made when developing a paraconsistent
description logic. This concerns the issues arising from the fact that there are different ways of defining
the notion of logical implication in four-valued logics. The approach which we follow allows the full and
simultaneous use of the different notions of implication.

• It does not increase worst-case computational complexity of reasoning if compared to standard rea-
soning methods for consistent knowledge bases.

The chapter is structured as follows. We first review briefly preliminaries in Section 2.1. In Section 2.2 we
then describe the syntax and semantics of the paraconsistent description logic which we will use. We provide
an algorithm for computing the four-valued semantics in Section 2.3. Finally, we give an implementation of
the algorithm in Section 2.5.

2006–2008 c© Copyright lies with the respective authors and their institutions.
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2.1 Preliminaries

2.1.1 The Description Logic ALC

We briefly review notation and terminology of the description logic ALC, but we basically assume that the
reader is familiar with description logics. For comprehensive background reading, please refer to [BCM+03].

Table 2.1: ALC
Constructor Name Syntax Semantics
atomic concept A A AI ⊆ ∆I

abstract role RA R RI ⊆ ∆I ×∆I

individuals I o oI ∈ ∆I

top concept > ∆I

bottom concept ⊥ ∅
conjunction C u C CI ∩DI
disjunction C tD CI ∪DI

negation ¬C ∆I \ CI
exists restriction ∃R.C {x|∃y, (x, y) ∈ RIandy ∈ CI}
value restriction ∀R.C {x|∀y, (x, y) ∈ RI impliesy ∈ CI}

Axiom Name Syntax Semantics
concept inclusion C v D CI ⊆ dI
concept assertion C(a) aI ∈ CI

role assertion R(a, b) (aI , bI) ∈ RI

We assume that we are given a set of atomic concepts (or concept names), a set of roles (or role names),
and a set of individuals. With the symbols and ⊥ we furthermore denote the top concept and the bottom
concept, respectively.

Complex concepts in ALC can be formed from these inductively as follows.

1. > , ⊥, and each atomic concept are concepts;

2. If C,D are concepts, then C uD, C tD, and ¬C are concepts;

3. If C is a concept and R is a role, then ∀R.C and ∃R.C are concepts.

An ALC ontology consists of a set of assertions, called the ABox of the ontology, and a set of inclusion
axioms, called the T Box of the ontology. Assertions are of the formC(a) orR(a, b), where a, b are individuals
and C and R are concepts and roles, respectively. Inclusion axioms are of the form C v D, where C and D
are concepts. Informally, an assertion C(a) means that the individual a is an instance of concept C, and an
assertion R(a, b) means that individual a is related with individual b via the property R. The inclusion axiom
C v D means that each individual of C is an individual of D.

The formal definition of the (model-theoretic) semantics of ALC is given by means of interpretations I =
(∆I , ·I) consisting of a non-empty domain ∆I and a mapping ·I satisfying the conditions in Table 2.1.1,
interpreting concepts as subsets of the domain and roles as binary relations on the domain. An interpretation
satisfies an ALC ontology (i.e. is a model of the ontology) iff it satisfies each axiom in both the ABox and
the T Box. An ontology is called satisfiable (unsatisfiable) iff there exists (does not exist) such a model. In
ALC, reasoning tasks, i.e. the derivation of logical consequences, can be reduced to satisfiability checking
of ontologies [BCM+03, HPS04].
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Table 2.2: Truth table for 4-valued connectives
α f f f f t t t t > > > > ⊥ ⊥ ⊥ ⊥
β f t > > f t > > f t > > f t > >
¬α t t t t f f f f > > > > ⊥ ⊥ ⊥ ⊥
α ∧ β f f f f f t > ⊥ f > > f f ⊥ ⊥ f
α ∨ β f t > > t t t t > t > t ⊥ t t ⊥
α 7→ β t t t t f t > > > t > t ⊥ t t ⊥
α ⊃ β t t t t f t > > f t > ⊥ t t t t

alpha→ β t t t t f t f > f t > ⊥ ⊥ t ⊥ t

2.1.2 Four-valued Logic

The major studies of four-valued logics have been carried out in the setting of propositional logic. We will very
briefly review the preliminaries which set the state for the four-valued version of ALC which we will present
later.

The idea of four-valued logic is based on the idea of having four truth values, instead of the classical two.
The four truth values stand for true, false, unknown (or undefined) and both (or overdefined, contradictory).
We use the symbols t, f, ⊥, >, respectively, for these truth values, and the set of these four truth values is
denoted by FOUR. The truth value > stands for contradictory information, hence four-valued logic lends
itself to dealing with inconsistent knowledge. The value > thus can be understood to stand for true and false,
while ⊥ stands for neither true nor false, i.e. for the absence of any information about truth or falsity.

Syntactically, four-valued logic is very similar to classical logic. Care has to be taken, however, in defining
meaningful notions of implication, as there are several ways to do this. Indeed, there are three major notions
of implication in the literature, all of which we will employ in our approach. The logical connectives we allow
are thus negation ¬, disjunction ∨, conjunction ∧, material implication 7→, internal implication ⊃, and strong
implication→. We will discuss them in detail later on as the presence of all three implications is crucial for
our approach.

Four-valued interpretations for formulae (i.e. 4-interpretations) are obviously mappings from formulae to (the
set of four) truth values, respecting the truth tables for the logical connectives, as detailed in Table 2.1.1.
Four-valued models (4-models) are defined in the obvious way, as follows, where t and > are the designated
truth values.

Definition 1 Let I be a 4-interpretation, let Σ be a theory (i.e. set of formulae) and let φ be a formula in
four-valued logic. Then I is a 4-model of φ if and only if I(φ) ∈ {t,>}. I is a 4-model of Σ if and only if I
is a 4-model of each formula in Σ. Σ four-valued entails φ, written Σ |=4 φ, if and only if every 4-model of Σ
is a 4-model of φ.

Proposition 1 We note the following general properties.

• The language L = {¬,∨,∧,⊃,⊥,>} is functional complete for the set FOUR of truth values, i.e.
every function from FOURn to FOUR is representable by some formula in L [AA98, Theorem 12].

• Any formula containing only connectives from {¬,∨,∧,⊃} always has a four- valued model.

Some general remarks about the different notions of implication are in order. They are the major notions of
implication used in the literature, and are discussed in detail in [AA98, AA96]. The basic rationales behind
them are the following: Material implication can be defined by means of negation and disjunction as known
from classical logic. However, it does not satisfy Modus Ponens or the deduction theorem, and is thus of
limited use as an implication in the intuitive sense. Internal implication satisfies Modus Ponens and the
deduction theorem, but cannot be defined by means of other connectives. Furthermore, internal implication
does not satisfy contraposition. Strong implication is stronger than internal implication, in that it additionally
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Table 2.3: Semantics of ALC4 Concepts
Constructor Syntax Semantics

A A = 〈P,N〉|P,N ⊆ ∆I

R RI = 〈RP , RN 〉|RP , RN ⊆ ∆I ×∆I

o oI ∈ ∆I

> 〈∆I ,∅〉
⊥ 〈∅,∆I〉

C1 u C2 〈P1 ∩ P2, N1 ∪N2〉, if Ci = 〈Pi, Ni〉 for i = 1, 2
C1 t C2 〈P1 ∪ P2, N1 ∩N2〉, if Ci = 〈Pi, Ni〉 for i = 1, 2
¬C (¬C)I = 〈N,P 〉, if CI = 〈P,N〉
∃R.C 〈{x|∃y : (x, y) ∈ proj+(RI) ∧ y ∈ proj+(cI)},

{x|∀y : (x, y) ∈ proj+(RI) ∧ y ∈ proj−(cI)}〉
∀R.C 〈{x|∀y : (x, y) ∈ proj+(RI) ∧ y ∈ proj+(cI)},

{x|∃y : (x, y) ∈ proj+(RI) ∧ y ∈ proj−(cI)}〉

satisfies contraposition. Indeed, an alternative view on the truth tables for the implication connectives is as
follows.

φ 7→ ψ is definable as ¬φ ∨ ψ. (Material Implication)

φ ⊃ ψ evaluates to

{
ψ if φ ∈ {t,>}
t if φ ∈ {f,⊥}

(Internal Implication)

φ→ ψ is defineable as (φ ⊃ ψ) ∧ (¬ψ ⊃ ¬φ) (Strong Implication)

Further properties of the implication connectives are summarized in the following proposition (as shown in
[AA98, Corollary 9] and [AA96]).

Proposition 2 The following claims hold, where Γ is a theory and φ, ψ are formulae.

• Internal implication is not definable in terms of the connectives ¬,∨,∧.

• Γ, φ |=4 ψ iff Γ |=4 φ ⊃ ψ.

• If Γ |=4 ψ and γ |=4 ψ ⊃ φ then Γ |=4 φ.

• ψ → ψ implies that ¬φ→ ¬ψ.

Apart from the formal properties of the different notions of implication, it is obviously important to consider
their intuitive meaning and their usefulness for knowledge base modelling. We will discuss this in detail in
the next section.

2.2 The Four-valued Description Logic ALC4

We describe the syntax and semantics of our four-valued description logic ALC4. The approach is fairly
standard apart from the fact that we allow the simultaneous use of all three notions of implication. We will
thus devote significant space to a detailed discussion of the intuitions behind these different implications.

Syntactically, ALC4 hardly differs from ALC. Complex concepts and assertions are defined in exactly the
same way. For class inclusion, however, the question arises how to interpret the underlying implication
connective in the four-valued setting. We thus allow three kinds of class inclusions, corresponding to the
three implication connectives we have discussed. They are as follows, C 7→ D,C ⊃ D,C → D, called
material inclusion axiom, internal inclusion axiom, and strong inclusion axiom, respectively.
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Table 2.4: Semantics of inclusion axioms in ALC4

Axiom Name Syntax Semantics
material inclusion C1 7→ C2 ∆I \ proj−(CI1 ) ⊆ proj+(CI2 )
internal inclusion C1 ⊃ C2 proj+(CI1 ) ⊆ proj+(CI2 )
strong inclusion C1 → C2 proj+(CI1 ) ⊆ proj+(CI2 ) ∧ proj−(CI2 ) ⊆ proj−(CI1 )
internal inclusion C(a) aI ∈ proj+(CI)

role assertion R(a, b) (aI , bI) ∈ proj+(RI)

Semantically, interpretations map individuals to elements of the domain of the interpretation, as usual. For
concepts, however, we need to make modifications to the notion of interpretation in order to allow for reason-
ing with inconsistencies.

Intuitively, in four-valued logic we need to consider four situations which can occur in terms of containment
of an individual in a concept: (1) we know it is contained, (2) we know it is not contained, (3) we have no
knowledge whether or not the individual is contained, (4) we have contradictory information, namely that the
individual is both contained in the concept and not contained in the concept. There are several equivalent
ways how this intuition can be formalized, one of which is described in the following.

For a given domain ∆I and a concept C, an interpretation over ∆I assigns to C a pair 〈P,N〉 of (not
necessarily disjoint) subsets of ∆I . Intuitively, P is the set of elements known to belong to the extension of
C, while N is the set of elements known to be not contained in the extension of C. For simplicity of notation,
we define functions proj+(·) and proj−(·) by proj+〈P,N〉 = P and proj−〈P,N〉 = N .

Formally, a four-valued interpretation is a pair I = (∆I , ·I) with ∆I as domain, where ·I is a function
assigning elements of ∆I to individuals, and subsets of (∆I)2 to concepts, such that the conditions in Table
2.2 are satisfied. Note that the conditions in Table 2.2 for role restrictions are designed in such a way that
the logical equivalences ¬(∀R.C) = ∃R.(¬C) and ¬(∃R.C) = ∀R.(¬C) are retained - this is the most
convenient way for us for handling role restrictions, as it will allows for a straightforward translation from
ALC4 to classical ALC. Note also that for roles we actually require only the positive part of the extension -
we nevertheless require interpretations to assign pairs of sets to roles, which is a technical formality to retain
consistency of notation with possible extensions to more expressive description logics (see [MLL06]).

Obviously, under the constraints P ∩ N = ∅ and P ∪ N = ∆, four-valued interpretations become just
standard two-valued interpretations.

The correspondence between truth values from FOUR and concept extensions is the obvious one: For
instances a ∈ ∆I and concept name C we have

• CI(a) = t(>), iff aI ∈ proj+(CI) and aI 6∈ (∈)proj−(CI),

• CI(a) = f(⊥), iff aI ∈ proj+(CI) and aI ∈ (6∈)proj−(CI),

When defining the semantics as we just did, we ensure that a number of useful equivalences from classical
logic hold, as follows.

Proposition 3 For any four-valued interpretation I and concepts C,D, the following claims hold.

