
2006–2008 © Copyright lies with the respective authors and their institutions.

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 – “Semantic-based knowledge and content systems”

D5.4.1. NeOn Methodology for Building Contextualized Ontology
Networks

Deliverable Co-ordinator: Mari Carmen Suárez-Figueroa

Deliverable Co-ordinating Institution: UPM

Other Authors: Guadalupe Aguado de Cea (UPM), Carlos Buil
(iSOCO), Klaas Dellschaft (UKO-LD), Mariano
Fernández-López (CEU), Andrés García (UPM),
Asunción Gómez-Pérez (UPM), German Herrero
(ATOS), Elena Montiel-Ponsoda (UPM), Marta Sabou
(OU), Boris Villazon-Terrazas (UPM), and Zheng Yufei
(UPM).

This deliverable presents the first version of the NeOn methodology for building
ontology networks.

Document Identifier: NEON/2008/D5.4.1/v1.0 Date due: February 29, 2008
Class Deliverable: NEON EU-IST-2005-027595 Submission date: February 29, 2008
Project start date: March 1, 2006 Version: V1.0
Project duration: 4 years State: Final
 Distribution: Public

NeOn-project.org

Page 2 of 150 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is a part of the NeOn research project funded by the IST Programme of the
Commission of the European Communities by the grant number IST-2005-027595. The following
partners are involved in the project:

Open University (OU) – Coordinator
Knowledge Media Institute – KMi
Berrill Building, Walton Hall
Milton Keynes, MK7 6AA
United Kingdom
Contact person: Martin Dzbor, Enrico Motta
E-mail address: {m.dzbor, e.motta} @open.ac.uk

Universität Karlsruhe – TH (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren – AIFB
Englerstrasse 28
D-76128 Karlsruhe, Germany
Contact person: Peter Haase
E-mail address: pha@aifb.uni-karlsruhe.de

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Pérez
E-mail address: asun@fi.upm.es

Software AG (SAG)
Uhlandstrasse 12
64297 Darmstadt
Germany
Contact person: Walter Waterfeld
E-mail address: walter.waterfeld@softwareag.com

Intelligent Software Components S.A. (ISOCO)
Calle de Pedro de Valdivia 10
28006 Madrid
Spain
Contact person: Jesús Contreras
E-mail address: jcontreras@isoco.com

Institut ‘Jožef Stefan’ (JSI)
Jamova 39
SI-1000 Ljubljana
Slovenia
Contact person: Marko Grobelnik
E-mail address: marko.grobelnik@ijs.si

Institut National de Recherche en Informatique
et en Automatique (INRIA)
ZIRST – 655 avenue de l'Europe
Montbonnot Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: jerome.euzenat@inrialpes.fr

University of Sheffield (USFD)
Dept. of Computer Science
Regent Court
211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

Universität Koblenz-Landau (UKO-LD)
Universitätsstrasse 1
56070 Koblenz
Germany
Contact person: Steffen Staab
E-mail address: staab@uni-koblenz.de

Consiglio Nazionale delle Ricerche (CNR)
Institute of cognitive sciences and technologies
Via S. Martino della Battaglia,
44 - 00185 Roma-Lazio, Italy
Contact person: Aldo Gangemi
E-mail address: aldo.gangemi@istc.cnr.it

Ontoprise GmbH. (ONTO)
Amalienbadstr. 36
(Raumfabrik 29)
76227 Karlsruhe
Germany
Contact person: Jürgen Angele
E-mail address: angele@ontoprise.de

Food and Agriculture Organization
of the United Nations (FAO)
Viale delle Terme di Caracalla 1
00100 Rome
Italy
Contact person: Marta Iglesias
E-mail address: marta.iglesias@fao.org

Atos Origin S.A. (ATOS)
Calle de Albarracín, 25
28037 Madrid
Spain
Contact person: Tomás Pariente Lobo
E-mail address: tomas.parientelobo@atosorigin.com

Laboratorios KIN, S.A. (KIN)
C/Ciudad de Granada, 123
08018 Barcelona
Spain
Contact person: Antonio López
E-mail address: alopez@kin.es

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 3 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed to the writing of this document or its
parts:

UPM

CEU

UKO-LD

OU

iSOCO

ATOS

Change Log

Version Date Amended by Changes

0.00 20-10-2007 Asunción Gómez-Pérez ToC and first version of introduction

0.10 30-10-2007 Mari Carmen Suárez-Figueroa First draft including state of the art

0.11 12-11-2007 Mari Carmen Suárez-Figueroa Update of first draft including new version of
scenarios

0.12 23-11-2007 Mari Carmen Suárez-Figueroa,
Asunción Gómez-Pérez

Update of first draft including first version of
guidelines for ontology specification

0.13 30-11-2007 Mari Carmen Suárez-Figueroa Update of first draft including first version of
guidelines for ontology reuse

0.14 10-12-2007 Mari Carmen Suárez-Figueroa Revision of the state of the art

0.15 15-12-2007 Mari Carmen Suárez-Figueroa Update of guidelines for ontology reuse

0.16 20-12-2007 Elena Montiel-Ponsoda, Mari
Carmen Suárez-Figueroa

Update of scenarios for building ontology
networks

0.17 8-1-2008 Mari Carmen Suárez-Figueroa Update of the state of the art

0.18 10-1-2008 Asunción Gómez-Pérez Revision of the state of the art

0.19 15-1-2008 Mari Carmen Suárez-Figueroa Update of guidelines for ontology reuse

0.20 15-1-2008 Asunción Gómez-Pérez Revision of ontology specification section

0.21 15-1-2008 Asunción Gómez-Pérez Revision of ontology reuse section

0.22 15-1-2008 Asunción Gómez-Pérez Revision of scenarios for building ontology
networks

0.23 21-1-2008 Mari Carmen Suárez-Figueroa Update of guidelines for ontology reuse

0.24 22-1-2008 Klaas Dellschaft Update of the DILIGENT section in the state
of the art

0.25 23-1-2008 Mari Carmen Suárez-Figueroa Inclusion of chapter about NeOn
methodology

0.26 24-1-2008 Mari Carmen Suárez-Figueroa Inclusion of knowledge reuse section

0.27 25-1-2008 Klaas Dellschaft Inclusion of argumentation section

Page 4 of 150 NeOn Integrated Project EU-IST-027595

0.28 29-1-2008 Mari Carmen Suárez-Figueroa Update of guidelines for ontology
(requirements) specification

0.29 4-2-2008 Mari Carmen Suárez-Figueroa Update of guidelines for ontology
(requirements) specification

0.30 4-2-2008 Mari Carmen Suárez-Figueroa Revision of argumentation section

0.31 5-2-2008 Mari Carmen Suárez-Figueroa Revision of scenarios for building ontology
networks

0.32 5-2-2008 Mari Carmen Suárez-Figueroa Inclusion of guidelines for deciding between
single ontologies and ontology networks

0.33 6-2-2008 Klaas Dellschaft Update of argumentation section

Boris Villazón-Terrazas Inclusion of ontology specification example
from SEEMP project

German Herrero Inclusion of ontology specification example
from the Semantic Nomenclature use case 0.34 6-2-2008

Carlos Build Inclusion of ontology specification example
from the Invoice Management use case

0.35 6-2-2008 Boris Villazón-Terrazas, Mari
Carmen Suárez-Figueroa

Inclusion of ontology specification example
from SEEMP project

0.36 7-2-2008 Asunción Gómez-Pérez Global revision of the deliverable

0.37 9-2-2008 Mari Carmen Suárez-Figueroa Update and reorganization of the whole
deliverable

0.38 11-2-2008 Mari Carmen Suárez-Figueroa Revision of the state of the art

0.39 12-2-2008 Mari Carmen Suárez-Figueroa Revision of chapter about NeOn
methodology

0.40 12-2-2008 Mariano Fernández-López Inclusion of guidelines for reusing
general/common ontologies

0.41 13-2-2008 Mari Carmen Suárez-Figueroa Revision of guidelines for reusing
general/common ontologies

0.42 13-2-2008 Mariano Fernández-López Revision of chapters about the state of the
art and about the methodology

0.43 14-2-2008
Boris Villazón-Terrazas, Andrés
García, Mari Carmen Suárez-

Figueroa

Revision of sections in the chapter about the
methodology (introduction, types of
knowledge resources, importance of

reenginering and scenario about reuse and
reengineering non ontological resources

0.44 14-2-2008 Mariano Fernández-López Global revision of the deliverable

0.45 15-2-2008 Mari Carmen Suárez-Figueroa Global revision of the deliverable

0.46 15-2-2008 Marta Sabou, Mari Carmen
Suárez-Figueroa

Inclusion of guidelines for reusing ontology
statements

0.47 15-2-2008 Elena Montiel-Ponsoda, Mari
Carmen Suárez-Figueroa

Inclusion of guidelines for reusing ontology
design patterns

0.48 15-2-2008 Boris Villazon Inclusion of chapter about non ontological
resource reuse

0.49 15-2-2008 Andrés García Inclusion of chapter about non ontological
resource reengineering

0.50 21-2-2008 Asunción Gómez-Pérez, Mari
Carmen Suárez-Figueroa

Revision of introduction and chapters about
non ontological resource reuse and

reengineering

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 5 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

0.51 22-2-2008 Mariano Fernández-López Revision of guidelines for reusing
general/common ontologies

0.52 26-2-2008 Asunción Gómez-Pérez, Mari
Carmen Suárez-Figueroa

Inclusion of a new chapter explaining the
research methodology followed for building

the NeOn methodology

0.53 26-2-2008 Boris Villazon-Terrazas Update of chapter about non ontological
resource reuse

0.54 26-2-2008 Andrés García Update of chapter about non ontological
resource reengineering

0.55 27-2-2008 Asunción Gómez-Pérez Revision of introduction

0.56 28-2-2008 Mari Carmen Suárez-Figueroa
Revision of chapter explaining the research
methodology followed for building the NeOn

methodology

0.57 29-2-2008 Asunción Gómez-Pérez General revision of the deliverable

0.58 4-3-2008 Asunción Gómez-Pérez, Mari
Carmen Suárez-Figueroa

Revision and update of chapter about the
NeOn methodology

0.59 5-3-2008 Asunción Gómez-Pérez, Mari
Carmen Suárez-Figueroa

Revision of chapter explaining the research
methodology followed for building the NeOn

methodology

0.60 5-3-2008 Asunción Gómez-Pérez, Mari
Carmen Suárez-Figueroa

Revision of chapter about the NeOn
methodology

0.61 6-3-2008 Mari Carmen Suárez-Figueroa Update of chapter about the NeOn
methodology

0.62 7-3-2008 Elena Montiel-Ponsoda, Mari
Carmen Suárez-Figueroa

Inclusion of guidelines for reusing ontology
design patterns

0.63 11-3-2008 Asunción Gómez-Pérez, Mari
Carmen Suárez-Figueroa

Revision of chapter about ontology
specification

0.64 12-3-2008 Boris Villazon-Terrazas Update of example about ontology
specification in SEEMP

0.65 12-3-2008 German Herrero Update of example about Nomenclature
ontology specification

0.66 12-3-2008 Mari Carmen Suárez-Figueroa Update of chapter about the ontological
resource reuse

0.67 13-3-2008 Asunción Gómez-Pérez Revision of chapters 1 to 3

0.68 14-3-2008 Asunción Gómez-Pérez Revision of chapters 4 to 5

0.69 19-3-2008 Mari Carmen Suárez-Figueroa Update of chapter about the ontological
resource reuse

0.70 24-3-2008 Mari Carmen Suárez-Figueroa Update of chapter about the ontological
resource reuse

0.71 25-3-2008 Elena Montiel-Ponsoda Revision of English in chapter about the
ontological resource reuse

0.72 26-3-2008 Mariano Fernández-López General revision of the deliverable

0.73 27-3-2008 Boris Villazon-Terrazas, Andres
García

Update of chapter about the non ontological
resource reuse and reengineering

0.74 27-3-2008 Elena Montiel-Ponsoda Update of chapter about the ontology design
pattern reuse

0.75 28-3-2008 Carlos Build Update of example about Invoice
Management ontology specification

0.76 28-3-2008 Asunción Gómez-Pérez General revision

Page 6 of 150 NeOn Integrated Project EU-IST-027595

0.77 28-3-2008 Mari Carmen Suárez -Figueroa Update of chapters 1 to 3

0.78 1-4-2008 Mariano Fernández-López Update of section about general or common
ontologies

0.79 1-4-2008 Asunción Gómez-Pérez, Mari
Carmen Suárez-Figueroa

Revision and update of sections about
ontology reuse as a whole and ontology

statements

0.80 1-4-2008 Mari Carmen Suárez-Figueroa Conclusion and future work

0.81 1-4-2008 Asunción Gómez-Pérez Revision of chapters 1 to 5

0.82 1-4-2008 Elena Montiel-Ponsoda, Mari
Carmen Suárez-Figueroa

Update of chapter about the ontology design
pattern reuse

0.83 2-4-2008 Boris Villazon-Terrazas, Andres
García

Update of chapter about the non ontological
resource reuse and reengineering

0.84 2-4-2008 Asunción Gómez-Pérez Revision and update of introduction,
executive summary, and conclusion

Elena Montiel-Ponsoda, Mari
Carmen Suárez-Figueroa

Update of chapter about the ontology design
pattern reuse

Boris Villazon-Terrazas, Andres
García

Update of chapter about the non ontological
resource reuse and reengineering 0.85 3-4-2008

Mari Carmen Suárez-Figueroa Update of chapter about the ontological
resource reuse

0.90 3-4-2008 Mari Carmen Suárez-Figueroa Global revision of the deliverable

0.95 3-4-2008 Martin Dzbor Q.A. comments

1.0 3-4-2008 Mari Carmen Suárez-Figueroa Final version

Executive Summary

Research on Ontology Engineering methodologies is reaching its “adolescence”. The mid 1990s
and the first years of this new millennium have witnessed the growing interest of many practitioners
in approaches that support the creation and management as well as the population of single
ontologies built from scratch. There are some well recognized methodological approaches (e.g.,
METHONTOLOGY, On-To-Knowledge, and DILIGENT) that provided guidelines to help
researchers to develop ontologies. However, they have at least four important limitations:

1. The methodologies lack guidelines for building ontologies by reusing and reengineering
other ontologies and existing knowledge resources widely consensuated in a particular
domain.

2. The methodologies lack of guidelines for contextualizing an existing ontology and plugging
it in with existing ontologies that might be in continuous evolution.

3. These methodologies do not explain the ontology building process with the same style and
granularity than those methodologies for developing software.

The main goal of this deliverable is to present the first version of the NeOn methodology for
building network of ontologies. The principles that guide the construction of such methodology are:

1. The methodology should be general enough in the sense that it should help software
developers and ontology practitioners to build network of ontologies with NeOn toolkit and
with other widely used platforms such as Protégé or Top Braid Composer.

2. For each process or each activity, the methodology should define it precisely, state clearly
its purpose, its inputs and outputs, the actors involved, when it is more convenient its
execution, and the set of methods, techniques and tools to be used for executing the

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 7 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

activity. Furthermore, the methodology should provide prescriptive guidelines for each
process or each activity.

3. To facilitate a promptly assimilation by software developers and ontology practitioners, we
present the methodology in a manner non oriented to researchers. We also include
examples of how to use the methodology in different use cases.

The scope of this deliverable is limited to the following:

1. Ontology specification activity.

2. Reuse and reengineering of non ontological resources. By non ontological resource we
mean: a knowledge aware resource whose semantics has not been formalized yet by
means of an ontology. Elements in this set are: glossaries, dictionaries, lexicons,
classification schemes and taxonomies, and thesauri.

3. Reuse of ontological resources. By ontological resources we mean: a set of elements
extracted from a set of available ontologies in order to solve a need. Elements from this set
can be: ontologies, ontology modules, ontology statements or ontology design patterns. In
this deliverable we analyze: general or common ontologies, domain ontologies, ontology
statements, and ontology design patterns.

Page 8 of 150 NeOn Integrated Project EU-IST-027595

Table of Contents

NeOn Consortium ..2

Work package participants ...3

Change Log ..3

Executive Summary...6

Table of Contents...8

List of Tables..10

List of Figures ..11

1. Introduction ..13
1.1. WP5 Objectives and Main Tasks ..13
1.2. Deliverable Main Goals and Contributions..14
1.3. Deliverable Structure...15
1.4. Relation with D5.3.1 and D5.6.1 and the Rest of WPs within the NeOn Project...................15

2. State of the Art on Methodologies ...17
2.1. Definitions for Methodology, Method, and Technique...17
2.2. METHONTOLOGY..18
2.3. On-To-Knowledge...21
2.4. DILIGENT..23
2.5. Comparison of Presented Methodologies ..25

3. Research Methodology ...28
3.1. General Framework for Describing the NeOn Methodology ...28
3.2. Conditions for the NeOn Methodology for Building Ontology Networks................................31

3.2.1. Necessary Conditions..31
3.2.2. Sufficient Conditions ..32

4. NeOn Methodology for Building Ontology Networks...34
4.1. Scenarios for Building Ontology Networks..34
4.2. Argumentation and Collaboration in NeOn Scenarios ..36
4.3. When do Ontologies become Ontology Networks? ..37

5. Ontology Specification..40
5.1. State of the Art ..40

5.1.1. Methods ...40
5.1.2. Techniques ..40
5.1.3. Tools ..41
5.1.4. Conclusion ...42

5.2. Proposed Guidelines for Ontology Specification...42
5.3. Examples ..48

5.3.1. SEEMP Reference Ontology Specification..49
5.3.2. Invoice Reference Ontology Specification...55
5.3.3. Semantic Nomenclature Reference Ontology Specification..57

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 9 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

5.4. Future Work ..63

6. Non Ontological Resource Reuse and Reengineering...64
6.1. Introduction ...64
6.2. State of the Art ..65

6.2.1. Methods ...65
6.2.2 Techniques ...68
6.2.3 Tools ...68
6.2.4 Conclusion ..69

6.3. Type of Non Ontological Resources ...69
6.4. The NeOn Approach for Non Ontological Resource Reuse and Reengineering75
6.5. NeOn Proposed Guidelines for Non Ontological Resource Reuse.......................................77

6.5.4. Example ...81
6.6. NeOn Approach for Non Ontological Resource Reengineering..82

6.6.1. NeOn General Model for Non Ontological Resource Reengineering..82
6.6.2. NeOn Activities and Tasks for Non Ontological Resource Reengineering83
6.6.3. Patterns for Reengineering Non Ontological Resources...87

6.7 Conclusions and Future Work..91

7. Ontological Resource Reuse ..93
7.1. Introduction ...93
7.2. General Criteria for Ontological Resource Reuse...96
7.3. Proposed Guidelines for Reusing General or Common Ontologies......................................97

7.3.1. Detailed Guidelines for Situation 1: the comparative study exists...98
7.3.2. Detailed Guidelines for Situation 2: the comparative study does not exist101
7.3.3. Example of Situation 2...102

7.4. Proposed Guidelines for Reusing Domain Ontologies as a Whole.....................................111
7.5. Proposed Guidelines for Reusing Ontology Statements...116

7.6.1. Experiments on Ontology Statement Reuse ...121

8. Ontology Design Patterns Reuse ...122
8.1. Introduction ...122
8.2. State of the Art ..123

8.2.1. Methods ...125
8.2.2. Techniques ..125
8.2.3. Tools ..125
8.2.4. Conclusion ...126

8.3. NeOn Method for the Reuse of Ontology Design Patterns by Naive Users........................126
8.3.1. Enrichment of NeOn Ontology Design Patterns with Lexico-Syntactic Patterns.....................127
8.3.2. SOS NeOn plug-in, System for Ontology design patterns Support...132
8.3.3. Input Refinement ...134

8.4. Proposed Guidelines for Ontology Design Patterns Reuse by Naive Users.......................136

9. Conclusions and Future Work..140

References..142

Annex A. Hands-on Experiments in using the NeOn Watson Plug-in150
Use Case 1: Ontology Enrichment...150
Use Case 2: Ontology Development..150

Page 10 of 150 NeOn Integrated Project EU-IST-027595

List of Tables

Table 1. Summary of Conclusions .. 26
Table 2. Template for Process and Activity Filling Card ... 30
Table 3. Ontology Specification Filling Card ... 43
Table 4. Template for the OSRD .. 44
Table 5. Examples of Terminology and Frequency .. 52
Table 6. Examples of Objects ... 53
Table 7. Excerpt of SEEMP Reference Ontology Requirement Specification Document 55
Table 8. Example of Terms and Frequency.. 61
Table 9. Examples of Objects ... 61
Table 10. Excerpt of Semantic Nomenclature Reference Ontology Requirement Specification

Document .. 63
Table 11. Non Ontological Resource Reuse Filling Card ... 78
Table 12. Assessment Table .. 81
Table 13. Assessment Table for SEEMP Occupation Standards ... 82
Table 14. Non Ontological Resource Reengineering Filling Card .. 84
Table 15. Pattern for Reengineering Non Ontological Resource Template.................................... 88
Table 16. Example of Pattern for Reengineering Non Ontological Resource................................. 91
Table 17. Common Ontology Reuse Filling Card ... 98
Table 18. Features of Ontologies that implement Mereotopology Theories 107
Table 19. Competency Question Analysis for Mereology Ontology Reuse 108
Table 20. Required Features for the Ontology to be developed (in grey) 110
Table 21. Domain Ontology Reuse Filling Card.. 112
Table 22. Hypothetical Example of Domain Ontology Assessment Table.................................... 114
Table 23. Hypothetical Example of Domain Ontology Selection Table... 115
Table 24. Ontology Statement Reuse Filling Card.. 117
Table 25. Examples of Hearst Patterns .. 127
Table 26. LSPs Field included in the NeOn ODPs Template ... 128
Table 27. Restricted Words and Symbols in LSPs ... 129
Table 28. LSPs (en) for the SubClassOf ODP (LP-SC-01).. 130
Table 29. LSPs (en) for the DisjointClasses ODP (LP-Di-01) ... 130
Table 30. LSPs for the ExhaustiveClasses ODP (LP-EC-01)... 130
Table 31. JAPE Rule for LSP 4 of LP-SC-01.. 131
Table 32. Example of Annotation Results by ANNIE (GATE)... 133
Table 33. ODPs Reuse by Naive users Filling Card. .. 137
Table 34. Comparative Analysis of Three Analyzed Methodologies and the NeOn Methodology

Version 1.. 141

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 11 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

List of Figures

Figure 1. Graphical Representation of Terminological Relationships in Methodologies [59] 18
Figure 2. METHONTOLOGY Ontology Life Cycle .. 20
Figure 3. Ontology Reengineering Activities [61].. 21
Figure 4. On-To-Knowledge Ontology Life Cycle [107] .. 22
Figure 5. Life Cycle Model of the DILIGENT Methodology [40] .. 25
Figure 6. Inputs taken into account for obtaining the NeOn Methodology 28
Figure 7. Process, Activities and Tasks .. 29
Figure 8. Scenarios for Building Ontology Networks .. 36
Figure 9. Simple Graphical Examples of Single Ontologies and Ontology Networks 38
Figure 10. Tasks for Ontology Specification ... 45
Figure 11. Excerpt of the Competency Questions and Answers in an Excel File 50
Figure 12. Excerpt of the Competency Questions in a Mind Map Tool... 51
Figure 13. Competency Questions Groups... 51
Figure 14. Competency Questions Groups in detail ... 51
Figure 15. Excerpt of the Semantic Nomenclature Competency Questions................................... 59
Figure 16. Semantic Nomenclature Competency Questions Groups ... 60
Figure 17. Examples of Competency Questions in Groups .. 60
Figure 18. Classification Schemes Data Models .. 71
Figure 19. Non Ontological Resources Categorization... 73
Figure 20. Water Area Classification .. 73
Figure 21. Water Area Classification Data Models ... 74
Figure 22. Water Area Classification XML Implementation for the Adjacency List Model 74
Figure 23. Water Area Classification Spreadsheet Implementation for the Adjacency List Model . 75
Figure 24. Water Area Classification XML Implementation for the Path Enumeration Model......... 75
Figure 25. Non Ontological Reuse and Reengineering Approach .. 76
Figure 26. General Model for Software Reengineering [27] ... 77
Figure 27. Proposed Activities in NeOn for the Non Ontological Resource Reuse Process 79
Figure 28. Reengineering Model for Non Ontological Resources... 83
Figure 29. Proposed Activities in NeOn for the Non Ontological Resource Reengineering Process

... 85
Figure 30. Different Types of Ontological Resource Reuse.. 94
Figure 31. Ontological Resource Reuse Definitions ... 95
Figure 32. Activities for Reusing Common Ontologies in Situation 1.. 99

Page 12 of 150 NeOn Integrated Project EU-IST-027595

Figure 33. Activities for Reusing Common Ontologies in Situation 2.. 101
Figure 34. Hasse Diagram of Mereological Theories (from weaker to stronger, going uphill) [118]

... 105
Figure 35. Activities for Reusing Domain Ontologies as a Whole... 113
Figure 36. Activities for the Ontology Statement Reuse ... 118
Figure 37. SOS NeOn Plug-in Workflow... 132
Figure 38. Possibilities for enriching Taxonomies... 135
Figure 39. Tasks for ODPs Reuse by Naive Users... 138

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 13 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

1. Introduction

Research on Ontology Engineering methodologies is reaching its “adolescence”. The mid 1990s
and the first years of this new millennium have witnessed the growing interest of many practitioners
in approaches that support the creation and management, as well as the population, of single
ontologies built from scratch. There are some well recognized methodological approaches (e.g.,
METHONTOLOGY, On-To-Knowledge, and DILIGENT) that provide guidelines to help researchers
to develop ontologies. However, they have at least four important limitations:

1. The methodologies lack guidelines for building ontologies by reusing and reengineering
other ontologies and existing knowledge resources widely consensuated in a particular
domain.

2. The methodologies lack guidelines for contextualizing an existing ontology and plugging it
in with existing ontologies that might be in continuous evolution.

3. These methodologies do not explain the ontology building process with the same style and
granularity than those methodologies for developing software.

The development of large-scale semantic applications in the near future will be characterized by
using a very large number of ontologies embedded in ontology networks1. Such ontologies will be
built collaboratively by distributed teams. With the goal of speeding up the ontology development
process, ontology practitioners are starting to reuse as much as possible other ontologies, ontology
modules, ontology statements and ontology design patterns as well as knowledge aware resources
such as thesauri, lexicons, DBs, UML diagrams and classification schemas built by others that
already have some degree of consensus. This combination has at least three important benefits:

1. Existing authoritative ontologies will be reused more and more.

2. Knowledge aware resources usually contain terminology already consensuated by a broad
community of people using a given protocol for reaching consensus. So, at least labels
used for naming terms are consensuated, and in the case of classification schemas, they
provide a taxonomy that can be easily transformed into a lightweight ontology.

3. Ontologies will be built cheaper and faster because reengineering knowledge aware
resources is less time and resource consuming than acquiring knowledge in a domain,
reaching consensus, and formalizing it.

1.1. WP5 Objectives and Main Tasks

In this context, the main objectives of WP5 are:

1 To create the NeOn methodology that support the collaborative aspects of ontology
development, and the reuse and the dynamic evolution of networked ontologies in distributed
environments, in which contextual information is introduced by developers (domain experts,
ontology practitioners) at different stages of the ontology development process.

2 To create a rigorous, sound NeOn methodology for the development of large scale Semantic
Web applications that supports the reference architecture and the service oriented
infrastructure developed in WP6.

1 An ontology network or a network of ontologies is a collection of ontologies together through a variety of different

relationships such as mapping, modularization, version, and dependency relationships [70].

Page 14 of 150 NeOn Integrated Project EU-IST-027595

3 To provide qualitative and quantitative experimental evidence of how by following the NeOn
methodologies the system development improves.

These objectives will be achieved through investigating the following tasks:

 Task 5.3. Identification and definition of the development process and life cycle for networks of
ontologies. Results of these researches were included in D5.3.1 [111].

 Task 5.4. The NeOn methodology for building collaboratively ontology networks will include
methods, techniques and tools for carrying out the activities identified and defined in the
ontology network development process. Research results are presented in this deliverable.

 Task 5.5. The NeOn methodology for development of large-scale Semantic Web applications
from the initial phases (requirement analysis) of the development process until the stage prior
to the implementation. To ease the use of the NeOn reference architecture and the NeOn
software components, a set of developer-oriented reference specifications will be defined.
These specifications will serve as skeleton for adapting the selected components and for
developing new complex semantic-based software components and semantic applications.

 Task 5.6. Experimentation with NeOn methodologies. In this task experiments, methods, and
metrics are proposed for evaluating the main outcomes produced in this WP. The goal is to
provide qualitative and quantitative evidence that with the NeOn methodologies ontologies and
systems are built faster and better.

1.2. Deliverable Main Goals and Contributions

The main goal of this deliverable is to present the first version of a methodology for building
networks of ontologies. The principles that guide the construction of such a methodology are:

1. The methodology should be general enough in the sense that it should help software
developers and ontology practitioners to build networks of ontologies with the NeOn toolkit
and with other widely used platforms such as Protégé or Top Braid Composer.

2. The methodology should define each process or activity precisely; state clearly its purpose,
its inputs and outputs, the actors involved, when its execution is more convenient, and the
set of methods, techniques and tools to be used for executing it.

3. To facilitate a promptly assimilation by software developers and ontology practitioners, we
present the methodology in a prescriptive way none oriented to researchers. We also
include examples on how to use the methodology in different use cases.

The scope of this deliverable is limited to the following:

1. Ontology specification activity.

2. Reuse and reengineering of non ontological resources. By non ontological resource we
mean: a knowledge aware resource whose semantics has not been formalized yet by
means of an ontology. Elements in this set are: glossaries, dictionaries, lexicons,
classification schemes and taxonomies, and thesauri.

3. Reuse of ontological resources. By ontological resources we mean: a set of elements
extracted from a set of available ontologies in order to solve a need. Elements from this set
can be: ontologies, ontology modules, ontology statements or ontology design patterns. In
this deliverable we analyze: general or common ontologies, domain ontologies, ontology
statements, and ontology design patterns.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 15 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

1.3. Deliverable Structure

The deliverable is structured as follows:

 Chapter 2 deals with the state of the art on methodological issues in Ontology Engineering. We
briefly present the most well known methodologies and we compare them according to the
following features: critical dimensions within NeOn (that is, collaboration, dynamics and
context), degree of coverage of the activities included in this deliverable, and whether
methodologies are targeted to software developers and ontology practitioners, or to ontology
researchers.

 Chapter 3 explains the research methodology followed for creating the NeOn methodology for
building ontology networks, and the general framework for describing such NeOn methodology.

 Chapter 4 presents: (1) an overview of the different scenarios for building ontologies presented
in D5.3.1 [111], (2) an analysis on how argumentation and collaboration issues are related to
the different scenarios, and (3) an explanation of when it is better to develop a single ontology
and when an ontology networks.

 Chapter 5 presents the proposed methodological guidelines for carrying out the ontology
specification activity, and includes three examples on how to carry out this activity in different
use cases from the NeOn project and the SEEMP project.

 Chapter 6 explains the proposed methodological guidelines for the non ontological resource
reuse and reengineering processes.

 Chapter 7 presents the proposed methodological guidelines for the ontological resource reuse,
distinguishing between reusing general or common ontologies, domain ontologies as a whole
or ontology statements.

 Chapter 8 describes the proposed methodological guidelines for carrying out ontology design
patterns reuse, focused on a user non expert in design patterns.

 Chapter 9 presents the conclusions and future work.

1.4. Relation with D5.3.1 and D5.6.1 and the Rest of WPs within the NeOn Project

The relation between this deliverable and the rest of the work done in WPs in the NeOn project is
briefly described below:

 Methodological guidelines for a subset of the process or activities defined in the NeOn
Glossary [111] are included in this deliverable.

 For some of the processes or activities described in this deliverable and for others in the NeOn
Glossary we planned experiments, which are described in D5.6.1.

 D2.2.1 [98] from WP2 has been reviewed and its content considered in the proposed
guidelines for reusing and reengineering.

 D2.5.1 [94] from WP2 has been reviewed and its content considered in the proposed
guidelines for reusing ontology design patterns.

 To operationalize a methodology it is desirable to have tools that reflect and support all
processes and activities of the methodology, and guide users step by step through the ontology
engineering process. For this reason, although not included in this deliverable, we are
identifying which NeOn plug-ins described in deliverable D6.10.1 from WP6 give support to the

Page 16 of 150 NeOn Integrated Project EU-IST-027595

activities included in the methodology. Such identification will be included in the next version of
the deliverable.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 17 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

2. State of the Art on Methodologies

A series of existing methods and methodologies for developing ontologies from scratch have been
reported in [59] and can be summarized as follows: in 1990, some general steps and some
interesting points about the Cyc ontology development were published. Some years later, in 1995,
on the basis of the experience gathered in developing the Enterprise ontology and the TOVE
(TOronto Virtual Enterprise) project ontology both in the domain of enterprise modeling, the first
guidelines were proposed. In 1996, a method to build an ontology in the domain of electrical
networks as part of the Esprit KACTUS project was presented. The METHONTOLOGY
methodology [59] appeared simultaneously. In 1997, a new method was proposed for building
ontologies based on the SENSUS ontology. Then some years later, in 2001, the On-To-Knowledge
methodology appeared within the project with the same name. One of the main limitations of all the
aforementioned approaches is that they do not consider collaborative and distributed development
of ontologies [59]. In fact, the first method that included a proposal for collaborative construction
was Co4 [41, 42]. This method includes a protocol for agreeing new pieces of knowledge with the
rest of the knowledge architecture, which has been previously agreed upon. After this, in 2004, the
DILIGENT methodology [90] appeared which is intended to support domain experts in a distributed
setting to engineer and evolve ontologies.

From the aforementioned methods and methodologies, in this section we include chronologically a
description of three of them (METHONTOLOGY, On-To-Knowledge and DILIGENT). A detailed
explanation of all of them can be found in [59].

Before that, we present definitions from IEEE for the terms methodology, method, technique,
process, activity, and task.

At the end of this chapter, we compare METHONTOLOGY, On-To-Knowledge and DILIGENT with
respect to the following characteristics:

 Critical dimensions within NeOn (that is, collaboration, dynamics and context).

 Degree of coverage of the processes or activities included in this deliverable (that is,
ontology specification, non ontological resource reuse, non ontological resource
reengineering, reusing ontological resources, and reusing ontology design patterns) by
providing detailed guidelines.

 If they are targeted to software developers and ontology practitioners, and not to ontology
researchers.

2.1. Definitions for Methodology, Method, and Technique

Throughout literature, the terms methodology, method, technique, process, activity, etc. are used
indiscriminately [76]. To make clear the use of these terms, we have adopted the IEEE definitions
for such terms in this deliverable2.

The IEEE [19] defines methodology as “a comprehensive, integrated series of techniques or
methods creating a general systems theory of how a class of thought-intensive work ought to be
performed” [6]. Methods and techniques are parts of methodologies. A method [19] is a set of
“orderly processes or procedures used in the engineering of a product or performing a service” [6].
A technique [5] is “a technical and managerial procedure used to achieve a given objective” [4].
De Hoog [76] explores relationships between methodologies and methods. According to him,
methodologies and methods are not the same because “methodologies refer to knowledge about

2 This section is a summary taken from [59]

Page 18 of 150 NeOn Integrated Project EU-IST-027595

methods”. Methodologies state “what”, “who” and “when” a given activity should be performed.
Greenwood [66] also explores the differences between methods and techniques. A method is a
general procedure while a technique is the specific application of a method and the way in which
the method is executed. Usually, there are several techniques for applying a given method.

