

 NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 — “Semantic-based knowledge and content systems”

D1.1.6 KANNEL: a framework for detecting and
managing semantic relations between ontologies

Deliverable Co-ordinator: Carlo Allocca

Deliverable Co-ordinating Institution: Open University

Other Authors: Mathieu d’Aquin (Open University), Enrico Motta (Open Uni-
versity)

In Semantic Web search engines such as Watson, or in large ontology repositories, we need to
make explicit existing, implicit relations between ontologies in order to better support users and
applications in selecting the "best" or the "right" ontologies according to their goals. We describe
KANNEL, a framework for detecting and managing ontology relations in large ontology repos-
itories. KANNEL relies on an ontology based approach. A complex ontology of relationships
between ontologies is first formalized, and specialized detection mechanisms are devised for
extracting particular relations from the repository. The ontology can then be used with reasoning
mechanisms to query ontology relations and infer new ones.

Document Identifier: NEON/2009/D1.1.6/v0.5 Date due: October 31st, 2009
Class Deliverable: NEON EU-IST-2005-027595 Submission date: October 31st, 2009
Project start date March 1, 2006 Version: v0.5
Project duration: 4 years State: Final Version

Distribution: Public

2009–2010 c© Copyright lies with the respective authors and their institutions.

Page 2 of 55 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is part of the NeOn research project funded by the IST Programme of the Commission of the
European Communities by the grant number IST-2005-027595. The following partners are involved in the
project:

Open University (OU) – Coordinator Universität Karlsruhe – TH (UKARL)
Knowledge Media Institute – KMi Institut für Angewandte Informatik und Formale
Berrill Building, Walton Hall Beschreibungsverfahren – AIFB
Milton Keynes, MK7 6AA Englerstrasse 11
United Kingdom D-76128 Karlsruhe, Germany
Contact person: Martin Dzbor, Enrico Motta Contact person: Peter Haase
E-mail address: {m.dzbor, e.motta}@open.ac.uk E-mail address: pha@aifb.uni-karlsruhe.de
Universidad Politécnica de Madrid (UPM) Software AG (SAG)
Campus de Montegancedo Uhlandstrasse 12
28660 Boadilla del Monte 64297 Darmstadt
Spain Germany
Contact person: Asunción Gómez Pérez Contact person: Walter Waterfeld
E-mail address: asun@fi.ump.es E-mail address: walter.waterfeld@softwareag.com
Intelligent Software Components S.A. (ISOCO) Institut ‘Jožef Stefan’ (JSI)
Calle de Pedro de Valdivia 10 Jamova 39
28006 Madrid SL–1000 Ljubljana
Spain Slovenia
Contact person: Jesús Contreras Contact person: Marko Grobelnik
E-mail address: jcontreras@isoco.com E-mail address: marko.grobelnik@ijs.si
Institut National de Recherche en Informatique University of Sheffield (USFD)
et en Automatique (INRIA) Dept. of Computer Science
ZIRST – 665 avenue de l’Europe Regent Court
Montbonnot Saint Martin 211 Portobello street
38334 Saint-Ismier, France S14DP Sheffield, United Kingdom
Contact person: Jérôme Euzenat Contact person: Hamish Cunningham
E-mail address: jerome.euzenat@inrialpes.fr E-mail address: hamish@dcs.shef.ac.uk
Universität Kolenz-Landau (UKO-LD) Consiglio Nazionale delle Ricerche (CNR)
Universitätsstrasse 1 Institute of cognitive sciences and technologies
56070 Koblenz Via S. Marino della Battaglia
Germany 44 – 00185 Roma-Lazio Italy
Contact person: Steffen Staab Contact person: Aldo Gangemi
E-mail address: staab@uni-koblenz.de E-mail address: aldo.gangemi@istc.cnr.it
Ontoprise GmbH. (ONTO) Food and Agriculture Organization
Amalienbadstr. 36 of the United Nations (FAO)
(Raumfabrik 29) Viale delle Terme di Caracalla
76227 Karlsruhe 00100 Rome
Germany Italy
Contact person: Jürgen Angele Contact person: Marta Iglesias
E-mail address: angele@ontoprise.de E-mail address: marta.iglesias@fao.org
Atos Origin S.A. (ATOS) Laboratorios KIN, S.A. (KIN)
Calle de Albarracín, 25 C/Ciudad de Granada, 123
28037 Madrid 08018 Barcelona
Spain Spain
Contact person: Tomás Pariente Lobo Contact person: Antonio López
E-mail address: tomas.parientelobo@atosorigin.com E-mail address: alopez@kin.es

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 3 of 55

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this document, even
if they might not have directly contributed to the writing of this document or its parts:

• Open University

• Jožef Stefan Institute

• iSoCo

• Universität Karlsruhe

• INRIA

• Ontoprise

• CNR

• Universidad Politécnica de Madrid

Change Log

Version Date Amended by Changes
0.1 19-07-2009 Carlo Allocca Initial Version
0.2 28-09-2009 Carlo Allocca update with ontology description, similar-

ity and version
0.3 06-11-2009 Carlo Allocca update with other detection mechanisms

and evaluations
0.4 09-11-2009 Mathieu d’Aquin Future work and final editing
0.5 09-12-2009 Carlo Allocca update with the first review comments
0.5 13-12-2009 Mathieu d’Aquin general review and comments
0.5 14-12-2009 Carlo Allocca update and final editing

2009–2010 c© Copyright lies with the respective authors and their institutions.

Page 4 of 55 NeOn Integrated Project EU-IST-027595

Executive Summary

Nowadays, more and more ontologies are collected and indexed by Semantic Web Search Engines (SWSEs),
such as Watson. These ontologies are not necessarily stand-alone artifacts, i.e. semantically independent
from each other. In fact, It is easy to find ontologies connected to each other through semantic relations, such
as: version, inclusion, similarity, equivalent, etc. In this context, one of the most important challenges, which
has not been addressed yet, is that the relations among these ontologies often remain implicit. The implicit
nature of these relations leads to several problems. One of them is how to select the "best/right" ontology/ies
for our application, automatically. Consequently, a flat list of results from a SWSE may be difficult to exploit
for those applications which rely on the selection of a relevant ontology, using infrastructures like Watson. In
order to use such SWSEs efficiently, these relations must become explicit.

Motivated by this concrete scenario, in this deliverable we present KANNEL: a framework to detect and
manage existing relations automatically between ontologies in large ontology repositories. First of all, we
present the ontology-based architecture of KANNEL. We also detail the design of DOOR - the Descriptive
Ontology of Ontology Relations - which intends to formalize ontology relations such as inclusion, versioning,
similarity and agreement using ontological primitives as well as rules. We finally introduce the methods to
detect such relations in large ontology repositories and initial evaluations of these mechamisms.

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 5 of 55

Contents

1 Introduction 9
1.1 Problem . 9

1.2 Motivation . 10

1.3 Goal . 11

1.4 Outcomes . 13

1.5 Research Questions . 13

1.6 Outline of this deliverable . 14

2 Related Work 15
2.1 How ontologies relate to one another? . 15

2.2 Ontology Comparison . 16

2.2.1 PromptDiff: A fixed-point algorithm for comparing ontology versions 16

2.2.2 CEX and MEX: Logical Diff and Logic-based Module Extraction in a Fragment of OWL. 17

2.3 Ontology Versioning/Evolution . 18

2.3.1 Ontology Versioning . 18

2.3.2 SemVersion, Versioning RDF and Ontologies . 20

2.4 Summary and Conclusions . 23

3 The DOOR-Ontology: Towards a Formalization of Ontology Relations 25
3.1 Methodology for Designing the DOOR Ontology . 25

3.1.1 Definitions and Requirements . 25

3.1.2 Main steps of the Methodology . 26

3.2 Formal Description of DOOR . 27

3.2.1 includedIn and equivalentTo . 27

3.2.2 similarTo . 28

3.2.3 Versioning . 30

3.2.4 Agree and Disagree . 31

3.2.5 Other Relations . 32

3.3 Conclusions . 32

4 The KANNEL Framework 34
4.1 KANNEL: Architecture . 34

4.2 Inclusion and Equivalent . 34

4.2.1 Initial Evaluation . 35

4.3 Similar Ontologies . 36

4.3.1 Measuring Similarity Between Ontologies . 37

2009–2010 c© Copyright lies with the respective authors and their institutions.

Page 6 of 55 NeOn Integrated Project EU-IST-027595

4.3.2 Lexicographic Similarity . 37

4.3.3 Syntactic Similarity . 37

4.3.4 Semantic Similarity . 37

4.3.5 KeyConcepts Similarity . 38

4.4 Ontology Versioning . 39

4.4.1 Identifying Version Information Patterns . 40

4.4.2 The Ontology Version Detector Algorithm . 42

4.4.3 Experiment and Evaluation . 46

4.4.4 Experiment data . 46

4.4.5 Computing chains of ontology versions . 47

4.4.6 Evaluation . 48

4.4.7 Conclusion and Future work . 49

4.5 Agreement and Disagreement . 49

5 Conclusion and Future Work 52

Bibliography 54

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 7 of 55

List of Tables

3.1 Specialization of inclusion and equivalence relations. 28

3.2 Specialization of the similarity relation . 29

3.3 Specialization of the versioning relations. 30

3.4 Specialization of agreesWith and disagreesWith. 31

4.1 Queries and corresponding ontology collections. 47

4.2 Results of running OVD on sub-sets of the Watson collection of ontologies. 47

4.3 Result of the evaluation of OVD . 48

4.4 Precision OVD’s results. 49

2009–2010 c© Copyright lies with the respective authors and their institutions.

Page 8 of 55 NeOn Integrated Project EU-IST-027595

List of Figures

1.1 The main tasks and stages of KANNEL. 12

2.1 An example of applying the Diff Structure . 17

2.2 OWLDiff formula . 18

2.3 - Screenshot of OntoView . 21

2.4 - Example A - . 21

2.5 - Example B - . 22

2.6 - Example C - . 22

2.7 - Example D - . 23

3.1 Top Level of DOOR. 27

3.2 Taxonomy for includedIn and equivalentTo . 29

3.3 Taxonomy for similarTo. 30

3.4 Taxonomy for versioning relations. 31

3.5 Taxonomy for the agreement relations. 32

3.6 Taxonomy for the disagreement relations. 32

4.1 Architecture of the KANNEL framework. 35

4.2 The main steps of OVD. 42

4.3 Agreement (left) and disagreement (right) relations among the 21 test ontologies. Plain
lines represent full dis/agreement (measures’ values = 1). Dashed lines represent partial
dis/agreement (measures’ values greater than 0). 51

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 9 of 55

Chapter 1

Introduction

1.1 Problem

The general problem we intend to address in this research, can be formulated by the following question:

(1) How can we (automatically) select the "right" or the "best" ontologies for our goal on the Semantic Web?

More and more ontologies are collected and indexed by Semantic Web Search Engines (SWSEs), such as
Watson1. Indeed, SWSE systems represent one of the most important steps to reuse existing ontologies
and play an important part of the Semantic Web (SW) [ABS06]. In general, SWSEs provide searching
mechanisms and appear like traditional Search Engines to the users. When you type keywords, a flat list of
documents, in which ontologies are stored, come out as result. However, there are significant differences
between a generic Search Engine, such as Google, Yahoo and a generic SWSE, such as Watson. The
former collects and indexes any type of documents, while the latter only manages semantic documents2.
Search Engines’ output are supposed to be used by humans, while SWSEs’ output are used by Semantic
Web Applications (SWAs) (in fact, more and more real-world SWAs use the Semantic Web (SW) as a large-
scale knowledge source [dMea08]). Another important difference is that semantic documents are not stand-
alone artifacts, i.e., semantically independent from each other. They are related by (often implicit) semantic
relations. Not all of these differences are taken in consideration when SWSEs are developed. In particular,
in this deliverable we cope with just the last aspect: what are the relations between ontologies and how to
automatically detect them in large ontology repositories. Thus, focusing on SWSEs the question (1) can be
reformulated as the following:

(2) How can we improve the selection of ontologies beyond the flat list of results of SWSEs?

In question (2) there are two important aspects which need to be clarified. The first one concerns the task
of "selection of ontologies". The authors of [MSM06] formalized and discussed the problem of selecting
ontologies from the Semantic Web. The authors, on the one hand, formulated some relevant requirements,
such as complete coverage, Precise coverage, Returning ontology combinations, Dealing with relations,
Dealing with instances, etc, should be considered to design an algorithm for the selection of ontologies.
On the other hand, they also agree on the fact that different applications have different requirements for
ontology selection. With respect to our problem, reformulated with the question (2), we consider a different
requirement: the Connectedness. The selection of an ontologies takes into consideration/account how the
ontologies are related (or connected) to each other on the Semantic Web.

The second aspect of (2) which needs to be clarified is concerned with how the selection task can be im-
proved taking into consideration the relations between ontologies, or in other words the factor of Connected-
ness. The way of linking the first with the second can be described by considering the following scenarios

1http://Watson.kmi.open.ac.uk
2In this work, a semantic document is the document in which is kept an artifact semantic such as the ontologies or knowledge

expressed by any one of languages used for the Semantic Web, such as RDF, OWL.

2009–2010 c© Copyright lies with the respective authors and their institutions.

http://Watson.kmi.open.ac.uk

Page 10 of 55 NeOn Integrated Project EU-IST-027595

that we intend to cope with in this work: we want to select on the Semantic Web an ontology that satisfies
one or more of the following:

• selecting the largest ontology to cover the domain of interest;

• selecting an ontology which is compatible with other ontologies that are used by the current system;

• selecting an ontology which is similar to the one that the system is currently using;

• selecting the smallest ontology to cover the domain of interest;

• selecting the last version of the ontology that I am looking for;

All of the keywords such as largest, compatible, similar, last version etc, are related to the general notion of
Connectedness, that is to the relations between ontologies. This is one of the most important aspects which
drove the development of the KANNEL framework (Section 1.3).

On the same line of research, it is worth noting the work of [Wel08]. They identified the following questions
related to the ontology reuse: how can the ontologies be organized or classified? should they be interrelated?
and how can they be reused? These questions affect both the processes of ontology development and
ontology applications. Furthermore, according to the author of [Wel08] we also need a more comprehensive
overview of the ontologies on the Semantic Web, to handle a growing number of single, originally independent
ontologies.

1.2 Motivation

The ontologies on the Semantic Web are not isolated artifacts. More and more researchers faced the fact
that they are, implicitly, related to each other by one or more relationships. Making explicit these relations is
a very hard task and plays an important role in the contest of SWSEs in the task of ontology selection.
The relevance to study relationship between ontologies can be discussed either at both practical and theo-
retical level [KA05].

