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Executive Summary

In this deliverable we present an updated version of the NeOn networked ontology model for representing
and managing relations between multiple networked ontologies.

To achieve flexibility and applicability, we define the networked ontology model using a metamodeling ap-
proach. The metamodeling features of Model Driven Architecture provide the means for the specification
of modeling languages in a standardized, platform independent manner. In short, the Meta Object Facility
(MOF) provides the language for creating metamodels, UML defines the language for creating models corre-
sponding to specific metamodels. Defining the networked ontology model in terms of a MOF compliant meta-
model yields a number of advantages, including (1) interoperability with software engineering approaches,
(2) model transformations, to support the automated generation of APIs, exchange syntaxes, etc., (3) reuse
of UML for modeling, and (4) independence from particularities of specific formalisms, enabling the ability
to support currently competing formalisms (e.g. in the case of mapping languages), for which no standard
exists yet.

The metamodel consists of individual modules for the individual aspects of networked ontologies. The main
modules are: (1) a metamodel for the OWL ontology language, (2) a rule metamodel, (3) a metamodel for
ontology mappings, and (4) a metamodel for modular ontologies. The metamodel is grounded by translations
to specific logical formalisms that define the semantics of the networked ontology model.

The deliverable extends the previous version of the networked ontology model presented in D1.1.2. We
expect that the extended models presented here will be subsequently propagated to and implemented in the
tool infrastructure. With respect to the metamodel, the changes over D1.1.2 describing a previous networked
ontology model are mainly:

• We provide a metamodel for the OWL 2 language.

• We provide a metamodel for link properties that allow relating ontologies with disjoint domains within a
network.

• We present a refined version of the metamodel for modular ontologies, aligned with the new OWL 2
metamodel.

Additionally, we provide an updated version of the Ontology Metadata Vocabulary OMV, our vocabulary
to describe ontology metadata in a network of ontologies. Metadata here refers to data about the actual
ontologies, as opposed to the content contained in an ontology, e.g. the provenance and authorship of an
ontology, but also dependencies from other ontologies, etc. Metadata plays an important role in describing
and managing the networked ontologies. Its purpose is to be able to clarify the relations between the available
ontologies so that they are easy to search, to characterize and to maintain.
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Chapter 1

Introduction

1.1 The NeOn Big Picture

Next generation semantic applications will be characterized by a large number of ontologies, some of them
constantly evolving. As the complexity of semantic applications increases, more and more knowledge will be
embedded in applications, typically drawn from a wide variety of sources. This new generation of applications
will thus likely rely on ontologies embedded in a network of already existing ontologies. Ontologies and
metadata will have to be kept up to date when application environments and users’ needs change. We argue
that in this scenario it will become prohibitively expensive for people to directly adopt the current approach
to semantic integration, where the expectation is to produce a single, globally consistent semantic model
that serves the needs of application developers and fully integrates a number of pre-existing ontologies In
contrast to the current model, future applications will very likely rely on networks of contextualized ontologies,
which are usually locally, but not globally consistent.

This report is part of the work performed in WP 1 on “Dynamics of Networked Ontologies”. The goal of this
work package is to develop an integrated approach for the evolution process of networked ontologies and
related metadata. For the individual phases of the process we will develop new methods that consider the
complex relationships in a network of ontologies. These include dependencies, mappings, different versions
and also take possible inconsistencies into account. Where possible, these methods will be supported by
automatic or semi-automatic approaches based on natural language processing (NLP), data mining and
machine learning techniques, and the corresponding tools will be developed to support the evolution process.
Specific goals in this workpackage include support for:

1. representing, managing and interpreting dependencies between multiple networked ontologies

2. evolution of networked ontologies in exploiting various models of change propagation, which have
different applicabilities depending on the model of coordination and control

3. maintaining partial/local consistency of a set of networked ontologies, which might not be globally
consistent

4. evolving metadata along with changing ontologies and predicting future structural changes in ontolo-
gies.

In order to achieve the goals mentioned above it is crucial that a toolkit designed within NeOn offers a basic
set of functionalities, which are also essential for the use cases. These are: (a) Integration of a large number
of heterogeneous information sources (b) Maintenance of ontologies to reflect changes in the domain (c)
Consensus forming in a decentralized scenario.

As shown in Figure 1.1, WP1 belongs to the central part of the research and development WPs in NeOn.
The tasks of WP1 are heavily inter-related with other work packages. The most fundamental contribution of
WP1, and in particular Task 1.1, is to provide the networked ontology model and its related dynamic aspects
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to other work package partners. As a consequence, a major objective in the definition of the networked
ontology model is the consideration of requirements from other work packages. We will closely collaborate
with the case study partners to apply our technologies within the case studies.

 

Figure 1.1: Relationships between different workpackages in NeOn

1.2 Networked Ontologies

The goal of this deliverable is to define and formalize the notion of networked ontologies in order to make it
applicable throughout the NeOn project. Before formally defining the model, we will first informally discuss
the notion of a networked ontology.

1.2.1 The current situation

The OWL ontology language is now well established as the standard ontology language for representing
knowledge on the web. At the same time, rule languages, such as F-Logic, have shown their practical applica-
bility in industrial environments. Often, ontology-based applications require features from both paradigms—
the description logics and the rule paradigm—but their combination remains difficult. This is not only due to
the semantic impedance mismatch [HPPSH05], but already because of the disjoint landscape in ontology
engineering tools that typically support either the one or the other paradigm.

Additionally, to address distributed and networked scenarios as envisioned in NeOn, current ontology lan-
guages lack a number of features to explicitly express the relationships between ontologies and their el-
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ements. These features include in particular formalisms for expressing modular ontologies and mappings
(also called alignments) between ontologies that are heterogeneous on various respects.

Finally, in the current situation we lack the means to express information about ontologies and the rela-
tionships between them. Ontologies are distributed over the web, sometimes available directly, sometimes
hidden within corporate networks (see Figure 1.21). These ontologies are related to each others, but this
remains difficult to assess:

• some are simple copies of other ones (it is hard to know which one is the master copy);

• some are versions of others (it is hard to know which one came first);

• some are used jointly with others (this information is hidden in applications);

• some are imported by others (this can be found through owl:imports).

Moreover, the ontologies have different characteristics:

• they are written in different languages and with different language variants;

• they use labels in different natural languages;

• they are built for different purposes.

In consequence, each application developer has to manually assemble ontologies, modify, import and export
them, resulting in yet other disconnected, un-contextualized ontologies. Each time one of these ontologies is
changed, at best, the developer will propagate the changes, at worst, they will not be taken into account at
all.
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Figure 1.2: The current state of networked ontologies on the web. Dashed relations are in fact not explicitly
recorded on the web but can be inferred from user actions.

This state of affairs constitutes a threat for ontology-based application development by incurring costs of
sorting out the available material as well as lack of support for maintaining ontologies over their full life-cycle.

1In this figure, O denotes ontologies, A denotes mappings (alignments).
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1.2.2 Objective and Definition of the NeOn networked ontology model

The purpose of the NeOn networked ontology model is not to be a completely new language for expressing
ontologies on the web. Its purpose it to define an integrated model of an ontology language covering the
relevant existing ontology languages and extending them with primitives to express the relationships in a
network of ontologies. For that purpose, it will introduce – ontop of existing languages (e.g. OWL Web
Ontology Language [Mv03], F-Logic) – a model of the interrelations between ontologies. Because the goal
of NeOn is to non-exclusively account for existing formalisms, it will attempt to reuse these legacy formalism
as much as possible and refrain from defining new languages when this is not necessary.

Subsequently, if we talk about networked ontologies and networks of ontologies, we refer to the following
definition:

Definition 1 A Network of Ontologies is a collection of ontologies related together via a variety of different
relationships such as mapping, modularization, version, and dependency relationships. We call the elements
of this collection Networked Ontologies.

In particular, we support ontologies that are expressed in either OWL 22 or F-Logic. In this deliverable,
we define particular networking relationships in detail. These include: mappings between heterogeneous
ontologies, linking ontologies with disjoint domains, and modular ontologies. In the following, we provide
intuitive definitions of these relationships.

Definition 2 A mapping between two ontologies is a set of mapping assertions representing semantic rela-
tions between ontology elements of these ontologies.

While mappings require the existence of correspondences between two ontologies (and thus overlaps in their
modeled domain), it may also be needed to relate ontologies that do not overlap (disjoint domains). For this
we allow for the notion of linking ontologies using ε-connections:

Definition 3 An ε-connection between two disjoint ontologies is a special link between them, which relates
the domains of the two ontologies. They can be conveniently conceived as superroles relating the two
domains and they can be used as constructors for complex concepts.

Finally, ontologies can be related as modules:

Definition 4 An ontology module is an ontology that exposes elements to be reused by other ontology
modules (defined via an export interface and in turn imports elements from other ontology modules (defined
via import interfaces). Additionally, an ontology module may import mappings to define the correspondences
with elements in the imported ontology modules.

A set of modular ontologies with their interrelationships and mappings make up a modular ontology space.

1.2.3 A metamodel of networked ontologies

In this deliverable, we describe the networked ontology model in terms of a metamodel. Metamodels are used
for the specification of modeling languages in a standardized, platform independent manner. Furthermore,
a grounding essentially specifies the bi-directional translation of the terms of the metamodel to those of the
specific formalism.

The general idea of using a metamodel-based approach and UML profiles for this purpose is depicted in
Figure 1.3: The metamodel for networked ontologies as well in MOF, i.e. it is defined in terms of the MOF
meta-metamodel (explained in Detail in Chapter 3). The term metamodel is chosen, as a metamodel refers
to model of a language, whereas the instances of the metamodel are referred to as models. In our case,
models thus refer to the actual ontologies.

2The new version OWL 2 (on which this version of the metamodel is built) is an extension of OWL DL (on which the previous
version of the metamodel was built). As such, the new version of the metamodel is backward compatible with the previous one.
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Figure 1.3: The NeOn networked ontology model as a MOF-metamodel

Semantics of the metamodel It should be noted that a metamodel is targeted mainly at a structural spec-
ification of a language, i.e. it is not intended to fully define the (logical) semantics of the language. The
semantics is given by the bi-directional translation the metamodel to the underlying logical language. For
example, the semantics of the OWL metamodel is given by the model theory of the underlying Description
Logic. As such, the metamodel also does not aim at bridging the semantic differences between different
ontology languages (OWL and F-Logic in particular). Yet, while the semantics of the languages is not directly
known to a metamodeling-based system, the common representation within the same metamodeling frame-
work allows translations between different languages based on so-called metamodel transformations. Here,
translations are made between logical patterns of the languages, as for example shown in [Bro07] for the
translation from F-Logic to OWL.

1.2.4 Networked Ontology Metadata

Additionally, we provide a vocabulary to describe ontology metadata in a network of ontologies. Metadata
here refers to data about the actual ontologies, as opposed to the content contained in an ontology, e.g.
the provenance and authorship of an ontology, but also dependencies from other ontologies, etc. Metadata
plays an important role in describing and managing the networked ontologies. Its purpose is to be able to
clarify the relations between the available ontologies so that they are easy to search, to characterize and to
maintain. It aims at making explicit the virtual and implicit network of ontologies.

A NeOn enabled tool will be able to take advantage of the NeOn networked ontology metadata for selecting
the resources appropriate for users’ needs. It will also enhance maintainability by updating the resources
used by the applications when these resources evolve and tracking the conflicts that can occur in such
a case. Moreover it should be able to export metadata descriptions according to the specification of the
networked ontology model so that other tools can take advantage of them.

As presented in Figure 1.4, the metadata about networked ontologies can reside anywhere with regard to
the ontologies: it can be embedded within actual ontology files, expressed in separate files along with the
ontologies, expressed on completely different servers (like independent annotations) or reside on the local
machine with the ontologies.

1.2.5 Alignment with C-ODO

There is also a strong relationship with the C-ODO metamodel developed for collaborative ontology de-
sign as developed in WP2: C-ODO is already aligned with OMV and the metamodel of networked ontolo-
gies, i.e. important aspects of ontology design are described in terms of the networked ontology model.
The current version of C-ODO Light is available at: http://www.ontologydesignpatterns.
org/cpont/codo/codolight.owl The alignments with the OWL metamodel and OMV are available
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Figure 1.4: The localization of the NeOn networked ontology metadata (M) with regard to the actual ontolo-
gies (O). Rectangular boxes refer to machines

at http://www.ontologydesignpatterns.org/cpont/codo/odm2codo.owl and http://
www.ontologydesignpatterns.org/cpont/codo/omv2codo.owl.

1.3 Overview of the Deliverable

In Chapter 3, we introduce the concept of metamodeling and its role for the definition of the networked
ontology model. In the following chapters we introduce the specific modules of the metamodel: We start with
the metamodel of OWL 2 in Chapter 4. We then present the metamodel for F-Logic and SWRL in Chapter 5,
for mappings in Chapter 6, and for modularization in Chapter 7.

We then present OMV as a metadata ontology to capture information about networked ontologies in Chapter
9. Finally, in Chapter 10 we provide a summary and an outlook to subsequent deliverables.
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Chapter 2

Ontology Languages

An ontology can be seen as a conceptual schema of a domain, representing the domain’s data structure
containing all the relevant entities and their relationships within that domain. Possibly, rules are defined on
top of the ontology. Additionally, with the increasing use of ontologies, a new issue came up of aligning
ontologies that describe the same domain.

OWL is the ontology language standardized by the World Wide Web Consortium and is very well adopted.
F-Logic is another ontology language, which is well-known by quite some companies but, however, it was
not intentionally built for ontologies but for deductive and object oriented databases. Next to the standard
language OWL on which we focus our work, we incorporate F-Logic into our work.

Although OWL is very expressive, it is restricted to obtain decidability. This comes at the price that it can not
express arbitrary axioms: the only axioms it can express are of a certain tree-structure. In contrast, decidable
rule-based formalism such as function-free Horn rules are not so restricted in the use of axioms but lack some
of the expressive power of OWL: they are restricted to universal quantification and lack negation in their basic
form. To overcome the limitations of both approaches, several rule extensions for OWL have been heavily
discussed [W3C05a] and the W3C initiated a working group for the definition of a Rule Interchange Format
[W3C05b]. SWRL is one of the most prominent proposals for an extension of OWL with rules. DL-safe rules
[MSS04] are a decidable subset of SWRL. As every DL-safe rule is also a SWRL rule, DL-safe rules are
covered in our work. It should be noted that, although we consider SWRL as the most relevant rule extension
for OWL in the context of our work, it is not the only rule language which has been proposed for ontologies.
Other prominent alternatives for rule languages are mentioned in the W3C RIF charter, namely the Web
Rule Language WRL [ABdB+05] and the rules fragment of the Semantic Web Service Language SWSL
[GKM05]. These languages differ in their semantics and consequently also in the way in which they model
implicit knowledge for expressive reasoning support. From this perspective, it could be desirable to provide
particular support tailored to these specific rule languages. From the perspective of conceptual modeling,
however, different rule languages appear to be very similar to each other. This opens up the possibility to
reuse our outcome for SWRL by augmenting it with some features and language primitives which are not
present in SWRL.

Often when ontologies are written in the same language, still they are modeled differently and can not be
aligned automatically. Mappings between the heterogenous ontologies have to be defined by the user. For
such mappings, we concentrate on OWL ontology mappings since OWL is the most prominent ontology
language currently available. Our work covers all existing OWL ontology mapping formalisms we are currently
aware of.

This chapter introduces the ontology languages that we support in our work. Firstly, Section 2.1 describes
OWL, after which Section 2.2 introduces SWRL. Subsequently, the language F-Logic is discussed in Section
2.3. Finally, OWL ontology mapping languages are addressed in Section 2.4.
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2.1 Web Ontology Language (OWL)

The Web Ontology Language OWL [Mv03, MPSP08], based on the earlier language DAML+OIL [vHPSH01],
was standardized by the W3C in February, 2004. Since, it has become the most-accepted ontology lan-
guage in the semantic web community and is supported by a constantly increasing number and range of
applications. At the moment of writing this deliverable, a new version of OWL, OWL 2 [MPSP08], based
on experiences during the language’s first years, is undergoing the standardization process. OWL allows
to build, publish and share ontologies. By describing the concepts of a domain as well as their relation-
ships formally, the meaning of documents becomes machine-understandable. The formal semantics of OWL
is derived from Description Logics (DL, [BCM+03]), an extensively researched knowledge representation
formalism. Hence, most primitives offered by OWL can also be found in a Description Logic.

OWL is built on top of RDF [KC04] and extends the expressiveness of RDF and RDF Schema [BG04] by
supporting additional vocabulary with a formal semantics.

The first version of OWL defined three sublanguages: OWL Lite, OWL DL and OWL Full. For these different
language levels,

OWL Lite < OWL DL < OWL Full

holds in terms of expressivity.

OWL Full OWL Full allows expressions of higher order predicate logic, which results in the fact that OWL
Full ontologies can be undecidable and hence OWL Full is impractical for applications that require
complete reasoning procedures. Contrary to OWL Lite and OWL DL which impose restrictions on the
use of the vocabulary, OWL Full supports the full syntactic freedom of RDF and can be seen as an
extension of RDF. It has mainly been defined for compatibility with existing standards such as RDF.

OWL DL is equivalent to a decidable subset of first-order predicate logic. It closely corresponds to the
SHOIN (D) description logic and all language features can be reduced1 to the primitives of the
SHOIN (D) logic. To allow the representation in this logic, OWL DL imposes several limitations on
the set of supported language constructs. The limitations defined on OWL DL ease the development
of tools and allow complete inference. For OWL DL, practical reasoning algorithms are known, and
increasingly more tools support this or slightly less expressive languages.

OWL Lite is the smallest standardized subset of OWL Full, closely corresponding to the description logic
known as SHIF(D). It is mainly to support the design of classification hierarchies and simple con-
straints. Several language elements that are supported by OWL DL, are not available in OWL Lite,
specifically number restrictions are limited to arities 0 and 1. Furthermore, the oneOf class constructor
is missing. Other constructors such as class complement, which are syntactically disallowed in OWL
Lite, can nevertheless be represented via the combination of syntactically allowed constructors [Vol04].

It holds that every legal OWL Lite ontology is a valid OWL DL ontology, and every valid OWL DL ontology
is a valid OWL Full ontology. For our work, OWL DL would be most useful as it is the OWL dialect which is
mostly used in practice as it is decidable although still very expressive. The new version OWL 2 on which
our work is built, is an extension of OWL DL. OWL 2 provides additional Description Logic expressive power,
moving from the SHOIN (D) Description Logic that underlies OWL DL to the SROIQ Description Logic
[HKS06]. 2 3

1Some language primitives are shortcuts for combinations of primitives in the logic.
2The work in this deliverable is based on the working draft OWL 2 in last call state, available at the end of December, 2008.
3Throughout the rest of this deliverable, we are talking about OWL 2 whenever we refer to OWL.

2006–2009 © Copyright lies with the respective authors and their institutions.



Page 22 of 146 NeOn Integrated Project EU-IST-027595

OWL provides an elaborated set of constructs to define classes (concepts), properties and individuals (in-
stances of one or more classes). We introduce the OWL 2 constructs while presenting our metamodel for
OWL in Chapter 4.

The OWL 2 specifications provide the so-called functional-style syntax as a human-readable syntax. A
syntax based on XML allows easy implementations of OWL 2. This XML exchange syntax is defined in
the XML schema language [TBMM04]. For a full account of the available syntaxes, we refer the reader to
[MPS08a]. Additionally, [MPS08b] provides a mapping from the OWL 2 functional-style syntax to the RDF
exchange syntax [Bec04].

A formal semantics of OWL 2 is provided based on the principles for defining the semantics of description
logics. The semantics is defined as a model-theoretic semantics [TV56] by interpreting the constructs of
the functional-style syntax. The model-theoretic approach is an accepted paradigm for providing a formal
account of meaning and entailment. To interpret OWL 2 ontologies serialized in the RDF syntax, they are
translated into the functional-style syntax first. For a full account on the model-theoretic semantics of OWL,
we refer to [MPSG08].

2.2 Semantic Web Rule Language (SWRL)

One of the most prominent proposals for an extension of OWL with rules is the Semantic Web Rule Language
(SWRL, [HPSB+04]). SWRL proposes to allow the use of Horn-like rules together with OWL axioms. For
instance, asserting that the combination of the hasParent and hasBrother properties implies the hasUncle
property, is not possible in OWL but in SWRL.

The SWRL specifications, submitted to W3C in May 2004, include a high-level abstract syntax for Horn-
like rules extending the OWL abstract syntax. An extension of the model-theoretic semantics from OWL
provides the formal meaning for rules written in this abstract syntax. Moreover, next to the abstract syntax,
SWRL allows an XML syntax based on the OWL XML presentation syntax, as well as an RDF concrete
syntax based on the OWL RDF/XMI exchange syntax. Both the different syntaxes and the model-theoretic
semantics of SWRL are described in detail in [HPSB+04].

SWRL has a high expressive power but at the price of decidability. Moreover, it becomes undecidable as rules
can be used to simulate role value maps ([SS89]). To balance the expressive power against the execution
speed and termination of the computation, suitable subsets of the language can allow efficient implementa-
tions. The original SWRL specifications are built on OWL 1.0. The minor changes to adapt to OWL 2 are
incorporated in our work.

We present the SWRL language constructs while explaining the metamodel in Chapter 5.1.

2.3 Frame Logic (F-Logic)

Frame Logic (F-Logic), for which we refer to [KLW95] for a full account, is a deductive, object-oriented and
frame-based formalism. Originally, the language was developed for deductive and object-oriented databases
in 1995. Later on, however, it has been applied for the implementation of ontologies. F-Logic provides con-
structs for defining declarative rules which infer new information from the available information. Furthermore,
queries can be asked that directly use parts of the ontology. From a syntactic point of view, F-Logic is a
superset of first-order logic. Currently a new version of FLogic is defined as a community process taking
current developments from the semantic web area into account. Since these new developments are work in
progress we focus on the current implementations of FLogic as addressed in [Ont06, FHK+97].

In contrast to OWL and SWRL, F-Logic does not have several syntactical representations defined. Again, we
introduce the grammar and the object-model of F-Logic while presenting its metamodel in Chapter 5.2.

The F-Logic semantics is based on the fixpoint semantics of Datalog programs [Ull88]. The evaluation starts
with an empty object base, and rules and facts are evaluated iteratively (note that queries are not part of an
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F-Logic program). When the rule body is valid in the actual object base with certain variable bindings, these
bindings are propagated into the rule head. In this way, new information from rule heads is deduced due to
closure properties, and inserted into the object base. Until no new information can be obtained anymore,
rules are continuously evaluated. However, this is only the abstract view on the semantics. An F-Logic
progam is not necessarily executed in a bottom up fashion.
As with Datalog, the evaluation of a negation-free F-Logic program reaches a fixpoint which coincides with
the unique minimal model of that program, which is defined as the smallest set of P- and F-atoms such that
all closure properties and all facts and rules of the program are satisfied. As soon as a fixpoint is reached,
the semantic of an F-Logic program is computed.

Additionally, F-Logic has a model-theoretic semantics. We refer to [KLW95] for a complete presentation of
the F-Logic semantics.

2.4 OWL Ontology Mapping Languages

Since we believe OWL is the most important currently available ontology language, and since we chose OWL
as the core of our work, we apply the logical restriction to focus on mappings between ontologies represented
in OWL. In contrast to the area of ontology languages, where a de facto standard exists for representing and
using ontologies, there is no agreement yet on the nature and the right formalism for defining mappings
between ontologies.

OWL mapping formalisms are often based on non-standard extensions of the logics used to encode the
ontologies. We focus on approaches that connect description logic based ontologies where mappings are
specified in terms of logical axioms. This allows us to be more precise with respect to the nature and
properties of mappings. At the same time, we cover all relevant mapping approaches [SSW05a] that have
been developed that satisfy these requirements: C-OWL [BGvH+03], OIS (Ontology Integration System,
[CDL01]), DL for II (DL for Information Integration, [CDL02]), and DL-Safe Mappings [HM05].

[SU05] researched the nature of ontology mappings and identified some general aspects of the above map-
ping approaches. We want to take these general aspects as a basis for our work, since we want to make
sure that all these approaches are covered. Additionally, we provide specific support for C-OWL and DL-
Safe Mappings by defining sets of metamodel constraints as well as language mappings for these concrete
formalisms. For specific details on C-OWL and DL-Safe Mappings, we refer to Chapter 6, where we present
their aspects along with the introduction of the metamodel.
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Part II

The NeOn Metamodel for Networked
Ontologies
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Chapter 3

Metamodeling for Ontologies

3.1 Metamodeling with MOF

The Model Driven Architecture [MKW04, Fra03] is an initiative of the standardization organization OMG
(Object Management Group) to support model-driven engineering of software systems based on the idea
that modeling is a better foundation for developing and maintaining systems. MDA utilizes modeling as
technique to raise the abstraction level and to effectively manage the complexity of systems. Models increase
productivity, under the assumption that it is cheaper to manipulate the model, which is an abstraction of the
system, than the system itself.