Methods and techniques are strongly related because both are used to carry out tasks inside the
different processes of which a methodology consists of. The IEEE defines a process [3] as a
“function that must be performed in the software life cycle. A process is composed of activities”. An
activity [3] is “a constituent task of a process”. Another definition of activity [2] is a defined body of
work that is to be performed, including its required input and output information. A task is the
smallest unit of work subject to management accountability. “A task [3] is a well-defined work
assignment for one or more project members. Related tasks are usually grouped to form activities”.

The relationships between the aforementioned definitions are summarized in Figure 1 [59], where
we can see that a methodology is composed of methods and techniques. Methods are composed
of processes and are detailed with techniques. Processes are composed of activities. Finally,
activities are made up of groups of tasks.

Figure 1. Graphical Representation of Terminological Relationships in Methodologies [59]

2.2. METHONTOLOGY

METHONTOLOGY methodology [59, 48, 19] was developed within the Ontology Engineering
Group at Universidad Politécnica de Madrid. This methodology enables the construction of
ontologies at the knowledge level.

METHONTOLOGY identifies the set of activities to be carried out. Such set is based on the main
activities identified by the software development process [1] and used in Knowledge Engineering
methodologies [120, 62].

This methodology includes: the identification of the ontology development process, a life cycle
based on evolving prototypes, and techniques to carry out each activity in the management,
development-oriented, and support activities.

To give technological support to METHONTOLOGY, ODE [19] and WebODE [15] were built within
the same group at Universidad Politécnica de Madrid. Other ontology tools and tool suites can also
be used to build ontologies following this methodology, for example, the NeOn Toolkit, Protégé,

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 19 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

etc. METHONTOLOGY has been proposed3 for ontology construction by the Foundation for
Intelligent Physical Agents (FIPA), which promotes inter-operability across agent-based
applications.

METHONTOLOGY proposes an ontology building life cycle based on evolving prototypes because
it allows adding, changing, and removing terms in each new prototype.

For each prototype, METHONTOLOGY proposes to begin with the scheduling activity that
identifies the tasks to be performed, their arrangement, and the time and resources needed for
their completion. After that, the ontology specification activity starts and at the same time several
activities begin inside the management (control and quality assurance) and support processes
(knowledge acquisition, integration, evaluation, documentation, and configuration management).
All these management and support activities are performed in parallel with the development
activities (specification, conceptualization, formalization, implementation and maintenance) during
the whole life cycle of the ontology.

In the case of the ontology specification activity, METHONTOLOGY proposes the use of
competency questions or intermediate representations for describing the requirements that the
ontology should fulfill. However, this methodology does not provide detailed guidelines for carrying
out this activity.

Regarding the knowledge acquisition activity, METHONTOLOGY proposes the use of techniques
taken from the knowledge engineering field.

Once the first prototype has been specified, the conceptual model is built within the ontology
conceptualization activity. This is like assembling a jigsaw puzzle with the pieces supplied by the
knowledge acquisition activity, which is completed during the conceptualization. For carrying out
this conceptualization activity, METHONTOLOGY provides detailed guidelines.

Then, the formalization and implementation activities are carried out. If some lack is detected after
any of these activities, we can return to any of the previous activities to make modifications or
refinements. When tools like the WebODE ontology editor are used, the conceptualization model
can be automatically implemented into several ontology languages using translators.
Consequently, formalization is not a mandatory activity in METHONTOLOGY.

Figure 2 shows the ontology life cycle proposed in METHONTOLOGY, and summarizes the
previous description. Note that the activities inside the management and support processes are
carried out simultaneously with the activities inside the development process.

3 http://www.fipa.org/specs/fipa00086/ (last access, January 16, 2008)

Page 20 of 150 NeOn Integrated Project EU-IST-027595

Figure 2. METHONTOLOGY Ontology Life Cycle

Related to the support activities, Figure 2 also shows that the knowledge acquisition, integration
and evaluation are greater during the ontology conceptualization, and that it decreases during
formalization and implementation. The reasons for this greater effort are:

 Most of the knowledge is acquired at the beginning of the ontology construction.

 The integration of other ontologies into the one we are building is not postponed to the
implementation activity. Before the integration at the implementation level, the integration at the
knowledge level should be carried out.

 The ontology conceptualization must be evaluated accurately to avoid propagating errors in
further stages of the ontology life cycle.

The relationships between the activities carried out during the ontology development are called
intra-dependencies, or what is the same, they define the ontology life cycle.
METHONTOLOGY also considers that the activities performed during the development of an
ontology may involve performing other activities in other ontologies already built or under
construction [47]. Therefore, METHONTOLOGY considers not only intra-dependencies, but also
inter-dependencies. Inter-dependencies are defined as the relationships between activities carried
out when building different ontologies. Instead of talking about the life cycle of an ontology, we
should talk about crossed life cycles of ontologies. The reason is that, frequently before integrating
an ontology in a new one, the ontology to be reused is modified or merged with other ontologies of
the same domain.

The idea of integrating an ontology in a new one is related to the reuse of existing ontologies. In
this case, METHONTOLOGY includes the list of activities to be carried out during the ontology
reuse, but does not provide detailed guidelines for such activities. Furthermore, METHONTOLOGY
does not consider different levels of granularity during the reuse of ontologies (as for example,
ontology statements).

When an ontology to be reused has to be modified, METHONTOLOGY proposes to carry out the
ontology reengineering activity. However, for this activity the methodology only mentions the
main activities to be carried out, but without giving detailed guidelines. Such proposed activities are
shown in Figure 3.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 21 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Figure 3. Ontology Reengineering Activities [61]
In the context of reusing and reengineering, METHONTOLOGY does not consider the reuse and
reengineering of non ontological resources, neither the reuse of ontology design patterns.

Taking into account the important dimensions considered in the NeOn project, we can say that
METHONTOLOGY does not mention anything about collaboration and context. Although some
mention about the dynamic dimension is made, no detailed guidelines about how to manage
different versions are given.

The main METHONTOLOGY contributions to the area were:

 Identification of the ontology development process.

 Identification of the life cycle.

 Detailed guidelines for building ontologies from scratch.

However, its main limitation is that the methodology is not targeted to software developers and
ontology practitioners, but towards ontology engineers and researchers.

Finally, it is important to mention that this methodology enables the construction of ontologies at
the knowledge level.

2.3. On-To-Knowledge

The aim of the On-To-Knowledge project [108] was to apply ontologies to electronically available
information for improving the quality of knowledge management in large and distributed
organizations. Some of the partners of this project were the Institute AIFB of the University of
Karlsruhe, the Vrije Universiteit of Amsterdam, and British Telecom. In this project, they developed
a methodology and tools for intelligent access to large volumes of semi-structured and textual
information sources in intra-, extra-, and internet-based environments. The methodology includes a
methodology for building ontologies to be used by the knowledge management application.
Therefore, the On-To-Knowledge methodology for building ontologies proposes to build
ontologies taking into account how they are going to be used in further applications.

Another important characteristic is that On-To-Knowledge proposes ontology learning for reducing
the efforts made to develop the ontology.

The methodology also includes the identification of goals to be achieved by knowledge
management tools, and is based on an analysis of usage scenarios [108].

The processes proposed by this methodology are shown in Figure 4 and can be summarized as
follows:

Page 22 of 150 NeOn Integrated Project EU-IST-027595

Figure 4. On-To-Knowledge Ontology Life Cycle [108]

Process 1. Feasibility study. On-To-Knowledge adopts the kind of feasibility study described in the
CommonKADS methodology [102]. According to On-To-Knowledge, the feasibility study is applied
to the complete application and, therefore, should be carried out before developing the ontologies.
In fact, the feasibility study serves as a basis for the kickoff process.

Process 2. Kickoff. The result of this process is the ontology requirements specification document
that describes the following: the domain and goal of the ontology; the design guidelines (for
instance, naming conventions); available knowledge sources (books, magazines, interviews, etc.);
potential users and use cases as well as applications supported by the ontology. Another outcome
of this process is a semi-formal draft description of the ontology.

On-To-Knowledge proposes competency questions (CQs) [67] for carrying out the ontology
specification activity, however not detailed guidelines are provided for this activity.

CQs can be useful to elaborate the requirements specification document. The requirement
specification should lead the ontology engineer to decide about the inclusion or exclusion of
concepts in the ontology, and about their hierarchical structure. In fact, this specification is useful to
elaborate a draft version containing few but seminal elements. This first draft is called “baseline
ontology”. The most important concepts and relations are identified on an informal level.

In the kickoff process developers should look for potentially reusable ontologies already
developed. Although this methodology mentions the identification of potential ontologies to be
reused, it does not provide detailed guidelines for identifying such ontologies neither for reusing
them. Apart from that, this methodology does not explicitly mention guides for the reuse and
reengineering of non ontological resources, neither for the reuse of ontology design
patterns.

Process 3. Refinement. The goal here is to produce a mature and application oriented “target
ontology” according to the specification given in the kickoff process. This refinement process is
divided into two activities:

 Activity 1: Knowledge elicitation process with domain experts. The baseline ontology, that
is, the first draft of the ontology obtained in process 2, is refined by means of interaction
with domain experts. When this activity is performed, axioms are identified and modeled.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 23 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

During the elicitation, concepts are gathered on one side and terms to label the concepts
on the other. Then, terms and concepts are mapped.

The On-To-Knowledge methodology proposes the use of intermediate representations to
model the knowledge. In this aspect, it follows METHONTOLOGY’s basic ideas. If several
experts participate in the building of the ontology, it is necessary to reach an agreement. A
complementary way to enrich the ontology is to use it as seed in an ontology learning
process.

 Activity 2: Formalization. The ontology is implemented using an ontology language. Such
language is selected according to the specific requirements of the envisaged application.

To carry out the formalization, On-To-Knowledge recommends the use of the OntoEdit
ontology editor, which automatically generates the ontology code in several languages.
Other ontology editors that perform similar functions can be also used.

Process 4. Evaluation. The evaluation process serves as a proof of the usefulness of the
developed ontologies and their associated software environment. The product obtained is called
ontology based application. During this process two activities are carried out:

 Activity 1: Checking the requirements and competency questions. The developers check
whether the ontology satisfies the requirements and “can answer” the competency
questions.

 Activity 2: Testing the ontology in the target application environment. Further refinement of
the ontology can arise in this activity.

This evaluation process is closely linked to the refinement process. In fact, several cycles are
needed until the target ontology reaches the envisaged level.

Process 5. Maintenance. It is important to clarify who is responsible for the maintenance and how
this should be carried out. On-To-Knowledge proposes to carry out ontology maintenance as part
of the system software.

Such maintenance is related with the dynamic dimension within the NeOn project. In this case,
this methodology proposes to create any new version after testing possible effects to the
application. However, no guidelines are provided about how to manage different versions neither
when to create new versions.

Related to the other important dimensions considered in the NeOn project, On-To-Knowledge does
not consider neither collaboration nor context.
Finally, it is important to mention that ontologies developed with this methodology are highly
dependent of the application. However, the methodology is not explained targeted to software
developers and ontology practitioners.

2.4. DILIGENT

The DILIGENT methodology [90] is intended to support domain experts in a distributed setting to
engineer and evolve ontologies. This methodology is focused on collaborative ontology
engineering, and the central issue is to keep track of the change arguments. However, the notion
of context is not considered by the methodology.

The ontology development process proposed by this methodology includes the following five main
activities [40, 91]:

1. Build. In the build phase, domain experts, users, knowledge engineers and ontology engineers
collaboratively create an initial version of the ontology. The team involved in building the initial
ontology should be relatively small, in order to more easily find a small and consensual first version

Page 24 of 150 NeOn Integrated Project EU-IST-027595

of the shared ontology. Completeness of the initial shared ontology with respect to the domain is
not required.

For building this initial version of the ontology, DILIGENT does not propose to carry out the
ontology specification activity neither to take into account reuse and reengineering of existing
knowledge resources.

2. Local adaptation. Once the shared ontology is made available, users can start using it and
locally adapting it for their own purposes. In their local environment they are free to change the
local copy of the shared ontology. Local changes do not affect other users of the ontology. All local
changes of the shared ontology are collected by a central control board. They are seen as change
requests to the shared ontology.

3. Analysis. During this phase, the control board analyzes all changes that were done in the
previous phase by the users or stakeholders to their local copies of the shared ontology. It then
decides which of the local changes will be introduced in the next version of the shared ontology.
For this purpose, the control board tries to identify similarities in users' ontologies because not all
user ontologies should be merged. Instead, it is the goal of this phase to develop a core shared
ontology because otherwise its size will grow fast and it will become unmaintainable.

Regarding dynamic dimension, DILIGENT proposes the creation of different versions of the
ontology, but does not provide guidelines on how to manage such versions neither on when to
create different versions, nor how such changes can affect to the different versions.

4. Revision. Based on the previous analysis phase, a new revision of the shared ontology is
created and distributed. Regular revisions of the shared ontology are required, in order to avoid a
larger divergence of the local ontologies from the shared ontology. Thus, a balanced decision has
to be found. It should take into account the different needs of the users and their evolving
requirements.

5. Local update. In the last step, users of the shared ontologies update their local copies to the
latest revision of the shared ontology. The shared ontology may contain several of the changes
that were introduced in the local adaptation phase, but other changes may be missing. Because
the control board tries to balance the different needs of users, it will not always take over changes
as they are. Thus, even if a previous change made it into the new revision of the shared ontology,
it may contain differences. Nevertheless, the user should reuse the new concepts instead of using
their previously locally defined concepts in order to benefit from the further development of the
shared ontology.

All in all, the DILIGENT methodology proposes an ontology life cycle model that is based on the
idea of evolving prototypes. The life cycle model is shown in Figure 5.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 25 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Figure 5. Life Cycle Model of the DILIGENT Methodology [40]

Central to the DILIGENT methodology is an argumentation framework. It facilitates discussions
about the design rationale of changes that are introduced in the different phases of the life cycle.
Especially in the analysis and revision phase, the exchanged arguments help the control board in
understanding the reasons for specific changes [40].

But in the same way, the argumentation model may also be used by the control board for
communicating the reasons of a decision to the users of the shared ontology. Otherwise, it would
be difficult for users to understand why e. g. one change made it into the new revision of the
shared ontology and another change did not. More details about the DILIGENT argumentation
framework and how it facilitates collaborative ontology engineering are available in [38].

Finally, due to DILIGENT being intended to support domain experts, it is not targeted to software
developers and ontology practitioners.

2.5. Comparison of Presented Methodologies

In general we can say that METHONTOLOGY and On-To-Knowledge are up to now the most
complete methodologies for building ontologies from scratch. They mainly include guidelines for
single ontology construction from the ontology specification to the implementation.

Table 1 summarizes the presented methodologies (METHONTOLOGY, On-To-Knowledge and
DILIGENT) according to the following characteristics:

 Critical dimensions within the NeOn project: collaboration, context and dynamics.

 Degree of coverage of the process or activities included in this deliverable by means of
providing detailed guidelines.

 Targeted to software developers and ontology practitioners in general and not towards
ontology researchers.

Page 26 of 150 NeOn Integrated Project EU-IST-027595

 METHONTOLOGY On-To-Knowledge DILIGENT

NeOn Dimensions

Collaboration Not mentioned Not mentioned Treated

Context Not mentioned Not mentioned Not mentioned

Dynamic Mentioned, but not treated Mentioned, but not treated Mentioned, but not treated

Detailed Guidelines for Processes and Activities

Ontology Specification
Not provided

Only Competency Questions
are proposed

Not provided

Only Competency Questions
are proposed

Not provided

In fact, this activity is not
proposed by the

methodology

Reusing Non Ontological
Resources

Not provided, neither
explicitly mentioned

Not provided, neither
explicitly mentioned

Not provided, neither
explicitly mentioned

Reengineering Non
Ontological Resources

Not provided, neither
explicitly mentioned

Not provided, neither
explicitly mentioned

Not provided, neither
explicitly mentioned

Reusing Ontologies
Not provided

Only a list of activities to be
carried out is proposed

Not provided

Only recommendation of
identifying ontologies to be

reused is given

Not provided, neither
explicitly mentioned

Reusing Ontology Design
Patterns

Not provided, neither
explicitly mentioned

Not provided, neither
explicitly mentioned

Not provided, neither
explicitly mentioned

Audience

Targeted to Software
Developers and Ontology

Practitioners

Targeted to ontolgy
engineers and researchers

Not targeted to ontolgy
engineers and researchers

Intended to domain experts
and users

Table 1. Summary of Conclusions

Regarding NeOn dimensions, in the collaboration dimension, none of the analyzed
methodologies consider distributed ontology engineering among heterogeneous and
geographically distributed groups of domain experts and ontology practitioners. DILIGENT does it,
but it only provides a rich argumentation framework in order to quickly proceed with building a
single ontology and tracking all relevant discussions about the conceptualization activity [40]. In the
context dimension, none of the presented methodologies treat with it. Finally, all analyzed
methodologies mention the importance of versioning, and the problematic of management different
versions. However, none of them provide guidelines for treating the dynamic and evolution of the
ontology.

Table 1 shows that none of the analyzed methodologies provide detailed guidelines for the
process or activities included in this deliverable, which are ontology specification, non ontological
resource reuse, non ontological resource reengineering, ontological resources reuse, and ontology
design patterns reuse. Based on this, we can say that the analyzed methodologies are more
descriptive than prescriptive, because they do not provide instructions to carry out processes or
activities.

As a final comment, none of the analyzed methodologies are described targeted to software
developers and ontology practitioners.

Our aim within the NeOn project is to create the NeOn methodology for building ontology networks
covering the drawbacks presented in the three analyzed methodologies, and benefiting from the
advantages included in such methodologies, with respect to the aforementioned characteristics.

Concretely, regarding NeOn dimensions, the NeOn methodology will include the benefits provided
by DILIGENT about collaboration. Furthermore, we will take into account the proposal given by
METHONTOLOGY and On-To-Knowledge about the use of competency questions for the ontology

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 27 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

specification activity in the proposed methodological guidelines for this activity presented here.
With respect to the reuse of ontologies, we will consider as starting point the list of activities
proposed by METHONTOLOGY; we will improve and extend them to propose the corresponding
methodological guidelines in the NeOn methodology.

Page 28 of 150 NeOn Integrated Project EU-IST-027595

3. Research Methodology

In this chapter, we present the research methodology used for building the NeOn methodology as
well as the main requirements that guide its development.

3.1. General Framework for Describing the NeOn Methodology

For building the methodology we will use a “divide and conquer” strategy. That is we decompose
the general problem to be solved in different subproblems. For each subproblem, we provide
different strategies and alternatives to find the solution. To obtain the solution to the general
problem, that is, the development of an ontology network, the solutions to the different
subproblems are combined. In our case, the subproblems are the processes and activities
identified in the 9 scenarios presented in section 4.1 and described in [149].

For obtaining the methodological guidelines associated to each process or activity, we grounded in
the following approaches, as presented graphically in Figure 6.

 Existing methodologies and methods. In this case, we used METHONTOLOGY, On-To-
Knowledge, DILIGENT and existing methods in order to provide guidelines for carrying out a
process or an activity. This is the case of non ontological resource reengineering that had as a
starting point the idea and activities proposed in the ontology reengineering method [61]
presented in METHONTOLOGY.

 Existing practices and previous experiences. NeOn consortium members have built a lot of
ontologies in different domains across several European and National funded projects. We
made a retrospective analysis of the processes or activities performed within such projects to
get a preliminary set of informal steps, which were refined, improved and completed to provide
complete methodological guidelines for each process or activity. As an example, we can
mention the ontology specification activity, whose guidelines are based on previous
experiences in the SEEMP project (FP6-27347).

 Existing NeOn tools. In this case, we used technology being developed in WP1 to WP4 within
the NeOn project in order to provide guidelines for carrying out a specific process or activity. As
an example, we can mention the ontology statement reuse process, whose guidelines are
based on the use of the Watson [34, 35] NeOn plug-in in two different use cases.

Figure 6. Inputs taken into account for obtaining the NeOn Methodology

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 29 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Thus, the NeOn methodology for building ontology networks is based on a set of 9 scenarios,
which can be combined between them. Eight out of nine were described in D5.3.1 [111]. A new
scenario for building ontology networks by reusing ontology design patterns has been identified
here. Each scenario is also decomposed in different processes or activities, and for each process
or activity detailed methodological guidelines are provided. In this sense, the deliverable is written
with a process or an activity centric approach, and in a more prescriptive way than prescriptive
one.

Processes and activities included in this deliverable cover in a complete way, scenarios 2, 3 and 7,
and in a partial manner scenario 1.

In this deliverable, we include a set of chapters describing methodological guidelines for carrying
out different processes or activities in a subset of the identified scenarios. The activities included
here are: ontology specification, non ontological resource reuse, non ontological resource
reengineering, ontological resource reuse, and ontology design patterns reuse. In the case of non
ontological resource reuse and reengineering, we describe them in a unique chapter because of
non ontological resource reengineering can not occur without the non ontological resource reuse.

It is important to mention here, that based on the terminology included in section 2.1, some
activities included in the NeOn Glossary [111] can be considered as processes composed of
activities. This is the case of non ontological resource reuse, non ontological resource
reengineering, and ontological resource reuse, which are now processes composed of a set of
activities4. Activities can be divided into cero or more tasks. Tasks, which are the smallest unit of
works, are used to decompose activities and provide more detailed information about the activities.
Within this deliverable, we use this terminology, which is also shown in Figure 7.

Figure 7. Process, Activities and Tasks

For describing each process and activity included in the NeOn methodology presented here, we
use the following template:

 Introduction.

4 The next version of the NeOn Glossary of Activities will be called NeOn Glossary of Processes and Activities.

Page 30 of 150 NeOn Integrated Project EU-IST-027595

 State of the art, including methods, techniques, and tools, and conclusion about related works.

 Proposed detailed guidelines for carrying out the process or the activity, including:

 Definition, taken from the NeOn Glossary of Activities [111] or new ones updated in this
deliverable.

 Goal, explaining the main objective intended to achieve by the process or the activity.

 Input, which includes the resources needed for carrying out the process or the activity.

 Output, which includes the results obtained after carrying out the process or the activity.

 Who, which identifies people or teams involved in the process or the activity.

 When, explaining in which moment the process or the activity should be carried out.

 How, including details for carrying out the process or the activity in a prescriptive manner. A
graphical workflow on how the process or the activity should be carried out is also included,
with inputs, outputs and actors involved. Additionally, methods, techniques and tools
supporting the process or the activity are proposed.

For each process and activity included in this deliverable, we provide a filling card including all
the aforementioned information, by the exception of the “how”. The use of such filling cards
allows us to explain the information of each process and activity in the NeOn methodology in a
practical and easy way. Each filling card follows the filling card template shown Table 2.

Process or Activity Name

Definition

Goal

Input Output

Who

When

Table 2. Template for Process and Activity Filling Card

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 31 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

 Examples explaining the proposed guidelines using previous experiences and/or NeOn use
cases, whenever it has been possible.

3.2. Conditions for the NeOn Methodology for Building Ontology Networks

According to [87], any methodology must fulfill a set of conditions that can be group into two main
types, that is, the necessary and sufficient conditions. The necessary conditions (also called
formal conditions) of a methodology are independent of the domain where the methodology is
applied. The sufficient conditions (also called material conditions) of a methodology are specific
to each methodology and are determined by factors such as domain where the methodology is
applied, cases, situations or problems it deals with, characteristics of the material (economic,
technological, etc.), human or temporal resources, etc.

In this section we present the necessary and sufficient conditions taken into account in the
development of the NeOn methodology for building ontology networks. We based on Paradela’s
conditions [87], adapting them whenever it was necessary.

3.2.1. Necessary Conditions
 Generality. A methodology should be general enough and should not be driven to solve ad-

hoc cases or problems.

In our case, the NeOn methodology treats the development of ontology networks in general, by
means of proposing different scenarios for building networks of ontologies.

 Completeness. A methodology must consider all the cases presented and propose solutions
to all of them.

In our case, the NeOn methodology for building ontology networks will deal with the 9
scenarios, from which 8 were identified in [111] and one, in the present deliverable. This first
version only includes a subset of the possible cases that are, scenario1, scenario 2, scenario 3,
and scenario 7.

 Effectiveness. A methodology should solve adequately the proposed cases that have a
solution, with independency of the person that uses it. So, the methodology should be more
prescriptive than descriptive.

In our case, we will describe the NeOn methodology in a simple way, and any person (being a
software developer or an ontology practitioner) will able to understand and use it with no
special effort.

 Efficiency. A methodology must be efficient, that is, be able to achieve its objective/goal. This
means that the methodology should allow the construction of ontologies with fewer resources
(time, money, etc.) and with better quality.

In our case, whenever it is possible, we describe and carry out experiments using the
methodology with the goal of confirming its efficiency.

 Consistency. A methodology must produce the same set of results (semantically speaking) for
the same problem, independently of who carries it out.

In our case, the NeOn methodology identifies which should be the outputs of the different
activities involved in the development of ontology networks. Semantically speaking, the same
set of outputs will be obtained after applying the methodology for a given case.

 Finiteness. The number of the elements that compose a methodology and the number of
activities must be finite, i.e., consuming a reasonable period of time.

Page 32 of 150 NeOn Integrated Project EU-IST-027595

In our case, the NeOn Glossary of Activities [111] includes the initial and finite set of activities
involved in the methodology. The number of elements used to describe the process or the
activities are also finite.

 Discernment. A methodology must be composed of a small set of structural, functional and
representational components.

In our case:

o Regarding structural components, the methodology provides a set of scenarios for
building ontology networks. Such scenarios are a mix between heterarchical and
hierarchical structure.

o Regarding functional components, the methodology includes processes, activities,
tasks, inputs, outputs and restrictions.

o Finally, with respect to representational components, the methodology provides a
graphical representation for the scenarios and for describing each process or activity.

 Environment. Methodologies can be classified into scientific and technological ones. In
scientific methodologies ideas are validated, and in technological ones artefacts are built. A
technological methodology must consider the life cycle of the product that is guiding its
development.

The NeOn methodology for building ontology networks can be considered as a technical one,
because the main result after applying it should be a technological product, that is, an ontology
network. Thus, it is needed to establish the life cycle for the ontology network.

The first version of the collection of ontology network life cycle models and guidelines for
establishing a particular ontology network life cycle were included in D5.3.1 [111].

 Transparency. A methodology must be like a white box, allowing to know in every moment the
active processes or activities that are being performed, who is performing them, etc.

In our case, we explicitly define the actors, inputs, and outputs of each activity covered by the
methodology.

 Essential Questions. The following six questions: “what”, “who”, “why”, “when”, “where”, and
“how” must be considered for each activity included in the methodology.

In our case, questions about why and where are not covered in the methodology. However, the
rest of the questions are answered in detail in the methodology: the NeOn Glossary of
Activities already presented in D5.3.1 [111] explains “what” each activity involved in the
methodology refers to, and the methodological guidelines for the processes or activities
included in this deliverable answer the rest of the covered questions.

3.2.2. Sufficient Conditions
 Domain or Scope. In our case, the NeOn methodology is for developing ontology networks,

with special emphasis in the existence of multiple ontologies in ontology networks, the dynamic
dimension treating the ontology evolution, the context dimension, and the collaborative
ontology development.

 Perspectives. A methodology must facilitate its application following different approaches.
In our case, the methodology provides different scenarios for building ontology networks and
allows combining them in different ways.

 Understanding. A methodology must be ease to understand and to learn in order to facilitate
its success and its generalized use.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 33 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

The NeOn methodology for building ontology networks is being explained with simple
descriptions and graphical representations to be easily understood by both ontology
practitioners and software developers in general.

 Usability. The degree of difficulty in using the methodology must be minimal.
The methodology is presented using a software engineering approach with different levels of
complexity to facilitate a promptly assimilation.

 Grounded on existing practices. The NeOn methodology grounds on existing methodologies
in the Software and Ontology Engineering fields.

 Flexibility. The NeOn methodology allows the adaptation to concrete needs and users, and
will also allow the inclusion of new processes or activities involved in the development of
ontology networks.

 Tool-Independent. A methodology must be independent of the existing technology.

The NeOn methodology is being developed with the aim of being tool independent. Of course,
it will have a close relation with the NeOn toolkit and its plug-ins, but it can also be used with
other tools as Protégé, Top Braid Composer, etc.

Page 34 of 150 NeOn Integrated Project EU-IST-027595

4. NeOn Methodology for Building Ontology Networks

As we mentioned before, the 1990s and the first years of this new millennium have witnessed the
growing interest of many practitioners in approaches that support the creation and management as
well as the population of single ontologies built from scratch. There are some methodological
approaches (e.g., METHONTOLOGY [59], On-To-Knowledge [108], and DILIGENT [90]) that help
develop ontologies from scratch. All these approaches have provoked a step forward by having
transformed the art of constructing single ontologies into an engineering activity.

The development of ontologies in different international and national projects have revealed that
there are different alternative ways or possibilities to build ontologies. Just to name a few of them,
in the Esperonto5 project ontologies were built from scratch; in Knowledge Web6 the aligning and
versioning of ontologies was treated as well as the use of best practices or patterns, related to
W3C activities; in the SEEMP7 project the development of ontologies is based on the reuse of non
ontological resources; the SEKT8 project was focused on argumentative development of ontologies
using the DILIGENT methodology; in the UMLS Project [32] the experiences gained while
transforming the UMLS® Semantic Network into OWL ontology are described; within the UK
PRODIGY and Drug Ontology Projects [76] the transformation of tangled hierarchies, as e.g. such
derived from ambiguous "broader than / narrower than" thesauri in library science, into formal
ontologies is described, etc. Thus, it is not premature to affirm that a new ontology development
paradigm is starting, whose emphasis is on the reuse and possible subsequent reengineering of
knowledge aware resources, the collaborative and argumentative ontology development, and the
building of ontology networks9, as opposed to custom-building new ontologies from scratch. In
order to support and promote such reuse-based approach, new methods, techniques, and tools
are needed.

The following briefly presents:

 An overview of the different ways or scenarios for building ontologies, presented in D5.3.1
[111], that will be reviewed and extended in D5.3.2.

 An analysis of how argumentation and collaboration issues are related to the different
scenarios.

 An explication of when ontologies become ontology networks.

4.1. Scenarios for Building Ontology Networks

Based on the analysis of the three NeOn use cases, on the different studies carried out to revise
the state of the art on ontology development, and on the building of ontologies in different
international and national projects, we have detected that there are alternative ways or possibilities
to build ontologies and ontology networks. These ways can be seen as different scenarios in the
NeOn methodology for building ontology networks.

5 http://www.esperonto.net
6 http://knowledgeweb.semanticweb.org
7 http://www.seemp.org/
8 http://www.sekt-project.com/
9 An ontology network or a network of ontologies is defined as a collection of ontologies (called networked ontologies)

related together through a variety of different relationships such as mapping, modularization, version, and dependency
relationships [70]

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 35 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Figure 8 presents the set of 9 identified NeOn scenarios for building ontology networks: 8 of these
scenarios were briefly described in [111] and one of them (scenario 7) has been recently identified.
They are the following ones:

 Scenario 1: Building ontology networks from scratch without reusing existing knowledge
resources.

 Scenario 2: Building ontology networks by reusing and reengineering non ontological
resources.

 Scenario 3: Building ontology networks by reusing ontological resources.

 Scenario 4: Building ontology networks by reusing and reengineering ontological resources.

 Scenario 5: Building ontology networks by reusing and merging ontological resources.

 Scenario 6: Building ontology networks by reusing, merging and reengineering ontological
resources.

 Scenario 7: Building ontology networks by reusing ontology design patterns.

 Scenario 8: Building ontology networks by restructuring ontological resources.

 Scenario 9: Building ontology networks by localizing ontological resources.

The activities of knowledge acquisition and elicitation, documentation, configuration management,
evaluation and assessment (as shown at the bottom of Figure 8) should be carried out during the
whole ontology network development.

It is worth mentioning that these scenarios can be combined in different ways. For instance,
scenario 2 (reusing and reengineering non ontological resources) can be combined with scenarios
3-8; and scenario 9 (localizing ontologies) can be carried out or not with scenarios 1-8. Although
we think this set of scenarios covers the most plausible ways for building ontology networks, it can
not be considered exhaustive.

From this set of scenarios, we can say that scenario 1 is the most typical one for building
ontologies and ontology networks from scratch without reusing existing knowledge resources.
However, more and more ontology developers build ontologies and ontology networks by means of
reusing existing knowledge resources. The NeOn methodology distinguishes scenarios involving
reuse10 of ontological resources from those involving reuse and reengineering of non ontological
resources. In this version of the methodology, we have included a new scenario (scenario 7) for
the reuse of ontology design patterns (ODPs), because ODPs are key elements during the
ontology design and, therefore, deserve to be treated in a different scenario from that involving the
other types of ontological resources.

In Figure 8, processes and activities to be carried out are represented by coloured circles or by
rounded boxes. Directed arrows with numbered circles associated represent the different scenarios
presented in this section. The figure also shows (as dotted boxes) existing knowledge resources to
be reuse; and possible outputs (implemented ontology networks and alignments) that result from
the execution of some of the presented scenarios.

10 Reuse in software engineering is defined [1] as “the use of an asset in the solution of different problems”, where an

asset is “an item, such as design, specifications, source code, documentation, test suites, manual procedures, etc.,
that has been designed for use in multiple contexts”. Analogously, we can define knowledge reuse as the use of any
knowledge resource10 (ontological and non ontological resources) in the solution of different problems, as for example,
the building of new ontologies or the development of ontology-based applications.

Page 36 of 150 NeOn Integrated Project EU-IST-027595

Figure 8. Scenarios for Building Ontology Networks

From the set of 9 scenarios shown in Figure 8, in this deliverable we provide guidelines for different
activities involved in scenarios 1, 2, 3, and 7. The processes and activities considered in this
deliverable are: ontology specification, non ontological resource reuse, non ontological resource
reengineering, ontological resource reuse, and ontology design patterns reuse.

4.2. Argumentation and Collaboration in NeOn Scenarios

In general, one can distinguish two different cases in which argumentation plays an important role
in enabling collaboration between the participants of an ontology engineering project:

 First, there are activities during which argumentation data is actively created, e.g. by
discussions between the participants. In this case, the argumentation framework has the role of
structuring the discussion process, helping in systematically exploring possible solutions and
capturing the pro and contra arguments. Argumentation support is then a means of having
more efficient discussion and decision taking processes (e. g. like it is the objective of the
DILIGENT argumentation framework described in section 2.1.3).

 Second, there are activities where previously recorded discussions are used for understanding
the design rationale of elements in the ontology network. For example, in the DILIGENT
methodology the argumentation data created during the local adaptation of an ontology is used
by the control board during the analysis and revision activity (cf. section 2.1.3). In this case,
recorded discussions are part of the ontology documentation.

The most important activities of an ontology engineering project during which discussion data may
be actively created are the ontology specification, ontology conceptualization, ontology

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 37 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

formalization and ontology implementation phases. All four activities require reaching a consensus
between the participants about the requirements of the ontology network and how they should be
implemented. But the recorded discussions may also be used for understanding the decisions
made during previous activities (e.g. during ontology formalization one has to understand the
decisions from the ontology conceptualization activity).

Obviously, reaching a consensus or explaining decisions to collaborators is not only needed during
building an ontology from scratch. It may also be needed during reusing or reengineering
ontological and non-ontological resources, or during the alignment with other ontologies.

Discussions are an important part of the ontology documentation, which should also refer to
explanatory comments generated during the entire ontology building process. The recorded
discussions help in keeping track of the design rationale all the way through the ontology
engineering process, and keeping the design rationale up to date by amending it with additional
arguments.

Recording discussions makes it easier to resume a previous activity in the ontology engineering
process, if it turns out that a decision taken during that activity is underspecified or not appropriate.
In this case, the discussion that led to the decision may be easily resumed because all
stakeholders that participated in the decision taking process are identified by the recorded
discussion. Resuming a discussion may additionally be useful during the maintenance phase of an
ontology, e.g. if there were changes to the requirements that affected the decision.