At a theoretical level, studies have targeted ontology comparison in order to identify overlaps between
them [MS02]. Many approaches have been proposed to find differences between versions of ontolo-
gies [NM02, KCDF08]. According to [KF01], the ontology versioning problem has been defined as the ability
to handle changes in ontologies by creating and managing different variants of it. In other words, ontology
versioning means that there are multiple variants of an ontology. The authors of [KF01] suggested that,
ideally, developers should maintain not only the different versions of an ontology, but also some information
about the way versions differ and whether or not they are compatible with each other. In [GPS99] ontology
integration is defined as the construction of an ontology C that formally specifies the union of the vocabularies
of two other ontologies A and B. The most interesting case is when A and B are supposed to commit to the
conceptualization of the same domain of interest or of two overlapping domains. In particular, A and B may
be related by being alternative ontologies, truly overlapping ontologies, equivalent ontologies with vocabulary
mismatches, overlapping ontologies with disjoint domain, homonymically overlapping ontologies. Finally, in
ontology matching, an alignment is a set of correspondences between the entities of two ontologies, therefore
relating these two ontologies by mapping their models with each other.

At a practical level, we extend what we said in the previous section, showing more examples of how the
ontologies are related to each other on the SW.

The SWSEs provide keyword based search mechanisms to locate relevant ontologies for particular applica-
tions. As an example, if we type the query “student”, Watson 3currently, gives 1079 ontologies as result (valid
on the 22/04/2009), which are provided as a simple list. Indeed, on the first few pages we can observe some
common situation which need to be investigated:

3http://Watson.kmi.open.ac.uk

http://Watson.kmi.open.ac.uk

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 11 of 55

1. when an ontology has been translated in different ontology languages:

• http://reliant.teknowledge.com/DAML/Mid-level-ontology.owl
• http://reliant.teknowledge.com/DAML/Mid-level-ontology.daml

2. different versions of the same ontology:

• http://www.vistology.com/ont/tests/student1.owl
• http://www.vistology.com/ont/tests/student2.owl
• http://lsdis.cs.uga.edu/projects/semdis/sweto/testbedv1.1.owl
• http://lsdis.cs.uga.edu/projects/semdis/sweto/testbedv1.4.owl

Inspecting more results of Watson in the same way, it is possible to find ontologies connected to each other,
more sophisticated semantic implicit relations, such as compatibility, inclusion, similarity, etc.

On the other hand, Semantic Web Applications use the SW as a large-scale knowledge source [dMea08]:
they achieve their tasks by automatically retrieving and exploiting knowledge from the SW as a whole, using
advanced Semantic Web Search Engines (SWSEs) such as Watson [dSD+07]. Therefore, these new appli-
cations explore the Web to discover ontologies relevant to the task at hand, thanks to SWSEs. The lack of
semantic relations between ontologies in SWSEs leads to several inadequacies in supporting the develop-
ment of SWAs. In the particular case of Watson, it generates additional difficulties in exploiting the provided
result in terms of:

1. Searching/Selecting appropriate ontologies: Applications and human users need to select appropriate
ontologies, from Watson’s result, on the basis of some requirements. This aspect is not tackled by
current SWSEs.

• User: For example, if the user is looking for the last version of a particular ontology O, having
a simple list as result from Watson means that the user needs to manually go through each
ontology and find out which one is the last version. The same applies for other implicit semantic
relations such as equivalence, similarity, incompatibility.

• Applications: The situation becomes even worse for applications, because they have to navigate
through the set of results to find out which ontologies are appropriate to their tasks. Making
explicit implicit semantic relations among ontologies gives a possibility to exploit this network of
ontologies for applications to select the most relevant ontologies, and query for related ones.

• Redundancy of Result: Getting a set of results with redundancy simply makes the result big-
ger and not better in terms of knowledge. In other words, it means the human users and the
applications have to inspect more ontologies than needed.

2. Combining suitable ontologies: Given the distributed nature of the SW, developers cannot expect one
unique ontology source to provide all the required knowledge for a given application. Therefore a
typical Semantic Web application must select and integrate particular ontologies. In these cases, the
result of integration needs to be consistent in order to be used by the application.

In conclusion, we are strongly motivated to investigate our problem (Section 1.1) by all these practical as-
pects, with the main aims to guarantee an efficient use of SWSEs, in particular of Watson, in ontology
selection task, which is very important for supporting the development of the SWAs.

1.3 Goal

Supported by the previous motivations (Section 1.2), the problem discussed in Section 1.1 need to be ad-
dressed efficiently. Both the theoretical and practical needs formalizing explicit relations between ontologies

2009–2010 c© Copyright lies with the respective authors and their institutions.

http://reliant.teknowledge.com/DAML/Mid-level-ontology.owl
http://reliant.teknowledge.com/DAML/Mid-level-ontology.daml
http://www.vistology.com/ont/tests/student1.owl
http://www.vistology.com/ont/tests/student2.owl
http://lsdis.cs.uga.edu/projects/semdis/sweto/testbedv1.1.owl
http://lsdis.cs.uga.edu/projects/semdis/sweto/testbedv1.4.owl

Page 12 of 55 NeOn Integrated Project EU-IST-027595

require a general study of these relations, providing a formal base for defining, manipulating and reasoning
upon the links that relate ontologies online. To achieve this, we present KANNEL - an ontology based frame-
work for detecting and managing ontology relations for a large ontology repository, such as Watson. The
general idea of KANNEL is shown in the Figure 1.1.

Figure 1.1: The main tasks and stages of KANNEL.

The process of discovering the underlying structure of the online ontologies to build a Network of Ontologies
as shown in Figure 1.1 includes the following steps:

1. Stage 0 concerns monitoring the Semantic Web to gather ontologies that are published and available
on-line. This may be done by Watson, which collects and indexes ontologies and provides both key-
words search based and complex formal query mechanisms. Thus, thank to Watson, we are able to
reuse on-line ontologies or semantic data for our purpose. Watson produces a flat list of ontology URIs
as output. This list represents the input for KANNEL. In general, Watson’s ontology repository will be
the input to the KANNEL framework.

2. Stage I Detecting Semantic Relations. It concerns the discovery and detection of existing semantic
relations between ontologies. This stage is needed for the particular purpose of building the networked
ontologies. At this stage it is very important to have a clear understanding of what relations between
ontologies need to be detecting. Thus, specific detection mechanisms can be developed for the iden-
tified relations.

3. Stage II concerns building the ontology network from the detected relations (Stage I). It is a stage
internal to KANNEL,which is in charge of keeping an appropriate semantic structure (DOOR, Chapter
(3)) to hold all the links between the ontologies.

4. Stage III Managing Semantic Relations. Ones the ontology network has been built, we need to manage
it and make it useful for the user and applications. For managing we mean keeping it up to date over the
time and evolution of the Semantic Web. KANNEL provides an API and services such as 1) Querying:
we are interested in expressing queries of the form Which are the semantic relations between the
ontologies O1 and O2?, Which are the ontologies related to the ontology O1? or Which are the
ontologies which have a vocabulary similar to the one of O1?; 2) Reasoning: we are interested in
making reasoning among the ontology relations. For example, informally, if an ontology O1 is included
in the ontology O2 and O2 is included in O1 then we can conclude that O1 is equivalent to O2, etc.

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 13 of 55

3)Exploring/Visualization: the need for the users to go through Watson’s results, can be reformulated
as finding the best way to display networks of ontologies, giving the possibility to navigate or explore
the ontologies on the Semantic Web in a structured way, e.g. with respect to the satisfied relations
among the ontologies.

1.4 Outcomes

Establishing semantic relations between ontologies represents a significative effort to improving SWSEs in
ontology selection task. This will be demonstrated in the context of the Watson. KANNEL (Chapter 4), will
provide efficient services and APIs to support both the SWAs and users in exploiting the Watson’s result in
terms of:

• Searching/Selecting appropriates ontologies: Explore and Navigate through the Watson’s ontologies
with respect to the semantic relations that are satisfied between them. By doing this, it makes easier
the use of Watson for both the users and applications.

• Combining suitable ontologies: Making explicit implicit semantic relations to support the combining of
ontologies consistently.

• Looking at specific semantic relations: Another advantage comes from the fact that we will be able to
query the semantic relations which are satisfied among two or more ontologies. Semantic Relations
among ontologies are then exploitable for themselves by applications.

• Analytical level: Acquire an overall understanding of the SW, its content, structure and evolution, facili-
tating the development of the SW in a controlled and informed way.

In general, the framework’s services and APIs do not restrict the amount of ontologies that Watson provides
but let the applications and users to consult them in an structured way, that is, with respect to the relations
that link them.

1.5 Research Questions

To archive our goal (Section 1.3) the following research questions need to be answered:

1. What are the semantic relations between ontologies?

We are interested in working out how the ontologies can be related to one another, in a context in which
the SW is considered as a large-scale knowledge source. A first investigation of potential relations has
led us to distinguish two sets of relations. The first set contains relations called atomic, which do
not depend on others relations. An example of this type is the inclusion relation (Chapter 3). The
second set, instead, contains relations called complex, which are defined using atomic relations or
other complex relations. An example of this type is equivalence (Chapter 3) which can be defined in
terms of inclusion one.
Following this way of investigating, we break down the research question in two subquestions: What
is the set of atomic relations between ontologies? and What is the set of complex relations?

2. How can we manage the semantic relations between ontologies? For this question, we need to
investigate a number of subtasks of the management of semantic relations:

(a) How to represent semantic relations between ontologies? By representation we mean the
mechanisms needed to formalize or define semantic relations between ontologies. In addition,
the concrete representation of semantic relations has an influence in the way they are stored.

2009–2010 c© Copyright lies with the respective authors and their institutions.

Page 14 of 55 NeOn Integrated Project EU-IST-027595

(b) How to reason about semantic relations between ontologies? We intend to specify which
kind of entailments we are interested in and which mechanisms we can use to compute them. A
particular sort of reasoning can be shown by the following example: knowing that the ontology A
is semantically equivalent to the ontology B and B is semantically incompatible with C, then A is
incompatible with C. Having this relation explicit will help to avoid unexpected consequences to
the applications that need to work with both ontologies A and C.

(c) How to explore/navigate/interact with semantic relations between ontologies? Changing
the underlying structure of Watson’s result into a graph, in which the set of nodes represent
ontologies and the set of edges are the satisfied semantic relations between them, we need to
come up with new ways to visualize the network of ontologies. We are investigating patterns of
navigation/exploration for networks of ontologies.

To answer the research question (1) and (2.a, 2.b), we designed an appropriate methodology and de-
veloped DOOR (Descriptive Ontology of Ontology Relations). It is a semantic structure which formalize
relevant relations between ontologies, Chapter 3.

3. How to detect semantic relations between ontologies? We are interested in methods for identi-
fying/discovering semantic relations in large ontology repositories. In the (Chapter 4), ad-hoc ad-hoc
mechanisms for detecting specific ontology relations are described.

1.6 Outline of this deliverable

This document is structured as follows: in Chapter 2 we continue discussing significant work concerning
ontology relations; in Chapter 3 we present the adopted methodology to design DOOR (Descriptive Ontology
of Ontology Relations) and we also describe the main parts of it. In Chapter 4 we describe the KANNEL
framework. Finally, Chapter 5 concludes the document and sheds light on interesting future research of
KANNEL.

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 15 of 55

Chapter 2

Related Work

Making explicit implicit relations between ontologies has brought us to investigate several branches of re-
search including aspects such as ontology comparison (section 2.2) and ontology versioning (section 2.3).
Before analyzing each related subject we discuss how ontologies can be related to each other (section 2.1).

2.1 How ontologies relate to one another?

The authors of [Wel05] have studied the question of how ontologies can be compared and integrated. They
consider that the formalization of relations among ontologies is analogous to studying mathematical relations
among the mathematical models of these ontologies. Thus, using the notion of model they characterize a
number of relations among the ontologies1:

• Ontologies representing the same conceptualization:

1. It means that the models of these ontologies are equivalent or

2. It means that the models of these ontologies are isomorphic;

• Resemblance between Ontologies:

1. It means that the models of these ontologies are isomorphic;

• Simplification (Coarsening) of Ontologies:

1. It means that a model of the first ontology is a homomorphic image2 of the second ontology;

• Composition of Ontologies: Complex domains include knowledge from other domains. Thus, com-
plex domains could be described by the concepts related to other domains. Therefore, ontologies
of complex domains are built from components, which are ontologies of other domains. In terms of
model, every model of an ontology for a complex domain is the product of ontology models that are
components.

Concluding, the authors proposed several relations between ontologies at a very abstract level, characterizing
the relations among ontologies by relations corresponding to their models. Therefore, while interesting from
a theoretical point of view, this work does not provide concrete elements for detecting and managing the
considered relations. For this, we need to look at ontology comparison approaches.

1Please, refer to [Art] for complete definitions of the relations.
2An ontology O2 will be called a homomorphic image of an ontology O1 if there is a completely defined one-valued map h1 from

the set of model of O1 to the set of model of O2. Further, in this case we will say that there is a homomorphism h1 : O1 –> O2.

2009–2010 c© Copyright lies with the respective authors and their institutions.

Page 16 of 55 NeOn Integrated Project EU-IST-027595

2.2 Ontology Comparison

• What is it? Comparing two or more ontologies is a way to find out whether and to what degree
they overlap [MS02]. There are, in the literature, many approaches on how to compare two different
versions of an ontology, in order to find the differences.

• Why is it useful for us? Providing different approaches to compare ontologies at different levels is
relevant for our aims because the result of the comparison can be a relation among ontologies, stating
for example that they are equivalent, or that one includes the other.

• What is missing for us? So far, the existing methods compare ontologies at a syntactical or structural
level, while we are interested in comparing ontologies at a semantic level or conceptual level.

In the following we describe the most relevant works in this area. In particular we discuss the following two
articles [NM02] and [KCDF08] in subsection 2.2.1 and 2.2.2 respectively.

2.2.1 PromptDiff: A fixed-point algorithm for comparing ontology versions

In the domain of Software Engineering, comparison of versions of the software code involve a comparison of
text files and the result is a list of lines that differ in the two versions. This approach does not work for compar-
ing ontologies because two ontologies can be exactly the same but have very different text representations.
For example:

• their storage syntax may be different;

• the order in which definitions are introduced in the text file may be different;

• a representation language may have several mechanisms to express the same thing.

Trying to avoid the limitation of the previous method, N. F. Noy and M. A. Musen have proposed PROMPTD-
IFF.

The idea behind PROMPTDIFF is to compare the structure of ontology versions and not their text serializa-
tion. The PROMPTDIFF algorithm consists of two parts:

1. an extensible set of heuristic matchers; each matcher employs a small number of structural properties
of the ontologies to produce matches;

2. a fixed-point algorithm to combine the results of the matchers to produce a structural diff between two
versions;

The main concept behind PROMPTDIFF is a Diff structure which is defined as follows:

Definition 1 (Diff Structure) Given two versions of an ontology O, V1 and V2, a structural diff between V1
and V2, D(V1, V2), is a set of frame pairs F1, F2 where:

• F1 ∈ V1 or F1 = null; F2 ∈ V2 or F2 = null;

• F2 is an image of F1 (matches F1), that is, F1 became F2. If F1 or F2 is null, then we say that F2 or
F1 respectively does not have a match.