(C u >)I = CI ,

(C t >)I = >I ,

(C u ⊥)I = ⊥I ,

(C t ⊥)I = CI),
(¬¬C)I = CI ,

(¬>)I = ⊥I ,

(¬⊥)I = >I ,

(¬(C tD))I = (¬C u ¬D)I ,

2006–2008 c© Copyright lies with the respective authors and their institutions.



Page 18 of 50 NeOn Integrated Project EU-IST-027595

(¬(C uD))I = (¬C t ¬D)I ,

(¬(∀R.C))I = (∃R.¬C)I ,

(¬(∃R.C))I = (∀R.¬C)I .

We now come to the semantics of the three different types of inclusion axioms. It is formally defined in Table
2.2 (together with the semantics of concept assertions). We say that a four-valued interpretation I satisfies a
four-valued ontology O (i.e. is a model of it) iff it satisfies each assertion and each inclusion axiom in O. An
ontology O is satisfiable (unsatisfiable) iff there exists (does not exist) such a model.

With the formal definitions out of the way, it remains to address the intuitions underlying the different inclusion
axioms. These intuitions are evidenced by the formal properties of the underlying implications as discussed
above as well as the behavior of the implications in practice. We actually foresee a possible workflow for
handling inconsistent ontologies, as follows. In a first step, inclusion axioms are classified into the three
types of four-valued inclusion axioms available. Then four-valued reasoning is performed based on the
classification, in order to arrive at a meaningful 4-valued conclusion. The question, how such a classification
can be performed, will not be addressed in this chapter. It constitutes a separate substantial piece of work
which is under investigation by the authors. A combination of automated detection and a userinteraction
process may be the most workable solution, where the user-interaction process may be guided by the intuitive
explanations which we will now give for the three types of inclusion.

Strong inclusion respects the deduction theorem and contraposition reasoning. In a paraconsistent context,
it is thus the inclusion to be used for universal truth, such as Square 7→ FourEdged.

Internal inclusion propagates contradictory information forward, but not backward as it does not allow for
contraposition reasoning. It can thus be characterized as a brave way of handling inconsistency. It should be
used whenever it is important to infer the consequent even if the antecedent may be contradictory. To give an
example, consider a robot fault diagnosis system and an axiom stating that oil leakage is indicative of a robot
malfunction. Obviously, it is important to check on a possible malfunction even in case there is contradictory
information about an oil leakage. In a paraconsistent context, the axiom is thus best modeled by means of
internal inclusion, i.e. as OilLeakage ⊃ RobotMalfunction.

Material inclusion is cautious in the sense that contradictory information is not propagated. The intuition
behind material inclusion becomes apparent by studying the truth table for material implication: a → b
indicates that the only way for b to be not true (i.e. to be f or ⊥) is if there is information of falsity of a (i.e. it
is f or >). This kind of modeling becomes important if an inclusion has to be second-guessed e.g. after a
merging of knowledge bases. Consider, for example, an ontology about marathon runs containing the axiom
Healthy→ MarathonParticipant which is supposed to say that somebody (i.e. a person who has signed up
for a run) participates in a marathon if he checks out to be healthy. The axiom is reasonable if the domain is
for the management of marathon participants’ data only. Now imagine that this ontology is merged with other
sports knowledge bases, e.g. a boxing domain. It is wrong to infer that every healthy boxer will participate
in the marathon, so the original axiom will likely lead to contradictions. We propose to handle this kind
of information by modelling the axiom as material inclusion, i.e. as Healthy 7→ MarathonParticipant, which
will indeed not infer participation from a positive health status. However, the weak form of contraposition
reasoning featured by material inclusion results in the following situation: If an individual is not known to be
contained in MarathonParticipant, then it is known to be not Healthy, resulting in a possible contradiction
on health status while avoiding contradiction in terms of marathon participation, which may be preferred in
the domain. Material inclusion may thus propagate contradictory information backwards (to the antecedent),
while internal inclusion may propagate contradictory information forward (to the consequent).

We remark here that different inclusion axioms provide ontology engineers with a flexible way to define dif-
ferent ontologies according to the intuition explained above. In case only one kind of inclusion shall be used,
we recommend to use strong inclusion, as it should serve the ontology engineer’s original intention most
closely. To give an example, consider the inconsistent subontology of BuggyPolicy2 (with additional asser-
tions) which says "GeneralReliabilityUsernamePolicy (G for short) is a subset of Reliable, G and Messaging
are disjoint, Reliable is a subset of Messaging, p1 is an individual of G and p2 is an individual of Reliable".
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Using strong inclusion results in the ontology {R 7→ M,G 7→ R,M 7→ ¬G,G 7→ ¬M,G(p1), R(p2)},
where we use obvious abbreviations for the class names. Under the semantics of strong inclusion,
M(p1), R(p1),M(p2),¬G(p1), and ¬M(p1) hold, but G(p2) does not hold. This example shows that our
four-valued semantics can give meaningful answers when an ontology is inconsistent, while classical seman-
tics fails to do so.

The truth values t, f,>,⊥ form the smallest, non-trivial logical bilattice FOUR. Logical bilattices are alge-
braic structures, which can be used to formalize many logical formalisms. Generally, they are not limited in
size. Hence, we can generalize the results from this sections to multi valued logics. In this section we have
formalized class membership using membership in two sets. In the general case, such a fixed number if not
known. Hence, in the following we will model classes and properties as functions mapping from (pairs of)
individuals to truth values taken from a logical bilattice.

2.3 An Algorithm to Compute the Four-valued Semantics

It is a pleasing property ofALC4, that it can be translated easily into classicalALC, such that paraconsistent
reasoning can be simulated by using standard ALC reasoning algorithms.

Definition 2 (Concept transformation) For any given concept C, its transformation π(C) is the concept ob-
tained from C by the following inductively defined transformation.

• If C = A for A an atomic concept, then π(C) = A+, where A+ is a new concept;

• If C = ¬A for A an atomic concept, then π(C) = A−, where A− is a new concept;

• If C = >, then π(C) = >;

• If C = ⊥, then π(C) = ⊥;

• If C = E uD for concepts D,E, then π(C) = π(E) u π(D);

• If C = E tD for concepts D,E, then π(C) = π(E) t π(D);

• If C = ∃R.D for D a concept and R is a role, then π(C) = ∃R.π(D);

• If C = ∀R.D for D a concept and R is a role, then π(C) = ∀R.π(D);

• If C = ¬¬D for a concept D, then π(C) = π(D);

• If C = ¬(E uD) for concepts D,E, then π(C) = π(¬E) t π(¬D);

• If C = ¬(E tD) for concepts D,E, then π(C) = π(¬E) u π(¬D);

• If C = ¬(∃R.D) for D a concept and R is a role, then π(C) = ∀R.π(¬D);

• If C = ¬(∀R.D) for D a concept and R is a role, then π(C) = ∃R.π(¬D);

Based on this, axioms are transformed as follows.

Definition 3 (Axiom Transformations) For any ontology O, O is defined as the set {α | α is an axiom of O},
where α is the transformation performed on each axiom defined as follows:

• π(α) = ¬π(¬C1) v π(C)2, if α = C1 7→ C2;

• π(α) = π(C1) v π(C)2, if α = C1 v C2;

• π(α) = {π(C1) v π(C)2, π(¬C2) v π(¬C1)}, if α = C1 → C2;.
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• π(C(a)) = π(C)(a), π(R)(a, b) = R(a, b),

where a, b are individuals, C1, C2, C are concepts, R a role.

We note two issues. First of all, the transformation algorithm is linear in the size of the ontology. Secondly, for
any ALC ontology O, O is still an ALC ontology. Based on these two observations as well as the following
theorem, we can see that paraconsistent reasoning of ALC can indeed be simulated on standard reasoners
by means of the transformation just given. This also implies that paraconsistent reasoning in our paradigm is
not more expensive than classical reasoning.

Theorem 1 For any ontology O in ALC we have O |=4 α if and only if π(O) |=2 π(α), where |=2 is the
entailment in classical ALC.

In the rest of this section we prove theorem 1. For this, we first need some notations and definitions.

Definition 4 (Decomposability) The four-valued semantics of ALC4 is said to be decomposable into two-
valued semantics of ALC, if and only if for any concept C in an ALC4 ontology O, there are two concepts
C1,C2 in a two-valued ALC ontology O′ such that for any four-valued interpretation I of O, there is a two-
valued interpretation I ′ of O′ which satisfies

CI = 〈P,N〉 iff CI
′

1 = P,CI
′

2 = N,

where P,N, P1, P2, N1 and N2 are subsets of the domain of I.

The decomposability of ALC4 means that the four-valued semantics of a concept C can be divided into the
two-valued semantics of two ALC concepts C1, C2. This is an essential property of four-valued DLs such
that Theorem 1 holds.

To avoid any notational ambiguities between the original and the transformed languages, we will de-
note the original language by L, for which L = {C,R, a | C is a concept name, R is a role name,
a is an individual}. A(L) is the atomic concept set of L. The transformed language is denoted as
π(L) = {π(C), π(¬C), π(R), π(a) | C,R, a ∈ L, π(C), π(¬C) are the concept transformations of C
and ¬C respectively, π(R) and π(a) are renamed name of role R and of individual a, respectively}.

Definition 5 (Classical Induced Interpretation) Let I = (∆I , ·I) be a four-valued interpretation and π(O)
be the classical induced ontology of O. The classical induced interpretation π(I) = (∆π(I), ·π(I)) of I is
defined as follows:

• I and π(I) have the same domain, i.e. ∆π(I) = ∆I ;

• I and π(I) interpret instance names in the same way, i.e. π(a)π(I) = aI ;

• For any atomic concept A, if AI = 〈P,Q〉, then (A+)π(I) = P and (A−)π(I) = Q;

• The semantics of complex concepts is obtained in the standard way.

Definition 6 (Four-valued Induced Interpretation) Let π(I) be the interpretation of anALC ontologyO. The
four-valued induced interpretation I = (∆I , ·I) of π(I) is defined as follows:

• I and π(I) have the same domain, i.e. ∆π(I) = ∆I ;

• I and π(I) interpret instance names and roles in the same way, i.e. π(a)π(I) = aI , π(R)π(I) = RI ;

• For any primitive concept A, if (A+)π(I) = P, (A−)π(I) = Q, then AI = 〈P,Q〉;



D1.2.4 Inconsistency-tolerant Reasoning with Networked Ontologies Page 21 of 50

• The semantics of complex concepts is obtained according to Table 2.2.

Now we prove the decomposability of ALC4.

Lemma 1 ALC4 can be decomposed to two-valued semantics of ALC.

Proof 1 LetO be anALC4 ontology and C be a concept. For any interpretation I, we prove by induction on
the concept structure that CI = 〈P,N〉 iff π(C)π(I) = P and π(¬C)π(I) = N , where π(I) is the classical
induced interpretation of I.

• Case: C is an atomic concept A is easy by Definitions 6 and 5.

• Case: C = ¬D. So π(C) = π(¬D) and π(¬C) = π(D).

(Only If) Suppose CI = 〈P,N〉. Then DI = 〈N,P 〉. By induction assumption, we know π(D)π(I) =
N and π(¬D)π(I) = P. That is π(¬C)π(I) = N and π(C)π(I) = P .

(If) Suppose π(C)π(I) = P, π(¬C)π(I) = N . Then π(D)π(I) = N, π(¬D)π(I) = P . By induction
assumption, we know DI = 〈N,P 〉. Through the semantics of negation, we know CI = 〈P,N〉.

• Case: C = D t E. π(C) = π(D) t π(E), and π(¬C) = π(¬D) u π(¬E).

(Only If) Suppose CI = 〈P,N〉,DI = 〈P1, N1〉, EI = 〈P2, N2〉. Then P1 ∪ P2 = P,N1 ∩ N2 =
N . By induction assumption, we know π(D)π(I) = P1, π(¬D)π(I) = N1, π(E)π(I) = P2, and
π(¬E)π(I) = N2. Therefore π(C)π(I) = π(D)π(I) ∪ π(E)π(I) = P1 ∪ P2 = P and π(¬C)π(I) =
π(¬C)π(I) ∩ π(¬E)π(I) = N1 ∩N2 = N .

(If) Suppose π(C)π(I) = P, π(¬C)π(I) = N, π(D)π(I) = P ′, π(¬C)π(I) = N ′, and π(E)π(I) =
P ′′, π(¬E)π(I) = N ′′. By the definition of the semantics, P = P ′∪P ′′ andN = N ′∩N ′′. By induction
assumption, we know DI = 〈P ′, N ′〉 and EI = 〈P ′′, N ′′〉. Therefore CI = 〈P ′ ∪ P ′′, N ′ ∩ N ′′〉 =
〈P,N〉 by definition of the semantics of ALC4 .

• Case: C = D u E. The proposition holds likewise.