In general, supporting the argumentation process is important in each situation where either
several users collaboratively decide an issue or where a user by himself creates an ontology
element that should be later used as input for the activity to be developed by another user. In the
latter case, the collaboration is facilitated by enhanced and more complete ontology
documentation.

4.3. When do Ontologies become Ontology Networks?

When software developers and ontology practitioners decide to use ontologies for solving a
particular problem, the first activity to be carried out is an environment and feasibility study. This
allow them to decide whether ontologies should be developed or not for the specific problem, and if
so, they have to decide if for their problem it is better to build a single ontology, a set of
interconnected single ontologies, or an ontology network.

 We have a single ontology when an ontology has not any type of relationship (domain
dependent or independent) with other ontologies.

 We have a set of interconnected single ontologies if some kind of domain dependent ad-hoc
relation exists between them.

 We have an ontology network, if there is a requirement or it is advisable to express: (a)
metarelationships between the ontology to be developed and other existing ontologies
available in the web, or (b) metarelationships between the ontology to be developed and its
components. Examples of these metarelationships are:

o priorVersionOf: if the ontology to be developed is a new version of an existing one.

o useImports: if the ontology is importing any other ontology due to the fact that it consists
of different knowledge domains

o extendingBy: if the ontology is extending an existing one.

o composedbyModules: if the ontology to be developed is composed of a number of
modules.

Page 38 of 150 NeOn Integrated Project EU-IST-027595

o haveMapping: if some ontology components have mappings with other existing
ontologies.

Thus, to create ontology networks what is needed is a set of defined metarelations between
ontologies and between ontologies and their elements. These metarelationships, such as
“priorVersionOf”, “useImports”, “isIncompatibleWith”, are included in D1.1.2 [69].

In this case, the ontology to be developed is in constant relation with others in the network,
what permits a fluent knowledge sharing and an easy enrichment of the network. Furthermore,
ontology networks favour knowledge growth in the Internet, and thus, its sharing and
spreading.

For clarifying what is the difference between an ontology and an ontology network, we provide here
some examples.

 An isolated ontology O1 is a single ontology, as it is shown in Figure 9 (a). If we have n
single ontologies related among them by means of ad-hoc relations between concepts
included in such ontologies, such set is considered as a set of interconnected single
ontologies, as in Figure 9 (b) shows.

 If a new version (O2) of O1 is developed and the explicit metarelation “priorVersionOf”
between O1 and O2 is established, then a network of ontologies has been created (shown
Figure 9 (c)).

 Figure 9 (d) presents the ontology network associated to the interconnected single
ontologies presented in Figure 9 (b), in which it has been explicitly expressed that ontology
A imports ontologies B and C.

(a) Single Ontology

(b) Interconnected Single Ontologies

(c) Ontology Network

(d) Ontology Network

Figure 9. Simple Graphical Examples of Single Ontologies and Ontology Networks

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 39 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

In summary, the scenarios presented in section 4.1 permit software developers and ontology
practitioners to build single ontologies, interconnected single ontologies and ontology networks
[70]. If software developers and ontology practitioners explicitly define metarelationships such as
mapping, modularization, version, and dependency, between a set of ontologies and/or between
an ontology and their components, then, an ontology network has been created.

However, there are at least three key aspects when using such scenarios:

 The identification of when an ontology network is better than a single ontology or a set of
interconnected ontologies.

 The development of ontology networks is a more complex process, which has some
specific features different from those for building single ontologies.

 The impact of the evolution of components in an ontology network, which is greater than in
a single ontology.

Page 40 of 150 NeOn Integrated Project EU-IST-027595

5. Ontology Specification

Ontology Specification is defined in [111] as a collection of requirements that the ontology should
fulfill. The output of this activity is the ontology requirements specification document (ORSD) that
includes the purpose, level of formality and scope of the ontology, target group and intended uses
of the ontology, and a set of requirements, which are those needs that the ontology to be built
should cover.

In this chapter we present a brief introduction to the existing methods, techniques and tools for
ontology specification. We also propose the NeOn methodological guidelines for carrying out the
activity.

5.1. State of the Art

5.1.1. Methods
In this section we present existing general methods for carrying out the ontology specification
activity.

METHONTOLOGY [59, 48, 19] proposes the goals of the ontology specification activity, however it
does not propose any method for carrying out the activity.

Grüninger and Fox methodology [68], On-To-Knowledge methodology [108], and the Unified
methodology [114] proposed the following steps for obtaining the so-called ontology requirements
specification document:

 Identify the purpose of the ontology to be developed.

 Identify the intended uses and users of the ontology to be developed.

 Identify the set of ontology requirements that the ontology should satisfy after being
formally implemented.

5.1.2. Techniques
There are different techniques that can be applied for collecting requirements. Examples of these
techniques are: brainstorming, joint application development (JAD) [93], exploit scenarios and use
cases using templates, interviews with users and domain experts, and competency questions.

Most of the existing methodologies or methods [68, 108, 77, 78, 114] and guides [86] for
developing ontologies suggest to identify competency questions as a technique for establishing
the ontology requirements. Competency questions (CQs) were proposed for the first time in [68].
They are defined as natural language questions that the ontology to be built should be able to
answer.

The following presents how the different aforementioned methodologies and guides propose to
carry out the ontology specification activity using competency questions.

 Grüninger and Fox’s methodology [68, 59] is inspired by the development of knowledge based
systems using first order logic. This methodology proposes identifying intuitively the main
motivating scenarios, that is, possible applications in which the ontology will be used. Such
scenarios describe a set of the ontology requirements that the ontology should satisfy after
being formally implemented. In particular, such scenarios may be presented by industrial
partners regarding problems they encounter in their enterprises. The motivating scenarios often

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 41 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

have the form of story problems or examples which are not adequately addressed by existing
ontologies. A motivating scenario also provides a set of intuitively possible solutions to the
scenario problems. These solutions give a first idea of the informal intended semantics of the
objects and relations that will later be included in the ontology.

Given the set of informal scenarios, a set of informal competency questions is identified to
determine the scope of the ontology. Informal competency questions are those written in
natural language to be answered by the ontology once the ontology is expressed in a formal
language. These questions and their answers are both used to extract the main concepts and
their properties, relations and formal axioms of the ontology. Competency questions and their
responses play the role of a type of requirement specification against which the ontology can
be evaluated.

Ideally, competency questions should be defined in a stratified manner, with higher level
questions requiring the solution of lower level ones. It is not a well-designed ontology if all
competency questions have the form of simple queries, that is, if the questions cannot be
decomposed or composed into more specific or general questions, respectively. There should
be questions that use the solutions to such simple queries. Specific competency questions can
be composed into more general questions that are answered by composing answers
associated to specific competency questions.

 On-To-Knowledge methodology [108, 59] mentions that competency questions can be useful to
elaborate the requirements specification document. The requirement specification should lead
the ontology engineer to decide about the inclusion or exclusion of concepts in the ontology,
and about their hierarchical structure.

 The Unified methodology [114] proposes to identify the purpose of the ontology, in particular,
identify and characterise the range of intended users, identify the uses for the ontology, identify
(fairly general) motivating scenarios and competency questions, and produce a user
requirements document for the target software system. After that, the methodology
recommends to decide how formal the ontology needs to be. This is determined in large part by
purpose and users of the ontology. Finally, this methodology proposes to identify the scope of
the ontology by means of (a) creating the detailed scenarios that arise in the applications, or (b)
using brainstorming to do a more thorough and accurate job of scoping.

Besides competency questions, this methodology allows the ontology developer to use other
techniques for the gathering of ontology requirements, such as defining the detailed motivating
scenarios, brainstorming and trimming.

 The EXPLODE methodology [77, 78] integrates ideas from the eXtreme Programming
methodology, and it is particularly suitable for dynamic and open environments thanks to its
focus on immediate feedback and evaluation. This methodology proposes to fetch the
requirements of the system and to define the competency questions.

 The “Ontology Development 101” guide [86] proposes to determine the domain and scope of
the ontology by answering a set of basic questions (“What is the domain that the ontology will
cover?”, “For what are we going to use the ontology?”, “Who will use and maintain the
ontology?”, etc.) and by identifying the ontology competency questions.

5.1.3. Tools

After analysing the state of the art, we realized that only one tool exists for supporting the creation
of ontology requirements. The tool is called OntoKick [112] and allows the creation of the
requirement specification document and the extraction of relevant structures for the building of the
semi-formal ontology description.

Page 42 of 150 NeOn Integrated Project EU-IST-027595

OntoKick is an OntoEdit plug-in for supporting the collaborative generation of requirement
specifications for ontologies. OntoKick allows the description of important aspects of the ontology,
such as: domain and goal of the ontology, design guidelines, available knowledge sources (e.g.
domain experts, reusable ontologies etc.), potential users, use cases, and applications supported
by the ontology. This tool uses competency questions (CQ) to define requirements for an ontology.
Each CQ defines a query that the ontology should be able to answer and, therefore, it defines
explicit requirements for the ontology. OntoKick takes further advantage of using CQs to create an
initial version of the semi-formal description of the ontology. Based on the assumption that each
CQ contains valuable information about the domain of the ontology, OntoKick extracts relevant
concepts and relations. Furthermore, OntoKick establishes and maintains links between CQs and
concepts derived from them. This allows for better traceability of the origins of concept definitions
in later stages.

5.1.4. Conclusion
As a conclusion we can mention that most of the analyzed methodologies propose simple methods
for carrying out the ontology specification activity. The methods consist of high level steps that can
be summarized as follows: identify purpose, uses and users for the ontology to be developed, and
identify the set of requirements the ontology to be developed should fulfill. However, these
methodologies do not provide detailed guidelines explaining how to carry out each step.

For gathering ontology requirements, most of the analyzed methodologies propose as a technique
the use of competency questions.

Finally, we can mention that only one tool, called OntoKick, exists for helping people in the
ontology specification activity.

5.2. Proposed Guidelines for Ontology Specification

As we mentioned before, the goal of the ontology specification is to state why the ontology is being
built, what its intended uses are, who the end-users are, and what the requirements the ontology
should fulfill are. For specifying the ontology requirements we will use the competency questions
techniques proposed in [68]. Before identifying the set of competency questions, we will identify the
purpose and scope of the ontology, its level of formality, its intended uses and its intended users.

The NeOn methodology proposes the filling card, presented in Table 3, for the ontology
specification activity, including the definition, goal, inputs and outputs, who carries out the activity
and when the activity should be carried out.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 43 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Ontology Specification

Definition

Ontology Specification refers to the activity of collecting the requirements that the
ontology should fulfill, e.g. reasons to build the ontology, target group, intended uses,
possibly reached through a consensus process.

Goal

The specification activity states why the ontology is being built, what its intended uses are,
who the end-users are, and what the requirements the ontology should fulfill are.

Input Output

A set of ontological needs.

Ontology Requirements Specification Document
(ORSD).

Who

Software developers and ontology practitioners, who form the ontology development team
(ODT), in collaboration with users and domain experts.

When

This activity must be carried out in parallel with the knowledge acquisition activity.

Table 3. Ontology Specification Filling Card

The tasks for carrying out the ontology specification activity can be seen in Figure 10. The result of
this activity is the Ontology Requirements Specification Document (ORSD).

The NeOn methodology proposes a template for writing the ORSD that have the following slots,
and that is shown in Table 4:

 Ontology Purpose, which includes the ontology aims.

 Ontology Scope, which includes the ontology coverage and granularity.

 Ontology Level of Formality, which includes the degree of formality of the ontology.

 Ontology Intended Users, which includes the main intended users for the ontology.

 Ontology Intended Uses, which includes the main scenarios in which the ontology will be
used.

 Groups of Competency Questions (CQs) and their answers, including priorities.

 Pre-Glossary of Terms with their Frequencies.

Page 44 of 150 NeOn Integrated Project EU-IST-027595

Ontology Requirements Specification Document Template

1 Purpose

“Software developers and ontology practitioners should include in this slot the purpose of the
ontology”

2 Scope

“Software developers and ontology practitioners should include in this slot the scope of the
ontology”

3 Level of Formality

“Software developers and ontology practitioners should include in this slot the level of formality of
the ontology”

4 Intended Users

“Software developers and ontology practitioners should include in this slot the intended users of
the ontology”

5 Intended Uses

“Software developers and ontology practitioners should include in this slot the intended uses of
the ontology”

6 Groups of Competency Questions

“Software developers and ontology practitioners should include in this slot the groups of
competency questions and their answers, including priorities for each group”

7 Pre-Glossary of Terms

 Terms

“Software developers and ontology practitioners should include in this slot the list of terms
included in the CQs and their frequencies”

 Objects

“Software developers and ontology practitioners should include in this slot a list of objects and
their frequencies”

Table 4. Template for the OSRD

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 45 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Figure 10. Tasks for Ontology Specification

The tasks for carrying out the ontology specification activity are explained in detail in the following:
Task 1. Identify purpose, scope and level of formality.

The objective of this task is to obtain the main goal or aim of the ontology, its coverage and
granularity. The degree of formality to be used to codify the ontology should be also identified. This
degree of formality ranges from informal natural language to a rigorous formal language. Users,

Page 46 of 150 NeOn Integrated Project EU-IST-027595

domain experts and the ontology development team carry out this task taking as input a set of
ontological needs for obtaining the purpose, scope and level of formality of the ontology, using
techniques as physical or virtual interviewers between them.

The task output is the purpose, scope and level of formality of the ontology, which will be included
in the corresponding slots of the OSRD template.

Task 2. Identify intended users.

The goal of this task is to establish which are the main intended users of the ontology. Users,
domain experts and the ontology development team carry out this task taking as input a set of
ontological needs for identifying the intended users, using techniques as physical or virtual
interviewers between them.

The task output is a list with the intended users, which will be included in the corresponding slot of
the OSRD template.

Task 3. Identify intended uses.

The goal of this task is to obtain the main ontology intended uses, that is, in which kind of
scenarios the ontology will be used. Users, domain experts and the ontology development team
carry out this task taking as input a set of ontological needs for identifying the intended uses, using
techniques as physical or virtual interviewers between them.

The development of an ontology is motivated by scenarios related to the application that will use
the ontology. The task output is a list of intended uses in the form of scenarios. Such scenarios
describe a set of the ontology’s requirements that the ontology should satisfy after being formally
implemented. The scenarios can be described in natural language or expressed in UML as use
cases. The list of scenarios will be included in the corresponding slot of the OSRD template.

Task 4. Identify requirements.

The goal of this task is to obtain the set of requirements or needs that the ontology should fulfill.
Users, domain experts and the ontology development team carry out this task taking as input a set
of ontological needs for identifying the ontology requirements, using techniques as writing the
requirements in natural language in the form of the so-called competency questions (CQs) and
tools as mind map tools, excel, and collaborative tools.

The output of this task is a list of competency questions written in Natural Language and a set of
answers for the CQs.

Different approaches for identifying competency questions can be applied, such as:

 Top-Down: Complex questions are decomposed in simple ones.

 Bottom-Up: Simple questions that are organised to form complex ones.

 Middle out: Mix approach between top-down and bottom-up.

Regarding the recommended tools, we can mention that MindMap tools allow to represent mind
maps [26]. These mind maps are diagrams used to represent words, ideas, tasks or other items
linked to and arranged radically around a central key word or idea. They are used to generate,
visualize, structure and classify ideas. In general, a mind map provides information about a topic
that is structured in a tree. Each branch of the tree is typically named and associatively refined by
its subbranches. Icons and pictures as well as different colors and fonts might be used for
illustration based on the assumption that our memory performance is improved by visual aspects.
Many people from academia and industry are familiar with mind maps, and for this reason we think
that this recommendation will be very useful for software engineering and ontology practitioners
forming the ontology development team. Another advantage is that requirements visualization in
form of a hierarchy is very intuitive and easy to understand and manage.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 47 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

If people are geographically distributed, wiki tools, such as Cicero11 [38], can be used for identifying
the requirements, in the form of CQs and associated responses.

Task 5. Group requirements.

The goal of this task is to group the list of CQs into several categories. Users, domain experts and
the ontology development team carry out this task taking as input the list of CQs written in natural
language (obtained in task 4) for obtaining different groups of CQs, using techniques as Card
Sorting, when the grouping is done manually, and Clustering NL sentences or Information
Extraction when the grouping is done automatically; and using tools as MindMap Tools or Cicero
Tool (for distributed teams).

The task output is a set of groups including different CQs.

To group the requirements is useful for guiding the ontology development based on different
ontology modules or based on prototypes involving different features of the ontology.

Competency questions are grouped in such a way that each group includes those questions that
are relevant to a specific feature of the ontology.

For grouping the requirements we proposed a hybrid approach that combines:

 The analysis of the frequency of terms and the grouping of CQs based on those terms
that have a higher frequency.

 The use of pre-established categories, such as time and date, units of measure,
currencies, location, languages, etc.

Task 6. Validate the set of requirements.

The goal of this task is to identify possible conflicts between CQs, missing CQs, and contradictions
in CQs. Users and domain experts carry out this task taking as input the set of grouped CQs for
deciding if such CQs are valid or not.

The task output is a confirmation about the validity of the set of CQs.

For validating the identified CQs, the following criteria are proposed:

 Correctness. Inspired on [4, 36], we can say that a set of requirements is correct if each
requirement refers to some features of the ontology to be developed. That is, any
requirement is necessary.

 Completeness. In [121], a requirement specification is considered as complete if no
requirement is omitted. Practically and adapting this consideration to the ontology
engineering field, we can say that if users and domain experts review the requirements and
confirm that they do not know more necessary requirements, then the set of requirements
can be considered complete.

 Consistent. The set of requirements can be considered internally consistent if no conflicts
exit between requirements. Conflicts can be between terms (different terminology is used in
the requirements to refer to the same need) and between characteristics (two or more
requirements refer to contradictory features of the ontology to be developed).

 Verificable. Based on [36, 4], we can say that the set of requirements is verificable if each
requirement is verificable. That is, a finite process with a reasonable cost exists to test that
the final ontology satisfies each requirement. A necessary condition to have a verificable
requirement is that such a requirement should be unambiguous.

 Understandable. Each requirement must be understandable by users and domain experts.

11 http://cicero.uni-koblenz.de/wiki

Page 48 of 150 NeOn Integrated Project EU-IST-027595

 No Ambiguity. Based on [36, 4], we can say that an ontology requirement is unambiguous if
it has only one interpretation.

 Conciseness. Each and every requirement is relevant, and there are no duplicated or
irrelevant requirements.

 Realism. Requirement meanings must make sense in the domain.

 Modifiable. Based on [36, 4], we can say that a set of requirements is modifiable if its
structure and style allow to change issues in an easy, complete and consistent way.

 Traceable. Based on [36, 4], we can say that an ontology requirement is retraceable if its
origin is known and it can be referred to in other documents during the ontology
development. A necessary condition to have retraceable requirements is that such
requirements should be referred in a unique way (normally using a kind of code).

Task 7. Prioritize requirements.

The goal of this task is to give different levels of priority to the different groups of CQs, and within
each group to the identified requirements (in the form of CQs). Users, domain experts and the
ontology development team carry out this task taking as input the groups of CQs written in natural
language (obtained in task 5) for obtaining the priorities for each group and for each CQs within a
group.

The task output is a set of priorities attached to each group of CQs and to each CQ in a group.

Priorities in CQs will be used for planning the ontology development.

This task is optional, but recommended. In fact, if no priorities are given to the groups of CQs, the
ontology development will model all requirements at the same time.

Task 8. Extract terminology and its frequency.

The goal of this task is to extract from the list of CQs a pre-glossary to be used in the
conceptualization activity. The ontology development team carries out this task taking as input the
list of identified CQs and their answers for obtaining a list of the most used terms in them, using
terminology extraction techniques and tools supporting such techniques.

From the requirements in form of competency questions, we extract the terminology (names,
adjectives and verbs) that will be formally represented in the ontology by means of concepts,
attributes and relations.

From the answers to the CQs we extract the objects in the universe of discourse that will be
represented as instances.

5.3. Examples

In this section we include three different examples of how to use the proposed guidelines for the
ontology specification activity and what results are expected.

The first example refers to the specification of the SEEMP reference ontology, by means of using
the guidelines proposed in this deliverable. It is important to mention that the work done within the
SEEMP project in the ontology specification activity has been one of the inputs to get preliminar
guidelines for this activity. Such preliminar guidelines have been extended, improved, and
proposed in this deliverable. Using the proposed guidelines presented here, we described the
specification activity with the SEEMP reference ontology.

The remaining two examples instantiate the guidelines for the ontology specification proposed here
in the invoice use case and in the nomenclature use case within the NeOn project. It is worth to
mention that previous to this deliverable both uses cases presented the ontology specification in
D8.3.1 [65] using preliminar guidelines for carrying out the activity.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 49 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

5.3.1. SEEMP Reference Ontology Specification
The main objective of the SEEMP12 project is to develop an interoperable architecture for public e-
Employment services (PES). The resultant architecture will consist of: a Reference Ontology, the
core component of the system, that acts as a common “language” in the form of a set of controlled
vocabularies to describe the details of a job posting; a set of Local Ontologies, each PES uses its
own Local Ontology, which describes the employment market in its own terms; a set of mappings
between each Local Ontology and the Reference Ontology; and a set of mappings between the
PES schema sources and the Local Ontologies. The SEEMP project relies on WSMO [45] that
permits to semantically describe Web Services, ontologies and mediators. WSML [37] is the
concrete language used in SEEMP for encoding those descriptions.

In this section we present the specification of the SEEMP Reference Ontology following the
proposed guidelines of the NeOn Methodology. This specification is not intended to be exhaustive,
but it just describes the most important points. A detailed and complete specification is described in
[13]. Next we described the steps we followed:

Task 1. Identify purpose, scope and level of formality.

The development of the Reference Ontology is motivated by scenarios related to the application
that will use the ontology. Such scenarios describe a set of the ontology requirements that the
ontology should satisfy after being formally implemented. The motivating scenarios are described
in [14]. In summary, the purpose of building the Reference Ontology is to provide a consensual
knowledge model of the employment domain that could be used by public e-Employment services
(PES), more specifically within the ICT (Information and Communication Technology) domain.
Since SEEMP project relies on WSMO, the implementation language of the resultant ontology will
be WSML.

Task 2. Identify intended users.

As it was mentioned before, the Reference Ontology will be the core component of the SEEMP
platform; the peers on the SEEMP interoperate with each other from their local ontologies via the
Reference Ontology. The analysis of the motivating scenarios described in [3], allowed us to
identify the following intended users of the ontology:

User 1. Candidate who is unemployed and searching for a job or searching another
occupation for immediate or future purposes

User 2. Employer who needs more human resources.

User 3. Public or private employment search service which offers services to gather CVs or
job postings and to prepare some data and statistics.

User 4. National and Local Governments which want to analyze the situation on the
employment market in their countries and prepare documents on employment, social
and educational policy.

User 5. European Commission and the governments of EU countries which want to analyze
the statistics and prepare international agreements and documents on the
employment, social and educational policy.

Task 3. Identify intended uses.

The analysis of the motivating scenarios described in [14], allowed us to identify the following main
intended uses of the ontology:

Use 1. Publish CV. Job seeker places his/her CV on the PES Portal.

12 http://www.seemp.org

Page 50 of 150 NeOn Integrated Project EU-IST-027595

Use 2. Publish Job Offer. An Employer places a Job Offer on the PES Portal.

Use 3. Search for Job Offers. The Employer looks for candidates for the Job Offer through
PES Portal.

Use 4. Search for Employment information. Job Seeker looks for of general information about
employment in a given location at the PES Portal.

Use 5. Provide Job Statistics. The PES Portal provides employment statistics to the Job
Seeker and Employer.

Task 4. Identify requirements.

For specifying the ontology requirements we used the competency questions techniques. We
followed the bottom up approach for identifying them. Competency questions were stored in an
Excel file and then rewritten in a mind map tool as appears in Figure 11 and Figure 12,
respectively.

In total we identified sixty competency questions, which are described in detail in [14]. Examples of
some competency questions are:

 What is the job seeker nationality?

 What is the job seeker desired job?

 What is the required work experience for the job offer?

 When did the job seeker complete his/her first degree?

 What is the job seeker education level?

 Is the offered salary given in Euros?

Figure 11. Excerpt of the Competency Questions and Answers in an Excel File

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 51 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Figure 12. Excerpt of the Competency Questions in a Mind Map Tool

Task 5. Group requirements.

The sixty competency questions, described in [14], were manually grouped into five groups with
the domain experts’ help. Figure 13 shows the final 5 groups: Job Offer, Job Seeker, Currencies,
Time and Date, and general ones. General competency questions are the result of the composition
of simple queries into complex ones. The criteria for grouping the competency questions are based
on the identified uses, the identified users and the domain expert suggestions. Figure 14 shows the
5 groups with some competency questions.

Figure 13. Competency Questions Groups

Figure 14. Competency Questions Groups in detail

Task 6. Validate the set of requirements.

During the overall process we received recommendations, suggestions and advices from the
domain experts, and we iterated several times until we got the final approval by the end users.
They used the following criteria for validating the competency questions:

 Correctness. Domain experts checked the correctness of each competency question,
verifying that its formulation and answers were correct.

Page 52 of 150 NeOn Integrated Project EU-IST-027595

 Consistent. Domain experts also verified that the competency questions did not have any
possible inconsistency. For example, a Job Seeker who does not speak English cannot find
a job offer in England.

Task 7. Prioritize requirements.

Within the SEEMP Reference Ontology specification we did not carry out this step. This means the
first version of the ontology must be able to represent the knowledge contained in all the
competency questions.

Task 8. Extract terminology and its frequency.

From the competency questions, we manually extracted the terminology that will be formally
represented in the ontology by means of concepts, attributes and relations. We identified the terms
and the objects in the universe of discourse.

Examples of the terms related to job seeker are shown in Table 5.

Term Frequency

Job Seeker 27

• CV 2

• Personal Information 3

Name 4

Gender 1

Birth Date 1

Address 1

Nationality 1

Contact (phone, fax, mail) 3

• Objective 3

Job Category 3

Activity Sector 3

Location 3

Work Condition 2

Contract type 2

Salary 3

• Education and training 3

• Work Experience 3

• Competencies 3

Knowledge 3

Abilities 3

Skills 3

• Publication 1

• Hobbies 1

• References 1

Table 5. Examples of Terminology and Frequency

Table 6 shows some examples of objects, which are instances of Nationality, Job Category,
Education, Currency, Languages, and Activity Sector.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 53 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Nationality Job Category Education Currency Languages Activity Sector

Austrian Computer System
Designer Life Science Euro Austrian Telecommunication

Belgian Computer System Analyst Mathematics Krone Belgian Justice and Judicial

Cypriot Programmer Computer
Science

Great
British
Pound

Cypriot Public Security and law

Czech Computer Engineer Computer
Use Zlote Czech Manufacture of machine

tools

Danish Computer Assistant Statistics US Dollar Danish Research and
Development

Estonian Computer Equipment
Operator Physics Franc Estonian Hardware Consultancy

Finnish Industrial Robot Controller Chemistry Peso Finnish Software Consultancy
and Supply

French Telecommunication
Equipment Operator Earth Science French Data processing

German Medical Equipment
Operator

Network
Administration German Database

Greek Electronic Equipment
Operator

Operating
Systems Greek Publishing of Software

Hungarian Image Equipment
Operator Informatics Hungarian Maintenance of

computing machinery

Irish Software Engineer Programming
Language Irish Government

Italian Computer code recorder Sports Italian Culture, Media, Design

Table 6. Examples of Objects

After following these tasks, the output of the Ontology Specification activity is the Ontology
Requirements Specification Document. An excerpt of this document, which as been written for this
deliverable, is shown in Table 7.

 SEEMP Reference Ontology Requirements Specification

1 Purpose

 The purpose of building the Reference Ontology is to provide a consensual knowledge model of the
employment domain that could be used by public e-Employment services (PES).

2 Scope

 The ontology has to focus just on the ICT (Information and Communication Technology) domain.
The level of granularity is directly related to the competency questions and terms identified.

3 Level of Formality

 The ontology has to be implemented in WSML language

4 Intended Users

User 1. Candidate who is unemployed and searching for a job or searching another occupation for
immediate or future purposes

User 2. Employer who needs more human resources.

User 3. Public or private employment search service which offers services to gather CVs or job postings
and to prepare some data and statistics.

Page 54 of 150 NeOn Integrated Project EU-IST-027595

User 4. National and Local Governments which want to analyze the situation on the employment market
in their countries and prepare documents on employment, social and educational policy.

User 5. European Commission and the governments of EU countries which want to analyze the statistics
and prepare international agreements and documents on the employment, social and educational
policy.

5 Intended Uses

Use 1. Publish CV. Job seeker places his/her CV on the PES Portal.

Use 2. Publish Job Offer. An Employer places a Job Offer on the PES Portal.

Use 3. Search for Job Offers. The Employer looks for candidates for the Job Offer through PES Portal.

Use 4. Search for Employment information. Job Seeker looks for of general information about
employment in a given location at the PES Portal.

Use 5. Provide Job Statistics. The PES Portal provides employment statistics to the Job Seeker and
Employer.

6 Groups of Competency Questions

 CQG1. Job Seeker (16 CQ)

 CQG2. Job Offer (10 CQ)

 CQG3. Time and Date (6
CQ)

 CQG4. Currencies (4 CQ)

CQG5. General (24 CQ)

7 Pre-Glossary of Terms

 Terms Frequency

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 55 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

a. Job Seeker 27

b. CV 2

c. Personal Information 3

d. Name 4

e. Gender 1

f. Birth date 1

g. Address 1

h. Nationality 1

i. Contact (phone, fax, mail) 3

j. Objective 3

k. Job Category 3

 Objects

Objects in the universe of discourse, which are instances of Job Category

O1. Computer System Designer
O2. Computer System Analyst
O3. Programmer
O4. Computer Engineer
O5. Computer Assistant
O6. Computer Equipment Operator
O7. Industrial Robot Controller
O8. Telecommunication Equipment Operator
O9. Medical Equipment Operator
O10. Electronic Equipment Operator
O11. Image Equipment Operator

Table 7. Excerpt of SEEMP Reference Ontology Requirement Specification Document

5.3.2. Invoice Reference Ontology Specification
The invoice reference ontology designed in the scope of the Pharmaceutical case study aims to
solve the lack of interoperability between invoice emitters and receivers. By using this invoice
reference ontology integrated with the invoicing prototype which is currently being developed the
end users will be able to map their invoices with the reference ontology and eliminate the
interoperability problem that currently exists between both set of actors.

For the specification of the Invoice Reference Ontology we followed the proposed guidelines of the
NeOn Methodology. Next we described the steps we followed:

Task 1. Identify purpose, scope and level of formality.

In [63] the purpose of the invoice reference ontology was identified and in deliverables [64, 65] this
purpose was refined. The scope of the invoice reference ontology is to cover the most important
languages/standards of the electronic invoicing domain. Electronic invoicing languages/standards
like EDIFACT or UBL should be present along with other proprietary solutions and all the concepts
needed for representing any invoice that can be emitted by a company. An important amount of
emitters of invoices are small to medium enterprises which can not afford to use the previous
standards due to the high cost of installing them into their small systems. Therefore the invoice
reference ontology allows the users to add their proprietary solutions into it. An example of
proprietary solution is the model and the terminology of the PharmaInnova model. Process

Page 56 of 150 NeOn Integrated Project EU-IST-027595

modeling concepts are also included in the reference ontology for representing the invoicing
workflow. The language implementation selected is OWL.

Task 2. Identify intended users.

In order to get a fully usable ontology it is necessary to know who is going to finally use the
ontologies developed. In order to address this problem, competency questions regarding the
intended users of the ontology are mandatory. In [63] a complete description of the users of these
applications is presented:

U1. User of the invoicing application who is going to model a new invoice.

U2. User who emits invoices.

U3. User who receives invoices.

U4. User who administrates the invoicing system.

U5. Developers of invoicing applications

Task 3. Identify intended uses.

The development of the network of ontologies is motivated by scenarios related to the application
that will use the ontology. Such scenarios describe a set of the ontology’s requirements that the
ontology should satisfy after being formally implemented. The motivating scenarios are described
in [63].

Task 4. Identify requirements.

For specifying the ontology requirements we wrote a list of competency questions. This list has
been included in [65]. The approach we followed for identifying the competency questions was first
creating simple questions and by composition derives other complex questions. The approach
followed to identify them was the top down one. The competency questions main topics were
based on the requirements presented in [63]. Based on those requirements the competency
question list was written and afterwards grouped in category groups. The tool for gathering the
competency questions was MS Word. Examples of the competency questions are:

1. Is possible to identify the activity of one invoice emitter by looking at the invoice model?

2. How many different concepts are the different invoices emitted by e.g. wholesaler and a
laboratory?

3. What are the differences between the model of the invoices emitted by e.g. wholesaler and a
laboratory?

4. What concepts are mandatory for a wholesaler/provider/laboratory?

5. What is the language of this invoice?

6. Is possible to apply any special price to this invoice?

7. What product have we received?

8. What invoicing technologies are using the emitters of this invoice?

9. What is the language of this invoice?

Task 5. Group requirements.

The competency questions have been grouped into four groups. The criteria to group the
competency questions have been based in the domain experts’ advice and in the set of
requirements from [63]. The competency questions groups are all dependent on the domain
requirements. These groups have been divided in time dependent requirements, workflow specific
domain requirements, specific domain requirements (like What product have we received?), etc.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 57 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

CQG1. Competency questions regarding the invoicing workflow

CQG2. Competency questions regarding multilinguality

CQG3. Competency questions regarding inference rules

CQG4. Competency questions related to the receiver of invoices

CQG5. Competency questions regarding the technology used by the emitters

CQG6. Competency questions related to the emitter of invoices

CQG7. Competency questions related to time and date management

CQG8. Competency questions related to currencies

CQG9. Composite ones (24 competency questions)

Task 6. Validate the set of requirements.

During the overall process we received recommendations, suggestions and advices from the
domain experts and we iterated several times until we got the final approval by the end users.

Task 7. Prioritize requirements.

The ontology requirements were not prioritized. The domain experts and the knowledge engineers
who designed the invoice reference ontology considered that the first version of the ontology
should cover all the topics reflected by the competency questions.

Task 8. Extract terminology and its frequency.

The terminology used was mainly extracted from the standards we incorporated into the invoice
reference ontology not from the competency questions. These standards like UBL contain
terminology in order to represent a wide scope of the electronic invoicing domain and we
incorporated this vocabulary into the ontology. Vocabulary was also extracted from the
PharmaInnova invoice model. Therefore, this task was not considered.

The output of the ontology specification activity carried out with preliminar guidelines is described
in [65] and the entire list of the competency questions can be found in its annex.

5.3.3. Semantic Nomenclature Reference Ontology Specification
Among the main objectives of the Semantic Nomenclature case study, we find: helping in the
systematization of the creation, maintenance and keeping up-to-date drug-related information, and
allowing an easy integration of new drug resources. In order to do that, the case study tackles the
engineering of a pharmaceutical product reference ontology based on the use of networked
ontologies to solve the particular case scenario of the nomenclature of products in the
pharmaceutical sector in Spain. This reference ontology model is a compilation of the main terms
and objects related to drugs, the general aspects of them and classify this pharmaceutical terms
according to the ATC classification. Also, this reference ontology model is connected with the
ontology models of the main databases which contain the information about the pharmaceutical
products available in the Spanish market as Digitalis or BOTPlus. In the end, the reference
ontology could be linked to the main medical vocabularies used in the world, and it should facilitate
the integration of new resources or ontologies that would appear in the evolved scenario.
Next we described the tasks followed for the ontology specification in the Semantic Nomenclature
case study based on the guidelines provided by the NeOn methodology in the context of NeOn
WP5.

Task 1. Identify purpose, scope and level of formality.