Using the MDA methodology, system functionality may first be defined as a technology neutral model through
an appropriate modeling language. Then, using automated tools, this can be translated to one or more
technology specific models. One of the fundamental components of MDA that is used in our work, is the
Meta Object Facility.

When describing a universe of discourse in the real world, objects are being classified according to their
common features. Furthermore, when referring to the objects, some of their properties which are not relevant
may be left out. This step of describing objects with only those original properties that are of interest, and
leaving out the irrelevant properties, is called abstraction. In addition, next to classification and abstraction,
the classes of objects are grouped based on common features, a process called generalization.

These three steps of classifying, abstracting and generalizing take place in many contexts, but they are
crucial in the modeling area. When formalizing the description of some domain in a model, these three steps
are typically combined, and therefore performed at the same time. That is to say, a modeler looks at the real
objects to be modeled, and abstracts away any information which seems not to be required. Simultaneously,
the objects are classified into types and these types are put into generalization-hierarchies.

To support the MDA initiative, it is essential that designed models are commonly understood by all involved
parties. This requires the ability to specify the meaning of a model. This is where metamodels come into
play. A metamodel specifies the constructs of a modeling language, using the constructs that can be used in
the description of a language. The Meta Object Facility [Obj06, Fra03] provides such a set of metamodeling
constructs to define MOF-based metamodels as models of modeling languages.

We first introduce MOF using its four-layer architecture in Section 3.1.1. Next, Section 3.1.2 starting on page
26 introduces the available MOF constructs.

3.1.1 The Four-Layer Architecture of MOF

Before explaining some more details of MOF, let us look at the relationship between a metamodel and an
instance model that represents the objects in the real world. A standardized terminology of OMG eases the
communication about the different layers we just introduced, namely the information layer, the model layer
and the metamodel layer. These are shown in the three bottom layers of Figure 3.1.
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Information:
Laboratory "AECE", Country "Spain", ...

Model:
Class "Laboratory", Class "Country", ...

Metamodel:
MetaClass "Class", MetaClass "Property", ...

MOF - Meta-metamodel:
MetaClass, MetaAttribute, ...

Figure 3.1: OMG’s four-layer metamodel hierarchy

The undermost layer of this hierarchy encompasses the raw information to be described. For example, the
figure contains information about a pharmaceutical laboratory called AECE and about the country Spain,
in which the laboratory is located. One layer above, the model layer contains the definition of the required
structures, like the classes used for classifying information. Thus in the example, the classes Laboratory and
Country are defined. If these structures are combined, they describe the model for the given domain. The
metamodel on the third layer defines the terms in which the model is expressed. In our example, we would
state that models are expressed with classes and properties by instantiating the respective metaclasses.
Important to mention is that the architecture allows models to span more than one of the lower levels. On-
tologies do not have a clear separation between model and information. Therefore, in our work, the two
bottom layers of Figure 3.1 are combined into one layer.

Finally, the figure also presents the fourth layer, the meta-metamodel layer called the MOF layer. It is the
meta-metadata defining the modeling constructs that can be used to define and manipulate a set of interop-
erable metamodels on the level below. The MOF layer contains only the simplest set of concepts for models
and metamodels, and captures the structure and semantics of arbitrary metamodels. Note that the top MOF
layer is "hard wired" in the sense that it is fixed, while the other layers are flexible and allow to express vari-
ous metamodels such as the existing UML metamodel or our metamodel for ontologies, rules and ontology
mappings.

The model-driven framework supports any kind of metadata and allows new kinds to be added as required.
Clearly, the MOF layer plays a crucial role in this four-layer metamodel hierarchy of OMG. It allows to define,
manipulate and integrate metamodels and models in a platform-independent manner.

3.1.2 Available Constructs in MOF

The set of constructs provided by MOF is a simple set of concepts, though powerful enough for capturing the
static structure of a model. The five MOF-concepts are represented as metaconcepts in Figure 3.1 and can
define the abstract syntax of a language:

• types (classes, primitive types, and enumerations),

• generalization,

• attributes,

• associations, and

• operations.
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Figure 3.2: Modules of the Networked Ontology Metamodel and possible groundings in ontology languages

Ecore [BGS+03] has emerged as a quasi standard for the definition of metamodels and we provide our
metamodels in the Ecore-format. Also, throughout the years, OMG has striven for a unification of MOF
and UML ([Gro05], [Obj06]). This makes UML also suitable as a graphical notation for MOF metamodels.
Moreover, when UML is used to build MOF metamodels, such specifications are not merely UML diagrams.
Instead, MOF borrows object-oriented class-modeling constructs from UML and presents them for describing
the abstract syntax of modeling constructs. Thus, MOF metamodels can look like UML class models, and
one can use UML class-modeling tools to display them. We present our metamodels also in UML so that
they are easily understandable for the reader.

3.1.3 MOF vs. UML

It should be noted that a MOF specification is not merely a UML diagram. Instead, MOF borrows OO class-
modeling constructs from UML and presents them as the common means for describing the abstract syntax
of modeling constructs. Thus, MOF metamodels look like UML class models, and one can use UML class-
modeling tools to create them.

3.2 A Networked Ontology Metamodel

The ontology metamodel as well as a UML profile are grounded in MOF in that they are defined in terms
of the MOF meta-metamodel. The UML profile mechanism is an extension mechanism to tailor UML to
specific application areas. UML profiles define a visual notation for optimally supporting the specification of
networked ontology models. This visual syntax is based on the metamodel. Mappings in both directions
between the metamodel and the profile have to be established.

However, the OWL ontology metamodel is just one part of the networked ontology metamodel. The meta-
model consists of several modules. The core module, i.e. the OWL metamodel, is extended by different
modules that provide additional features, e.g. rules or mappings. In many application scenarios, only partic-
ular aspects of the networked ontology model are needed. In these cases, only the relevant modules need
to be supported and used.

While the OWL ontology metamodel has a direct grounding in the OWL ontology language, the extensions
have a generic character in that they are formalism independent and allow a grounding in different formalisms.
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3.2.1 Design Considerations

Modularization The metamodel consists of several modules. The core module, i.e. the OWL metamodel,
is extended by different modules that provide additional features, e.g. modularization, mappings, etc. In many
application scenarios, only particular aspects of the networked ontology model are needed. In these cases,
only the relevant modules need to be supported and used.

Compatibility with standards In terms of the metamodel, two aspects of standards are relevant: The
first aspect relates to the fact that we are using a standard formalism—namely the Meta Object Facility—
to describe the metamodel. The second aspect relates to the metamodel of networked ontologies itself:
A major design goal is compatibility with existing ontology languages. With the Web Ontology Language
OWL we have a standard for representing ontologies, therefore we provide a metamodel of OWL directly,
with a one-to-one translation. For the other aspects of networked ontologies (mappings, rules, . . . ) no
such standards exist yet. In favor of general applicability we therefore provide generic metamodels for these
extensions that allow translations to different formalisms, as shown in Figure 3.2.

3.2.2 Advantages of the Networked Ontology Metamodel

Defining the ontology model in terms of a MOF compliant metamodel yields a number of advantages:

1. Interoperability with software engineering approaches In order for semantic technologies to be
widely adopted by users and to succeed in real-life applications, they must be well integrated with mainstream
software trends. This includes in particular interoperability with existing software tools and applications to put
them closer to ordinary developers. MDA is a solid basis for establishing such interoperability. With the
ontology model defined in MOF, we can utilize MDA’s support in modeling tools, model management and
interoperability with other MOF-defined metamodels.

2. Standardized model transformations MOF specifications are independent of particular target plat-
forms (e.g. programming languages, concrete exchange syntaxes, etc.). Industry standardized mappings
of the MOF to specific target languages or formats can be used by MOF-based generators to automatically
transform the metamodel’s abstract syntax into concrete representations based on XML Schema [TBMM04],
Java, etc. For example, using the MOF-Java mapping, it is possible to automatically generate a Java API for
a MOF metamodel.

3. Custom model transformations As MOF-based metamodels are all built using the same standardized
constructs, mappings between them can be defined in a straightforward way. Based on these mappings
between the metamodels, automatic transformations between models of the concerning languages can be
performed.

4. Reuse of UML for modeling With respect to interoperability with other metamodels, UML is of particular
importance. UML is a well established formalism for visual modeling and has been proposed as a visual
notation for knowledge representation languages as well [HEC+04, BKK+01, BKK+02, CP99, Kre98]. While
UML itself lacks specific features of knowledge representation languages, the extension mechanisms – UML
profiles – allow to tailor the visual notation to specific needs.

5. Independence from particularities of specific formalisms The metamodeling approach of MDA and
MOF allows to define a model in an abstract form independent from the particularities of specific logical
formalisms. This enables to be compatible with currently competing formalisms (e.g. in the case of rule-
or mapping languages), for which no standard exists yet. Language mappings define the relationship with
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particular formalisms and provide the semantics for the ontology model. Furthermore, the extensibility capa-
bilities of MOF allow to add new modules to the metamodel if required in the future.

Consequences of using a metamodel Above we have discussed a number of advantages of using a
metamodel-based specification. It should be noted that these are benefits that one may make use of, but is
not obliged to.

It is possible to simply use the metamodel as a reference, but realize developments in terms of other tech-
nologies.

E.g., While MOF-based syntaxes are used in MDA environments and as such , of course other syntaxes (e.g.
OWL/XML or OWL/RDF syntax in the case of OWL) may also be used. Similarly, one does not need to use
a UML based syntax for visual modeling of ontologies (as for example in OntoModel1, but one may resort to
other visualizations (as e.g. for the relationship visualizer2).

3.2.3 Semantics of the Metamodel

The MOF does not completely define the semantics of the language specified by a metamodel. The se-
mantic features of the MOF are limited to describing constraints on the structure of models, using the Object
Constraint Language OCL. Obviously, this is not sufficient . and not intended . to capture the complete se-
mantics of arbitrary languages. The actual semantics of the language specified by the metamodel is defined
by so called language mappings, also called groundings. They define the relationship with particular (logical)
formalisms and provide the semantics for the metamodel. For the networked ontology model this means the
following:

• Our metamodel for OWL DL ontologies has a one-to-one mapping to the abstract syntax of OWL DL
and thereby to its formal semantics.

• The rule metamodel currently has a translation to SWRL and its semantics. However, SWRL is not
generally accepted as a standard for representing rules. Other proposals for rule languages exist,
which differ in their semantics. To support such languages (such as F-Logic) in the future, it would
either be possible to define new language mappings from our metamodel to these languages, or to
define different rule metamodels, each of which is tailored to a specific rules language.

• For the mapping metamodel, we deliberately abstained from subscribing to a particular mapping lan-
guage, but instead constructed the metamodel to be able to cover all relevant approaches to map-
ping languages. We believe that many of them are useful in different contexts and that a formalism-
independent metamodel is appropriate. The work on groundings in specific mapping languages is
work in progress and will be reported in subsequent deliverables.

• Also for the modularization metamodel, we did not subscribe to a specific language for modular ontolo-
gies. Different language mappings would allow to support various languages for modular ontologies.
As part of a subsequent deliverables (D1.1.3) we will define the appropriate semantics for modular
ontologies in NeOn.

1http://www.neon-toolkit.org/wiki/index.php/OntoModel
2http://www.neon-toolkit.org/wiki/index.php/Plugin_for_OWL_Ontology_Visualization
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Chapter 4

The OWL Metamodel

This chapter introduces the core of our networked ontology model, which is a MOF-based metamodel for
OWL 2 ontologies.

We provide the metamodel for OWL 2 using the core modeling features provided by MOF. To state the
metamodel more precisely, we augment it with OCL constraints, which specify invariants that have to be
fulfilled by all models that instantiate the metamodel.

A metamodel for an ontology language can be derived from the modeling primitives offered by the language.
Our metamodel for OWL ontologies has a one-to-one mapping to the functional-style syntax of OWL 2 and
thereby to its formal semantics.1

Along with the explanation of the various OWL constructs2, we introduce and discuss the corresponding
metaclasses, their properties and their constraints. To simplify the understanding of the metamodel, we add
accompanying UML diagrams to our discussion.

This chapter presents the MOF-based metamodel for OWL in eight sections: Section 4.1 starts with ontolo-
gies and annotations, after which Section 4.2 presents entities and data ranges. Next, Section 4.3 demon-
strates class descriptions and Section 4.4 presents OWL axioms. Then, Section 4.5 gives class axioms, after
which Section 4.6 presents object property axioms. Finally, Section 4.7 presents data property axioms and
Section 4.8 presents facts.

4.1 Ontologies and Annotations

An OWL ontology is defined by a set of axioms. Additionally, an ontology has an ontology IRI and on optional
version IRI (which together act a s a composite identifier), a (possibly empty) set of imported ontologies, and
a set of annotations (see Example 1). With the import primitive, another ontology and so its axioms can
be imported into an ontology. An annotation is some arbitrary information on the ontology, like the creator,
version info and so forth. It is associated with an annotation property and the actual annotation value.

Example 1 The following example illustrates the definition of an ontology and involves the specification of
an imported ontology and an annotation:
Ontology(PharmaceuticalDomain Import(Medication) Comment("An ontology about the pharmaceutical do-
main."))

Figure 4.1 shows the metamodel presentation for ontologies, its axioms and annotations as metaclasses.
The association axioms connects the ontology to its axioms, whereas the associations ontologyAnnotations

1Where the language specifications define constraints on character strings like for instance IRIs, this is not included as OCL
constraints in the metamodel. Although it might be somehow possible to enforce such restrictions by defining OCL constraints, it
would be cumbersome and thus it is preferable that tools that implement the metamodel support these constraints.

2Remember, however, that the language itself is not part of our contribution.



D1.1.5 Updated Version of the
Networked Ontology Model Page 31 of 146

and axiomAnnotations connect ontologies respectively axioms to their annotations. The class Ontology has
associations identify the ontology, ontologyIRI and versionIRI. Please note that a metaclass IRI is used to
represent all IRIs as a first-class object. Finally, the association imports and directlyImports from the class
Ontology to itself links an ontology to its (directly) imported ontologies.

Figure 4.1: OWL metamodel: ontologies

Figure 4.2: OWL metamodel: annotations

Figure 4.2 demonstrates show annotations in the metamodel. An association annotationValue connects an
Annotation to its value. The OWL 2 specifications specify the value of an annotation to be an anonymous
individual, an IRI or a Literal.

4.2 Entities and Data Ranges

Entities are the fundamental building blocks of OWL 2 ontologies. OWL 2 has six entity types: data types,
OWL classes3 (see Example 2), named individuals, object properties, data properties, and annotation prop-
erties. A datatype is the simplest type of data range. The second entity, a class, is a simple axiomatic class
description classifying a set of instances. These class instances are called individuals, which may be either
named or unnamed individuals. At last, an object property connects an individual (belonging to a class)
to another individual, whereas a data property connects an individual to a data value (belonging to a data
range).

3OWL provides two classes with predefined IRI and semantics: owl:Thing defines the set of all objects (top concept), whereas
owl: Nothing defines the empty set of objects (bottom concept).

2006–2009 © Copyright lies with the respective authors and their institutions.



Page 32 of 146 NeOn Integrated Project EU-IST-027595

Example 2 The following example illustrates the definition of a class in OWL:
Class(Medication)

The OWL specifications highlight entities as the main building blocks of an OWL ontology and its axioms.
Hence, the metamodel defines them as first-class objects in the form of metaclasses. Figure 4.3 presents
an abstract metaclass Entity which is defined as supertype of all types of entities. The five specific types of
entities are specified as subtypes of Entity : Datatype, Class, ObjectProperty, DataProperty and Individual.

Figure 4.3: OWL metamodel: entities

Figure 4.4: OWL metamodel: declarations

Additionally, OWL provides axioms to declare entities (see Example 3). An entity is declared in an ontology if
the ontology, or one of its imported ontologies, contains a declaration axiom for the entity. Entity declarations
are important for checking the structural consistency of an ontology: if each entity occurring in an axiom of the
ontology is declared in the ontology, the ontology is structurally consistent. Figure 4.4 presents a metaclass
Declaration as a subclass of the metaclass Axiom, linked to the entity via the association entity.

Example 3 The following example illustrates how a class definition is declared:
Declaration(Class(Medication))

OWL distinguishes two types of property expressions: object property expressions and data property ex-
pressions, represented by the respective metaclasses ObjectProperty and DataProperty. An object property
can possibly be defined as the inverse of an existing object property (see Example 4). The metamodel has
an abstract superclass ObjectPropertyExpression for both the usual object property and the object property
defined as an inverse of another. Figure 4.5 gives its subclasses ObjectProperty and InverseObjectProp-
erty, representing normal respectively inverse object properties. An inverse object property can be defined
based on any, normal or inverse, object property, hence the association inverseProperty from the metaclass
InverseObjectProperty is connected to the superclass ObjectPropertyExpression.



D1.1.5 Updated Version of the
Networked Ontology Model Page 33 of 146

Figure 4.5: OWL metamodel: object property expressions

Figure 4.6: OWL metamodel: data property expressions

Example 4 The following example illustrates the definition of an inverse object property:
InverseObjectProperty(MadeFromIngredient)

Figure 4.6 shows that, although inverse data properties can not be defined, the entity DataProperty is also
generalized into a supertype in the metamodel, in symmetry with object properties.

Figure 4.7 gives the metamodel representations for the various data range constructs in OWL. To define
a range over data values, OWL provides six constructs, which are generalized in the metamodel into an
abstract superclass DataRange. The basic and simplest data range is the datatype, defined by an IRI.

The metaclass DataComplementOf, DataUnionOf and DataIntersectionOf define a data range as the com-
plement, union and intersection of existing data range. The next data range construct, represented in the
metamodel by the metaclass DatatypeRestriction, applies a facet on an existing data range, connected
through the association dataRange. The facet is specified through the metaclass FacetRestriction, where
the value of the facet is specified as a literal. The last data range type, represented by the metaclass DataO-
neOf, defines a data range by enumerating the data values it contains (see Example 5). The enumerated
data values are represented as constants.

Example 5 The following example illustrates the enumeration of data values:
DataOneOf("5"ˆˆxsd:integer "15"ˆˆxsd:integer)

4.3 Class Descriptions

The two remaining groups of constructs are classes and axioms. We first address the classes. Classes
group similar resources together and are the basic building blocks of class axioms. The class extension
is the set of individuals belonging to the class. To define classes, OWL 2 provides next to a simple class
definition (metaclass Class) several very expressive means for defining classes. The metamodel defines

2006–2009 © Copyright lies with the respective authors and their institutions.
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Figure 4.7: OWL metamodel: data ranges

a metaclass Description as abstract superclass for all class definition constructs. These constructs can be
divided into two main groups: propositional connectives, and restrictions on properties. We present all class
descriptions in this section, accompanied by five diagrams.

Firstly, Figure 4.8 presents the class constructs with propositional connectives4. Propositional connectives
build classes by combining other classes or individuals. The metaclasses ObjectUnionOf and ObjectInter-
sectionOf represent constructs defining a class of which each individual belongs to at least one, respectively
to all of the specified classes (see Example 6). They both have an association called classExpressions
specifying the involved classes5. Moreover, a class can be defined as the complement of another class,
represented by the metaclass ObjectComplementOf with association class, or as an enumeration of a set
of (at least one) individuals. The latter one is represented in the metamodel by the metaclass ObjectOneOf
and its association individuals.

Example 6 The following example illustrates the definition of a class as a subclass of another class, which
is defined through a class description as the intersection of three other classes:
SubClassOf(FluidMedication ObjectIntersectionOf(Fluid Medication BottledProduct))

All other class definitions in OWL 2 describe a class by placing restrictions on the class extension. Figure
4.9 gives the next group, which defines restrictions on the property value of object properties for the context
of the class. The metaclass ObjectAllValuesFrom represents the class construct that defines a class as the
set of all objects which have only objects from a certain other class description as value for a specific object
property (see Example 7).

Example 7 The following example illustrates the definition of a class as a subclass of another class, which
is defined through a class description by restricting an object property:
SubClassOf(Medication ObjectAllValuesFrom(Treats Disease))

The OWL construct that defines a class as all objects which have at least one object from a certain class
description as value for a specific object property, is represented by the metaclass ObjectSomeValuesFrom.
Both ObjectAllValuesFrom and ObjectSomeValuesFrom have an association called class, specifying the
class description of the construct, whereas their association property specifies the object property on which

4Note that Class, although shown in this figure as a subclass of Description, is just a simple class and no propositional connective.
5Note that, as the involved classes can be defined by any class description construct, they are specified in the metamodel via

their abstract superclass.
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Figure 4.8: OWL metamodel: propositional connectives

the restriction is defined. To define a class as all objects which have a certain individual as value for a
specific object property, OWL provides a construct that is represented in the metamodel by the metaclass
ObjectHasValue, its association property specifying the object property, and its association value specifying
the property value. The metaclass ObjectExistsSelf represents the class description of all objects that have
themselves as value for a specific object property.

Thirdly, Figure 4.10 demonstrates the third group of class definitions, which impose restrictions on the car-
dinalities of object properties. A cardinality of an object property for the context of a class can be defined
as a minimum, maximum or exact cardinality. The first one of this group is represented by the metaclass
ObjectMinCardinality, which defines a class of which all individuals have at least N different individuals of
a certain class as values for the specified object property (N is the value of the cardinality constraint) (see
Example 8).

Example 8 The following example illustrates the definition of a class as a subclass of another class, which
is defined through a class description by restricting the cardinality of an object property:
SubClassOf(Medication ObjectMinCardinality(1 madeFromIngredient Ingredient))

Secondly, the construct represented by the metaclass ObjectMaxCardinality defines a class of which all in-
dividuals have at most N different individuals of a certain class as values for the specified object property.
Finally, the construct represented by the metaclass ObjectExactCardinality defines a class of which all in-
dividuals have exactly N different individuals of a certain class as values for the specified object property.
To specify the cardinality (N) of these constructs, which is a simple integer, all three metaclasses have an
attribute cardinality. OCL constraints define that this cardinality must be a nonnegative integer6:

1. The cardinality must be nonnegative:
context ObjectExactCardinality inv:
self.cardinality >= 0

2. The cardinality must be nonnegative:

6Note that it would make sense to define a constraint which specifies that when a minimum and a maximum cardinality on a
property are combined to define a class, the minimum cardinality should be less than or equal to the maximum cardinality. However,
as the OWL specifications do not define this restriction and rely on OWL applications to handle this, we also do not define an OCL
constraint in the metamodel.

2006–2009 © Copyright lies with the respective authors and their institutions.



Page 36 of 146 NeOn Integrated Project EU-IST-027595

Figure 4.9: OWL metamodel: object property restrictions

context ObjectMaxCardinality inv:
self.cardinality >= 0

3. The cardinality must be nonnegative:
context ObjectMinCardinality inv:
self.cardinality >= 0

Additionally, they all have an association class and an association objectPropertyExpressiob representing the
class respectively the object property involved in the statement. Note that the multiplicity of the associations
called classExpression have multiplicity 'zero or one' as OWL does not define the explicit specification of the
restricting class description as mandatory7.

Just like with object properties, restrictions can be defined on data properties to define classes. On data
properties only three kinds of property value restrictions can be defined (see Example 9).

Example 9 The following example illustrates the definition of a class as a subclass of another class, which
is defined through a class description by specifying a certain value for a data property:
SubClassOf(MedicationForAdults DataHasValue(hasMinimumAge "12"ˆˆxsd:integer))

Figures 4.11 represents the metaclasses for these constructs, DataSomeValuesFrom, DataAllValuesFrom
and DataHasValue. The meaning of the corresponding constructs is the same as with these restrictions
on object properties. The value of a data property belongs to a data range, represented by the metaclass
DataRange, and a specific value is represented by the metaclass Constant. Moreover, the associations
called properties that both DataAllValuesFrom and DataSomeValuesFrom have, are ordered and have mul-
tiplicity '1 to many', as OWL allows to specify more than one data property. This supports class definitions
like "objects whose width is greater than their height", where the width and height are specified using two
data properties.