• Each frame from V1 and V2 appears in at least one pair.

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 17 of 55

Figure 2.1: An example of applying the Diff Structure

• For any frame F1, if there is at least one pair containing F1, where F2 6= null, then there is no pair
containing F1 where F2 = null (if we found at least one match for F1, we do not have a pair that says
that F1 is unmatched). The same is true for F2.

An example of applying this definition is shown in Figure 2.1:

Suppose that we are developing an ontology of wine. In the first version (Figure 2.1a), there is a class Wine
with three subclasses, Red wine, White wine, and Blush wine. The class Wine has a slot whose values are
instances of the class Winery. The class Red wine has two subclasses, Chianti and Merlot. Figure 2.1b
shows a later version of the same ontology fragment. Note the changes: we changed the name of the slot
to produced by and the name of the Blush wine class to Rose’ wine; we added a tannin level slot to the Red
wine class; and we discovered that Merlot, can be white and added another superclass to the Merlot class.
Figure 2.1c shows the differences between the two versions in a table produced automatically by PROMPT-
DIFF. Informally, given two versions of an ontology O, V1 and V2, two frames F1 fromV1 and F2 from V2
match if F1 became F2. This work provides an automatic way to compare different versions of the ontologies
based on their structure in terms of their frame (class, instances, property, etc), describing not only what has
changed but also showing to the user some information on how the frames have changed.
With respect to our objective, which is to detect semantic relations between ontologies, a structure compari-
son, on which PROMPTDIFF is based, is restrictive because the same conceptualization can be expressed
by different axioms. For example, defining two ontologies O1 and O2 as O1 = sub(A,B), sub(B,C) and O2 =
sub(A,B), sub(B,C), sub(A,C) . A structure comparison is not sufficient to recognize that the axiom sub(A,C)
from O2 is already expressed through the axioms sub(A,B) and sub(B,C). Therefore, sub(A,C) could be
deleted without losing any information from O2, and the comparison should conclude that O1 is equivalent
to O2, as they have exactly the same models.

2.2.2 CEX and MEX: Logical Diff and Logic-based Module Extraction in a Fragment of OWL.

Recently, B. Konev and his colleagues have been developing OWLDiff (http://semanticweb.org/
wiki/OWLDiff) which is a Pellet-backed tool that takes two OWL ontologies in input and computes their
differences by entailment checking of the different axioms.

Actually, given two terminologies T1 and T2 over a signature Σ, OWLDiff, diff(T1, T2) calculates the differ-
ences as shown in Figure 2.2 and returns

a compact representation of diff(T1, T2). The motivation for developing OWLDiff emerged in the context of
collaborative ontology authoring and sharing through SVN, as it became quite difficult to track changes in the
same ontology made by different authors. This approach has been studied for the EL language, obtaining a
polytime algorithm. However, ontologies that are commonly found online are expressed in formalisms closer
to OWL-DL (SHOIN (D)) than EL, making OWLDiff unusable in practice for many cases.

2009–2010 c© Copyright lies with the respective authors and their institutions.

http://semanticweb.org/wiki/OWLDiff
http://semanticweb.org/wiki/OWLDiff

Page 18 of 55 NeOn Integrated Project EU-IST-027595

diffΣ(T1,T2) =

C ! D

∣∣∣∣∣∣
T1 "|= C ! D
T2 |= C ! D
sig(C ! D) ⊆ Σ

Figure 2.2: OWLDiff formula

2.3 Ontology Versioning/Evolution

• What is it? The authors of [KF01] claim that there is no distinction between ontology evolution and
ontology versioning and that ideally developers should maintain not only the different versions of an
ontology, but also some information on how the versions differ and whether or not they are compatible
with one another. Ontology versioning means that there are multiple variants of an ontology around.
s often originates from changes made to an existing version of ontologies and thus form a derivation
tree. In [KF01], the ontology versioning problem has been defined as the ability to handle changes in
ontologies by creating and managing different variants of it.

• Why is it useful for us? The studies have been focusing on providing methodologies to recognize
and manage different versions of an ontology [KF01].

• What is missing for us? The use of the provided methodologies are restricted to the ontology creation
process. In our scenario (SWSEs), we need to recognize and manage the versioning relation when
ontologies are made available online. Moreover, because of the distributive and dynamic nature of the
Web it is likely that many versions and variants of ontologies are made available in an uncontrolled
way. This can cause incompatibilities in the applications and ontologies that refer to them and may
lead to wrong interpretations of the data [KF01].

In the following we describe the most relevant works in this area. In particular we discuss the following three
articles [KFKO02], [KF01] and [?]. The first and second in subsection 2.3.1 and third in section 2.3.2.

2.3.1 Ontology Versioning

The authors M. Klein and D. Fensel & others addressed the following issues:

• Characterization of the version relation between ontologies;

• The identification of online ontologies;

• The design of a web based system that helps to keep track of different versions of the ontologies:
OntoView;

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 19 of 55

Characterization of the version relation between ontologies

According to the authors of [KFKO02], there are three main aspects which need to be discussed when
considering a version relation between ontologies.

1. about the difference between conceptual relations inside an ontology and version relation: the first
one is a relation between concepts inside the ontology, it is important to model the domain of interest.
The second one, instead, is a meta-relation to link ontologies to others. Considered properties of a
version relation are:

• transformation or actual change: a specification of what has been changed in an ontological
definition, specified by a set of change operations (add class, remove property, etc)

• conceptual relation: the relation between constructs in the two versions of the ontology, specified
by an equivalence relation and a subsumption relation;

• descriptive meta-data like date, author and intention of the update. This describes the when,
who and why of the change.

• scope: a description of the context in which the update is valid.

2. about the possible discrepancy between changes in the specification and changes to the conceptu-
alization: a change in the specification does not necessarily imply a change in the conceptualization,
because a language provides different mechanisms to express the same concept. Therefore, it is im-
portant to distinguish changes in ontologies that affect the conceptualization from changes that do not.
The following terms are used to make this distinction:

• conceptual change: a change in the way a domain is interpreted.

• explication change: a change in the way the conceptualization is specified, without changing
the conceptualization itself.

3. packaging of changes: it concerns the way in which updates are applied to an ontology. This aspect is
important when you are building the ontology and not when it is already created.

The identification of online ontologies

The ontologies should have a unique and stable identification. According to the authors, in order to identify a
version, the following questions must be answered:

1. what is the identity of an ontology?

2. How does this relate to web resources and their identity?

With respect to 1), the authors assume that an ontology is represented in a file on the web and every
change that results in a different character representation of the ontology constitutes a revision. In case
the logical definitions are not changed, it is the responsibility of the author of the revision to decide whether
this revision is a conceptual change and thus forms an new conceptualization with its own identity, or just
a change in the representation of the same conceptualization. At this point, it very important to take into
account the conceptual and explication changes. With respect to 2), the ontology (as a set of concepts,
relations and individuals) can be regarded as a resource and a URI can be used to identify it. Notice that
URI’s provide a general identification mechanism, as opposed to URL, which are bound to the location
of a resource. In other words, a revision, which is normally specified in a new file, may constitute a new
ontology, but this is not automatic. Every revision is a new file resource and gets a new file identifier,

2009–2010 c© Copyright lies with the respective authors and their institutions.

Page 20 of 55 NeOn Integrated Project EU-IST-027595

but does not automatically get a new ontology identifier. If a change does not constitute a conceptual
change, the new version gets a new location, but does not get a new identifier. For example, the location of
an ontology can change from /example/1.0/rev0 to /example/1.0/rev1, while the identifier is still /example/1.0/.

Based on these ideas they have proposed an identification method that is based on the following points:

• a distinction between three classes of resources: 1. files; 2. ontologies; 3. lines of backward compati-
ble ontologies.

• a change in a file results in a new file identifier;

• the use of a URL for the file identification;

• a change in the conceptualization or in the logical definition results in a new ontology identifier, but a
non-logical explication change does not;

• a separate URI for ontology identification with a two level numbering scheme:

• individual concepts or relations, whose identifier only differs in minor number, are assumed to be
equivalent;

• ontologies are referred to by an ontology URI according to major revision number and the minimal extra
commitment, i.e., the lowest necessary minor revision number

Design of a web based system that helps to keep track of different versions of ontologies: OntoView
Based on this theoretical aspects of ontology versioning, the authors describe a system, still under costruc-
tion, to help users to manage changes in ontologies and keep ontology versions as much interoperable as
possible. It does this by comparing versions of ontologies and highlighting the differences. One of the central
features of OntoView is comparing the ontologies at a structural level, showing which definitions of ontological
concepts or properties changed. An example of such a graphical comparison of two versions of ontologies
is shown in Figure 2.3

The comparison function distinguishes the following types of changes:

• Non-Logical changes;

• Logical Definition;

• Addition of definitions;

• Deletion of definitions;

First, as we can see from the figure, OntoView is able to compare two ontologies from a structural point of
view. Second, their approach is useful in context where two ontologies are being created by different people
in different places in that they could, for example, discover that they have the same conceptualization.

2.3.2 SemVersion, Versioning RDF and Ontologies

Another relevant work is presented in [Vol06] where the authors introduced SemVersion: it is a generic,
extendable multi-language ontology versioning system. The design of SemVersion faces several questions,
including comparing versions in terms of How can changes between versions be computed? What is the
right level of abstraction? The ability to handle arbitrary RDF requires to handling of blank nodes as well,
which complicates diff computation. According to the authors, a semantic versioning system needs the ability
to compute a diff, which tells the user what (conceptually) has changed between two versions. In particular,

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 21 of 55

Figure 2.3: - Screenshot of OntoView

diff serves two purposes: First, SemVersion allows to compute (structural and semantic) diffs between two
arbitrary chosen models, second to inform the user about changes. In SemVersion are distinguished three
levels of diffs:Set-Based Diff, Structural Diff and Semantic Diff. Before going into the details of each of them,
it is necessary to define a diff function as following: Let A and B be two versions of an ontology

Definition 2 (diff function) The diff function d(A,B)→< a(A, B), r(A, B) > is a non commutative func-
tion from two triple sets (A, B) to two triple sets of added (a(A,B)) and removed (r(A,B)) statements, with

• a(A,B)= B-A;

• r(A,B)= A-B;

In Figure 2.4 we report an example of the diff function

Figure 2.4: - Example A -

2009–2010 c© Copyright lies with the respective authors and their institutions.

Page 22 of 55 NeOn Integrated Project EU-IST-027595

• Set-Based Diff: Let A and B be two RDF triple sets. Computing Set-Based Diff between A and B
means to calculate the set-theoretic difference between A and B, by simple set arithmetics for triple
sets.

• Structural Diff: The structural diff is based on Set-Based Diff. In fact, in cases in which A and B do
not contain blank nodes the structural diff reduces to a set-based diff. Otherwise, first, a particular
extension of the models A and B is computed, introducing the Blank Node Enrichment, and then a
set-based diff is applied on the extended model. Blank nodes cause some problems in computing the
structural diff, as we have no knowledge about the relation (equal or not?) between two blank nodes
from different models. In the example of Figure 2.5, it seems obvious that both models encode exactly
the same semantic knowledge: there exists a thing which has a name (Max) and another one which
has a phone number (123). So, it is safe to treat the blank nodes as equal across versions. But such
equality is not always safe to deduce.

Figure 2.5: - Example B -

Indeed, in order to identify the equality between blank nodes across models, without breaking existing
semantic interpretations of the model, the concept of Blank Node Enrichment has been introduced.
It assignes a unique identifier to each blank node by adding additional statements to the model that
attach URIs as inverse functional properties to blank nodes, as illustrated in example of Figure 2.6.

Figure 2.6: - Example C -

Additional statements change nothing to the RDF semantic but helps to identify equal blank nodes
across models.

• Semantic Diff: The semantic difference has to take the semantics of the used ontology language into
account. The authors consider only RDF Schema as ontology language. In order to compute the

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 23 of 55

semantic RDFS diff between two ontologies, SemVersion first infers all triples from the two ontologies,
computing Inf(A) and Inf(B). Then, it calculates a structural (syntactical set-based) diff on Inf(A) and
Inf(B). A example of this is shown in Figure 2.7.

Figure 2.7: - Example D -

Unlike the previous versioning methods for computing differences, SemDiff is actually working at a semantic
level; which means that it can detect semantic differences, that are inferred from a reasoner. Unfortunately,
SemVersion only works on RDF(S) and the method that they use, which is to compute the complete set of
entailments of the ontology, can not be applied to OWL because this set could be infinite. Furthermore, using
a reasoner is too expensive in the context of SWSEs, like Watson, where there are thousands of ontologies
to consider.

2.4 Summary and Conclusions

Our research interest concerns detecting and managing semantic relations between ontologies in order to
improve SWSEs’ support to SWAs. Basically, we first need a formalization of these relations and then efficient
methods to detect and manage them.

• About the formalization of Semantic Relations: As reported in section 2.1, the authors of [KA05]
characterize a number of relations between ontologies giving abstract definitions and providing proper-
ties for all of them. We want to extend this work introducing a semantic structure to formalize concretely
these and other kinds of relations. Furthermore, for all of them we are providing a concrete definition
and efficient methods for detection.

• About the detection of Semantic Relations: The study of ontology comparison, section 2.2, and
ontology versioning, section 2.3, have provided several approaches on how to compare two different
versions of ontologies. They are, therefore, focusing on one specific relation: versioning.
Some of the provided method work at syntactic and structural levels and not at semantic level.
(PROMPTDiff [NM02], OntoView [KFKO02] and part of SemVersion [Vol06]). For this reason, re-
cently, new methods have appeared which are working at a semantic level (SemVersion [Vol06] and
OWLDiff http://semanticweb.org/wiki/OWLDiff). Unfortunately, they are very limited in
terms of the languages they can work with. For this reason, these approaches are insufficient in sce-
narios like the one of SWSEs, where many ontologies of many different levels of expressivity are to be
considered.
To our best knowledge, there is no work in the literature that covers the whole topic of detecting and
managing semantic relations among ontologies, that would be able to handle the variety of formats
and languages that are currently present on the SW.

2009–2010 c© Copyright lies with the respective authors and their institutions.

http://semanticweb.org/wiki/OWLDiff

Page 24 of 55 NeOn Integrated Project EU-IST-027595

As a general conclusion, there is currently a need for a general framework such as KANNEL to tackle the
issues related to making explicit existing, implicit semantic relations between ontologies online. The first step
for such a framework is to identify and formalize the possible relations between ontologies. We realize this
through the DOOR ontology of ontology relations.

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 25 of 55

Chapter 3

The DOOR-Ontology: Towards a
Formalization of Ontology Relations

In this chapter, we describe our ongoing effort in describing and formalizing semantic relations that link on-
tologies with each other on the Semantic Web in order to create an ontology, DOOR, to represent, manipulate
and reason upon these relations. DOOR is a Descriptive Ontology of Ontology Relations which intends to
define relations such as inclusion, versioning, similarity and agreement using ontological primitives as well as
rules. It provides a formal model for representing relations between ontologies, by defining the hierarchical
structure and properties that characterize relations between ontologies. DOOR is the core of the KANNEL
framework, as it provides the conceptual basis for integrating the different components and enables querying
and reasoning with relations between ontologies.