The development of the Reference Ontology and the Nomenclature network ontology is motivated
by scenarios presented to the end-user application that will use the ontology network. Such
scenarios together with the ontology requirements are described in [64]. The ontology network

Page 58 of 150 NeOn Integrated Project EU-IST-027595

should satisfy these requirements after being formally implemented. Then, it should provide a
consensual knowledge of the domain, and solve the lack of communication between stakeholders
in the pharmaceutical sector. The purpose of the Nomenclature Network Ontology is to provide a
complete reference model about all the knowledge around the pharmaceutical products based on
the main pharmaceutical classification and models used in the sector.

Task 2. Identify intended users.
The Semantic Nomenclature reference ontology is the elemental component of the case study
scenario. The analysis of these scenarios and of the pharmaceutical sector described in [64] allows
us to identify the different intended users of the ontology:

User 1: Pharmacist. Pharmacists are the end-users of the ontology and navigate across the
ontology searching for drug information.

User 2: GSCoP13 technician. GSCoP technicians navigate across the ontology network and
search for more information or relations about a given concept (drug, active ingredient,
etc.). Also, GSCoP technicians extract the latest information from different sources
and update their BOTPlus database

User 3: Spanish Government. Spanish Government analysts study the situation of the
pharmaceutical product information in the Spanish market or update the content.

Task 3. Identify intended uses.
The analysis of the motivating scenarios described in [64], allowed us to identify the following main
intended uses of the ontology:

Use1. Search updated information about the characteristics of pharmaceutical products

Use2. Connect heterogeneous pharmaceutical models

Use3. Update pharmaceutical product information databases

Task 4. Identify requirements.
According to the previous steps and the scenarios described for the Semantic Nomenclature
application in [64], the network of ontologies should satisfy these requirements. By the way, we
adopted a bottom up approach for better understanding of the domain and identification of
requirements. Competency questions were described in a Word file as appears in Figure 15.

We have identified sixty-one competency questions; they are described in detail in [65]. Examples
of competency questions are:

CQ1. What is the drug commercial name? Aspirina C (400/240MG 10 comprimidos
Efervescentes)

CQ2. What is the drug main active ingredient (molecule)? Acido Acetilsalicilico

CQ3. What is its Spanish national code?7127291

CQ4. What is the drug registration date? 01/09/1976

13 GSCoP: General Spanish Council of Pharmacists

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 59 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Figure 15. Excerpt of the Semantic Nomenclature Competency Questions

Task 5. Group requirements.

The sixty-one competency questions described in [65] were enumerated and later on grouped into
different concept domain:

CQG1. Pharmaceutical Product (29 competency questions)

CQG2. Laboratory (4 competency questions)

CQG3. Active Ingredient (12 competency questions)

The criteria for grouping competency questions are based on the identified uses and users of the
ontology and also on domain expert suggestions. Then, competency questions in each group and
between groups were composed into more general questions.

CQG4. Composite ones (16 competency questions)

Moreover, we detected some questions in the previous groups related with date and time terms,
and we identified another group for collecting some competency questions related with date and
time terms for pharmaceutical products.

CQG5. Date / Time

Figure 16 shows the final 5 groups and Figure 17 shows examples of CQs in the Laboratory and
Pharmaceutical Product groups.

Page 60 of 150 NeOn Integrated Project EU-IST-027595

Figure 16. Semantic Nomenclature Competency Questions Groups

Figure 17. Examples of Competency Questions in Groups

Task 6. Validate the set of requirements.
During the Semantic Nomenclature case study requirements process we received
recommendations, suggestions and advices from domain experts. These suggestions were useful
when we described the set of competency questions, but during this specification we did not have
a particular validation from domain experts. Due to this situation, we iterated, reviewed and refined
the list of competency questions.

Task 7. Prioritize requirements.
In the Semantic Nomenclature case study, we did not carried out this step. In our case study we
did not prioritize any requirement for the first version of the ontology network specification.

Task 8. Extract terminology and its frequency.
From the competency questions and their answers, we manually extracted the terminology that will
be formally represented in the ontology by means of concepts, attributes and relations. We
identified the terms and the objects in the universe of discourse.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 61 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Some examples of the terms related to the pharmaceutical product are shown in Table 8.

Term Frequency

Drug 29

• Date (registration, withdrawal) 3

• Price (reference, commercial) 3

• Therapeutical Subgroup 3

• Dosage 1

• Composition 2

• Identification 2

• National Health financing 2

• Route of administration 1

• Units content 1

• Indications 2

• Status 1

• Pharmaceutical form 1

Table 8. Example of Terms and Frequency
The Semantic Nomenclature scenario has a high number of examples of objects which are
instances of the main concepts of the ontology. Some examples of Active Ingredient instances are
shown in Table 9.

Active Ingredients Objects
Ibuprofeno

Butibufeno

Penicilamina

Niflumico Acid

Galamina

Tetrazepam

Procaina

Ketamina

Clotiazapam

Oxitriptan

Table 9. Examples of Objects

The output of the Ontology Specification activity is the Ontology Requirements Specification
Document. An excerpt of this document is shown in Table 10.

 Semantic Nomenclature Reference Ontology Requirements Specification
1 Purpose

The purpose of building the Reference Ontology is to provide a network of ontologies for the
pharmaceutical domain. This model is a compilation of the main terms and objects for this
particular domain and could be used by health & pharmaceutical entities.

2 Scope

The ontology has to focus just on the Spanish & European pharmaceutical domain.
The level of granularity is directly related to the competency questions and terms identified.

3 Level of Formality

Page 62 of 150 NeOn Integrated Project EU-IST-027595

 The ontology has to be implemented in OWL
4 Intended Users

User 1: Pharmacist. Pharmacists are the end-users of the ontology and navigate across
the ontology searching for drug information.

User 2: GSCoP technician. GSCoP technicians navigate across the ontology network
and search for more information or relations about a given concept (drug, active
ingredient, etc.). Also, GSCoP technicians extract the latest information from
different sources and update their BOTPlus database

 User 3: Spanish Government. Spanish Government analysts study the situation of the
pharmaceutical product information in the Spanish market or update the
content.

5 Intended Uses

Use1. Search updated information about the characteristics of pharmaceutical
products

Use2. Connect heterogeneous pharmaceutical models
Use3. Update pharmaceutical product information databases

6 Groups of Competency Questions

CQG1. Pharmaceutical Product (29 competency questions)
CQG2. Laboratory (4 competency questions)
CQG3. Active Ingredient (12 competency questions).
CQG4. Composed ones (16 competency questions).
CQG5. Time / Date

7 Pre-Glossary of Terms
 Terms

Term Frequency
Drug 29

• Date (registration, withdrawal) 3

• Price (reference, commercial) 3

• Therapeutical Subgroup 3

• Dosage 1

• Composition 2

• Identification 2

• National Health financing 2

• Route of administration 1

• Units content 1

• Indications 2

• Status 1

• Pharmaceutical form 1

 Objects

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 63 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Active Ingredient Objects
Ibuprofeno
Butibufeno
Penicilamina
Niflumico Acid
Galamina
Tetrazepam
Procaina
Ketamina
Clotiazapam
Oxitriptan

Table 10. Excerpt of Semantic Nomenclature Reference Ontology Requirement Specification
Document

5.4. Future Work

In this chapter we have presented detailed methodological guidelines for carrying out the ontology
specification activity. Further work related with this activity includes: the implementation of a NeOn
plug-in supporting this guidelines and the execution and evaluation of the experiments testing the
usability and understandability of the guidelines (to be included in D5.6.2).

Page 64 of 150 NeOn Integrated Project EU-IST-027595

6. Non Ontological Resource Reuse and Reengineering

In this chapter we present current methods, techniques and tools for reusing and reengineering
non ontological resources as well as preliminar NeOn guidelines to help software developers and
ontology practitioners to carry out these processes.

6.1. Introduction

As we already mentioned in chapter 4, the NeOn Methodology presents 9 different scenarios for
building networks of ontologies. One of these scenarios is Building Ontology Networks by Reusing
and Reengineering Non Ontological Resources. In this scenario, software developers and ontology
practitioners should analyse whether existing non ontological resources that contain already
consensuated terminology (available in glossaries, dictionaries, lexicons, classification schemes,
thesauri and folksonomies) can be reused to build an ontology network or not. If they decide that
one or more non ontological resources are useful for the ontology development, then the non
ontological resource reengineering process should be carried out, extending non ontological
resources with specific domain knowledge, as opposed to custom-building new ontologies from
scratch. The underlying principle is that reusing existing and already consensuated terminology
allows saving time and money in the ontology development process, and promotes the application
of good practices.

During the last years, the ontology engineering research community is being very active in the
reuse and reengineering of non ontological resources for speeding up the ontology development
process. In other words, software developers and ontology practitioners are realizing the benefits
of not starting the ontology development process from scratch. This implies looking first for new
methods, techniques, and tools for reusing and reengineering the consensuated terminology
contained in available resources. Examples of projects that perform reuse and reengineering are:
(1) the NeOn Project, in WP7 case study, Fisheries Ontologies were developed for use within the
Fish Stock Depletion Assessment System (FSDAS) [28], by reusing resources available for the
fisheries domain, e.g. the FIGIS database, (2) the SEEMP14 project in which a Reference Ontology
has been built by reusing human resources management standards, and (3) SKOS15, the most
used metamodel to reengineering thesauri, which is being used by several organizations to export
their existing vocabularies in order to support their reuse by other communities, i.e. they are
converting the vocabularies from a proprietary format into a consensuated format.

This chapter is organized as follows: section 6.2 presents the state of the art on methods,
techniques and tools for reusing and reengineering non ontological resources Section 6.3 depicts
the proposed typology of non ontological resources. Section 6.4 shows a high level overview of the
NeOn methodology for reuse and reengineering non ontological resources, and section 6.5 and
section 6.6 describe the details of the methodological guidelines proposed for reusing non
ontological resources and for the reengineering of resources. Finally, section 6.7 presents the
conclusions and future work.

14 http://www.seemp.org
15 http://www.w3.org/2004/02/skos/

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 65 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

6.2. State of the Art

A review of the state of the art regarding reuse and reengineering of non ontological resources
shows that most of the analyzed research only focuses on the transformation process of these
resources into ontologies, for instance, transformation of standards [85, 74], thesauri and lexicons
[75, 98, 115, 121, 122], XML files [56], hierarchical classifications [58, 75], folksonomies [98],
relational databases [17, 109], and spreadsheets [72] among others. These works only concentrate
on the reengineering process of the type of non ontological resources (classifications, thesauri,
lexicons, etc.) and of the implementation of non ontological resource (XML, spreadsheets, etc.).

In NeOn deliverable 2.2.1, Sabou et al. [98] distinguish two approaches for the resource
transformation. The first one consists in transforming resource schema into an ontology schema,
and then resource content into instances of the ontology. The second one transforms resource
content into an ontology schema. For each one of the contributions presented below, we will
comment which of the two approaches is followed.

6.2.1. Methods
In this section we present some of the methods we found in the literature related with the reuse
and reengineering of non ontological resources. First, we introduce some research to transform
classification schemes, folksonomies, lexica and thesauri into ontologies. Then, we show some
works which deal with non ontological resource data sources as databases and XML files.

 Methods for transforming classification schemes into ontologies.

The two main approaches for transforming classification schemes into ontologies are presented in
[75, 74, 85]. Next we describe each one of them.

A method for deriving ontologies from hierarchical classifications is presented in [75, 74], in which
a semi-automatic creation of the ontology is proposed. Both deal with classifications schemes such
as the standard categorization for products and services, UNSPSC16. This classification scheme is
in continuous evolution and holds thousand of categories, which makes it impractical to create and
update the ontology manually. The method consists of the following steps:

• To pre-process and create a formal representation of the classification scheme.

• To derive classes from each category and set the relation among them according to a given
context.

• To derive a class from each category and set a taxonomic relation among them.

• To generate the ontology in an ontology language (e.g. OWL).

This method follows the approach used for transforming resource content into an ontology schema.
However, in [75, 74] no information is given about how to find the most suitable non ontological
resource for the transformation.

The creation of a Human Resource Ontology reusing some existing widespread standards and
classifications is presented in [85]. The method consists of the following steps:

• To discover potentially useful resources, by searching in general purpose search engines,
domain-related web sites, and organizations. However, no detailed information is given
about how to carry out the search.

• To select manually the resources without the usage of a pre-defined methodology.

• To extract and integrate the relevant fragments of the selected resources to the ontology.

16 http://www.unspsc.org/

Page 66 of 150 NeOn Integrated Project EU-IST-027595

This work follows the approach of transforming resource content into an ontology schema, and the
resultant ontology is expressed in OWL.

 Methods for transforming folksonomies into ontologies.

The main approach for transforming folksonomies into ontologies is presented in NeOn deliverable
D2.2.1 [98]. This approach proposes an algorithm for the semantic enrichment of folksonomies. It
consists of: a) defining concepts for each tag (linking tags to ontology concepts) and b) discovering
relations between all the possible pairs of tags.

This approach follows the one for transforming resource content into an ontology schema, and
does not provide information about how to select the resource.

 Methods for transforming lexica into ontologies.

The two main approaches for transforming lexica into ontologies are presented in NeOn
deliverable D2.2.1 [98]. They are focused on WordNet17.

The first approach consists of the following steps:

• To create a set of classes for each one of the main components of WordNet including
classes for word, synset and sense, among others.

• To model all words, synsets and senses belonging to WordNet, as instances of the
previously created classes.

• To code part of the semantics related to each instance by means of the URIs used to
identify each instance.

This first approach is based on the one for transforming resource schema into an ontology
schema, and then resource content into instances of the ontology. The resultant ontology is
expressed in OWL.

The second approach aims at producing a formal specification of WordNet by means of an
ontology. The reengineering process creates a class for each synset. It is also based on a set of
assumptions on how to discover and map relations between WordNet components and ontology
relations. The proposed steps are more focus on the learning process for discovering relations
between words and synsets from the words textual definition (sense), than in a reengineering
method. This second approach follows the one based on transforming resource content into an
ontology schema. The resultant ontology is expressed in OWL as well. However, in [98] no
information is given about how to find the most suitable non ontological resource for the
transformation.

 Methods for transforming thesauri into ontologies.

The three main approaches for transforming thesauri into ontologies are presented in [115, 121,
122]. Next, we describe them.

The work described in [115, 122] provides a method for converting existing thesauri into ontologies
with a set of guidelines. The method consists of the following steps:

• To find the most suitable thesauri for the conversion. However, no detailed information is
given about how to carry out this step.

• To gather information about the thesaurus data source and conceptual model.

• To transform the source representation into an ontology language, trying to preserve the
original structure.

• To augment class and properties with additional constraints as transitive or symmetric
properties.

17 http://wordnet.princeton.edu/

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 67 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

This method follows the approach for transforming resource schema into an ontology schema, and
then resource content into ontology instances. The resultant ontology is expressed in OWL or
RDF(S).

The process for transforming the Art and Architecture Thesaurus (AAT) into an RDF(S) ontology is
depicted in [121]. The method consists of the following steps:

• To convert the full AAT hierarchy into a hierarchy of concepts.

• To augment a number of concepts with additional slots and fillers.

• To add knowledge about the relation between possible values of fields and nodes in the
knowledge base.

This method follows the approach centered on transforming the resource content into an ontology
schema, and does not provide information about how to select the resource.

 Methods for transforming databases into ontologies.

The two main approaches for transforming databases into ontologies are presented in [109, 17].
Next we outline them.

The first approach described in [109] is based in the semi-automatic generation of the ontology
schema from the database relational model. This method consists of the following steps:

• To apply reverse engineering techniques, supervised by the ontology practitioner, to the
database schema.

• To transform database records into ontology instances, having in this case the database
content replicated in the ontology.

This first approach follows the one for transforming the resource schema into the ontology schema,
and then resource content into instances of the ontology. This approach does not provide
information about how to select the resource

The second approach [17] consists on creating mappings between legacy databases and existing
ontologies. In that approach the ontology is not a mirror of the database schema. The framework
proposed is composed of the R2O mapping language and the ODEMapster processor. This second
approach consists of the following steps:

• To discover semi-automatically mappings between the database and ontology elements.

• To express those mappings in a formal language, R2O in this case.

• To evaluate and verify those mappings.

• To exploit those mappings for retrieving the data using ODEMapster.

In this approach the database content is not transferred into ontology instances, but accessed by
exploiting those mappings for retrieving database data. Since this method starts from an existing
ontology schema, it does not follow the approach of transforming the resource schema into the
ontology schema, but the database content is transformed on demand into ontology instances.

 Methods for transforming XML files into ontologies.

The main approach for transforming XML files into ontologies is described in [56]. This method
proposes to create the ontology from the XML schema and then populate it with instances created
from the XML data. The XSD2OWL (XML Schema Definition to OWL) mapping tool transforms the
XML schema constructors to OWL ones according to a set of rules. The XML2RDF tool follows a
structure-mapping model, where XML data instances are translated to RDF instances that
instantiate the corresponding OWL construct. This method assumes that the most suitable XML
resource is already found. This approach follows the one for transforming the resource schema
into the ontology schema, and then resource content into instances of the ontology. However, in

Page 68 of 150 NeOn Integrated Project EU-IST-027595

[56] no information is given about how to find the most suitable non ontological resource for the
transformation.

6.2.2 Techniques
We have not found any technique to carry out the non ontological resource reuse and
reengineering processes except the use of reengineering patterns that has been mentioned in
D2.5.1 [94]. Reengineering ontology design patterns are defined as transformation rules applied in
order to create a new ontology (target model) from elements of a source model. The target model
is an ontology, while the source model can be either an ontology or a non-ontological resource,
e.g., a thesaurus concept, a data model pattern, an UML model, a linguistic structure, etc. D2.5.1
distinguishes between two types of reengineering patterns:

• Schema reengineering patterns which provide designers with rules for transforming a non-
OWL DL metamodel

• Refactoring patterns which provide designers with rules for transforming and OWL DL
source ontology into a new OWL DL target ontology.

This work presents a unique example of a schema reengineering pattern, which includes four rules
to transform a knowledge organization system into SKOS18.These rules just identify the elements
of the source model that are mapped to their corresponding elements of the target model, but the
rules do not provide information about how to carry out the mapping. Reengineering patterns are
not integrated within a method to carry out the reengineering process. Moreover, it is not proposed
a template to describe reengineering patterns.

Some techniques which are part of the methods presented in section 6.1.1 are more related to the
ontology learning process than to the reengineering process, as it is the case of the ones
mentioned in D2.2.1 [98] to transform the WordNet lexicon into an ontology like learning
association links and learning conceptual relations.

6.2.3 Tools
In this section we present tools which support the transformation process to create ontologies from
non ontological resources. This survey is not complete, but we present the most representative
tools for each group. After analyzing the state of the art, we realized that some of these tools
depend on the type of non ontological resource, and others depend on the resource
implementation (databases, spreadsheets, XML files). None of these tools help software
developers and ontology practitioners to find the best non ontological resources for the
transformation.

 Tools for transforming classification schemes into ontologies.

SKOS2GenTax19 is an online tool that converts hierarchical classifications available in the W3C
SKOS20 format into RDF(S) or OWL ontologies. SKOS2GenTax uses the GenTax algorithm
described in [75]; this tool follows the approach based on transforming resource content into an
ontology schema.

 Tools for transforming XML files into ontologies.

XSD2OWL and XML2RDF are tools which support the XML semantic reuse method [56], which
was described in section 6.2.1. These tools support the approach for transforming resource

18 http://www.w3.org/2004/02/skos/
19 http://www.heppnetz.de/projects/skos2gentax/
20 http://www.w3.org/2004/02/skos/

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 69 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

schema into an ontology schema and the resource content is transformed into instances of the
ontology.

 Tools for transforming spreadsheet files into ontologies.

RDF123 [72] is a tool for transforming spreadsheet files into RDF. It allows end users to develop
mappings between spreadsheet data and RDF. In this work it is stated that existing spreadsheets
to RDF tools typically map a spreadsheet row to an instance, with each column representing a
property. RDF123 allows users to map each row in the spreadsheet to a different RDF schema.
This tool is intended to create instances of existing ontologies, and hence, we consider it more as a
population tool than as a reengineering tool.

 Tools for transforming databases into ontologies.

KAON REVERSE is a tool which supports the reverse engineering approach for transforming
databases into ontologies [109] presented in section 6.2.1. This tool helps in the process of
transforming the database schema into the ontology schema and also on data migration.
Therefore, we can say that it supports the approach for transforming resource schema into an
ontology schema and resource content into instances of the ontology.

The mapping language R2O and its processor ODEMapster [17] also introduced in section 6.2.1
constitute a tool for transforming database content into ontology instances. This tool is intended to
create instances of an existing ontology, on demand or in batch processing, and for this reason, we
consider it more as a population tool than as a reengineering tool.

6.2.4 Conclusion

After having analyzed the state of the art on non ontological resources reuse and reengineering,
we can conclude that there are no detailed guidelines on how to find the most suitable non
ontological resources for the development of ontologies. Most of the presented research assumes
that we already have suitable resources for conversion, and only focuses on the reengineering
process. In conclusion, we can state that there is a clear need for some sort of methods,
techniques and tools for non ontological resource reuse.

Regarding reengineering of non ontological resources to build ontologies, we conclude that
research efforts have been mainly divided into the data source and the type of non ontological
resource. It has also been analyzed how to map non ontological resources content and schema
into ontology instances and schema, but none of the research works have taken advantage from
the data model which underlies the non ontological resource to guide the reengineering process.
Finally, it is left to say that none of the analyzed reengineering approaches propose a set of
reengineering patterns to guide the reengineering process and that there is also a lack of
reengineering methods to support some of reengineering process activities by using reengineering
patterns.

6.3. Type of Non Ontological Resources

Non Ontological Resources are existing knowledge aware resources whose semantics have not
been formalized yet by means of an ontology.

There is a big amount of non ontological resources that embody knowledge about some particular
domains, and which represent some grade of consensus for a user community. These resources
present the form of free texts, textual corpora, web pages, standards, catalogues, web directories,
classifications [7], thesauri [115], lexicons [11] and folksonomies [116], among others. Non
ontological resources have related semantics which allow interpreting the knowledge they hold.
Some times this semantic is explicitly specified on documents in natural language; in other cases,
however, the semantic is not explicitly available, but it can be extracted from additional sources of
information as the user community that use the resource. Regardless of whether the semantic is

Page 70 of 150 NeOn Integrated Project EU-IST-027595

explicit or not, the main problem is that the semantic of non ontological resources is not always
formalized, and this lack of formalization avoids the use of them as ontologies.

The analysis of the literature has revealed that there are different ways of categorizing non
ontological resources [80, 98, 53, 76]. Maedche et al. [80] and Sabou et al. [98] classify non
ontological resources into unstructured (e.g. free text), semi-structured (e.g. folksonomies) and
structured (e.g. databases) resources. Gangemi et al. [53] distinguish catalogues of normalized
terms, glossed catalogues, and taxonomies. Hodge [76] proposes characteristics such as
structure, complexity, relationships among terms, and historical functions for classifying them.
Currently, an accepted and consensuated typology of non ontological resources does not exist.

In this deliverable we propose a new categorization of non ontological resources according to three
different features.

• The first one refers to the type of non ontological resource. It refers to the type of knowledge
encoded by the resource.

• The second one refers to the designed data model, that is, the designed data model used to
represent the knowledge encoded by the resource.

• The third feature refers to the resource implementation.

This classification is an ongoing work; we will extend it in the deliverable D2.2.2b. Methods and
tools for reengineering due to M30. Below we explain in more detail the proposed classification.

1 According to the type of non ontological resource we classify them into:

• Glossaries: A glossary is a terminological dictionary that contains designations and
definitions from one or more specific subject fields. The vocabulary may be monolingual,
bilingual or multilingual [8]. As an example we mention the FAO Fisheries Glossary21.

• Dictionaries: A dictionary is a structured collection of lexical units with linguistic information
about each of them [9]. As an example we mention the data dictionary of the EDI standard22
used within the NeOn Pharmaceutical case studies.

• Lexicons: A lexicon is the vocabulary of an individual person, an occupational group or a
professional field [11]. As an example we mention the Specialist Lexicon23.

• Classification schemes. A classification scheme is the descriptive information for an
arrangement or division of objects into groups based on characteristics the objects have in
common [7]. For example, the Fishery International Standard Statistical Classification of
Aquatic Animals and Plants (ISSCAAP)24 used within the NeOn FAO case studies.

• Thesauri: A thesaurus is a controlled vocabulary arranged in a known order whose purpose
is to facilitate retrieval of resources and to achieve consistency in indexing [10]. There are
standards for the development of monolingual thesauri (NISO 1998; ISO 198625) and
multilingual thesauri (ISO 198526). As an example we mention the AGROVOC27 thesaurus
used within the NeOn FAO case studies.

21 http://www.fao.org/fi/glossary/default.asp
22 http://www.edigateway.com/glossary.html
23 http://lexsrv3.nlm.nih.gov/SPECIALIST/index.html
24 http://www.fao.org/figis/servlet/RefServlet
25 http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=27641
26 http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=12159
27 http://www.fao.org/agrovoc/

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 71 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

• Folksonomies: A folksonomy is the result of personal free tagging of information and
objects (anything with an URI) for one’s own retrieval [116].

2 There are different ways of representing the knowledge encoded by the resource. In the
following we present several data model for classification schemes, that are shown in Figure
18.

a) Path Enumeration

b) Adjacency List

c) Snowflake

d) Flattened

 Figure 18. Classification Schemes Data Models

• Path Enumeration [23] is a recursive structure for hierarchy representations defined as a
model which stores for each node the path (as a string) from the root to the node. This
string is the concatenation of the nodes code in the path from the root to the node. Path

Page 72 of 150 NeOn Integrated Project EU-IST-027595

enumeration is used to publish some European classifications by Eurostat28. Figure 18-a)
shows this model.

• Adjacency List [23] is a recursive structure for hierarchy representations comprising a list of
nodes with a linking column to their parent nodes. Figure 18-b) shows this model.

• Snowflake [81] is a normalized structure for hierarchy representations. For each hierarchy
level a table is created. In this model each hierarchy node has a linked column to its parent
node. This representation is similar to the Adjacency List because of the linking column to
the parent nodes. However, the difference is that in snowflake models each hierarchy level
is stored on a different table, and therefore hierarchy levels must be known in advance.
Figure 18-c) shows this model.

• Flattened [81] is a denormalized structure for hierarchy representations. The hierarchy is
represented using one table where each hierarchy level is stored on a different column.
This model is similar to path enumeration because each row has the complete path from
the root to the node, but in the path enumeration this information is in one column while in
the flattened is stored on several columns, one for each hierarchy level. In the same way as
the snowflake model, in this case the hierarchy levels must be known in advance to create
the respective columns. Figure 18-d) shows this model.

3. According to the implementation we classify non ontological resources into:

• Databases [6]: A collection of logically related data stored together in one or more files

• XML29: eXtensible Markup Language is a simple, open, and flexible format used to
exchange a wide variety of data on and off the Web. XML is a tree structure of nodes and
nested nodes of information, in which the user defines the names of the nodes.

• Flat files: A flat file is a file that is usually read or written sequentially and does not have
indexes that can be individuated from the individual records. In general, a flat file is a file
containing records that have no structured inter-relationships.

• Spreadsheets: An electronic spreadsheet consists of an array of cells into which a user can
enter formulas and values.

Figure 19 shows how a classification scheme can be modeled following one of the four data
models presented in the middle layer. The classification scheme is modeled following a path
enumeration model, which could be implemented using one of the four implementations depicted in
the bottom layer. In this example we observe the same resource implemented in a database and in
an XML file.

28 http://ec.europa.eu/eurostat/ramon
29 Extensible Markup Language (XML). http://www.w3.org/XML/

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 73 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Figure 19. Non Ontological Resources Categorization

To exemplify the non ontological resource categorization presented with a real life classification
resource, we use the FAO classification of water areas30 published in the fisheries global
information system web page. An excerpt of the water area classification is presented in Figure 20.

Figure 20. Water Area Classification

This classification resource could be modeled following one of the data models we have presented
previously. The water area classification is modeled following an adjacency list model as is

30 http://www.fao.org/figis/servlet/RefServlet

Page 74 of 150 NeOn Integrated Project EU-IST-027595

depicted in Figure 21-a). An alternative way of modeling the water area classification using a path
enumeration model is shown in Figure 21-b).

a) Adjacency List b) Path Enumeration

Figure 21. Water Area Classification Data Models

Finally these data models can be implemented in any data source format. A directly
implementation would be as tables in a relational database or in a spreadsheet. Figure 22 presents
an XML implementation of the adjacency list model of the water area classification, Figure 23
presents a spreadsheet implementation of the adjacency list model, and Figure 24 presents an
XML implementation of the path enumeration model of the same classification scheme.

Figure 22. Water Area Classification XML Implementation for the Adjacency List Model

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 75 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Figure 23. Water Area Classification Spreadsheet Implementation for the Adjacency List
Model

Figure 24. Water Area Classification XML Implementation for the Path Enumeration Model

6.4. The NeOn Approach for Non Ontological Resource Reuse and Reengineering

Non ontological resource reuse and reengineering processes belong to the development scenario
called Building Ontology Networks by Reusing and Reengineering Non Ontological Resources, in
which it is supposed that software developers and ontology practitioners want to develop the
ontology network by means of reusing existing non ontological resources.

The NeOn approach to carry out non ontological resource reuse and reengineering processes is
depicted in Figure 25. Software developers and ontology practitioners should accomplish first the
non ontological resource reuse process with the goal of analysing whether existing non ontological
resources can be reused to build the ontology network. If they decide that one or more resources
are useful for the development, then the non ontological resource reengineering process should be
carried out to transform the selected non ontological resources into ontologies.

Page 76 of 150 NeOn Integrated Project EU-IST-027595

Figure 25. Non Ontological Reuse and Reengineering Approach

The proposed guidelines for non ontological reuse are explained in section 6.5, and the proposed
approach for non ontological resource reengineering in section 6.6. It is worth to mention that the
non ontological resource reengineering process proposed in this deliverable is inspired in how
reengineering is performed in software engineering. In such field, software reengineering [29] is
defined as the examination and alteration of a subject system to reconstitute it in a new form and
the subsequent implementation of the new form. A general software reengineering model
presented in [27] is depicted in Figure 26. The software reengineering model uses four different
abstraction levels to define each activity: 1) the conceptual level which describes in general terms
the functional characteristics of the system; 2) the requirements level which is the specification of
the problem being solved; 3) the design level which is the specification of the solution; and 4) the
implementation level which refers to the coding, testing and delivery of the operational system.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 77 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Reverse Engineering
(abstraction)

Forward Engineering
(refinement)

(alteration)

Re-Think

Re-Specify

Re-Design

Re-Code

Con-
ceptual

Requirements

Design

Implementation

Requirements

Design

Implementation

Con-
ceptual

Existing System Target System

Figure 26. General Model for Software Reengineering [27]
The model presented in Figure 26 depicts the software reengineering main activities that are the
explained below:

 Reverse engineering [29] is the process of analyzing a subject system to identify the system
components and their interrelationships, and create representations of the system in another
form or at a higher level of abstraction. Two well known activities of reverse engineering are
redocumentation and design recovery. Redocumentation aims at recovering documentation
about the subject system that existed or should have existed. Design recovery aims at
reproducing all the information required for a person to fully understand what a program does
and how it does.

 Alteration, also called restructuring [29], is the transformation from one representation form to
another at the same relative abstraction level, while preserving the subject system’s external
behaviour. Possible transformations identified in [27] are: changes to implementation
characteristics (re-code), changes to design characteristics (re-design), changes to
requirements characteristics (re-specify) and changes to conceptual characteristics (re-think).

 Forward engineering [29] is the traditional process of moving from high level abstractions and
logical, implementation-independent designs to the physical implementation of a system.
Forward engineering and software development are synonymous.

Furthermore, the non ontological reengineering process within NeOn will depend on the type of
non ontological resource to be reengineered. The NeOn methodology will define different
reengineering processes for glossaries, dictionaries, lexicons, classification schemes, thesauri, and
folksonomies. The non ontological resource reengineering process is also strongly influenced by
the non ontological resource data model, since it defines how non ontological resource
components are modelled.

6.5. NeOn Proposed Guidelines for Non Ontological Resource Reuse

The goal of the Non Ontological Resource Reuse process is to choose the most suitable non
ontological resource to be used for building ontologies. Domain experts, software developers and
ontology practitioners carry out this process taking as input the ontology requirements specification
document (ORSD) to find the most suitable non ontological resources for the development of
ontologies. The output of the process is a set of non ontological resources that to some extend
covers the expected domain. Table 11 shows the non ontological resource process filling card,
which includes the definition, goal, input, output, who carries out the process and when the process
should be carried out.

Page 78 of 150 NeOn Integrated Project EU-IST-027595

Non Ontological Resource Reuse

Definition

Non Ontological Resource Reuse refers to the process of choosing the most
suitable non ontological resources for the development of ontologies31.

Goal

To choose the most suitable non ontological resources for building ontologies.

Input Output

The ontology requirements specification
document (ORSD).

A set of non ontological
resources that to some extend
covers the expected domain.

Who

Domain experts, software developers and ontology practitioners.

When

After the ontology specification activity and before the non ontological resource
reengineering process.

Table 11. Non Ontological Resource Reuse Filling Card

This process includes the activities and tasks presented in Figure 27 and explained in the
following.

Activity 1. Search non ontological resources.

The goal of the activity is to search non ontological resources from highly reliable Web sites,
domain-related sites and resources within organizations. Domain experts, software developers and
ontology practitioners carry out this activity taking as input the ontology requirements specification
document (ORSD). They use those terms that have a highest frequency in the ORSD to search for
candidate non ontological resources that cover the desired terminology. The activity output is a set
of candidate non ontological resources that might present any of the identified typologies described
in section 6.3.

31 In this document we slightly modify the definition of Non Ontological Resource Reuse from the NeOn Glossary of

Activities [111].

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 79 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Figure 27. Proposed Activities in NeOn for the Non Ontological Resource Reuse Process

Activity 2. Assess the set of candidate non ontological resources.

The goal of the activity is to assess the set of candidate non ontological resources. Domain
experts, software developers and ontology practitioners carry out this activity taking as input the
set of candidate non ontological resources. We propose to take into account the following criteria:
coverage and precision, which are measurable criteria; and consensus, which is a subjective
criterion. The activity output is an assessment table that shows the evaluation criteria for every non
ontological resource.

Since there are no methodological guidelines for assessing non ontological resources, we take as
starting point some of the criteria proposed in [54] for evaluating the suitability of an ontology for a
particular purpose; the criteria are: coverage, precision, and agreement. Here we adapted such
criteria with the goal of assessing the non ontological resources found.

Page 80 of 150 NeOn Integrated Project EU-IST-027595

Task 1. Extract lexical entries.
The goal of this task is to extract the lexical entries of the non ontological resources.
Software developers and ontology practitioners carry out this task taking as input the non
ontological resources for extracting their lexical entries using terminology extraction tools.

Task 2. Calculate precision.
The goal of this task is to calculate the precision of the non ontological resources. Software
developers and ontology practitioners carry out this task, taking as input the lexical entries
extracted for the non ontological resources and the Ontology Requirements Specification
Document (ORSD) for compute the precision of the non ontological resources. Precision is
a measure widely used in information retrieval [16]. It is defined as the proportion of
retrieved material that is actually relevant. To adapt this measure into our context we need
to define:

{NORLexicalEntries} is the set of lexical entries extracted from the non ontological
resource.

{ORSDTerminology} is the set of identified terms included in the Ontology
Requirements Specification Document (ORSD).

