

 NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 — “Semantic-based knowledge and content systems”

D3.3.2: Matching ontologies for context: The NeOn
Alignment plug-in

Deliverable Co-ordinator: Chan Le Duc

Deliverable Co-ordinating Institution: INRIA

Other Authors: Mathieu d’Aquin (OU), Jesus Barrasa (UPM), Jérôme David
(INRIA), Jérôme Euzenat (INRIA), Raul Palma (UPM), Rosario Plaza (UPM),
Marta Sabou (OU), Boris Villazón-Terrazas (UPM)

This deliverable presents the software support provided by the NeOn toolkit for matching ontolo-
gies, and in particular, recontextualise them. This support comes through the NeOn Alignment
plug-in which integrate the Alignment API and offer access to Alignment servers in the NeOn
toolkit. We present the NeOn Alignment plug-in as well as several enhancement of the Align-
ment server: the integration of three matching methods developed within NeOn, i.e., Semantic
Mapper, OLA and Scarlet, as well as the connection of the Alignment servers with Oyster.

Document Identifier: NEON/2008/D3.3.2/v0.9 Date due: February 29th, 2008
Class Deliverable: NEON EU-IST-2005-027595 Submission date: March 30th, 2008
Project start date March 1, 2006 Version: v0.9
Project duration: 4 years State: Final

Distribution: Public

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 2 of 59 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is part of the NeOn research project funded by the IST Programme of the Commission of the
European Communities by the grant number IST-2005-027595. The following partners are involved in the
project:

Open University (OU) – Coordinator Universität Karlsruhe – TH (UKARL)
Knowledge Media Institute – KMi Institut für Angewandte Informatik und Formale
Berrill Building, Walton Hall Beschreibungsverfahren – AIFB
Milton Keynes, MK7 6AA Englerstrasse 11
United Kingdom D-76128 Karlsruhe, Germany
Contact person: Martin Dzbor, Enrico Motta Contact person: Peter Haase
E-mail address: {m.dzbor, e.motta}@open.ac.uk E-mail address: pha@aifb.uni-karlsruhe.de
Universidad Politécnica de Madrid (UPM) Software AG (SAG)
Campus de Montegancedo Uhlandstrasse 12
28660 Boadilla del Monte 64297 Darmstadt
Spain Germany
Contact person: Asunción Gómez Pérez Contact person: Walter Waterfeld
E-mail address: asun@fi.ump.es E-mail address: walter.waterfeld@softwareag.com
Intelligent Software Components S.A. (ISOCO) Institut ‘Jožef Stefan’ (JSI)
Calle de Pedro de Valdivia 10 Jamova 39
28006 Madrid SL–1000 Ljubljana
Spain Slovenia
Contact person: Jesús Contreras Contact person: Marko Grobelnik
E-mail address: jcontreras@isoco.com E-mail address: marko.grobelnik@ijs.si
Institut National de Recherche en Informatique University of Sheffield (USFD)
et en Automatique (INRIA) Dept. of Computer Science
ZIRST – 665 avenue de l’Europe Regent Court
Montbonnot Saint Martin 211 Portobello street
38334 Saint-Ismier, France S14DP Sheffield, United Kingdom
Contact person: Jérôme Euzenat Contact person: Hamish Cunningham
E-mail address: jerome.euzenat@inrialpes.fr E-mail address: hamish@dcs.shef.ac.uk
Universität Kolenz-Landau (UKO-LD) Consiglio Nazionale delle Ricerche (CNR)
Universitätsstrasse 1 Institute of cognitive sciences and technologies
56070 Koblenz Via S. Marino della Battaglia
Germany 44 – 00185 Roma-Lazio Italy
Contact person: Steffen Staab Contact person: Aldo Gangemi
E-mail address: staab@uni-koblenz.de E-mail address: aldo.gangemi@istc.cnr.it
Ontoprise GmbH. (ONTO) Food and Agriculture Organization
Amalienbadstr. 36 of the United Nations (FAO)
(Raumfabrik 29) Viale delle Terme di Caracalla
76227 Karlsruhe 00100 Rome
Germany Italy
Contact person: Jürgen Angele Contact person: Marta Iglesias
E-mail address: angele@ontoprise.de E-mail address: marta.iglesias@fao.org
Atos Origin S.A. (ATOS) Laboratorios KIN, S.A. (KIN)
Calle de Albarracín, 25 C/Ciudad de Granada, 123
28037 Madrid 08018 Barcelona
Spain Spain
Contact person: Tomás Pariente Lobo Contact person: Antonio López
E-mail address: tomas.parientelobo@atosorigin.com E-mail address: alopez@kin.es