Here, we provide a detailed description of the methodology used to design the DOOR ontology, as well as
an overview of its content.

3.1 Methodology for Designing the DOOR Ontology

Building an ontology of relations between ontologies is a very ambitious task. It requires a deep analysis of
the ontologies available online and of the literature, at different levels. Therefore, a reasonably rigorous but
nonetheless flexible methodology is needed to identify, describe and formalize ontology relations and their
connections, in order to build the DOOR ontology. Here, after defining some important elements that will be
used in the rest of the chapter, we present the steps involved in the methodology we adopted and describe it
briefly.

3.1.1 Definitions and Requirements

We consider the following definitions:

Definition 3 (Ontology) An ontology is a set of axioms (in the sense of the description logic) over a Vo-
cabulary VOC, where VOC is the set of the primitive terms (named entities) employed in the axioms of the
ontology;

Definition 4 (Ontology Space) An ontology space OS, is a collection of ontologies.

Definition 5 (Ontology Relation) Given an ontology space OS, an Ontology Relation is any binary relation
defined over OS.

At the most general level, the design of the DOOR ontology was based on three main sources to identify
relevant ontology relations:

2009–2010 c© Copyright lies with the respective authors and their institutions.

Page 26 of 55 NeOn Integrated Project EU-IST-027595

1. We analyzed the results of SWSEs (e.g., Watson) to manually identify existing, implicit relations be-
tween ontologies in these results.

2. We considered relations described in the literature, such as the ones already mentioned in the previous
sections.

3. We also included existing, explicit relations that are primitives of the OWL ontology language.

Also, ontology relations in the DOOR ontology should reflect the following important features:

• they are general enough to be applied to multiple domains;

• they are sufficiently intuitive to reflect general meaning, e.g Similar is general and reflect the fact
that there is an overlap, between the two ontologies, without specifying at which levels (syntactic or
semantic);

• they are formally defined to be processed automatically by inference engines;

3.1.2 Main steps of the Methodology

To design DOOR, we considered the methodology described in [GGMO01] for selecting general ontological
categories and adapted it to the problem of ontology relations. As a result, we divided our approach into a
number of steps, as follows:

1. Identifying the top level relations between ontologies, considering our three sources (SWSEs, literature
and existing OWL primitives). At this stage, the task only consists in coming up with a list of relations
that should be relevant, giving us a general overview of the different sections of the ontology. Relations
such as inclusion, similarity, incompatibility and previous version are identified here.

2. Specifying the identified relations, identifying relevant variants and sub-relations. Here, our three
sources of relations are also employed to derive relations at a lower level. We also use a more sys-
tematic approach, which consists in looking at ontologies (and so ontology relations) from 5 different
dimensions that can characterize them:

• The Lexicographic level, which concerns the comparison of the vocabularies of the ontologies.

• The Syntactic level, which concerns the comparison of the sets of axioms that form the ontolo-
gies.

• The Structural level, which concerns the comparison of the graph structure formed by the ax-
ioms of the ontologies.

• The Semantic level, which concerns the comparison of the formal models of the ontologies,
looking in particular at their logical consequences.

• The Temporal level, which concerns the analysis of the evolution of ontologies in time.

For example, considering the relation of inclusion identified in the first step and that led to a prop-
erty includedIn in the ontology, we can specify this relation according to three different dimen-
sions (syntactic, structural and semantic), leading to three variants of inclusion between ontologies
(syntacticallyIncludedIn, isHomomorphicTo and semanticallyIncludedIn) that consider the
set of axioms, the graph and the formal models of the ontologies respectively. In addition, besides the
systematic analysis of this relation according to the dimensions, we include in DOOR particular forms
of inclusions derived from existing OWL primitives (e.g., OWL imports) and from the literature (e.g,
isAConservativeExtensionOf [GLW06]). More details about these relations are given in the next
section.

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 27 of 55

ontologyRelatedTo

agreesWith disagreesWith includedIn isAlignedTo isTheSchemaFor similarTo

Figure 3.1: Top Level of DOOR.

3. Characterizing each relation by its algebraic properties. For example, the algebraic properties for
similarity are that it is reflexive and symmetric. For inclusion, we can define that it is reflexive and
transitive. Including such information in the ontology corresponds to what [GGMO01] calls defining
the ground axioms.

4. Establishing connections between relations. The results obtained from the previous steps are mainly
top-level relations with a list of variants, each of them being given algebraic properties. Here, we want
to structure these lists, in particular by giving them taxonomic relations. As an example, it can be easily
established that syntacticallySimilarTo is a sub property of semanticallySimilarTo. In the same way, we
can indicate that a previous version of an ontology ought to be similar to it. This corresponds to
defining non-ground axioms in [GGMO01].

5. Introducing rules to define complex relations from atomic ones. For example, the equivalentTo prop-
erty can be defined as equivalentTo(X1, X2):- includedIn(X1, X2), includedIn(X2, X1).

Like in any methodology, the application of these steps should be flexible and continuous. Getting back to
a previous step is sometimes necessary and, as the building of an ontology such as DOOR is a constantly
ongoing effort, it should be possible to re-apply the methodology entirely to make the ontology evolve.

The intended result is an ontology made, on the one hand, of an ontologically defined and taxonomically
structured set of relations, and on the other hand, of a set of rules to define complex relations. In the
following we give a detailed overview of the first version of the DOOR ontology, considering only the first
(ontological) part of it, as, due to its complexity, the definition of rules governing complex relations is still a
work in progress and would not fit in this report.

3.2 Formal Description of DOOR

The OWL version of the DOOR ontology can be downloaded at: http://KANNEL.kmi.open.ac.uk/
ontology.We start with describing the first level of DOOR, in Figure 3.2. The main relevant abstract rela-
tions are simply represented as sub-properties of ontologyRelatedTo. An ontology X is ontologyRelatedTo
another one Y if one of the top level relations is satisfied between X and Y. The top level relations include
includedIn, similarTo, isAlignedTo, disagreesWith, agreesWith and isTheSchemaFor. We clustered them in
four groups and each group will be explained in more details in the next sub-sections.

3.2.1 includedIn and equivalentTo

includedIn and equivalentTo are two of the main ontology relations. The former represents the meaning of
“an ontology contains an another one". The latter intends to convey the meaning of “two ontologies express
the same knowledge". According to our methodology, these two relations have been analyzed at different
levels, giving origin to different kinds of inclusion and equivalence relations. In Table 3.1, we summarize the
result of these analyses:

2009–2010 c© Copyright lies with the respective authors and their institutions.

http://KANNEL.kmi.open.ac.uk/ontology
http://KANNEL.kmi.open.ac.uk/ontology

Page 28 of 55 NeOn Integrated Project EU-IST-027595

Table 3.1: Specialization of inclusion and equivalence relations.
includedIn equivalentTo

Semantic semanticallyIncludedIn semanticallyEquivalentTo

isAConservativeExtentionOf

Structural isHomomorphicTo isIsomorphicTo

Syntactic syntacticallyIncludedIn syntacticallyEquivalentTo

import

In particular, the sub-relations of includedIn are defined as follows:

syntacticallyIncludedIn(X1, X2) if the set of axioms of X1 is contained in the set of axioms of X2,which
means X1 ⊆ X2.

isHomomorphicTo(X1, X2) if a homomorphism exists between the RDF-graph of X1 and the RDF-graph
of the X2.

semanticallyIncludedIn(X1, X2) if the set of models of X1 is contained in the set of models of X2. In other
words, if X2 |= X1.

isAConservativeExtentionOf(X1, X2) , informally, if syntacticallyIncludedIn(X2, X1) and all the ax-
ioms entailed by X1 over the vocabulary of X2 are also entailed by X2. A more formal definition can
be found in [GLW06]. The notion of conservative extension has been used in particular for ontology
modularization [GHKS07].

import(X1, X2) if there is an explicit statement in X1 indicating that it imports X2 using the owl:imports
primitive. Formally, this means that all the axioms of X2 should be considered as contained in X1.

The sub-relations of equivalentTo are defined as follows:

syntacticallyEquivalentTo(X1, X2) if and only if SyntacticallyIncludedIn(X1, X2) and Syntac-
ticallyIncludedIn(X2, X1).

isIsomorphicTo(X1, X2) if an isomorphism exists between the graph of X1 and the graph of X2.

semanticallyEquivalentTo if and only if semanticallyIncludedIn(X1, X2) and semanticallyIncludedIn(X2,
X1).

Finally, following our methodology, we defined the algebraic properties of each relation1 and classified them
to create a taxonomic structure relating these relations. This structure is shown in Figure 3.22.

3.2.2 similarTo

Ontology similarity has been described as a measure to assess how close two ontologies are [DE08]. Various
ways to compute the similarity between two ontologies have been described which are relevant in different
application contexts. In our work, similarTo is used to represent the meaning of “how an ontology over-
lap/cover parts of the same area of interest as another ontology". Following our methodology, similarTo has
been analyzed and formalized at the lexicographic, structural and semantic level, giving origin to different
kinds of similarity relations (see Table 3.2).

1Since these are fairly obvious, we do not detail them.
2 The arrows represent the subPropertyOf relation. For example, syntacticallyEquivalentTo is a sub property of semanticallyIn-

cludedIn.

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 29 of 55

syntacticallyEquivalentTo

equivalentTo isHomomorphicTosemanticallyIncludedIn

includedIn

isIsomorphicTo semanticallyEquivalentTo

imports isAConservativeExtensionOf

isIsomorphicTosyntacticallyIncludedIn

Figure 3.2: Taxonomy for includedIn and equivalentTo

Table 3.2: Specialization of the similarity relation
SimilarTo

Semantic semanticallySimilarTo

MappingSimilarTo

Syntactic syntatticallySimilarTo

Lexicographic LexicographicSimilarTo

To define these relations, we need to introduce the following elements: given two ontologies X1 and X2,
we denote by LC(X1, X2) the set of axioms of X1 that are logical consequences of X2 and by Voc(X1) the
vocabulary of X1. The following definitions depend on a threshold T > 0.

semanticallySimilarTo(X1, X2), if

|LC(X1, X2)
⋂

LC(X2, X1)|
max(|X1|, |X2|) ≥ T

syntacticallySimilarTo(X1, X2), if

|X1
⋂

X2|
max(|X1|, |X2|) ≥ T

lexicographicallySimilarTo(X1, X2), if

|V oc(X1)
⋂

V oc(X2)|
max(|V oc(X1)|, |V oc(X2)|) ≥ T

Finally, in addition to the relations defined above, we also consider a similarity relation that relies on the
existence of an alignment between the two ontologies. Indeed, mappingSimilarTo is a relation that links
two ontologies X1 and X2 if there exists an alignment from X1 to X2 and this alignment covers a substantial
part of the vocabulary of X1 (i.e., a proportion greater than a threshold T). Note that, since alignments can
be unidirectional, mappingSimilarTo differs from the other similarity functions by not being symmetric.

Finally, we have classified the relations in Table 3.1 to create the taxonomic structure shown in Figure 3.3.

In the Figure 3.3, the dashed elements represent relations regarding to the Versioning of the ontology.

2009–2010 c© Copyright lies with the respective authors and their institutions.

Page 30 of 55 NeOn Integrated Project EU-IST-027595

owlIncompatibleWithexplanationEvolution syntacticallyEquivalentTo

equivalentTo isLatterVersionOf isPreviousVersionOf

similarTo

isIsomorphicTo sematicallyEquivalentTo syntacticallySimilarTopriorVersionbackwardCompatibleWith conceptualEvolutionOf explanationEvolution

lexicallySimilarTo mappingSimilarTo semanticallySimilarTo

Figure 3.3: Taxonomy for similarTo.

3.2.3 Versioning

Versioning is a temporal relation that concerns the evolution of an ontology. In [KF01], the ontology versioning
problem has been defined as the ability to handle changes in ontologies by creating and managing different
variants of it.

An ontology can evolve over time in different directions, e.g. lexicographic, changing the names of some
resources, syntactic, adding or removing axioms, semantic, changing the definition of some concepts or
simply adding or removing axioms. Therefore, the new ontology could be equivalent or totally different from
the previous one. When we analyze different ways of linking two ontologies by the versioning relation, the
two following sentences are suggested immediately: “X1 is the previous version of the X2” or “X2 is the
latter version of the X1". These two typical pieces of knowledge are represented in the DOOR ontology by
the relations isPreviousVersionOf and its inverse isLatterVersionOf respectively.

Conforming to our methodology, the isPreviousVersionOf and isLatterVersionOf relations have been ana-
lyzed and formalized, to identify sub-relations and variants. In Table 3.3 we summarize the result of this
analysis.

Table 3.3: Specialization of the versioning relations.
isLatterVersionOf isPreviousVersionOf

Temporal conceptualEvolutionOf priorVersion

explanationEvolutionOf

backwardCompatibleWith

owl:IncompatibleWith

Semantic conceptualEvolutionOf

Syntactic explanationEvolutionOf

According to [KFKO02, HP04, Hef01] the modification of an ontology can lead to two different types of evolu-
tions: being a conceptual change, meaning that the model of the ontology changed, or being an explanation
change, meaning that the modifications happened only at a syntactic level, without affecting the model of the
ontology. Therefore, we specialized the isLatterVersionOf relation into

conceptualEvolutionOf(X1, X2) if X1 is a latter version that is not semantically equivalent to X2.

explanationEvolutionOf(X1, X2) if X1 is a latter version that is semantically equivalent to X2

These two relations will lead to the definition of rules to infer them from equivalence and other versioning
relations.

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 31 of 55

owlIncompatibleWithexplanationEvolution syntacticallyEquivalentTo

equivalentTo isLatterVersionOf isPreviousVersionOf

similarTo

isIsomorphicTo sematicallyEquivalentTo syntacticallySimilarTopriorVersionbackwardCompatibleWith conceptualEvolutionOf explanationEvolution

lexicallySimilarTo mappingSimilarTo semanticallySimilarTo

Figure 3.4: Taxonomy for versioning relations.

In addition, the OWL ontology properties priorV ersion, backwardCompatibleWith and
incompatibleWith represent explicit relations between versions of ontologies and are included in
DOOR as sub-properties of isLatterV ersionOf and isPreviousV ersionOf .

To complete this section of the DOOR ontology, we can classified the relations in Table 3.3 as shown in
Figure 3.4.

Indeed, according to [KFKO02, HP04, Hef01] the modification of an ontology can lead to a new version which
is completely different from the original one. But in practice, by analyzing Watson’s ontology repository, it is
almost always possible to establish a similarity between the two ontologies, at least at the lexicographic level.
Due to this fact, we chose to consider the versioning relations to be sub-properties of similarTo, to indicate
that two different versions of the same ontology should, to some extent, be similar. Moreover, in accordance
with its definition, the explanationEvolutionOf relation is a sub-property of semanticallyEquivalentTo.