As the last set of class descriptions in OWL, Figure 4.12 gives the cardinality restrictions defined on data
properties similar to the cardinality restrictions on object properties. The restrictions specify a minimum,
maximum or exact cardinality on a certain data range for the specified data property. Again, OCL constraints
restrict the cardinality to nonnegative integers:

7In the case where it is not explicitly defined, called an unqualified cardinality restriction, the description is owl:Thing.
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Figure 4.10: OWL metamodel: object property cardinality restrictions

Figure 4.11: OWL metamodel: data property restrictions

1. The cardinality must be nonnegative:
context DataMinCardinality inv:
self.cardinality>=0

2. The cardinality must be nonnegative:
context DataMaxCardinality inv:
self.cardinality>=0

3. The cardinality must be nonnegative:
context DataExactCardinality inv:
self.cardinality>=0

2006–2009 © Copyright lies with the respective authors and their institutions.
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Figure 4.12: OWL metamodel: data property cardinality restrictions

Figure 4.13: OWL metamodel: axioms

4.4 OWL Axioms

Figure 4.13 demonstrates the seven types of OWL axioms. We now introduce the remaining types of axioms,
which are class axioms, object property axioms, data property axioms and assertions and keys. They are all
defined through an abstract superclass with various subclasses8.

4.5 Class Axioms

Class axioms make statements about the extensions of two or more classes. Figure 4.14 gives the meta-
model representations for the four kinds of OWL class axioms. The first class axiom defines that a class is
a subclass of another class and is represented in the metamodel as the metaclass SubClassOf, connected
to the two classes via the associations subClassExpression and superClassExpression. Two other axioms,
represented by the metaclasses DisjointClasses EquivalentClasses and DisjointUnionClasses, define that
the extensions of two or more classes are disjoint, respectively equivalent (see Example 10). An association

8Note that the metamodel models all these statements as metaclasses since OWL specifies them as first-class objects in the
form of axioms.
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Figure 4.14: OWL metamodel: class axioms

disjointClassExpressions, respectively equivalentClassExpressions connects the metaclasses to the related
class descriptions.

Example 10 The following example illustrates how three classes are defined to be equivalent:
EquivalentClasses(Disease Illness Sickness)

The fourth and last class axiom defines that one class is the union of a set of classes which are all pair-wise
disjoint. The metaclass DisjointUnion represents this axiom and has an association unionClassExpressions
specifying the class, and an association disjointClassExpressions specifying the disjoint classes.

4.6 Object Property Axioms

The group of object property axioms contains constructs defining relations between different properties,
definitions of domain and range and specifications of property characteristics. We first introduce the various
relations between object properties in Figure 4.15.

The first one, represented by the metaclass SubObjectPropertyOf, defines that the property extension of
one object property, specified through the association subObjectPropertyExpression, is a subset of the
extension of another object property, specified through the association superObjectPropertyExpression.
OWL allows to specify a subproperty chain, where the relation defined through the application of the first
until the last property of the chain is defined as the subproperty of the specified superproperty. Hence the
association subObjectPropertyExpressions is ordered and carries multiplicity 'one to many'. The metaclass
EquivalentObjectProperties represents a construct that defines that the property extensions of two or more
object properties are the same, whereas the class DisjointObjectProperties connects two or more object
properties that are pair-wise disjoint. Inverse object properties are combined with the construct represented
as the metaclass InverseObjectProperties, which defines that for every (x,y) in the property extension of one
property, there is a pair (y,x) in the other property extension, and vice versa.

2006–2009 © Copyright lies with the respective authors and their institutions.
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Figure 4.15: OWL metamodel: object property axioms - part 1

To define the class to which the subjects of an object property belong, OWL provides the domain concept
(see Example 11), whereas a range specifies the class to which the objects of the property, the property
values, belong. Figure 4.16 presents the metamodel elements for the constructs defining an object property
domain and range.

Example 11 The following example illustrates the definition of the domain of an object property:
ObjectPropertyDomain(madeFromIngredient Medication)

The metaclass ObjectPropertyDomain specifies an object property and its domain via the associations
property respectively domain. Similarly, the metaclass ObjectPropertyRange represents the construct to
define the range of an object property.

The remaining OWL object property axioms take an object property and assert a characteristic to it. In doing
so, object properties can be defined to be functional, inverse functional, reflexive, irreflexive, symmetric,
antisymmetric, or transitive.

A functional object property is a property for which each subject from the domain, can have only one value
in the range, whereas an inverse functional object property can have only one subject in the domain for each
value in the range. A transitive property defines that when the subject-object pairs (x,y) and (y,z) belong to
the property extension, then the pair (x,z) belongs to the property extension as well.

When an object property is defined to be reflexive, then for each object x, the subject-object pair (x,x) belongs
to the object property extension. The opposite, when for each object x, the subject-object pair (x,x) does not
belong to the object property extension, can be specified as an irreflexive object property. When an object
property is specified to be symmetric or asymmetric, then the pair (y,x) does respectively does not belong
to the object property extension when the subject-object pair (x,y) belongs to the object property extension
(see Example 12).

Example 12 The following example illustrates how an object property is defined to be asymmetric:
AsymmetricObjectProperty(madeFromIngredient)
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Figure 4.16: OWL metamodel: object property axioms - part 2

Figure 4.17: OWL metamodel: object property axioms - part 3

Figure 4.17 demonstrates that each of these axioms has an own metaclass with an association objectProp-
ertyExpression to the class ObjectPropertyExpression, specifying the property on which the characteristic is
defined.

4.7 Data Property Axioms

Similar to object property axioms, OWL provides six types of axioms on data properties.

Data properties can be defined to be a subproperty of another data property, or can be defined as being
functional. Additionally, two or more data properties can be defined to be equivalent or disjoint. Figure 4.18
presents the corresponding metamodel elements.
Finally, OWL provides constructs to define the domain and range of a data property (see Example 13).

Example 13 The following example illustrates the specification of the range of a data property:
DataObjectPropertyRange(hasMinimumAge xsd:nonNegativeInteger)
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Figure 4.18: OWL metamodel: data property axioms - part 1

Figure 4.19: OWL metamodel: data property axioms - part 2

Figure 4.19 gives the classes that represent them in the metamodel, DataPropertyDomain and DataProp-
ertyRange. Both have an association dataPropertyExpression specifying the property, and additionally an
association domain to Description specifying its domain, respectively an association range to DataRange
specifying its range.

4.8 Assertions

Seven different axioms allow to state facts in ontologies. Figure 4.20 gives the metamodel representations
for the first three of these axioms, stating facts about classes and individuals. Since OWL is made for use on
the web and one can not assume that everyone uses the same name for the same thing on the web, OWL
does not have the so-called unique name assumption. Instead, OWL provides several constructs to define
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Figure 4.20: OWL metamodel: Assertions - part 1

facts about the identity of individuals: individuals can be defined to denote the same object, represented
in the metamodel by the metaclass SameIndividual, and two or more individuals can be defined to denote
different objects, represented by the class DifferentIndividuals. Both metaclasses have an association to the
metaclass NamedIndividual connecting the axiom with the individuals it applies. Moreover, a class assertion
specifies to which class a certain individual belongs (see Example 14) and is defined in the metamodel
as the metaclass ClassAssertion with an association individual to Individual and an association class to
Description.

Example 14 The following example illustrates how the class to which an individual belongs, is specified:
ClassAssertion(sinusitis Disease)

The remaining assertion axioms state assertions about properties. To specify the value of a specified indi-
vidual under a certain object property, OWL provides the object property assertion construct (see Example
15).

Example 15 The following example illustrates how the value of an individual under an object property, is
defined:
ObjectPropertyAssertion(madeFromIngredient aspirin acetylsalicylicacid)

The opposite is defined by a negative object property assertion, which defines that an individual is exactly not
the value of another individual under the specified object property. Figure 4.21 shows that both constructs
are represented in the metamodel as a metaclass, ObjectPropertyAssertion respectively NegativeObject-
PropertyAssertion. Both have an association to objectPropertyAssertion representing the involved property,
and two associations to Individual representing the subject and the object of the assertion.

Finally, as the last constructs for assertions in OWL, Figure 4.22 introduces instantiations of data proper-
ties. Similar to object property instantiations, OWL allows normal (positive) as well as negative data property
assertions. Both metaclasses DataPropertyAssertion and NegativeDataPropertyAssertion have three as-
sociations connecting them to the property, an individual as the subject of the property assertion, and a
constant as the property value.

4.9 Annotation Axioms

The final type of axioms are annotation axioms, as shown in Figure 4.23. These include axioms to define the
properties of annotation properties (analogous to data- and object property axioms) and the actual annotation
assertions. These axioms have no effect on the direct semantics of OWL 2.

2006–2009 © Copyright lies with the respective authors and their institutions.
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Figure 4.21: OWL metamodel: Assertions - part 2

An annotation assertion states that the annotation subjectŮ an IRI or an anonymous individual Ů is annotated
with an annotation property and an annotation value. An annotation subproperty axiom states that one
annotation property is a subproperty another. An annotation property domain (range) axiom states that what
the domain (range) of the annotation property is.
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Figure 4.22: OWL metamodel: Assertions - part 3

Figure 4.23: Annotation Axioms
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Chapter 5

The Rule Metamodel

5.1 A Metamodel for SWRL Rules

We consistently extend our metamodel for OWL 2 presented in the previous section with a metamodel for
SWRL that directly resembles the extensions of SWRL to OWL. Just like the OWL metamodel, this extension
is augmented with OCL constraints to state the metamodel more precisely.

Three subsections introduce the different parts of the metamodel extension along with a discussion of the
corresponding SWRL constructs.1 2

The following subsections present the extension of the OWL metamodel for SWRL. Section 5.1.1 starts with
rules, after which Section 5.1.2 presents predicate symbols. Finally, Section 5.1.3 presents terms.

5.1.1 Rules

The main component of OWL ontologies is the set of axioms. SWRL specifies a rule also as an axiom and
Figure 5.1 demonstrates how our metamodel consequently represents it as a subclass of the abstract su-
perclass OWLAxiom, called Rule. As all OWL axioms, a SWRL rule can be annotated, which is represented
through an association of its superclass (Figure 4.1 on page 31). To identify a rule and assure compatibility
with OWL, they can be assigned a URI, represented by the optional attribute URI.

A rule in SWRL contains an antecedent, also refered to as 'body', and a consequent, also refered to as
'head'. As we wanted to be able to treat them as first-class objects in our metamodel, we represent them
by metaclasses, called Antecedent and Consequent. Both antecedent and consequent contain a number
of atoms, possibly zero, and multiple atoms are treated as a conjunction in SWRL. Consequently, a rule
actually says that if all atoms in the antecedent hold, then the consequent holds3. The fact that antecedent
and consequent are possibly empty, is reflected in the metamodel by the multiplicity 'zero to many' on the
association bodyAtoms from Antecedent to Atom and the association headAtoms between Consequent and
Atom.

A SWRL atom is composed of a predicate symbol followed by an ordered set of terms. The connections
between the atom and these atom components are represented in the metamodel through the associations
from the metaclass Atom to the metaclasses PredicateSymbol and Term. Both PredicateSymbol and Term

1Classes or relationships that already exist in the OWL metamodel, can be recognized in the accompanying UML diagrams by
colored elements and an appropriate little icon.

2Remember that the language SWRL itself does not belong to our contribution.
3An empty antecedent is treated as trivially true, i.e. satisfied by every interpretation, whereas an empty consequent is treated

as false, i.e. not satisfied by any interpretation.
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Figure 5.1: SWRL metamodel extension: rules

are abstract classes. Most of their subclasses exist already in the OWL metamodel.

5.1.2 Predicate Symbols

An atom in SWRL rules can have the following forms:

• An OWL class description, defined on a variable or an OWL individual. The atom holds if the value of
the variable or individual belongs to the class description.

• An OWL data range specification using a variable or a data value. The atom holds if the variable or
individual belongs to the data range.

• An OWL property. In case of an object property, the subject and object of the property are both an
individual or a variable. If the specified property is a datatype property, the atom takes an individual or
a variable as the subject, and a variable or data value as the object. The atom holds if the object of the
property is related to the subject by the specified property.

• A 'sameAs' construct, defined on two objects which are both an individual or a variable. This construct
is actually just some syntactic sugar and could be represented using other existing constructs. How-
ever, since it is useful in practice, the SWRL specifications define it as one of the basic constructs. The
atom holds if the two terms are the same.

• A 'differentFrom' construct, defined on two objects which are both an individual or a variable. Just as
well as sameAs, also differentFrom is syntactic sugar but very practical. The atom holds if the two
terms are different.

• A built-in construct with a built-in ID and a set of variables and data values. Built-ins are classified
into seven modules, like built-ins for lists or built-ins for comparisons. Implementations could select the

2006–2009 © Copyright lies with the respective authors and their institutions.
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modules to be supported. The atom holds if the relation defined through the built-in ID, holds for the
specified terms.

Figure 5.2: SWRL metamodel extension: predicate symbols

Figure 5.2 shows that almost all predicate are available in the OWL metamodel. The set of existing predicate
symbols is extended in SWRL with one new predicate type, built-ins4. These built-ins are represented by the
metaclass BuiltIn which has an attribute URI for their identification.

5.1.3 Terms

The last component in SWRL rules, is the set of terms. Figure 5.3 presents the metamodel elements for the
possible terms in rule atoms: variables, constants and individuals.

Figure 5.3: SWRL metamodel extension: terms

Variables do not exist in OWL, so they are newly introduced in the SWRL extension of the metamodel.
Similar to the representation of data values and individuals, variables are also represented by classes. As
two types of variables are allowed, an abstract superclass Variable is defined and both types of variables
are defined by the subclasses DataVariable and IndividualVariable. The name of any variable is defined
through the attribute name of the superclass, and their scope is always limited to the rule itself. Depending
on the predicate symbol of the atom, only a certain number of terms as well as certain types of terms are
allowed. These restrictions as well as the fact that variables that occur in the consequent must occur in the
antecedent, are defined on the metamodel as OCL constraints:

1. When the predicate symbol of the atom is a description, the atom has exactly one argument and this
argument must be an individual variable or an individual:
context Atom inv:
self.atomName.oclIsTypeOf(Description) implies

4Note that the predicates sameAs and differentFrom are represented through the metaclass BuiltIn.
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self.atomArguments→size()=1 and
(self.atomArguments→at(1).oclIsTypeOf(Individual) or
self.atomArguments→at(1).oclIsTypeOf(IndividualVariable))

2. When the predicate symbol of the atom is a datarange, the atom has exactly one argument and this
argument must be a constant or a data variable:
context Atom inv:
self.atomName.oclIsTypeOf(DataRange) implies
self.atomArguments→size()=1 and
(self.atomArguments→at(1).oclIsTypeOf(Constant) or
self.atomArguments→at(1).oclIsTypeOf(DataVariable))

3. When the predicate symbol of the atom is an object property, the atom has exactly two arguments and
each of these is either an individual or an individual variable:
context Atom inv:
self.atomName.oclIsTypeOf(ObjectProperty) implies
self.atomArguments→size()=2 and
self.atomArguments→forAll(oclIsTypeOf(Individual) or
oclIsTypeOf(IndividualVariable))

4. When the predicate symbol of the atom is a data property, the atom has exactly two arguments and
the first argument must be an individual or an individual variable, and the second argument must be a
constant or a data variable:
context Atom inv:
self.atomName.oclIsTypeOf(DataProperty) implies
self.atomArguments→size()=2 and
(self.atomArguments→at(1).oclIsTypeOf(Individual) or
self.atomArguments→at(1).oclIsTypeOf(IndividualVariable)) and
(self.atomArguments→at(2).oclIsTypeOf(Constant) or
self.atomArguments→at(2).oclIsTypeOf(DataVariable))

5. When the predicate symbol of the atom is a built-in, the atom can have zero to many arguments and
all these arguments can be either a constant or a data variable:
context Atom inv:
self.atomName.oclIsTypeOf(BuiltIn) implies
self.atomArguments→forAll(oclIsTypeOf(Constant) or oclIsTypeOf(DataVariable))

6. Only variables that occur in the antecedent may occur in the consequent of the rule:
context Rule inv:
self.ruleHead.headAtoms→atomArguments→forAll(t | t.oclIsTypeOf(Variable) implies
self.ruleBody.bodyAtoms→atomArguments→exists(t | true))

5.2 A Metamodel for F-Logic Rules

This chapter presents a metamodel for the language F-Logic. The metamodel for F-Logic is not related to
the metamodel for OWL and SWRL in the sense that it is an extension, but it is a stand-alone MOF-based
metamodel for a different language. The only relation that exists between the two is the fact that they are
both defined in MOF, which allows to use the automatic transformation possibilities of the MDA framework.
The F-Logic metamodel also contains OCL constraints to state it more precisely.
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The discussion of the F-Logic metamodel starts with introducing the various metaclasses with their proper-
ties and constraints, while explaining the F-Logic constructs they represent5. UML diagrams accompany this
discussion for the sake of clarity.

Eight subsections present the metamodel: Section 5.2.1 starts with F-Logic programs, after which Section
5.2.2 presents terms. Next, Section 5.2.3 presents Formulas and Section 5.2.4 presents rules and queries.
Then, Section 5.2.5 gives logical connectives and Section 5.2.6 presents logical quantifiers. Finally, Section
5.2.7 demonstrates F-atoms and F-molecules, whereas Section 5.2.8 P-atoms.

5.2.1 F-Logic Programs

The F-Logic specifications define an F-Logic program as a set of facts and rules. Facts are expressions that
represent statements about objects and their relationships. Queries take the form of rules without heads
and operate on a given F-Logic program. Typically, F-Logic applications group the facts, rules and queries
together and call it an F-Logic ontology.

Figure 5.4 describes the core of our metamodel and defines a metaclass FLogicOntology connected to a set
of Formulas via the association ontologyFormulas. The class Formula is an abstract superclass of classes
representing rules, facts and queries.

Formula also has subclasses that do not represent facts, rules or queries but are partial formulas that are
contained in rules and queries. Due to the potential overlap between formulas that are contained directly in
an ontology, and the set of partial formulas indirectly contained in an ontology, the metamodel generalizes
both groups into one superclass.

OCL constraints specify which of the subclasses can be directly contained in FLogicOntology.

Figure 5.4: F-Logic metamodel: ontologies

5.2.2 Terms

The basic syntactical elements of F-Logic are predicate symbols, function symbols, and variables, where
functional terms and variables are called id-terms in F-Logic, which identify objects, methods and classes.
Functional terms are id-terms that have other id-terms as arguments. The F-Logic specifications define
constants as functional terms with zero arguments. To distinguish between constants and variables, every
variable has to be bound to a logical quantifier.

Figure 5.5 depicts how the various types of F-Logic id-terms are derived from an abstract metaclass called
Term, carrying an attribute name that is inherited by all subclasses. Variables and functional terms are
represented by the classes Variable respectively FunctionalTerm. An ordered association arguments to the
class Term specify its arguments in the right order. The association carries a multiplicity of 'zero to many',

5Remember, however, that we did not contribute to the language F-Logic itself.
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Figure 5.5: F-Logic metamodel: terms

denoted by a star, as the number of arguments in a functional term is unrestricted. For the specific type
of functional terms that have zero arguments, constants, the metamodel has a specific class as it is a very
common id-term. Two OCL constraints restrict the multiplicity of the association arguments for constants as
well as for functional terms that are not a constant:

1. A constant is a functional term with zero arguments:
context Constant inv:
self.arguments→size()=0

2. A functional term that is not a constant must have at least one argument:
context FunctionalTerm inv:
self→forAll(not oclIsTypeOf(Constant) implies self.arguments→size()>0)

Finally, the metaclasses Exists and ForAll are connected to the class Variable via respective associations
isBoundToExists and isBoundToForAll to connect a variable to the logical quantifier it is bound to.

Although every instantiation of Variable has to be connected to an instance of one of the two classes, the
associations have multiplicity 'one or zero' as two multiplicities 'exactly one' would define that every variable
needs to be connected to both classes. An OCL constraint makes sure that an instantiated variable does
always have one connection to any of the two:

1. A variable must be bound to exactly one universal quantifier or existential quantifier:
context Variable inv:
(self.isBoundToExists=1 or self.isBoundToForAll=1)
and
(self.isBoundToForAll=1 implies self.isBoundToForExists=0)

5.2.3 Formulas

Facts, rules and queries are represented in the metamodel by subclasses of the metaclass Formula, which
is linked to FLogicOntology through an association. Figure 5.6 gives an overview of the partial formulas that
are derived from the class Formula. We distinguish four groups of partial formulas:

• Logical connectives: classes Conjunction, Negation, Equivalence, Disjunction and Implication

• Logical quantifiers: classes ForAll and Exists

• Facts: classes PAtom, FMolecule and FAtom
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• Rules and queries: classes Rule and Query

An OCL constraint restricts the metamodel so that the logical connectives and quantifiers can not be con-
tained directly into an ontology:

1. The only subtypes of the class Formula that can be directly in an ontology, are F-molecules (and so
F-atoms), P-atoms, rules and queries:
context FLogicOntology inv:
self.ontologyFormulas→forAll(oclIsTypeOf(FMolecule) or oclIsTypeOf(Rule) or
oclIsTypeOf(Query) or oclIsTypeOf(PAtom))

The next sections explain the details of the different subclasses of Formula, and explains which combinations
are possible.

Figure 5.6: F-Logic metamodel: formulas

5.2.4 Rules and Queries

Rules (see Example 16) infer new information from available facts and so extend the object base intensionally.
A rule consists of a head (postcondition), an implication sign ( '←−' ), and a body (precondition). A rule
defines that when the formula (or combination of formulas) in the body is satisfied, then the formula (or
combination of formulas) in the head is satisfied. The rule head is a conjunction of P-atoms, F-Molecules
and F-atoms, all connected through 'AND' . In the body, arbitrary formulas are allowed, and P-atoms, F-
atoms and F-molecules can be connected by any of the logical connectives: implies ( '→' ), implied by
( '←' ), equivalent ( '↔' ), and ( 'AND' ), or ( 'OR' ), and not ( 'NOT' ).

Example 16 A pharmacy that is a client of a certain pharmaceutical lab, can sell the medications produced
by that lab:
∀X,Y, Z X : Pharmacy[canSell→ Z] ←−
X : Pharmacy[clientOf→ Y ] ∧ Y : Laboratory[produces → Z].

When a rule contains variables, they must be introduced using a quantifier. A universal quantifier ('∀') can
appear in front of a rule or in the rule body, and an existential quantifier ('∃') can also appear anywhere in the
rule body.
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From the rules and facts in an F-Logic program, a model is computed on which queries (see Example 17)
can be asked. The result of a query is a set of substitutions for the query’s variables, that can be derived from
the facts and rules in the knowledge base. Note that also schema level queries are allowed, where not only
instances and their values but also concept and attribute names can be provided as answers via variable
substitutions.

Example 17 The following example query retrieves sets of variable substitutions
'medication, person, disease' whereas the medication is made from the ingredient 'acetylsalicylicacid',
and the person has a disease against which the medication helps. The following values are a possible result
of the query: X = Aspirin, Y = APerson, Z = headache:
∀X,Y, Z ←− X : Medication[madeFromIngredient→ acetylsalicylicacid, helps→ Y ] ∧
Y [hasDisease→ Z]

Figure 5.7 depicts the representation of rules and queries as the metaclasses Rule respectively Query in the
metamodel. As the F-Logic specifications define that rules and queries can be given a name, both classes
contains the attribute name.

Both Rule and Query are connected to the formula it contains through an association containedFormula
carrying multiplicity 'one'6.

Figure 5.7: F-Logic metamodel: rules and queries

Several OCL constraints define how partial formulas can be combined in a rule:

1. A rule is an implication formula and possibly has a universal quantifier in front:
context Rule inv:
(self.containedFormula.oclIsTypeOf(Implication) or
self.containedFormula.oclIsTypeOf(ForAll))
and
(self.containedFormula.oclIsTypeOf(ForAll) implies
self.containedFormula.oclAsType(ForAll).containedFormula.oclIsTypeOf(Implication))

2. The head of a rule is a conjunction of facts or is just one fact (F-molecule or P-atom)7. The following
constraint defines this for rules without a universal quantifier:
context Rule inv:
self.containedFormula.oclIsTypeOf(Implication) implies
self.containedFormula.oclAsType(Implication).consequent.oclIsTypeOf(Conjunction) or
self.containedFormula.oclAsType(Implication).consequent.oclIsTypeOf(FMolecule) or
self.containedFormula.oclAsType(Implication).consequent.oclIsTypeOf(PAtom)

6Remember that when a rule or query consist of a combination of more than one formula, this is also represented as one formula,
hence they can always contain maximum one formula.