• Case: C = ∀R.D. π(C) = ∀R.π(D) and π(¬C) = ∃R.π(¬D),

(Only If) Suppose CI = 〈P,N〉 and DI = 〈P1, N1〉. By definition definition of the semantics, we
know P = {x | ∀y,R(x, y) ⇒ y ∈ proj+(DI)} and N = {x | ∃y,R(x, y) ∧ y ∈ proj−(DI)}. By
induction assumption, we know π(D)π(I) = P1 and π(¬D)π(I) = N1. Therefore, N1 = proj−(DI).
(Note that P1 = proj+(DI)).

π(C)π(I) = (∀R.π(D)π(I) = {x | ∀y,R(x, y)⇒ y ∈ (π(D)π(I)}
= {x | ∀y,R(x, y)⇒ y ∈ P1} = P,

π(¬C)π(I) = (∃R.π(¬D))π(I) = {x | ∃y,R(x, y) ∧ y ∈ (π(¬D))π(I)}
= {x | ∃y,R(x, y) ∧ y ∈ N1} = N.

(If) Suppose π(C)π(I) = P, π(¬C)π(I) = N, π(D)π(I) = P ′, π(¬D)π(I) = N ′. By the definition of
the semantics,

P = π(C)π(I) = (∀R.π(D)π(I) = {x | ∀y,R(x, y)⇒ y ∈ P ′},
N = π(¬C)π(I) = (∃R.π(¬D))π(I) = {x | ∃y,R(x, y) ∧ y ∈ N ′}.

By induction assumption, we know DI = 〈P ′, N ′〉. Furthermore, by the semantics ofALC4 , we know

CI = 〈{x | ∀y,R(x, y)⇒ y ∈ P ′} and {x | ∃y,R(x, y) ∧ y ∈ N ′}〉 = 〈P,N〉.

2006–2008 c© Copyright lies with the respective authors and their institutions.



Page 22 of 50 NeOn Integrated Project EU-IST-027595

• Case C = ∃R.D, the lemma holds likewise.

In all, let C1 = π(C), C2 = π(¬C), we see that for any concept C, CI = 〈P,N〉 iff Cπ(I)
1 = P and

C
π(I)
2 = N . �

Now we turn to prove theorem 1.

Proof 2 (OF THEOREM 1) (Necessity) For any interpretation I of O, let π(I) be the classical induced
interpretation of I. According to the relationship between π(O) and O, for any axiom in π(O) of the form
¬π(¬C) v π(D) ∈ π(O) we have C 7→ D ∈ O. Suppose CI = 〈P1, N1〉 and DI = 〈P2, N2〉. By lemma
1, π(¬C)π(I) = N1 and π(D)π(I) = P2 hold. Then, (¬π¬C)π(I) = ∆π(I) \ N1 = ∆I \ N1. I satisfies
C 7→ D, so ∆I \N1 ⊆ P2. Therefore, (¬π(¬C))π(I) ⊆ π(D)π(I), that is, π(I) satisfies ¬π(¬C) v π(D).
For any axiom in π(O) of the form π(C) v π(D) ∈ π(O) with π(¬C) v π(¬D) 6∈ π(O) we have C @ D ∈
O. Suppose CI = 〈P1, N1〉 and DI = 〈P2, N2〉. By lemma 1 we have π(C)π(I) = P1 and π(D)π(I) = P2.
I satisfies C @ D. Therefore, P1 = proj+(CI) ⊆ proj+(DI) = P2, that is π(I) satisfies π(C) v π(D).
For any axiom in π(O) of the form {π(C) v π(D), π(¬D) v π(¬C)} ⊆ π(O) we have C → D ∈ O. Sup-
pose CI = 〈P1, N1〉, DI = 〈P2, N2〉. By lemma 1 we have π(C)π(I) = P1, π(D)π(I) = P2, π(¬C)π(I) =
N1, and π(¬D)π(I) = N2. I satisfies C → D. Therefore, P1 = proj+(CI) ⊆ proj+(DI) = P2, N2 =
proj−(DI) ⊆ proj−(CI) = N1, that is π(I) satisfies {π(C) v π(D), π(¬D) v π(¬C)}.
For any assertion of the form π(a):π(C), we have that a:C belongs to O. Suppose CI = 〈P,N〉 and
aI = δ0 ∈ ∆I , then (πC)π(I) = P and π(a)π(I) = δ0. Because I satisfies a:C we have δ0 ∈ P, that is
π(I) satisfies π(a):π(C). It is similar for statements of the form R(a, b).
(Sufficiency) For any interpretation π(I) = (∆π(I), ·π(I)) of π(O), let I be the four-valued semantics of
π(I). Similarly, we can prove the proposition to be right. �

2.4 Paraconsistent Semantics for Expressive DLs

In this section, we study how to extend four-valued semantics to SHIQ.

For the conflicting assertion set {≥ (n+ 1)R.C(a),≤ nR.C(a)}, intuitively, it is caused by the contradiction
that there should be less than n different individuals related to a via the R relation, and also there should be
more than n+ 1 different individuals related to a via R. That is, the contradiction is from the set of individuals
of concept C which relate a via R. By this idea, we extend the four-valued semantics to the constructors for
number restrictions in Table 2.5. We remark that the semantics of roles is just the classical semantics. So
the semantics for role inclusion and transitive role axiom are still classical.

Table 2.5: Four-valued Semantics Extension to Number Restrictions and Nominals

Constructor Semantics

≥ nR.C 〈{x | #(y.(x, y) ∈ RI ∧ y ∈ proj+(CI)) ≥
n},
{x | #(y.(x, y) ∈ RI∧y 6∈ proj−(CI)) < n}〉

≤ nR.C 〈{x | #(y.(x, y) ∈ RI ∧ y 6∈ proj−(CI)) ≤
n},
{x | #(y.(x, y) ∈ RI∧y ∈ proj+(CI)) > n}〉

Example 1 Consider {≥ 2hasStu.PhD(Green),≤ 1hasStu.PhD(Green)} which says the conflicting
facts that Green has at least two and at most one PhD student. Consider a 4-interpretation: I = (∆I , ·I)
where ∆I = {a1, a2, b1, b2, Green}, PhDI = 〈{a1, b1}, {b1, b2, a2}〉, and hasStuI = {(Green, a1),
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(Green, a2), (Green, b1), (Green, b2)}. According to Table 2.5, we can see that I is a 4-model because
(≥ 2hasStu.PhD(Green))I = (≤ 1hasStu.PhD(Green))I = B by checking

Green ∈ {x | #(y.(x, y) ∈ hasStuI ∧ y ∈ proj+(PhDI)) ≥ 2},
Green ∈ {x | #(y.(x, y) ∈ hasStuI ∧ y 6∈ proj−(PhDI)) < 2}.

That is, the conflicting assertions are assigned the contradictory truth value B under their 4-model I.

For the extended four-valued semantics defined in Table 2.5, we have following properties hold as under
classical semantics.

Proposition 4 Let C be a concept and R be an object role name. For any four-valued interpretation I
defined satisfying Table 2.5, we have

(¬(≤ nR.C))I =4 (> nR.C)I and (¬(≥ nR.C))I =4 (< nR.C)I .

Proposition 5 Let C be a concept and R be an object role name. For any four-valued interpretation I
defined satisfying Table 2.5, we have

(∃R.C)I =4 (≥ 1R.C)I and (∀R.C)I =4 (< 1R.¬C)I .

Proposition 4 and Proposition 5 show that many intuitive relations between different concept constructors
still hold under the four-valued semantics, which is one of nice properties of our four-valued semantics for
handling inconsistency.

Next proposition shows that our definition of four-valued semantics for SHIQ is enough to handle inconsis-
tencies in an SHIQ knowledge base.

Definition 7 Given a knowledge base O, the satisfiable form of O, written SF(O), is a knowledge base
obtained by replacing each occurrence of ⊥ in O with Anew u¬Anew, and replacing each occurrence of > in
(O) with with Anew t ¬Anew, where Anew is a new atomic concept.

Proposition 6 For any SHIQ knowledge base O, SF(O) always has at least one 4-valued model, where
SF(·) operator is defined in Definition 7.

Note that unqualified number restrictions,≥ n.R and≤ n.R are special forms of number restrictions because
of the equations ≤ n.R =2≤ nR.> and ≥ n.R =2≥ nR.>. However, if we defined the four-valued
semantics of ≤ n.R(≥ n.R) by the four-valued semantics of ≤ nR.>(≥ nR.>) defined in Table 2.5 and
Table 2.2, we would find that {≤ n.R(a),≥ n + 1.R(a)} is still an unsatisfiable set. This is because
#(y.(a, y) ∈ proj(RI)∧ y ∈ proj+(>I)) ≥ n+ 1 and #(y.(a, y) ∈ proj(RI)∧ y 6∈ proj−(>I)) ≤ n cannot
hold simultaneously since >I = 〈∆I ,∅〉.
To address this problem, we also adopt the substitution defined by Definition 7. By substituting > by Anew t
¬Anew in ≥ (n+ 1)R.> and ≤ nR.>, we can see that {≤ n.R(a),≥ n+ 1.R(a)} has a four-valued model
with ∆I = {a, b1, ..., bn+1}, (a, bi) ∈ RI for 1 ≤ i ≤ n+ 1, and AInew = 〈∆I ,∆I〉. By doing this, we get a
four-valued model I which pushes the contraction onto the new atomic concept Anew.

Next we study how to extend the reduction algorithm to the case of four-valued semantics of SHIQ.

Definition 8 For any given concept C, its transformation π(C) is the concept obtained from C by the follow-
ing inductively defined transformation.

• If C =≥ nR.D for D a concept and R a role, then π(C) =≥ nR.π(D);

• If C =≤ nR.D for D a concept and R a role, then π(C) =≤ nR.¬π(¬D);
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• If C = ¬(≥ nR.D) for D a concept and R a role, then π(C) =< nR.¬π(¬D);

• If C = ¬(≤ nR.D) for D a concept and R a role, then π(C) => nR.π(D);

Regarding both the extension of number restrictions and of nominals, the following theorem holds, which lays
the theoretical foundation for the algorithm of four-valued semantics for expressive DLs.

Theorem 2 (Theorem 1 extended) For any ontology O in SHIQ, O is 4-valued unsatisfiable if and only if
π(O) is unsatisfiable under the classical semantics of SHIQ.

2.5 Implementation of a Paraconsistent Reasoning Algorithm

2.5.1 Functionality of the Inconsistancy Handler plug-in

The Inconsistency Handler is a plug-in that allows for the Neon Toolkit to transform inconsistent OWL ontolo-
gies into non-contradictory knowledge bases. To this end the ontology is considered to be based on 4-valued
logic and and is then transformed. If afterwards the the 2-valued reasoning of the Toolkit is applied to the new
knowledge base, the results will correspond to a 4-valued reasoning under the original ontology. In this man-
ner the Neon Toolkit can work using 4-valued logic, without the need to develop a new inference machine. A
link to the description of the plugin is provided at http://www.neon-toolkit.org/wiki/index.php/ParOWL.

2.5.2 The program logic of the Inconsistency Handler

On execution of the transformation the plug-in queries all axioms of the knowledge base and translates them
individually. The axioms are implicitly split into three categories.

• No inclusion: Some axioms cannot be described as an inclusion, since, for example, they might
represent a concept assertion or simply the declaration of a class. These are easier to handle during
the transformation than other axioms.

• Irrelevant inclusion: These are inclusions which do not have to be treated as strong, material or
internal inclusions, for example role inclusions. They can be preserved in their current form, only their
descriptions have to be transformed. Furthermore this category comprises inclusions which do not
contain any concepts in their subclass except > or ⊥. Since these are preserved in internal and
material inclusions, these axioms, too, need only a translation of their descriptions. Only in case of a
strong inclusion one of the resulting axioms needs to see > replaced with ⊥, and vice versa.

• Relevant inclusion: All axioms which are not represented by either of the two classes just described
have to be considered internal, strong or material inclusions, and must be transformed accordingly. It
is important that these axioms, regardless of their type before the translation, result in one or more
axioms of the type SubClassOf.

All transformed axioms are included in their respective ontology while the original axioms are removed.

Launch of the plug-in

The actual starting point of the plug-in within the program logic is the class Action, which implements the
interface IWorkbenchWindowActionDelegate. The latter allows definition of the initializing method
run(IAction action) which is first to be executed on activation of the Inconsistency Handler. Within,
an ISelectionService checks which element is currently selected inside the window. If this element
is an ontology project, a TranslationCoregenerated - it’s constructor receiving the name of the project
- and it’s method startTrans() is invoked. If anything else is selected the procedure is aborted and a
message is displayed.
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The class TranslationCore controls the transformation of an entire project and it’s ontologies.
startTrans() returns the ontologies of the project which was used to initialize the class. The user de-
cides if all inconsistent ontologies are to be processed, or if he wants to confirm processing for each ontology
individually. Either way an object of the type Reasoner is used to check the satisfiability of the individual
ontologies. In case all ontologies are processed automatically this leads to a decision whether the respective
ontology is to be transformed. If transformation of each individual ontology needs to be confirmed by the
user, Reasoner serves to inform him about the ontologies consistency.