3.2.4 Agree and Disagree

Based on the formal measures of the agreement and disagreement between ontologies defined in [d’A09],
we introduce the agreesWith and disagreesWith relations in DOOR. Informally, the former holds the general
meaning of “to have the same opinion about something". In other words, it connects two ontologies, sharing
the same knowledge partially and is therefore very related to the similarTo and the equivalentTo relations. The
latter indicates that the ontologies “contradict each other” to a certain extent, these contradictions appearing
at various levels. Envisaged sub-relations for these two relations are listed in Table 3.4.

Table 3.4: Specialization of agreesWith and disagreesWith.
agreeWith disagreeWith

Temporal backwardCompatibleWith owlIncompatibleWith

Semantic sematicallyEquivalentTo hasDisparateModeling

sematicallySimilarTo incompatibleWith

incoherentWith

incosistentWith

Syntactic syntacticallyEquivalentTo

syntacticallySimilarTo

explanationEvolution

In this Table, all the sub-relations of agreesWith have already been defined before. We add a few relations
to express specific ways for ontologies to disagree, all related to the semantic dimension of the ontologies.

incompatibleWith(X1, X2) if incoherentWith(X1, X2) or inconsistentWith(X1, X2).

2009–2010 c© Copyright lies with the respective authors and their institutions.

Page 32 of 55 NeOn Integrated Project EU-IST-027595

agreesWith

semanticallyEquivalentToBackwardCompatibleWith

explanationEvolution syntacticallyEquivalentTo syntactiallySimilarTo

semanticallySimilarTo

Figure 3.5: Taxonomy for the agreement relations.

hasDisparateModelling incompatibleWith

disagreeWith

incoherentWith inconsistentWith owlIncompatibleWith

Figure 3.6: Taxonomy for the disagreement relations.

incoherentWith According to [QH07] an ontology X1 is incoherent if and only if there is an unsatisfiable
concept name in X1. Therefore, two ontologies are incoherent with each other if, when they are
merged, they generate an incoherent result.

inconsistentWith According to [BQL07] an ontology X1 is inconsistent if it has no model. Therefore, two
ontologies are inconsistent with each other if, when they are merged, they generate an inconsistent
result.

hasDisparateModeling Two ontologies are considered to have disparate modeling if they represent cor-
responding entities in different ways, e.g. as an instance in one case and a class in the other. For
example, Lion as instance of the class Animal and Lion as subclass of Animal.

owl:IncompatibleWith It comes from OWL language [PSHH04].

Finally, we have also classified the relations in Table 3.4 as shown in Figures 3.5 and 3.6.

3.2.5 Other Relations

Analyzing Watson’s ontology repository we found out that there are many documents which only represent
the TBox of an ontology and others representing just the ABox. This is captured through the isTheSchemaFor
relation. isAlignedTo relation links ontologies for which exists an alignment.

3.3 Conclusions

In this chapter, general relationships between ontologies have been examined. In particular, we have chosen
to consider well-known relations in the literature, as well as the ones needed to support the development
of Semantic Web Applications. To achieve that, we adapted an ontology building methodology for the con-
struction of DOOR, an ontology of relations between ontologies. The first version of the DOOR ontology
is available in OWL at http://KANNEL.kmi.open.ac.uk/ontology. This ontology describes re-
lations both from the point of view of their taxonomic structure and from the point of view of their formal

http://KANNEL.kmi.open.ac.uk/ontology

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 33 of 55

definitions, providing the formal properties to describe them as well as a set of rules to derive complex
relations from other relations.

In the next chapter we describe KANNEL, a framework for detecting and managing ontology relationships for
large ontology repositories. The DOOR ontology plays a fundamental role in KANNEL, not only to provide an
explicit representation on ontology relations, but also to supply meta-information that offers several advan-
tages, among which the possibility to reason upon ontologies and their relations. This possibility provides a
relevant support for the development of Semantic Web Applications, which can use the Semantic Web as a
large-scale knowledge source [dMea08].

The development of DOOR is obviously a continuous task, which requires a proper assessment of each ver-
sion. For this reason, we plan to test and validate the first version presented here, in particular by populating
it with automatically detected relations between ontologies in Watson.

2009–2010 c© Copyright lies with the respective authors and their institutions.

Page 34 of 55 NeOn Integrated Project EU-IST-027595

Chapter 4

The KANNEL Framework

In this chapter we provide an overview of the architecture of KANNEL, an ontology based framework for mak-
ing explicit implicit relations between ontologies in large ontologies repositories such as Watson, presenting
the different parts of it and the role of DOOR in it.

4.1 KANNEL: Architecture

KANNEL [All09] is a framework for detecting and managing ontology relations for large ontology repositories,
such as Watson1.

It is an ontology-based system where the DOOR ontology plays an important role, providing an explicit repre-
sentation of the implicit relations between ontologies. We have designed an architecture for this framework,
as depicted in Figure 4.1. As shown in Figure 4.1, the DOOR Ontology separates the on-line part of the
architecture–providing APIs and services that relies on a reasoner–from the off-line part–detecting relations
in the repository and populating the ontology. In particular, the REASONING component provides a suite
of services to support users in exploring and making use of ontology relations on the Semantic Web. This
component allows the system to be queried for relations, which have been either detected by the Relation
Discovery component, or inferred through ontological and/or rule-based reasoning over the DOOR ontology.
The offline part is based on three components: the Control Component (CC), the Detecting Component (DC)
and the Populating Component (PC). As a first step, the CC selects from the Ontology Repository ontologies
that need to be evaluated to establish potential relations. Then, the selected sets of ontologies are processed
by the DC, which contains the main mechanisms to discover the possible relations between ontologies, re-
lying on the definitions provided in this report. Finally, the PC populates the semantic structure with the
detected relations. What is obtained is a set of automatically discovered relations, represented as part of
the DOOR ontology so that the reasoner used in the system can infer new relations from the ontological and
rule based knowledge included in the ontology. As such, DOOR provides meta-information on the ontology
repository in KANNEL.

In the following sections, we present various detection mechanisms that have been implemented to extract
from a collection of onologies, specific semantic relations to populate the DOOR ontology.

4.2 Inclusion and Equivalent

Inclusion is an example of atomic or simple relation in DOOR. It links together two ontologies if one is
contained in the other. We consider here two of the identified inclusion relations: syntactic (considering the
set of axioms asserted in the ontologies) and semantic (also considering the entailments of the ontologies).
Specifically, given two ontologies X1 and X2, we formally define:

1The management part is not currently dealt with.

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 35 of 55

Figure 4.1: Architecture of the KANNEL framework.

syntacticallyIncludedIn(X1, X2) if the set of axioms of X1 is contained in the set of axioms of X2,which
means X1 ⊆ X2.

semanticallyIncludedIn(X1, X2) if the set of models of X1 is contained in the set of models of X2. In other
words, if X2 |= X1.

Equivalence is a complex relation which can be defined through a rule of the general form
Equivalence(X1, X2) : − Inclusion(X1, X2), Inclusion(X2, X1). In particular, for syntactically equiv-
alent we use syntacticallyIncludedIn and for semantically equivalent we use semanticallyIncludedIn.
Detecting equivalence (syntactic and semantic) is particularly important when ranking ontologies: the same
ontology should not been ranked at several different places in the result set [HA06].

4.2.1 Initial Evaluation

To provide an initial evaluation of the current implementation of the above detection mechanisms, typing
the query "Person", we collected 20 pairs of ontologies from Watson’s repository and executed the above
detection methods on them. In Table 1 the results for each evaluated method are shown.

Method Nb. Relations Average Time (ms) Manual eval.
SyntacticInclusion 8 2 8
SemanticInclusion 9 80 9

SyntacticEquivalent 4 5 4
SemanticEquivalent 6 180 6

2009–2010 c© Copyright lies with the respective authors and their institutions.

Page 36 of 55 NeOn Integrated Project EU-IST-027595

4.3 Similar Ontologies

Similarity is a difficult relation to detect, first because it does not have a formal definition, but more importantly
because different similarity measures can be considered, depending on the task at hand. For this reason, we
present an initial collection of similarity relations, each with their own detection mechanism. We first report
the main assumptions on which our measures of similarity depend.

• A1: The ontologies vary by changing some definitions or adding new axioms or deleting ax-
ioms [KF01]. However, these different ontologies might not have the same namespace, mak-
ing their axioms incomparable. Our assumption is therefore that we can strip out the first
part of the resources’ names, which corresponds to the namespace of the resource. By do-
ing this, we only compare the ontologies within the namespaces. For example using "names-
pace1" for http : //www.vistology.com/ont/tests/student1.owl and "namespace2" for http :
//www.vistology.com/ont/tests/student2.owl, the axioms

– X1 : namespace1#PhdStudent SubclassOf namespace1#MemberStaff

– X2 : namespace2#PhdStudent SubclassOf namespace2#MemberStaff

are compared as namespace1 and namespace2 were equal. In this case, they are exactly the same
axioms.

We do not provide a formal proof of the validity of this assumption. We give an informal argumentation
considering the hypothesis does not convey any additional meaning that would impact the comparison
of ontologies for similarity. Indeed, looking at the following example:

– X1 :namespace1#PhdStudent SubclassOf namespace1#MemberStaff
namespace1#MemberStaff SubclassOf namespace1# ∀role.Academic

– X2 :

namespace2#PhdStudent SubclassOf namespace2#MemberStaff
namespace2#MemberStaff SubclassOf namespace2# ∀role.Academic

It appears clearly that X1 and X2 should be considered the same ontology (they describe the same
intended model) while in this other example:

– X1 :

namespace1#PhdStudent SubclassOf namespace1#MemberStaff
namespace1#MemberStaff SubclassOf namespace1# ∀role.Academic

– X2 :

namespace2#PhdStudent SubclassOf namespace2#MemberStaff
namespace2#MemberStaff SubclassOf namespace2# Person

the ontologies are different, but very similar. Such a conclusion could not be drawn if we were taking
into account the namespaces.

• A2: We also consider a syntactic normalization of the terms of the ontologies’ vocabularies. For exam-
ple, "MemberStaff", "Member-Staff", "Member_Staff" or "memberstaff" are all considered the same.

• A3: Our measures of similarity are applied over the ontologies which share (part of) their vocabularies.
By doing this, we avoid comparing ontologies that formalizes different domains.

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 37 of 55

4.3.1 Measuring Similarity Between Ontologies

Informally, similarity is a measure that expresses how close two ontologies are. [DE08] describes various
ways to compute the similarity between two ontologies, relevant in various application contexts, but not yet
evaluated in the context of SWSEs. [AdM09] describes the DOOR ontology in the context of SWSEs. DOOR
considers three types of binary relations to express different level of similarity between two ontologies: 1)
lexicographicallySimilarTo; 2) syntacticallySimilarTo; and 3) semanticallySimilarTo. We also add here an
additional similarity relation: KeyConceptOntologySimilarTo.

Here, we define four measures of similarity on which methods for automatically detecting the above relations
are based on. To do this, we need to introduce the following elements: given two ontologies X1 and X2, we
denote by LC(X1, X2) the set of axioms of X1 that are inferred by X2, and by Voc(X1) the vocabulary of
X1. To decide whether two ontologies share a similarity relation, we apply a given threshold to each of them.
Moreover, reflexive and symmetric are the main algebraic properties that characterize any type of similarity
described below.

4.3.2 Lexicographic Similarity

Let’s consider the ontologies X1: CvB, BvA, Bv ∃R.D1 t ∃R.D2 and X2: CvB, BvA,CvA, Bv
∃R.(D1 t D2), D v E. The vocabulary of X1 is C, B,A, R,D1, D2 while the vocabulary of X2 is
C, B,A, R,D1, D2, D, E. From the example, it can be seen that the two ontologies share most of their
vocabularies. Based on this idea, we formally define the Lexicographic Similarity measure as follows:

lexicographicSimilarity(X1, X2) =

|V oc(X1)
⋂

V oc(X2)|
max(|V oc(X1)|, |V oc(X2)|)

4.3.3 Syntactic Similarity

Let’s consider the ontologies X1: CvB, BvA, Bv ∃R.D1 t ∃R.D2 and X2: CvB, BvA,
Bv ∃R.D1 t ∃R.D2, D v E. From the example, it can be seen that the two ontologies share most
of their axioms. Based on this idea, we formally define the Syntactic Similarity measure as follows:

syntacticSimilarity(X1, X2) =

|X1
⋂

X2|
max(|X1|, |X2|)

4.3.4 Semantic Similarity

Let’s consider the ontologies X1: CvB, BvA, Bv ∃R.D1t∃R.D2 and X2: CvB, BvA,CvA, Bv ∃R.(D1t
D2), D v E. From the example, while the ontologies do not share all of their axioms, the ones not in
common can be inferred from each ontology.

Based on this idea, we formally define the Semantic Similarity measure as follows:

semanticSimilarity(X1, X2) =

|LC(X1, X2)
⋂

LC(X2, X1)|
max(|X1|, |X2|)

Please note: when comparing two ontologies, to avoid computing all consequences, which is not always
possible [HS05], our methods only check if the set of axioms of the first ontology is entailed by the second

2009–2010 c© Copyright lies with the respective authors and their institutions.

Page 38 of 55 NeOn Integrated Project EU-IST-027595

ontology and vice-versa.

4.3.5 KeyConcepts Similarity

Informally, KeyConcepts of ontologies are n concepts which can be considered as Ôbest descriptorsÕ of the
ontology. According to the definition of key concepts given in [SPd08], we define two measures of similarity:
1) unrankedKeyConceptOntologySimilar ; 2) rankedKeyConceptOntologySimilar, both described below. In
the following, we use:

• KC(Xj , n) to indicate the first n key concepts of the ontology Xj ;

• AXj to indicate a generic element belonging to KC(Xj , n);

• rank(KC(Xj , n), i) to indicate a function which return the degree of importance of the key concept i in
KC(Xj , n).

unrankedKeyConceptOntologySimilar considers the key concepts of an ontology without their degree of
importance. So, KC(Xj , n) is just a set of elements. We formally define this measure as follows:

unrankedKeyConceptOntologySimilar(X1, X2) =

|KC(X1, n)
⋂

KC(X2, n)|
n

(1)

The equation (1) can be seen as a particular case of lexicographicSimilarity, that is restricted to the
key concepts instead of whole vocabularies. This could be an advantage in terms of time to calculate
it. Also, by limiting the comparison to the key concepts, this measure also indirectly takes into account
the content and structure of the ontologies, in addition to their vocabularies.

rankedKeyConceptOntologySimilar considers the key concepts of an ontology with their degree of impor-
tance. In this case, KC(Xj , n) is a list of elements. The order expressed by the list indicate the order of
importance of the concepts with respect to the considered ontology. For example, given two ontologies
X1 and X2 with KC(X1, 3)= [AX1 , BX1 , CX1] and KC(X2, 3)= [CX2 , BX2 , AX2] respectively. Assign-
ing the highest priority to the first element on the left, then, it can be seen that AX1 represents the most
important concept in X1 while the same concept in X2, AX2 , represents a less important concept in
X2. Based on this aspect of importance, we define the rankedKeyConceptSimilar measure according
to the following elements: 1) its value is 1 if we have the same list and the same order; 2) its value is 0
if we have different lists, that is the intersection of the two list is empty; 3) its value is greater than zero
or smaller than 1 if it could be one of the two cases: (a) KC(X1, n) = KC(X2, n) but different order; or
(b) KC(X1, n) ∩ KC(X2, n) 6= ∅ with the order of KC(X1, n) could be different from the KC(X2, n) one.
Formally, we have:

rankedKeyConceptOntologySimilar(X1, X2, n) =∑n
i=1 keyConceptSimilarity(KC(X1, n), KC(X2, n), i)

n

where keyConceptSimilarity(KC(X1, n), KC(X2, n),i) calculate the distance between the same key
concept, i, in two different key concepts lists. Formally, we define it as follows:

keyConceptSimilarity(KC(X1, n), KC(X2, n), i) =

1− |rank(KC(X1,n),i)−rank(KC(X2,n),i)|

n−1

if i ∈ KC(X1, n) ∩KC(X2, n)

0 otherwise.