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 3 of 59

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this document, even
if they might not have directly contributed to the writing of this document or its parts:

– Jožef Stefan Institute
– Open university
– iSoCo
– Universität Karlsruhe
– INRIA
– Ontoprise
– CNR
– Universidad Politécnica de Madrid

2006–2008 c© Copyright lies with the respective authors and their institutions.

Change Log

Version Date Author Changes

0.1 15.11.2007 Chan Le Duc initial version
0.2 10.12.2007 Jérôme Euzenat structuring
0.3 19.12.2007 Chan Le Duc first description of plug-in
0.4 30.01.2008 Chan Le Duc Integrated comments
0.5 02.02.2008 Chan Le Duc Integrated UPM description
0.6 15.02.2008 Chan Le Duc Described Scarlet and OLA connection
0.7 19.02.2008 Jérôme Euzenat Added the part about Oyster connection
0.8 29.02.2008 Chan Le Duc Added missing parts
0.9 21.03.2008 Chan Le Duc Accounted for quality control comments

Executive Summary

In the NeOn project, context can be expressed within a network of ontologies through relationships between
ontologies. Such relationships would provide the missing axioms that specify the meaning of knowledge
further and help considering them in their context.

These relations must be established from the initial resources which will be linked to contextual resources.
This can be achieved through the use of ontology matching techniques. In order to help networked ontology
designers to contextualise ontologies, we integrate within the NeOn toolkit a plug-in for finding alignments
between ontologies and importing them within the network of ontologies.

The present deliverable aims at presenting the NeOn Alignment plug-in which can be used either offline,
when users want to compute alignments between two ontologies, or online, when they want to obtain the
alignment from an Alignment server (presented in D3.3.1). In addition, it is possible to import the resulting
alignments under the form of a merged OWL ontology. The NeOn Alignment plug-in offers access to the
Alignment server functions, i.e.:

– Finding alignments available in the servers;
– Computing and representing alignments;
– Piping alignments algorithms (for improving an existing alignment);
– Manipulating (trimming and hardening) and combining (merging, composing) alignments;
– Generating “mediators” (transformations, axioms, rules in format such as XSLT, SWRL, OWL, C-OWL,

WSML).

In this case it can take advantage of extra matching methods available from the server.

So, in addition, the deliverable features several developments that have been made during the past year and
that are made available through the NeOn Alignment plug-in:

– integrating the OWL-Lite Aligner (OLA) within the Alignment server;
– integrating the SemanticMapper matcher within the Alignment server;
– integrating the Scarlet matcher within the Alignment server (see Deliverable D3.3.1);
– organising the cooperation between Oyster and the Alignment server for sharing alignments;