7Note that another fact construct in F-Logic, F-atom, is defined as a subclass of FMolecule and thus is also included.
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3. A similar constraint is defined for rules with universal quantifier:
context Rule inv:
self.containedFormula.oclIsTypeOf(ForAll) implies
self.containedFormula.oclAsType(ForAll).containedFormula.oclAsType(Implication).
consequent.oclIsTypeOf(Conjunction) or
self.containedFormula.oclAsType(ForAll).containedFormula.oclAsType(Implication).
consequent.oclIsTypeOf(FMolecule) or
self.containedFormula.oclAsType(ForAll).containedFormula.oclAsType(Implication).
consequent.oclIsTypeOf(PAtom)

4. When the head of a rule is a conjunction, the combined formulas may only be facts. The following
constraint defines this for rules without a universal quantifier:
context Rule inv:
self.containedFormula.oclIsTypeOf(Implication) implies
(self.containedFormula.oclAsType(Implication).consequent.oclIsTypeOf(Conjunction) implies
self.containedFormula.oclAsType(Implication).consequent.
oclAsType(Conjunction).connectedFormulas→forAll(oclIsTypeOf(FMolecule) or
oclIsTypeOf(PAtom)))

5. A similar constraint is defined for rules with universal quantifier:
context Rule inv:
self.containedFormula.oclIsTypeOf(ForAll) implies
(self.containedFormula.oclAsType(ForAll).containedFormula.oclAsType(Implication).
consequent.oclIsTypeOf(Conjunction) implies
self.containedFormula.oclAsType(ForAll).containedFormula.oclAsType(Implication).
consequent.oclAsType(Conjunction).connectedFormulas→forAll(
oclIsTypeOf(FMolecule) or oclIsTypeOf(PAtom)))

6. The body of a rule can be any formula except a rule or a query. The following constraint defines this
for rules without a universal quantifier:
context Rule inv:
self.containedFormula.oclIsTypeOf(Implication) implies
not self.containedFormula.oclAsType(Implication).antecedent.oclIsTypeOf(Rule)
and
not self.containedFormula.oclAsType(Implication).antecedent.oclIsTypeOf(Query)

7. A similar constraint is defined for rules with universal quantifier:
context Rule inv:
self.containedFormula.oclIsTypeOf(ForAll) implies
not self.containedFormula.oclAsType(ForAll).containedFormula.oclAsType(Implication).
antecedent.oclIsTypeOf(Rule) and
not self.containedFormula.oclAsType(ForAll).containedFormula.oclAsType(Implication).
antecedent.oclIsTypeOf(Query)

Three OCL constraints speciy how partial formulas are combined in queries:

1. A query is an implication formula with empty head, and can have a universal quantifier in front:
context Query inv:
(self.containedFormula.oclIsTypeOf(Implication) or
self.containedFormula.oclIsTypeOf(ForAll))
and
(self.containedFormula.oclIsTypeOf(Implication) implies
self.containedFormula.oclAsType(Implication).consequent→isEmpty)
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and
(self.containedFormula.oclIsTypeOf(ForAll) implies
self.containedFormula.oclAsType(ForAll).containedFormula.oclIsTypeOf(Implication)
and self.containedFormula.oclAsType(ForAll).containedFormula.
oclAsType(Implication).consequent→isEmpty)

2. The formula in the body of the query can be any formula except a rule or a query. The following
constraint defines this for queries without a universal quantifier:
context Query inv:
self.containedFormula.oclIsTypeOf(Implication) implies
not self.containedFormula.oclAsType(Implication).consequent.oclIsTypeOf(Rule)
and not self.containedFormula.oclAsType(Implication).consequent.oclIsTypeOf(Query)

3. A similar constraint is defined for queries with universal quantifier:
context Query inv:
self.containedFormula.oclIsTypeOf(ForAll) implies
not self.containedFormula.oclAsType(ForAll).containedFormula.
oclAsType(Implication).antecedent.oclIsTypeOf(Rule)
and not self.containedFormula.oclAsType(ForAll).containedFormula.
oclAsType(Implication).antecedent.oclIsTypeOf(Query)

5.2.5 Logical Connectives

Partial formulas can be combined using logical connectives to form more complex formulas. Not only facts
(P-atoms, F-atoms and F-molecules) but also logical quantifiers or other formulas which already connected
through logical connectives, can be combined. The following table gives the F-Logic symbols and the
representation in the metamodel for the logical connectives in F-Logic:

F-Logic Symbol Metamodel element
AND class Conjunction
↔ class Equivalence
→ class Implication
NOT class Negation
OR class Disjunction

Figure 5.8 details logical connectives8. Each of these subclasses is connected to the class Formula,
specifying the formulas that are combined.Ê Conjunction and Disjunction both have an association connect-
edFormulas with multiplicity 'two to many' in the metamodel, as they combine two or more partial formulas.
Equivalence combines exactly two formulas, denoted by the multiplicity 'exactly two' on the association
connectedFormulas. As a negation is only containing one formula, the association connectedFormula from
Negation to Formula has multiplicity 'exactly one'. Finally, the metamodel provides two separate associations
from Implication to the two formulas it combines, antecedent and consequent, as it is necessary to be able
to distinguish between the two formulas as being the one before or the one behind the implication-sign. OCL
constraints restrict the metamodel in the sense that the five logical connectives cannot be used in combining
rules or queries:

1. A conjunction can not combine rules or queries:
context Conjunction inv:
self.connectedFormulas→forAll(not oclIsTypeOf(Rule) and not oclIsTypeOf(Query))

8Note that the two classes Formula in the figure represent the same metaclass but are only depicted twice for the sake of clarity,
as allowed in UML diagrams.
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Figure 5.8: F-Logic metamodel: logical connectives

2. A disjunction can not combine rules or queries:
context Disjunction inv:
self.connectedFormulas→forAll(not oclIsTypeOf(Rule) and not oclIsTypeOf(Query))

3. An equivalence construct can not combine rules or queries:
context Equivalence inv:
self.connectedFormulas→forAll(not oclIsTypeOf(Rule) and not oclIsTypeOf(Query))

4. A negation can not be defined on a rule or a query:
context Negation inv:
self.connectedFormula→forAll(not oclIsTypeOf(Rule) and not oclIsTypeOf(Query))

5. An implication can not combine rules or queries:
context Implication inv:
self.antecedent→forAll(not oclIsTypeOf(Rule) and not oclIsTypeOf(Query)) and
self.consequent→forAll(not oclIsTypeOf(Rule) and not oclIsTypeOf(Query))

5.2.6 Logical Quantifiers

F-Logic allows the two logical quantifiers ∀ and ∃, binding variables in a formula. Figure 5.9 shows how
the metamodel represents the two logical quantifiers as the subclasses Exists and ForAll of the metaclass
Formula. Both are connected to Formula via an association containedFormula, specifying the formula that is
combined with the quantifier. To specify the variables that are bound to the logical quantifiers, the metamodel
provides an association boundVariables from both to the metaclass Variable. To make sure that a variable
that is connected to a quantifier through their association boundVariables is also connected to the quantifier
in the other direction through the association isBoundToExists respectively isBoundToForAll, and vice versa,
three OCL constraints are defined:

1. When a variable is bound to a quantifier in one direction, than this quantifier must have the variable
defined as one of its bound variables in the other direction:
context Variable inv:
(self.isBoundToExists=1 implies
self.isBoundToExists.boundVariables→exists(v: Variable | v=self)) and
(self.isBoundToForAll=1 implies
self.isBoundToForAll.boundVariables→exists(v: Variable | v=self))
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2. When an existential quantifier has defined a variable as one of its bound variables, then this variable
must be defined as bound to that quantifier:
context Exists inv:
self.boundVariables→forAll(v : Variable | v.isBoundToExists=self)

3. When a universal quantifier has defined a variable as one of its bound variables, then this variable
must be defined as bound to that quantifier:
context ForAll inv:
self.boundVariables→forAll(v : Variable | v.isBoundToForAll=self)

Figure 5.9: F-Logic metamodel: logical quantifiers

5.2.7 F-Atoms and F-Molecules

Let c, c1, c2, m, o, r, r1, r2, ..., rn and t be F-Logic id-terms. Then we can define an F-atom as a fact
expression with one of the following forms:

• instanceOf assertion: o : c denotes that object o is an instance of class c.

• subclassOf assertion: c1 :: c2 denotes that class c1 is a subclass of class c2.

• single-valued method signature (method definition): c[m ⇒ t] is a signature-atom specifying that the
application of the single-valued (or functional) method m on an object of class c has as result an
obect of type t, where single-valued or functional means that at most one object exists as value for the
application of the method on an object.

• multi-valued method signature (method definition): c[m ⇒⇒ t] is a multi-valued signature-atom denot-
ing that the application of the method m on an instance of class c has a set of possible objects of type
t as result.

• single-valued method application (method instantiation): o[m → r] expresses that the application of
the method m on the object o has the object r as value.

• multi-valued method application (method instantiation): o[m� {r1, r2, ..., rn}] expresses that a set of
the objects r1, r2, ..., rn is the result of the application of the method m on object o.
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In the method signatures and method applications, the parts between the square brackets is referred to
as the method part, whereas the object in front of the brackets is called the host in F-Logic. All method
signatures and method applications can additionally have parameters.

To group several F-atoms about an object together conjunctively, F-Logic allows F-molecules. F-molecules
can contain several method applications or method signatures in the method part of one construct, and
moreover, not only a class but also an instanceOf or subclassOf assertion can appear as host in front of the
method list9. For example

X : Researcher[authorOf→ Y ; cooperatesWith → Z]

is equivalent to

X : Researcher ∧X[authorOf→ Y ] ∧X[cooperatesWith→ Z]
Ê

Figure 5.10 describes a metaclass FMolecule as a subclass of the metaclass Formula to represent an F-
molecule. Because F-atoms are actually a special kind of F-molecules which can only have a simple term as
host, and can only have one method in the method part, whereas F-molecules are unrestricted as regards
the host objects as well as the number of methods, F-atoms are represented as a subclass of the metaclass
FMolecule, called FAtom.

An association called host from the metaclass FMolecule to the metaclass HostObject links an F-molecule
(and so an F-atom) to its host object, whereas an association called methods links an F-molecule (and so
an F-atom) to its methods. Both F-molecules and F-atoms have always exactly one host object, which is
denoted in the metamodel by the multiplicity 'exactly one' on the association host. The association methods
has multiplicity 'zero to many' since an F-molecule has one or more methods, but an F-atoms has zero
methods in case it has a simple term (a variable, a functional term or a constant) as host object. An OCL
constraint restricts the metamodel with respect to the number of methods in F-atoms:

1. An F-atom is an F-molecule with exactly one method in case it has a simple term as host object, and
zero methods otherwise:
context FAtom inv:
(self.host.oclIsTypeOf(Term) and self.methods→size()=1) or
(not self.host.oclIsTypeOf(Term) and self.methods→size()=0)

Figure 5.11 shows the representation of the host objects in the metamodel. The three different types of host
objects are defined as subclasses of the abstract superclass HostObject. The first type of host object is a
simple term, represented by the metaclass Term which we introduced earlier and is an abstract supertype
for variables, constants and functional terms. Secondly, a host object can be a combination of two terms
of which one is defined to be the subclass of the other one, represented by the metaclass SubClassOf.
The metaclass SubClassOf is connected to the two terms it combines, via the associations subclass and
superclass. Thirdly, the host object can be a combination of two terms of which the first one is defined to be
an instance of a specific class represented by the second term. This last type of host object is represented in
the metamodel by the metaclass InstanceOf, which is connected to the metaclass Term via the associations
instance and class specifying the terms that are combined in the construct.

Figure 5.12 shows how the methods are represented in the metamodel. The four different types of method
signatures and method applications are all represented as a subclass of the abstract class Method : Single-
ValuedSignature, SingleValuedApplication, MultiValuedSignature and MultiValuedApplication. Every type of
method has a name, which is represented through the association name of their superclass. Additionally,

9Note that atoms can also be nested. For example, the value of a method application can be defined as an atom itself.
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Figure 5.10: F-Logic metamodel: F-molecules

Figure 5.11: F-Logic metamodel: F-molecule host objects

the association parameters with multiplicity 'zero to many' represents the optional parameters a method in
F-Logic can have.

The fact that all method types except the multi-valued method application have exactly one object as value,
is represented by the association value with multiplicity 'exactly one' that the three metaclasses SingleVal-
uedSignature, SingleValuedApplication and MultiValuedSignature share. As the multi-valued method appli-
cation has a set of one or more method values, the association value between MultiValuedApplication and
MethodValue has multiplicity 'one to many'10.

As not only terms but also F-molecules itself are allowed as method values, an abstract metaclass Method-
Value is defined in the metamodel for the different types of method values. The metaclasses Term and
FMolecule which were introduced already earlier, are defined as subclasses of the metaclass MethodValue.

5.2.8 P-Atoms

F-Logic provides P-atoms for compatibility with languages like Datalog. P-atoms consist of a predicate
symbol p and a list of id-terms F1 to Fn as parameters: p(F1, ..., Fn). Information expressed by F-atoms can
usually also be represented by P-atoms.

F-Logic additionally provides some built-in features, including several comparison predicates, the basic
arithmetic operators, and so forth. Built-ins are actually specific, predefined P-atoms with at least one

10Note that, although a multi-valued method has more method values, the method value of a multi-valued method signature is
defined as a class and hence it has not more than one method value.
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Figure 5.12: F-Logic metamodel: methods

parameter.

Figure 5.13 demonstrates the metamodel representation of P-atoms as the metaclass PAtom. The predicate
symbol in front of the parameters in a P-atom is represented in the metamodel by the class PredicateSymbol
which has an attribute name specifying the predicate’s name. The metaclass PAtom is connected to the
metaclass PredicateSymbol through the association predicate with multiplicity 'exactly one', as every P-atom
must have a predicate symbol. The P-atoms’s parameters are represented by instantiations of any subclass
of the metaclass Term, to which the metaclass PAtom is connected with the ordered association parameters.
This association carries a multiplicity 'zero to many' as a P-atom does not have any restrictions with respect
to the number of parameters: it can contain zero but also many parameters.

As F-Logic built-ins are used in the same way as predicate symbols, the metamodel defines a metaclass
Builtin as a subclass of the metaclass PredicateSymbol. An OCL constraint restricts the metamodel with
respect to the number of parameters of a built-in:

1. If the predicate is a built-in, it must have at least one parameter:
context PAtom inv:
self.predicate.oclIsTypeOf(BuiltIn) implies self.parameters→size()>0
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Figure 5.13: F-Logic metamodel: P-atoms
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Chapter 6

The Mapping Metamodel

When people are modeling the same domain, they mostly produce different results, even when then use
the same language. Mappings have to be defined between these ontologies to achieve an interoperation
between applications or data relying on these ontologies. This chapter provides an extension for the
metamodel for OWL and SWRL to give additional support for mappings between heterogeneous ontologies.

Section 6.1 introduces the metamodel extension in the same way as we did in the introduction of the
metamodel for OWL and SWRL, and for F-Logic. While introducing the various mapping aspects1, we
discuss their representation in the metamodel. Accompanying UML diagrams document the understanding
of the metamodel.2

The metamodel is a common metamodel for the different OWL mapping languages. On top of this common
metamodel, we define two sets of constraints to concretize it to two specific OWL ontology mapping
languages, DL-safe mappings and C-OWL. Section 6.2 starting on page 66 presents the extension for
C-OWL mappings, consisting of a set of constraints. Similarly, Section 6.3 starting on page 67 presents the
extension for DL-Safe Mappings.

6.1 A Common MOF-based Metamodel Extension for OWL Ontology Map-
pings

This section presents the common metamodel extension for OWL ontology mappings in two subsections:
Section 6.1.1 presents mappings, after which Section 6.1.2 presents queries.

6.1.1 Mappings

We use a mapping architecture that has the greatest level of generality in the sense that other architectures
can be simulated. In particular, we make the following choices:

• A mapping is a set of mapping assertions that consist of a semantic relation between mappable ele-
ments in different ontologies. Figure 6.1 demonstrates how this structure is represented in the meta-
model by the five metaclasses Mapping, MappingAssertion, Ontology, SemanticRelation and Map-
pableElement and their associations.

• Mappings are first-class objects that exist independent of the ontologies. Mappings are directed, and
there can be more than one mapping between two ontologies. The direction of a mapping is defined

1Remember, however, that the OWL ontology mapping languages and their general aspects, are not part of our contribution.
2In doing so, meta-classes that are colored or carry a little icon again denote elements from the metamodel for OWL or SWRL.
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through the associations sourceOntology and targetOntology of the metaclass Mapping, as the map-
ping is defined from the source to the target ontology. The cardinalities on both associations denote
that to each Mapping instantiation, there is exactly one Ontology connected as source and one as
target.

These choices leave us with a lot of freedom for defining and using mappings. For each pair of ontologies,
several mappings can be defined or, in case of approaches that see mappings as parts of an ontology,
only one single mapping can be defined. Bi-directional mappings can be described in terms of two directed
mappings.

Figure 6.1: OWL mapping metamodel: mappings

The central class in the mapping metamodel, the class Mapping, is given four attributes. For the assumptions
about the domain, the metamodel defines an attribute DomainAssumption. This attribute may take specific
values that describe the relationship between the connected domains: overlap, containment (in either direc-
tion) or equivalence.

The question of what is preserved by a mapping is tightly connected to the hidden assumptions made by
different mapping formalisms. A number of important assumptions that influence this aspect have been
identified and formalized in [SSW05a]. A first basic distinction concerns the relationship between the sets
of objects (domains) described by the mapped ontologies. Generally, we can distinguish between a global
domain and local domain assumption:

Global Domain assumes that both ontologies describe exactly the same set of objects. As a result, seman-
tic relations are interpreted in the same way as axioms in the ontologies. This domain assumption is
referred to as equivalence, whereas there are special cases of this assumption, where one ontology
is regarded as a global schema and describes the set of all objects, other ontologies are assumed to
describe subsets of these objects. Such domain assumption is called containment.

Local Domains do not assume that ontologies describe the same set of objects. This means that mappings
and ontology axioms normally have different semantics. There are variations of this assumption in the
sense that sometimes it is assumed that the sets of objects are completely disjoint and sometimes
they are assumed to overlap each other, represented by the domain assumption called Overlap.

2006–2009 © Copyright lies with the respective authors and their institutions.
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These assumptions about the relationship between the domains are especially important for extensional
mapping definitions, because in cases where two ontologies do not talk about the same set of instances,
the extensional interpretation of a mapping is problematic as classes that are meant to represent the same
aspect of the world can have disjoint extensions.

The second attribute of the metaclass Mapping is called inconsistencyPropagation, and specifies whether
the mapping propagates inconsistencies across mapped ontologies. uniqueNameAssumption, the third
attribute of the metaclass Mapping, specifies whether the mappings are assumed to use unique names for
objects, an assumption which is often made in the area of database integration. The fourth attribute, URI, is
an optional URI which allows to uniquely identify a mapping and refer to it as a first-class object.

The set of mapping assertions of a mapping is denoted by the relationship between the two classes Mapping
and MappingAssertion. The elements that are mapped in a MappingAssertion are defined by the class
MappableElement. A MappingAssertion is defined through exactly one SemanticRelation, one source
MappableElement and one target MappableElement. This is defined through the three associations starting
from MappingAssertion and their cardinalities.

A number of different kinds of semantic relations have been proposed for mapping assertions and are repre-
sented as subclasses of the abstract superclass SemanticRelation:

Equivalence (≡) Equivalence, represented by the metaclass Equivalence, states that the connected ele-
ments represent the same aspect of the real world according to some equivalence criteria. A very
strong form of equivalence is equality, if the connected elements represent exactly the same real world
object. Specific forms of the equivalence relation are to be defined as subclasses of Equivalence in
the specific metamodels of the concrete mapping formalisms.

Containment (v,w) Containment, represented by the metaclass Containment, states that the element in
one ontology represents a more specific aspect of the world than the element in the other ontology.
Depending on which of the elements is more specific, the containment relation is defined in the one
or in the other direction. This direction is specified in the metamodel by the attribute direction, which
can be sound (v) or complete (w). If this attribute value is sound, the source element is more specific
element than the target element. In case of the attribute value complete, it is the other way around,
thus the target element is more specific than the source element.

Overlap (o) Overlap, represented by the metaclass Overlap, states that the connected elements represent
different aspects of the world, but have an overlap in some respect. In particular, it states that some
objects described by the element in the one ontology may also be described by the connected element
in the other ontology.

In some approaches, these basic relations are supplemented by their negative counterparts, for which the
metamodel provides an attribute negated for the abstract superclass SemanticRelation. For example, a
negated Overlap relation specifies the disjointness of two elements. The corresponding relations can be
used to describe that two elements are not equivalent (6≡), not contained in each other ( 6v) or not overlapping
or disjoint respectively (Ø). Adding these negative versions of the relations leaves us with eight semantic
relations that cover all existing proposals for mapping languages.

In addition to the type of semantic relation, an important distinction is whether the mappings are to be
interpreted as extensional or as intensional relationships, specified through the attribute interpretation of the
metaclass SemanticRelation.

Extensional The extension of a concept consists of the things which fall under the concept. In extensional
mapping definitions, the semantic relations are interpreted as set-relations between the sets of objects
represented by elements in the ontologies. Intuitively, elements that are extensionally the same have
to represent the same set of objects.
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Intensional The intension of a concept consists of the qualities or properties which go to make up the
concept. In the case of intensional mappings, the semantic relations relate the concepts directly,
i.e. considering the properties of the concept itself. In particular, if two concepts are intensionally the
same, they refer to exactly the same real world concept.

As mappable elements, the metamodel contains the class OWLEntity that represents an arbitrary part of
an ontology specification. While this already covers many of the existing mapping approaches, there are
a number of proposals for mapping languages that rely on the idea of view-based mappings and use se-
mantic relations between (conjunctive) queries to connect models, which leads to a considerably increased
expressiveness. These queries are represented by the metaclass OntologyQuery. Note that the metamodel
in principle supports all semantic relations for all mappable elements. OCL constraints for specific mapping
formalisms can restrict the combinations of semantic relations and mappable elements.

6.1.2 Queries

A mapping assertion can take a query as mappable element. Figure 6.2 demonstrates the class Query that
reuses constructs from the SWRL metamodel.

Figure 6.2: OWL mapping metamodel: queries

We reuse large parts of the rule metamodel as conceptual rules and queries are of very similar nature [TF05]:
A rule consists of a rule body (antecedent) and rule head (consequent), both of which are conjunctions of
logical atoms. A query can be considered as a special kind of rule with an empty head. The distinguished
variables specify the variables that are returned by the query. Informally, the answer to a query consists of
all variable bindings for which the grounded rule body is logically implied by the ontology. A Query atom also
contains a PredicateSymbol and some, possibly just one, Terms. In the SWRL metamodel, we defined the
permitted predicate symbols through the subclasses Description, DataRange, DataProperty, ObjectProperty
and BuiltIn. Similarly, the different types of terms, Individual, Constant, IndividualVariable and DataVariable
are specified as subclasses of Term. Distinguished variables of a query are differentiated through an associ-
ation between Query and Variable. An OCL constraint a restriction on the use of distinguished variables:

1. A variable can only be a distinguished variable of a query if it is a term of one of the atoms of the query:
self.distinguishedVariables→forAll(v: Variable |
self.queryAtoms→exists(a: Atom | a.atomArguments→exists(v | true)))

2006–2009 © Copyright lies with the respective authors and their institutions.
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6.2 OCL Constraints for C-OWL

We define OCL constraints on the common mapping metamodel extension to concretize it according to
the specific formalism C-OWL [BGvH+03]. We list the specific characteristics of C-OWL and introduce the
necessary constraints for them. For each constraint, firstly the context of the constraint, so the class in the
metamodel on which it is to be defined, is defined using the OCL syntax "context classname inv:"3. Some
existing reasoners support only a subset of C-OWL. Additional constraints could be defined to support this.