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 39 of 55

An example about rankedKeyConceptOntologySimilar ontologies. Let’s X1 and X2 be two on-
tologies, with KC(X1, 3)= [PersonX1 , OrganizationX1 , PublicationX1] and KC(X2, 3)=
[PublicationX2 , OrganizationX2 , P ersonX2] respectively. Let’s assign the degree of importance
as follows:

1. rank(KC(X1, 3), PersonX1) = 3;

2. rank(KC(X1, 3), OrganizationX1) = 2;

3. rank(KC(X1, 3), PublicationX1) = 1;

4. rank(KC(X2, 3), PublicationX2) = 3;

5. rank(KC(X2, 3), OrganizationX2) = 2;

6. rank(KC(X2, 3), PersonX2) = 1;

then

1. keyConceptSimilarity(KC(X1, 3)KC(X2, 3), P erson) = 1− |3−1|
2 = 0

2. keyConceptSimilarity(KC(X1, 3)KC(X2, 3), Organization) = 1− |2−2|
2 = 1

3. keyConceptSimilarity(KC(X1, 3)KC(X2, 3), Publication) = 1− |1−3|
2 = 0

Therefore, rankedKeyConceptOntologySimilar(X1, X2, 3) = 0.33. It means that, although the on-
tologies share the same key concepts they have different meaning, that is, they reflect two different
formalizations. In fact, if we look at just vocabulary, they contain the same set of resources. If we
look at key concept level, Publication is the most important concept for X2 while Person is for X1. So,
X2 could be, for example, an ontologies about the publications that are published by the people while
X1 could be, instead, an ontology about the people that publish. Therefore, they are conceptually
dissimilar.

While there is a clear distinction, in terms of differences and advantages, among the first three measures, it
could be not so immediate between the first three and the key concepts based ones.
There are a number of advantages related to Key Concept Similarity measures with respect to the others
presented in this document. In particular, in contrast to the SemanticSimilarity measure, which involves an
OWL reasoner with its very high computation complexity, even for small and not complex ontologies, the key
concepts measures are both very simple to compute and with computation complexity linear with respect to
the number the key concepts. Compared to SyntacticSimilarity and LexicographicSimilarity which have a
polynomial complexity with respect to the cardinality of the set of axioms and of the vocabulary, respectively,
the key concepts measures are linear in number of the key concepts, which are a subset of the vocabulary
of the ontology. In addition, while comparing essentially at the level of the vocabulary, the restriction to key
concepts also indirectly takes into account the content and structure of the ontologies, therefore not limiting
the similarity to the lexical aspect only.

4.4 Ontology Versioning

There exist a number of large repositories and search engines collecting ontologies from the web or directly
from users. While mechanisms exist to help the authors of these ontologies manage their evolution locally, the
links between different versions of the same ontology are often lost when the ontologies are collected by such
systems. By inspecting a large collection of ontologies as part of the Watson search engine, we can see that
this information is often encoded in the identifier of the ontologies, their URIs, using a variety of conventions
and formats. We therefore devise an algorithm, the Ontology Version Detector, which implements a set
of rules analyzing and comparing URIs of ontologies to discover versioning relations between ontologies.
Through an experiment realized with 7000 ontologies, we show that such a simple and extensible approach

2009–2010 c© Copyright lies with the respective authors and their institutions.

Page 40 of 55 NeOn Integrated Project EU-IST-027595

actually provides large amounts of useful and relevant results. Indeed, the information derived from this
algorithm helps us in understanding how version information is encoded in URIs and how ontologies evolve
on the Web, ultimately supporting users in better exploiting the content of large ontology repositories.

A number of studies have intended to tackle some of the challenges raised by ontology versioning, from both
theoretical and practical points of views. At the theoretical level, studies have targeted ontology version-
ing in order to provide a theoretically semantic model for managing ontologies in distributed environments,
such as the Web [KF01]. According to [KF01], the ontology versioning problem has been defined as the
ability to handle changes in ontologies by creating and managing their own variants/mutants/versions. In
other words, ontology versioning means that there are multiple variants of an ontology around and that these
variants should be managed and monitored. Accordingly, tools such as Evolva [?] have been developed
to support the developers of ontologies in making them evolve and in managing the versions locally. How-
ever, such systems use different ways to represent and codify version information, which is not transfered
when the ontologies are collected and made accessible through online repositories. Standards such as OWL
and OMV [HPea05] include primitives to encode version information as ontology annotations. However,
such standards are not universally used and ontology developers rarely make the effort of applying such
standards. Instead, they tend to codify information related to the version of an ontology directly in its URI.
Indeed, typing the query “metadata” currently gives 1356 results in the Watson search engine2 (valid on the
20/08/2009). However, only inspecting the URIs in the first page of results, we can see that many of these
documents (e.g., http://loki.cae.drexel.edu/~wbs/ontology/2004/01/iso-metadata
and http://loki.cae.drexel.edu/~wbs/ontology/2003/10/iso-metadata), represent
different versions of the same ontology.

In this section, we present an algorithm, the Ontology Version Detector (OVD) which tries and detect different
ways (i.e., different conventions) for encoding version information in ontology URIs in order to derive version-
ing links between ontologies within a large repository. It relies on a comparison of the URIs of ontologies
to detect number differences, which can represent version numbers (e.g., v1.2, v3.6), dates (e.g., 2005/04,
01-12-1999) or other types of versioning information (e.g., time-stamps). One of the advantages of such an
approach is that it is based on a set of rules, each encoding a particular pattern for the representation of
version information and so, if missing patterns are observed in the collection, they can easily be added and
taken into account by the algorithm. In this report, we detail the set of rules derived from our observations
using the Watson ontology search engine.

We conducted an experiment applying OVD on a sub-set of the Watson repository of ontologies containing
about 7000 ontologies. While we are aware that the approach implemented by OVD has a number of limita-
tions (i.e., it only looks at the information encoded in the URI through numbers), this experiment shown that
a large amount of versioning links implicitly encoded in the URIs of the ontologies can be correctly detected.
Indeed, this experiment resulted in 155,589 versioning links, representing 1,365 “evolving ontologies” and
which have been evaluated with an estimated precision of 51.2%. In addition, the analysis of these results
allows us to identify ways to overcome the limitations of OVD, to better understand how version information is
encoded in URIs and to assess how ontologies evolve on the Web, ultimately providing valuable information
for the users of ontology repositories.

In the next section, we describe a number of examples and general patterns we observed in the Watson
collection of ontologies. Section 3 then details our OVD algorithm for detecting and comparing such patterns.
Our experiment on applying OVD is presented in Section 4. Finally, Section 5 discuss the conclusions and
future work.

4.4.1 Identifying Version Information Patterns

Analyzing a representative sample (nearly 1000) of ontologies from Watson’s ontology repository, we have,
manually, identified many ontology URIs containing information concerning the version of the ontology. In this
report, we focus on particular versioning patterns. Specifically, we only discuss three classes of URIs that

2http://Watson.kmi.open.ac.uk

http://loki.cae.drexel.edu/~wbs/ontology/2004/01/iso-metadata
http://loki.cae.drexel.edu/~wbs/ontology/2003/10/iso-metadata

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 41 of 55

can be compared to establish versioning links between URIs: Class A, where the versioning information is
encoded in a single number; Class B, where the versioning information is expressed by two numbers, which
are often the month and year of a date; and Class C where the versioning information is expressed by three
numbers, which always correspond to complete date.

Class A: version information expressed by one number

These are simplest and most frequent cases: when the comparison of two URIs would only show a difference
in one number. In many examples, this number represents a very simple version number, like in the following
example:

Example 1:

1. http://www.vistology.com/ont/tests/student1.owl;

2. http://www.vistology.com/ont/tests/student2.owl;

However, there can be many variants of such a pattern. In the following example, a time-stamp is used to
mark a particular version of the ontology:

Example 2:

http://160.45.117.10/semweb/webrdf/#generate_timestamp_1176978024.owl

http://160.45.117.10/semweb/webrdf/#generate_timestamp_1178119183.owl

Class B: version information expressed by two numbers

Under this category, we find more classical ways to represent version numbers (with a number of the major
revision and a number of the minor revision), like in the following example:

Example 3:

1. http://lsdis.cs.uga.edu/projects/semdis/sweto/testbed_v1_1.owl

2. http://lsdis.cs.uga.edu/projects/semdis/sweto/testbed_v1_4.owl

However, a majority of the URIs using two numbers to represent version information use a date format that
includes the year and the month. In the following example, the year is the first element to be encoded.

Example 4:

http://loki.cae.drexel.edu/~wbs/ontology/2003/02/iso-metadata

http://loki.cae.drexel.edu/~wbs/ontology/2003/10/iso-metadata

http://loki.cae.drexel.edu/~wbs/ontology/2004/01/iso-metadata

http://loki.cae.drexel.edu/~wbs/ontology/2004/04/iso-metadata

2009–2010 c© Copyright lies with the respective authors and their institutions.

http://www.vistology.com/ont/tests/student1.owl
http://www.vistology.com/ont/tests/student2.owl
http://160.45.117.10/semweb/webrdf/#generate_timestamp_1176978024.owl
http://160.45.117.10/semweb/webrdf/#generate_timestamp_1178119183.owl
http://lsdis.cs.uga.edu/projects/semdis/sweto/testbed_v1_1.owl
http://lsdis.cs.uga.edu/projects/semdis/sweto/testbed_v1_4.owl
http://loki.cae.drexel.edu/~wbs/ontology/2003/02/iso-metadata
http://loki.cae.drexel.edu/~wbs/ontology/2003/10/iso-metadata
http://loki.cae.drexel.edu/~wbs/ontology/2004/01/iso-metadata
http://loki.cae.drexel.edu/~wbs/ontology/2004/04/iso-metadata

Page 42 of 55 NeOn Integrated Project EU-IST-027595

20.pdf

Figure 4.2: The main steps of OVD.

However, there can be four different ways to combine the month and the year: 1) Big endian form (yyyy/mm),
in which the year is expressed by four digits; 2) Little endian form (mm/yyyy), in which the year is expressed
by four digits; 3) Big endian form yy/mm, in which the year is expressed by only two digits; 4) Big endian form
(mm/yy), in which the year is expressed by only two digits. Since we did not encounter examples where the
year was expressed with two digits only, we ignore this case in this report, but rules to cover such patterns
can easily be added to the OVD algorithm.

Class C: version information expressed by three numbers

Under this category we only found cases in which the versioning information is represented through a date
format structure using the day, the month and the year. The example below is based on the big endian form
(yyy-mm-dd), but as for the cases above, little endian forms (and even middle endian forms, mm-dd-yyy)
could be employed.

Example 5

http://ontobroker.semanticweb.org/ontologies/ka2-onto-2000-11-07.daml

http://ontobroker.semanticweb.org/ontologies/ka2-onto-2001-03-04.daml

4.4.2 The Ontology Version Detector Algorithm

As shown in the previous section, there is no official and implemented standard or canonical form to represent
version information through the URIs. However, the ontology engineers use "semi-rational" criteria to rename
new versions, leading to the emergence of common patterns. The goal of the OVD algorithm is to provide a
general mechanism to detect such patterns.

Overview

A general oververview of OVD is described in Figure 4.2. There are two main steps to the process: the Se-
lector component compares URIs to extract sets of numerical differences between them, and the Recognizer
component detects known patterns in these differences, encoded as a set of rules to generate versioning
relations between ontologies. In this report, we focus on particular versioning patterns. In particular, the ones
in which the versioning information is codified by single number or date with two-digit and three-digit format.

The Selector components takes as input a set {URI1, URI2, ..., URIn} of URIs of ontologies and returns
of set of numerical differences between pairs of URIs. More precisely, to a pair of URIs (URIi, URIj), the

http://ontobroker.semanticweb.org/ontologies/ka2-onto-2000-11-07.daml
http://ontobroker.semanticweb.org/ontologies/ka2-onto-2001-03-04.daml

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 43 of 55

Selector associate an ordered list of numerical differences represented as pairs (nik, njk) where nik is a
number part of URIi and njk is a number which replaces nik in URIj . Pairs of URIs for which differences
appear in other parts than numbers are simply discarded.
To realize this task, the Selector first sequences each URIs in a chain of sections, separating parts that
represents numbers from the ones that represent other elements. If two URIs contain the same number
of number sections and non-number sections, and if all the non-number sections are equal, the numerical
differences are straightforwardly extracted from comparing the number sections of the two URIs with each
other. For example, the URIs:

• http://loki.cae.drexel.edu/~wbs/ontology/2003/10/iso-metadata

• http://loki.cae.drexel.edu/~wbs/ontology/2004/01/iso-metadata

are sequenced in the following way:

• http://loki.cae.drexel.edu/~wbs/ontology/ ‖ 2003 ‖ / ‖ 10 ‖ /iso-metadata

• http://loki.cae.drexel.edu/~wbs/ontology/ ‖ 2004 ‖ / ‖ 01 ‖ /iso-metadata

Since all the non-number sections are equal and all the number sections are different, the generated
differences correspond to the list of pairs of number sections: [(2003, 2004); (10, 01)]. It is important to
notice here that the number of digits used to represent each number needs to be kept in the representation.
Indeed, this information is used as part of the pattern recognition and, for example, ‘1’ should not be
considered equivalent to ‘’01’. We use the notation |n| to indicate the number of digits used in the string
representation of the number n in a set of differences.

The second step of the process, the Recognizer component, takes as input the list of differences between
pairs of URIs and derive from them versioning relations that should hold between the corresponding ontolo-
gies. Versioning relations are represented here as (ordered) pairs of URIs, with [URIi, URIj] meaning that
URIj is a more recent version of URIi. To realize this task, the Recognizer rely on a set of rules that detect
specific patterns in the differences, such as the ones identified in Section 2. Below, we detail the set of rules
we have defined from our anlysis of the Watson repository.