Since the Reasoner only works for SHIQ(D), it is possible to secure at this point that knowledge bases are
only transformed if their axioms are included in the transformation, that is, if they are in SHIQ(D). To this
end any KAON2-exception terminating the process is intercepted, and a message is displayed.

For each ontology that needs to be translated, the method

void translation (boolean shortTrans, Ontology ontology)

is invoked, which controls the acutal transformation process. The parameter shortTrans decides whether
all inclusions of the ontology are handled in the same manner, or if manner of handling has to be decided
on an individual basis. It’s parameters are set using a dialogue defined in the class InclusionDialog,
which provides all methods used to control dialogues concerning the handling of inclusions.

Transforming an ontology

The method translation controls the transformatory process of a single ontology. For this, three
transformer-classes are instantiated, one each of the types Strong, Internal and Material.
These are responsible for the translation of the individual axioms, whereas each handles inclusions accord-
ing to its type. Each OWL axiom within the ontology is queried and checked for its type, after which it is cast
into an object of that type. The object is now handed to one of the three transformer-instances as a
parameter of the method

Set<Axiom> transform (OWLAxiom axiom)

The instance then translates the axiom and returns a new set of axioms. Which instance is adressed depends
on the variable iType, which is either set in advance for all axioms, or individually for each one - this depends
on the boolean parameter described earlier. The value of iType is set through a dialogue which is itself
defined in the class InclusionDialog. If this value is set for each axiom individually, the name of the
axiom can be handed to the method that starts the dialogue, so as to make clear to the user which axiom he
is currently making a decision on.

During the entire process a list of so-called OntologyChangeEvents is filled. Each accessed axiom
from the original ontology is added to this list as ChangeType.REMOVE after the method transform
has been invoked. Those axioms that have been transformed and returned are subsequently added as
ChangeType.ADD. Finally the OntologyChangeEvents are applied to the ontology, which results in
replacement of all original axioms by the transformed ones.

Transforming an axiom

Transformation of individual axioms is handled by the abstract class Transformer. This class should
be considered the heart of the Inconsistency Handler, as it and its subclasses are conducting the actual
transformation. To this end it contains the method transform, which through overloading realizes the
already discussed categorization of the axioms.

This method is specified differently for each type of OWL axiom it can be handed. In case of statements
that match one or more relevant inclusions, their descriptions are extracted and extended, so they can be
interpreted as one or more classic inclusions and be processed accordingly. For example, if transform is
being handed the axiom

2006–2008 c© Copyright lies with the respective authors and their institutions.



Page 26 of 50 NeOn Integrated Project EU-IST-027595

[DisjointClasses Plant [or Human Animal]]

this corresponds to an inclusion of the form

Plant v ¬(Human t Animal)

Consequently, the descriptions

Plant
[not [or Human Animal]]

will be derived and further processed.

The descriptions modified in this way are handed to the abstract method

Set<Axiom> finalTrans (StringBuffer part, StringBuffer whole)

It is realised in classes Strong, Material and Internal (which inherit from Transformer) in a way
so they will transform the descriptions and create axioms of the type SubClassOf. Concepts are negated
according to transformation directives that apply to the different types of inclusions.

In case transform is handed axioms that constitute an inclusion, but do not need to be processed as
strong, material or internal transformations, these axioms are passed on directly to the method

Set<Axiom> propInc (OWLAxiom axiom)

, too, extracts the contained descriptions. However, it will recompose them as an axiom of the original
type after the transformation. Note that axioms which define domain or range of properties constitute an
exception. Put in description logic they correspond to:

> v ∀R.C (Range of R is C)
∃R.> v C (Domain of R is C)

Transformation according to the different kinds of inclusions yields:

• for Internal:

> v ∀R.C is corresponding to > v ∀R.C
∃R.> v C is corresponding to ∃R.> v C

• for Material:

¬¬> v ∀R.C is corresponding to > v ∀R.C
¬¬∃R.> v C is corresponding to ∃R.> v C

• for Strong:

{> v ∀R.C, ¬> v ¬∀R.C} is corresponding to {> v ∀R.C, ⊥ v ∃R.¬C}
{∃R.> v C, ¬∃R.> v ¬C} is corresponding to {∃R.> v C, ∀R.⊥ v ¬C}

It shows that in any case the result will be an inclusion which again represents a range or a domain. Solely
concept C has to be transformed. Thus these axioms can be handed to the method propInc, as well.
Since an additional axiom is created in case of a strong inclusion, the method inside the class Strong is
shadowed and supplemented with additional mechanisms. These are the mechansisms responsible for the
abovementioned additional statements in case of domain and range axioms.
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The described approach for inclusions that are irrelevant to transformation has been chosen to allow type
preservation for as many axioms as possible. Among others, this offers the advantage of allowing full use
of the visualization methods provided by the Neon Toolkit. If, instead, most axioms were transformed into
axioms of the type SubClassOf, visualization would be highly restricted.

Finally there is one version of the transform method that accepts general OWL axioms as parameter, and
is therefore called upon for all axioms that are not treated by the previously described variants of the method.
This category mainly comprises all statements which do not represent an inclusion, such as concept asser-
tions or simply concept declarations. These are preserved in form, with only their descriptions transformed.
This version of transform will also catch and process axioms that are outside SHIQ(D), in case the
safety mechanisms of startTrans described earlier should fail to prevent that.

Also, please note that for some axioms there is a version for data types, as well. For example,
ObjectPropertyRange describes the range of properties that have been defined for "‘normal"’ con-
cepts, while DataPropertyRange defines the range of properties that refer to data types. Regarding
transformation however, this issue can be neglected, since both versions can always be transformed in the
same way. Thus data types and concepts can be treated equivalently in matters of transformation.

Transforming a description

In the KAON2 data model, individual concepts are represented as descriptions. They can occur atomically
as URIs, or complex, assembled by a constructor. Transformation of these descriptions is handled through
the method

Description rename(StringBuffer desc, boolean not)

It is defined within the class Transformer, and is employed for transformation of individual inclusions by
propInc as well as by the three variants of finalTrans. Furthermore it is used by transform, to
generate descriptions for those axioms that are not inclusions.

The method rename accepts a single description as a stringbuffer. In a first step the type of a description is
checked by

descType check(StringBuffer descrip)

which is also defined in Transformer. It scans the beginning of the description for keywords that will
reveal its type. In regard to the description logic this scan corresponds to an assessment of the kind of the
outermost constructor of the statement that needs to be considered first in the course of transformation. For
example, the description

[and [or Cake Cookies] [or Koffee Tea]]

would return "‘and"’ as type of the description, since in

((Cake t Cookies) u (Coffee t Tea))

the conjunction has to be considered first.

If the check method receives an atomic concept it will return ‘simple"’ as a type. Another possible result
of the check can be "‘unknown"’, in case the stringbuffer the method has been handed does not correspond
to any predefined type.

Depending on the value received this way by the rename method, the description will be handled differently.
There are two variants for each value, the decision between them depending on the boolean variable "‘not"’.
On an intuitive level this variable decides whether the concept is currently negated. If not = false, an
atomic concept - that is, an URI - will be returned unmodified. However if not = true, a URI will be
modified. This corresponds to the transformation rule
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A transformed into A+

¬A transformed into A−

where A is an atomic concept. The non-negated concept is not renamed, since renaming only the negated
concepts is sufficient to ensure distinction. Modifying the URI is done by prefixing the string "‘not_"’ to the
concept identifier, while guessNamespaceEnd prevents the namespace from being influenced.

Descriptions that represent complex concepts are split by the method

String[] splitter(String input, int argCount)

It contains the description as a string and returns a string array that contains the type of the description
among its first elements. This type in turn corresponds to the outermost constructor of the concept. The
remaining elements of the array contain the descriptions that are connected through that constructor. Please
note that these descriptions may again be complex.

The constructors obtained in this way are modified according to the transformation rules, after which they
are once again merged with their respective descriptions. The latter, however, are first processed recursively
by rename, unless they are properties. Consider, for example, the following description being processed by
rename (with the corresponding concept given in description logic):

rename([not [some drive [or Car Bicycle]]], false)
¬∃drive.(Car t Bicycle)

In this case "‘not"’ would be cut off through use of method splitter, after which rename would be once
more invoked, this time with the boolean variable set to true:

rename([some drive [or Car Bicycle]], true)
¬∃drive.(Car t Bicycle)

Now splitter will decompose the description into three parts, with the property "‘drive"’ unmodified
and, due to the negation, "‘some"’ replaced by "‘all"’. Again, the remainder of the description is handed to
rename, with the boolean variable unmofidfied:

[all drive rename([or Car Fahrrad], true)]
∀drive.¬(Car t Bicycle)

During this invocation the disjunction becomes a conjunction and rename is applied to the remaining atomic
concepts:

[all drive [and rename(Car, t) rename(Bicycle, t)]]
∀drive.(¬Car u ¬Bicycle)

In the course of the two final invocations the renaming is carried out, which concludes the transformatory
process for this description, and the recursive calls are traced back:

[all drive [and not_Car not_Bicycle]]
∀drive.(Car− u Bicycle−)

In this way rename contains rules for every type of description. It is thus possible, through recursive calls, to
process any given combination. If a specific type is not recognized and "‘unknown"’ is given as parameter,
a message for the user is displayed accordingly and the concept is preserved as it is. However, this only
applies to unambiguously complex descriptions, that is, if an unknown keyword is encountered.

Also, rename is quite fail-safe. If it is handed URIs describing properties or individuals, these are rated
as simple type and returned unprocessed. This even applies to simple text strings, which bear no actual
meaning in the knowledge base. Given the boolean variable is initialised with false, the method could even
be applied to values that are only known at run time, although this is not necessary in terms of implementa-
tion.
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2.5.3 Verification

The verification resulted from testing 30 different ontologies. Each knowledge base was transformed from
its original form whereas all inclusions of transformation were perceived as strong, material and internal
inclusion in each case. Ten of thirty ontologies were inconsistent. The twenty remaining ontologies were
consistent.

After every transformation the remaining ontology was consistent which means that existent inconsisten-
cies were successfully removed and no additional inconsistencies were created. This points out that the
transformation was transcribed correctly.

The number of axioms in the tested ontologies was between 23 and 12656. The number of axioms in
the transformed knowledge bases was between 29 and 24696. The number of axioms in the transformed
ontologies was equal or higher than the number in the original ontologies. Furthermore the number of added
axioms from internal and material transformation was always identical whereas less additional axioms were
created here than in the strong alternative. But it seemed there was no correlation between the number of
added axioms of strong transformation and the number of the other transformations. That is to say that the
number of axioms after another transformation cannot be educed from the quantity of axioms after a strong
transformation. There is simply an upper limit given by the number of axioms after the strong transformation.

The reason lies in the definition of the transformation. Whereas there are two axioms replacing the strong
inclusions, there is just one axiom replacing the other inclusions. The reason for the change of number
in the material and internal alternatives is that some axioms of the KAON2 data model are expressed by
several inclusions. For example every EquivalentClasses axiom results in two SubClassOf axioms.
These are doubled again in the strong alternative. Furthermore a correlation is not possible because there
are axioms which do not result in any additional axioms, for example ClassMember which represents a
concept assertion.

Summarized there are:

• axioms which never create other statements

• inclusions which create other inclusions just in the strong alternative

• axioms which always create other statements, but twice as much in the strong alternative

So in the best case no additional axioms are generated. But because some axioms result in any number
of new axioms - for example DisjointUnion - no conclusions can be drawn about the worst case. But
basically the strong transformation has the capability to create twice the amount of new axioms than the
other transformation alternatives. In the conducted test the number of axioms in the strong transformation
increased by a factor of 2.8 in the other alternatives by a factor of 1.6, but with big variations. There were
ontologies which showed no difference in the number of axioms after an internal or material transformation.
Other knowledge bases however resulted in twice the amount of axioms and nearly increased by a factor of
4 in the strong alternative. So it depends on the individual ontology to what extent the number of its axioms
increases in the different transformations.