Now we can define the precision, in our context, as the proportion of the lexical entries of
the non ontological resource that are included in the identified terms of the ORSD over
the lexical entries of the non ontological resource. This is expressed as follows:

}{
}{}{

EntriesNORLexical
ologyORSDTerminEntriesNORLexicalPrecision ∩

=

Task 3. Calculate coverage.
The goal of this task is to calculate the coverage of the non ontological resources. Software
developers and ontology practitioners carry out this task, taking as input the lexical entries
extracted from the non ontological resources and the Ontology Requirements Specification
Document (ORSD) for computing the coverage of the non ontological resources. Coverage
is based on recall measure used information retrieval [16]. Recall is defined as the
proportion of relevant material actually retrieved in answer to a search request. To adapt
this measure into our context, we use the aforementioned definition of {NORLexicalEntries}
and {ORSDTerminology}. In this context, coverage is the proportion of the identified terms
of the ORSD that are included in the lexical entries of the non ontological resource over the
identified terms of the ORSD. This is expressed as follows:

nology}{ORSDTermi
nology}{ORSDTermilEntries}{NORLexicaCoverage ∩

=

Task 4. Evaluate the consensus.
The goal of this task is to evaluate the consensus of the non ontological resources.
Consensus is a subjective and not quantifiable criterion. Domain experts carry out this task
taking as input the non ontological resources for stating whether the non ontological
resources contain already consensuated terminology by the community or not.

Task 5. Build the assessment table.
The goal of this task is to create an assessment table of the non ontological resources.
Software developers and ontology practitioners carry out this task, taking as input the non
ontological resources with their respective values for precision, coverage and consensus
criteria, for the construction of the assessment table. This table is shown in Table 12. In the
first column we include the non ontological resources found. In the precision column we
include the calculated precision value for each non ontological resource. In the coverage

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 81 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

column we include the calculated coverage value for each non ontological resource. Finally,
in the consensus column we include the domain experts’ judgment whether the non
ontological resource has consensus by the community or not (Yes/No).

 Precision Coverage Consensus

NOR1 NOR1 Precision Value NOR1 Coverage Value (Yes/No)

NOR2 NOR2 Precision Value NOR2 Coverage Value (Yes/No)

NOR3 NOR3 Precision Value NOR3 Coverage Value (Yes/No)

Table 12. Assessment Table

Activity 3. Select the most appropriate non ontological resources.

The goal of this activity is to select the most appropriate non ontological resources. Domain
experts, software developers and ontology practitioners carry out this activity taking as input the
non ontological resource assessment table. The selection is performed manually and looking for
resources with:

• Consensus. This criterion is taken into account in the first place, since if the resource to be
reused contains terminology already consensuated by the community, the effort and time
spent in finding out the right labels for the ontology terms will decrease considerably.

• High value of coverage. This criterion is taken into account in the second place, because
our second concern is to consider most of the identified terms of the ORSD.

• High value of precision. This criterion is taken into account in the third place, because our
third concern is the proportion of non ontological lexical entries over the identified terms of
the ORSD.

The activity output is a ranked list of non ontological resources that to some extend covers the
expected domain.

6.5.4. Example
To describe the proposed guidelines in a more practical way, we present an example from the
SEEMP Project32. As we mentioned in section 5.4.1, the EU SEEMP project aims at improving
workers mobility in Europe. In this example we just show the process we followed for selecting the
non ontological resources to be reused in the occupation domain. The description of this example
is not intended to be exhaustive. It just describes the most important points. A detailed and
complete description is presented in [13].

Activity 1. Search non ontological resources.
Following domain expert suggestions, we have searched existing occupation classification at the
Ramon Eurostat Portal33. In this high reliable Web site we found the following classifications in the
occupation domain:

• Standard Occupational Classification System (SOC)

• International Standard Classification of Occupations (ISCO-88)

• International Standard Classification of Occupations, for European Union purposes,
ISCO-88 (COM)

32 http://www.seemp.org
33 http://ec.europa.eu/eurostat/ramon/

Page 82 of 150 NeOn Integrated Project EU-IST-027595

Activity 2. Assess the set of candidate non ontological resources.

Since the NeOn proposed guidelines for non ontological resource reuse was not ready, we just
took into account the consensus criterion for assessing the non ontological resources. We also
analyzed subjectively in an informal way and without using the precision and coverage criteria,
whether the resources provided a rich terminology or not.

It was important for the project that resources focus on the current European reality, because the
user partners involved in SEEMP are European, and the outcoming prototype will be validated in
European scenarios. Thus, domain experts stated whether the resource was built with consensus
by the European community or not.

For the construction of the assessment table we collected all the information of each non
ontological resource in a table. This is shown in Table 13.

 Consensus

SOC No

ISCO-88 No

ISCO-88(COM) Yes

Table 13. Assessment Table for SEEMP Occupation Standards

Activity 3. Select the most appropriate non ontological resources.

We selected the following non ontological resource:

• International Standard Classification of Occupations, for European Union purposes,
ISCO-88 (COM)

6.6. NeOn Approach for Non Ontological Resource Reengineering

In this section we present the NeOn approach for non ontological resource reengineering. We
describe the preliminary NeOn proposal for carrying out the non ontological reengineering process.
Then, we present an example of how to transform a classification scheme into an ontology using a
pattern for reengineering non ontological resources.

6.6.1. NeOn General Model for Non Ontological Resource Reengineering
In a nutshell, the NeOn approach for non ontological resource reengineering considers as input a
pool of non ontological resources and patterns for reengineering non ontological resources. Non
ontological resources were selected by the non ontological resource reuse process; they include
lexica, classification schemes, thesauri, etc. Regarding patterns for reengineering non ontological
resources, they provide solutions to the problem of transforming non ontological resources into
ontologies; they are included in the NeOn patterns repository.

Based on the software reengineering model presented in section 6.4 we propose the NeOn
reengineering model for non ontological resource reengineering in Figure 28. The non ontological
resource reengineering process consists of the following activities:

1. Non Ontological Resource Reverse Engineering, whose goal is to analyze a non
ontological resource to identify its underlying components and create a representation of
the resource at higher levels of abstraction. Since non ontological resources (as we already
mentioned in section 6.3) can be implemented as XML files, databases or spreadsheet
among others, we can consider them as software resources, and therefore, we use the
software abstraction levels shown in Figure 26 to depict this activity.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 83 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

2. Non Ontological Resource Transformation, whose goal is to generate a conceptual
model from the non ontological resource. We propose the use of Patterns for
Reengineering Non Ontological Resources (PR-NOR) to guide the transformation process
according to the type of non ontological resource. We are currently working on the definition
of these patterns, and the final result of this work will be included in D2.2.2b (Methods and
tools for reengineering). In this deliverable we present the template used to describe the
patterns for reengineering and one example of a pattern to transform a classification
scheme with an adjacency list data model into an ontology.

3. Ontology Forward Engineering34, whose goal is to output a new implementation of the
ontology on the basis of the new conceptual model. We use the ontology levels of
abstraction to depict this activity because they are directly related to the ontology
development process.

Figure 28. Reengineering Model for Non Ontological Resources

Every non ontological resource selected by the non ontological resource reuse process (explained
in section 6.5) has to be transformed into an ontology by the non ontological resource
reengineering process. Activities and tasks involved in this process are independent of the type of
the non ontological resource, and are presented in section 6.6.2; however the techniques needed
to carry out each activity or task could be highly dependent on the type of non ontological resource.
This is an ongoing work whose preliminary results are presented in this deliverable. More detailed
information on the non ontological reengineering process will appear on a second version of this
deliverable and more information about the techniques to carry out the activities and tasks
according to the different types of non ontological resources will be presented in D2.2.2b (Methods
and tools for reengineering).

6.6.2. NeOn Activities and Tasks for Non Ontological Resource Reengineering
The goal of the Non Ontological Resource Reengineering process is to transform a non ontological
resource into an ontology. The output of the process is an ontology. Table 14 shows the non
ontological resource reengineering process filling card, which includes the definition, goal, input,
output, who carries out the process and when the process should be carried out.

34 Ontology Forward Engineering is defined in the NeOn Glossary of Activities [111].

Page 84 of 150 NeOn Integrated Project EU-IST-027595

Non Ontological Resource
Reengineering

Definition

Non Ontological Resource Reengineering refers to the process of taking an
existing non ontological resource and transforms it into an ontology35.

Goal

Create an ontology from a non ontological resource.

Input Output

One or more non ontological resources
selected by the reuse process.

An ontology.

Who

Domain experts, software developers and ontology practitioners.

When

After the non ontological resource reuse process and before the
conceptualization activity.

Table 14. Non Ontological Resource Reengineering Filling Card
The proposed tasks for the non ontological resource reengineering activities presented in section
6.6.1 are depicted in Figure 29.

35 In this document we slightly modify the definition of Non Ontological Resource Reengineering from the NeOn Glossary

of Activities [111].

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 85 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Figure 29. Proposed Activities in NeOn for the Non Ontological Resource Reengineering
Process

In the following, we outline the tasks for carrying out the three activities involved in the non
ontological resource reengineering process. As we already mentioned, more detailed information
on this process guidelines will be provided in the second version of this deliverable.

Activity 1. Non ontological resource reverse engineering.

Task 1. Gather documentation.

The goal of this task is to search and compile all the available documentation about the non
ontological resource including purpose, components; data model and implementation
details. Domain experts and the ontology development team carry out this activity, taking as
input the non ontological resource, searching in the non ontological resource web site and

Page 86 of 150 NeOn Integrated Project EU-IST-027595

in general purpose search engines, or requesting the documentation directly to the non
ontological resource author.

Task 2. Extract the non ontological resource schema.

The goal of this task is to identify the non ontological resource schema including the
conceptual components and their relationships. Domain experts and the ontology
development team carry out this activity taking as input the non ontological resource and
the documentation obtained in task 1. If the non ontological resource schema is not
available in the documentation, the schema should be reconstructed manually or using a
data modeling tool.

Task 3. Extract the data model.
The goal of this task is to find out how the non ontological resource schema and its content
are represented in the data model. Domain experts and the ontology development team
carry out this activity taking as input the non ontological resource, the documentation and
schema. If the non ontological resource data model is not available in the documentation,
the data model should be reconstructed manually or using a data modeling tool.

Activity 2. Non ontological resource transformation.

Task 4. Search for a suitable pattern for reengineering non ontological resources.

The goal of this task is to find out if there is any applicable pattern for reengineering non
ontological resources useful to transform the non ontological resource into a conceptual
model. The ontology development team carries out this activity taking as input the non
ontological resource, the schema and data model. The search for a suitable pattern for
reengineering non ontological resource should be done into the NeOn repository of
patterns36, according to the type of non ontological resource, the data model, and the
transformation approach.

The transformation approach, explained in section 6.2, refers to: 1) transforming the non
ontological resource schema into an ontology schema and the non ontological resource
data into instances of the ontology; and 2) transforming the non ontological resource data
into an ontology schema.

Task 5.a. Use patterns for reengineering to guide the transformation.
The goal of this task is to apply the reengineering pattern obtained in task 4 to transform the
non ontological resource into a conceptual model. If a suitable pattern for reengineering non
ontological resource is found then the ontology development team creates the conceptual
model from the non ontological resource following the procedure established in the pattern
for reengineering.

Task 5.b. Perform and ad-hoc transformation.
The goal of this task is to establish an ad-hoc procedure to map the non ontological
resource into a conceptual model, just in case a suitable pattern for reengineering was not
found. The ontology development team carries out this task choosing a transformation
approach and then building a procedure to carry out the chosen transformation. This ad-hoc
procedure may be generalized to create a new pattern for reengineering non ontological
resource.

36 In the NeOn Project a repository of patterns, including reengineering ones, is being developed.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 87 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Activity 3. Ontology forward engineering.

Task 6. Formalize.
The goal of this task is to transform the conceptual model obtained in task 5.a or 5.b into a
formalized model. The ontology development team carries out this task formalizing the
conceptual model according to a knowledge representation paradigm as description logics,
first order logic, etc.

Task 7. Implement.
The goal of this task is the ontology implementation in an ontology language. The ontology
development team carries out this task implementing the formalized model obtained in task
6 in an ontology language.

6.6.3. Patterns for Reengineering Non Ontological Resources
Reengineering Ontology Design Patterns (RePs) were defined in D2.5.1 [94] as transformation
rules applied in order to create a new ontology (target model) starting from elements of an
ontological resource that can be either an ontology, or a non ontological resource. As any other
pattern, RePs provide solutions to recurrent situations regarding the transformation process. In this
section, we present the template used to describe the patterns for reengineering non ontological
resources (PR-NOR), and then an example of a reengineering pattern identified in our ongoing
research work on transforming classification schemes into ontologies.

To present the reengineering patterns we adapted the tabular template used in NeOn D5.1.1 [110].
The adapted template is shown in Table 15.

 Slot Value

General Information

Name Name of the component

Identifier An acronym composed of: component type + component + number

Type of
Component

Pattern for Reengineering Non Ontological Resource (PR-NOR)

Use Case

General Description in natural language of the reengineering problem addressed
by the reengineering pattern.

Examples Description in natural language of an example of the reengineering
problem.

Pattern for Reengineering Non Ontological Resource

Resource to be Reengineered

General Description in natural language of the non ontological resource.

Example Description in natural language of an example of the non ontological
resource.

Graphical Representation

General Graphical representation of the non ontological resource.

Example Graphical representation of the example of non ontological resource.

Designed Ontology

General Description in natural language of the ontology created after applying the
pattern for reengineering the non ontological resource.

Page 88 of 150 NeOn Integrated Project EU-IST-027595

Graphical Representation

(UML) General
Solution
Ontology

Graphical representation of the ontology created for the non ontological
resource being reengineered.

(UML) Example
Solution
Ontology

Example showing a graphical representation of the ontology created for
the non ontological resource being used.

How to Reengineer

General Description in natural language of the general reengineering process,
using a sequence of activities.

Example Description in natural language of the reengineering process applied to the
non ontological resource example, using the above sequence of activities.

Relationships

Relations to
other modeling

components

Description of any relation to other PR-NOR patterns or other design
patterns.

Design Variants

General Description in natural language of possible modifications to the
reengineering process.

Table 15. Pattern for Reengineering Non Ontological Resource Template

The following pattern for reengineering non ontological resource suggests a guide to transform a
classification scheme into a ontology. The classification scheme is modelled with an adjacency list
data model. The goal of this pattern is to create a taxonomy37 from the classification scheme. The
reengineering pattern shown in Table 16 uses the water area classification scheme presented in
section 6.3 in order to exemplify the reengineering process.

Slot Value

General Information

Name Classification to Taxonomy (adjacency list model)

Identifier PR-NOR-CLTX-01

Type of Component Pattern for Reengineering Non Ontological Resource (PR-NOR)

Use Case

General Reengineering a classification scheme built following the adjacency list
model to design a taxonomy

Examples Suppose that someone wants to build an ontology based on the water
areas classification published by FAO. This classification scheme is

delivered in a table, described in Figure 23, with an adjacency list data
model.

Pattern for Reengineering Non Ontological Resource

Resource to be Reengineered

General A non ontological resource holds a classification scheme built following

37 According to D5.1.1 [110] a taxonomy is the way of organizing an ontology as a hierarchical structure of classes only

related by subsumption relations.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 89 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

the adjacency list model.

A classification scheme is a rooted tree of concepts, in which each
concept groups entities by some particular degree of similarity. The
semantic of the hierarchical relation between parents and children
concepts may vary depending of the context

The adjacency list model [23] for hierarchical classifications proposes to
create an entity which holds a list of items with a linking column
associated to their parent items.

Example The FAO classification for water areas groups them according to some
different criteria as environment, statistics, and jurisdiction, among others.
This classification scheme is available at:
http://www.fao.org/figis/servlet/RefServlet

Graphical Representation

General

Example

Designed Ontology

General The generated ontology will be based on the taxonomy architectural
pattern (AP-TX-01) [110].

Each category in the classification scheme is mapped to a class, and the
semantic of the relationship between children and parent categories is
mapped to subClassOf relations.

Graphical Representation

(UML) General Solution
Ontology

Page 90 of 150 NeOn Integrated Project EU-IST-027595

(UML)

Example Solution
Ontology

How to Reengineering

General 1. Select all categories which do not have a parent category in the
adjacency list.

2. If there is just one category X without parent then:

2.1. Create a class for the category X (rootClass).

2.2. For each category Y which has as parent X (parent Id in the
adjacency list)

2.2.1. Create a class CY and set the subClassOf relation
between CY and rootClass.

2.2.2. For each category Z which has as parent the category Y.

• Create a class CZ and set the subClassOf relation
between this CZ and CY.

• Follow the same approach with the subsequent child
categories, until you have iterated through all the
categories of the classification scheme.

3. If there is more than one category without parent then:

3.1. Create an ad-hoc class (rootClass)

3.2. For each category X which does not have a parent category.

3.2.1. Create a class CX and set the subClassOf relation
between this CX and rootClass.

3.2.2. For each category Y which has as parent the category X

• Create a class CY and set the subClassOf relation
between CY and CX.

• Follow the same approach with the subsequent child
categories, until you have iterated through all the
categories of the classification scheme.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 91 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

.

Example 1. Create a Water area class as the root of the ontology.

2. For each category X which has as parent id the water area id
(20000).

2.1 Create a class CX, and assert that CX is subClassOf the
Water area class.

2.2 For each category Y which has as parent the category X.

2.2.1 Create a class CY and set the subClassOf relation
between CY and the CX.

2.2.2 Follow the same approach with the subsequent child
categories, until you have iterated through all the
categories of the water area classification.

Relationships

Relations to other
modeling components Use the AP: TX-AP-01 [110].

Table 16. Example of Pattern for Reengineering Non Ontological Resource

6.7 Conclusions and Future Work

In this chapter we have presented a three level categorization of non ontological resources
according to three different features: type of non ontological, resource, designed data model and
implementation. Moreover, we presented the NeOn proposal of guidelines for reusing non
ontological resources with an example of human resources management classifications in the

Page 92 of 150 NeOn Integrated Project EU-IST-027595

SEEMP Project. Further work needs to be done to consider more criteria for the assessment of the
non ontological resources, having in mind that the final goal is the development of ontologies.

Regarding reengineering non ontological resources, we have presented the NeOn proposal of a
reengineering model for non ontological resources and also preliminary guidelines to carry out the
proposed activities in the non ontological resource reengineering model. Additionally, we take
advantage of the non ontological resource data model to define patterns for reengineering non
ontological resources. We presented a template for describing those patterns and a pattern for
reengineering a classification scheme into an ontology. Further work needs to be done to consider
data models of the other non ontological resources such as thesauri and lexica. If we can identify
data models as we did for classifications schemes we will be able to create more patterns to guide
the reengineering process.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 93 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

7. Ontological Resource Reuse

In this chapter we present how to build ontology networks by reusing ontological resources. For
this purpose, we provide methodological guidelines to help software developers and ontology
practitioners to reuse ontologies and ontology statements.

7.1. Introduction

As we already mentioned in chapter 4, the NeOn Methodology presents 9 different scenarios for
building networks of ontologies. One of these scenarios is Building Ontology Networks by Reusing
Ontological Resources. In this scenario, software developers and ontology practitioners should
analyse whether existing ontological resources can be reused to build an ontology network or not.
The underlying principle is that reusing existing ontological resources time and costs associated to
the ontology development.

The reuse of ontological resources is encouraged by a recent increase in the number of online
available ontologies, ontology libraries and repositories38. The NeOn Glossary of Activities [111]
defines ontology reuse as the activity of using an ontology or an ontology module in the solution of
different problems.

The ontology reuse process is often influenced by the type of ontology to be reused as presented
in Figure 30. Based on the terms extracted from the ontology requirements specification document
(ORSD), we can consider the reuse of general or common ontologies and/or the reuse of domain
ontologies.

On the one hand, general or common ontologies provide conceptualization of generic topics such
as time and space. Given the generality of the described topic, it is common to have several
ontologies on the same topic, each of them taking a different standpoint in the conceptual
specification of the topic. When reusing one of these ontologies, the ontology engineer needs to be
aware of the different views and assumptions the ontologies rely on. Further, because these
ontologies are often well-formed and self-contained theories, it is common practice to reuse them
as a whole. Guidelines for reusing general or common ontologies are provided in section 7.3.

On the other hand, domain ontologies provide knowledge of a concrete domain such as medicine,
pharmacy, fisheries, etc. Such ontologies can be helpful in cases when a domain ontology in the
same domain is being built. Unlike in the case of general or common ontologies, which are reused
as a whole, we distinguish different levels of granularity in the reuse of domain ontologies, as it is
shown in Figure 30.

 Ontologies can be reused as a whole if they closely meet the expectations and the needs of
the ontology engineer. Guidelines for reusing domain ontologies as a whole are provided in
section 7.4.

 In certain cases, only one part or module of a domain ontology is relevant for reuse. We
consider a module [33] as a part of the domain ontology that defines the relevant set of terms.
For example, when building an ontology about lung cancer one does not need to reuse an
entire ontology about the human body, it suffices to reuse a module describing concepts
related to lung. Guidelines for reusing ontology modules will be included in the next version of
this deliverable.

38 See for example a list of novel ontology search engines described at:

http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/SemanticWebSearchEngines.

Page 94 of 150 NeOn Integrated Project EU-IST-027595

 Novel developments in the area of semantic search engines facilitate the reuse of ontological
knowledge at the statement level, allowing the ontology engineer a maximal control of the
material that is being reused. Guidelines for reusing ontology statements are provided in
section 7.5, considering that an ontology statement (or triple)39 contains the following three
components: subject, predicate, and object.

Figure 30. Different Types of Ontological Resource Reuse

It is very important for ontology practitioners and software developers to take an intermediate
approach, i.e., a solution between not reusing any knowledge resource at all and reusing too many
knowledge resources. The first approach can lead to a creative solution if successful, but if not, it
can waste a lot of time; and the second approach, if successful, it can save resources and lead to
a good result, but on the contrary, it can result in knowledge resources being reused
inappropriately and in wasting time.

Based on the above situations in this deliverable, we modify and further specify the NeOn definition
of ontology reuse, and propose the following new ones:

39 http://www.w3.org/TR/rdf-concepts/

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 95 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

 Ontological Resource Reuse is defined as the process of using available ontological resources
(ontologies, modules, statements, or ontology design patterns) in the solution of different
problems (e.g., the development of different ontology-based applications, the activity of
ontology aligning (as background knowledge), etc.). We distinguish between: ontology reuse,
ontology module reuse, ontology statement reuse, and ontology design pattern reuse, as
Figure 31 shows.

Figure 31. Ontological Resource Reuse Definitions
 Ontology Reuse is redefined as the process of using ontologies in the solution of different

problems.

 Ontology Module Reuse is defined as the process of using ontology modules in the solution of
different problems.

 Ontology Statement Reuse is defined as the process of using ontology statements in the
solution of different problems.

 Ontology Design Pattern Reuse is defined as the activity of using ontology design patterns in
the solution of different modelling problems during the development of new ontologies.

In this chapter, we present how to build ontology networks by reusing existing ontological
resources (ontologies, ontology modules and ontology statements). This is related with scenarios 2
and 3. As we already mentioned in section 4.1, the reuse of ontology design patterns is treated in
another scenario (scenario 7), and thus described in chapter 8.

In this chapter, we provide a set of general criteria to be taken into account during the ontological
resource reuse process in section 7.2. The rest of the chapter includes methodological guidelines
for reusing ontological resources based on the type of ontological resource and based on different
levels of granularity of the ontological resource.

In this chapter we provide guidelines for reusing two different types of ontologies: general or
common ontologies in section 7.3 and domain ontologies as a whole in section 7.4. We also
provide guidelines for reusing ontology statements in section 7.5.

Unlike other chapters in this deliverable, this chapter does not include a section about the state of
the art on ontological resource reuse, because in NeOn deliverable D2.2.1 [98] a variety of
ontology evaluation and selection tools, methods and techniques that support the process of
ontology reuse has been overviewed. To our knowledge, however, there are no methodologies yet
that focus on the activity of reusing ontological resources.

Page 96 of 150 NeOn Integrated Project EU-IST-027595

7.2. General Criteria for Ontological Resource Reuse

This section includes general criteria for being used during the reuse of any type of ontological
resources to be reused in the development of ontology networks. Such criteria have been obtained
from different experiences in the reuse of ontological resources through the construction of
ontologies in different projects.

These general criteria will be used together with other specific criteria for each type of ontological
resource reuse, and further explanations will appear in the different activities proposed in the
guidelines of sections 7.3, 7.4 and 7.5.

 Ontological Resource Domain Coverage. It means analysing whether the ontological
resource covers (totally or partially) the set of competency questions identified in the ORSD.

This criteria can be partially analyzed by means of checking if the terms X, Y, etc., which are
essential for the new development, appear in the ontological resource to be reused [60].

 Ontological Resource Reuse Effort. It refers to the estimation of the effort needed for
accessing and using the ontological resource. In this case, we can mention the following
subcriteria:

o Economic cost: if the ontological resource has any type of license, then the cost of
acquisition and/or exploitation should be taken into account [60].

o Time required for accessing the ontological resource: if the ontological resource is
accessible in slow servers or servers with bad connectivity, the time used for
accessing should be taken into account.

 Ontological Resource Understandability Effort. It refers to the estimation of the effort
needed for understanding the ontological resource. In this case, subcriteria to be taken into
account are:

o If the ontological resource is well documented.

o If the ontological resource have references to documentation sources and domain
experts easily available.

o If the ontological code is clear enough.

 Ontological Resource Modularization Effort. It refers to the estimation of the effort needed
for extracting a part of the ontology useful for the requirements of the ontology to be developed,
if the ontology is not going to be reused as a whole. In this case, we can mention the following
subcriteria:

o If the ontology is already modularized.

o If there are tools supporting the identification and extraction of ontology modules
from an ontology.

 Ontological Resource Integration Effort. It refers to the estimation of the effort needed for
integrating the ontological resource in the ontology being developed. In this case, we can
consider the following subcriteria:

o Similarity between the ontological resource naming conventions and the naming
conventions used in the ontology being developed.

o Similarity between the ontological resource implementation language and the
implementation language to be used in the ontology being developed.

o Contradictory bits of knowledge between the ontological resource to be reused and
the ontology being developed.

o Adaptation of definitions and axioms to satisfy the existing restrictions of the
reasoner.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 97 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

o Creation of new axioms and/or relations needed to integrate the ontological
resource to be reused in the ontology being developed.

 Ontological Resource Reliability. It means analysing whether we can trust in the ontological
resource. In this case, subcriteria to be taken into account are:

o Check if there are tests available for the ontological resource.

o Check if the ontological resource has been properly evaluated.

o Check if the ontological resource is supported by a contrasted theory, in the case of
common or general ontologies.

o Check if the development team of the ontological resource is reliable.

o Check if the ontological resource is reliable. If the ontological resource has been
developed as a simple academic example, such ontological resource is less reliable
than other resources developed to be used in real projects.

o Check if there are well known projects or ontologies that are reusing the ontological
resource [79].

7.3. Proposed Guidelines for Reusing General or Common Ontologies

A general [117] or common ontology [84] represents knowledge reusable in different domains.
They are usually based on well studied theories: mereology, which formalizes parthood relation;
topology, which formalizes connection relation; time theories, which formalize terms like time
interval, time point, etc. The goal of reusing general or common ontologies40 is to find and select
one or several general or common ontologies to be used in the ontology network being developed.
Its output is a set of general or common ontologies.

Table 17 shows the filling card for the general or common ontology reuse process, including the
definition, goal, inputs and outputs, who carries out the process and when the process should be
carried out.

The reuse of common ontologies consists basically in finding and selecting existing ontologies to
be reused in the new ontology development. In this activity, two different situations can be
considered:

 Situation 1, in which there is a previous comparative study on the theory that supports the type
of common ontology to be reused (e.g. a study on time modeling). A theory is considered here
as a system of definitions, axioms and theorems that can be formal, semi-formal or informally
represented.

 Situation 2, in which there is not such a previous comparative study on the theory.

In this section we include the NeOn methodological detailed guidelines for each aforementioned
situation, and an example for situation 2, which in fact includes situation 1.

For the sake of clarity, we explain the different activities for carrying out the whole process
considering the reuse of one ontology. To reuse more than one, the described process should be
iteratively performed.

40 Henceforth, we refer to general or common ontologies, just as common ontologies.

Page 98 of 150 NeOn Integrated Project EU-IST-027595

General or Common Ontology Reuse

Definition

General or Common Ontology Reuse refers to the process of using general or common
ontologies in the solution of different problems.

Goal

The goal of this process is to find and select general or common ontologies to be integrated in
the ontology network being developed.

Input Output

Competency questions (CQs) included
in the ORSD of the ontology network to
be developed, and the implementation
language of such ontology.

Optionally, there may be a set of tables
comparing across the same criteria the
candidate ontologies to be reused.

A general or common ontology integrated in the
ontology network being developed.

Who

Software developers and ontology practitioners involved in the ontology development. The help
of an ontology practitioner familiarized in formal ontologies/theories may be required.

When

The general or common ontology reuse process should be carried out after the ontology
specification activity.

Table 17. Common Ontology Reuse Filling Card

7.3.1. Detailed Guidelines for Situation 1: the comparative study exists
Figure 32 shows the activities for carrying out the common ontology reuse process in the case of a
comparative study between the features of the theory and the existing common ontologies
supporting such theory is already available.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 99 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Figure 32. Activities for Reusing Common Ontologies in Situation 1

In this situation, a comparative study (e.g., in the form of a table), which provides the features of
the most known ontologies supported by the theory, is available. Thus, in this case it is not
necessary to search for someone familiarized with formal ontologies to carry out the study of the
support theory.

For example, a table that describes a set of available time ontologies is shown in [46]. Each row of
the table represents a set of definitions (or axioms) considered in the support theory, and each
column represents an ontology. A cell (i, j) has the value yes if and only if the ontology Oj provides
a formalization for the set of definitions (or axioms) Di.

The activities shown in Figure 32 are explained in detail in the following:

Page 100 of 150 NeOn Integrated Project EU-IST-027595

Activity 1. Select the common ontology that best fits the features required by the host41
ontology, out of those ontologies represented in the table.

This activity is divided in the following tasks:

Task 1. Analysis of the host CQs.
The CQs of the host ontology are reformulated using the characteristic vocabulary of the
support theory. For example, if a mereology ontology is going to be reused in a
Pharmaceutical Product ontology (PPO), then each PPO CQ should be formulated using
mereology vocabulary when possible. For instance, the CQ which is the drug composition?
Could be reformulated in this way: which are the parts of the drug?

Task 2. Identification of the features of the common ontology to be reused.

It is set up what typical definitions, axioms and principles of the support theory are needed
in the host application (or ontology). For example, it is possible that part of transitivity is
needed in PPO, but not the binary sum.

Task 3. Determining the common ontology that best fits the features.
There are several criteria to take into account:

a) The simplest way of establishing which common ontology achieves the best fit is
counting how many features are implemented by each common ontology, and selecting
the one that obtains the greater quantity.

b) A more elaborated criterion would take into account, for example, the complexity of the
definitions (and axioms) implemented by each ontology.

c) Clarity.

d) Minimum loss of knowledge in the translation to the language of the host ontology.

e) Less modifications in the common ontology, etc.

The decision about the priority of the criteria depends on the host ontology intended uses.

Activity 2. Customize the selected common ontology according to the needs of the host
ontology.

This activity is divided in the following tasks:

Task 1. Prune the common ontology according to the features that are really needed.
For example, if the feature “binary sum” is not needed in the mereology ontology, its
definition and those depending on it should be removed.

Task 2. Enrich the common ontology.
For instance, if the common ontology does not include the reflexivity axiom of part of, and it
is required, it should be added.

Task 3. Translate the common ontology into the implementation language of the host
ontology.

The ontology can be automatically translated. If there are important loss of knowledge, it
should be re-translated by hand.

Task 4. Evaluate the obtained common ontology.
The ontology resulting from task 3 should be evaluated mainly to ensure that tasks 1, 2 and
3 have been correctly performed.

41 We mean with “host ontology” the ontology (network) that is being developed

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 101 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Activity 3. Integrate the common ontology in the host ontology.

The customized common ontology is included in the destination ontology, and the global result is
evaluated again.

7.3.2. Detailed Guidelines for Situation 2: the comparative study does not exist
Figure 33 shows the activities for carrying out the general ontology reuse process in the case of a
comparative study between common ontologies does not exist.

Figure 33. Activities for Reusing Common Ontologies in Situation 2

In this case, a comparative study (e.g., a table) comparing the features of the support theory with
the existing common ontologies describing such a theory is not available. Thus, our proposal is to
carry out such a comparative study in the form of a table in order to use it for choosing or selecting
the common ontology that best fits with the requirements of the ontology to be developed.

Page 102 of 150 NeOn Integrated Project EU-IST-027595

The activities shown in Figure 33 are explained in detail in the following:

Activity 1. Carry out a background study on the support theory.

The ontology development team should study the theory (and its variants) that supports the type of
common ontology to be reused. Thus, for example, if a mereology ontology is going to be reused,
then literature on different mereologies should be analyzed. This activity may require the help of
someone familiarized with formal ontologies.

It is important to mention that this activity can be time and resources consuming, but the result can
be exploited in further projects. So, for example, if the parthood relation is going to be formalized in
different projects, the study on mereology can be profited in all of them.

Activity 2. Identify the most significant definitions and axioms that characterize the support
theory.

The most important definitions and axioms (e.g. transitivity of part of in mereology), and those that
distinguish the different variants of the support theory should be identified. It is distinguished, for
example, between atomistic mereologies and not atomistic mereologies. The first ones are
characterized by assuming that every entity has atoms. An atom is an entity that does not have
other parts than itself.

Activity 3. Search for common ontologies supported (partially or completely) by the theory.

The ontology development team should search for ontologies implemented in a computable
language, for example, KIF [57], OWL [88], RDF(S) [24], CommonKADS Modeling Language
(CML) [101], etc.

Activity 4. Build a comparative study of features versus ontologies in the form of a table.

It is assumed that each row represents the set of definitions (or axioms) identified in activity 2, and
each column, the ontologies found in activity 3. The ontology development team, in collaboration
with someone familiarized with formal ontologies, studies what features each ontology has.
Following the examples shown in activity 2, the table should show for each mereology ontology if it
formalizes the transitivity of part of, whether it is atomistic or not, etc.

Activities 5, 6 and 7 correspond with activities 1, 2 and 3 of situation 1, respectively, which are
described in section 7.3.1.

7.3.3. Example of Situation 2
In this section an example of reusing a mereology ontology in a Pharmaceutical Product ontology
(PPO) is presented. PPO will be part of the support collaboration in pharmaceutical industry, which
is concerned with an infrastructure and its APIs to bridge the currently used proprietary systems for
managing financial and product knowledge interoperability in the networks/clusters of
pharmaceutical labs, companies and distributors in Spain [65]. The composition of drugs, the
interaction between them, etc. requires the formalization of the part of relation. Consequently, it
seems reasonable to consider the reuse of a mereology ontology.

Recently, researchers like Gangemi and colleagues [55] and Massolo and colleagues [83] have
proposed the use of mereology in ontology construction. This idea is embodied in Borst work [22],
who built and used a mereology ontology in an engineering application for modeling, simulating
and designing physical systems. The main difference between the work shown in this section and
Borst work is that we analyze, reuse and customize a mereology ontology already built, and do not
develop a mereology ontology from scratch.

Next, we show the activities that we have carried out to reuse a mereology ontology in the PPO.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 103 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Activities 1 and 2. Carry out a background study on the support theory and identify the
most significant definitions and axioms that characterize the support theory.

A mereology is a formal theory of parts and associated concepts [22, 100]. We have said ‘a
mereology’ instead of ‘the mereology’ because different assumptions can be taken into account in
the formalization of parthood. Therefore, different mereologies can be proposed. In the following
paragraphs we will show the set of mereologies presented by Varzi [118].