Page 6 of 59 NeOn Integrated Project EU-IST-027595

Contents

1 Context through alignments within networked ontologies 8
1.1 Contextualising ontologies through matching . 8

1.2 Support for matching ontologies . 9

1.3 The NeOn Alignment plug-in and Alignment server extensions 10

1.4 Outline of the deliverable . 11

2 The NeOn Alignment plug-in 12
2.1 Principles . 12

2.2 Implementation . 12

2.3 How to use the NeOn Alignment plug-in . 13

2.4 Stepwise examples . 14

3 Integration of OLA 19
3.1 Presentation . 19

3.2 Specific requirements . 19

3.3 Integration . 19

3.4 Results . 20

4 Integration of the Semantic mapper 24
4.1 Presentation . 24

4.2 Specific requirements . 24

4.3 Integration . 25

4.4 Results . 25

5 Integration of Scarlet 28
5.1 Presentation . 28

5.2 Specific requirements . 28

5.3 Integration . 28

5.4 Results . 28

6 Connection with Oyster 29
6.1 Presentation . 29

6.2 Specific requirements . 29

6.3 Integration . 29

6.4 Results . 30

7 Conclusions 31

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 7 of 59

7.1 Current state of the prototypes . 31

7.2 Further developments . 31

A Installing the NeOn Alignment plug-in 32
A.1 Get the NeOn toolkit . 32

A.2 Get and install the NeOn Alignment plug-in . 32

A.3 Run the NeOn toolkit with the plug-in . 32

A.4 Use the plug-in with the Alignment server . 32

B Installing and extending the Alignment server 34
B.1 Get and install the Alignment server . 34

B.2 Install WordNet . 34

B.3 Connect to the Oyster system . 34

B.4 Add new matching algorithms . 35

B.5 Launching the alignment server . 35

C Semantic mapper 36
C.1 Introduction . 36

C.2 Automatic mapping discovery . 37

Bibliography 58

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 8 of 59 NeOn Integrated Project EU-IST-027595

Chapter 1

Context through alignments within
networked ontologies

In this chapter, we recast the intuition presented in deliverables D3.1.1 and D3.3.1 in the context of networked
ontologies. In particular we explain in what sense context are networks of ontologies (§1.1), what are the
support developed within NeOn for supproting ontology matching and alignment sharing (§1.2) and how this
integrates within the NeOn architecture (§1.3).

1.1 Contextualising ontologies through matching

Domain ontologies are designed to be applied in a particular context and use terms in a sense that is relevant
to this domain, e.g., Ontology in computer science, and which may not be related to similar concepts in other
domains. They do not fully specify concepts because part of their specification is implicit from the context. We
will use here the word “constraint” for this specification in a broad sense: any axiom constrains the meaning
of the terms it uses.

NeOn has in its core the ambitious scenario that ontologies are developed in an open environment in a
distributed fashion. This means that ontologies will be used in settings that are not those that have led to
their design. In order to use them properly, it is necessary to be able to identify this context so that appropriate
actions can be taken: either not using them or adapting them to the new context.

The context of some knowledge or ontology is given by additional knowledge in which or in the perspective of
which this knowledge has been elaborated. This knowledge can vary in nature and expression. For instance,
in work package 2, the context of elaboration of ontologies is expressed as argumentative structures about
ontology design rationale. In work package 3 [Haase et al., 2006], the context of ontologies is prominently
placed in the framework of networked ontologies: the context of an ontology is given by the network of other
ontologies with which it is related.

From this definition, a pair of dual operations can be associated with context (see Figure 1.1): contextualisa-
tion and decontextualisation. Contextualisation or recontextualisation is the action of finding the relations of
an ontology with other ontologies which express its context. Decontextualisation, as the opposite, extracts
one particular ontology from its context. These operation can be combined, for instance, if someone wants
to transfer one ontology from a domain to another one, by first decontextualising it and recontextualising it to
another domain.

As can be considered from this brief description, contextualising an ontology is a matter of matching it to other
ontologies which will provide its context. For that purpose ontology matching technologies can be used.
So we would like to provide support for contextualising ontologies through ontology matching. Moreover,
recontextualising ontologies can be succesfully used for helping the process of matching an ontology into
another one. Thus, we also aim at taking into account the contextualisation operation for matching.