The increase of the number of axioms in the transformed ontologies matters because conclusions from
large knowledge bases are more expansive in terms of computing time and processing power. Because
the complexity of SHIQ is in EXPTIME, the complexity increases not only linear to the number of axioms.
This means that the ability to draw a conclusion from an inconsistent knowledge base is probably paid by
considerably increased complexity.
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Chapter 3

Bilattice based reasoning with Description
Logics

In this chapter, we generalizeALC4 towards the description logic SROIQ, which serves as the foundation of
the upcoming Web Ontology language OWL2 and towards general bilattices with more than four truth values.
Finally, we demonstrate the use of the extension by defining bilattices suitable for trust based reasoning.

We introduce logical bilattices in Section 3.1 and bilattice based reasoning with description logics in section
3.1.2. In Section 3.2 we use the extension for inferring trust in axioms derived from multiple, differently
trustworthy data sources. Finally, in Section 3.2, we consider applications of bilattice-based reasoning.

3.1 Reasoning Based on Logical Bilattices

We will now discuss, how paraconsistent reasoning can be extended to more than four truth values. In the
additional truth values, we will reflect additional dimensions of knowledge such as trust and uncertainty. In
this deliverable, we focus on trust.

Most logic programming paradigms, including classical logic programming, stable model and well founded
semantics, and fuzzy logics can be formalized based on bilattices of truth values and fixpoints of a direct con-
sequence operator on such a bilattice. A bilattice is an algebraic structure, which encodes the semantics of
logical connectives in multi valued logics. Even though the exact (parts of) bilattices used in a particular log-
ical formalism differ, they provide a nice unifying framework, as discussed for example in [AA96]. Therefore,
if we build our extension into this foundational layer, it will directly be available in many different formalisms.
Furthermore, we will show how to extend description logics (which are not in general based on a fixpoint
operator) can be extended towards logical bilattices.

A logical bilattice [Gin92] is a set of truth values, on which two partial orders are defined, which we call the
truth order ≤t and the knowledge order ≤k. Both ≤t and ≤k are complete lattices, i.e. they have a maximal
and a minimal element and every two elements have exactly one supremum and infimum.

In logical bilattices, the operators ∨ and ∧ are defined as supremum and infimum wrt. ≤t. Analogously join
(⊕) and meet (⊗) are defined as supremum and infimum wrt. ≤k. As a result, we have multiple distributive
and commutative laws, which all hold. Negation (¬) simply is an inversion of the truth order. Hence, we can
also define material implication (a→ b = ¬a ∨ b) as usual.

The smallest non trivial logical bilattice is FOUR, shown in figure 3.1. In addition to the truth values t and f ,
FOUR includes > and ⊥. ⊥ means “unknown”, i.e. a fact is neither true or false. > means “overspecified”
or “inconsistent”, i.e. a fact is both true and false.

In traditional, two valued logic programming without negation, only t and f would be allowed as truth values.
In contrast, e.g. the stable model semantics, allows to use > and ⊥. In this case, multiple stable models are
possible. For example, we might have a program with three clauses:

man(bob)← person(bob),¬woman(bob).
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Figure 3.1: FOUR
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woman(bob)← person(bob),¬man(bob).
person(bob).
Using default f , we might infer both man(bob) ∧ ¬woman(bob) and
woman(bob) ∧ ¬man(bob). While in two valued logics we would not be able find a model, in four
values, we could assign truth values t ⊕ f = > and t ⊗ f = ⊥. In fact, both would be allowed under the
stable model semantics, resulting in multiple models for a single program.

The well founded semantics distinguishes one of these models — the minimal one, which is guaranteed
to always exist and only uses t, f , and ⊥. In a similar way, other formalisms can be expressed in this
framework as well. Particularly, we can also formalize open world based reasoning, using ⊥ instead of f as
default value. We refer the interesting reader to the very good overview in [Fit02].

3.1.1 Obtaining bilattices

Ginsberg [Gin92] describes how we can obtain a logical bilattice: Given two distributive lattices L1 and L2,
create a bilattice L, where the nodes have values from L1 × L2, such that the following orders hold:

• 〈a, b〉 ≤k 〈x, y〉 iff a ≤L1 x ∧ b ≤L2 y and

• 〈a, b〉 ≤t 〈x, y〉 iff a ≤L1 x ∧ y ≤L2 b

If L1 and L2 are infinitely distributive— that means distributive and commutative laws hold for infinite combi-
nations of the operators ∨1,∧1 and ∨2,∧2 respectively — then L will be as well, i.e. arbitrary combinations
of ∨,∧,⊕, and⊗ are possible in the resulting bilattice. In other words this means the language of logical
connectives over bilattices is complete.

As an example, we model two levels of certainty for situation, where knowledge is cached. In such a situation,
we may have loca information, which is certain, and cached information, which is possibly outdated. Such
cached information will be assigned a special truth value. Moreover, during reasoning, we want to infer ho
trustworthy the inferred informaiton can be.

For modeling this situation, generate a bilattice with two levels of truth values: certainly known truth values
(subscripts k) and almost certain truth values (subscripts c). We use L1 = L2 = tk > tc > fc > fk as
input lattices, resulting from our basic idea that almost certain values are a bit less true and false. As L1 and
L2 are totally ordered sets, they are complete lattices and hence infinitely distributive. The resulting bilattice,
which we call FOUR− C, is shown in fig. 3.2. In fig. 3.2 we label nodes of the form 〈fx, ty〉 with >xy,
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Figure 3.2: FOUR− C

〈tx, fy〉 with ⊥xy, 〈fx, fy〉 with fxy and 〈tx, ty〉 with txy. On trust level k we have certain, local information.
On this level we basically have the usual four truth values of paraconsistent reasoning. on trust level c, we
have a second set of four truth values (subscripts cc), which are assigned to cached information. Truth values
with mixed subscripts, e.g. kc are inferred, i.e. partially based on both certain and cached information.

3.1.2 Extending OWL2 to logical bilattices

In this section we extend SROIQ, the description logic underlying the proposed OWL2 [GM08], to
SROIQ− T evaluated on a logical bilattice. The extension towards logical bilattices works analogously
to the extension of SHOIN towards a fuzzy logic as proposed in [Str06]. Operators marked with a dot,
e.g. ≥̇ are the lattice operators described above, all other operators are the usual (two valued) boolean
operators. For two valued operators and a logical bilattice L we map t to maxt(L) – i.e. the maximal value
with respect to the truth order of L (usually denoted by >) – and f to mint(L), in order to model that these
truth values are absolutely trusted1. Please note that while we limit ourselves to SROIQ here, analogous
extensions are possible for SROIQ(D) to support datatypes. Please also note that we do not include lan-
guage constructs, which can be expressed by a combination of other constructs defined below. In particular,
Sym(R) = R− v R and Tra(R) = R ◦R v R.

Definition 9 (Vocabulary) A vocabulary V = (NC , NP , NI) is a triple where

• NC is a set of OWL classes,

• NP is a set of properties and

• NI is a set of individuals.

NC , NP , NI need not be disjoint.

A first generalization is that interpretations assign truth values from any given bilattice. In contrast, SROIQ
is defined via set membership of (tuples of) individuals in classes (properties) and uses two truth values only.

Definition 10 (Interpretation) Given a vocabulary V an interpretation I = (∆I ,L, ·IC , ·IP , ·Ii) is a 5-tuple
where

1In FOUR− T these would be f∞ and t∞, but we start with the general case.
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• ∆I is a nonempty set called the object domain;

• L is a logical bilattice and Λ is the set of truth values in L

• ·IC is the class interpretation function, which assigns to each OWL class A ∈ NC a function: AIC :
∆I → Λ;

• ·IP is the property interpretation function, which assigns to each property R ∈ NP a function RIP :
∆I ×∆I → Λ;

• ·Ii is the individual interpretation function, which assigns to each individual a ∈ NI an element aIi

from ∆I .

I is called a complete interpretation, if the domain of every class is ∆I and the domain of every property is
∆I ×∆I .

The notion of a complete interpretation is needen, because interpretation functions assign a truth value
instead of just defining a set membership. In two valued description logics, set membership of an individual
in a class corresponds to a truth value of true and the default is false. In four valued description logics,
analogously two sets are used for each class. Hence, by listing only the membership of some individuals, the
truth value of class membership is still well defined for all individuals. Here, such a simple convention can
not be applied, as we have multiple possible truth values. Instead, truth values must explicitly be assigned
for each individual.

We extend the property interpretation function ·IP to property expressions:

(R−)IP = {(〈x, y〉, u)|(〈y, x〉, u) ∈ RIP }

The second generalization over SROIQ is the replacement of all quantifiers over set memberships with
conjunctions and disjunctions over Λ. We extend the class interpretation function ·IC to descriptions as
shown in table. 3.1.

Satisfaction of axioms in an interpretation I is defined in table 3.2. With ◦ we denote the composition of
binary relations. For any function f , dom(f) returns the domain of f . The generalization is analogous to
that of ·IC . Note that for equality of individuals, we only need two valued equality.

Satisfiability in SROIQ− T is a bit unusual, because when using a logical bilattice we can always come
up with interpretations satisfying all axioms by assigning > and ⊥. Therefore, we define satisfiability wrt. a
truth value:

Definition 11 (Satisfiability) We say an axiom E is u-satisfiable in an ontology O wrt. a bilattice L, if
there exists a complete interpretation I of O wrt. L, which assigns a truth value val(E, I) to E, such that
val(E, I) ≥k u.

We say an ontology O is u-satisfiable, if there exist a complete interpretation I, which u-satisfies all axioms
in O and for each class C we have |{a|〈a, v〉 ∈ C ∧ v ≥t u}| > 0, that means no class is empty.

Analogously we define consistency wrt. the knowledge order. O is an ontology with axioms collected from
multiple sources Si. Please note that we use a single ontology here to follow the definition of SROIQ,
but the composition could happen through imports, or mappings in a network of ontologies. The Si differ
with respect to their trustworthyness. Hence, a partial trust order T models their trustwortiness. Also note
that an analogous is possible for partial intepretations for parts of an ontology. Again we focus on complete
interpretations analogous to models in SROIQ.

2006–2008 c© Copyright lies with the respective authors and their institutions.
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>I(x) = tyy,where y is the information source, defining>I(x)
⊥I(x) = fyy,where y is the information source, defining⊥I(x)

(C1 u C2)I(x) = CI1 (x)∧̇CI2 (x)
(C1 t C2)I(x) = CI1 (x)∨̇CI2 (x)

(¬C)I(x) = ¬̇CI(x)
(S−)I(x, y) = SI(y, x)

(∀R.C)I(x) =
∧̇

y∈∆I
RI(x, y)→̇CI(y)

(∃R.C)I(x) =
∨̇

y∈∆I
RI(x, y)∧̇CI(y)

(∃R.Self)I(x) = RI(x, x)

(≥ nS)I(x) =
∨̇
{y1,...,ym}⊆∆I ,m≥n

∧̇n

i=1
SI(x, yi)

(≤ nS)I(x) = ¬̇
∨̇
{y1,...,yn+1}⊆∆I

∧̇n+1

i=1
SI(x, yi)

{a1, ..., an}I(x) =
∨̇n

i=1
aIi = x

Table 3.1: Extended Class Interpretation Function

(R v S)I =
∧̇

x,y∈∆I
RI(x, y)→̇SI(x, y)

(R = S)I =
∧̇

x,y∈∆I
RI(x, y)↔̇SI(x, y)

(R1 ◦ ... ◦Rn v S)I =
∧̇
〈x1,xn+1〉∈dom(SI)

∨̇
{x2,...,xn}

∧̇n

i=1
RIi (xi, xi+1)

(Asy(R))I =
∧̇

x,y∈∆I
¬̇(RI(x, y)∧̇RI(y, x))

(Ref(R))I =
∧̇

x∈∆I
RI(x, x)

(Irr(R))I =
∧̇

x∈∆I
¬̇RI(x, x)

(Dis(R,S))I =
∧̇

x,y∈∆I
RI(x, y)→̇¬̇SI(x, y)

(C v D)I =
∧̇

x∈∆I
CI(x)→̇DI(x)

(a : C)I = CI(aI)
((a, b) : R)I = RI(aI , bI)

a ≈ b = aI = bI

a 6≈ b = aI 6= bI .

Table 3.2: Satisfaction of Axioms
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Definition 12 (Consistency) Let I be a complete interpretation, O an ontology, which is composed from
multiple data sources {S1, ..., Sn} and T a trust order over {S1, ..., Sn}. Let source(E) denote the T -
maximal datasource, from which axiom E originates.

We say O is u-consistent, if there exists an I, which assigns a truth value val(E, I) to all axioms E in O,
such that u ≤k val(E, I). I is called a u-model of O.

We say O is consistent, if there exist an I, which assigns a truth value val(E, I) to all axioms E in O, such
that ∀x : val(E, I) /∈ {>x,⊥x}. We say I is a model of O.

Finally, we define entailment:

Definition 13 (Entailment) O entails a SROIQ− T ontology O′ (O � O′), if every model of O is also a
model of O′. O and O′ are equivalent if O entails O′ and O′ entails O.