1. C-OWL does not have unique name assumption. To reflect this in the metamodel, a constraint defines
that the value of the attribute uniqueNameAssumption of the class Mapping is always 'false':
context Mapping inv:
self.uniqueNameAssumption = false

2. C-OWL does not have inconsistency propagation. Similary, a constraint is defined to set the value of
the attribute inconsistencyPropagation of the class Mapping to 'false':
context Mapping inv:
self.inconsistencyPropagation = false

3. The relationship between the connected domains of a mapping in C-OWL is always assumed to
be overlap. A constraint sets the value of the attribute domainAssumption of the class Mapping to
'overlap':
context Mapping inv:
self.domainAssumption = 'overlap'

4. C-OWL does not allow to define mappings between queries. Moreover, only object properties, classes
and individuals are allowed as mappable elements. A constraint defines that any mappable element in
a mapping must be an ObjectProperty, an OWLClass or an Individual :
context MappableElement inv:
self.oclIsTypeOf(ObjectProperty) or
self.oclIsTypeOf(OWLClass) or
self.oclIsTypeOf(Individual)

5. A mapping assertion can only be defined between elements of the same kind. As the previous con-
straint defines that mappings can only be defined between three specific types of elements, an addi-
tional constraint can easily define that when the source element is one of these specific types, then the
target elements must be of that type as well:
context MappingAssertion inv:
(self.sourceElement.oclIsTypeOf(OWLClass) implies
self.targetElement.oclIsTypeOf(OWLClass)) and
(self.sourceElement.oclIsTypeOf(ObjectProperty) implies
self.targetElement.oclIsTypeOf(ObjectProperty)) and
(self.sourceElement.oclIsTypeOf(Individual) implies
self.targetElement.oclIsTypeOf(Individual))

6. As semantic relations in mappings, C-OWL supports equivalence, containment (sound as well as
complete), overlap and negated overlap (called disjoint). A constraint defines this by specifying which
different subclasses of SemanticRelation are allowed. When only the non-negated version of the
semantic relation is allowed, the constraint defines that the attribute negated of the class SemanticRe-
lation is set to 'false':
context SemanticRelation inv:
(self.oclIsTypeOf (Equivalence) and self.negated = false) or

3where 'inv' stands for the constraint type invariant.
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(self.oclIsTypeOf(Containment) and self.negated = false) or
self.oclIsTypeOf(Overlap)

6.3 OCL Constraints for DL-Safe Mappings

This section provides OCL constraints on the common metamodel for OWL ontology mappings to concretize
it to the formalism DL-Safe Mappings [HM05]. Again, we highlight the specific characteristics of the language
and provide the appropriate constraints.

1. DL-Safe Mappings do not have unique name assumption. To reflect this in the metamodel, a constraint
defines that the value of the attribute uniqueNameAssumption of the class Mapping is always 'false':
context Mapping inv:
self.uniqueNameAssumption = false

2. DL-Safe Mappings always have inconsistency propagation. A constraint is defined to set the value of
the attribute inconsistencyPropagation of the class Mapping to 'true':
context Mapping inv:
self.inconsistencyPropagation = true

3. The relationship between the connected domains of a DL-Safe Mapping is always assumed to be
equivalence. A constraint sets the value of the attribute domainAssumption of the class Mapping to
'equivalence':
context Mapping inv:
self.domainAssumption = 'equivalence'

4. DL-Safe Mappings support mappings between queries, properties, classes, individuals and datatypes.
A constraint defines that the type of a MappableElement must be one of these subclasses:
context MappableElement inv:
self.oclIsTypeOf(OntologyQuery) or
self.oclIsTypeOf(ObjectProperty) or
self.oclIsTypeOf(DataProperty) or
self.oclIsTypeOf(OWLClass) or
self.oclIsTypeOf(Individual) or
self.oclIsTypeOf(Datatype)

5. In DL-Safe Mappings, elements being mapped to each other must be of the same kind. Thus, when
one wants to map for instance a concept to a query, the concept should be modelled as a query. A
constraint defines that when the source element is of a specific type, the target element must be of the
same type:
context MappingAssertion inv:
(self.sourceElement.oclIsTypeOf(OntologyQuery) implies
self.targetElement.oclIsTypeOf(OntologyQuery)) and
(self.sourceElement.oclIsTypeOf(ObjectProperty) implies
self.targetElement.oclIsTypeOf(ObjectProperty)) and
(self.sourceElement.oclIsTypeOf(DataProperty) implies
self.targetElement.oclIsTypeOf(DataProperty)) and
(self.sourceElement.oclIsTypeOf(OWLClass) implies
self.targetElement.oclIsTypeOf(OWLClass)) and
(self.sourceElement.oclIsTypeOf(Individual) implies
self.targetElement.oclIsTypeOf(Individual)) and
(self.sourceElement.oclIsTypeOf(Datatype) implies
self.targetElement.oclIsTypeOf(Datatype))
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6. DL-Safe Mappings specify that queries that are mapped to each other, must contain the same distin-
guished variables. A constraint defines that when both elements are a query, each variable that exists
as distinguished variable in the source element, must exist as distinguished variable in the target ele-
ment:
context MappingAssertion inv:
self.sourceElement.oclIsTypeOf(Query) and
self.targetElement.oclIsTypeOf(Query) implies
self.sourceElement.oclAsType(Query).distinguishedVariables→
forAll(v: Variable | self.targetElement.oclAsType(Query).distinguishedVariables→
exists(v | true))

7. The interpretation of semantic relations in DL-Safe Mappings is always assumed to be extensional. A
constraint defines that the value of the attribute interpretation of the class SemanticRelation must be
set to 'extensional':
context SemanticRelation inv:
self.interpretation = 'extensional'

8. DL-Safe Mappings support the semantic relations equivalence and containment (sound as well as
complete). A constraint specifies this by defining which types SemanticRelation can have and what its
value for the attribute negated should be:
context SemanticRelation inv:
(self.oclIsTypeOf(Equivalence) and self.negated = false) or
(self.oclIsTypeOf(Containment) and self.negated = false)
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Chapter 7

The Metamodel for Modular Ontologies

In software engineering, a modular software is a program in which significant parts, modules, are identified.
A module generally plays a particular role in the whole program that, when combined with the other mod-
ules, contributes to the objective of the overall software. Well known advantages of modular design include
clarity, reusability, and extensibility: a module is designed to be an intrinsically self-contained and reusable
component, defined and managed independently from the programs it is intended to be included in.

It is a common opinion that ontology engineering shares a lot with software engineering, and the advantages
of having modular ontologies instead of big and monolithic ones are easy to understand. Ontology modules
are made to be reusable knowledge components, facilitating collaborative design and maintenance within
a network of ontologies. Therefore, the goal of this chapter is to come up with a language for defining
and managing ontology modules, as a part of the NeOn metamodel. We here directly build on the OWL
metamodel for the specification of the content of a module and the mapping metamodel to relate the content
of heterogeneous modules.

7.1 Design Considerations

Modularization is essential to support collaborative ontology editing and browsing, reuse and selection.
Within the networked scenario, ontologies are mainly built in distributed locations, which means naturally,
they are modules in a network of ontologies. At the same time, ontologies are difficult to manage especially
when they are interconnected in a network. Interdependencies between modules of interconnected ontolo-
gies have to be made clear so that these modules can be easily managed (e.g., reused, shared). Ontology
selection and reuse will play a major part in the future of the Semantic Web because with the increasing num-
ber of ontologies available over the internet, people will more likely use ontologies just like program libraries
by selecting and reusing ontology modules [dSM06]. Modularization will offer the possibility for a more fine-
grained sharing mechanism where ontology modules are well encapsulated and ready for future reuse and
development. Many formalisms for handling ontology modules have been proposed [BS03, SK03, SP04],
however, they have their own limitations in some scenarios [SR06, BCH06b].

7.1.1 Existing Formalisms for Ontology Modularization

In the following we provide an overview of several modular ontology formalisms.

Modularization with OWL Import The OWL ontology language provides limited support to modular ontolo-
gies: an ontology document – identified via its ontology URI – can be imported by another document using
the owl:imports statement. The semantics of this import statement is that all definitions contained in the
imported ontology document are included in the importing ontology, as if they were defined in the importing
ontology document. It is worth to mention that owl:imports is directed –only the importing ontology is

2006–2009 © Copyright lies with the respective authors and their institutions.



Page 70 of 146 NeOn Integrated Project EU-IST-027595

affected– and transitive –if A imports B and B imports C, then A also imports the definitions contained in
C. Moreover, cyclic imports are allowed (e.g. A imports B and B imports A).

One of the most commonly mentioned weaknesses of the importing mechanism in OWL is that it does
not provide any support for partial import [VOM02, PSZ06]. Even if only a part of the imported ontology
is relevant or agreed in the importing ontology, every definition is included. Moreover, there is no logical
difference between imported definitions and proper definitions in the importing ontology: they share the
same interpretations.

Distributed Description Logics Unlike import mechanisms that include elements from some modules
into the considered one, Distributed Description Logics (DDLs) [BS02] adopt a linking mechanism, relating
the elements of "local ontologies" (called context) with elements of external ontologies (contexts). Each
contextMi is associated to its own local interpretation. Semantic relations are used to draw correspondences
between elements of local interpretation domains. These relations are expressed using bridge rules of the
form:

• i : φ v−→ j : ψ (into rule), with semantics: rij(φIi) ⊆ ψIj

• i : φ w−→ j : ψ (onto rule), with semantics: rij(φIi) ⊇ ψIj

where Ii = (∆i, .
Ii) (respectively Ij = (∆j , .

Ij )) is the local interpretation of Mi (respectively Mj), φ
and ψ are formulae, and rij is a domain relation mapping elements of the interpretation domain of Mi

to elements of the interpretation domain of Mj (rij ⊆ ∆i × ∆j). We only discuss bridge rules between
concepts (meaning that φ and ψ are concept names or expressions) since it is the only case that has reported
reasoning support [ST05].

Bridge rules between concepts cover one of the most important scenarios in modular ontologies: they are
intended to assert relationships, like concept inclusions, between elements of two different local ontologies.
However, mainly because of the local interpretation, they are not supposed to be read as classical DL axioms.
In particular, a bridge rule only affects the interpretation of the target element, meaning for example that

i : φ v−→ j : ψ is not equivalent to j : ψ w−→ i : φ.

Arbitrary domain relations may not preserve concept unsatisfiability among different contexts which may
result in some reasoning difficulties [BCH06c]. Furthermore, while subset relations (between con-
cept interpretations) is transitive, DDL domain relations are not transitive, therefore bridge rules can-
not be transitively reused by multiple contexts. Those problems are recently recognized in several pa-
pers [BCH06b, BCH06c, SSW05b, SSW05a] and it is proposed that arbitrary domain relations should be
avoided. For example, domain relations should be one-to-one [SSW05a, BCH06c] and non-empty [SSW05b].

Integrity and Change of Modular Terminologies in DDL Influenced by DDL semantics, [SK03] adopts
a view-based information integration approach to express relationships between ontology modules. In par-
ticular, in this approach ontology modules are connected by conjunctive queries. This way of connecting
modules is more expressive than simple one-to-one mappings between concept names but less expressive
than the logical language used to describe concepts.

[SK03] defines an ontology module – abstracted from a particular ontology language – as a triple M =
(C,R,O), where C is a set of concept definitions, R is a set of relation definitions and O is a set of object
definitions. A conjunctive query Q over an ontology module M = (C,R,O) is defined as an expression of
the form q1 ∧ ... ∧ qm, where qi is a query term of the form C(x), R(x, y) or x = y, C and R concept and
role names, respectively, and x and y are either variable or object names.

In a modular terminology it is possible to use conjunctive queries to define concepts in one module in terms
of a query over another module. For this purpose, the set of concept definitions C is divided into two disjoint
sets of internally and externally defined concepts CI and CE , respectively, with C = CI ∪CE , CI ∩CE = ∅.
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An internal concept definition is specified using regular description logics based concept expressions with
the form of C v D or C ≡ D, where C and D are atomic and complex concepts, respectively.

An external concept definition is an axiom of the form C ≡ M : Q, where M is a module and Q is
a conjunctive query over M . It is assumed that such queries can be later reduced to complex concept
descriptions using the query-rollup techniques from [HT00] in order to be able to rely on standard reasoning
techniques. A modular ontology is then simply defined as a set of modules that are connected by external
concept definitions. The semantics of these modules is defined using the notion of a distributed interpretation
as introduced in the previous paragraph.

Although the definition of a module, in its abstract form shown above, may allow arbitrary concept, relation
and object definitions, only concept definitions is studied in [SK03]. This is due to the focus of the approach
to improve terminological reasoning with modular ontologies by precompiling implied subsumption relations.
In that sense it can be seen as a restricted form of DDLs that enables improved efficiency for special T-Box
reasoning tasks.

E-Connection While DDLs are focused on one type of relation between module elements, concept in-
clusion, the E-connection approach [KLWZ03, GPS04] allows to define link properties from one module to
another. For example, if a module M1 contains a concept named 1 : Fish and a module M2 contains a
concept named 2 : Region, one can connect these two modules by defining a link property named livesIn
between 1 : Fish and 2 : Region.

Formally, given ontology modules {Li}, a (one-way binary) link E ∈ Eij , where Eij , i 6= j is the set of all
links from the module i to the module j, can be used to construct a concept in module i, with the syntax and
semantics specified as follows:

• 〈E〉(j : C) or ∃E.(j : C) : {x ∈ ∆i|∃y ∈ ∆j , (x, y) ∈ EM , y ∈ CM}

• ∀E.(j : C) : {x ∈ ∆i|∀y ∈ ∆j , (x, y) ∈ EM → y ∈ CM}}

• ≤ nE.(j : C) : {x ∈ ∆i|#({y ∈ ∆j |(x, y) ∈ EM , y ∈ CM}) ≤ n}

• ≥ nE.(j : C) : {x ∈ ∆i|#({y ∈ ∆j |(x, y) ∈ EM , y ∈ CM}) ≥ n}

where M = 〈{mi}, {EM}E∈Eij 〉 is a model of the E-connected ontology, mi is the local model of Li; C is a
concept in Lj , with interpretation CM = Cmj ; EM ⊆ ∆i ×∆j is the interpretation of a E-connection E.

E-connection restricts the terms of modules, as well as their local domains, to be disjoint. This can be a
serious limitation in some scenarios, particularly because, to enforce domain disjointness, subclass relations
cannot be declared between concept of two different modules.

P-DL P-DL, Package-based Description Logics [BCH06d], uses importing relations to connect local mod-
els. In contrast to OWL, which forces the model of an imported ontology be completely embedded in a
global model, the P-DL importing relation is partial in that only commonly shared terms are interpreted in the
overlapping part of local models. The semantics of P-DL is given as the follows: the image domain relation
between local interpretations Ii and Ij (of package Pi and Pj) is rij ⊆ ∆i ×∆j . P-DL importing relation is:

• one-to-one: for any x ∈ ∆i, there is at most one y ∈ ∆j , such that (x, y) ∈ rij , and vice versa.

• compositionally consistent: rij = rik ◦rjk, where ◦ denotes function composition. Therefore, semantic
relations between terms in i and terms in k can be inferred even if k doesn’t directly import terms from
i.

Thus, a P-DL model is a virtual model constructed from partially overlapping local models by merging
“shared” individuals.
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P-DL also supports selective knowledge sharing by associating ontology terms and axioms with “scope
limitation modifiers (SLM)”. A SLM controls the visibility of the corresponding term or axiom to entities on
the web,in particular, to other packages. The scope limitation modifier of a term or an axiom tK in package
K is a boolean function f(p, tK), where p is a URI of an entity, the entity identified by p can access tK iff
f(p, t) = true. For example, some representative SLMs can be defined as follows:

• ∀p, public(p, t) := true, means t is accessible everywhere.

• ∀p, private(p, t) := (t ∈ p), means t is visible only to its home package.

P-DL semantics ensures that distributed reasoning with a modular ontology will yield the same conclusion
as that obtained by a classical reasoning process applied to an integration of the respective ontology mod-
ules [BCH06c]. However, the reported result [BCH06a] only supports reasoning in P-DL as extensions of the
ALC DL. Reasoning algorithms for more expressive P-DL TBox, as well as for ABox reasoning, are still to
be investigated.

7.1.2 Requirements for a Module Definition Languages

A Module is an Ontology. As shown in the above overview, there is generally no clear distinction between
the notion of ontology and the one of ontology module. A modular ontology is made of smaller local ontologies
that can be seen as self-contained and inter-related modules, combined together for covering a broader
domain. Indeed, an ontology is not inherently a module, but rather plays the role of a module for other
ontologies because of the way it is related to them in an ontology network. In other terms, an ontology
module is a self-contained ontology, seen according to a particular perspective, namely reusability. The
content of an ontology module does not differ from the one of an ontology, but a module should come with
additional information about how to reuse it, and how it reuse other modules.

Encapsulation / Information Hiding. The idea of encapsulation is crucial in modular software develop-
ment, but has not really been studied and implemented in the domain of ontologies yet. In software engi-
neering, it relies on the distinction between the implementation, i.e. internal elements manipulated by the
developer of the module, and the interface, i.e. the elements that are exposed to be reused. This distinc-
tion between interface and implementation cannot be clearly stated when using ontology technologies like
OWL. However, the essential role of a module interface is to guide the reusability of the module, by exposing
reusable elements and hiding intermediary internal ones (the "implementation details"). By defining the set
of reusable entities of an ontology module (the export interface), the developer of this module provides entry
points to it, and clearly states which are the elements that can be "safely reused". Elements that are hidden
behind the interface can then evolve, be re-designed or changed, without affecting the importing modules
relying on this export interface.

Partial Import. As already mentioned, the owl:imports mechanism has been criticized in several pa-
pers for being "global" (see e.g. [VOM02, PSZ06]): it is not possible when using this mechanism to import
only the relevant and useful elements in the importing ontology. Allowing partial import has many advan-
tages, among which scalability is probably the most obvious. For this reason, some intermediary solutions
have been recently proposed, using, prior to import, ontology partitioning [SK04, GPSK05] techniques or
some forms of reduction to a sub-vocabulary [SR06, Stu06, dSM06]. We believe that the set of elements that
are used in an importing module should be explicitly stated in the module definition, so that the influence of
the imported module is clarified. The semantics of the module definition language should reflect the idea of
partial import by "ignoring" the definitions that are not related to the imported elements (the import interface),
preventing the importing module to deal with irrelevant knowledge, and giving the developer of such a module
the possibility to disagree with some part of the imported modules.
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Links Between Modules. The formalisms for modular ontologies presented in the previous section can
be divided in two main approaches: importing and linking. The previous requirements are focused on the
importing approach, whereas languages like C-OWL and E-connection exclusively deal with the linking ap-
proach. In the NeOn framework, these two aspects are relevant, and should be considered together: even
when they are not imported, elements from different modules can be related through mappings. The NeOn
metamodel already provide the required elements for expressing mappings, and these can easily be consid-
ered as a part of the content of an ontology module. However, it is important to take this aspect into account
when designing the semantics of the module description language, as well as the operations for manipulating
modules, so that the two approaches, importing and linking, are well integrated. Indeed, scenarios where,
for example, there exist mappings between imported modules are not hard to imagine.

In this section we briefly recapitulate the basics of NeOn model for modular ontologies as defined in Deliver-
able D1.1.3 [dHR+08].

7.1.3 Abstract Definition and Notation

We start by defining sets of identifiers being used for unambiguously referring to ontology modules and
mappings that might be distributed over the Web. Obviously, in practice, IRIs will be used for this purpose.
So we let

• IdModules be a set of MODULE IDENTIFIERS and

• IdMappings be a set of MAPPING IDENTIFIERS, where a mapping is a set of relations (correspondences)
between entities of two different ontologies.

Next we introduce generic sets describing the used ontology language. They will be instantiated depending
on the concrete ontology language formalism used (e.g., OWL). Hence, let:

• Nam be a set of NAMED ELEMENTS.
In the case of OWL, Nam will be thought to contain all class names, property names and individual
names.

• Elem be a the set of ONTOLOGY ELEMENTS.
In the OWL case Elem would contain e.g. all complex class descriptions. Clearly, Elem will depend
on Nam (or roughly speaking: Nam delivers the “building blocks” for Elem).

• We use L : 2Nam → 2Elem to denote the function assigning to each set P of named elements the set
of ontology elements which can be generated out of P by the language constructs1,

• For a given set O of ontology axioms, let Sig(O) denote the set of named elements occurring in O, so
it represents those elements the axioms from O deal with.

Having stipulated those basic sets in order to describe the general setting, we are now ready to state the
notion of an ontology module on this abstract level.

Definition 5 An ONTOLOGY MODULE OM is a tuple 〈id , Imp, I,M,O,E〉 where

• id ∈ IdModules is the identifier of OM

• Imp ⊆ IdModules is a set of identifiers of imported ontology modules (referencing those other modules
whose content has to be (partially) incorporated into the module),

• I is set {Iid}id∈Imp of IMPORT INTERFACES, with Iid ⊆ Nam (characterizing which named elements
from the imported ontology modules will be “visible” inside OM),

1In most cases – and in particular for OWL – L(P ) will be infinite, even if P is finite.
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Figure 7.1: Metamodel extensions for ontology modules.

• M ⊆ IdMappings is a set of identifiers of imported mappings (referencing – via mapping identifiers –
those mappings between ontology modules, which are to be taken into account in OM),

• O is a set of ONTOLOGY AXIOMS (hereby constituting the actual content of the ontology),

• E ⊆ Sig(O)∪
⋃

id∈Imp Iid is called EXPORT INTERFACE (telling which named entities from the ontology
module are “published”, i.e., can be imported by other ontology modules).

Note that, in order to simplify the notation, we will not specify explicitly an identifier for the module:
a module OMi will be considered as implicitly having “OMi” as identifier and will so be written:
OMi = 〈Impi, Ii,Mi, Oi, Ei〉.

In a further step we formally define the term mapping (which is supposed to be a set of directed links,
correspondences, between two ontology modules establishing semantic relations between their entities).

Definition 6 A MAPPING M is a tuple 〈s, t, C〉 with

• s, t ∈ IdModules, with s being the identifier of the source ontology module and t being the identifier of
the target ontology module,

• C is a set of CORRESPONDENCES of the form e1  e2 with e1, e2 ∈ Elem and ∈ R for a fixed set R
of CORRESPONDENCE TYPES2

7.1.4 Metamodel

We propose a generic metamodel for modular ontologies according to the design considerations discussed
above. The metamodel is a consistent extension of the metamodels for OWL 2 ontologies and mappings
presented in the previous chapters.

2In accordance with the NeOn metamodel, this set will be fixed to R = {v,w,≡,⊥, 6v, 6w, 6≡, 6 ⊥}
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Figure 7.1 shows elements of the metamodel for modular ontologies. The central class in the metamodel
is the class OntologyModule. A module is modeled as a specialization of the class Ontology. The
intuition behind this modeling decision is that every module is also considered an ontology, enriched with
additional features. In other words, a module can also be seen as a role that a particular ontology plays.
In addition, an ontology provides (at most) one ExportInterface and a set of ImportInterface.
The interfaces define the elements that are exposed by the imported module and reused by the importing
module. The elements that can be reused by modules are MappableElements (defined in the mapping
metamodel). A mappable elements is either an Entity or a Query over an ontology, meaning that entities
can be exposed in interfaces either directly or as the results of queries.

The export interface, modeled via the exports association, exposes the set of MappableElements that
are intended to be reused by other modules.

The reuse of elements from one module by another module is represented via the ImportInterface.
The association imports relates the importing module with the definition of the imports interface.
The association importedModule refers to the module that is being imported, while the association
importedElement refers to the element in the imported ontology being reused. In this sense, the
ImportInterface can be seen to realize the ternary relationship between the importing ontology, the
imported ontology, and the elements to be reused.

Additionally, an OntologyModule also provides an imports relationship with the Mapping class, which
is used to relate different ontology modules via ontology mappings.
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Chapter 8

The Extended OWL Metamodel for Linking
Ontologies with E-Connections

Chapter 4 introduced the core of the networked ontology model, the OWL metamodel to describe single
ontologies. In Chapter 6 we introduced the mapping metamodel that allows to network ontologies by defining
correspondences across ontologies using mappings. In order to identify correspondences, the domains of
the ontologies need to overlap. In this Chapter, we define an extension of the metamodel that allows to relate
ontologies with non-overlapping (disjoint) domains using so-called link properties. We rely on the formalism
of E-Connections [GPS04], based on the functional-style syntax discussed in [GPS06].

The Chapter is structured in six sections: Section 8.1 provides the general motivation of the E-Connections,
Section 8.2 starts a general discussion on the subject of link properties and E-Connections, after which
Section 8.3 presents the link property entity. Next, Section 8.4 demonstrates class descriptions based on link
properties and Section 8.5 presents link property axioms. Finally, Section 8.6 presents assertions.

8.1 Motivation of E-Connections

Effective knowledge reuse and sharing has been a major goal of the Web Ontology Working Group. Indeed,
as ontologies get larger, they become harder for reasoners to process and for humans to understand. On-
tology reuse can in this case prove very useful, as it allows one to take into account existing knowledge and
link it or integrate it into their knowledge base, without having to construct a large ontology from scratch. The
intuition behind this is that if we think of ontologies as terminological and assertional descriptions of a certain
domain, then we could split the broader ontology into different smaller ontologies that are independent and
self-contained modules and that describe some more specific domain of our application.