Theory M
Most of the authors agrees on the following core of axioms (named with A) and definitions (named
with D) [118]:

 A.1) Reflexivity. Every object of the universe of discourse is a part of itself. For instance, the
European Union (EU) is part of the EU.

 A.2) Antisymmetry. If an object x is a part of y, and y is a part of x, then x and y are the same
object. For instance, if the territory T1 is part of the territory T2, then the only way so that T2 is
part of T1 is being T1 and T2 the same territory.

 A.3) Transitivity. If x is a part of y, and y is a part of z, then x is a part of z. For instance, Madrid
is part of a Spain, and Spain is part of EU, therefore, Madrid is a part of EU.

A number of additional mereological predicates can be then introduced by definition. For example:

 D.1) Proper part. A proper part is a part that is other that the individual itself. For example,
Spain is proper part of EU, since Spain is part of EU and they are different entities.

 D.2) Direct part. X is direct part of y if and only if x is proper part of y and there is no part
between x and y42. For example, Italy is direct part of EU, but Madrid is not, since Spain is a
part between Madrid and EU.

 D.3) Overlap. The relation overlaps is defined as a sharing part. That is, x and y overlap if and
only if there is a z such that z is part of x and part of y. For instance, Spain and Africa overlap,
since Spain has territories in Africa (Canaries, Ceuta, Melilla, etc.).

 D.4) Underlap. The relation underlaps is defined as a sharing whole. That is, x and y underlap
if and only if there is a z such that x and y are parts of z. For example, Portugal, Spain, France
and Italy underlap because they share a common whole: EU.

 D.5) Disjoint. The disjoint relation is the logical negation of overlaps. For example, EU and USA
are disjoint territories.

Theory M may be viewed as embodying the common core of any mereological theory. A.1-A.3
should be extended to build a mereology.

Minimal Mereology (MM)
A way to extend M is assuming the following decomposition principle [118]:

 A.4) Weak supplementation principle. Every object x with a proper part y has another part z
that is disjoint from y. The domain of territories, for example, fulfills this principle. For example,
given that Spain is proper part of the European Union (EU), then EU has other parts that are
disjoint from Spain: Portugal, France, Italy, etc.

Most of the authors strengthen that P.4 should be incorporated to M as a further fundamental
principle on the meaning of part-of. Other authors provide scenarios that could be
counterexamples of this principle. However, it is far from being demonstrated that such supposed
counterexamples have implications in computer applications.

42 http://hcs.science.uva.nl/projects/NewKACTUS/library/lib/mereology.html

Page 104 of 150 NeOn Integrated Project EU-IST-027595

Extensional Mereology (EM)
There is another stronger way to express decomposition:

 A.5) Strong supplementation. If y is not part of x, then there is a part of y that does not overlap
with x. For example, given that Spain is not part of Africa, there is a part of Spain (e.g. Madrid)
that is not part of Africa. A.5 implies A.4.

This theory is called ‘extensional’ because a theorem that can be demonstrated is:

 T.1) For all x and y such that x has proper parts or y has proper parts, x and y are identical if
and only if x and y have the same proper parts, that is, for all z, z is proper part of x if and only
if it is part of y. For example, the territory of Community of Madrid is the same as the one of
Province of Madrid because both of them are composed by the same proper parts, that is, by
the same municipalities.

Closure Mereology (CM)
Another way of extending M is by composition [119]:

 A.6) Sum principle. If x and y underlap, then there is a z such that, for all w, w overlaps z if and
only if w overlaps x or w overlaps y. That is, if two objects underlap, then it may be assumed
that there is a smallest object of which they are part (an object that exactly and completely
exhausts both). For instance, Madrid and Barcelona underlap, since they are both parts of
Spain. According to (A.6), there is an object made up exactly of Madrid and Barcelona.

 A.7) Product principle. If x overlaps y, then there is a z such that for all w, w is part of z if and
only if w is part of x and w is part of y. That is, if two objects overlap, then it may be assumed
that there is a largest object that is part of both (the common part at their junction). For
example, Spain and Africa overlap, and it may be assumed that there is a largest object that is
overlapped by both: Canaries, Ceuta, Melilla, etc.

Assumption of A.6 and A.7 is controversial. In fact, it is not obvious that the overlap of Spain and
Africa makes an entity.

Closure Extensional Mereology (CEM)
The result of adding these axioms to MM or EM instead yields corresponding Minimal or
Extensional Closure Mereologies, that is, CMM and CEM, respectively. In the presence of (A.4),
(A.7) implies (A.5). Consequently, CMM and CEM are the same theory [119].

The entities whose conditional existence is asserted by (A.6) and (A.7) must be unique in the
presence of extensionality. Thus, CEM supports the following definitions:

 D.6) Binary sum. X + y is the z that fulfils that for all w, w overlaps z if and only if w overlaps x
or w overlaps y. That is, x + y is the smallest object of which x and y are part.

 D.7) Binary product. X . y is the z that fulfils that for all w, w is part of z if and only if w is part of
x and w is part of y. That is, X . y is the largest object that is part of x and y.

General (classical) Mereology (GM)

Another way of extending M is through the following axiom schema:
 A.8) Unrestricted fusion principle. For every satisfied property or condition φ there is a z such

that for all y, y overlaps z if and only if there is an x such that x satisfies φ and overlaps y. That
is, there is an entity consisting of all those things that satisfy φ. For every satisfied property or
condition φ there is an entity consisting of all those things that satisfy φ. For example, let’s
suppose that φ means: “country with more than 10 millions of inhabitants”, then there is an
object that consists of all the countries with more than 10 millions of inhabitants.

If (A.5) is satisfied, then at most one entity can satisfy the consequent of (A.8). Therefore, the
operation of general sum (σ) can be defined:

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 105 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

 D.8) General sum. The general sum all xs satisfying φ is that z such that for all y, y overlaps z if
and only if there is an x such that x satisfies φ and overlaps y. That is, the sum of φs is the
entity that consists of all entities that satisfy φ.

General Extensional Mereology (GEM)

The extensions of MM and EM, which yield the same extensional strengthening of GM [119], is the
theory of General Extensional Mereology, or GEM, since (A.8) implies (A.7) and (A.7)+(A.4) imply
(A.5) [103]. It is also clear that GM is extension of CM and GEM is extension of CEM, since (A.6)
also follows from (A.8).

Atomistic Mereology

In an atomistic mereological theory, every element is made up of elements that are building blocks
or atoms. To describe such a theory, the following definition can be provided:

 D.9) Atom. It is an element that does not have proper parts.

The atomistic axiom can be formulated in this way:

 A.9) Atomicity. Every object has at least a part that is an atom. For example, the administrative
division of territories follows this axiom, since there are simple divisions that are not in divided
its turn.

Figure 34 shows a diagram with all the theories presented in this section until now.

A mereology X (e.g. GEM) extended with the atomicity axiom is known as AX (e.g. AGEM).

Figure 34. Hasse Diagram of Mereological Theories (from weaker to stronger, going uphill)
[119]

Activity 3. Search for common ontologies supported (partially or completely) by the theory.

We have found the following ontologies that implements a mereology or contain mereology
definitions:

 KACTUS [12] ontology library, implemented in CML [101], is maintained by the University of
Amsterdam. Such a library contains Mereological Ontology (MO), which is an adapted version
of Borst’s proposals [22].

 DOLCE is one of the ontologies developed inside the WonderWeb European project43 [83].

43 http://wonderweb.semanticweb.org/

Page 106 of 150 NeOn Integrated Project EU-IST-027595

 The Standard Upper Ontology23 (SUO) is the result of a joint effort to create a large, general-
purpose, formal ontology [89]. It is promoted by the IEEE Standard Upper Ontology working
group, and its development began in May 2000. The participants were representatives of
government, academia, and industry from several countries. This ontology is implemented in
KIF and Protégé format. SUO formally describes mereology and topology terms. The general
predicates in this section of the ontology are adapted from Barry Smith, Borgo and colleagues,
and Casati and Varzi mereologies.

 Barry Smith and other authors [104, 105, 29, 106] ontology in KIF is referred in the SUO web
page. It represents various mereological definitions and axioms concerning boundaries and
objects44.

 Borgo and colleagues mereology is another ontology referred in SUO web page. These
authors describe a set of definitions and axioms regarding mereology in [20, 21]. Such an
ontology is currently implemented in KIF45. The ontology formalizes a CEM mereology
(excepting the product principle).

 Casati and Varzi [30] mereology can be also found implemented in KIF as a referred ontology
in the SUO web page.

Activity 4. Build the table of features versus ontologies.

Table 18 represents each definition and axiom identified in activity 1, and the ontologies identified
in activity 3. For the case of Borgo and colleagues ontology, the weak supplementation principle
(A.4) is not directly represented, but can be inferred from the strong supplementation (A.5) one. As
a consequence, if A.4 must be assumed in the host ontology, but not A.5, then A.4 should be
completely implemented.

23 http://suo.ieee.org/
44 http://suo.ieee.org/SUO/ontologies/Smith.txt
45 http://suo.ieee.org/SUO/ontologies/Guarino.txt

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 107 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Theory Principles and definitions KACTUS MO DOLCE SUO Smith et al. Borgo et al. Casati and Varzi

A.1) Reflexivity No No Yes Yes Yes No

A.2) Antisymmetry Yes No Yes Yes Yes No

A.3) Transitivity Yes No Yes Yes Yes No

D.1) Proper part Yes Yes Yes No Yes Yes

D.2) Direct part Yes No No No No No

D.3) Overlap Yes Yes Yes Yes Yes Yes

D.4) Underlap No No No No No No

M

D.5) Disjoint Yes No No No No No

MM = M + (P.4) A.4) Weak supplementation Yes No No Yes Inferred No

EM = M + (P.5) (Let’s note
that (P.5) implies (P.4) A.5) Strong supplementation No No No Yes Yes No

A.6) Sum principle No No No Yes Yes No
CM = M + (P.6) + (P.7)

A.7) Product principle No No No Yes No No

D.6) Binary sum No Yes Yes Yes Yes Yes
CEM = CM + (P.5)

D.7) Binary product No No Yes Yes Yes Yes

GM = M + (P.8) A.8) Unrestricted fusion
principle No No No Yes No No

GEM = GM + (P.5) D.8) General sum No Yes No Yes No No

D.9) Atom No Yes No No No No
AX = (P.9) + a mereology X

A.9) Atomicity No No No No No No

Table 18. Features of Ontologies that implement Mereotopology Theories

Page 108 of 150 NeOn Integrated Project EU-IST-027595

Activity 5. Select the common ontology that best fits the features required by the host
ontology, out of those ontologies represented in the table.

During the exposition of this activity, we will just focus in the four (of 61) competency questions
(CQs) that allows us explaining our idea in a clearer way (see Table 19) [65].

Competency
question
identifier

Competency question in
natural language like it is
expressed in the ontology

specification

Competency question
using the vocabulary of

mereology
Extracted terms

CQ1-R Which is the drug
composition?

Which are the parts of the
drug? - part of

CQ2-R What is the drug main active
ingredient (molecule)?

(It does not directly require
mereotopology)

- active ingredient

This term requires the
definition of:

- part of

CQ3-R What is the main substance
of the composition?

(It does not directly require
mereotopology)

- main substance

This term requires the
definition of:

- part of

CQ4-R
Does the drug have
interaction with another
drug?

Are there parts of the drug
that interact with parts of
another drug?

- part of

Table 19. Competency Question Analysis for Mereology Ontology Reuse

The tasks that we carried out to identify the mereology terms, axioms and definitions that are
needed in the PPO are:

Task 1. Analysis of the host CQs.
Each CQ has been formulated using mereology vocabulary if possible. Table 19 shows
how these CQs requires mereology terms in PPO.

Task 2. Identification of the features of the common ontology to be reused.
The inclusion of some properties (e.g. transitivity) has not been obvious. This indicates that
the meaning of the CQs was not completely clear. That is, the study of the principles shown
in Table 18 has helped us to identify ambiguities and, as we will see in the next paragraphs,
it has helped us to precise the meaning of the CQs.

For the PPO case, the following formalization has been necessary:

 A.1) Reflexivity. It is necessary to ensure the right meaning of ontology terms. Thus, for
example, if part of is not reflexive, then CQ4-R may not be correctly answered when the
considered part is the whole drug.

 A.2) Antisymmetry. It will help the user to check constraints.

 A.3) Transitivity. It should be modeled if the different levels of the structure of
components need to be provided. For example, Frenadol® is composed of
paracetamol, dextrometorphan, and clorfenamine. In its turn, paracetamol is composed
of an alcohol, an amino group and a carbonyl group. The alcohol is composed of
oxygen and hydrogen, etc. Given that the inclusion of the transitivity axiom is low cost,
we have decided to include all the components in the answer of CQs.

 D.1) Proper part. The formalization of this term eases the interpretation of the CQs.
Thus, the very substance should not be a result of CQ1-R. However, it should be a
result of CQ4-R, since the very substance can interact with a part of another substance.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 109 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

 D2) Direct part. This term allows answering CQ1-R just in a level. Therefore, CQ1-R
has been split into two competency questions: (CQ1-R’) which is the drug composition?
(considering just a level) and (CQ1-R’’) idem (considering all components).

 A.4) Weak supplementation principle. It will help the user to check constraints.

 D.3) Overlap. It is needed to formalize (A.4).

 D.4) Underlap. It is not necessary for the PPO at the moment.

 D.5) Disjoint. It is needed to formalize (A.4).

 A.5) Strong supplementation principle is not true if the bounds between atoms are not
taken into account. We should remember that (A.5) implies that two entities are
identical if and only if they have the same parts. However, isomers are not ruled out in
Pharmaceutical Product ontology. An isomer is a chemical compound which has the
same number and kind of atoms as another but differs in structural arrangement. If the
structure of drugs is required, then a topology ontology is needed.

 D. 6 and more) Sums and product. It is not necessary for the PPO at the moment.

 D.9 and A.9) Atom and atomicity. It is not necessary for the PPO at the moment.

The aforementioned features are shadowed in Table 20.

Page 110 of 150 NeOn Integrated Project EU-IST-027595

Theory Principles and definitions KACTUS MO DOLCE SUO Smith et al. Borgo et al. Casati and Varzi

A.1) Reflexivity No No Yes Yes Yes No

A.2) Antisymmetry Yes No Yes Yes Yes No

A.3) Transitivity Yes No Yes Yes Yes No

D.1) Proper part Yes Yes Yes No Yes Yes

D.2) Direct part Yes No No No No No

D.3) Overlap Yes Yes Yes Yes Yes Yes

D.4) Underlap No No No No No No

M

D.5) Disjoint Yes No No No No No

MM = M + (A.4) A.4) Weak supplementation Yes No No Yes Inferred No

EM = M + (A.5) (Let’s note
that (A.5) implies (A.4) A.5) Strong supplementation No No No Yes Yes No

A.6) Sum principle No No No Yes Yes No
CM = M + (A.6) + (A.7)

A.7) Product principle No No No Yes No No

D.6) Binary sum No Yes Yes Yes Yes Yes
CEM = CM + (A.5)

D.7) Binary product No No Yes Yes Yes Yes

GM = M + (A.8) A.8) Unrestricted fusion
principle No No No Yes No No

GEM = GM + (A.5) D.8) General sum No Yes No Yes No No

A.9) Atom No Yes No No No No AX = (A.9) + a mereology
X D.9) Atomicity No No No No No No

Table 20. Required Features for the Ontology to be developed (in grey)

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 111 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Task 3. Determining the common ontology that best fits the features.
KACTUS MO has been selected in base of the criterion of domain coverage and adaptation
of definitions and axioms to satisfy the existing restrictions of inference machine where PPO
is expected to be reused. According to Table 20, KACTUS MO is the ontology that fulfills
most criteria of those derived of the CQs. Besides, this ontology has been built to be easily
reused in knowledge based systems, therefore, its definitions are easily adaptable to be
used in software applications.

Activity 6. Customize the chosen common ontology according to the needs of the host
ontology.

During the customization activity, we have carried out the following tasks: (6.1) prune the reused
ontology according to the features that are really necessary; (6.2) enrich the ontology (e.g. with the
part of reflexivity axiom); (6.3) translate the reused ontology from CML into OWL + SWRL; and
(6.4) evaluate the obtaining ontology.

Activity 7. Integrate the common ontology in the host ontology.

The product of the customization has been included in a reduced version of PPO, carried out for
this example. The inclusion of the customized ontology in current and complet PPO could be
carried out in the near future.

7.4. Proposed Guidelines for Reusing Domain Ontologies as a Whole

The goal of domain ontology reuse is to find and select one or several domain ontologies related
with the domain of the ontology being developed in order to be used in such ontology in
development. The output is a set of whole domain ontologies.

Table 21 shows the filling card for the domain ontology reuse process, including the definition,
goal, inputs and outputs, who carries out the process and when the process should be carried out.

Page 112 of 150 NeOn Integrated Project EU-IST-027595

Domain Ontology Reuse

Definition

Domain Ontology Reuse refers to the process of using domain ontologies in the solution of
different problems.

Goal

The goal of this process is to find and select one or several domain ontologies related with the
domain of the ontology being developed in order to be used in such ontology in development.

Input Output

The OSRD.

Ontology network extended with the reused
domain ontology.

Who

Software developers and ontology practitioners.

When

The domain ontology reuse process should be carried out after the ontology specification
activity.

Table 21. Domain Ontology Reuse Filling Card

The activities for performing the domain ontology reuse process are explained in detail in the
following and can be seen in Figure 35. In this section, we describe the proposed guidelines at
activity level, including input and output information. The level of detail provided by the activities is
sufficient for explaining the guidelines, and for this reason, it was not deemed necessary to break
activities down into smaller unit of works, that is, tasks.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 113 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Figure 35. Activities for Reusing Domain Ontologies as a Whole

Activity 1. Domain Ontology Search.

The objective of this activity is to search in libraries, repositories and registries for candidate
domain ontologies that could satisfy the needs of the ontology network being developed. The
ontology development team carries out this activity taking as input the ORSD, concretely those
terms that have a high frequency in the ORSD, using tools as Oyster, Swoogle, etc.

The activity output is a set of candidate domain ontologies that could be implemented in different
languages.

Activity 2. Domain Ontology Assessment.
The objective of this activity is to find out if the set of candidate domain ontologies are useful for
the development of the ontology network. The ontology development team carries out this activity
taking as input the set of domain ontologies obtained in activity 1, using the following criteria for
deciding if a particular domain ontology is useful or not.

 Check if the scope and purpose established in the ORSD are similar to those of the candidate
domain ontologies.

 Check functional ontology requirements established in the ORSD. Examples of requirements
can be: the language for implementing the ontology is required to be a particular one (syntactic

Page 114 of 150 NeOn Integrated Project EU-IST-027595

level), terms to be used in the ontology must be taken from standards, multilinguality must be
represented in the ontology to be developed, etc.

 Checking the CQs included in the ORSD with respect to the candidate domain ontologies,
taking into account the following levels:

o Terminological Level: the ontology development team calculates the precision and
recall of the candidate domain ontologies with respect to the terminology included in
CQs. Precision and recall (or coverage) have been defined in section 6.5.

o Semantic Level: the ontology development team checks if the candidate domain
ontologies are able to answer the CQs included in the ORSD.

The activity output is an assessment table analysing each candidate domain ontology with respect
to the aforementioned criteria. In such an assessment table, useful domain ontologies are
shadowed. For deciding that a domain ontology is useful, the set of criteria related with the
ontology requirements and CQs has to be satisfied.

Table 22 shows a hypothetical example of an assessment table with three ontologies about
publications. The example considers that in the OSRD is established the following: OWL-DL is
required as language for implementing the ontology, standard terminology is not needed in the
ontology to be developed, and multilinguality is needed in the ontology. Table 22 shows two
shadowed columns (Publication Ontology 1 and Publication Ontology 3) for the ontologies
considered useful. The other column is not shadowed because Publication Ontology 2 does not
satisfy two criteria related with the ontology requirements (ontology purpose and ontology
language).

Table 22. Hypothetical Example of Domain Ontology Assessment Table

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 115 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Activity 3. Domain Ontology Select.
The objective of this activity is to find out which domain ontologies are the most suitable for the
development of the ontology network. The ontology development team carries out this activity
taking as input the useful domain ontologies from the assessment table obtained in activity 2, using
the following criteria for selecting the most suitable domain ontologies. These criteria are explained
in detail in section 7.3.

 Ontological Resource Understandability: check if the domain ontology has good
documentation.

 Ontological Resource Modularization Effort: check if the domain ontology is good
modularized.

 Ontological Resource Integration Effort: check if the estimation effort for integrating the
domain ontology is low and if the domain ontology used naming conventions..

Ontological Resource Reliability: check if the domain ontology is reused by others ontologies or
others ontology-based projects and if the ontology have been evaluated. The ontologies that
satisfy the larger number of criteria are selected in the selection table by means of shadowed
columns. The activity output is a set of domain ontologies selected from the selection table.

Following with the example from Table 22, we can see in Table 23 how the two useful domain
ontologies are analysed with respect to the aforementioned criteria, and Publication Ontology 1 is
selected. Guidelines on how to establish the different values for the different criteria will be
included in the next version of this deliverable.

Table 23. Hypothetical Example of Domain Ontology Selection Table

Activity 4. Domain Ontology Integration.

The objective of this activity is to integrate the selected domain ontologies in the ontology network
being developed. The ontology development team carries out this activity taking as input the set of
domain ontologies selected in the selection table obtained in activity 3. For each domain ontology

Page 116 of 150 NeOn Integrated Project EU-IST-027595

included in the input set, the ontology development team decides one of the following three modes
for integrating:

 The selected domain ontology is reused as they are. The ontology development team
integrates the domain ontology in the ontology network being developed.

 The selected domain ontology is reused with significant changes (e.g., use the domain
ontology in a different implementation language). In this case, the ontological resource
reengineering activity should be carried out with the selected domain ontology. Thus, scenario
4 (Figure 8 from section 4.1) should be followed.

 There are several ontologies in the same doamin that are merged to obtain a new domain
ontology. In this case, scenario 5 or scenario 6 (Figure 8 from section 4.1) should be followed.

Before reusing the selected domain ontologies by following any reuse mode, it is also convenient
to evaluate the domain ontologies through the ontology evaluation activity [111].

The activity output is an ontology network including the set of selected domain ontologies.

7.5. Proposed Guidelines for Reusing Ontology Statements

The goal of the ontology statement reuse is to make use of ontology statements in the ontology
network being developed. The output of this process is a set of ontology statements to be used in
the ontology network being developed.

Table 24 shows the filling card for the ontology statement reuse process, including the definition,
goal, inputs and outputs, who carries out the process and when the process should be carried out.

The ontology statement reuse process can be applied in two different situations:

Situation 1. Building ontology networks from scratch. In this scenario, it is much more useful if a
preliminary model for the ontology is already established. It is also useful to have a clear idea of
what the ontology requirements are, as well as a good understanding of the ontology domain
and the ontology purpose, etc.

Situation 2. Extending or improving existing ontology networks.

It is important to mention that ontology statements can serve not only for reuse itself but also for
ontology design and for helping in the domain understanding.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 117 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Ontology Statements Reuse

Definition

Ontology Statement Reuse refers to the process of using ontology statements (from domain
ontologies) in the solution of different problems.

Goal

The goal of this process is to make use of ontology statements from an ontology that was not
originally designed for the task at hand.

Input Output

The OSRD and available ontology
statements (in the same or similar
domain that the ontology network
being developed).

Ontology network extended with reused ontology
statements.

Who

Software developers and ontology practitioners.

When

Ontology statement reuse can be performed in various stages of the ontology life cycle. Most
naturally reuse is performed at the stage of building the ontology and it can be helpful in a
variety of situations, whether the ontology is built form scratch or extended from an initial
ontology. Reuse can also appear at later stages of the life cycle when the ontology is updated
and/or extended to cover new knowledge.

Table 24. Ontology Statement Reuse Filling Card

The activities for carrying out the ontology statement reuse process are explained in detail in the
following and they can be seen in Figure 36. In this section, we describe the proposed guidelines
at activity level, including input and output information. The level of detail provided by the activities
is sufficient for explaining the guidelines, and for this reason, it was not deemed necessary to
divide the provided activities into smaller unit of works, that is, tasks.

Page 118 of 150 NeOn Integrated Project EU-IST-027595

Figure 36. Activities for the Ontology Statement Reuse

Activity 1. Ontology Statement Search.

The goal of this activity is to search the internet for candidate ontology statements that could
satisfy the ontological needs in a particular case. The ontology development team carries out this
activity taking as input the ORSD, concretely those terms that have a high frequency in the ORSD,
and using existing gateways to the Semantic Web, such as WATSON46.

The activity output is a set of ontology statements that could be implemented in different
languages.

Activity 2. Ontology Statement Assessment.

The goal of this activity is to decide if a concrete ontology statement is useful or not for the
ontology network being developed. The ontology development team carries out this activity taking
as input the set of ontology statements obtained in activity 1. The ontology development team must
inspect the content and granularity of ontology statements to assess whether they satisfy its needs
or not.

Given the heterogeneity of online available ontologies from a quality perspective, the assessment
activity is not trivial and it can be a major issue for practitioners that are not ontology engineers.

46 http://watson.kmi.open.ac.uk/WatsonWUI/

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 119 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Therefore, to support them, we provide a set of criteria for assessing each ontology statement.
These criteria have been identified in hands-on experiments during which three ontology engineers
used the Watson plugin to build and extend ontologies by reusing statements provided by online
ontologies. Such experiments are detailed in section 7.6.1. We regard these identified criteria as
initial and wish to refine and extend them in the future based both on further experimentation and
on practitioner’s feedback.

 Check if the ontology statement belongs to an ontology with the same or similar scope to the
ontology network being developed.

For example, if the ontology statement is contained in an ontology about “Sport Events” and
the ontology network to be developed is about “European Project or Research Project”, then
the ontology statement is not useful for the ontology network’s purpose.

 Check the purpose of the ontology statements found and the purpose of the ontology network
being developed to know if they are similar or not.

For example, the statements “Meeting is subclass of SocialInteration”, “Boiling is subclass of
StateChange” can be true, but they may not be useful for the purpose of the ontology being
developed.

 Check the clarity of the ontology statement.

 For example, ambiguous statements like “Book subclass of ‘_anon699’”, “Pan subclass of T”
are not useful by themselves without additional information about the original ontology (e.g.,
the ontology itself, documentation, etc) which could help to clarify their meaning. Such
statements should not be reused..

 Check the information content of the statement.

In some cases, the retrieved statements provide little additional information, for example by
linking a concept to an abstract root concept (e.g., “Publication is subclass of: ‘Root’, ‘Object’,
‘Thing’, ‘DEF_ROOT_CONCEPT’, ‘Resource’”), or by declaring that a concept is equivalent
with itself (“Publication is equivalent to: ‘Publication’”). Such statements should not be reused
either.

 Assess the correctness of the statement from a (formal) modeling perspective.

 Check that the naming of concepts in the ontology statement reflect the intended
meaning of the statement given its ontological context.

For example, “Publication is subclass of Event” is not correct, because the name
‘Publication’ does not reflect the intended meaning of the statement, which, given its
context in the ontology, was that of ‘publication = publishingEvent’. When such
statements are reused it is important to rename their concepts in a way that they clearly
reflect the meaning of the statement.

More examples of this kind of error are: “Book is subclass of Reference” (in this case,
‘book = bookReference’); “Book is subclass of Image” (book = bookImage); “Journal is
subclass of Paper” (journal = journalPaper); “Conference is subclass of Pear”
(conference = conferencePear).

 Check if the ontology statement is not invalid from a formal perspective, e.g., by
confusing “subclassOf” relations with other relations such as “partOf” or “relatedTo”
relations.

Page 120 of 150 NeOn Integrated Project EU-IST-027595

For example, “Chapter subclass of Book”: in this case the relation ‘subclassOf’ is
incorrectly used to model partonomy. “Article is subclass of Journal” is an example
where a relatedness relation (e.g., published in) is modelled through subsumption.
These types of modelling errors are fairly common in online ontologies and the person
performing the reuse should avoid introducing such errors by reuse. One way to avoid
this kind of statements should be to ask (search in internet) if “a chapter is a book.

The activity output is a set of ontology statements useful for the ontology network being developed.

Activity 3. Ontology Statement Selection.

The goal of this activity is to decide between the useful ontology statements which ones are the
best or most convenient for the ontology network being developed. The ontology development
team carries out this activity taking as input the set of useful ontology statements obtained in
activity 2, using the following criterion for comparing ontology statements and selecting the most
convenient ones.

 Minimum effort needed for integrating the ontology statement in the ontology network being
developed. For example, if several ontology statements are valid, but they use different naming
conventions, then (if possible) reuse the one using the same naming convention as yours to
avoid adapting the statement to your ontology network.

The activity output is the set of ontology statements that is the most appropriate for their ontology
network requirements.

Activity 4. Ontology Statement Integration.

The goal of this activity is to decide how the selected ontology statements will be integrated in the
ontology network being developed. The ontology development team carries out this activity taking
as input the selected ontology statements obtained in activity 3, using any of the following three
integration modes:

 The selected ontology statements will be reused as they are.

 The selected ontology statements will be reengineered.

 The selected ontology statements will be merged.

Apart from these integration modes, the ontology development team has also to decide between
importing the ontology statements, copying the ontology statements or establishing mappings with
the ontology statements.

Detailed guidelines for taking both aforementioned decisions will be included in next version of this
deliverable.

The activity output is an ontology network including the set of selected ontology statements.

After integrating an ontology statement, the following work will be probably done:

o Changing names (concepts, properties) to adapt them to the naming conventions used
in the ontology network being developed.

o Adding range in properties; and changing cardinalities.

o Adding restrictions.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 121 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Activity 5. Check Local Inconsistencies.

The goal of this activity is to check for local inconsistencies in the ontology network. Such
inconsistencies could be introduced by adding new knowledge to the ontology network.

The ontology development team carries out this activity taking as input the ontology network
including the set of selected ontology statements obtained in activity 4.

The activity output is an ontology network, including the set of selected ontology statements,
without inconsistencies.

7.6.1. Experiments on Ontology Statement Reuse
In this section we will exemplify the reuse of ontology statements. Guidelines described in section
7.6 have been inspired by our hands-on experiments in using the NeOn Watson plugin in two use-
cases:

1) to extend two existing ontologies in the European Research Project domain.

2) to build an ontology about Paella from scratch.

The description of these proposed use-cases is detailed in Annex A.

The experiment was performed by three ontology engineers, and their experiences were discussed
and compared. This is a summary of their final conclusions.

The ontology extension activity was easy to perform because the European Research Project
domain is well-covered by online-ontologies. When reusing statements in this case, the following
situations were observed:

• Some statements that were reused brought a new insight into the domain that could lead to
changes in the structure of the base ontology. For example, one ontology returns Thesis <
Publication, however in the base ontology Publication already exists but not as a parent of
Thesis.

• There were some cases when different ontologies returned contradictory bits of knowledge:
in some ontologies Deliverable < Report, in others Report < Deliverable. In these cases, it
was up to the engineer to decide the standpoint (s)he agreed on.

• Some ontologies were incorrect from a formal modelling perspective, e.g., Chapter < Book.

• In some cases, online ontologies provided information about a different sense for a
concept: when searching for Article (as a publication), some ontologies returned information
about it in the context of language grammar (i.e., as a determiner). In this and other cases,
it can be difficult to judge the meaning of certain recommended statements without being
able to interpret the broader ontological context. As a result, there were sometimes
(possibly) relevant concepts/relations which were not reused simply because the engineers
did not understand what they meant.

The second case study focused on building an ontology from scratch. The general experience in
this case was that a sound ontology is impossible to be built purely by reusing ontology
statements. The experimenters who wished to rely exclusively on reused knowledge experienced a
phenomenon of being “drifted away” in their modelling by the knowledge presented by the plugin.
The resulting ontology was unfocused and unclear. As a result, in a second round, the experiment
was repeated with this in mind: experimenters first built a skeleton for the ontology specifying the
main concepts that they wished to describe (e.g., kitchen equipment, food ingredients) and worked
within the boundaries set by this frame. This approach was experienced as much more efficient.
When reusing statements, engineers experienced situations similar to those described in the case
of ontology extension (use-case 1).

Page 122 of 150 NeOn Integrated Project EU-IST-027595

8. Ontology Design Patterns Reuse

This chapter describes the reuse of Ontology Design Patterns (ODPs), identified in scenario 7 of
this deliverable (Figure 8, in section 4.1). As in previous chapters, the goal is to define guidelines
for the performance of the Ontology Design Patterns reuse in the framework of the construction of
ontology networks. With this aim, we start by referring to previous deliverables in NeOn that have
already dealt with ODPs in section 8.1.

Then, we include a brief state of the art (section 8.2) on Ontology Design Patterns reuse with three
subsections about existing methods, techniques and tools. In this section, we relate ODPs reuse to
the reuse of design patterns in the neighbouring field of Software Engineering, since the latter has
a longer tradition in the patterns reuse and allows us to find interesting parallelisms. This brief
analysis shows important limitations in the reuse of design patterns that we will try to alleviate in
the ontological field. Therefore, our goal is to propose methods and guidelines for the reuse of
ODPs. In the present deliverable, methods and guidelines are intended for a specific kind of users,
namely, naive users. By naive users we understand software developers and ontology practitioners
with little expertise in the ontology development and insufficient command of ontology languages
(OWL, RDF(S), etc.), ODPs, etc. In next versions of this deliverable we aim at proposing methods
and guidelines in the reuse of ODPs for expert users, i.e. software developers and ontology
practitioners with expertise in the modelling of ontologies and reuse of desing patterns. In section
8.3, the main techniques and a novel tool for supporting the method intended for naive users are
presented. Finally, the last section (section 8.4) is devoted to the proposal of a set of
methodological guidelines for the reuse of ODPs in NeOn.

8.1. Introduction

As we already mentioned, our objective is to propose methods and guidelines for the reuse of
Ontology Design Patterns (ODPs henceforth) during the ontology development. Two previous
deliverables in NeOn have already dealt with ODPs: D5.1.1 [110], and D2.5.1 [95].

The first one deals with the identification of the modelling components to be used for modelling
networked ontologies, and with the creation templates for describing them. The first version of this
deliverable mainly focuses on those design patterns that are based on OWL. These patterns have
been divided into three different types: logical patterns, architectural patterns and content patterns.

D2.5.1, more centred on identifying methods, techniques and tools for assisting ontology
practitioners, is completely devoted to Ontology Design Patterns, which are here classified into five
main groups: Structural ODPs, which can be Logical or Architectural ODPs, Correspondence
ODPs, which can be subdivided as well in Reengineering or Mapping ODPs, Content ODPs,
Reasoning ODPs, and Presentation ODPs. Section 2.2 of D2.5.1 contains definitions of each type
of pattern, but the rest of the document is dedicated to the development and usage of Content
ODPs.

In both deliverables, ODPs have been described following a specific template, designed for this
purpose within NeOn, which provides a complete and clear description of the pattern.

The mentioned template contains the following sections:

 general information of the pattern as its name and type

 a description and an example in natural language of the modelling problem addressed by
the pattern

 a description in natural language of the solution provided by the pattern

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 123 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

 a graphical representation of the pattern in NeOn UML and a formalization in terms of the
NeOn OWL Ontology Metamodel

 relations of the pattern to other modelling components and remarks in natural language
clarifying the use of it.