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 9 of 59

o′

o′′
o′′′

o′′′′

o

o′

o′′
o′′′

o′′′′

o

decontextualising

(re)contextualising

Figure 1.1: Contextualising/Decontextualising ontologies in the framework of networked ontologies.

1.2 Support for matching ontologies

In Deliverable D3.3.1, we have considered expressing context with two main constructions from the NeOn
model for networked ontologies: Ontologies and mappings (or alignments). The NeOn model already offers
the metamodel for these two kinds of entities. The Alignment API can be considered as an implementation
of this metamodel.

The Alignment API [Euzenat, 2004] has been designed to help developing applications based on alignments.
It has been developed in the aim of manipulating a standard alignment format for sharing among matching
systems, but it provides the features required for sharing them more widely. The API is a JAVA description of
tools for accessing alignments in the format presented above.

The Alignment API can be used in conjunction with an ontology language API (the OWL-API is currently
available, but other instantiation could be based on totally different languages). This implementation offers
the following services:

– Computing and representing alignments;
– Piping alignments algorithms (for improving an existing alignment);
– Manipulating (trimming and hardening) and combining (merging, composing) alignments;
– Generating “mediators” (transformations, axioms, rules in format such as XSLT, SWRL, OWL, C-OWL,

WSML);
– Comparing alignments (like computing precision and recall or a symmetric distance with regard to a

particular reference alignment).

The API also provides the ability to compose matching algorithms and manipulating alignments through
programming. The API can be used for producing transformations, rules or bridge axioms independently
from the algorithm that produced the alignment. Since its definition, several matching systems have been
developed within this API (OLA, oMap) and more of them are able to generate its format (FOAM, Prompt,
Falcon, etc.).

Within task 3.3 of NeOn we have developed an Alignment sever (see Deliverable 3.3.1) which allows sharing
alignments. The Alignment server is built around the Alignment API. The server architecture is made of three
layers (shown in Figure 1.2):

A storage system that allows persistent storage and retrieval of alignments. It implements only basic stor-
age and runtime memory caching functions. The storage is made through a DBMS interface and can
be replaced by any database management system as soon as it is supported by jdbc.

A protocol manager which handles the server protocol. It accepts the queries from plug-in interfaces and
uses the server resources for answering them. It uses the storage system for caching results.

Protocol plug-ins which accept incoming queries in a particular communication system and invoke the
protocol manager in order to satisfy them. These plug-ins are ideally stateless and only translator for
the external queries.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 10 of 59 NeOn Integrated Project EU-IST-027595

API

JDBC

DBMS

protocolHTT
P

Browser

URI/HTML

Directories

Oyster

JX
TA

Peers

XMLW
SDL

Services

SOAP

Jade

Agents

FIPA ACL

Figure 1.2: The Alignment server is built on the Alignment API that is seated on top of a relational database
repository for alignment and is wrapped around a simple protocol. Each access method is a plug-in that
interacts with the server through the protocol. Currently, HTML, agent and web service plug-in are available.

Currently, three plug-ins are available for the server:

– HTTP/HTML plug-in for interacting through a browser;
– JADE/FIPA ACL for interacting with agents;
– HTTP/SOAP plug-in for interacting as a web service.

Services that are provided by the Alignment server are:

– storing alignments, whether they are provided by automatic means or by hand;
– storing annotations in order for the clients to evaluate them and to decide to use one of them or

to start from it (this starts with the information about the matching algorithms, the justifications for
correspondences that can be used in agent argumentation, as well as properties of the alignment);

– producing alignments on the fly through various algorithms that can be extended and parametrised;
– manipulating alignments by inverting them, applying thresholds;
– generating knowledge processors such as mediators, transformations, translators, rules as well as to

process these processors if necessary.

There is no constraint that the alignments are computed online or off-line (i.e., they are stored in the alignment
store) or that they are processed by hand or automatically. This kind of information can however be stored
together with the alignment in order for the client to be able to discriminate among them. For applications,
the Alignment server can be available:

at design time through invocation by design and engineering environments: It can be integrated within the
development environment.

at run time through the web service access of the server (or any other available plug-in).