Of course, ontology reuse requires that suitable tools should be provided for integrating and connecting
the modular ontologies. The Web Ontology Language (OWL) provides some support for integrating web
ontologies by defining the owl : imports construct, which allows one to include by reference in a knowledge
base the axioms contained in another ontology, published somewhere on the Web and identified by a global
name (a URI). However, this construct is not adequate enough. The most fundamental problem lies in the
fact that it brings into the original ontology all the axioms of the imported one. This prohibits partial reuse
and it results in exclusively syntactical modularity, as opposed to the logical modularity.

One approach that has been thoroughly studied in the last years is that of E-Connections [KLWZ04]. The
E-Connections formalism provides a general framework for combining logical languages that are expressible
as Abstract Description Systems (ADS). The main motivation and contribution is that it combines decidable
logics in such a way that the resulting combined formalism remains decidable, although that can potentially
come at the cost of higher worst-case complexity.

Based on this theoretical framework, the authors in [GPS06] present a syntactical and semantic extension
of OWL that covers E-Connections of OWL-DL ontologies, showing how such an extension can be used to
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achieve modular ontology development on the Semantic Web and how E-Connections provide a suitable
framework for integration of Web Ontologies.

8.2 Preliminaries

In this section, we extend the definitions of the networked ontology model from Chapter 4 to take into account
the E-Connections formalism.

We start by taking a closer look at the E-Connections. We first define the Link Property, which is the building
stone of the E-Connection.

Definition 7 A set of Link Properties εAB between two ontologies A and B with disjoint domains is a set
of special relations between them, which relate the domain of ontology A to the domain of ontology B. A
Link be conveniently conceived as a superrole relating elements of the two domains, as opposed to object
properties, which relate elements of the same interpretation domain.

Based on the notion of the Link Properties we can build the combined knowledge base or E-Connection
of the two ontologies A and B, which talks about the domains of A and B and in addition to that about the
relationships between them. [GPS04] offers a closer look at the syntax of the combined language (e.g. new
available link constructors) and at the semantics by defining suitable interpretations.

8.3 The Link Property Entity

Entities are the fundamental building blocks of OWL 2 ontologies. OWL 2 has five entity types: data types,
OWL classes1, individuals, object properties and data properties. In the extended model, we also consider
an additional entity, the link property, in line with what was discussed in the previous section.

OWL traditionally distinguishes two types of property expressions: object property expressions and data
property expressions, represented by the respective metaclasses ObjectProperty and DataProperty. In the
extended metamodel, we also introduce the LinkProperty.

A link property can possibly be defined as the inverse of an existing link property (see Example 18). The
metamodel has an abstract superclass LinkPropertyExpression for both the usual link property and the link
property defined as an inverse of another. Figure 8.1 gives its subclasses LinkProperty and InverseLinkProp-
erty, respectively representing normal and inverse link properties. The same figure also represents the
LinkProperty as a subclass of the more general Entity, as discussed previously. An inverse link property can
be defined based on any, normal or inverse, link property, hence the association inverseLinkProperty from
the metaclass InverseLinkProperty is connected to the superclass LinkPropertyExpression.

Example 18 The following example illustrates the definition of an inverse object property:
InverseLinkProperty(MadeFromIngredient)

8.4 Class Expressions

Classes group similar resources together and are the basic building blocks of class axioms. The class
extension is the set of individuals belonging to the class. To define classes, OWL 2 provides next to a
simple class definition (metaclass Class) several very expressive means for defining classes. The metamodel
defines a metaclass ClassExpression as abstract superclass for all class definition constructs.

1OWL provides two classes with predefined URI and semantics: owl:Thing defines the set of all objects (top concept), whereas
owl: Nothing defines the empty set of objects (bottom concept).
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Figure 8.1: Extended metamodel: link property expressions

Link properties provide suitable constructors for building complex concept expressions, by placing different
types of restrictions restrictions on link properties. This group of restrictions is actually reminiscent of the
constraints placed on object properties.

Figure 8.2 gives the first group of restrictions on the property value of object properties for the context of the
class.

Figure 8.2: Extended metamodel: link property restrictions

The metaclass LinkAllValuesFrom represents the class construct that defines a class as the set of all objects
which have only objects from a certain other class expression as value for a specific link property (see
Example 19).

Example 19 The following example illustrates the definition of a class as a subclass of another class, which
is defined through a class description by restricting an object property:
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SubClassOf(Medication ObjectAllValuesFrom(Treats Disease))

The OWL construct that defines a class as all objects which have at least one object from a certain class
expression as value for a specific link property, is represented by the metaclass LinkSomeValuesFrom. Both
ObjectAllValuesFrom and ObjectSomeValuesFrom have an association called foreignClassExpression, spec-
ifying the class description of the construct, whereas their association linkPropertyExpression specifies the
link property on which the restriction is defined. The label foreignClassExpression describes the role of the
association, namely the class expression has to come from the foreign ontology, with which the local ontology
is related via the link property under consideration.2 To define a class as all objects which have a certain
individual as value for a specific link property, the extended model provides a construct that is represented in
the metamodel by the metaclass ObjectHasValue, its association linkPropertyExpression specifying the link
property, and its association value specifying the link property value.

The second group of link property restrictions is depicted in Figure 8.3 and it deals with restrictions on the
cardinalities of link properties.

Figure 8.3: Extended metamodel: link property cardinality restrictions

A cardinality of a link property for the context of a class can be defined as a minimum, maximum or exact
cardinality. The first one of this group is represented by the metaclass LinkMinCardinality, which defines a
class of which all individuals have at least N different individuals of a certain class as values for the specified
link property (N is the value of the cardinality constraint) (see Example 20).

Example 20 The following example illustrates the definition of a class as a subclass of another class, which
is defined through a class description by restricting the cardinality of an object property:
SubClassOf(Medication LinkMinCardinality(1 madeFromIngredient Ingredient))

Secondly, the construct represented by the metaclass LinkMaxCardinality defines a class of which all indi-
viduals have at most N different individuals of a certain class as values for the specified link property. Finally,
the construct represented by the metaclass LinkExactCardinality defines a class of which all individuals have
exactly N different individuals of a certain class as values for the specified link property. To specify the car-
dinality (N) of these constructs, which is a simple integer, all three metaclasses have an attribute cardinality.

2This important constraint is not totally captured by the UML diagram. Although it might be somehow possible to enforce such
restrictions by defining suitable OCL constraints, it would be cumbersome and thus it is preferable that tools that implement the
metamodel support these constraints.
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OCL constraints define that this cardinality must be a nonnegative integer3:

1. The cardinality must be nonnegative:
context LinkExactCardinality inv:
self.cardinality >= 0

2. The cardinality must be nonnegative:
context LinkMaxCardinality inv:
self.cardinality >= 0

3. The cardinality must be nonnegative:
context LinkMinCardinality inv:
self.cardinality >= 0

Additionally, they all have an association class and an association linkProperty representing the class re-
spectively the object property involved in the statement. Note that the multiplicity of the associations called
class have multiplicity 'zero or one' as the E-Connections syntax does not define the explicit specification of
the restricting class description as mandatory4.

8.5 Link Property Axioms

OWL defines six different kinds of axioms: entity annotations, declarations, class axioms, object property
axioms, data property axioms and assertions. In the extended E-Connection model we consider in addition
link property axioms.

Figure 8.4: Extended metamodel: link property axioms - part 1

3Note that it would make sense to define a constraint which specifies that when a minimum and a maximum cardinality on a link
property are combined to define a class, the minimum cardinality should be less than or equal to the maximum cardinality. However,
as the extended do not define this restriction and rely on applications to handle this, we also do not define an OCL constraint in the
metamodel.

4In the case where it is not explicitly defined, called an unqualified cardinality restriction, the description is owl:Thing. That is
similar as with the
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The group of link property axioms contains constructs defining relations between different link properties,
definitions of domain and range and specifications of property characteristics. We first introduce the various
relations between link properties in Figure 8.4.

The first one, represented by the metaclass SubLinkPropertyOf, defines that the property extension of one
link property, specified through the association subLinkPropertyExpression, is a subset of the extension
of another link property, specified through the association superLinkPropertyExpression. The metaclass
EquivalentLinkProperty represents a construct that defines that the property extensions of two or more link
properties are the same.

Figure 8.5: Extended metamodel: link property axioms - part 3

To define the class to which the subjects of a link property belong, the extended model provides the domain
concept (see Example 21), whereas a range specifies the class to which the objects of the property, the
property values, belong. Figure 8.5 presents the metamodel elements for the constructs defining a link
property domain and range.

Example 21 The following example illustrates the definition of the domain of an object property:
LinkPropertyDomain(madeFromIngredient Medication)

The metaclass LinkPropertyDomain specifies a link property and its domain via the associations property
respectively domain. Similarly, the metaclass LinkPropertyRange represents the construct to define the
range of a link property.

The remaining OWL link property axioms take a link property and assert a characteristic to it. In doing so,
link properties can be defined to be functional or inverse functional.

A functional link property is a property for which each subject from the domain, can have only one value
in the range, whereas an inverse functional link property can have only one subject in the domain for each
value in the range.

Figure 8.6 demonstrates that each of these two axioms has an own metaclass with an association linkProp-
erty to the class LinkPropertyExpression, specifying the property on which the characteristic is defined.
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Figure 8.6: Extended metamodel: link property axioms - part 2

8.6 Assertions

In addition to the existing OWL assertions, the extended model defines a further assertion axiom to state
assertions about link properties.

To specify the value of a specified individual under a certain link property, the extended model provides the
link property assertion construct (see Example 22).

Example 22 The following example illustrates how the value of an individual under a link property, is defined:
LinkPropertyAssertion(madeFromIngredient aspirin acetylsalicylicacid)

Figure 8.7 depicts the construct in the metamodel as the metaclass LinkPropertyAssertion. It has an associ-
ation to property representing the involved link property, and two associations to Individual representing the
subject and the object of the assertion.
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Figure 8.7: Extended metamodel: assertions
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Part III

Metadata for Networked Ontologies
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Chapter 9

The NeOn Ontology Metadata Vocabulary

Ontologies have undergone an enormous development and have been applied in many domains within the
last years, especially in the context of the Semantic Web. Currently however, efficient knowledge sharing
and reuse, a pre-requisite for the realization of the Semantic Web vision, is a difficult task. It is hard to find
and share existing ontologies because of the lack of standards for documenting and annotating ontologies
with metadata information. Without ontology-specific metadata, developers are not able to reuse existing
ontologies, which leads to problems of interoperability as well as duplicate efforts. Then, in order to provide
a basis for an effective access and exchange of ontologies across the web, it is necessary to agree on
a standard for ontology metadata. This standard then provides a common set of terms and definitions
describing ontologies and is called metadata vocabulary.

In the remainder of this chapter we present a compact overview of our contribution to the alleviation of this
situation: the ontology metadata standard OMV (Ontology Metadata Vocabulary), which specifies reusability-
enhancing ontology features for human and machine processing purposes.

Overview of the latest changes in OMV

• OMV-overview Figure updated

• dataProperty added: reference

• Changed the cardinality of statistics properties to 0:1 (optional)

• Moved the following dataProperties to DL extension: containsABox, containsRBox, containsTBox, ex-
pressiveness

• Changed cardinality of objectProperties isOfType, hasOntologySyntax to 0:1 (optional)

• Added predefined instances of OntologyEngineeringTool

• Fixed developesxxx to developsxxx

• Changed objectProperty usedKnowledgeRepresentationParadigm to conformsToKnowledgeRepre-
sentationParadigm

• Moved dataProperty isConsistentAccordingToReasoner to evaluation extension

• Added objectProperty endorses

• Deleted objectProperties: developsOntologyEngineeringMethodology, developsOntologyEngineering-
Tool, developsOntologyLanguage, developsOntologySyntax, specifiesLicenseModel, specifiesKnowl-
edgeRepresentationParadigm, definesOntologyType
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• Added objectProperties develops, specifies, defines

• Updated inverse relations

• Minor typos fixed

• Updated description in section "Identification, Versioning and Location" to OWL 2 specification.

9.1 Preliminary considerations

9.1.1 Metadata Categories

OMV differentiates among the following three occurrence constraints for metadata elements—according to
their impact on the prospected reusability of the described ontological content:

• Required – mandatory metadata elements. Any missing entry in this category leads to an incomplete
description of the ontology.

• Optional – important metadata facts, but not strongly required.

• Extensional – specialized metadata entities, which are not considered to be part of the core metadata
scheme.

Complementary to this classification we organize the metadata elements, according to the type and purpose
of the contained information, as follows:

• General – elements providing general information about the ontology.

• Availability – information about the location of the ontology (e.g. its URI or URL where the ontology is
published on the Web)

• Applicability – information about the intended usage or scope of the ontology.

• Format – information about the physical representation of the resource. In terms of ontologies, these
elements include information about the representation language(s) in which the ontology is formalized.

• Provenance – information about the organizations contributing to the creation of the ontology.

• Relationship – information about relationships to other resources. This category includes versioning,
as well as conceptual relationships such as extensions, generalization/specialization and imports.

• Statistics - various metrics on the underlying graph topology of an ontology (e.g. number of classes)

• Other - information not covered in the categories listed above.

Note that the introduced classification dimensions are not intended to be part of the metadata scheme itself,
but will be taken into consideration by the implementation of several metadata support facilities. The first
dimension is relevant for a metadata creation service in order to ensure a minimal set of useful metadata
entries for each of the described resources. The second can be used in various settings mainly to reduce
the user-perceived complexity of the metadata scheme whose elements can be structured according to the
corresponding classes.
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9.2 Ontology Metadata Requirements

We elaborated an inventory of requirements for the metadata model as a result of a systematic survey of
the state of the art in the area of ontology reuse. Besides a scientific analysis, we conducted extensive
literature research, which focused on theoretical methods [PM01, GPS99, LTGP04], but also on case studies
on reusing existing ontologies [UHW+98, RVMS99, PBMT05], in order to identify real-world needs of the
community w.r.t. a descriptive metadata format for ontologies. Further on, the requirements analysis phase
was complemented by a comparative study of existing (ontology-independent) metadata models and of tools
such as ontology repositories and libraries (implicitly) making use of metadata-like information. Several
aspects are similar to other metadata standards such as Dublin Core. Differences arise however if we
consider the semantic nature of ontologies, which are much more than plain Web information sources. In
accordance to one of the major principles in Ontological Engineering, an ontology comprises a conceptual
model of a particular domain of interest, represented at the knowledge level, and multiple implementations
using knowledge representation languages. These two components are characterized by different properties,
can be developed and maintained separately. The main requirements identified in this process step are the
following:

Accessibility: Metadata should be accessible and processable for both humans and machines. While the
human-driven aspects are ensured by the usage of natural language concept names, the machine-
readability requirement can be implemented by the usage of Web-compatible representation languages
(such as XML or Semantic Web languages, see below).

Usability: It is important to build a metadata model which 1) reflects the needs of the majority of ontology
users—as reported by current case studies in ontology reuse—but at the same time 2) allows pro-
prietary extensions and refinements in particular application scenarios. From a content perspective,
usability can be maximized by taking into account multiple metadata types, which correspond to spe-
cific viewpoints on the ontological resources and are applied in various application tasks. Despite the
broad understanding of the metadata concept and the use cases associated to each definition, several
key aspects of metadata information have already been established across computer science fields
[Org04]:

• Structural metadata relates to statistical measures on the graph structure which underlies an
ontology. In particular we mention the number of specific ontological primitives (e.g. number
of classes or instances). The availability of structural metadata influences the usability of an
ontology in a concrete application scenario, as size and structure parameters constraint the type
of tools and methods which can be applied to aid the reuse process.

• Descriptive metadata relates to the domain modeled in the ontology in form of keywords, topic
classifications, textual descriptions of the ontology contents etc. This type of metadata plays a
crucial role in the selection of appropriate reuse candidates, a process which includes require-
ments w.r.t. the domain of the ontologies to be re-used.

• Administrative metadata provides information to help manage ontologies, such as when and
how it was created, rights management, file format and other technical information.

Interoperability: Similarly to the ontology it describes, metadata information should be available in a form
which facilitates metadata exchange among applications. While the syntactical aspects of interoper-
ability are covered by the usage of standard representation languages (see “Accessibility”), the se-
mantical interoperability among machines handling ontology metadata information can be ensured by
means of an formal and explicit representation of the meaning of the metadata entities, i.e. by concep-
tualizing the metadata vocabulary itself as an ontology.

2006–2009 © Copyright lies with the respective authors and their institutions.
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9.3 Ontology Metadata Vocabulary

This section gives an overview of the core design principles applied for the realization of the OMV metadata
scheme, which is described in detail later in this section.

9.3.1 Core and Extensions

Following the usability constraints identifies during the requirements analysis, we decided to design the
OMV scheme modularly; OMV distinguishes between the OMV Core and various OMV Extensions. The
former captures information which is expected to be relevant to the majority of ontology reuse settings.
However, in order to allow ontology developers and users to specify task- or application-specific ontology-
related information we foresee the development of OMV extension modules, which are physically separated
from the core scheme, while remaining compatible to its elements.

9.3.2 Ontological representation

Due to the high accessibility and interoperability requirements, as well as the nature of the metadata, which
is intended to describe Semantic Web ontologies, the conceptual model designed in the previous step was
implemented in the OWL language. An implementation as XML-Schema or DTD was estimated to restrict
the functionality of the ontology management tools using the metadata information (mainly in terms of re-
trieval capabilities) and to impede metadata exchange at semantical level. Further on, a language such as
RDFS does not provide a means to distinguish between required and optional metadata properties. The
implementation was performed manually by means of a common ontology editor.

9.3.3 Identification, Versioning and Location

An important issue that has to be addressed when describing ontologies is the ability to identify and manage
multiple versions and physical representations of one ontology. The OWL ontology language itself did not
provide the means to address this issue until the latest release of OWL 21 where they partially address it: In
OWL 2, an ontology is identified by an IRI (if available). Hence, OWL 2 extends OWL 1, which uses Uniform
Resource Identifiers (URIs) [BLFM98]. Additionally, an ontology may have a version IRI, which is used to
identify the version of the ontology. The version IRI may, but need not be equal to the ontology IRI. However,
the specification provides no mechanism for enforcing these constraints across the entire Web.

Versioning In general, a version is a variant of an ontology that is usually created after applying changes
to an existing variant. Therefore we need a way to unambiguously identify the different versions as well as to
keep track of the relationships between them. Based on [KF01], we consider that changes in ontologies are
caused by: (i) changes in the domain; (ii) changes in the shared conceptualization; (iii) changes in the speci-
fication. Taking the definition of an ontology as a specification of a conceptualization, (i) and (ii) are semantic
changes that lead to the creation of a new conceptualization, while (iii) is just a change in the representation
of the same conceptualization (also known as a new revision) (e.g. updates of natural language descriptions
of ontology elements). In any case, the change(s) result in a different physical representation of the ontology
(i.e. different version). Consequently, it should be possible to identify each of those versions.

However, as we mentioned above OWL 1 does not distinguish between the notion of an ontology and a
version of an ontology at all. It may thus be that different versions of ontology carry the same logical URI.
Only in the latest specification of OWL 2, it is proposed that the ontology IRI and the version IRI together
identify a particular version from an ontology series i.e. the set of all the versions of a particular ontology
identified using a common ontology IRI. In each ontology series, exactly one ontology version is regarded as
the current one.

1http://www.w3.org/TR/2008/WD-owl2-syntax-20081202/
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So, typically (as OWL 2 has just been released) existing ontologies are identified by an URI, which according
to [BLFM98] is a compact string of characters for identifying an abstract or physical resource. In [KF01] the
authors propose that any version that constitutes a new conceptualization (i.e. changes of type (i) and (ii))
should have a unique URI, however in practice different versions of same ontology might share the same
URI. Furthermore, even if a revision constitutes the same conceptualization of an ontology it is physically
represented in a different file which might have additional metadata (e.g. updated ontology description,
descriptions in different natural languages, different file location, etc.).

In OMV we describe a particular representation of an ontology, i.e. an ontology in a particular version at
a particular physical location. That means that every different version of an ontology has a different OMV
related metadata.

Currently however, most ontologies either do not provide any version information at all or the ontology editors
explicitly do not want to change the version of the ontology after making some changes. In those cases,
whenever the ontology changes, the related OMV annotation will have to be updated accordingly instead of
creating a new OMV instance (i.e. including updating the date of the last time the ontology was modified).

Resource Location In addition to the issue of versioning, an ontology (or a version of an ontology) can be
located at different locations. Thus, ontologies with the same logical URI (IRI in OWL 2) may exist at different
physical locations, possibly even with different content. Similar to versioning, only the latest OWL 2 specifica-
tion provides some conventions for the location of an ontology: Each ontology is associated with an ontology
document, which physically contains the ontology stored in a particular way. The document containing the
current version of an ontology series with some IRI OI should be accessible from OI. A particular version of
OI with version IRI VI, should be accessible from VI.

In practice however (as OWL 2 has just been released), the location of the ontology is not necessarily equal to
the URI of the ontology. So, following the approach for versioning, we rely on a composite identifier consisting
of the logical identifier i.e. URI (ontology IRI in OWL 2) plus optional version identifier (version IRI in OWL 2),
and a resource locator that specifies the actual physical location.

Of course, the optional version identifier and the optional resource locator can be combined, such that we
end up with a tripartite identifier (URI, version, resource locator).

Illustrative Example In order to clarify the previous discussion consider the following scenario: Initially, we
have the first implementation of ontology OWLODM (i.e. http://owlodm.ontoware.org/OWL1.0)
which provides a metamodel for the ontology language OWL 1.0. A fragment of the OMV description for
OWLODM version 1.0 is the following:

<omv:Ontology rdf:about="&j;OWL1.0v1.0">
<omv:URI rdf:datatype="&xsd;string">http://owlodm.ontoware.org/OWL1.0</omv:URI>
<omv:version rdf:datatype="&xsd;string">1.0</omv:version>
<omv:resourceLocator rdf:datatype="&xsd;string">
http://ontoware.org/frs/download.php/307/owl10.owl</omv:resourceLocator>
<omv:acronym rdf:datatype="&xsd;string">OWLODM</omv:acronym>
<omv:description rdf:datatype="&xsd;string">OWL Object Definition Metamodel
(ODM) allows interoperability of OWL ontologies with MOF-compatible
software environments</omv:description>
<omv:name rdf:datatype="&xsd;string">OWL Ontology Definition Metamodel</omv:name>
<omv:numberOfClasses rdf:datatype="&xsd;unsignedInt">35</omv:numberOfClasses>
<omv:numberOfProperties rdf:datatype="&xsd;unsignedInt">22</omv:numberOfProperties>
<omv:hasCreator rdf:resource="#PeterHaase"/>
<omv:hasDomain rdf:resource="&c;Knowledge Representation"/>
<omv:creationDate rdf:datatype="&xsd;string">2007-02-12</omv:creationDate>
...

</omv:Ontology>

A change in the domain modelled by OWLODM (i.e. the definition of OWL 1.1) was reflected in a new version
of the OWLODM ontology, namely version 1.1. This change leaded to a semantic change of the ontology
(i.e. change of type (i)), and therefore a new URI was defined for OWLODM (i.e. http://owlodm.
ontoware.org/OWL1.1). A fragment of the OMV description for OWLODM version 1.1 is the following:

<omv:Ontology rdf:about="&j;OWL1.1v1.1">
<omv:URI rdf:datatype="&xsd;string">http://owlodm.ontoware.org/OWL1.1</omv:URI>
<omv:version rdf:datatype="&xsd;string">1.1</omv:version>
<omv:resourceLocator rdf:datatype="&xsd;string">

2006–2009 © Copyright lies with the respective authors and their institutions.
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http://ontoware.org/frs/download.php/365/owl11.owl</omv:resourceLocator>
<omv:acronym rdf:datatype="&xsd;string">OWLODM</omv:acronym>
<omv:description rdf:datatype="&xsd;string">OWL Object Definition Metamodel
(ODM) allows interoperability of OWL ontologies with MOF-compatible
software environments</omv:description>
<omv:name rdf:datatype="&xsd;string">OWL Ontology Definition Metamodel</omv:name>
<omv:numberOfClasses rdf:datatype="&xsd;unsignedInt">76</omv:numberOfClasses>
<omv:numberOfProperties rdf:datatype="&xsd;unsignedInt">35</omv:numberOfProperties>
<omv:hasCreator rdf:resource="#PeterHaase"/>
<omv:hasDomain rdf:resource="&c;Knowledge Representation"/>
<omv:creationDate rdf:datatype="&xsd;string">2007-08-09</omv:creationDate>
...