8.2. State of the Art

The term design pattern was introduced in the seventies by Christopher Alexander in the
architecture domain, as explained in Bushmann et al. [25], for designating those modelling
solutions that after being recurrently used for solving similar design problems, could be identified
as generalized design solutions to be applied whenever a similar problem appeared. In the own
words of Alexander47, patterns described solutions "in such a way that you can use this solution a
million times over, without ever doing it the same way twice”. In the mid 1980s, Cunningham and
Beck adapted Alexander ideas to software development (as reported in 25), but it was not until the
publication of the Design Patterns - Elements of Reusable Object-Oriented Software [51] book by
the so-called Gang of Four (Gamma, Helm, Johnson and Vlissides) that design patterns became
broadly used in the object-oriented software design. Since then, design patterns have been applied
in a great variety of areas within Computer Science, as for example, Hypermedia and Web
applications48, E-learning49 or User Interface design50, among others. However, it is not until the
beginning of the 21st century that design patterns are fully introduced in the Ontology Engineering
domain by ontology experts as Gangemi and colleagues [52], Rector and Rogers [97], Svatek
[113] or the W3C Consortium51.

Benefits of design patterns in Software Engineering are well known. These can be summarized in
three points, as in [92]:

 design patterns allow less experienced users to produce a better design

 design patterns “encourage recording and reusing best practices even for experienced
designers”

 design patterns can improve communication by defining a common design terminology

Design pattern reuse in object-oriented design is an extended practice, well supported by design
pattern repositories and manuals as the one by Gamma et al. [51], or the above mentioned by
Buschmann et al. [25]. Nowadays, those pattern repositories are integrated in software tools in
order to allow a quicker access and integration of patterns. However true that might be, most of the
existent manuals or repositories presuppose prior design knowledge and expertise. This fact and
other limitations of the reuse of patterns are being recently discussed in public forums by some
experts in the Software Engineering domain [43] (see also The Software Patterns Blog52). The
main limitations are related to the lack of general methodologies or standards for the reuse of the
different pattern repositories, since some efforts in that sense are limited to steps or
recommendations for local use developed by the authors of the manuals themselves. In the same
sense, templates follow different styles depending on the manual, so that some of the steps or
approaches given by certain authors cannot be extrapolated or reused in searching other design
pattern repositories. Finally, an additional limitation reported by practitioners is related to the efforts

47 http://c2.com/cgi/wiki?CategoryPattern
48 http://www.designpattern.lu.unisi.ch/index.htm
49 http://www2.tisip.no/E-LEN/patterns_info.php
50 http://www.deyalexander.com/resources/uxd/design-patterns.html
51 http://www.w3.org/2001/sw/BestPractices/
52 http://www.pattern.ijop.org

Page 124 of 150 NeOn Integrated Project EU-IST-027595

that the search activity requires, which apart from being time consuming, demands a careful
analysis of the templates on the part of the user.

Limitations in the reuse of design pattern repositories in Software Engineering can be summarized
as follows:

 Assumption of users prior knowledge about design patterns reuse

 Inexistence of generalized methodologies for design patterns reuse

 Inexistence of standardised design pattern templates

 Inexistence of techniques and tools for supporting the design pattern selection

 Time consuming task for users without prior knowledge

Regarding the reuse of design patterns in Ontology Engineering, this practice is not so widespread
because of two obvious reasons: the incipient stage in the ODPs research, and the almost
inexistence of ODPs repositories. Currently, we find some ODPs on-line repositories, as the one
focused on the Biological domain53, or the preliminary repository of OWL-based Content OPs54 at
the Laboratory for Applied Ontology wiki page. The latter repository is being extended and
enhanced within the NeOn project and is expected to be available in 2008 at the Ontology Design
Patterns wiki page55.

As in the case of object-oriented design patterns, there exist no methodologies per se for guiding
users and facilitating the reuse of ODPs. It is as well assumed that users have some expertise in
the reuse of object-oriented design patterns and know that they have to access design pattern
repositories and search for the appropriate pattern. There have been, however, some initiatives for
helping users in the process of adapting or implementing ODPs by means of wizards, as for
example, the ones provided by the CO-ODE project56 for the Protégé ontology editor57, as reported
in [39].

Nevertheless, if we want to bring ontologies closer to the average user that not necessarily has
expertise in design pattern reuse in general, some effort has to be put into the following actions:

 Creation of standardized templates for the description of ODPs understandable to different
types of users

 Creation of generalized methods or guidelines for users with and without previous
experience in the ODPs reuse

 Creation of techniques and tools for supporting a semi-automatic or automatic pattern
selection

In this deliverable we focus on the creation of methods and guidelines for the reuse of ODPs
directed to naive users or users with little expertise in the development of ontologies. Moreover, we
also describe a novel technique for a semi-automatic reuse of ODPs, and the tool that supports it.
In the next sections we try to give a brief overview on available methods (8.2.1), techniques (8.2.2)
and tools (8.2.3) for the reuse of design patterns. In the last point of this section (8.2.4) we
summarize the main conclusion from this state of the art.

53 http://odps.sourceforge.net/odp/html/index.html
54 http://wiki.loa-cnr.it/index.php/LoaWiki:CPRepository
55 http://www.ontologydesignpatterns.org
56 http://www.co-ode.org/downloads/wizard/
57 http://protege.stanford.edu/

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 125 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

8.2.1. Methods
Methods followed for reusing design patterns in Software Engineering are limited to some advices
or recommendations in the use of design pattern repositories. Expert users access repositories
that collect patterns, and by means of analogy criteria based on their experience, and relying on
the descriptions included in the catalogues, they select the most adequate design pattern for their
needs.

In this sense, Gamma et al. [51] devoted two sections in the introduction to their book to the
selection and use of design patterns. The first section gives some recommendations to users
accessing the book for the first time. The aim is to guide users through the different book chapters,
in order for them to take advantage of the contained information and finally make the pattern
selection. The second section, the one about use, offers users a “step-to-step approach” to
applying patterns effectively, that can be summarized in a close analysis to the different sections of
the template designed for the pattern description. Buschmann et al. [25] also dedicate a chapter to
the pattern selection based on the templates they propose and by means of some examples. The
authors recommend the user to carefully “specify the problem”, so that he exactly knows what he
needs, and select the pattern that better satisfies his needs, but they do not propose any guides
about how to achieve that.

In Ontology Engineering, the scenario is quite similar. Search, selection and application activities
are taken for granted. Regarding the selection activity, in D2.5.1 [95] authors propose to apply the
“typical procedures for ontology selection (…)” to the selection of ODPs, but they do not say how
the ontology selection method can be employed, or which techniques or tools would be needed.

As far as the adaptation activity of ODPs to real use cases is concerned, D2.5.1 offers some
guidelines for matching Content ODPs to real use cases. These matching possibilities are: precise
matching, broader matching, narrower matching, partial matching and redundant matching. In any
case, it is assumed that the matching activity is performed manually, which means that no
techniques or tools are foreseen for supporting it.

8.2.2. Techniques
At the present stage of this research, the identified techniques in the process of ODPs reuse are
aimed at helping users in the process of adapting or implementing ODPs while developing
ontologies by means of wizards, as is the case of the CO-ODE project58 . CO-ODE wizards have
been designed for the ontology editor Protégé, as mentioned in section 8.2., and help users to
reuse OWL-based patterns.

8.2.3. Tools
Regarding tools for the reuse of ODPs, we can refer to the storage system of catalogues that
contain ODPs. The few catalogues containing ODPs are stored in web pages (as in the case of the
catalogue being developed in the Gene Ontology Next Generation (GONG) project59, or the one
from the Laboratory for Applied Ontologies60), or integrated in ontology editors (as it is expected to
be the case of the NeOn toolkit), in which cases the benefit from this storage system is a faster
access to design patterns for being reused.

58 http://www.co-ode.org/downloads/wizard/
59 http://www.gong.manchester.ac.uk/
60 http://wiki.loa-cnr.it/index.php/LoaWiki:CPRepository

Page 126 of 150 NeOn Integrated Project EU-IST-027595

8.2.4. Conclusion
After having analyzed the state of the art on ODPs reuse, we can conclude that there are no
methodologies or guidelines per se for the reuse of ODPs. Target users are supposed to be aware
of the existence of ODPs catalogues, as an analogy from Software Engineering, and to be able to
apply them for their needs. Therefore, users are assumed to be experts in the ODPs reuse, either
by having collected some expertise in the object-oriented design, or by being experts in ontology
development.

However, we consider that the expertise of users cannot always be taken for granted, and that
techniques and tools for supporting the reuse of ODPs are necessary for helping users in selecting
ODPs. As reported in section 8.2.2, some initiatives in this sense are already taking place, and a
library of Content ODPs as well as some recommendations for their manual adaptation, will be
available in 2008 in the framework of the NeOn project. Nevertheless, some additional efforts need
to be made for improving the reuse of ODPs, and for this reason we have decided to focus on
these two research issues:

 Development of methods and guidelines for the reuse of ODPs

 Creation of techniques and tools for supporting those methods with the aim of enabling an
easier and practical reuse of ODPs

8.3. NeOn Method for the Reuse of Ontology Design Patterns by Naive Users

One objective of the NeOn project is to expand the use of ontologies among a wider community of
users, especially novice users. For this purpose, methods intended for users with little expertise in
the development of ontologies, and in its turn, in the reuse of Ontology Design Patterns (ODPs),
have to be supported by user-friendly tools. This implies in most cases the inclusion of some
Natural Language (NL) components that make the interaction of the non expert user with the
machine easier. As far as the ODPs reuse is concerned, the inclusion of NL components serves as
interface between naive users and ODPs, and is a crucial issue for bringing ontologies closer to
the novel user.

In this sense, we propose a novel method for the reuse of ODPs that has as starting point an
expression in NL of the phenomenon or domain parcel the user wants to model, and ends up with
the obtainment of the adequate ODP. We assume that the user has a good command of the
domain (s)he wants to model, and that the information expressing the modelling aspect in NL is
correct from the content viewpoint61. Assumptions about users introducing wrong information from
the point of view of the domain content are left out of the scope of this research for the time being.
It also is important to observe, that the proposed method allows the user to freely introduce a
sentence in NL, without any kind of restrictions regarding the use of controlled languages62 or
vocabularies.

The NeOn method can be divided in three main steps:

1. Formulation in NL of the domain aspect to be modelled

2. Selection of the ODP that better matches the expression in NL

3. Integration of the ODP into the ontology with the information extracted from the NL expression

61 If the user introduces a sentence as Animals are divided into vertebrates and omnivores, the system will take it as

right.
62 Controlled Natural Languages are subsets of natural languages whose grammars and dictionaries have been

restricted in order to reduce or eliminate both ambiguity and complexity. Traditionally, controlled languages fall into two
major categories: those that improve readability for human readers, particularly non-native speakers, and those that
improve computational processing of the text. (Available at: http://www.ics.mq.edu.au/~rolfs/controlled-natural-
languages/ [31/03/08])

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 127 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

In order to support this method, we proposed the development of a tool for enabling an automatic
or semi-automatic selection of ODPs, mainly intended for users with little expertise, but also
recommendable for expert users, which relies in the application of NL techniques for performing a
semi-automatic selection. Current research has been centred on Logic ODPs ODPs [see 110 and
95], as explained in section 8.3.1.

In the next sections, we include a description of the techniques and tools that support this method.

8.3.1. Enrichment of NeOn Ontology Design Patterns with Lexico-Syntactic Patterns
With the aim of supporting the proposed method with NL techniques and tools for the reuse of
ODPs, we enriched the ODPs created in NeOn (cf. D5.1.1 [110] and D2.5.1 [95]) with a NL field.
The NL field consists of Lexico-Syntactic Patterns63 that exactly match the relation of interest
expressed by the ODP, in the sense that a 100% correspondence between the ODP and the
natural language expression or linguistic construct is established.

The term Lexico-Syntactic pattern (LSPs from now on) was first introduced by Hearst [73] in
Computation in the early 1990s. The goal of her research was the automatic acquisition of lexical
syntax and semantics for building lexicons. LSPs identified by Hearst had the following
characteristics: (1) all expressed a hyperonymy-hyponymy relation, (2) were directly extracted from
texts, and (3) had as main elements prepositional phrases, paralinguistic signs or conjunctions (not
verbs). Examples of Hearst patterns are shown in Table 25.

NP64 such as {NP1, NP2… (and | or) NPn

NP {,NP}* {,} or other NP

NP {,} especially {NP,}* { or | and } NP

Table 25. Examples of Hearst Patterns

Since then, there have been many authors that have applied Hearst LSPs for the automatic
discovery of lexical items. In Ontology Engineering, the LSP identification has been aimed at
extracting related concepts or instances in an automatic or semi-automatic way for ontology
population. For this end, authors as Snow [107], or Cimiano [31] have extended the original set of
Hearst patterns with additional patterns expressing the hypernym-hyponym relation, or new ones
expressing the relations of meronymy, agency, cause, etc. Some patterns were similar to Hearst
ones, that is, not verb oriented, others had verbs as main elements. Other research works have
used patterns for finding out how concepts are related, as in Haase and Völker [71], Sanchez
Ruenes [99], Marshman [82] or Feliu [44], among others. However, no research has been oriented
to obtain Lexico-Syntactic patterns equivalent to the relations expressed in Ontology Design
Patterns, which is one of the main objectives of our proposal.

A remarkable difference between the original Hearst patterns and the LSPs we propose here is
that ours are verb oriented, i.e., we focus our research on the identification of patterns that express
a relation of interest by means of verbs, which are normally the ones that carry the semantic of the
relation. The main reason for that is our assumption that for modelling categories of the world in
ontologies the usual way for describing them and expressing how they are related is by means of
verbs in affirmative or declarative sentences in the simple present tense. For example: Animals are

63 Linguistic constructions that express a conceptual relation are known in literature as Lexico-Syntactic Patterns, and

they are said to “occur frequently and in many text genres, almost always indicate a relation of interest, and be
recognized with little or no pre-encoded knowledge” ” [73]. We understand LSPs as formalized linguistic schemas or
constructions derived from recurrent expressions in NL that consist of certain linguistic and paralinguistic elements,
following a specific syntactic order, and that permit to extract some conclusions about the meaning they express.

64 NP: Noun Phrase

Page 128 of 150 NeOn Integrated Project EU-IST-027595

divided into two major categories: vertebrates and invertebrates, whould be the usual way of
describing domain knowledge. Additionally, it must be taken into account that Hearst patterns were
directly identified in texts, in which they were embedded, and typical of the written language, while
ours, although being also common of written texts, are expected to appear as independent self-
contained declarative statements.

Finally, it is left to say that most of the research on LSPs has been done for the English language.
In our case, because of the importance conferred to multilinguality in the NeOn project, we aim at
retrieve LSPs in various languages: English, Spanish and German, in a first stage.

Then, for the purpose of enriching the NeOn ODPs template with NL information by means of
LSPs, we created a new field to be included in the template designed in NeOn for the description
of ODPs, explained in section 8.1. This new field consists of two slots:

1. Formalization. This first slot includes the various LSPs as formalizations or abstractions of
linguistic constructs that a certain language has for expressing the relation contained in the design
pattern. This slot is mandatory.

2. Examples. The second row shows some examples of sentences in NL that match the LSPs in
question. This slot is optional.

In Table 26 we show the new field included in the NeOn ODPs template, , as already described in
D2.5.1 [95].

Table 26. LSPs Field included in the NeOn ODPs Template

Let us take a closer look at how LSPs are derived from NL, and associated to ODPs. For better
understanding this process we will explain it in the light of some examples. We will analyze one of

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 129 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

the most representative relations in ontologies, which is the SubClassOf relation, identified as LP-
SC-01 in D5.1.1 [110]. This relation is present in the three sentences in NL included below, all of
them extracted from the fisheries domains.
 1) Animals are divided into two major categories: vertebrates and invertebrates

 2) Fish can be classified into three groups which are: jawless fish, sharks and rays, and bony fish.

 3) Amphibians are divided into: frogs and toads, newts and salamanders, and caecilians.

These three ways of expressing the SubClassOf relation can be generalized or abstracted in one
LSP, formalized as follows:

 LSP 4: NP<superclass> CATV [CD] [CN] [PARA] (NP<subclass>,)*and NP<subclass>
For the purpose of formalizing LSPs, the BNF65 notation has been used with some extensions.
Restricted words and symbols appearing in the LSP exemplified above are collected in Table 27.

SYMBOL Description

NP

Noun Phrase. It is defined as a phrase whose head is a noun or a pronoun, optionally accompanied by a set
of modifiers, and that functions as the subject or object of a verb. We have decided to accompany NPs by
the semantic role played by the concept it represents in the conceptual relation in question. In this specific
example, NP is followed by superclass and subclass, representing the semantic role of each concept in the
relation.

CATV
Categorization Verbs. Set of verbs of classification plus the preposition that normally follows them. Some of
the most representative verbs in this group are: classify in/into, comprise in, contain in, compose of, group
in/into, divide in/into, fall in/into, belong to, etc.

CD Cardinal Number

CN Class Name. Generic names for class usually accompanied by preposition, as class, group, type, member,
subclass, category, representative, etc.

PARA Paralinguistic symbols like colon

() Parenthesis group two or more elements

* Asterisk indicates repetition

[] Elements in brackets are meant to be optional, which means that they can be present either at that stage or
not, and by default of appearance, the pattern remains unmodified.

Table 27. Restricted Words and Symbols in LSPs

The same process performed above for the three sentences in NL has to be repeated for the many
expressions in NL that express the conceptual relation SubClassOf (LP-SC-01) in a certain
language. Finally, all LSPs associated to each ODP are collected and included in the ODP, as can
be seen in Table 28. In the examples provided here we just show LSPs for the English language
(en). Therefore, if our aim is to have multilingual LSPs, we will have to include the same two slots
for the rest of languages, since LSPs are considered to be language dependant and not
interchangeable among languages, despite of some of them overlapping, as research in the field
has already proven, see [82]. In fact, within NeOn our objective is to include LSPs for English,
Spanish and German in the first stage of this research.

65 http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html

Page 130 of 150 NeOn Integrated Project EU-IST-027595

Lexico-Syntactic Patterns (LP-SC-01) (en)

1 NP<subclass> be NP<superclass>

2 [(NP<subclass>,)* and] NP<subclass> be [CN] NP<superclass>

3 [(NP<subclass>,)* and] NP<subclass> (group in|into|as) | (fall into) |
(belong to) CN NP<superclass>

Formalization

4 NP<superclass> CATV [CD] [CN] [PARA] (NP<subclass>,)*and NP
<subclass>

Examples

Birds are vertebrate animals

Vertebrates are members of the subphylum Vertebrata

Birds and mammals belong to the group of vertebrates

Amphibians are divided into three groups: frogs and toads, newts and
salamanders, and caecilians.

Table 28. LSPs (en) for the SubClassOf ODP (LP-SC-01)

Since this is an ongoing research, we include here by way of example, representative cases of
LSPs associated to ODPs, some already included in the first version of D2.5.1 [95], others new
here for: (1) DisjointClasses (LP-Di-01) in Table 29, and ExhaustiveClasses (LP-EC-01) in Table
30. As the rest of enriched ODPs included in D2.5.1, these belong to the so-called Logical ODPs.
SubClassOf, DisjointClasses and ExhaustiveClasses are patterns related with taxonomical
knowledge, and they the ones that have received most attention in this first stage of our research,
as well as the Part-WholeRelation ODP (CP-PW-01).

Lexico-Syntactic Patterns (LP-Di-01) (en)

1 (NP<class>,)* and NP<class> (have NEG) | (do NEG have)
elements | individuals | instances in common

Formalization
2 (NP<class>,)* and NP<class> do NEG share elements |

individuals | instances | [CN]

Table 29. LSPs (en) for the DisjointClasses ODP (LP-Di-01)

Lexico-Syntactic Patterns

1 (NP<subclass>,)* and NP<subclass> be the only [CN] NP<superclass>

Formalization 2 Only | just (NP<subclass>,)* and NP<subclass> be | belong to | group in|
into NP<superclass>

Examples The hagfish and the lamprey are the only representatives of Agnathans.

Table 30. LSPs for the ExhaustiveClasses ODP (LP-EC-01)

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 131 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

With the aim of making LSPs processables by NL processing tools, the identified LSPs have been
implemented with JAPE66, a component of the GATE architecture.

JAPE stands for Java Annotations Patterns Engine, and is a grammar that consists of a set of
phrases, each of which consists of a set of pattern/action rules. The left-hand-side (LHS) of the
rules consists of an annotation pattern, and the right-hand-side (RHS) consists of manipulation
statements, which can be made up of any Java code.

By way of example, we include in Table 31 the JAPE rule corresponding to one of the LSPs
identified for the SubClassOf ODP (LP-SC-01), LSP 4.:

LSP 4: NP<superclass> CATV [CD] [CN] [PARA] (NP<subclass>,)*and NP<subclass>

Macro: NOUN

(

 ({Token.category == NN} | {Token.category == NNS}

 | {Token.category == NP} | {Token.category == NPS})

)

Rule: SubClassOf

(

 // NP<superclass>

 (NOUN)

 // CATV e.g. be divided|classify into | include | comprise |…

 (({Token.lemma == "be"}

 ({Token.lemma == "divide"} | {Token.lemma == "classify"})

 ({Token.lemma == "in"} | {Token.lemma == "into"})) | (…))

 // [CD] [PUNCT] e.g. two major categories:

 ({Token.category == CD}

 ({Token.category == JJ})*

 (NOUN))?

 ({Token.kind == punctuation})?

// (NP<subclass>,)*

 (({Token.category == JJ})*(NOUN)

 ({Token.kind == punctuation})?)+

 // and NP <subclass>.

 {Token.category == CC}

 ({Token.category == JJ})*

 (NOUN)

 {Token.category == SENT}

):SubClassOf1 -->

 :SubClassOf1.SubClassOf = {kind = "SubClassOf "}

Table 31. JAPE Rule for LSP 4 of LP-SC-01

Once ODPs have been enriched with LSPs, and JAPE rules have been created for each LSP, we
have to make the repository of ODPs accessible to naive users, in order to enable them an
automatic or semi-automatic selection of ODPs. For that, we are developing a new NeOn plug-in

66 http://www.gate.ac.uk/sale/tao/#x1-1500007

Page 132 of 150 NeOn Integrated Project EU-IST-027595

for an automatic and semi-automatic selection of ODPs called SOS, System for Ontology design
patterns Support, and described in section 8.3.2.

8.3.2. SOS NeOn plug-in, System for Ontology design patterns Support
The goal of the SOS NeOn plug-in is to select and retrieve the most appropriate ODP, i.e., the one
that meets the modelling needs of the user as expressed in the NL sentence introduced as input.
The SOS NeOn plug-in workflow, illustrated by Figure 37, has been divided in 5 main steps and is
detailed below.

Figure 37. SOS NeOn Plug-in Workflow

Step 1: Input introduction. The user freely formulates in NL the phenomenon (s)he wants to
model without any constraints from controlled languages or vocabularies, and introduces it in the
system. In this sense, our proposal differs from other applications intended to naive users for
creating or editing ontologies as CLIE [50] or GINO [18], in which the input has to be compliant with
the controlled language the application relies on. For an extended review on such tools see [49].

As already explained at the beginning of this section, we assume the correctness of the statement
content.

Step 2: NL tagging. The system analyses the input (a sentence in NL) and annotates it with NL
processing tools. For the annotation, some GATE components (General Architecture for Text
Engineering67) are used, namely, ANNIE information system –which contains a tokeniser, a
sentence splitter, a part-of-speech tagger, a gazetteer, and a coreference resolver-, and
TreeTagger, an external part-of-speech tagger that supports the annotation for languages as
Spanish and German. The result of the annotation is a tagged sentence, as illustrated in Table 32,
with:

 Information about the syntax by means of the category of words and syntax order

 Lexical information by means of the lemma

67 http://www.gate.ac.uk/

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 133 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

KindCategoryLemmaString

punctuationSENT..

wordNNSinvertebrateinvertebrates

wordCCandand

wordNNSvertebratevertebrates

punctuation:::

wordNNScategorycategories

wordJJmajormajor

wordCDtwotwo

wordINintointo

wordVVNdividedivided

wordVBPbeare

wordNNSanimalAnimals

KindCategoryLemmaString

punctuationSENT..

wordNNSinvertebrateinvertebrates

wordCCandand

wordNNSvertebratevertebrates

punctuation:::

wordNNScategorycategories

wordJJmajormajor

wordCDtwotwo

wordINintointo

wordVVNdividedivided

wordVBPbeare

wordNNSanimalAnimals

Table 32. Example of Annotation Results by ANNIE (GATE)

Although the GATE architecture can provide much more information about texts in NL, preliminary
experiments show that the results of the selected annotations are enough to carry out the matching
recommendation action between NL sentences and ODPs.

Step 3: Matching of tagged sentence to ODPs (by means of JAPE rules). The output of the 2nd
step, namely, the tagged sentence, is analyzed against the JAPE rules created for all LSPs
associated to ODPs (see Table 31 in section 8.3.1 for an example of a JAPE rule). As result of this
analysis, GATE returns a matching recommendation, which can be of two types:

 Exact matching = 1 tagged sentence – 1 ODP

 Inexact matching = 1 tagged sentence – N ODPs

If the result of the matching action is Exact matching, the SOS NeOn plug-in normally goes to Step
5, except for some special situations, in which the knowledge represented by the corresponding
ODP can be enriched with additional knowledge, and it then goes to Step 4. From the set of ODPs
enriched with LSPs so far, this happens when the Exact matching is performed with the
SubClassOf ODP (LP-SC-01).

If, on the contrary, the tagged sentence is matched to more than one ODP (Inexact matching), a
refinement of the initial input has to be performed in order to obtain an Exact matching. In that
case, the system goes to Step 4. The cause of Inexact matching in the analyzed ODPs is lexical
ambiguity68, which means, that some of the verbs in which LSPs are based can have different
meanings (in other words, they are considered polysemous verbs69). This is the specific case of
some verbs as divide or include that are present in the identified LSPs for SubClassOf (LP-SC-01)
and Part-WholeRelation (CP-PW-01). This will be detailed in section 8.3.3.

Step 4: Input refinement. The previous step ends in two outputs:

a) Exact matching to 1 ODP advisable to be enriched with additional knowledge. This case is
exemplified by the SubClassOf ODP (LP-SC-01) [110]. From the ontological perspective, it is
recommendable to further specify this basic taxonomical relation by adding knowledge about
disjointness and/or exhaustiveness. The purpose of this is basically to develop a robuster ontology
with a richer conceptualization to avoid eventual errors and inconsistencies in future ontology-
based applications. Therefore, the SOS NeOn plug-in will offer the user the option of refining the

68 Lexical ambiguity is a linguistic phenomenon by which certain lexical entries have more than one meaning (based on

[96])
69 Polysemy happens when the same lexical entry has different meanings.

Page 134 of 150 NeOn Integrated Project EU-IST-027595

input with that kind of knowledge by means of some question-answering techniques that basically
launch queries to the user that (s)he has the option of answering (or not) for enabling an Input
refinement. Details are provided in section 8.3.3.

b) Inexact matching to N ODPs to be disambiguated. In this case, a refinement of the input is
compulsory, because Exact matching most be achieved for the NeOn SOS plug-in to continue the
process. The SOS NeOn plug-in will interact with the user until Exact matching is obtained. As
already mentioned, this case is exemplified by the SubClassOf ODP (LP-SC-01) and the Part-
WholeRelation ODP (CP-PW-01), since some LSPs associated to them overlap. The Input
refinement process has been explained in more detail in section 8.3.3.

Step 5: Final output. Once the Exact matching has been performed, the corresponding ODP is
selected and returned to the user in the form of a NeOn UML diagram, which is instantiated with
concepts, relations, etc. extracted from the NL sentence. The SOS NeOn plug-in is capable of
identifying the elements in the NL sentence and the role they play in the knowledge expressed by
the sentence. Therefore, the NeOn UML diagram provided in ODPs is instantiated with the
corresponding concepts, relations, etc. This is the output shown to the user, as can be seen in
Figure 37.

Once the process has been repeated with several NL sentences introduced by the user, the SOS
NeOn plug-in relates the instantiated NeOn UML diagrams among each other, whenever this is
possible, and the output is a complete picture of the whole conceptualization.

8.3.3. Input Refinement
In this section, our aim is to illustrate how the SOS NeOn plug-in is expected to tackle the
problems we have already identified in Step 3 of the SOS plug-in workflow (section 8.3.2).

a) Exact matching to 1 ODP advisable to be enriched with additional knowledge
This situation results from the suitability of specifying the basic taxonomical relation represented by
the SubClassOf ODP (LP-SC-01) with knowledge about disjointness and/or exhaustiveness.

Disjointness is generally understood in ontological modelling as the property of two classes of not
sharing subclasses or individuals. Exhaustiveness has to do with the property of a set of classes of
belonging to a superclass and entirely including all individuals that belong to that superclass,
without excluding any of them.

In D5.1.1 [110], the pattern for modelling DisjointClasses (LP-Di-01) is meant to express that an
element belonging to a certain group or set, cannot belong to another group of set. The one for
modelling ExhaustiveClasses (LP-EC-01) is defined as the union of set of mutually disjoint
subclasses.

Assuming that the SubClassOf ODP (LP-SC-01) has been matched in a particular case, it is
advisable to find out if subclasses are mutually disjoint. If this is the case, subclasses are
additionally modelled as disjoint, and thus apart from the LP-SC-01, the LP-Di-01 is also matched.
Further, if it happens that the set of subclasses is also complete or exhaustive and covers the
superclass, then this relation has to be additionally modelled as exhaustive, and thus the LP-EC-01
is also matched. The possibilities for enriching the subclass-of relation represented by the
SubClassOf ODP (LP-SC-01) with disjointness and exhaustiveness knowledge are illustrated in
Figure 38.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 135 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Figure 38. Possibilities for enriching Taxonomies
It is foreseen that the user assists the SOS NeOn plug-in in discovering if the taxonomy or
hierarchy (s)he wants to model can be completed with disjoint and/or exhaustive knowledge. For
this reason, we have decided to refine the input by asking the user some questions that he will
have to answer with yes or no in the input window of the NeOn editor. Let us illustrate this
technique in the light of one of the examples introduced in section 8.3.1:
 1) Animals are divided into two major categories: vertebrates and invertebrates

Some examples of questions are shown below.

 Regarding disjointness:

 -Can a certain animal belong to the category of vertebrates and to the category of
invertebrates at the same time?

If the answer is no, the system will further model those subclasses as disjoint classes. If the
answer is yes, it will remain modelled as SubClassOf relation.

 Regarding exhaustiveness:

 -Are there any other types of animals?

If the answer is yes, the system will offer the user the possibility of introducing the missing
subclasses in the input window of the NeOn editor. As soon as the user completes the list of
subclasses, it appears updated in the input window and the system assumes that the list has been
completed with the missing classes. Therefore, the system proceeds to model those classes
according to the ExhaustiveClasses relation.

Should the answer to this question be no, the system would directly assume that the enumeration
of subclasses is exhaustive, and will proceed to formalize it in that way.

As already outlined, the ExhaustiveClasses relation identified in D5.1.1 implies disjointness. This
means that, if the classes expressed by the user are disjoint and exhaustive, this will be
represented by the patterns: SubClassOf relation and ExhaustiveClasses relation. However, there
is no pattern in the current repository for expressing that classes are exhaustive but not disjoint. In
this case, just the SubClassOf relation could be represented, and the information about
exhaustiveness would be lost.

b) Inexact matching to N ODPs to be disambiguated
This situation results from the ambiguity present in some of the lexical items included in LSPs. In
fact, there are some ODPs that have associated the same LSP, as in the case of some LSPs for
the SubClassOf ODP (LP-SC-01) and the Part-WholeRelation ODP (CP-PW-01). Let us take a
look at the sentences below:

1) Drugs are divided into A, B and C.

2) Each half of the brain is divided into X lobes.

Page 136 of 150 NeOn Integrated Project EU-IST-027595

Either sentences match the same LSP, since the verb divide into can introduce types of or parts of.

LSP 4: NP<superclass> CATV [CD] [CN] [PARA] (NP<subclass>,)*and NP<subclass>
This LSP is associated to two ODPs, the one for the SubClassOf relation, and the other for the
Part-Whole relation.

In the following examples, we find a similar example, because the verb include is as well
ambiguous. It can express that what follows are types of or parts of:

3) Arthropods include insects, crustaceans, spiders, scorpions, and centipedes.

4) Reproductive structures in female insects include ovaries, bursa copulatrix and uterus.

Again, both sentences match the same LSP:

 LSP 4: NP<superclass> CATV [CD] [CN] [PARA] (NP<subclass>,)*and NP<subclass>
Obviously, the difference is clear for an intelligent being, but not for a tool. Here again we have to
resort to the question-answering technique for refining the search. Some examples of the so-
called“refining questions” for sentence 1) are:

 -Are A, B and C types of drugs?

 -Are A, B and C parts or components of drugs?

In this case, the answer to the first question should be yes, and to the second one, no, because A,
B and C are types of drugs, and not parts of it. By interacting with the SOS NeOn plug-in in this
way, the user would help it to disambiguate the relation expressed by the NL sentence, and to
determine the Exact matching to the SubClassOf relation (LP-SC-01).

8.4. Proposed Guidelines for Ontology Design Patterns Reuse by Naive Users

In this section we include the preliminar methodological guidelines proposed in NeOn for building
ontology networks by reusing Ontology Design Patterns (ODPs). As already mentioned in section
8.1, we make a distinction between two types of users: naive users and expert users, and in this
version of the deliverable we propose guidelines for naive users.

We assume the existence of repositories or catalogues of Ontology Design Patterns. These may
be of great use to expert users, but opaque to naive user, who may encounter difficulties in
understanding ontology languages such as OWL or RDF, UML representation diagrams, etc. In
both cases we assume that users have sufficient knowledge of the domain for which they want to
develop an ontology.

The goal of the Ontology Design Patterns reuse by naive users is to enable the use Ontology
Design Patterns in the development of the ontology for solving modelling difficulties. The output of
this activity is an Ontology Design Pattern integrated into the ontology network being developed.

Table 33 shows the filling card for the ODPs reuse activity by naive users, including definition,
goal, inputs, outputs, who carries out the task, and when the task should be taken.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 137 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Ontology Design Patterns (ODPs)
Reuse by Naive Users

Definition

Ontology Design Patterns (ODPs) Reuse is defined as the activity of using ontology design
patterns in the solution of different modelling problems during the development of new
ontologies or during the activity of ontology aligning (as background knowledge).

Goal

The goal is to allow the reuse of ODPs during the ontology development in order to model
those parts of the ontology that present modelling difficulties to the user.

Input Output

Modelling problem during the ontology development.

Ontology design pattern
integrated into the ontology
network being developed.

Who

Software developers and ontology practitioners that have little expertise in the ontology
development task and insufficient command of ontology languages (OWL, RDF(S), etc.),
Ontology Design Patterns (ODPs), UML diagrams, etc.

When

During the development of the Ontology Conceptualization activity, the Ontology
Formalization activity, or the Ontology Implementation activity.

Table 33. ODPs Reuse by Naive users Filling Card.

In this use case, users access Ontology Design Patterns repositories in an indirect way, by means
of the SOS NeOn plug-in, described in 8.3. Tasks involved in this activity are explained in the
following and shown in Figure 39.

Page 138 of 150 NeOn Integrated Project EU-IST-027595

Figure 39. Tasks for ODPs Reuse by Naive Users

Task 1. ODPs Formulation.
The goal of this task is the formulation in NL of the domain aspect to be modeled. Naive software
developers and ontology practitioners carry out this task taking as input a modelling problem, and
using their own knowledge of the domain. The task output is a sentence in NL expressing the
domain aspect to be modelled.

Formulating right expressions of conceptual relations in NL is crucial for the success of the
modelling process. The user should check the advices given by the SOS NeOn plug-in before
starting the formulation task. For example, some of the advices given by the SOS NeOn plug-in
may propose the user to express statements in an assertive way, avoiding the use of unnecessary
adverbs or adjectives, and exclusively introducing those words that are required for expressing
how concepts are related. We are currently working on the identification of additional advices.