1.3 The NeOn Alignment plug-in and Alignment server extensions

The NeOn Alignment plug-in provides design time support for alignment management from the NeOn toolkit.
It is a NeOn toolkit plug-in that takes advantage of both the Alignment API and Alignment servers.

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 11 of 59

AServ
API

NeOn Toolkit

AlignPlugIn

Watson

Oyster
Semantic Map-

per (UPM)

Data extrac-
tor (JSI)

OLA (INRIA)

Scarlet (OU)

onoff

Figure 1.3: The integration of the Alignment server within the NeOn architecture (solid line corresponds to
connection presented in this deliverable, dashed lines to a connection to be made in D3.3.3 and dotted lines
to future connections.

Figure 1.3 presents the design-time support provided in NeOn in relation with Alignement servers. The
NeOn Alignment plug-in can work in stand alone mode thanks to its embedding of the Alignment API or in
connection with an Alignment server. In the latter case, it will benefit from new matchers integrated within the
Alignement server and alignment sharing.

Hence the goal of the work presented in this deliverable is to (1) offer design time alignment manipulation
support within the NeOn toolkit through the Alignment API and (2) offer access to Alignment servers from the
NeOn toolkit.

1.4 Outline of the deliverable

The present deliverable is a prototype report that describes the work that has been carried out for integrating
matching, contextualising and decontextualising to the NeOn toolkit. This work is presented through the
development of an Alignment plug-in integrated the NeOn toolkit (Chapter 2). Three algorithms dedicated to
matching networked ontologies developed within NeOn have been integrated to the Alignment API and server
so that they are available to the NeOn Alignment plug-in. These are OLA (Chapter 3), the Semantic Mapper
(Chapter 4) and Scarlet (Chapter 5). Finally, the Alignment server has also been integrated with another
infrastructure tool developed within NeOn: Oyster for publicising the availability of alignments (Chapter 6).

This work takes advantage of the previous work in work packages 1 and 3. It shows a practical instantiation
of the NeOn networked ontology model using the ontology and alignment (a.k.a. mapping) components. This
will allow us to consider OWL ontologies and alignments as networked ontologies and to offer software for
dealing with contexts in the framework of networked ontologies.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 12 of 59 NeOn Integrated Project EU-IST-027595

Chapter 2

The NeOn Alignment plug-in

The NeOn Alignment plug-in aims to bring the functions implemented in the Alignment server to the NeOn
toolkit. From the NeOn toolkit environment in which the NeOn Alignment plug-in is integrated, users can
exploit the Alignment server for computing and managing alignments between ontologies. An architecture
and features of the Alignment server were introduced in the Deliverable 3.3.1.

In this chapter, we begin by presenting working principles and the functions of the NeOn Alignment plug-in.
Then, we illustrate the usage of the NeOn Alignment plug-in through a step-by-step example.

2.1 Principles

The NeOn Alignment plug-in is designed so that it is able to work in two modes, namely off-line and on-line,
according to the availability of resources:

– In the off-line mode, the Alignment API is integrated within the plug-in, and thus, allows the plug-in to
perform all functions implemented in this API. For instance, the plug-in in the offline mode is able to
match local ontologies which are fed by the NeOn toolkit environment or to trim an alignment resulting
from an ontology matching.

– In the on-line mode, the NeOn alignment plug-in provides functions related to managing and accessing
alignments on a server, in addition to the functions offered by the off-line mode. In order to do so, the
plug-in opens connections with an Alignment server for either computing an alignment, finding an
existing alignment or submitting an alignment it has computed.

The NeOn Alignment plug-in in the current state offers all main functions of the Alignment server developed
in INRIA : ontology matching and alignment trimming, finding, storing. The alignment retrieve function is
performed through exporting an alignment to the Ontology Navigator as an OWL Ontology. It remains two
functions of the server to be integarted into the NeOn toolkit : alignment invert and load. This task will be
carried out in a furture version of the NeOn Alignment plug-in.