</omv:Ontology>

Finally, a new version of OWLODM (i.e. version 1.2) was released as a result of a refinement. In this case, the
change was at the level of the specification of the ontology (i.e. change type (iii)), in particular the renaming
of a property and hence the URI was not updated. A fragment of the OMV description for the OWLODM
version 1.2 is the following:

<omv:Ontology rdf:about="&j;OWL1.1v1.2">
<omv:URI rdf:datatype="&xsd;string">http://owlodm.ontoware.org/OWL1.1</omv:URI>
<omv:version rdf:datatype="&xsd;string">1.2</omv:version>
<omv:resourceLocator rdf:datatype="&xsd;string">
http://ontoware.org/frs/download.php/366/owl11.owl</omv:resourceLocator>
<omv:acronym rdf:datatype="&xsd;string">OWLODM</omv:acronym>
<omv:description rdf:datatype="&xsd;string">OWL Object Definition Metamodel
(ODM) allows interoperability of OWL ontologies with MOF-compatible
software environments</omv:description>
<omv:name rdf:datatype="&xsd;string">OWL Ontology Definition Metamodel</omv:name>
<omv:numberOfClasses rdf:datatype="&xsd;unsignedInt">76</omv:numberOfClasses>
<omv:numberOfProperties rdf:datatype="&xsd;unsignedInt">35</omv:numberOfProperties>
<omv:hasCreator rdf:resource="#PeterHaase"/>
<omv:hasDomain rdf:resource="&c;Knowledge Representation"/>
<omv:creationDate rdf:datatype="&xsd;string">2007-08-10</omv:creationDate>
...

</omv:Ontology>

As we can see from the previous simple example, the URI is not enough to identify individually each version
of the ontology. Besides, in practice not every semantic change leads to the definition of a new URI (as in this
example). Even more, in this example it was enough to use the URI plus the version to identify each physical
implementation, however it could also be possible that the same ontology version is located at two (or more)
different physical location, where each of them could have even different content as we anticipated in the
previous section. In that case we will also need to use the location of the ontology to identify a particular
implementation (i.e. URI plus version plus location).

9.3.4 OMV core metadata entities

The main classes and properties of the OMV ontology are illustrated in Figure 9.1. 2

Additionally to the main class Ontology the metadata scheme contains further elements describing var-
ious aspects related to the creation, management and usage of an ontology. We will briefly discuss these
in the following. In a typical ontology engineering process Persons or Organisation(s) are devel-
oping ontologies. We group these two classes under the generic class Party by a subclass-of
relation. A Party can have several locations by referring to a Location individual and can cre-
ate, contribute to ontological resources i.e. Ontology Implementations. Review details and fur-
ther information can be captured in an extensional OMV module (see [HP05]). Further on we pro-
vide information about the engineering process the ontology originally resulted from in terms of the
classes OntologyEngineeringMethodology, OntologyEngineeringTool and the attributes
version, status, creationDate and modificationDate. Again these can be elaborated as an
extension of the core metadata scheme. The usage history of the ontology is modelled by classes such as the
OntologyTask and LicenceModel. The scheme also contains a representation of the most significant
intrinsic features of an ontology. Details on ontology languages are representable with the help of the classes

2Please notice, that not all classes and properties are included. The ontology is available for download in several ontology formats
at http://omv.ontoware.org/
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Figure 9.1: OMV overview
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OntologySyntax, OntologyLanguage and KnowledgeRepresentationParadigm. Ontolo-
gies might be categorized along a multitude of dimensions. One of the most popular classification differ-
entiates among application, domain, core, task and upper-level ontologies. A further classi-
fication relies on their level of formality and types of Knowledge Representation (KR) primitives supported,
introducing catalogues, glossaries, thesauri, taxonomies, frames etc. as types of ontologies. These can
be modeled as instances of the class OntologyType, while generic formality levels are introduced with
the help of the class FormalityLevel. The domain the ontology describes is represented by the class
OntologyDomain referencing a pre-defined topic hierarchy such as the DMOZ hierarchy. Further con-
tent information can be provided as values of the DatatypeProperties description, keywords, and
documentation. Finally the metadata scheme gives an overview of the graph topology of an Ontology
with the help of several graph-related metrics represented as integer values of the DatatypeProperties
numberOfClasses, numberOfProperties, numberOfAxioms, numberOfIndividuals.

In the appendix of this deliverable we provide a detailed description of the OMV core model. For additional
information please refer to [HP05].
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Chapter 10

Conclusion

10.1 Summary

Next generation semantic applications will be characterized by a large number of networked ontologies; as
a consequence the complexity of semantic applications increases. In the NeOn project we address this
challenge by creating an open infrastructure, and associated methodology, to support the development life-
cycle of such a new generation of semantic applications. In this deliverable we have presented an updated
version of our metamodel for the specification of networked ontologies that will serve as a foundation for
this infrastructure. We have followed the metamodeling approach of Model Driven Architectures for the
specification of the metamodel. Specifically, we have presented four modules of the metamodel:

1. The OWL 2 metamodel serves as the core of our networked ontology model,

2. the rule metamodel covering both SWRL and F-Logic,

3. the mapping metamodel allows for the specification of ontology mappings that describe correspon-
dences between ontology elements in a network of ontologies, and

4. the metamodel for modular ontologies builds on the OWL and mapping metamodel to model ontologies
as reusable components in a network of ontologies.

Further, in this deliverable we have presented the current version of OMV as an Ontology Metadata Vocabu-
lary, which aims at facilitating the task of sharing, searching, reusing and managing the relationships between
ontologies.

We expect that the extended models presented in this deliverable will co-exists with our initial models pre-
sented in D1.1.1 and D1.1.2 in the tool infrastructure since to a large extend our new models complement our
initial models. In particular, we expect that the OWL 1 metamodel will co-exist with our OWL 2 metamodel
until OWL 2 is accepted as a standard and fully supported in the tool infrastructure.

2006–2009 © Copyright lies with the respective authors and their institutions.
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Appendix A

Naming Conventions

Choosing a naming convention for ontology modeling and adhere to these conventions makes the ontology
easier to understand and helps to avoid some common modeling mistakes. Therefore, for the modeling
of ontologies in the context of the NeOn project, we adopted the following set of conventions for ontology
elements (i.e.classes, properties and instances)

A.1 Delimiters and capitalization

• Class Names - Class names are capitalized. If the class name contains more than one word, we use
concatenated words and capitalize each new word. I.e. "Ontology" "OntologySyntax"

• Property Names - Property names use lower case. If the property name contains more than one word,
we use concatenated words where the first word is all in lower case and capitalize each subsequent
new word. I.e. "name" "naturalLanguage" "hasLicense"

• Instance Names - Instance names use lower case. If the instance name contains more than one word,
we use concatenated words where the first word is all in lower case and capitalize each subsequent
new word. I.e. "peter".

A.2 Property naming

The use of property naming conventions helps to identify in an easy way ontology elements. NeOn uses spe-
cific prefixes to identify DatatypeProperty and ObjectProperty. Thus, the ObjectProperties start with a verb
specifying how the two classes are related to each other. I.e. "specifiedBy" "usedOntologyEngineeringTool"
"hasOntologySyntax".

A.3 Singular form

The convention adopted by NeOn was to use names for classes, properties and instances in singular form.
The decision was based on the fact that singular form is used more often in practice in many domains.
Besides, when working with XML, for example, importing legacy XML or generating XML feeds from the
ontology, it is necessary to make sure to use a singular form since this is expected convention for XML tags.

A.4 Additional considerations

• When a word within a name is all capitals, the next word should start in lower case. An hypothetical
example: "URLoriginal"
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• Do not add strings such as "class" or "attribute", and so on to the names.

• Do not concatenate the name of the class to the properties or instances, i.e. there is no "ontology-
Name" "ontologySyantxName"

• Try to avoid abbreviations on the names of the ontology elements. The use of abbreviations in the
names can lead to names difficult to understand, therefore unless the names are self explanatory, we
will avoid them.

2006–2009 © Copyright lies with the respective authors and their institutions.
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Appendix B

OMV Core Ontology

In the following we introduce the metadata elements of OMV, the first metadata standard for ontologies. As
aforementioned, OMV is formalized as an OWL ontology. A metadata element is modelled either by means
of classes and individuals or by means of valued properties. The decision for one of these two alternatives
was justified by the complexity of the corresponding metadata element. If the value/content of a metadata
element can be easily mapped to conventional data types (numerical, literal, list values) the metadata element
is usually represented as a DatatypeProperty. Complex metadata elements which do not fall into the previous
category are modelled by means of additional classes linked by ObjectProperties.

The description of the model is grouped along the core classes of the ontology. For each class we describe
the meaning of its properties and additional usage and occurrence constraints.
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B.1 Ontology

Aspects of specific realizations are covered modular (and extendable) by the class
Ontology.

Ontology
Name Ontology
Type class
Identifier
Definition An implementation of a conceptual model
OMV version 0.1
Comments None

Table B.1: Class: Ontology

URI
Name URI
Type DatatypeProperty
Identifier
Occurrence Constraint required
Category General information
Definition The URI of the ontology which is described by this metadata.

It serves as a logical identifer and is not necessarily
the physical location

Domain omv:Ontology
Range xsd:string
Cardinality 1:1
OMV version 0.1
Comments None

Table B.2: Property: URI

name
Name name
Type DatatypeProperty
Identifier
Occurrence Constraint required
Category General information
Definition The name by which an ontology is formally known
Domain omv:Ontology
Range xsd:string
Cardinality 1:n
OMV version 0.1
Comments The ontology can have many names

(e.g. names in different languages)

Table B.3: Property: name

acronym
Name acronym
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category General information
Definition A short name by which an ontology is formally known
Domain omv:Ontology
Range xsd:string
Cardinality 1:1
OMV version 0.1
Comments None

Table B.4: Property: acronym

2006–2009 © Copyright lies with the respective authors and their institutions.



Page 98 of 146 NeOn Integrated Project EU-IST-027595

description
Name description
Type DatatypeProperty
Identifier
Occurrence Constraint required
Category General information
Definition Free text description of an ontology
Domain omv:Ontology
Range xsd:string
Cardinality 1:1
OMV version 0.1
Comments None

Table B.5: Property: description

documentation
Name documentation
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category General information
Definition URL for further documentation
Domain omv:Ontology
Range xsd:string
Cardinality 0:1
OMV version 0.2
Comments None

Table B.6: documentation

reference
Name reference
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category General information
Definition List of bibliographic references describing the

ontology and its applications
Domain omv:Ontology
Range xsd:string
Cardinality 0:1
OMV version 2.4
Comments None

Table B.7: reference

notes
Name notes
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category General information
Definition Additional information about the ontology that

is not included somewhere else (e.g. information that you do
not want to include in the documentation)

Domain omv:Ontology
Range xsd:string
Cardinality 0:1
OMV version 2.2
Comments None

Table B.8: notes
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naturalLanguage
Name naturalLanguage
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category General information
Definition The language of the content of the ontology,

i.e. English, German, etc.
Domain omv:Ontology
Range xsd:string
Cardinality 0:n
OMV version 0.1
Comments Pre-defined values according to the names of languages

defined in ISO 639

Table B.9: Property: naturalLanguage

keywords
Name keywords
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category General information
Definition List of keywords related to an ontology
Domain omv:Ontology
Range xsd:string
Cardinality 0:n
OMV version 0.1
Comments Typically this set includes words that describe the content

of the ontology

Table B.10: Property: keywords

keyClasses
Name keyClasses
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category General information
Definition Representative classes in the ontology
Domain omv:Ontology
Range xsd:string
Cardinality 0:n
OMV version 2.2
Comments none

Table B.11: Property: keyClasses

status
Name status
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category General information
Definition The tracking information for the contents of the

ontology
Domain omv:Ontology
Range xsd:string
Cardinality 0:1
OMV version 0.1
Comments Pre-defined values

Table B.12: Property: status
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creationDate
Name creationDate
Type DatatypeProperty
Identifier
Occurrence Constraint required
Category General information
Definition Date when the ontology was initially created.
Domain omv:Ontology
Range xsd:date
Cardinality 1:1
OMV version 0.1
Comments In case versioning information

is being used, it refers to the date of creation of
this particular version. Otherwise it refers
to the date of creation of the first version of
this ontology

Table B.13: Property: creationDate

modificationDate
Name modifiedDate
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category General information
Definition Date of the last modification made to the ontology.
Domain omv:Ontology
Range xsd:date
Cardinality 0:1
OMV version 0.1
Comments In case versioning information

is being used, it is not applicable, otherwise it refers
to the date of last modification of this ontology

Table B.14: Property: modificationDate
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hasContributor
Name hasContributor
Type ObjectProperty
Identifier
Occurrence Constraint optional
Category Provenance information
Definition Contributors to the creation of the ontology
Domain omv:Ontology
Range omv:Party
Cardinality 0:n
OMV version 0.1
Comments None

Table B.15: Property: hasContributor

hasCreator
Name hasCreator
Type ObjectProperty
Identifier
Occurrence Constraint required
Category Provenance information
Definition Main responsible for the creation of the ontology
Domain omv:Ontology
Range omv:Party
Cardinality 1:n
OMV version 0.1
Comments None

Table B.16: Property: hasCreator

usedOntologyEngineeringTool
Name usedOntologyEngineeringTool
Type ObjectProperty
Identifier
Occurrence Constraint optional
Category Provenance information
Definition Information about the tool used to create the ontology
Domain omv:Ontology
Range omv:OntologyEngineeringTool
Cardinality 0:n
OMV version 0.1
Comments See section B.5

Table B.17: Property: usedOntologyEngineeringTool

usedOntologyEngineeringMethodology
Name usedOntologyEngineeringMethodology
Type ObjectProperty
Identifier
Occurrence Constraint optional
Category Provenance information
Definition Information about the method model used to create the ontology
Domain omv:Ontology
Range omv:OntologyEngineeringMethodology
Cardinality 0:n
OMV version 0.1
Comments See section B.4

Table B.18: Property: usedOntologyEngineeringMethodology
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conformsToKnowledgeRepresentationParadigm
Name conformsToKnowledgeRepresentationParadigm
Type ObjectProperty
Identifier
Occurrence Constraint optional
Category Provenance information
Definition Information about the paradigm model used to create the ontology
Domain omv:Ontology
Range omv:KnowledgeRepresentationParadigm
Cardinality 0:n
OMV version 0.1
Comments See section B.8

Table B.19: Property: conformsToKnowledgeRepresentationParadigm

endorsedBy
Name endorsedBy
Type ObjectProperty, inverseOf(endorses)
Identifier
Occurrence Constraint optional
Category Provenance information
Definition The parties (i.e. organisations, people) that have

expressed support or approval to this ontology.
Domain omv:Ontology
Range omv:Party
Cardinality 0:n
OMV version 0.1
Comments None

Table B.20: Property: endorsedBy

hasDomain
Name hasDomain
Type ObjectProperty
Identifier
Occurrence Constraint optional
Category Applicability information
Definition The subject domain of the ontology
Domain omv:Ontology
Range omv:OntologyDomain
Cardinality 0:n
OMV version 0.8
Comments Typically, the domain can refer to established topic hierarchies

such as the general purpose topic hierarchy DMOZ or the domain
specific topic hierarchy ACM for the computer science domain.
See section B.11

Table B.21: Property: hasDomain

isOfType
Name isOfType
Type ObjectProperty
Identifier
Occurrence Constraint optional
Category Applicability information
Definition The nature of the content of the ontology
Domain omv:Ontology
Range omv:OntologyType
Cardinality 0:1
OMV version 0.1
Comments Pre-defined values. See section B.2

Table B.22: Property: isOfType
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designedForOntologyTask
Name designedForOntologyTask
Type ObjectProperty
Identifier
Occurrence Constraint optional
Category Applicability information
Definition The purpose for which the ontology was originally designed
Domain omv:Ontology
Range omv:OntologyTask
Cardinality 0:n
OMV version 0.9
Comments See section B.10

Table B.23: Property: designedForOntologyTask

hasFormalityLevel
Name hasFormalityLevel
Type ObjectProperty
Identifier
Occurrence Constraint optional
Category Applicability information
Definition Level of formality of the ontology
Domain omv:Ontology
Range omv:FormalityLevel
Cardinality 0:1
OMV version 0.9.1
Comments Pre-defined values. See section B.9

Table B.24: Property: hasFormalityLevel

knownUsage
Name knownUsage
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Applicability information
Definition The applications where the ontology

is being used
Domain omv:Ontology
Range xsd:string
Cardinality 0:n
OMV version 2.2
Comments None

Table B.25: Property: knownUsage

hasOntologyLanguage
Name hasOntologyLanguage
Type ObjectProperty
Identifier
Occurrence Constraint required
Category Format information
Definition The ontology language
Domain omv:Ontology
Range omv:OntologyLanguage
Cardinality 1:1
OMV version 0.1
Comments Pre-defined values. See section B.7

Table B.26: Property: hasOntologyLanguage
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hasOntologySyntax
Name hasOntologySyntax
Type ObjectProperty
Identifier
Occurrence Constraint optional
Category Format information
Definition The presentation syntax for the ontology language
Domain omv:Ontology
Range omv:OntologySyntax
Cardinality 0:1
OMV version 0.1
Comments Pre-defined values. See section B.6

Table B.27: Property: hasOntologySyntax
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resourceLocator
Name resourceLocator
Type DatatypeProperty
Identifier
Occurrence Constraint required
Category Availability information
Definition The location where the ontology can be found.

It should be accessible via a URL. It
can be the same as the value for URI property

Domain omv:Ontology
Range xsd:string
Cardinality 1:n
OMV version 0.1
Comments None

Table B.28: Property: resourceLocator

version
Name version
Type DatatypeProperty
Identifier
Occurrence Constraint required
Category Availability information
Definition The version information of the ontology
Domain omv:Ontology
Range xsd:string
Cardinality 1:1
OMV version 0.1
Comments Version information could be useful for tracking, comparing

and merging ontologies. It is highly recommended the use
of a well defined numbering schema for the version information
(e.g. X.Y.Z where X is a major release, Y is minor release
and Z is a revision number)

Table B.29: Property: version
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hasLicense
Name hasLicense
Type ObjectProperty
Identifier
Occurrence Constraint optional
Category Availability information
Definition Underlying license model
Domain omv:Ontology
Range omv:LicenseModel
Cardinality 0:1
OMV version 0.1
Comments Reference to a concrete LicenseModel

Pre-defined values. See section B.3

Table B.30: Property: hasLicense

useImports
Name useImports
Type ObjectProperty
Identifier
Occurrence Constraint optional
Category Relationship information
Definition References another ontology metadata instance that

describes an ontology containing definitions, whose
meaning is considered to be part of the meaning of the
ontology described by this ontology metadata instance

Domain omv:Ontology
Range omv:Ontology
Cardinality 0:n
OMV version 0.1
Comments Each reference consists of a URI

Table B.31: Property: useImports

hasPriorVersion
Name hasPriorVersion
Type ObjectProperty
Identifier
Occurrence Constraint optional
Category Relationship information
Definition Contains a reference to another ontology metadata instance
Domain omv:Ontology
Range omv:Ontology
Cardinality 0:1
OMV version 0.1
Comments The ontology metadata instance which describes an

ontology that is a prior version of the ontology described by
this ontology metadata instance. It may be used to organize
ontologies by versions and is NULL for initial ontology

Table B.32: Property: hasPriorVersion
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isBackwardCompatibleWith
Name isBackwardCompatibleWith
Type ObjectProperty
Identifier
Occurrence Constraint optional
Category Relationship information
Definition The ontology metadata instance

which describes an ontology that is a compatible prior
version of the ontology described by this ontology metadata
instance

Domain omv:Ontology
Range omv:Ontology
Cardinality 0:n
OMV version 0.1
Comments This also indicates that all identifiers from the previous

version have the same intended interpretations in the new
version

Table B.33: Property: isBackwardCompatibleWith

isIncompatibleWith
Name isIncompatibleWith
Type ObjectProperty
Identifier
Occurrence Constraint optional
Category Relationship information
Definition The described ontology is a later

version of the ontology described by the metadata specified,
but is not backward compatible with it. It can be used to
explicitly state that ontology cannot upgrade to use the new
version without checking whether changes are required.

Domain omv:Ontology
Range omv:Ontology
Cardinality 0:n
OMV version 0.1
Comments None

Table B.34: Property: isIncompatibleWith

numberOfClasses
Name numberOfClasses
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Statistic information
Definition Number of classes in the ontology
Domain omv:Ontology
Range xsd:unsignedLong
Cardinality 0:1
OMV version 0.1
Comments Language specific value

Table B.35: Property: numberOfClasses

numberOfProperties
Name numberOfProperties
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Statistic information
Definition Number of properties in the ontology
Domain omv:Ontology
Range xsd:unsignedLong
Cardinality 0:1
OMV version 0.1
Comments Language specific value

Table B.36: Property: numberOfProperties
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numberOfIndividuals
Name numberOfIndividuals
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Statistic information
Definition Number of individuals in the ontology
Domain omv:Ontology
Range xsd:unsignedLong
Cardinality 0:1
OMV version 0.1
Comments Language specific value

Table B.37: Property: numberOfIndividuals

numberOfAxioms
Name numberOfAxioms
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Statistic information
Definition Number of axioms in the ontology
Domain omv:Ontology
Range xsd:unsignedLong
Cardinality 0:1
OMV version 0.1
Comments The meaning of axiom depends on the ontology language.

For instance for a RDF(S) ontology it refers to a statement
(i.e. triple) and for an OWL ontology it refers to an OWL axiom.

Table B.38: Property: numberOfAxioms
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B.2 OntologyType

This class subsumes types of ontologies according to well-known classifications in the Ontology Engineering
literature [GPFLC03].

OntologyType
Name OntologyType
Type class
Identifier
Definition Categorizes ontologies
OMV version 0.3
Comments None

Table B.39: Class: OntologyType

name
Name name
Type DatatypeProperty
Identifier
Occurrence Constraint required
Category General information
Definition The name by which an ontology type is formally known
Domain omv:OntologyType
Range xsd:string
Cardinality 1:1
OMV version 0.1
Comments None

Table B.40: Property: name

acronym
Name acronym
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category General information
Definition A short name by which an ontology type is formally known
Domain omv:OntologyType
Range xsd:string
Cardinality 0:1
OMV version 0.1
Comments None

Table B.41: Property: acronym

description
Name description
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category General information
Definition Free text description of an ontology type
Domain omv:OntologyType
Range xsd:string
Cardinality 0:1
OMV version 0.1
Comments None

Table B.42: Property: description

B.2.1 Pre-defined ontology types

Individuals of the class OntologyType refer to well-known classifications for ontologies in the literature.
Currently the OMV model resorts to a classification on the generality levels of the conceptualisation [Gua98,
WW02]:
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documentation
Name documentation
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category General information
Definition URL for further documentation
Domain omv:OntologyType
Range xsd:string
Cardinality 0:1
OMV version 0.2
Comments None

Table B.43: documentation

definedBy
Name definedBy
Type ObjectProperty, inverseOf(defines)
Identifier
Occurrence Constraint optional
Category General information
Definition A party that defined the ontology type
Domain omv:OntologyType
Range omv:Party
Cardinality 0:n
OMV version 0.6
Comments None

Table B.44: definedBy

• upper level ontologies describing general, domain-independent concepts e.g. space, time.

• core ontologies describing the most important concepts in a specific domain

• domain ontology describing some domain of the world

• task ontology describing generic types of tasks or activities e.g. selling, selecting.

• application ontology describing some domain in an application-dependent manner

The class can be extended to support additional classifications (e.g. the one in [McG02]).
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B.3 LicenseModel

LicenseModel
Name LicenseModel
Type class
Identifier LM
Definition A license model describing the usage conditions for an ontology
OMV version 0.3
Comments None

Table B.45: Class: LicenseModel

name
Name name
Type DatatypeProperty
Identifier Used Identifier for this entity.
Occurrence Constraint required
Category Availability information
Definition The name by which a license model is formally known
Domain omv:LicenseModel
Range xsd:string
Cardinality 1:1
OMV version 0.1
Comments None

Table B.46: Property: name

acronym
Name acronym
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Availability information
Definition A short name by which a license model is formally known
Domain omv:LicenseModel
Range xsd:string
Cardinality 0:1
OMV version 0.1
Comments None

Table B.47: Property: acronym

description
Name description
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Availability information
Definition Descriptional free text about a license model
Domain omv:LicenseModel
Range xsd:string
Cardinality 0:1
OMV version 0.1
Comments None

Table B.48: Property: description
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documentation
Name documentation
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Availability information
Definition URL for further documentation
Domain omv:LicenseModel
Range xsd:string
Cardinality 0:1
OMV version 0.2
Comments None

Table B.49: documentation

specifiedBy
Name specifiedBy
Type ObjectProperty, inverseOf(specifies)
Identifier Used Identifier for this element.
Occurrence Constraint optional
Category Availability information
Definition A party that specified the license model
Domain omv:LicenseModel
Range omv:Party
Cardinality 0:n
OMV version 0.6
Comments None

Table B.50: specifiedBy
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B.3.1 Pre-defined license models

Individuals of the class LicenseModel refer to well-known license models, such as:

• Academic Free License (AFL)

• Common Public License (CPL)

• Lesser General Public License (LGPL)

• Open Software License (OSL)

• General Public License (GPL)

• Modified BSD License (mBSD)

• IBM Public License (IBM PL)

• Apple Public Source License (APSL)

• INTEL Open Source License (INTEL OSL)

• Mozilla Public License (MPL)

• Creative Commons Licenses (CCL)

– Attribution (by)

– Attribution-NoDerivs (by-nd)

– Attribution-NonCommercial-NoDerivs (by-nc-nd)

– Attribution-NonCommercial (by-nc)

– Attribution-Noncommercial-Share Alike (by-nc-sa)

– Attribution-ShareAlike (by-sa)

The class can be extended to support additional classifications.