The following theorem shows that we have indeed defined a strict extension of SROIQ. Please not that
the following theorem only holds for SROIQ as logical bilattice and for ontologies, which are consistent in
standard two valued logics.

Theorem 3 If FOUR is used as logical bilattice, SROIQ− T is isomorphic to SROIQ.

Proof 3 (sketch) From a model of a SROIQ− T ontology O wrt. FOUR, we can derive a model for the
same ontology in SROIQ by doing the following steps:

• For each class C, replace C(a) = t by a ∈ C and C(a) = f by a /∈ C. Analogous for properties.

• As O is consistent, we do not have > and ⊥ truth values in a model.

• The only connectives used in the ontology language are ¬,∨,∧, these are equivalent to their boolean
counterparts in FOUR.

• replace “trust-consistent” in SROIQ− T with “consistent” in SROIQ. Analogous for satisfiability.

For a complete proof we need to show for every rule in tables 3.1 and 3.2 that we can transform it to the
SROIQ form (wrt. FOUR) by replacing conjunctions and disjunctions by quantifiers over set membership
or inclusion.

3.2 Applications

In addition to inconsistencies, which will almost certainly occur in the Semantic Web, be will also be faced
with information sources, which are of varying trustworthiness. Hence, we define a logical bilattice, which
allows for reasoning with trust orders. In the previous chapter we have focused on two levels of reliability of
information. More generally, we would like to be able to infer multiple levels of trust in a distributed setting.

Definition 14 (Trust Order) A trust order T is a partial order over a finite set of information sources with a
maximal element, called∞.

∞ is the information source with the highest trust level, assigned to local data. For any two information
sources a and b comparable wrt. T , we have a FOUR− C lattice as described above, with the less trusted
information source corresponding to the inner part of the lattice. Extended to multiple information sources,
this results in a situation as depicted in fig. 3.3, where the outermost bilattice corresponds to local, fully
trusted information.

If a and b are not comparable we introduce virtual information sources infab and supab, such that
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• infab < a < supab and infab < b < supab;

• ∀c<a,c<b : c < infab and

• ∀d>a,d>b : d > supab

To understand the importance of this last step, assume that c > a > d and c > b > d and a, b are
incomparable. Then the truth value of a ∨ b would have a trust level of c, as c is the supremum in the trust
order. Obviously this escaping to a higher trust level is not desirable. Instead, the virtual information sources
represent that we need to trust both, a and b, if we believe in the computed truth value. We illustrate this
situation in fig. 3.4 (We abbreviate infab by < and supab by >).

In the general case (≥ 3 incomparable sources) such a trust order results in a non-distributive lattice. This
can be fixed, however, by introducing additional virtual nodes. The basic idea here is to create a virtual node
for each element in the powerset of the incomparable sources, with set inclusion as the order. We will call
this modified trust order completed. We can again derive a complete lattice from the completed trust order.
As it can become quite large, we only show for > how a fragment of the logical bilattice is derived from the
trust order for the case of two incomparable information sources in fig. 3.4.

Using the same method as in the previous chapter, we can construct the corresponding bilattice from a given
completed truth order as follows: Given a trust order T , generate a lattice L1, such that

• fa <L1 fb, iff a >T b;

• tb <L1 ta, iff a >T b and

• ∀a : fa <L1 ta.

The result is a lattice with t∞ and f∞ as maximal and minimal elements. Now create the logical bilattice L
from L1 × L1 as described in the previous section.

in Figure 3.3 we see a bilattice resulting from a strict trust ordering, i.e. every pair of information sources
in the trust order is comparable. In general, it will not be possible to come up with such a strict ordering.
For example, interpretations of news may vary also among very trustworthy newspapers, depending on their
political background. Hence, we might have a trust ordering with incomparable information sources. This
case is demonstrated in Figure 3.4. Case a) shows the> part of the logical bilattice from Figure 3.3. Case b)
shows the same part for a bilattice resulting from a trust ordering, in which sources a and b are incomparable.
Their supremum and infimum are denoted by < and > respectively. As we can see, trust-bilattices can grow
quite complex. As users of reasoning services will be interested in trust levels only, they need not be faced
with all these values, however. Further, the bilattice needs not be materialized for reasoning, as many truth
values will not even be used. However, to be complete, all these values must be defined.
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3.2.1 Resolving Inconsistencies

Inconsistencies in ontologies often emerge, when ontologies are integrated from various sources using on-
tology modules, ontology mappings and similar mechanisms [P. 05]. In this section we propose to use trust
based reasoning for inconsistency resolution. Trust levels will be used to select axioms to remove for repair-
ing the ontology. The actual ontology repair has been described in NeOn deliverable [QHJ08].

Definition 15 (Maximally Trust Consistent Interpretation) We say an interpretation I is maximally trust
consistent, if it does not assign any artificial > values, i.e. >xy with x 6= y. An ontology O is said to be
maximally trust consistent, if it has an interpretation I, which is maximally trust consistent.

This means, a trust maximal interpretation can still be inconsistent, but such inconsistency then arises from
information obtained from a single information source. We now define, how a maximally trust consistent
ontology can be derived from any given ontology.

Various approaches for repairing inconsistent ontologies have been proposed. In most approaches, ax-
ioms are removed from the ontology until the rest is a consistent ontology (cf.[P. 05]). There usually are
multiple possible choices for axioms to remove. While this might not seem too bad in our example, con-
sider a similar scenario involving a red traffic light and we accidentally remove RedLightSituation v
BetterBreakSituation. Here trust based reasoning comes into play. We use the trust level as input to
a selection function, which determines axioms to be removed, a point left open in [P. 05].

Definition 16 (Minimal Inconsistent Subontology) Let O be an inconsistent ontology. A minimal inconsis-
tent subontology O′ ⊆ O is an inconsistent ontology, such that every O′′ ⊂ O′ is consistent.

Now trust maximal consistency is reestablished by iteratively removing all axioms with the lowest trust level
from O′, until the resulting ontology is trust maximal consistent. This captures the idea, that in the case of an
inconsistency, humans tend to ignore lowly trusted information first.

If a trust maximal consistent ontology still is inconsistent, we need a different selection function. However, in
this case already the local knowledge is inconsistent. A similar situation arises, if we have an inconsistency
resulting from two incomparable information source. In the latter case, however, we can choose to discard
information from both. Of cause, depending on the actual application, we can also use a more sophisticated
selection function, choosing among axioms on the lowest trust level.

2006–2008 c© Copyright lies with the respective authors and their institutions.
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Chapter 4

A Forgetting-based Approach for
Reasoning with Distributed Ontologies

4.1 Distributed systems

In this section, we introduce the notion of a distributed system defined in [ES07]. Note that our definitions
are compatible with the mapping metamodel given in NeOn deliverable D1.1.2 [HBP+07].

Given two ontologies O1 and O2, describing the same or largely overlapping domains of interest. We can
define the correspondences between their elements.

Definition 17 Let O1 and O2 be two ontologies, Q be a function that defines sets of mappable elements
Q(O1) and Q(O2). A correspondence is a 4-tuple 〈e, e′, r, α〉 such that e ∈ Q(O1) and e′ ∈ Q(O2), r is a
semantic relation, and α is a confidence value from a suitable structure 〈D,≤〉, such as a lattice.

In Definition 17, there is no restriction on function Q, semantic relation r and domain D. However, in our
work, we only consider correspondences between concepts and restrict r to be one of the semantic relations
from the set {≡,v,w}, and assume D = [0.0, 1.0].
From a set of correspondences, we can define the notion of a mapping as follows. We follow the definition of
a mapping given in [HBP+07].

Definition 18 Given ontologies O1 and O2, let Q be a function that is given in Definition 17. M is a set of
correspondences. ThenM is a mapping between O1 and O2 iff for all correspondences 〈e, e′, r, α〉 ∈ M
we have e ∈ Q(O1) and e′ ∈ Q(O2).

That is, a mapping is a set of correspondences whose elements are matchable.

Given a mapping between two ontologies O1 and O2, we can define the notion of a distributed system1

[ZE06].

Definition 19 A distributed system is a triple D = 〈O1, O2,M〉, where O1 and O2 are ontologies andM is
a mapping between them. We call O1 the source ontology and O2 the target ontology.

Given a distributed system, there is no unique semantics for it. Three semantics for distributed systems have
been proposed in [ZE06]. The first one, called simple distributed semantics, considers the whole distributed
system as a coherent knowledge base which can be interpreted in a single domain. The second one is called
an integrated distributed semantics, where each local knowledge representation is interpreted in its own do-
main but these interpretation are then correlated in a global domain. The third one is called a contextualized

1In [ZE06], they do not restrict to two ontologies. To simplify discussions, we consider only two ontologies in our work.
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distributed semantics, where there is no global domain of interpretation: each local ontologies imports knowl-
edge from other ontologies in its own context. They have developed an algorithm for consistency checking
in the logic based on the integrated distributed semantics in [ZD08]. Another important semantics for a dis-
tributed system is defined by Distributed Description Logics (DDL) [BS03]. Algorithms for reasoning tasks
in DDL, such as consistency checking, have been implemented as an extension DRAGO system [ST05].
A global semantics for a distributed system is given in [MS07]. This semantics is the same as that of the
mapping system described in [HM05], which has been discussed in NeOn deliverable D1.1.2 [HBP+07].

4.2 Forgetting

4.2.1 Variable forgetting

Let L be a propositional language constructed from a finite alphabet P of propositional symbols, the Boolean
constants > (true) and ⊥ (false), using the usual operators ¬ (not), ∨ (or) and ∧ (and). An interpretation
is a total function from P to {true, false}. The classical consequence relation is denoted by `. Given a
propositional formula φ, V ar(φ) denotes the set of propositional variables occuring in φ. φx←0 (resp. φx←1)
denotes the formula obtained by replacing in φ every occurence of variable x by ⊥ (resp. >).

Variable forgetting, which is also known as projection, is defined in [LR94] and is applied to resolve inconsis-
tency in [LM02].

Definition 20 Let φ be a formula over P and V⊆P be a set of propositional symbols. The forgetting of V in
φ, denoted as Forget(V, φ), is a formula over P , defined inductively as follows:

• Forget(∅, φ)≡φ;

• Forget({x}, φ)≡φx←0 ∨ φx←1;

• Forget({x}∪V, φ)≡Forget(V,Forget({x}, φ)).

Forget(V, φ) is the logically strongest consequence of φ which is independent of V . By forgetting a set of
variables in a formula φ we get a formula which is inferentially weaker than φ, i.e. φ ` Forget(V, φ). For
example, Forget({a},¬a∧b)≡b and Forget({a}, a∨b)≡>.

A semantic definition of forgetting is given in [LR94]. Given two interpretations ω and ω′, suppose x is a
variable, we define ω ∼x ω′ iff ω and ω′ agree on everything except possibly on the truth value of x. More
formally, ω ∼x ω′ iff for any variable y distinct from x, ω(y) = ω′(y).

Definition 21 Let φ be a formula over P and x be a variable in P . A formula ψ is the result of forgetting of
x in φ iff for any interpretation ω, ω is a model of ψ iff there is a model ω′ of φ such that ω ∼x ω′.

We denote by ForgetS(x, φ) the result of forgetting x in φ using the forgetting defined in Definition 21. It
has been shown in [LR94] that Forget(x, φ) = ForgetS(x, φ), for any x and φ. That is, the syntactical and
semantic definitions of forgetting coincide. Given a set V = {x1, ..., xn} of variables in P , the result of
forgetting of V in φ, written Forget(V, φ), is defined inductively as Forget(xn,Forget({x1, ..., xn−1}, φ). It
has been shown in [LR94] that the order of variables does not matter.

4.2.2 Forgetting in description logics

In this section, we define forgetting in a TBox of a DL knowledge base. The notion of forgetting can be
applied to any description logic. Here, a concept name plays the same role as a variable in propositional
logic. In particular, we define the forgetting of a set of concept names in a TBox. We first consider a semantic
definition of forgetting in DLs given in [WWTP08]. Since computation of the result of semantic forgetting is
very difficult, we then give a definition of syntactical forgetting, which is easy to compute.
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Semantic forgetting

We first introduce the relation∼A and the notion of concept forgetting given in [WWTP08]: letA be a concept
name in a DL language L, and I and I ′ interpretations of L. We define I ∼A I ′ iff I and I ′ agree on all
concept names and role names except possibly on A. The result of forgetting about A in T , denoted as
forget(T , A), is defined in a model-theoretical way as follows: forget(T , A) is a TBox on the signature
Sig(T ) \ {A} and any interpretation I ′ is a model of forget(T , A) iff there is a model I of T such that
I ∼A I ′. It has been shown in [WWTP08] that when we forget a set A = {A1, ..., An} of concept names,
the order of concept forgetting will not influence the final result of forgetting. Therefore, we can define
forget(T ,A) = forget(...(forget(T , A1), ...), An). In [WWTP08], an algorithm is given to compute
the result of concept forgetting in DL-Lite, a family of DLs that provide tractable reasoning. However, for more
expressive DLs, the result of concept forgetting may not be expressed in the same language [KLWW08].
Another restriction of the concept forgetting defined in [WWTP08] is that the result of forgetting of a concept
in a DL-Lite ontology with non-empty ABox may not be expressible in the same language. Next, we propose
a definition of syntactical forgetting, which can be applied to any DL and is easy to compute.