2.2 Implementation

Communication between the NeOn Alignment plug-in and the Alignment server relies on the web service
Interface of the server. Queries from the plug-in and results from the server are expressed as SOAP mes-
sages.

The NeOn toolkit itself is a plug-in in Eclipse environment and can be extended thanks to plug-in mecha-
nism. Through its modular design, the NeOn toolkit can be enriched with self-developed modules and be
customized to the user’s personal needs. The integration of the NeOn Alignment plug-in into the NeOn toolkit
is based on these features.

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 13 of 59

Figure 2.1: Two working modes in the NeOn Alignment plug-in.

More precisely, the NeOn Alignment plug-in can get the working ontologies from the Ontology Navigator of
the NeOn toolkit and call functions from an Alignment server with these ontologies as input. If the result of
a function is an alignment, the plug-in can display it directly as a set of correspondences or export it to the
Ontology Navigator of NeON Toolkit as an OWL ontology.

2.3 How to use the NeOn Alignment plug-in

As a plug-in integrated into the NeOn toolkit, the NeOn Alignment plug-in can access to data models im-
plemented in the NeOn toolkit and manipulate them. More precisely, the NeOn Alignment plug-in can get
URIs of opened ontologies from the Ontology Navigator in the NeOn toolkit. Since alignments provided by
matchers must be able to be refer to stable and identifiable ontologies, we require that these ontologies be
identifiable outside of the NeOn toolkit and thus have a URI.

Additionally, the NeOn Alignment plug-in is able to add an alignment as an OWL ontology to the Ontology
Navigator. This may provide a way to exploit and share alignments, which are computed by the NeOn
Alignment plug-in, among different plug-ins in the NeOn toolkit environment.

The NeOn Alignment plug-in can work in two modes : offline and online.

Offline mode

The offline mode is the default mode and can be activated by clicking on button "Offline". In this mode,
the NeOn Alignment plug-in can access to NeOn toolkit ontologies (i.e. opened ontologies in the Ontology
Navigator) and match any pair of them (with locally available methods). Resulting alignments are stored as
local system files and exported to the Ontology Navigator as OWL ontologies (or to some Alignment server
when in online mode).

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 14 of 59 NeOn Integrated Project EU-IST-027595

Online mode

The online mode is activated by clicking on the "Online" button and providing the address of an Alignment
server. In this mode, the NeOn Alignment plug-in provides all functions from the Alignment server. Resulting
alignments are stored on the server and exported to the Ontology Navigator as OWL ontologies. This allows
NeOnTookit users, with help of the Ontology Editor, to use, share or edit alignments.

2.4 Stepwise examples

2.4.1 Starting a session in off-line mode

1. Show the Ontology Navigator view. From the menu bar of the NeOn toolkit, perform "Window -> Show
view -> Ontostudio-> Ontology Navigator", and create a project, for example "OntologyProject", in this
view.

2. Open working OWL ontologies. From the menu bar of the NeOn toolkit, open working OWL ontologies
in the project "OntologyProject" created above by "File -> Import... -> OntoStudio -> FileSystem Import
Wizard".

3. Activate the NeOn Alignment plug-in. From the menu bar or the button, activate the NeOn Alignment
plug-in and a view for the plug-in will be opened.

4. Define an alignment project. From the view for the plug-in, give a name in the field "Alignment Project
Name". This name will be used for an Ontology Navigator project which includes all alignments created
by the NeOn Alignment plug-in.

2.4.2 Matching ontologies

1. Fetch the ontologies in the current workspace from the Ontology Navigator by clicking on the button
"Refresh". The available ontologies will be added to two lists "Ontology 1" and "Ontology 2".