2006–2009 © Copyright lies with the respective authors and their institutions.



Page 114 of 146 NeOn Integrated Project EU-IST-027595

B.4 OntologyEngineeringMethodology

OntologyEngineeringMethodology
Name OntologyEngineeringMethodology
Type class
Identifier
Definition Information about the ontology engineering methodology
OMV version 0.3
Comments None

Table B.51: Class: OntologyEngineeringMethodology

name
Name name
Type DatatypeProperty
Identifier
Occurrence Constraint required
Category Other
Definition The name by which a ontology engineering method is formally known
Domain omv:OntologyEngineeringMethodology
Range xsd:string
Cardinality 1:1
OMV version 0.1
Comments None

Table B.52: Property: name

acronym
Name acronym
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Other
Definition A short name by which a ontology engineering method is known
Domain omv:OntologyEngineeringMethodology
Range xsd:string
Cardinality 0:1
OMV version 0.1
Comments None

Table B.53: Property: acronym

description
Name description
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Other
Definition Free text description of an ontology engineering method
Domain omv:OntologyEngineeringMethodology
Range xsd:string
Cardinality 0:1
OMV version 0.6
Comments None

Table B.54: Property: description
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documentation
Name documentation
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Other
Definition URL for further documentation
Domain omv:OntologyEngineeringMethodology
Range xsd:string
Cardinality 0:1
OMV version 0.6
Comments None

Table B.55: documentation

developedBy
Name developedBy
Type ObjectProperty

inverseOf(develops)
Identifier
Occurrence Constraint optional
Category Other
Definition A party that developed the ontology engineering methodology
Domain omv:OntologyEngineeringMethodology
Range omv:Party
Cardinality 0:n
OMV version 0.6
Comments None

Table B.56: developedBy
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B.5 OntologyEngineeringTool

OntologyEngineeringTool
Name OntologyEngineeringTool
Type class
Identifier
Definition A tool used to create the ontology
OMV version 0.3
Comments None

Table B.57: Class: OntologyEngineeringTool

name
Name name
Type DatatypeProperty
Identifier
Occurrence Constraint required
Category Other
Definition The name by which a tool is formally known
Domain omv:OntologyEngineeringTool
Range xsd:string
Cardinality 1:1
OMV version 0.1
Comments None

Table B.58: Property: name

acronym
Name acronym
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Other
Definition A short name by which a tool is known
Domain omv:OntologyEngineeringTool
Range xsd:string
Cardinality 0:1
OMV version 0.1
Comments None

Table B.59: Property: acronym

description
Name description
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Other
Definition Free text description of the tool
Domain omv:OntologyEngineeringTool
Range xsd:string
Cardinality 0:1
OMV version 0.1
Comments None

Table B.60: Property: description
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documentation
Name documentation
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Other
Definition URL for further documentation.
Domain omv:OntologyEngineeringTool
Range xsd:string
Cardinality 0:n
OMV version 0.2
Comments None

Table B.61: documentation

developedBy
Name developedBy
Type ObjectProperty

inverseOf(develops)
Identifier
Occurrence Constraint optional
Category Other
Definition The tool developer party
Domain omv:OntologyEngineeringTool
Range omv:Party
Cardinality 0:n
OMV version 0.4
Comments None

Table B.62: developedBy
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B.5.1 Pre-defined ontology languages

Individuals of the class OntologyEngineeringTool refer to well-known ontology engineering tools,
such as:

• Protégé

• SWOOP

• OntoStudio

• Altova SemanticWorks

• OilEd

• IsaViz

• WebODE

• OntoBuilder

• WSMO Studio
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B.6 OntologySyntax

OntologySyntax
Name OntologySyntax
Type class
Identifier
Definition Information about the syntax used by an ontology
OMV version 0.3
Comments None

Table B.63: Class: OntologySyntax

name
Name name
Type DatatypeProperty
Identifier
Occurrence Constraint required
Category Format information
Definition The name by which an ontology syntax is formally known
Domain omv:OntologySyntax
Range xsd:string
Cardinality 1:1
OMV version 0.1
Comments None

Table B.64: Property: name

acronym
Name acronym
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Format information
Definition A short name by which an ontology syntax is known
Domain omv:OntologySyntax
Range xsd:string
Cardinality 0:1
OMV version 0.1
Comments None

Table B.65: Property: acronym

description
Name description
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Format information
Definition Free text description of the used syntax
Domain omv:OntologySyntax
Range xsd:string
Cardinality 0:1
OMV version 0.6
Comments None

Table B.66: Property: description
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documentation
Name documentation
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Format information
Definition URL for further documentation.
Domain omv:OntologySyntax
Range xsd:string
Cardinality 0:1
OMV version 0.6
Comments None

Table B.67: documentation

developedBy
Name developedBy
Type ObjectProperty

inverseOf(develops)
Identifier
Occurrence Constraint optional
Category Format information
Definition The party who developed the used syntax
Domain omv:OntologySyntax
Range omv:Party
Cardinality 0:n
OMV version 0.6
Comments None

Table B.68: developedBy
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B.6.1 Pre-defined ontology syntaxes

Individuals of the class OntologySyntax refers to well-known ontology syntax standards, such as:

• OWL-XML

• RDF/XML

The class can be extended to support additional classifications.

2006–2009 © Copyright lies with the respective authors and their institutions.



Page 122 of 146 NeOn Integrated Project EU-IST-027595

B.7 OntologyLanguage

OntologyLanguage
Name OntologyLanguage
Type class
Identifier
Definition Information about the language in which the ontology is implemented
OMV version 0.3
Comments None

Table B.69: Class: OntologyLanguage

name
Name name
Type DatatypeProperty
Identifier
Occurrence Constraint required
Category Format information
Definition The name by which an ontology language is formally known
Domain omv:OntologyLanguage
Range xsd:string
Cardinality 1:1
OMV version 0.1
Comments None

Table B.70: Property: name

acronym
Name acronym
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Format information
Definition A short name by which an ontology language is known
Domain omv:OntologyLanguage
Range xsd:string
Cardinality 0:1
OMV version 0.1
Comments None

Table B.71: Property: acronym

description
Name description
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Format information
Definition Free text description of an ontology language.
Domain omv:OntologyLanguage
Range xsd:string
Cardinality 0:1
OMV version 0.6
Comments None

Table B.72: Property: description
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documentation
Name documentation
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Format information
Definition URL for further documentation
Domain omv:OntologyLanguage
Range xsd:string
Cardinality 0:1
OMV version 0.6
Comments None

Table B.73: Property: documentation

developedBy
Name developedBy
Type ObjectProperty

inverseOf(develops)
Identifier
Occurrence Constraint optional
Category Format information
Definition The party who developed the language
Domain omv:OntologyLanguage
Range omv:Party
Cardinality 0:n
OMV version 0.6
Comments None

Table B.74: Property: developedBy

supportsRepresentationParadigm
Name supportsRepresentationParadigm
Type ObjectProperty
Identifier
Occurrence Constraint optional
Category Format information
Definition The representation paradigm supported by the

ontology language
Domain omv:OntologyLanguage
Range omv:Party
Cardinality 0:n
OMV version 0.6
Comments None

Table B.75: Property: supportsRepresentationParadigm

hasSyntax
Name hasSyntax
Type ObjectProperty
Identifier
Occurrence Constraint optional
Category Format information
Definition The syntactical alternatives of the language
Domain omv:OntologyLanguage
Range omv:OntologySyntax
Cardinality 0:n
OMV version 0.6
Comments None

Table B.76: Property: hasSyntax
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B.7.1 Pre-defined ontology languages

Individuals of the class OntologyLanguage refer to well-known ontology language standards, such as:

• OWL

• OWL-DL

• OWL-Lite

• OWL-Full

• DAML-OIL

• RDF(S)

The class can be extended to support additional classifications.
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B.8 KnowledgeRepresentationParadigm

KnowledgeRepresentationParadigm
Name KnowledgeRepresentationParadigm
Type class
Identifier
Definition Information about a knowledge representation paradigm a particular language

adheres to
OMV version 0.9.1
Comments E. g. Description Logics, Frames

Table B.77: Class: KnowledgeRepresentationParadigm

name
Name name
Type DatatypeProperty
Identifier
Occurrence Constraint required
Category Format information
Definition The name by which a KR paradigm is formally known
Domain omv:KnowledgeRepresentationParadigm
Range xsd:string
Cardinality 1:1
OMV version 0.9.1
Comments None

Table B.78: Property: name

acronym
Name acronym
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Format information
Definition A short name by which a kR paradigm is known
Domain omv:KnowledgeRepresentationParadigm
Range xsd:string
Cardinality 0:1
OMV version 0.9.1
Comments None

Table B.79: Property: acronym

description
Name description
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Format information
Definition Free text description of the knowledge representation paradigm
Domain omv:KnowledgeRepresentationParadigm
Range xsd:string
Cardinality 0:1
OMV version 0.9.1
Comments None

Table B.80: Property: description

2006–2009 © Copyright lies with the respective authors and their institutions.



Page 126 of 146 NeOn Integrated Project EU-IST-027595

documentation
Name documentation
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Format information
Definition URL for further documentation
Domain omv:KnowledgeRepresentationParadigm
Range xsd:string
Cardinality 0:1
OMV version 0.9.1
Comments None

Table B.81: documentation

specifiedBy
Name specifiedBy
Type ObjectProperty

inverseOf specifies
Identifier
Occurrence Constraint optional
Category Format information
Definition Author of the KR paradigm
Domain omv:KnowledgeRepresentationParadigm
Range omv:Party
Cardinality 0:n
OMV version 0.1
Comments None

Table B.82: Property: specifiedBy
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B.8.1 Pre-defined knowledge representation paradigms

In this version we foresee two main classes of KnowledgeRepresentationParadigms:

• Description Logics

• Frames

2006–2009 © Copyright lies with the respective authors and their institutions.
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B.9 FormalityLevel

FormalityLevel
Name FormalityLevel
Type class
Identifier
Definition The level of formality of an ontology
OMV version 0.9.1
Comments According to classifications in the OE literature

Table B.83: Class: FormalityLevel

name
Name name
Type DatatypeProperty
Identifier
Occurrence Constraint required
Category Applicability information
Definition The name by which this element is formally known
Domain omv:FormalityLevel
Range xsd:string
Cardinality 1:1
OMV version 0.9.1
Comments None

Table B.84: Property: name

description
Name description
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Format information
Definition Free text description of the formality level
Domain omv:FormalityLevel
Range xsd:string
Cardinality 0:1
OMV version 0.9.1
Comments None

Table B.85: Property: description

B.9.1 Pre-defined formality levels

The pre-defined values for the formality level are based on the work presented in [LM01], which classifies
ontologies in a spectrum of definitions according to the detail in their specification as: catalog, glossary,
thesauri, taxonomy, frames and properties, value restrictions, disjointness, general logic constraints.
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B.10 OntologyTask

OntologyTask
Name OntologyTask
Type class
Identifier
Definition Information about the task the ontology was intended to be used for
OMV version 0.9.1
Comments Super-class of classes modelling typical ontology-related tasks

Table B.86: Class: OntologyTask

name
Name taskName
Type DatatypeProperty
Identifier
Occurrence Constraint required
Category Applicability information
Definition The name by which an ontology task is formally known
Domain omv:OntologyTask
Range xsd:string
Cardinality 1:1
OMV version 0.9.1
Comments None

Table B.87: Property: name

acronym
Name acronym
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Applicability information
Definition A short name by which an ontology task is known
Domain omv:OntologyTask
Range xsd:string
Cardinality 0:1
OMV version 0.9.1
Comments None

Table B.88: Property: acronym

description
Name description
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Applicability information
Definition Free text description of the ontology task
Domain omv:OntologyTask
Range xsd:string
Cardinality 0:1
OMV version 0.9.1
Comments None

Table B.89: Property: description

B.10.1 Pre-defined ontology tasks

Individuals of the class OntologyTask refer to particular application scenarios for ontologies, in which the
benefits of using ontologies are widely acknowledged. We differentiate among the following tasks:
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documentation
Name documentation
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Applicability information
Definition URL for further documentation
Domain omv:OntologyTask
Range xsd:string
Cardinality 0:1
OMV version 0.9.1
Comments None

Table B.90: documentation

AnnotationTask : the ontology is used as a controlled vocabulary to annotate resources and data. This
task includes the usage of a semantically rich ontology for representing arbitrarily complex annotation
statements on these resources. The task can be performed manually or (semi-)automatically.

ConfigurationTask : the ontology is designed to provide a controlled and unambiguous means to represent
valid configuration profiles in application systems. As the aim of the ontology is to support the oper-
ationalization of particular system-related processes; this task is performed automatically in that the
ontology is processed in an automatic manner by means of reasoners or APIs.

FilteringTask : the task describes at a very general level how ontologies are applied to refine the solution
space of a certain problem, such as information retrieval or personalization. The task is targeted at
being performed semi-automatically or automatically.

IndexingTask : in this scenario, the goal of the ontology is to provide a clearly defined classification and
browsing structure for the information items in a repository. Again, the task can be performed manually
by domain experts or as part of an application in an automatic or semi-automatic way.

IntegrationTask : the task characterizes how ontologies provide an integrating environment, an inter-
lingua, for information repositories or software tools. In this scenario the ontology is applied (semi-
)automatically to merge between heterogeneous data pools in the same or in adjacent domains.

MatchingTask : the goal of matching is to establish links between semantically similar data items in informa-
tion repositories. In contrast to the previous task, matching does not include the production of a shared
final schema/ontology as a result of aggregating the matched source elements to common elements.
W.r.t. the automatization level the range varies from manual to fully-automatical execution.

MediationTask : the ontology is built to reduce the ambiguities between communicating human or machine
agents. It can act as a normative model which formally and clearly defines the meaning of the terms
employed in agent interactions. In the context of programmed agents, the task is envisioned to be
performed automatically.

QueryFormulationTask : the ontology is used in information retrieval settings as a controlled vocabulary
for representing user queries. Usually the task is performed automatically in that the concepts of the
ontology is are listed in a query formulation front-end in order to allow users to specifies their queries.

QueryRewritingTask : complementary to the query formulation dimension, this task applies ontologies to
semantically optimize query expressions by means of the domain knowledge (constraints, subsumption
relations etc.) The task can be interpreted as a particular art of filtering information. The task is
performed automatically; however, it assumes the availability of patterns describing the transformations
at query level.

PersonalizationTask : the ontology is used mainly for providing personalized access to information re-
sources. Individual user preferences w.r.t. particular application settings are formally specified by
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means of an ontology, which, in conjunction with appropriate reasoning services, can be directly inte-
grated to a personalization component for filtering purposes. The usage of ontologies in personaliza-
tion tasks might be carried out in various forms, from a direct involvement of the user who manually
specifies ontological concepts which optimally describe his preferences, to the ontological modelling
of user profiles.

SearchTask : the task characterizes how ontologies are used to refine common keyword-based search al-
gorithms using domain knowledge in form of subsumption relations. Ontology-driven search is usually
performed automatically by means of reasoning services handling particular aspects of an ontology
representation language.
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B.11 OntologyDomain

OntologyDomain
Name OntologyDomain
Type OntologyDomain
Identifier
Definition While the domain can refer to any topic ontology it is

advised to use one of the established general purpose topic
hierarchy like DMOZ or domain specific topic hierarchy like
ACM for the computer science domain. Only this way it can
ensured that meaningful information about the relation of
the domains of two separate ontologies can be deduced

Comments None

Table B.91: Class: OntologyDomain

URI
Name URI
Type DatatypeProperty
Identifier
Occurrence Constraint required
Category General information
Definition The URI of the ontology domain
Domain omv:OntologyDomain
Range xsd:string
Cardinality 1:1
OMV version 2.1
Comments None

Table B.92: Property: URI

name
Name name
Type DatatypeProperty
Identifier
Occurrence Constraint required
Category General information
Definition The name by which an ontology domain is formally known
Domain omv:Ontology
Range xsd:string
Cardinality 1:1
OMV version 2.1
Comments None

Table B.93: Property: name

isSubDomainOf
Name isSubDomainOf
Type ObjectProperty
Identifier
Occurrence Constraint optional
Category Applicability information
Definition Specifies the domain topic of which this domain topic is a sub domain
Domain omv:OntologyDomain
Range omv:OntologyDomain
Cardinality 0:n
OMV version 0.8
Comments Typically, the domain can refer to established topic hierarchies

such as the general purpose topic hierarchy DMOZ or the domain
specific topic hierarchy ACM for the computer science domain

Table B.94: Property: isSubDomainOf
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B.12 Party

Party
Name Party
Type class
Identifier
Definition A party is a person or an organisation
OMV version 0.4
Comments None

Table B.95: Class: Party

isLocatedAt
Name isLocatedAt
Type ObjectProperty
Identifier
Occurrence Constraint optional
Category Availability Information
Definition The geographical location of a party
Domain omv:Party
Range omv:Location
Cardinality 0:n
OMV version 0.9
Comments None

Table B.96: Property: isLocatedAt

develops
Name develops
Type ObjectProperty, inverseOf(developedBy)
Identifier
Occurrence Constraint optional
Category Provenance information
Definition An entity developed by a party
Domain omv:Party
Range omv:OntologyEngineeringTool

omv:OntologyEngineeringMethodology
omv:OntologyLanguage
omv:OntologySyntax

Cardinality 0:n
OMV version 2.4
Comments None

Table B.97: Property: develops

specifies
Name specifies
Type ObjectProperty, inverseOf(specifiedBy)
Identifier
Occurrence Constraint optional
Category Provenance information
Definition An entity specified by a party
Domain omv:Party
Range omv:LicenseModel

omv:KnowledgeRepresentationParadigm
Cardinality 0:n
OMV version 2.4
Comments None

Table B.98: Property: specifies

2006–2009 © Copyright lies with the respective authors and their institutions.



Page 134 of 146 NeOn Integrated Project EU-IST-027595

defines
Name defines
Type ObjectProperty, inverseOf(definedBy)
Identifier
Occurrence Constraint optional
Category Provenance information
Definition An entity defined by a party
Domain omv:Party
Range omv:OntologyType
Cardinality 0:n
OMV version 0.6
Comments None

Table B.99: Property: defines

endorses
Name endorses
Type ObjectProperty, inverseOf(endorsedBy)
Identifier
Occurrence Constraint optional
Category Provenance information
Definition An entity endorsed by a party
Domain omv:Party
Range omv:Ontology
Cardinality 0:n
OMV version 2.4
Comments None

Table B.100: Property: endorses

hasAffiliatedParty
Name hasAffiliatedParty
Type ObjectProperty
Identifier
Occurrence Constraint optional
Category Provenance information
Definition Another party that is affiliated with this party
Domain omv:Party
Range omv:Party
Cardinality 0:n
OMV version 0.2
Comments None

Table B.101: Property: hasAffiliatedParty

createsOntology
Name createsOntology
Type ObjectProperty, inverseOf(hasCreator)
Identifier
Occurrence Constraint optional
Category Provenance information
Definition An ontology created by a party
Domain omv:Party
Range omv:Ontology
Cardinality 0:n
OMV version 0.7
Comments None

Table B.102: Property: createsOntology
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contributesToOntology
Name contributesToOntology
Type ObjectProperty

inverseOf(hasContributor)
Identifier
Occurrence Constraint optional
Category Provenance information
Definition An ontology a party made contributions to
Domain omv:Party
Range omv:Ontology
Cardinality 0:n
OMV version 0.7
Comments None

Table B.103: Property: contributesToOntology
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B.13 Person

Person
Name Person
Type class
Identifier
Definition A named individual
OMV version 0.1
Comments Represents an individual responsible for the creation,

or contribution to an ontology

Table B.104: Class: Person

lastName
Name lastName
Type DatatypeProperty
Identifier
Occurrence Constraint required
Category Provenance information
Definition The surname of a person
Domain omv:Person
Range xsd:string
Cardinality 1:1
OMV version 0.2
Comments None

Table B.105: lastName

firstName
Name firstName
Type DatatypeProperty
Identifier
Occurrence Constraint required
Category Provenance information
Definition The first name of a person
Domain omv:Person
Range xsd:string
Cardinality 1:n
OMV version 0.2
Comments None

Table B.106: firstname

eMail
Name email
Type DatatypeProperty
Identifier
Occurrence Constraint required
Category Provenance information
Definition The email address of a person
Domain omv:Person
Range xsd:string
Cardinality 1:n
OMV version 0.1
Comments None

Table B.107: eMail
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phoneNumber
Name phoneNumber
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Provenance information
Definition The phone number of a person
Domain omv:Person
Range xsd:string
Cardinality 0:n
OMV version 0.1
Comments None

Table B.108: Property: phoneNumber

faxNumber
Name faxNumber
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Provenance information
Definition The fax number of a person
Domain omv:Person
Range xsd:string
Cardinality 0:n
OMV version 0.1
Comments None

Table B.109: faxNumber

isContactPerson
Name isContactPerson
Type ObjectProperty, inverseOf(hasContactPerson)
Identifier
Occurrence Constraint optional
Category Provenance information
Definition Instance is contact person of an organisation
Domain omv:Person
Range omv:Organisation
Cardinality 0:n
OMV version 0.7
Comments None

Table B.110: isContactPerson
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B.14 Organisation

Organisation
Name Organisation
Type class, subclassOf(Party)
Identifier
Definition An organisation of some kind
OMV version 0.6
Comments Represents social institutions such as universities, companies,

societies etc.

Table B.111: Class: Organisation

name
Name name
Type DatatypeProperty
Identifier
Occurrence Constraint required
Category Provenance information
Definition The name by which an organisation is formally known
Domain omv:Organisation
Range xsd:string
Cardinality 1:1
OMV version 0.1
Comments None

Table B.112: Property: name

acronym
Name acronym
Type DatatypeProperty
Identifier Used Identifier for this entity.
Occurrence Constraint required
Category Provenance information
Definition A short name by which an organisation is known
Domain omv:Organisation
Range xsd:string
Cardinality 1:1
OMV version 0.1
Comments None

Table B.113: Property: acronym

hasContactPerson
Name hasContactPerson
Type ObjectProperty, inverseOf(isContactPerson)
Identifier
Occurrence Constraint optional
Category Provenance information
Definition A contact person in the organisation
Domain omv:Organisation
Range omv:Person
Cardinality 0:n
OMV version 0.6
Comments None

Table B.114: hasContactPerson



D1.1.5 Updated Version of the
Networked Ontology Model Page 139 of 146

B.15 Location

Location
Name Location
Type class
Identifier
Definition A location.
OMV version 0.9
Comments The geographical location of a party. To keep things simple we use only

DatatypeProperties instead of introducing classes for country, street, etc.

Table B.115: Class: Location

state
Name state
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Provenance information
Definition The state of a country.
Domain omv:Location
Range xsd:string
Cardinality 0:1
OMV version 0.9
Comments None

Table B.116: Property: state

country
Name country
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Provenance information
Definition The name of the country
Domain omv:Location
Range xsd:string
Cardinality 0:1
OMV version 0.9
Comments Changed the name from land to country

Table B.117: Property: country

city
Name city
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Provenance information
Definition Name of the city (and zip code).
Domain omv:Location
Range xsd:string
Cardinality 0:1
OMV version 0.9
Comments None

Table B.118: Property: city
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street
Name street
Type DatatypeProperty
Identifier
Occurrence Constraint optional
Category Provenance information
Definition Name of the street and number (address).
Domain omv:Location
Range xsd:string
Cardinality 0:1
OMV version 0.9
Comments None

Table B.119: Property: street
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