Versioning Relation Detection Rules

The Recognizer implements a set of rules which are designed to cover the different way that are used
to rename a new version, that is, the version information patterns. The rules presented here reflect the
main characteristics of the classes of URIs discussed in Section 4.4.1, but can be easily extended for ad-
ditional patterns (many of them being easily derived from the existing rules) but are ignored here as they
do not appear in the considered collection of ontologies (e.g., cases where the year is represented with 2
digits, where the date is represented in middle endian form, or the version number is represented with 3
components–x.y.z). Each rule considers a pair of URIs (URIi, URIj) and the corresponding list of differ-
ences Dij = [(ni1, nj1), ...] to derive a probable versioning relation between URIi and URIj .

Class A

As indicated before, Class A corresponds to the most straightforward case: there is only one numerical
difference between two URIs (i.e. the cardinality |Dij | of Dij is 1). In this case, we only need to compare the
number in question to derive which version came first.

Based on the above concrete examples, a first class of cases can be detected considering the circumstance
where there is only one difference, that is, Difference(URI1, URI2))==1 and it is numerical. To this end, we
formalize the following rule R1:only one difference that is, Difference(URI1, URI2))==1 and it is numerical.
So, we set the rule which take such difference into account. It can be formalized as in the following:

2009–2010 c© Copyright lies with the respective authors and their institutions.

http://loki.cae.drexel.edu/~wbs/ontology/2003/10/iso-metadata
http://loki.cae.drexel.edu/~wbs/ontology/2004/01/iso-metadata
http://loki.cae.drexel.edu/~wbs/ontology/
2003
/
10
/iso-metadata
http://loki.cae.drexel.edu/~wbs/ontology/
2004
/
01
/iso-metadata

Page 44 of 55 NeOn Integrated Project EU-IST-027595

R1 IF (|Dij | = 1) THEN
IF (ni1 < nj1) THEN

[URIi, URIj]
ELSE

[URIj , URIi]

The rule R1 addresses the cases such as the ones shown in Example 1 and Example 2.

Class B

Class B is a more complicated example, as it corresponds to the cases where two numbers differ from one
URI to the other. Therefore, to realize an appropriate comparison, it is first needed to find which number
is the most significant. We distinguish two main cases: 1- the version information corresponds to a version
number, in which case the number on the left is more significant, or 2- the version information corresponds
to a date including the year and month, in which case, the year is more significant.

Therefore, in order to distinguish these different situations, we need to be able to recognize and year and
a month from any other number. We define the following 2 predicates, year(n) and month(n), with return
true if the number n can be a year or a month respectively:

year(n) :: |n| = 4 and 1995 ≤ n ≤ current_year

month(n) :: |n| = 2 and 01 ≤ n ≤ 12

These conditions assume that ontologies can only have been created from 1995 to the present year, that
months are always represented with 2 digits and years with 4 digits. While these assumptions might ap-
pear restrictive, they reflect our observations on the Watson collection of ontologies and help in avoiding
unnecessary noise.

Based on year(n) and month(n), we can derive the following predicates that indicate if 2 numbers, n1 and
n2 can represent a date, either in big endian or in little endian forms:

dateLE(n1, n2) :: month(n1) and year(n2)
dateBE(n1, n2) :: year(n1) and month(n2)

Finally, using these conditions, we can define the three following rules: R2 for cases where 2 numbers differ
but do not correspond to a date (in which case the number on the left is assumed to be the most significant),
R3 for cases where a date in little endian form is used, and R4 for cases where a date in big endian form is
used.

R2 IF (|Dij | = 2) THEN
IF (NOT (dateLE(ni1, ni2) AND dateLE(nj1, nj2))

AND NOT (dateBE(ni1, ni2) AND dateBE(nj1, nj2))) THEN
IF (ni1 = nj1) THEN

IF (ni2 < nj2) THEN
[URIi, URIj]

ELSE
[URIj , URIi]

ELSE
IF (ni1 < nj1) THEN

[URIi, URIj]
ELSE

[URIj , URIi]

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 45 of 55

R3 IF (|Dij | = 2) THEN
IF (dateLE(ni1, ni2) AND dateLE(nj1, nj2))

IF (ni2 = nj2) THEN
IF (ni1 < nj1) THEN

[URIi, URIj]
ELSE

[URIj , URIi]
ELSE

IF (ni2 < nj2) THEN
[URIi, URIj]

ELSE
[URIj , URIi]

R4 IF (|Dij | = 2) THEN
IF (dateBE(ni1, ni2) AND dateBE(nj1, nj2))

IF (ni1 = nj1) THEN
IF (ni2 < nj2) THEN

[URIi, URIj]
ELSE

[URIj , URIi]
ELSE

IF (ni1 < nj1) THEN
[URIi, URIj]

ELSE
[URIj , URIi]

Class C

Finally, Class C corresponds to the cases where 3 numerical differences exist between the considered URIs.
As for class B, it is important in that case to first detect which is the most significant of these numbers.
However, we have not encountered examples other than the representations of dates using 3 numbers.
Therefore, we only define the rules corresponding the dates, either in big endian or in little endian form. We
define a new predicate, day(n) which indicates if a number could be a day of a month:

day(n) :: 01 ≤ n ≤ 31

as well as the conditions to recognize dates with 3 numbers

dateLE(n1, n2, n3) :: day(n1) and month(n2) and year(n3)
dateBE(n1, n2, n3) :: year(n1) and month(n2) and day(n3)

Rules R5 and R6 corresponds to the two cases of dates with 3 numbers, in little endian and big endian forms
respectively.

R5 IF (|Dij | = 3) THEN
IF (dateLE(ni1, ni2, ni3) AND dateLE(nj1, nj2, nj3))

IF (ni3 = nj3) THEN
IF (ni2 = nj2) THEN

IF (ni1 < nj1) THEN
[URIi, URIj]

2009–2010 c© Copyright lies with the respective authors and their institutions.

Page 46 of 55 NeOn Integrated Project EU-IST-027595

ELSE
[URIj , URIi]

ELSE
IF (ni2 < nj2) THEN

[URIi, URIj]
ELSE

[URIj , URIi]
ELSE

IF (ni1 < nj1) THEN
[URIi, URIj]

ELSE
[URIj , URIi]

R6 IF (|Dij | = 3) THEN
IF (dateBE(ni1, ni2, ni3) AND dateBE(nj1, nj2, nj3))

IF (ni1 = nj1) THEN
IF (ni2 = nj2) THEN

IF (ni3 < nj3) THEN
[URIi, URIj]

ELSE
[URIj , URIi]

ELSE
IF (ni2 < nj2) THEN

[URIi, URIj]
ELSE

[URIj , URIi]
ELSE

IF (ni1 < nj1) THEN
[URIi, URIj]

ELSE
[URIj , URIi]

4.4.3 Experiment and Evaluation

OVD is based on particular patterns which have been identified by manually analyzing Watson’s repository
and are not formally specified. Consequently, an empirical evaluation is crucial to verify the correctness (i.e.,
the precision) of OVD. In addition, such an evaluation gives us an insight on the way URIs are effectively
used to encode version information, and on how we could improve OVD.

4.4.4 Experiment data

Here, we experiment with 4 sets of ontologies of increasing sizes extracted from the Watson collection (see
Table 4.1). Queries 1 to 3 correspond to the OWL ontologies returned with the queries "student", "man", and
"person" respectively. Query 4 corresponds to a set of nearly 7000 OWL ontologies not corresponding to any
particular query.

We ran the OVD algorithm on these 4 sets of ontologies to discover versioning links between the ontologies
they contain, separating the results from the different rules, in order to allow evaluating each rule separately3.
Table 4.2 shows the number of pairs of ontologies which OVD has detected a versions of each other (see 3rd

3It is worth mentioning that this computation took under 5 minutes on a Mac Laptop

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 47 of 55

QueryName QueryPhrase Number of Ontologies
Query1 Student 90
Query2 Man 115
Query3 Person 875
Query4 * 6898

Table 4.1: Queries and corresponding ontology collections.

QueryName Rule Detected Pairs Number Of Chains

Query1 R1 16 5
R2 0 0

R3/5 0 0
R4 0 0
R6 0 0

Query2 R1 16 6
R2 0 0

R3/5 0 0
R4 11 5
R6 0 0

Query3 R1 41 10
R2 4 3

R3/5 0 0
R4 10 2
R6 0 0

Query4 R1 17334 511
R2 138119 843

R3/5 0 0
R4 38 7
R6 10 4

Table 4.2: Results of running OVD on sub-sets of the Watson collection of ontologies.

column) for each set of ontologies and rules. In total, 155,589 pairs of ontology potential ontology versions
have been detected. As can be seen, patterns corresponding to R1 and R2 seem to be the most applied to
represent version information, with a clear different for R2 in the case of Query 4. We can also remark that
R3 and R5 were never triggered in our datasets. One corresponds to dates of the form mm/yyyy and the
other, to dates of the form yyyy/mm/dd.

4.4.5 Computing chains of ontology versions

While individual versioning relations are interesting to consider, many of these relations are parts of se-
quences of successive versions. We define and compute such chains of ontologies as the connected paths
in the graph formed by the versioning relations detected by OVD. More formally,

Definition 1 Given set of pairs of ontologies {(Oi, Oj)}, such that its cardinality is at least two, an ontology
chain is defined as a sequence of ontologies, O1, O2, ..., On−1, On, such that Oi is the previous version
of Oi+1.

2009–2010 c© Copyright lies with the respective authors and their institutions.

Page 48 of 55 NeOn Integrated Project EU-IST-027595

Query Rule Correct Chains Incorrect Chains Average Length Max Length
Query 1 R1 3 2 2.6 3

R2 0 0 0 0
R4 0 0 0 0
R6 0 0 0 0

Query 2 R1 4 2 2.3 3
R2 0 0 0 0
R4 4 1 2.6 3
R6 0 0 0 0

Query 3 R1 6 4 1.8 3
R2 3 0 2.3 3
R4 0 2 2.5 3
R6 0 0 0 0

Query 4 R1 5 5 89.05 230
R2 9 9 71.13 154
R4 4 3 2.2 3
R6 2 2 2.75 3

Table 4.3: Result of the evaluation of OVD

For example, using the abbreviation A for http://oaei.ontologymatching.org/2004/
Contest/ we can compute the chain of ontology versions: [A/testbed_v1_1.owl, A/testbed_
v1_3.owl, A/testbed_v1_4.owl]

The 4th column of Table 4.2 shows for each rule in each dataset the number of chains of ontologies that can
be computed from the result of OVD.

4.4.6 Evaluation

In order to evaluate the results of OVD, we manually checked the correctness of the chains obtained for each
rule in each of our datasets. Here, we assume that if one of the versioning relation in a chain is incorrect, the
entire chain is incorrect. For the dataset corresponding to Query 4, we only evaluated a sample of 10 chains
in the case of R1 and 18 chains in case of R2. We chose these samples randomly from different sources,
trying to get examples coming from different sites in order to evaluate different conventions.The third and
fourth columns of Table 4.3 show the result of this evaluation.

Using the usual measure of precision, we can evaluate the overall performance of the OVD algorithm (51.2%),
as well as the individual performance of each rule. The results are presented in Table 4.4. Looking at the
incorrect results, we can draw a number of conclusions concerning the way we can improve OVD. Indeed,
for example, it can seen that some of the rules provide more accurate information than others. Also, it can
be seen that longer chains tend to be incorrect. One of the reasons is that many incorrect results come
from automatically generated ontologies URIs, which uses numbers not to represent version information,
but record numbers. Using such information, we can compute different levels of confidence for the results.
Finally, successive versions of ontologies tend to be similar to each other. Using a measure of similarity
can help us in sorting out the correct results from the incorrect ones. Finally, some incorrect results come
from RDF documents describing dated events (e.g., ESWC2006 and ESWC2007). Checking if the ontology
describes dated element can also give indication that the result should be seen as incorrect.

http://oaei.ontologymatching.org/2004/Contest/
http://oaei.ontologymatching.org/2004/Contest/
A/testbed_v1_1.owl
A/testbed_v1_3.owl
A/testbed_v1_3.owl
A/testbed_v1_4.owl

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 49 of 55

Total R1 R2 R4 R6
Precision 51.2% 50% 50% 57% 50%

Table 4.4: Precision OVD’s results.

4.4.7 Conclusion and Future work

In this section, general patterns which convey ontology version information directly into their URIs have been
investigated, in the context of large ontology repositories such as Watson. In particular, we have identified
6 patterns which have been formalized by 6 rules. Informally, those rules describe regular sequence of
characters discernible as part of the URI which hold the version information and can be used to derive
versioning relations between ontologies.

Based on these rules, we described and designed OVD (Ontology Versioning Detector), which is an algo-
rithm for detecting different versions of ontologies in large ontology repositories. It is based on two main
steps: the Selector which compares URIs to extract sets of numerical differences between them, and the
Recognizer which identifies the well-known pattern and try to figure out which ontology comes first. OVD
has been evaluated over Watson’s ontology collection, providing useful and relevant results. Indeed, the
information derived from this algorithm helps us to understand how the versioning information is encoded in
URIs and how ontologies evolve on the Web, ultimately supporting users in better exploiting the content of
large ontology repositories. The current implementation of OVD detects different versions of the ontologies
when the versioning information is expressed by single number or date-pattern. In other case OVD does not
detect.
We want to extend this work considering different directions. First, new patterns not exclusively based on
numbers could be detected, such as "October-2006"; new patters based on more than four numbers. Sec-
ond, according to [KF01] the modification of an ontology can lead to a new version which is completely
different from the original one. Although in practice, by analyzing Watson’s ontology repository, we can see
that it is very likely fro 2 versions of the same ontology to be similar. We can use such information to increase
the precision of OVD. Finally, we can also exploit explicit version information encoded using OWL primitives
and consider the overlap with information encoded in URIs.

4.5 Agreement and Disagreement

Ontologies are knowledge artifacts representing particular models of some particular domains. They are built
within the communities that rely on them, meaning that they represent consensual representations inside
these communities. However, when considering, like in the case of Watson, the set of ontologies distributed
on the Web, many different ontologies can cover the same domain, while being built by and for different
communities. Knowing which ontologies agree or disagree with others can be very useful in many scenarios.

One way to detect whether there is a disagreement between two ontologies is to rely on the presence of
logical contradictions. The two ontologies can be merged, based on mappings between their entities, and
the resulting model be checked for inconsistencies and incoherences. While this approach would certainly
detect some forms of disagreement, it only checks whether the ontologies disagree or not. It does not provide
any granular notion of disagreement and, if no contradictions are detected, it does not necessary means that
the ontologies agree. Indeed, while two ontologies about two completely different, non overlapping domains
would certainly not disagree, they do not agree either. More importantly, logical contradictions are not the
only way for two ontologies to disagree. Indeed, there could also be conceptual mismatches, like in the
case where one ontology declares that “Lion is a subclass of Species” and the other one indicates that
“Lion is an instance of Species”. Even at content level, logical contradictions would not detect some form
of disagreements. Indeed, the two statements “Human is a subclass of Animal” and “Animal is a subclass

2009–2010 c© Copyright lies with the respective authors and their institutions.