2. Choose two ontologies to match from the two lists.

3. Choose an alignment method from the list "Alignment methods".

4. Click on "Match" to match these two ontologies with the method chosen (see Figure 2.2).

5. The resulting alignment will be added to the list "Local alignments" (or "Alignment found").

2.4.3 Manipulating alignments

1. Exporting an alignment. Choose an alignment from one of the lists "Local alignments" or "Alignment
server" (or "Alignments found") and click on "Export". The alignment chosen will be exported as an
OWL ontology to the alignment project which was created in the Ontology Navigator. The result is
presented in Figure 2.3.

2. Trim an alignment. Choose an alignment from one of the lists "Local alignments" or "Alignment server"
(or "Alignments found"), then, define a threshold (see Figure 2.7). A new alignment created by the trim
function will be added to the list "Local alignments" (or "Alignments found").

3. Finding an alignment for two ontologies. Choose two ontologies from two lists and click on the button
"Find an alignment for ontologies". The found alignments are visualized in one of the lists "Local
alignments" or "Alignment server" (or "Alignments found").

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 15 of 59

Figure 2.2: Matching two ontologies.

Figure 2.3: Exporting an alignment as an OWL ontology.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 16 of 59 NeOn Integrated Project EU-IST-027595

Figure 2.4: Listing all alignments available on the Alignment server.

4. Store an alignment. Choose an alignment to store from the list and click on "choose".

5. Fetch available alignments. This function allows users to obtain a list of all alignments available on the
Alignment server.

2.4.4 Activating the on-line mode

1. Activate the on-line mode. From the view for the plug-in, activate the on-line mode by clicking on the
button "Online" and the button "Connect" becomes enabled.

2. Connection To connect to the INRIA’s Alignment server from the NeOn Alignment plug-in, you must
enter "aserv.inrialpes.fr" for hostname and "80" for port. (see Figure 2.5)

If the connection is successful, we can see the buttons "Refresh", "Match", "Export to Ontology Naviga-
tor", "Trim", "Find an alignment...", "Store an alignment..." and "Fetch available alignments..." enabled.
In particular, a list of available alignment methods is visible at "Alignment methods". In addition, an
Ontology Navigator project, whose name was defined above, is automatically created for alignments.

2.4.5 Reverting to off-line mode

1. Perform steps 1-4 as described in Section 2.4.1, and then activate the offline mode by clicking on the
button "Offline". After activating the offline mode, the buttons "Refresh", "Match", "Import to Ontology
Navigator" and "Trim" become enabled.

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 17 of 59

Figure 2.5: Connection to the Alignment server.

Figure 2.6: Functions in the offline mode.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 18 of 59 NeOn Integrated Project EU-IST-027595

Figure 2.7: Trimming function in the offline-mode.

2. In the offline mode, the functions : matching two ontologies, exporting and trim an alignment, can be
performed as described in Section 2.4.2 and 2.4.3 . For instance, the trim function is illustrated in
Figure 2.7.

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 19 of 59

Chapter 3

Integration of OLA

3.1 Presentation

OLA is a matching algorithm for ontologies written in OWL. OLA relies on a universal measure for com-
paring the entities of two ontologies that combines in a homogeneous way all the knowledge used in entity
descriptions: it deals with external data types, internal structure of classes as given by their properties and
constraints, external structure of classes as given by their relationships to other classes and the availability
of individuals. This is an improvement over other methods that usually take advantage of only a subpart of
the language features.

The proposed method does not only compose linearly individual methods for assessing the similarity between
entities, it uses an integrated similarity definition that makes them interact during computation [Euzenat and
Valtchev, 2004]. OLA is based on the definition of a distance between entities of two ontologies as a system
of equations that has to be solved in order to extract an alignment. One-to-many relationships and circularity
in entity descriptions constitute the key difficulties in this context: These are respectively dealt with through
local matching of entity sets and iterative computation of recursively dependent similarities which produces
subsequent approximations of the target solution. So doing, OLA copes with the unavoidable circularities
that occur within ontologies.