The SOS NeOn plug-in will provide support for three natural languages in a first stage: English,
Spanish and German.

Task 2. ODPs Refinement.
The goal of this task is refining the NL sentence resulting from the previous task. Naive software
developers and ontology practitioners carry out this task taking as input one or various refining
questions returned to the user by the SOS NeOn plug-in using NL techniques. The task output is
one or a set of answers that the SOS NeOn plug-in will process for refining the original NL
sentence. This task will be repited until the exact matching is obtained.

For example, in NL expressions such as Drugs are divided into A, B and C or Each half of the brain
is divided into X lobes, the system may not be able to distinguish between the SubClassOf ODP
(LP-SC-01) and the PartWholeRelation ODP (CP-PW-01). Regarding especial modelling issues as
the one rose by the SubClassOf OPD (for example in Animals are divided into two major
categories: vertebrates or invertebrates), it is recommendable to enrich such relation with
knowledge about disjointness (LP-Di-01) or exhaustiveness (LP-EC-01).

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 139 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

Task 3. ODPs Validation.
The goal of this task is the validation of the NeOn UML diagram returned by the SOS plug-in
corresponding to the ODP that matches the modelling issue expressed by the user through the NL
sentence. Naive users carry out this task taking as input the NeOn UML diagram (extended or
instantiated with information from the NL formulation), displayed in the NeOn editor. The task
output is an ODP ready to be integrated in the ontology network being developed.

Page 140 of 150 NeOn Integrated Project EU-IST-027595

9. Conclusions and Future Work

After analysing the state of the art on existing methodologies for building ontologies, we can say
that METHONTOLOGY and On-To-Knowledge are up to now the most complete methodologies for
building ontologies from scratch. They mainly include guidelines for supporting single ontology
construction from the ontology specification to the implementation. The three analyzed
methodologies (METHONTOLOGY, On-To-Knowledge, and DILIGENT) do not treat the critical
dimensions identified within the NeOn project, which are collaboration, context and dynamics.
Furthermore, the degree of coverage given by those methodologies to the same processes and
activities included in this deliverable is very low. And finally, the analyzed methodologies are not
targeted to software developers and ontology practitioners in general, but towards ontology
researchers.

As already mentioned, our aim within the NeOn project is to create the NeOn methodology for
building ontology networks covering the drawbacks presented in the three analyzed
methodologies, and benefiting from the advantages included in such methodologies, with respect
to the aforementioned characteristics.

Concretely, regarding NeOn dimensions, the first version of the NeOn methodology for building
ontology networks benefits from the collaboration aspects included in DILIGENT. Furthermore, we
have taken into account the proposal given by METHONTOLOGY and On-To-Knowledge about
the use of competency questions for the ontology specification activity to create the methodological
guidelines for this activity presented in this deliverable. With respect to the reuse of ontologies,
using the list of activities proposed by METHONTOLOGY, we have improved and extended them
to propose the corresponding methodological guidelines in the first version of the NeOn
methodology.

Therefore, this deliverable has presented the first version of the NeOn methodology for building
ontology networks taking into account the aforementioned characteristics. In this sense, this
deliverable presents an step forward by means of the following contributions:

 Analysis of how argumentation and collaboration dimensions are related to the different nine
identified scenarios for collaboratively building network of ontologies. This analysis is presented
in section 4.2.

 Preliminar guidelines for deciding if it is better to develop a single ontology or an ontology
network are presented in section 4.3.

 Prescriptive methodological guidelines for carrying out the ontology specification activity,
including three examples on how to apply the proposed methodological guidelines. Such
guidelines are provided in chapter 5.

 Methodological guidelines for reusing and reengineering non ontological resources are
presented in chapter 6. In this case, a typology of non ontological resources is also provided.

 Prescriptive methodological guidelines for reusing ontological resources, focused on general or
common ontologies, domain ontologies as a whole, and ontology statements are provided in
chapter 7.

 Methodological guidelines for reusing ontology design patterns by naive users are presented in
chapter 8.

To conclude, we present the comparison between the three analyzed methodologies
(METHONTOLOGY, On-To-Knowledge, and DILIGENT) and the first version of the NeOn
methodology for building ontology networks, with respect to the following characteristics: (1) Neon
dimensions that are: collaboration, context and dynamics; (2) degree of coverage of the process or

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 141 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

activities included in this deliverable by means of providing detailed guidelines; and (3) and
methodology audience. Such a comparison is shown in Table 34

 METHONTOLOGY On-To-Knowledge DILIGENT NeOn Methodology
(Version1)

NeOn Dimensions

Collaboration Not mentioned Not mentioned Treated Mentioned, but not
treated in detail

Context Not mentioned Not mentioned Not mentioned Not mentioned

Dynamic Mentioned, but not treated Mentioned, but not treated Mentioned, but not
treated Not mentioned

Detailed Guidelines for Processes and Activities

Ontology Specification
Not provided

Only Competency
Questions are proposed

Not provided

Only Competency
Questions are proposed

Not provided

In fact, this activity is not
proposed by the

methodology

Provided

Reusing Non
Ontological Resources

Not provided, neither
explicitly mentioned

Not provided, neither
explicitly mentioned

Not provided, neither
explicitly mentioned Provided

Reengineering Non
Ontological Resources

Not provided, neither
explicitly mentioned

Not provided, neither
explicitly mentioned

Not provided, neither
explicitly mentioned

Provided in a
preliminar manner

Reusing Ontologies
Not provided

Only a list of activities to be
carried out is proposed

Not provided

Only recommendation of
identifying ontologies to be

reused is given

Not provided, neither
explicitly mentioned Provided

Reusing Ontology
Design Patterns

Not provided, neither
explicitly mentioned

Not provided, neither
explicitly mentioned

Not provided, neither
explicitly mentioned

Provided in a
preliminar manner

Audience

Targeted to Software
Developers and

Ontology Practitioners

Targeted to ontolgy
engineers and researchers

Not targeted to ontolgy
engineers and researchers

Intended to domain
experts and users

Targeted to ontolgy
engineers and
researchers

Table 34. Comparative Analysis of Three Analyzed Methodologies and the NeOn
Methodology Version 1

Furthermore, future methodological work (methods, techniques and tools) for continuing the
presented step forward will be included in D5.3.2 and D5.4.2 at M36.

The second version of this deliverable, that is D5.4.2, will be focused on:

 improving and extending the methodological guidelines proposed here;

 selecting, comparing and combining non ontological resources, ontological resources, and
ODPs for building ontology networks;

 evaluating ontology networks;

 modularizing ontology networks; and

 evolving ontology networks.

Currently, we are also analysing which is the coverage of the existing and planned NeOn plug-ins
with respect to the activities included in the NeOn Glossary. The results of such an analysis will be
included in D5.3.2, which will be an improved version of D5.3.1. D5.3.2 will include updated and
more detailed guidelines on how to establish an ontology network life cycle, as part of the
scheduling activity. Additionally, the NeOn plug-in “gOntt”, which supports the scheduling activity,
will be also explained.

Page 142 of 150 NeOn Integrated Project EU-IST-027595

References

1. IEEE Standard for Information Technology. Software Life Cycle Processes. Reuse Processes.
IEEE Std 1517-1999 (R2004).

2. IEEE Standard for Developing Software Life Cycle Processes. IEEE Std 1074-1997 (Revision
of IEEE Std 1074-1995; Replaces IEEE Std 1074.1-1995).

3. IEEE Guide for Developing Software Life Cycle Processes. IEEE Std 1074.1-1995.

4. IEEE Recommended Practice for Software Requirements Specifications. IEEE St 830-1993.

5. IEEE Standard Glossary of Software Engineering Terminology. IEEE Std 610.12-1990
(Revision and redesignation of IEEE Std 792-1983).

6. IEEE Standard Glossary of Data Management Terminology. IEEE std 610.5-1990.

7. ISO/IEC International Standard 11179, Part 1, Framework for the specification and
standardization of data elements, 1999.

8. ISO 1087-1:2000. Terminology work. Vocabulary. Part 1: Theory and application.

9. ISO 1087:1990. Terminology work -- Vocabulary -- Part 1: Theory and application.

10. ANSI/NISO Z39.19-2005 Guidelines for the Construction, Format, and Management of
Monolingual Controlled Vocabularies. 2005.

11. Glossary of Terms for the Standardization of Geographical Names, United Nations Group of
Experts on Geographic Names, United Nations, New York, 2002.

12. KACTUS (1996) The KACTUS Booklet version 1.0. Esprit Project 8145 KACTUS.
http://www.swi.psy.uva.nl/projects/NewKACTUS/Reports.html.

13. SEEMP Consortium. SEEMP D31a. Supporting the State of the Art. July 2006.
http://www.seemp.org/.

14. SEEMP Consortium. SEEMP D11. User Requirement Definition. May 2006. http://www.seemp.org/.

15. J.C. Arpírez, O. Corcho, M. Fernández-López, A. Gómez-Pérez. WebODE in a nutshell. AI
Magazine. 2003.

16. R. Baeza-Yates, B. Ribeiro-Neto. Modern Information Retrieval. Addison Wesley. 1999. ISBN
0-201-39829.

17. J. Barrasa, O. Corcho, A. Gómez-Pérez. R2O, an Extensible and Semantically Based
Database-to-Ontology Mapping Language. Second Workshop on Semantic Web and
Databases (SWDB2004), 2004.

18. A. Bernstein, E. Kaufmann. GINO-a guided input natural language ontology editor. In Proc. 4th.
ISWC’06, 2006.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 143 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

19. M. Blázquez, M. Fernández-López, J.M. García-Pinar, A. Gómez-Pérez. Building Ontologies at
the Knowledge Level using the Ontology Design Environment. 1998. In: Gaines BR, Musen MA
(eds) 11th International Workshop on Knowledge Acquisition, Modeling and Management
(KAW’98). Banff, Canada, SHARE4:1–15.

20. S. Borgo, N. Guarino, C. Masolo. An Ontological Theory of Physical Objects. In: Ironi I (ed) 11th
International Workshop on Qualitative Reasoning (QR 1997). Cortona, Italy, pp 223–231.

21. S. Borgo, N. Guarino, C. Masolo. A Pointless Theory of Space Based on Strong Connection
and Congruence. In: Carlucci-Aiello L, Doyle J (eds) 5th International Conference on Principles
of Knowledge Representation and Reasoning (KR 1996). Morgan Kaufmann Publishers, San
Francisco, California, pp 220–229.

22. W.N. Borst. Construction of Engineering Ontologies. Centre for Telematica and Information
Technology, University of Tweenty. Enschede, The Netherlands. 1997.

23. D Brandon. Recursive Database Structures. ACM Digital Library, Journal of Computing
Sciences in Colleges, Volume 21. 2005.

24. D. Brickley, R.V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema. W3C
Working Draft. http://www.w3.org/TR/PR-rdf-schema. 2004.

25. F. Bushmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern-oriented software
architecture. A system of patterns. John Wiley & Sons, Chichester. 1996.

26. T. Buzan. Use your head. BBC Books. 1974.

27. E.J. Byrne. A conceptual foundation for software re-engineering. In Proceedings of the
International Conference on Software Maintenance and Reengineering, pages 226–235. IEEE
Computer Society, 1992.

28. C. Caracciolo, A. Gangemi. NeOn Deliverable D7.2.2. Revised and Enhanced Fisheries
Ontologies. August 2007. Available at: http://www.neon-project.org/

29. R. Casati, B. Smith, A. Varzi. Ontological Tools for Geographic Representation. In N. Guarino
(ed) Formal Ontology in Information Systems, Trento. Italy IOS Press, Amsterdam, pp 77–85.
1998.

30. R. Casati, A. Varzi. Holes and other superficialities. MIT Press, Cambridge, Massachusetts.
1995.

31. P. Cimiano. Ontology Learning and Population from Text. Algorithms, Evaluation and
Applications. Springer. ISBN 0-387-30632-3. 2006.

32. R.A. Coté, D.J. Rothwell, L. Brochu, eds. SNOMED International (3rd ed.), Northfield, Ill,
College of American Pathologists, 1994.

33. M. d’Aquin, A. Schlicht, H. Stuckenschmidt, M. Sabou. Ontology Modularization for Knowledge
Selection: Experiments and Evaluations. 18th International Conference on Database and
Expert Systems Applications. DEXA 2007, Regensburg, Germany.

34. M. d'Aquin, C. Baldassarre, L. Gridinoc, S. Angeletou, M. Sabou, E. Motta. Characterizing
Knowledge on the Semantic Web with Watson. Workshop on Evaluation of Ontologies and
Ontology-based tools, 5th International EON Workshop, collocated with the International
Semantic Web Conference (ISWC'07), Busan, Korea.

Page 144 of 150 NeOn Integrated Project EU-IST-027595

35. M. d'Aquin, C. Baldassarre, L. Gridinoc, M. Sabou, S. Angeletou, E. Motta. Watson: Supporting
Next Generation Semantic Web Applications. WWW Internet conference 2007, Spain.

36. A. Davis. Software Requirements: Objects, Functions and States, Upper Saddle River, New
Jersey: Prentice Hall, 1993.

37. J. de Bruijn, H. Lausen, A. Polleres, D. Fensel. The web service modeling language: An
overview. In: Proceedings of the 3rd European Semantic Web Conference (ESWC2006),
Budva, Montenegro, Springer-Verlag (2006).

38. K. Dellschaft, H. Engelbrecht, J. Monte Barreto, S. Rutenbeck, S. Staab. Cicero: Tracking
Design Rationale in Collaborative Ontology Engineering. Proceedings of the ESWC 2008
Demo Session. Available at: http://www.uni-koblenz.de/~klaasd/Downloads/papers/Dellschaft2008CTD.pdf.

39. M. Egaña Aranguren, R. Stevens, E. Antezana. Ontology Design Patterns for bio-ontologies. In
Bio-Ontologies SIG Workshop 2007 at ISMB/ECCB, 2007.

40. M. Engler, D. Vrandecic, Y. Sure. A Tool for DILIGENT Argumentation: Experiences,
Requirements and Design. In Robert Tolksdorf and Elena Paslaru Bontas and Klaus Schild, 1st
International Workshop on Semantic Technologies in Collaborative Applications STICA 06.
IEEE, IEEE, Manchester, UK, June 2006.

41. J. Euzenat. Corporate memory through cooperative creation of knowledge bases and hyper-
documents. In: Gaines BR, Musen MA (eds) 10th Knowledge Acquisition for Knowledge-Based
Systems Workshop (KAW’96). Banff, Canada. 1996.
http://ksi.cpsc.ucalgary.ca/KAW/KAW96/euzenat/euzenat96b.html.

42. J. Euzenat. Building Consensual Knowledge Bases: Context and Architecture. In: Mars N (ed)
Second International Conference on Building and Sharing of Very Large-Scale Knowledge
Bases (KBKS '95). University of Twente, Enschede, The Netherlands. IOS Press, Amsterdam,
The Netherlands, pp 143–155. 1995.

43. M. E. Fayad, G. K. Srikanth. Choosing the Right Pattern- Real Challenges. [Available at The
Software Patterns Blog at pattern.ijop.org, http://pattern.ijop.org/?p=20 (31-01-08)].

44. J. Feliu Cortès. Relacions conceptuals i terminologia: anàlisi i proposta de detecció
semiautomàtica. PhD Thesis. Institut Universitari de Lingüística Aplicada Universitat Pompeu
Fabra. 2004.

45. D. Fensel, H. Lausen, A. Polleres, J. de Bruijn, M. Stollberg, D. Roman, J. Domingue. Enabling
Semantic Web Services - The Web Service Modeling Ontology. 2007. Springer Verlag. ISBN 3-
540-34519-1 & 978-3-540-34519-0.

46. M. Fernández-López, A. Gómez-Pérez. Searching for a time ontology for Semantic Web
applications. In Vari A, Vieu L (eds) 3th Formal Ontology in Information Systems, Turin, Italy, pp
331-441. 2004.

47. M. Fernández-López, A. Gómez-Pérez, M. D. Rojas-Amaya. Ontologies' crossed life cycles. In:
Dieng R, Corby O (eds) 12th International Conference in Knowledge Engineering and
Knowledge Management (EKAW 2000). Juan-Les-Pins, France. (Lecture Notes in Artificial
Intelligence LNAI 1937) Springer-Verlag, Berlin, Germany, pp 65–79.

48. M. Fernández-López, A. Gómez-Pérez, N. Juristo. METHONTOLOGY: From Ontological Art
Towards Ontological Engineering. 1997. Spring Symposium on Ontological Engineering of
AAAI. Stanford University, California, pp 33–40.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 145 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

49. A. Funk, B. Davis, V. Tablan, K. Bontcheva, H. Cunningham. SEKT Deliverable D2.2.2 Report:
Controlled Language IE Components version 2. SEKT Project, http://www.sekt-project.com.
January, 2007.

50. A. Funk, V. Tablan, K. Bontcheva, H. Cunningham, B. Davis, S. Handschuh. CLOnE:
Controlled Language for Ontology Editing. In Proceedings of the ISWC’07, 2007.

51. E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Elements of Reusable Object-
Oriented Software. Addison-Wesley: New York. 1995.

52. A. Gangemi, C. Catenacci, M. Battaglia. Inflammation ontology design pattern: an exercise in
building a core biomedical ontology with descriptions and situations. In D. M. Pisanelli (ed.),
Ontologies in Medicine. IOS Press, Amsterdam. 2004.

53. A. Gangemi, D. Pisanelli, G. Steve. Ontology Integration: Experiences with Medical
Terminologies Formal Ontology in Information Systems IOS Press, pp. 163—178. 1998.

54. A. Gangemi, C. Catenacci, M. Ciaramita, J. Lehmann. Modelling ontology evaluation and
validation. Proceedings of the Third European Semantic Web Conference, ESWC06, volume
4011 of LNCS. Springer, pp. 140-154. 2006.

55. A. Gangemi, N. Guarino, C. Massolo, A. Oltramari. Understanding top-level ontological
distinctions. In: Gómez-Pérez A, Grüninger M, Stuckenschmidt H, Uschold M (eds) IJCAI 2001
Workshop on Ontologies and Information Sharing. Seattle, Washington, pp 26-33. CEUR
Workshop Proceedings 47:26-33. Amsterdam, The Netherlands (http:/ceur-ws.org/Vol-47/).

56. R. García, O. Celma. Semantic Integration and Retrieval of Multimedia Metadata. Proceedings
of the ISWC 2005 Workshop on Knowledge Markup and Semantic Annotation
(Semannot'2005)". 2005.

57. M.R. Genesereth, R.E. Fikes. Knowledge Interchange Format. Version 3.0. Reference Manual.
Technical Report Logic-92-1. Computer Science Department. Stanford University, California.
http://meta2.stanford.edu/kif/Hypertext/kif-manual.html. 1992.

58. F. Giunchiglia, M. Marchese, I. Zaihrayeu. Encoding Classifications into Lightweight
Ontologies. The Semantic Web: Research and Applications. Springer Berlin/ Heidelberg. 2006.

59. A. Gómez-Pérez, M. Fernández-López, O. Corcho. Ontological Engineering. November 2003.
Springer Verlag. Advanced Information and Knowledge Processing series. ISBN 1-85233-551-
3.

60. A. Gómez-Pérez, A. Lozano-Tello. Applying ONTOMETRIC Method to Measure the Suitability
of Ontologies. Business Systems Analysis with Ontologies. Eds: Green, P.; Rosemann, M. Idea
Group Publishing. 2005. PP: 249-269. ISBN: 1-59140-339-1.

61. A. Gómez-Pérez, M. D. Rojas-Amaya. Ontological Reengineering for Reuse. Knowledge
Acquisition, Modeling and Management: 11th European Workshop on Knowledge Acquisition,
Modeling and Management, EKAW 1999. Dagstuhl Castle, Germany, May 1999. LNCS
Volume 1621/1999. Springer-Verlag, Berlin, Germany, pp 139–156.

62. A. Gómez-Pérez, N. Juristo, C. Montes, J. Pazos. Ingeniería del Conocimiento. Editorial Centro
de Estudios Ramón Areces, S.A. 1997. ISBN: 84-8004-269-9.

63. J.M Gómez-Pérez, T. Pariente, C. Daviaud, G. Herrero. NeOn Deliverable D8.1.1. Analysis of
the pharma domain and requirements. 2006.

Page 146 of 150 NeOn Integrated Project EU-IST-027595

64. J.M. Gómez-Pérez, T. Pariente, C. Buil-Aranda, G. Herrero. NeOn Deliverable D8.2.1.
Software architecture for the NeOn pharmaceutical case studies. 2007.

65. J.M. Gómez-Pérez, T. Pariente, C. Buil-Aranda, G. Herrero, A. Baena. NeOn Deliverable
D8.3.1. Ontologies for pharmaceutical case studies. 2007.

66. E. Greenwood. Metodología de la investigación social. Paidós, Buenos Aires, Argentina. 1973.

67. M. Gruninger, M. S. Fox. The role of competency questions in enterprise engineering. In
Proceedings of the IFIP WG5.7 Workshop on Benchmarking - Theory and Practice, Trondheim,
Norway, 1994.

68. M. Grüninger, M.S. Fox. Methodology for the design and evaluation of ontologies. In Skuce D
(ed) IJCAI95 Workshop on Basic Ontological Issues in Knowledge Sharing, pp 6.1–6.10.
(1995).

69. P. Haase, S. Brockmans, R. Palma, J. Euzenat, M. d’Aquin. NeOn Deliverable D1.1.2. Updated
Version of the Networked Ontology Model. August 2007. Available at: http://www.neon-project.org/.

70. P. Haase, S. Rudolph, Y. Wang, S. Brockmans, R. Palma, J. Euzenat, M. d'Aquin. NeOn
Deliverable D1.1.1. Networked Ontology Model. November 2006. Available at: http://www.neon-
project.org/.

71. P. Hasse, J. Völker. Ontology Learning and Reasoning- Dealing with Uncertainty and
Inconsistency. ISWC-URSW 2005: 45-55. 2005.

72. L. Han, T. Finin, C. Parr, J. Sachs, A. Joshi. RDF123: a mechanism to transform spreadsheets
to RDF. Proceedings of the Twenty-First National Conference on Artificial Intelligence (AAAI-
06). 2006.

73. M. A. Hearst. Automatic Acquisition of Hyponyms from Large Text Corpora. In Proceedings of
14th International Conference on Computational Linguistics, pp. 539-545. 1992.

74. M. Hepp. A Methodology for Deriving OWL Ontologies from Industrial Categorization
Standards. Int'l Journal on Semantic Web & Information Systems (IJSWIS), Vol. 2, pp. 72-99.
2006.

75. M. Hepp, J. de Brujin. GenTax: A generic Methodology for Deriving OWL and RDF-S
Ontologies from Hierarchical Classifications, Thesauri, and Inconsistent Taxonomies.
Proceedings of the 4th European Semantic Web Conference (ESWC2007). pp. 129-144.
Springer-Verlag, 2007.

76. G. Hodge. Systems of Knowledge Organization for Digital Libraries: Beyond Traditional
Authority Files. Council on Library and Information Resources. 2000.
http://www.clir.org/pubs/reports/pub91/contents.html.

77. R. de Hoog. Methodologies for Building Knowledge Based Systems:Achievements and
Prospects. In: Liebowitz J (ed) Handbook of Expert Systems. CRC Press Chapter 1, Boca
Raton, Florida. 1998.

78. M. Hristozova, L. Sterling. Experiences with ontology development for value-added publishing.
In S. Cranefield, T. Finin, V. Tamma, and S. Willmott, editors, Proc. of the OAS’03 Workshop,
2003.

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 147 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

79. A. Lozano-Tello. PhD Thesis: Métrica de idoneidad de ontologías. Spain. Universidad de
Extremadura, 2002. ISBN: 84-7723-537-6.

80. A. Maedche, S. Staab. Ontology Learning for the Semantic Web. IEEE Intelligent Systems.
2001.

81. E. Malinowski, E. Zimányi. Hierarchies in a multidimensional model: From conceptual modeling
to logical representation. Data & Knowledge Engineering. 2006.

82. E. Marshman, T. Morgan, I. Meyer. French patterns for expressing concept relations. In
Terminology, 8:1, 1-29. 2002.

83. C. Masolo, S. Borgo, A. Gangemi, N. Guarino, A. Oltramari, L. Schneider. The WonderWeb
Library of Foundational Ontologies, Preliminary Report, WonderWeb deliverable D1.7
(http://www.loa-cnr.it/Papers/DOLCE2.1-FOL.pdf). 2003.

84. R. Mizoguchi, J. Vanwelkenhuysen, M. Ikeda. Task Ontology for reuse of problem solving
knowledge. In: Mars N (ed) Towards Very Large Knowledge Bases: Knowledge Building and
Knowledge Sharing (KBKS 1995). University of Twente, Enschede, The Netherlands. IOS
Press, Amsterdam, The Netherlands, pp 46–57.

85. M. Mochol, E. Paslaru. Practical Guidelines for Building Semantic eRecruitment Applications,
International Conference on Knowledge Management (iKnow'06), Special Track: Advanced
Semantic Technologies. 2006.

86. N. F. Noy, D. L. McGuinness. Ontology development 101: A guide to creating your first
ontology. Tech. rep., KSL-01-05, Stanford Knowledge Systems Laboratory., 2001.

87. L. Paradela. PhD Thesis: Una Metodología para la Gestión del Conocimiento. Spain.
Universidad Politécnica de Madrid, 2001.

88. P.F. Patel-Schneider, P. Hayes, I. Horrocks. OWL Web Ontology Language Semantics and
Abstract Syntax. W3C Recommendation. http://www.w3.org/TR/owl-semantics/. 2004.

89. R.A. Pease, I. Niles. IEEE Standard Upper Ontology: A Progress Report. The Knowledge
Engineering Review 17(1):65–70. 2002.

90. H. S. Pinto, C. Tempich, S. Staab. DILIGENT: Towards a fine-grained methodology for
DIstributed, Loosely-controlled and evolvInG Engineering of oNTologies. In Ramón López de
Mantaras and Lorenza Saitta, Proceedings of the 16th European Conference on Artificial
Intelligence (ECAI 2004), August 22nd - 27th, pp. 393--397. IOS Press, Valencia, Spain,
August 2004. ISBN: 1-58603-452-9. ISSN: 0922-6389.

91. H. S. Pinto, S. Staab, Y. Sure, C. Tempich. OntoEdit empowering SWAP: A case study in
supporting Distributed, Loosely-controlled and evolvInG Engineering of oNTologies
(DILIGENT). Proceedings of the 1st European Semantic Web Symposium. Crete, May 10-12,
2004.

92. L. Prechelt. An experiment on the usefulness of design patterns: Detailed description and
evaluation. Technical Report 9/1997. University of Karlsruhe. [Available at
http://citeseer.ist.psu.edu/121551.html (21-02-08)].

93. R. S. Pressman, Software Engineering: A Practitioner's Approach, 5th ed. New York, NY:
McGraw-Hill, 2001.

Page 148 of 150 NeOn Integrated Project EU-IST-027595

94. V. Presutti, A. Gangemi, S. David, G. Aguado de Cea, M. C. Suárez-Figueroa, E. Montiel-
Ponsoda, M. Poveda. NeOn Deliverable D2.5.1. A Library of Ontology Design Patterns:
reusable solutions for collaborative design of networked ontologies. NeOn Project.
http://www.neon-project.org. February 2008.

95. V. Presutti, A. Gangemi, S. David, G. Aguado de Cea, M.C. Suárez-Figueroa, E. Montiel-
Ponsoda, and M. Poveda. NeOn Deliverable D2.5.1 A Library of Ontology Design Patterns:
reusable solutions for collaboratively design of networked ontologies. NeOn Project,
http://www.neon-project.org. February, 2008.

96. J. Pustejovsky. The Generative Lexicon. MIT Press.1995.

97. A. Rector, J. Rogers. Patterns, properties and minimizing commitment: Reconstruction of the
Galen Upper Ontology in OWL. In A. Gangemi and S. Borgo (eds.), Proceedings of the
EKAW04 Workshop on Core Ontologies in Ontology Engineering. CEUR. 2004.

98. M. Sabou, S. Angeletou, M. d’Aquin, J. Barrasa, K. Dellschaft, A. Gangemi, J. Lehman, H.
Lewen, D. Maynard, D. Mladenic, M. Nissim, W. Peters, V. Presutti, B. Villazón. NeOn
Deliverable D2.2.1. Selection and integration of reusable components from formal or informal
specifications. NeOn Project. http://www.neon-project.org. May 2007.

99. D. Sánchez Ruenes. Domain Ontology Learning from the Web. PhD Thesis, Departament de
Llenguatges i Sistemes Imformàtics. Universidad Politécnica de Cataluña. 2007.

100. L. Schneider. How to Build a Foundational Ontology. The Object-Centered High-level
Reference Ontology OCHRE. Saarland University forthcoming publication. (http://www.ifomis.uni-
saarland.de/Research/Publications/forthcoming/ki2003epaper.pdf). 2004.

101. G. Schreiber, B. Wielinga, H. Akkermans, W. van de Velde, A. Anjewierden. CML: The
CommonKADS conceptual modelling language. In Steels L, Schreiber ATh, Van de Velde W
(eds) A Future for Knowledge Acquisition. Proceedings of the 8th European Knowledge
Acquisition Workshop EKAW 1994. (Lecture Notes in Artificial Intelligence LNAI 867), Springer-
Verlag, Berlin/Heidelberg, pp 1-25.

102. G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt, W. van de Velde, B.
Wielinga. Knowledge engineering and management. The CommonKADS Methodology. MIT
press, Cambridge, Massachusetts. 1999.

103. P. Simons. Parts: A Study in Ontology. Clarendon Press, Oxford, United Kingdom. 1987.

104. B. Smith. Boundaries: An Essay in Mereotopology. In Hahn L (ed) The Philosophy of
Roderick Chisholm (Library of Living Philosophers), LaSalle: Open Court, pp 534-561
(http://ontology.buffalo.edu/smith/articles/chisholm/chisholm.html). 1997.

105. B. Smith. Mereotopology: A Theory of Parts and Boundaries. Data and Knowledge
Engineering, 20, 287-303. 1996.

106. B. Smith , A. Varzi. Fiat and Bona Fide Boundaries. Philosophy and Phenomenological
Research 60: 401–420. 2000.

107. R. Snow, D. Jurafsky, A. Y. Ng. Learning syntactic patterns for automatic hypernym
discovery. In Advances in Neural Information Processing Systems 17. 2004.

108. S. Staab, H.P. Schnurr, R. Studer, Y. Sure. Knowledge Processes and Ontologies. IEEE
Intelligent Systems 16(1):26–34. (2001).

D5.4.1. NeOn Methodology for Building Contextualized Ontology Networks Page 149 of 150

2006–2008 © Copyright lies with the respective authors and their institutions.

109. L. Stojanovic, N. Stojanovic, R. Volz. A Reverse Engineering Approach for Migrating Data-
intensive Web Sites to the Semantic Web. In Intelligent Information Processing, 2002.

110. M. C. Suarez-Figueroa, S. Brockmans, A. Gangemi, A. Gomez-Perez, J. Lehmann, H.
Lewen, V. Presutti, M. Sabou. NeOn Deliverable D5.1.1 Neon modelling components. NeOn
Project, http://www.neon-project.org. April, 2007.

111. M. C. Suárez-Figueroa, G. Aguado de Cea, C. Buil, C. Caracciolo, M. Dzbor, A. Gómez-
Pérez, G. Herrero, H. Lewen, E. Montiel-Ponsoda, V. Presutti. NeOn Deliverable D5.3.1. NeOn
Development Process and Ontology Life Cycle. NeOn Project. http://www.neon-project.org. August
2007.

112. Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, D. Wenke. OntoEdit:Collaborative
Ontology Engineering for the Semantic Web. In: Horrocks I, Hendler JA (eds) First International
Semantic Web Conference (ISWC 2002). Sardinia, Italy. (Lecture Notes in Computer Science
LNCS 2342) Springer-Verlag, Berlin, Germany, pp 221–235.

113. V. Svatek. Design patterns for semantic web ontologies: Motivation and discussion. In
Proceedings of the 7th Conference on Business Information Systems, Poznan. 2004.

114. M. Uschold. Building Ontologies: Towards A Unified Methodology. In: Watson I (ed) 16th
Annual Conference of the British Computer Society Specialist Group on Expert Systems.
Cambridge, United Kingdom. (1996). http://citeseer.nj.nec.com/uschold96building.html.

115. M. van Assem, M. Menken, G. Schreiber, J. Wielemaker. A method for converting thesauri
to RDF/OWL. Proceedings of the Third International Semantic Web Conference (ISWC). pp.
17-31. Springer, 2004.

116. T. Vander Wal. Folksonomy coinage and definition. 2007.
http://www.vanderwal.net/folksonomy.html.

117. G. van Heijst, A.T. Schreiber, B.J. Wielinga. Using explicit ontologies in KBS development.
International Journal of Human-Computer Studies 45:183–292. 1997.

118. A. Varzi. Spatial Reasoning and Ontology: Parts, Wholes, and Locations. In Aiello M, Pratt-
Hartmann I, van Benthem J (eds) Springer-Verlag, pp 945-1038. 2007.

119. A. Varzi. Mereology. In Zalta (ed) Stanford Encyclopedia of Philosophy, Stanford: CSLI (on
line publication) (http://plato.stanford.edu/entries/mereology/ . Last access: 6th February 2008). 2003.

120. D. A. Waterman. A Guide to Expert Systems. Addison-Wesley, Boston, Massachusetts.
1986.

121. B.J. Wielinga, A.T. Schreiber, J.A.C. Sandberg. From Thesaurus to Ontology. First
International Conference of Knowledge Capture KCAP01 Victoria, British Columbia, Canada,
ACM Press 2001.

122. B.J. Wielinga, J. Wielemaker, G. Schreiber, M. van Assem. Methods for Porting Resources
to the Semantic Web. Proceedings of the First European Semantic Web Symposium
(ESWS04) Heraklion, Greece. 2004.

Page 150 of 150 NeOn Integrated Project EU-IST-027595

Annex A. Hands-on Experiments in using the NeOn Watson Plug-in

Use Case 1: Ontology Enrichment
Given two ontologies (Documentation and Event Ontologies from the Knowledge Web project), this
experiment consists in enriching both ontologies with new knowledge available in the web.
Concretely:

 Enrich the Documentation Ontology with new types of documents related to European research
projects.

 Enrich the Documentation Ontology with new properties involving the following concepts:
Thesis, Article, Deliverable, and Template.

 Enrich the Event Ontology with new types of Events related to European research projects.

 Enrich the Event Ontology with new properties involving the following concepts: International
Conference and Review.

Use Case 2: Ontology Development
Develop an ontology for representing the ingredients needed in the Paella recipe, reusing
statements available in the web. The ontology should answer, at least, the following Competency
Questions:

 What is a Paella?

 Which kind of pot and pan would you need for cooking Paella?

 Which kind of ingredients would you use for cooking Paella?

You can use the following information for developing the ontology:

Paella is a typical Spanish dish and is traditionally cooked in a "paellera" - a round flat pan with two
handles - which is then put on the table. It is normally made using shellfish but can also be made
with fish, chicken or rabbit. In many Spanish villages, especially in coastal areas, they use a giant
paellera to cook a paella on festival days which is big enough to feed everybody.

INGREDIENTS:

Small onion, finely chopped

Green pepper, finely chopped

Red pepper, boiled until soft and then
cut into long thin strips

Medium-sized tomatoes, skinned and
finely chopped

Carrots, finely chopped

Peas, cooked

Prawns

Small clams

Squid

Mussels

Rice

Garlic, coarsely chopped

Saffron

Parsley, finely chopped

Olive oil

Water

	NeOn Consortium
	Task 1. Identify purpose, scope and level of formality.
	Use Case 1: Ontology Enrichment
	Use Case 2: Ontology Development