Page 50 of 55 NeOn Integrated Project EU-IST-027595

of Human” do not generate any incoherence. However, they disagree in the sense that, if put together, they
generate results that were not expected from any of the two ontologies.

For these reasons, in [d’A09], we defined two basic measures for assessing agreement and disagreement of
an ontology O with a statement s =< subject, relation, object >:

agreement(O, s)→ [0..1]
disagreement(O, s)→ [0..1]

We chose to use two distinct measures for agreement and disagreement so that an ontology can, at the
same time and to certain extents, agree and disagree with a statement. These two measures have to be
interpreted together to indicate the particular belief expressed by the ontology O regarding the statement s.
For example, if agreement(O, s) = 1 and disagreement(O, s) = 0, it means that O fully agrees with s and
conversely if agreement(O, s) = 0 and disagreement(O, s) = 1, it fully disagrees with s. Now, agreement
and disagreement can vary between 0 and 1, meaning that O can only partially agree or disagree with s
and sometimes both, when agreement(O, s) > 0 and disagreement(O, s) > 0. Finally, another case is
when agreement(O, s) = 0 and disagreement(O, s) = 0. This basically means that O neither agrees nor
disagrees with s, for the reason that it does not express any belief regarding the relation encoded by s.

The actual values returned for both measures, when different from 0 and 1, are not very important. They
correspond to different levels of dis/agreement and only an order between pre-defined levels is needed to
interpret them. The values we use and the ways to compute them are given in [d’A09].

Considering that ontologies are made of statements, extending the measures above to compute agreement
and disagreement between two ontologies is relatively straightforward, using the mean of each measure for
each statement of an ontology against the other ontology, in both directions and making this a normalized
measure. However, while relatively simples, the two measures of agreement and disagreement between
ontologies provide an interesting way to obtain an overview of a set of ontologies. Indeed, we looked at
the 21 ontologies returned by Watson when querying for semantic documents containing a class with the
term SeaFood in its ID or label, and computed the agreement and disagreement measures for all pairs of
ontologies in this set. The results are shown in Figure 4.3 where ontologies are numbered according to their
rank in Watson (valid on the 20/09/2009).

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 51 of 55

Figure 4.3: Agreement (left) and disagreement (right) relations among the 21 test ontologies.
Plain lines represent full dis/agreement (measures’ values = 1). Dashed lines represent partial
dis/agreement (measures’ values greater than 0).

2009–2010 c© Copyright lies with the respective authors and their institutions.

Page 52 of 55 NeOn Integrated Project EU-IST-027595

Chapter 5

Conclusion and Future Work

Semantic Web Search Engines provide access points to the knowledge formalized on the Web. One common
missing aspect in these systems regards the fact that they do not provide enough support for selecting the
"right" or the "best" ontologies on the Semantic Web as shown in (Chapter 1). SWSEs have been developed
without taking into account the fact that new knowledge is often produced in relation with knowledge already
formalized and made available online. One of the consequences of producing knowledge in an uncontrolled
way is that implicit relations between the new knowledge and the old one is not made explicit. By not making
explicit these implicit relations between ontologies, SWSEs lack efficient support for applications intending to
exploit multiple, interrelated ontologies on the SW.

Therefore, the main research directions of this work can be summarized as follows: 1) Studying how the
ontologies can be related to each other on the SW; 2) Studying how to make explicit semantic relations
between ontologies within the SWSEs.

With respect to the first direction we have been exploring research results related to the topics such as on-
tology comparison and ontology versioning (Chapter 2). Most of these studies focus on particular relations:
versioning relations. The outcomes of these research regard to methods for compare two ontologies at differ-
ent levels. In particular, there are approaches comparing ontologies at structural level such as PROMPTDiff
[NM02], OntoView [KFKO02] and part of SemVersion [Vol06]. Instead, SemVersion [Vol06] and OWLDiff
http://semanticweb.org/wiki/OWLDiff compare ontologies at a semantic level. Unfortunately,
provided approaches are very limited in terms of the languages they can work with and their work in hy-
pothesis which is the two ontologies are already related to each others. In large ontology repositories this
hypothesis is not satisfied. For this reason, these mechanisms are insufficient in scenarios like the one of
SWSEs. Furthermore, the previously mentioned studies do not cover most of relations we are interested
in. A first theoretical result on an analysis of some relations among ontologies was done by the authors of
[KA05]. They characterize a number of relations between ontologies giving abstract definitions and providing
properties for all of them. We want to extend this work introducing an semantic structure DOOR to formalize
concretely these and other kinds of relations. Furthermore, for all of them we are providing a concrete defi-
nition and efficient methods for detection.
Researching along the second direction, which is making explicit these implicit semantic relations between
ontologies in the context of SWSEs, there are not many studies in the literature covering this topic. While
designing AKTiveRank [ABS06], Alani and his colleagues have also observed that online ontologies, in par-
ticular the ones accessible through Swoogle, are often local copies of other ontologies. This raises some
obvious conceptual issues when dealing with the ranking of these ontologies: the same ontology should not
have been ranked at several different places in the result set. For this reason, AKTiveRank applies a very
simple duplication detection procedure, syntactically comparing the ontologies. In this way, they can discover
a big amount of duplications, but would miss sophisticated duplication situations, like the case of an ontology
formalized in different ontology languages (e.g.,iswc.owl and iswc.daml). Although the main research results
discussed so far are very important as starting point for this work, there are different aspects and different
relations that still need to be addressed in context of SWSEs, where there are a huge number of ontologies

http://semanticweb.org/wiki/OWLDiff

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 53 of 55

to deal with.

In order to achieve our goal, we propose KANNEL an ontology based framework to detect and manage
relations between ontologies in large ontology repositories. It is based on the DOOR ontology which has
the aims to provide the missing interpretation of the existing semantic relations among the ontologies. The
advantages of using KANNEL are that:

• It is very flexible. At any time we need to deal with a new relation, all that we need is to add its
formalization to the DOOR semantic structure and design a method to detect it;

• It is possible to apply it to any ontology repository, of any current SWSE.

• Ongoing maturation of Semantic Web Technologies makes easier the implementation of the mentioned
approach, because the needed tools are now available and reusable, and evaluation is made easier in
concrete scenarios such as Watson.

KANNEL will also provide particular mechanisms to navigate through the ontologies in a structured way,
that is following the satisfied relations among them. Furthermore, by this framework we are able to acquire
an overall understanding of the growth of the SW in terms of its content, structure and evolution, which is
important for facilitating the development of the SW in a controlled and informed way.

As regards future work, in the short term, we need to carry on with the development of detection mechanisms
for ontology relations, as well as with the continuous development of the DOOR ontology. Until now, our focus
has been on the off-line part of the KANNEL framework, populating the DOOR ontology with discovered
relations. The next step concerns the development of a reasoner-based API for exploring and querying the
discovered relations on the basis of both ontology and rule-based reasoning. This API will be used as the
basis to integrate the features of DOOR into Watson to provide relationship information together with the
search results. Thanks to this integration, we will be able to evaluate the impact of such features in helping
users in selecting ontologies.

2009–2010 c© Copyright lies with the respective authors and their institutions.

Page 54 of 55 NeOn Integrated Project EU-IST-027595

Bibliography

[ABS06] H. Alani, C. Brewster, and N. Shadbolt. Ranking ontologies with AKTiveRank. 5th Int. Semantic
Web Conf. Athens, Georgia, USA, 2006.

[AdM09] C. Allocca, M. d’Aquin, and E. Motta. Door: Towards a formalization of ontology relations. Proc.
of the Inter. Conf. on Knowledge Engineering and Ontology Development (KEOD), 2009.

[All09] Carlo Allocca. Making explicit semantic relations between ontologies in large ontology reposito-
ries. PhD Symposium, Poster Session, ESWC, 2009.

[Art] Alexander S. Kleshchev Irene L. Artemjeva. Unenriched logical relationship systems.

[BQL07] David Bell, Guilin Qi, and Weiru Liu. Approaches to inconsistency handling in description-logic
based ontologies. Proc of the SWWS Conference., 4825/2008, 2007.

[d’A09] M. d’Aquin. Formally measuring agreement and disagreement in ontologies. 5th K-CAP, 2009.

[DE08] J. David and J. Euzenat. Comparison between ontology distances (preliminary results). 7th Int.
Semantic Web Conference, ISWC, 2008.

[dMea08] M. d’Aquin, E. Motta, and M. Sabou et al. Towards a new generation of semantic web applica-
tions. IEEE Intell. Sys., 23(3), 2008.

[dSD+07] M. d’Aquin, M. Sabou, M. Dzbor, C. Baldassarre, L. Gridinoc, S. Angeletou, and E. Mottta.
Watson: A gateway for the semantic web. Poster Session at 4th ESWC, 2007.

[GGMO01] A. Gangemi, N. Guarino, C. Masolo, and A. Oltramari. Understanding top-level ontological dis-
tinctions. 2001.

[GHKS07] B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Just the right amount: Extracting
modules from ontologies. In Proceedings of WWW, pages 717–726, Banff, Canada, 2007. ACM.

[GLW06] S. Ghilardi, C. Lutz, and F. Wolter. Did I damage my ontology? a case for conservative extensions
in description logics. In Proc. of the 10th Inter. Conf. on Principles of Knowledge Representation
and Reasoning (KR’06), pages 187–197. AAAI Press, 2006.

[GPS99] A. Gangemi, D. M. Pisanelli, and G. Steve. An overview of the onions project: Applying ontologies
to the integration of medical terminologies. Technical report. ITBM-CNR, V. Marx 15, 00137,
Roma, Italy, 1999.

[HA06] N. Shadbolt H. Alani, C. Brewster. Ranking ontologies with aktiverank. Proc of the 4th Int Sem
Web Conf (ISWC2006), 2006, LNCS, Springer, pages 1–15., 2006.

[Hef01] J. Heflin. Towards the semantic web: Knowledge representation in a dynamic, distributed envi-
ronment. Ph.D. Thesis, University of Maryland, 2001, 2001.

[HP04] J. Heflin and Z. Pan. A model theoretic semantics for ontology versioning. 3th Intern Sem Web
Conf, Hiroshima, Japan, LNCS 3298 Springer, pages 62–76., 2004.

D1.1.6 KANNEL: a framework for detecting and managing semantic relations between ontologies Page 55 of 55

[HPea05] J. Hartmann, R. Palma, and et al. Ontology metadata vocabulary and applications. pages 906–
915, OCT 2005.

[HS05] Z. Huang and H. Stuckenschmidt. Reasoning with multi-version ontologies: a temporal logic
approach. Proc of the Fourth Intern Sem Web Conf (ISWC2005),3729, LNCS, Springer, pages
62–76., 2005.

[KA05] A. Kleshchev and I. Artemjeva. An analysis of some relations among domain ontologies. Int.
Journal on Inf. Theories and Appl, 12:85–93, 2005.

[KCDF08] B. Konev, C.Lutz, D.Walther, and F.Wolter. Cex and mex: Logical diff and logic-based module
extraction in a fragment of owl. Liverpool University, UK and TU Dresden, Germany, 2008.

[KF01] M. Klein and D. Fensel. Ontology versioning on the semantic web. Proc. of the Inter. Semantic
Web Working Symposium (SWWS), pages 75–91, 2001.

[KFKO02] M. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov. Ontology versioning and change detection
on the web. 13th Intern Conf on Know. Engineering and Know. Management (EKAW02), pages
197–212, 2002.

[MS02] A. Maedche and S. Staab. Comparing ontologies-similarity measures and a comparison study.
Proc. of EKAW-2002, 2002.

[MSM06] Vanessa Lopez Marta Sabou and Enrico Motta. Ontology selection for the real semantic web:
How to cover the queenÕs birthday dinner? Proc. of EKAW-2006, 2006.

[NM02] N. F. Noy and M. A. Musen. Promptdiff: A fixed-point algorithm for comparing ontology versions.
18th National Conf. on Artificial Intelligence (AAAI), 2002.

[PSHH04] P. F. Patel-Schneider, P. Hayes, and I. Horrocks. Owl web ontology language semantics and
abstract syntax. W3C Recommendation, 2004.

[QH07] Guilin Qi and Anthony Hunter. Measuring incoherence in description logic-based ontologies.
Proc of the Int. Sem. Web Conference., 4825/2008:381–394, 2007.

[SPd08] E. Motta S. Peroni and M. d’Aquin. Identifying key concepts in an ontology, through the integra-
tion of cognitive principles with statistical and topological measures. Web Semantics: Science,
Services and Agents on the World Wide Web, 5367/2008:242–256, 2008.

[Vol06] M. Volkel. D2.3.3.v2 SemVersion Versioning RDF and Ontologies. EU-IST Network of Excellence
(NoE) IST-2004-507482 KWEB. 2006.

[Wel05] Katrin Weller. An analysis of some relations among domain ontologies. International Journal:
Informations Theories and Applications. Vol 12, 2005.

[Wel08] Katrin Weller. Koso. a reference-ontology for reuse of existing knowledge organization systems.
Proceedings of the 1st Workshop on Knowledge Reuse and Reengineering over the Semantic
Web (KRRSW 08), ESWC 2008, pages 31–40, 2008.

2009–2010 c© Copyright lies with the respective authors and their institutions.

	Introduction
	 Problem
	 Motivation
	 Goal
	 Outcomes
	 Research Questions
	 Outline of this deliverable

	 Related Work
	 How ontologies relate to one another?
	 Ontology Comparison
	 PromptDiff: A fixed-point algorithm for comparing ontology versions
	 CEX and MEX: Logical Diff and Logic-based Module Extraction in a Fragment of OWL.

	 Ontology Versioning/Evolution
	 Ontology Versioning
	 SemVersion, Versioning RDF and Ontologies

	 Summary and Conclusions

	The DOOR-Ontology: Towards a Formalization of Ontology Relations
	 Methodology for Designing the DOOR Ontology
	Definitions and Requirements
	Main steps of the Methodology

	 Formal Description of DOOR
	includedIn and equivalentTo
	similarTo
	Versioning
	Agree and Disagree
	Other Relations

	Conclusions

	The KANNEL Framework
	KANNEL: Architecture
	 Inclusion and Equivalent
	 Initial Evaluation

	 Similar Ontologies
	 Measuring Similarity Between Ontologies
	 Lexicographic Similarity
	 Syntactic Similarity
	 Semantic Similarity
	 KeyConcepts Similarity

	 Ontology Versioning
	 Identifying Version Information Patterns
	The Ontology Version Detector Algorithm
	 Experiment and Evaluation
	 Experiment data
	 Computing chains of ontology versions
	 Evaluation
	 Conclusion and Future work

	 Agreement and Disagreement

	Conclusion and Future Work
	Bibliography