Syntactical forgetting

We use Con(C) to denote the concept names in a concept C. CA←> (resp. CA←⊥) denotes the concept
obtained by replacing in C every occurrence of concept name A by > (resp. ⊥).

A straightforward way to forget a concept name A in a concept C can be given as follows:
Forget({A}, C)=CA←>tCA←⊥. However, this definition suffers from a problem. That is, by forgetting a
concept name A in a concept C in a TBox T , we do not necessarily obtain a concept which is logically
weaker than C, i.e. T |= C v Forget({A}, C), a very important property of forgetting. The main reason
for this problem is that the DL concept constructors include value restrictions on role names and existen-
tial restriction on role names. Let us look at an example. Suppose C = ∀R.(Au∀R′.¬A) and we want
to forget A. Since CA←> = ∀R.(>u∀R′.⊥) = ∀R.(∀R′.⊥) and CA←⊥ = ∀R.(⊥u∀R′.>) = ∀R.⊥,
we have Forget({A}, C) = (∀R.(∀R′.⊥)) t ∀R.⊥. In this case, we do not necessarily have T |= C v
Forget({A}, C).
We consider the following definition of forgetting.

Definition 22 Let C be a (complex) concept and A a concept name. Suppose C is in negation normal
form, i.e. negation can only appear in the front of a concept name. The forgetting of A in C, denoted
Forget({A}, C), is a concept obtained by replacing every occurrence of A and ¬A by >.

In Definition 22, it is very important that the concept C is transformed into its negation normal form before
we apply the forgetting operator to it. Otherwise, we cannot ensure that CvForget({A}, C). For example,
suppose C = ¬(A1uB1) and we want to forget A1. If we replace A1 by > without transforming C into its
negation normal form, then C ′ = ¬B1, which is subsumed by C.

We give a running example to illustrate the notion of forgetting.

Example 2 Let us consider a TBox
T = {ProfessortPostDoctortResearchAssistantvEmployee, PhDStudentv
ResearchAssistant, PhDSupervisor ≡ Professoru∃isSupervisorof.PhDStudent}. Then,

Forget({Professor},ProfessortPostDoctortResearchAssistant) = > and

Forget({Professor},Professoru∃isSupervisorof.PhDStudent) = ∃isSupervisorof. PhDStudent.

The following proposition tells us that the forgetting of A in C indeed results in a concept which is a super
concept of C.

Proposition 7 Let C be a concept in a TBox T and A be a concept name. Then T |= CvForget({A}, C).
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We now define the forgetting of a set of concept names in a concept.

Definition 23 Let C be a concept, and let SN be a finite set of concept names. The forgetting of SN in C,
denoted Forget(SN , C), is defined inductively as follows:

• Forget(∅, C)=C;

• Forget({A}∪SN , C) = Forget(SN ,Forget({A}, C)).

Example 3 (Example 2 Continued) Let C = Professoru∃isSupervisorof.PhDStudent. Suppose we want to
forget Professor and PhDStudent inC, i.e., SN = {Professor, PhDStudent}, then we have Forget(SN , C) =
∃isSupervisorof.>.

Unlike the forgetting notion in propositional theories, we do not have a corresponding model theoretic se-
mantics for concept forgetting. However, we have the following properties which precisely characterize our
notion of concept forgetting.

Proposition 8 Let C, D and E be concepts, and let A and A′ be two concept names. We then have

1. If C = A or ¬A, then Forget({A}, C) = >;

2. If C = DuE (or DtE), where A∈Con(D) and A 6∈Con(E), then Forget({A}, C) =
Forget({A}, D)uE (or Forget({A}, C) = Forget({A}, D)tE).

3. If C = AtE, then Forget({A}, C) = >.

The proof of Proposition 8 is clear by the definition of forgetting. Item 1 says that if C is a concept name or full
negation of a concept name, then by forgetting it we get a top concept. Item 2 shows that forgetting a concept
name A is a concept which is a conjunction (or disjunction) will not influence the conjunct (or disjunct) which
is irrelevant to the concept name. Item 3 is a disjunction of the form AtE, then by forgetting A we get a top
concept.

We now consider the weakening of a TBox T by forgetting a concept name A. A first thought would be that
we simply forget A in every concept appearing in T . However, this approach may cause some problems.
Suppose a terminology axiom CvD is in T such that C = AuB, and A 6∈Con(D) and A 6∈Con(B). By
forgetting A in C we get a new axiom BvD. It is easy to check that BvD infers CvD whilst the converse
does not always hold. Therefore, CvD is not weakened. On the contrary, it is reinforced. To solve this prob-
lem, we can equivalently transform every axiom of the form CvD into >v¬CtD. According to Proposition
7, we have the following corollary.

Corollary 1 Let φ be a terminology axiom of the form > v C and A a concept name. Suppose A∈Con(C),
then >vC |= >vForget({A}, C), but not vice versa.

Corollary 1 tells us that an axiom is weakened by forgetting a concept name in the right-side concept.

We give the notion of forgetting in a TBox.

Definition 24 Let T be a TBox. Let φ be a terminology axiom in T which has been transformed
into the form > v C and SN a finite set of concept names. The forgetting of SN in φ is defined
as Forget(SN , φ) = >vForget(SN , C) and the forgetting of SN in T is defined as Forget(SN , T ) =
{Forget(SN , φ) : φ∈T , Sig(φ) ∩ SN 6= ∅}, where Sig(φ) denotes the signature of φ.

By Corollary 1, it is clear that we have that every axiom in Forget(SN , T ) can be inferred from T , for any SN .
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Example 4 (Example 2 Continued) Suppose we want to forget Professor in T . We need some
pre-processing. First, ProfessortPostDoctortResearchAssistantv Employee is transformed into > v
(¬Professor u ¬PostDoctor u ¬ResearchAssistant) t Employee. Second, we split PhDSupervisor ≡
Professoru∃isSupervisorof.PhDStudent into
PhDSupervisor v Professoru∃isSupervisorof.PhDStudent and

Professoru∃isSupervisorof.PhDStudent v PhDSupervisor, then transform them into > v
¬PhDSupervisor t (Professor u ∃isSupervisorof.PhDStudent) and > v ¬Professor t
¬∃isSupervisorof.PhDStudent t PhDSupervisor. Therefore, we have

Forget({Professor}, T ) = {> v (¬PostDoctor u ¬ResearchAssistant) t Employee,

> v ¬PhDSupervisor t ∃isSupervisorof.PhDStudent

PhDStudentvResearchAssistant}.

4.3 Recoveries for Distributed Systems

In this section, we apply the forgetting-based approach for resolving inconsistency in a propositional knowl-
edge base [LM02] to deal with inconsistency in a distributed system by forgetting concepts in TBoxes of local
ontologies. We do not consider inconsistency which is caused only by inter-ABoxes as this kind of inconsis-
tency may be better addressed by performing some kind of weakening on the ABoxes of local ontologies.
Dealing with this problem is also important, but it is out of scope for this work.

4.3.1 Recoveries

In [LM02], two key notions of the approach are forgetting context and recovery vector. The former one is
a collection of sets of variables to be forgotten in each formula from the knowledge base, and the latter
one is a vector of subsets of the set of all the variables appearing in the knowledge base, which satisfies the
constraints in the forgetting context. Forgetting of the variables in the recovery vector will result in a consistent
knowledge base. We adapt the definitions of forgetting context and recovery vector for a distributed system.

Definition 25 Given a distributed system D = 〈O1, O2,M〉, where O1 = 〈T1,R1,A1〉 and O2 =
〈T2,R2,A2〉 are ontologies and M is a mapping between them, a forgetting context CD for it is a triple
〈F,G,H〉 where:

• F = 〈F1, F2〉 such that Fi⊆NC with i = 1, 2, and for each i, Fi is the set of concept names that can
be forgotten in Ti.

• G = 〈G1, G2〉 such that for each i, Gi = {(Ai, A
′
i) : Ai, A′i∈CN(Ti)}, where CN(Ti) is the set of all

concept names in Ti and a pair (Ai, A′i) in Gi means that A′i is meaningful only if Ai exists;

• H⊆NC×{1, 2}×NC×{1, 2} is a set of quadruples (A, i,B, j) such thatA∈Fi,B∈Fj and i6=j, which
means that if A is forgotten in Fi, then B must be forgotten as well in Fj .

Fi imposes the constraints over the concept names which can be forgotten in Ti. That is, if a concept name
A 6∈Fi, then forgetting A in Ti is forbidden. Gi contains the pairs of concept names in local TBox Ti such that
the existence of the former is meaningful or significant only in presence of the latter. In other words, forgetting
the latter imposes to forget the former. H imposes the constraints over inter-TBoxes. It forces that if A is
forgotten in Ti then B should also be forgotten in Tj . The forgetting context is dependent on the application
at hand. A simple example for forgetting context is a standard forgetting context which is given by Fi = NC

for every i = 1, ..., n, Gi = ∅ for every i = 1, ..., n, and H = ∅. Note that our approach does currently not
include weakening of bridge rules. Such a weakening may be preferable in some situations (for example, to
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improve mappings created by different matching systems [CM07]), but its treatment is out of scope for this
paper.

We next define a recovery vector for a distributed system. It is a vector of subsets of concept names of NC ,
which satisfies the constraints in the forgetting context. In this definition, we need to specify the semantics of
a distributed system.

Definition 26 Given a distributed system D = 〈O1, O2,M〉 with Cn as its consequence relation, and a
forgetting context CD, a recovery vector (or recovery for short)

−→
V for D given CD is a vector

−→
V = 〈V1, V2〉 of

subsets of NC s.t.:

• for every i = 1, 2, Vi⊆Con(Ti),

• for every i = 1, 2, for any (A,A′)∈Gi, if A∈Vi then A′∈Vi,

• for every (A, i,B, j)∈H , A∈Vi implies B∈Vj ,

• D|
−→
V = 〈{〈Forget(Vi, Ti),Ri,Ai〉}i=1,2,B〉 is consistent.

D|
−→
V is called the cure of

−→
V for D given CD. We denote the set of all recoveries for D given CD asRCD(D).

According to the definition of recovery, the cure of
−→
V for D is always consistent if the recovery

−→
V exists.

When RCD(D) = ∅, we say that D is not recoverable w.r.t. CD. This may happen when some concepts,
which cannot be forgotten according to the forgetting context, must be forgotten to restore consistency.

We give an example to illustrate the definitions in this section by considering DDL as the semantics of a
distributed system. We assume that the reader is familiar with DDL syntax and semantics which can be
found in paper [BS03].

Example 5 Suppose we have a distributed knowledge base D = 〈{O1, O2}, {B12,B21}〉, where
(1) O1 = 〈T1,R1,A1〉 :

• R1 = ∅;

• T1 = {ProfessortPostDoctortResearchAssistantvEmployee, PhDStudentvResearchAssistant,
PhDSupervisor ≡ Professoru∃isSupervisorof.PhDStudent};

• A1 = {PhDStudent(Mary),PhDSupervisor(Tom)};

(2) O2 = 〈T2,R2,A2〉 :

• R2 = ∅;

• T2={ProfessortLecturervAcademicStaff,StudentuAcademicStaffv⊥,PhDStudentvStudent,
PhDSupervisor ≡ AcademicStaffu∃isSupervisorof.PhDStudent};

• A2 = {PhDStudent(John)};

(3) B21 = {2 : AcademicStaff
w−→ 1 : Employee, 2 : PhDStudent

w−→ 1 : PhDStudent, 2 : ¬AcademicStaff
v−→ 1 : ¬Employee, 2 : ¬PhDStudent

v−→ 1 : ¬PhDStudent} and B12 = ∅. O1 and O2 are two University
ontologies which are connected by bridge rules.

Let D′ = 〈{T1, T2}, {B12,B21}〉. Since D′ |=d PhDStudentv⊥ and PhDStudent (Mary)∈A1, D is
inconsistent. We have the following forgetting context CD for D:

• F=〈Fi〉i=1,2, where Fi=
{AcademicStaff,Employee, Student,Professor, Lecturer,
ResearchAssistant,PhDStudent,PhDSupervisor}i=1,2.
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• G=〈Gi〉i=1,2, where
G1={(PhDStudent,PhDSupervisor)}; G2={(PhDStudent,PhDSupervisor)}.

• H = {(PhDStudent, 1,PhDStudent, 2)}.

For each local ontology, all the concept names in it can be forgotten. G1 is used to show that the concept
PhD supervisor is not meaningful if the concept PhD student or professor is forgotten. G2 can be similarly
explained. H ensures that the concepts PhD student, professor, student in O1 are respectively equal to PhD
student, professor, student in O2 w.r.t. weakening from the point of view of O2.

Given the forgetting context CD, the following are two recoveries for D:

•
−→
V 1 = 〈V1, V2〉, where
V1 = {ResearchAssistant} and V2 = ∅:
Forget(V1, T1) = {ProfessortPostDoctorvEmployee,
PhDSupervisor ≡
Professoru∃isSupervisorof.PhDStudent}, Forget(V2, T2) = T2

It is easy to check that the DKB D1 = 〈{〈Forget(Vi, Ti),Ai〉}i=1,2,B〉 is consistent.

•
−→
V 2 = 〈V1, V2〉, where
V1 = ∅ and V2 = {PhDStudent,PhDSupervisor}:
Forget(V1, T1) = T1,
Forget(V2, T2) = {ProfessortLecturervAcademicStaff, StudentuAcademicStaffv⊥}
The DKB D2 = 〈{〈Forget(Vi, Ti),Ai〉}i=1,2,B〉 is consistent.

However, the following vector is not a recovery for D given CD:
−→
V = 〈V1, V2〉, where V1 = {PhDStudent}

and V2 = ∅, because it does not satisfy the constraints of H in CD.

4.3.2 Preferred Recoveries

Given a forgetting context, there may exist several different recoveries. In many cases, we are only inter-
ested in some of these recoveries, called preferred recoveries, which is defined by some preference relation
on recoveries. For example, among all the recoveries, we may be only interested in those contain minimal
number of concepts to forgotten. The notion of preferred recovery is originally defined in [LM02] in propo-
sitional logic. This is important to ensure minimal change. That is, among those recoveries, we may give
preference to those that forget less concept names. This coincides with the principle of minimal change in
belief revision. Actually, it has been shown in [LM02] that some model-based revision operators belong to
their framework based on variable forgetting. We adapt it to distributed systems here. We need to define a
preference relation on the set of all recoveries for a distributed system D given a forgetting context CD for it.
For any two recoveries

−→
V and

−→
V ′,
−→
V ⊆c

−→
V ′ means that Vi⊆V ′i for each i = 1, 2.

Definition 27 Given a distributed system D and a forgetting context CD for it, a preference relation � on
RCD(D) is a reflexive and transitive relation which satisfies the following property:

∀
−→
V ,
−→
V ′∈RCD(D), if

−→
V ⊆c

−→
V ′, then

−→
V �
−→
V ′.

As usual, we denote
−→
V ≺
−→
V ′ for

−→
V �
−→
V ′ and

−→
V ′ 6�
−→
V , and

−→
V ∼
−→
V ′ for

−→
V �
−→
V ′ and

−→
V ′�
−→
V .

In Definition 27, a recovery
−→
V is at least preferred to another one

−→
V ′ (
−→
V �
−→
V ′) if each Vi in

−→
V is a subset of

V ′i in
−→
V ′.

There are many ways to define a preference relation. For instance, we can prefer recoveries that lead to
forget minimal sets of concepts w.r.t. the set containment. We can also ask the experts or users for such a
preference relation. We adapt two specific preference relations in [LM02] as follows.
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• binaricity preference relation �bin: ∀
−→
V ,
−→
V ′∈RCD(D), if for every i = 1, ..., n, (Vi 6=∅⇔ V ′i 6=∅), then

−→
V ∼bin

−→
V ′.

• ranking function based preference relation �µ: suppose µ is a ranking function from RCD(D) to N
such that µ(〈∅, ...,∅〉) = 0, and ∀

−→
V ,
−→
V ′∈RCD(D), if

−→
V ⊆c

−→
V ′, then µ(

−→
V )≤µ(

−→
V ′). The preference

relation�µ induced by µ is the total pre-ordering defined as follows. For all
−→
V ,
−→
V ′∈RCD(D),

−→
V �µ

−→
V ′

if and only if
µ(
−→
V )≤µ(

−→
V ′).

The ranking function based preference relation is defined by a ranking function from RCD(D) to N. A par-
ticular ranking function can be defined by µcard(

−→
V ) = |

⋃−→
V |, where

⋃−→
V = V1∪...∪Vn. We denote the

preference relation based on µcard as �card. A recovery
−→
V is preferred to another one

−→
V ′ w.r.t. the prefer-

ence relation �card if and only if the cardinality of the union of the sets Vi (i = 1, ..., n) is smaller than that of
the union of the sets V ′i (i = 1, ..., n).

By Corollary 1, when a concept name is forgotten in a DL knowledge base, the resulting DL knowledge
base is weaker than the original one w.r.t. the inference power. Given

−→
V ,
−→
V ′∈RCD(D), if

−→
V ⊆c

−→
V ′ then

D|
−→
V |= D|

−→
V ′. Therefore, among all the recoveries from RCD(D), those which are minimal w.r.t. ⊆c lead

to cures preserving as much information as possible given the forgetting context CD.

Next, we define two consequence relations. We denote by
−→
V �D,CD the set of all minimal recoveries from

RCD(D) w.r.t. �.

Definition 28 Given a distributed system D with Cn as its consequence relation and a forgetting context
CD for it, let � be a preference relation on RCD(D). Let φ be a DL axiom. Then φ is said to be sceptically
inferred from D w.r.t. �, denoted by D |=CD�,Ske φ, if and only if D|

−→
V |= φ for all

−→
V ∈
−→
V �D,CD . φ is called a

sceptical consequence of D.

A DL axiom is a sceptical consequence of a distributed system D if and only if it can be inferred from all the
most preferred recoveries.

Example 6 (Example 5 Continued) Suppose �=�card. Then
−→
V 1 is a preferred recovery because

|
⋃−→
V 1| = 1 and no other recovery can have cardinality smaller than it. Other preferred recoveries are

given as follows:

•
−→
V 3 = 〈V1, V2〉, where V1 = {Employee} and V2 = ∅. We have
Forget(V3, T1) =
{PhDStudentvResearchAssistant,
PhDSupervisor≡Professoru∃isSupervisorof.PhDStudent} and Forget(V3, T2) = T2.

•
−→
V 4=〈V1, V2〉, where V1=∅ and V2={AcademicStaff}. We have Forget(V4, T1) = T1 and
Forget(V4, T2)={PhDStudentvStudent,PhDSupervisor
vAcademicStaffu∃isSupervisorof.PhDStudent}.

•
−→
V 5 = 〈V1, V2〉, where V1 = ∅ and V2 = {Student}. We have Forget(V5, T1) = T1 and
Forget(V5, T2) = {ProfessortSeniorLecturertLecturertResearchAssistant
vAcademicStaff}.

Since PhDSupervisor≡Professoru∃isSupervisorof.PhDStudent is in Forget(Vi, Ti) for all i = 1, 3, 4, 5, we
have that D|

−→
V |= Professor(Tom), for all

−→
V ∈
−→
V �D,CD . That is, we can conclude that Tom is a professor

using the sceptical inference.
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Suppose D = 〈{Oi}i∈I ,B〉 is a distributed knowledge base in DDL. A maximal consistent sub-base of
D w.r.t terminology is a sub-base D′ = 〈{O′i}i∈I ,B〉 (with O′ = 〈R′, T ′,A′〉) of D which satisfies the
following conditions: (1)D′ is consistent; (2) {T ′i : T ′i 6= ∅} ⊆ {Ti : i = 1, ..., n},R′ = R, andA′i = Ai; (3)
there does not exist a sub-base D′′ of D which satisfies (1) and (2), and {T ′i : T ′i 6= ∅} ⊂ {T ′′i : T ′′i 6= ∅}.

Proposition 9 Let D be a distributed knowledge base and MaxCons(D) the set of all maximal consistent
sub-bases of D. Suppose CD is the standard forgetting context and the preference relation � is a binaricity
preference relation. Then for every DL axiom φ, D |=CD�,Ske φ if and only if Di |= φ, for all Di∈MaxCons(D).

Proposition 9 tells us that the sceptical consequence relation based on binaricity preference relation is the
same as the consequence relation based on maximal consistent sub-bases w.r.t terminology.

In the case that many preferred recoveries exist (see Example 5), the sceptical consequence relation is rather
weak (i.e., only few DL axioms can be inferred). Therefore, we propose another consequence relation.

Definition 29 Given a distributed system D with Cn as its consequence relation and a forgetting context CD
for it, let � be a preference relation on RCD(D). Let φ be a DL axiom and ¬φ is its negation2. Then φ is
said to be argumentatively inferred from D w.r.t. �, denoted by D |=CD�,Arg φ, if and only if there exists a
−→
V ∈
−→
V �D,CD such that D|

−→
V |= φ and there does not exist

−→
V ′∈
−→
V �D,CD such that D|

−→
V ′ |= ¬φ. φ is called an

argumentative consequence of D.

A DL axiom is an argumentative consequence if and only if it can be inferred from a most preferred recov-
ery and its negation cannot be inferred from any most preferred recoveries. Therefore, the argumentative
consequence relation will not result in contradictory conclusions. Note that our argumentative consequence
relation is different from consequence relation defined in the logic-based framework for argumentation [BH01]
because a most preferred recovery can be viewed as maximal recovered consistent information in the dis-
tributed system whilst an argument in an argumentation theory is a minimal consistent subset that can infer
a conclusion. Unlike an argument in the argumentation theory, each axiom in a most preferred recovered
is self-justified. A weakness of the argumentative consequence relation is that it may be too adventurous
because an argumentative consequence may not be inferred by other most preferred recoveries (also its
negation will not be inferred). The relationship between this consequence relation and the sceptical conse-
quence relation is summarized by the following proposition.

Proposition 10 Given a distributed system D with Cn as its consequence relation and a forgetting context
CD for it, suppose φ is a DL axiom. If D |=CD�,Ske φ, then D |=CD�,Arg φ.

That is, every sceptical consequence of a distributed system is an argumentative consequence.

Example 7 (Example 6 Continued) It is easy to check that, for i = 3, 4, 5, D|
−→
V i |=

ResearchAssistant(Mary) because PhDStudent(Mary)∈A1 and PhDStudent v
ResearchAssistant∈Forget(Vi, T1). Since ResearchAssistant 6∈ Con(Forget(V1, T1)) and
ResearchAssistant 6∈Con(T2), we must have that D|

−→
V 1 6|=¬ResearchAssistant(Mary). Therefore,

D |=CD�,Arg ResearchAssistant(Mary).

2The notion of axiom negation is defined in [FHP+06]
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Chapter 5

Conclusion

5.1 Summary

In this deliverable we proposed some inconsistency-tolerant approach for reasoning with networked ontolo-
gies. We first extended the semantics of description logic ALC with a four-valued semantics. We imple-
mented an algorithm for reasoning with the four-valued semantics and provide a prototype called Inconsis-
tency Handler. The idea of the algorithm is to transform inconsistent OWL ontologies into non-contradictory
knowledge bases. With Inconsistency Handler as a plug-in, Neon Toolkit can work using 4-valued logic,
without the need to develop a new inference machine. We then proposed a bilattice-based semantics to
generalize the four-valued semantics. The bilattice-based semantics is very useful when we want to inte-
grate networked ontologies. We proposed an approach for obtaining bilattices. We extended SROIQ, the
description logic underlying the proposed OWL2 [GM08], to SROIQ− T evaluated on a logical bilattice.
The bilattice-based semantics can be used to reasoning with trust information and deal with inconsistency.

Both the four-valued semantics and the bilattice-based semantics are defined for a single ontology, we pro-
pose another approach for reasoning with distributed ontologies which is based on concept forgetting. We
first defined the notion of concept forgetting in DLALC. Some properties of the concept forgetting were given.
The definitions of recoveries and preferred recoveries in propositional logic setting [LM02] were adapted to
distributed systems. Based on the preferred recoveries, two consequence relations on an inconsistent dis-
tributed system were defined. One is called sceptical consequence and the other is called argumentative
consequence. We showed that every sceptical consequence of a distributed system is an argumentative
consequence.

5.2 Roadmap

We have described some approaches for reasoning with networked ontologies. However, some of the ap-
proaches are not fully implemented and evaluated. For example, there is no algorithm for bilattice-based
approach and there is no algorithm for the forgetting-based approach. In our future work, we will provide
algorithms for these inconsistency-tolerant approaches and give evaluation results for their implementation.
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