These equations are parameterized by a number of weigths corresponding to the respective importance of
different components of ontologies. We introduced a preprocessing step which considers the ontologies
to match and evaluate the availability of the corresponding features in order to choose the corresponding
weights [Euzenat et al., 2005].

The integrated version of OLA, OLA2, is a full reimplementation of the initial system based on matrix com-
putation. OLA had remarquable results at the last OAEI evaluation [Euzenat et al., 2007]: it was among the
best participants in the benchmark tests and was the best participant in the directory test.

3.2 Specific requirements

OLA may require WordNet to work properly. However, it uses the WordNet support provided with the Align-
ment API so beside installing WordNet, this is not a particularly specific requirement.

OLA can take from several seconds to several hours to process depending on the size of the ontologies, so
the asynchronous call that has been developed for Scarlet is most welcomed for using OLA.

3.3 Integration

The integration has been quite natural since OLA fits from the begining within the Alignment API framework.
It suffices to have OLA libraries within those of the server to use OLA.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 20 of 59 NeOn Integrated Project EU-IST-027595

Figure 3.1: OLA match call from the HTML interface.

3.4 Results

OLA is visible under the HTML interface (Figure 3.1) as well as the NeOn Alignment plug-in (Figure 3.3) and
can be used for matching ontologies (Figure 3.2 and 3.4).

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 21 of 59

Figure 3.2: OLA result from the HTML interface.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 22 of 59 NeOn Integrated Project EU-IST-027595

Figure 3.3: OLA match call from the NeOn toolkit.

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 23 of 59

Figure 3.4: OLA results from the NeOn toolkit.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 24 of 59 NeOn Integrated Project EU-IST-027595

Chapter 4

Integration of the Semantic mapper

4.1 Presentation

The Semantic Mapper is an algorithm capable of discovering mappings between ontology elements and
relational model elements. The Semantic Mapper generates automatically concept specifications, attributes
and relations of a conceptual model, an ontology, according to the elements of a relational model. Although
this process is automatic, the results will not be completed or directly exploitable; on the other hand, because
of its heuristic nature, it should be supervised and validated by any user with a deep knowledge of the
semantics underlying the models. The Semantic Mapper has two main components: a linguistic component
and a structural one.

– The linguistic component detects lexical relations between the terms used to identify the elements
of both models so as to infer semantic relations from them. This is, in fact, a comparison between
elements, though they are taken in isolation, regardless of the context in which they occur and of
their relation with other elements of the same model. To detect this type of relations we will use a
series of linguistic resources (glossaries, thesauri, lexical databases, etc.) whose quality and suitability
guarantee the success of the discovery process.

– The structural component is in charge of applying the patterns described in Appendix C to the results
of the linguistic component in order to generate concept, attribute and relation specifications. Unlike
in the previous case, the structural component takes into account the elements in the context of the
model in which they are defined and also their structure and their relation with other elements.

The first implementation of the algorithm includes only the first component, lexical-semantic correlation (lin-
guistic component), while the application of heuristics (structural component) has been left for subsequent
developments. The implementation is exclusively based on lexical relations provided by WordNet.

The Semantic Mapper is presented in more details in [Barrasa, 2007] and Appendix C.

4.2 Specific requirements

The Semantic mapper requires WordNet to work properly. Instead of taking advantage of portable JWN
interface (or the Alignment API support for WordNet), it uses a native platform interface from Java and thus
requires to be linked by dynamic libraries. We have found that in practice, this library has to be recompiled
for each server.

The Semantic mapper is usually quite long to process (several minutes) so the asynchronous call that has
been developed for Scarlet is most welcomed for using the Semantic mapper as well.

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 25 of 59

Figure 4.1: Semantic Mapper match call from the HTML interface.

4.3 Integration

The Semantic mapper has not been designed for matching ontologies. It was rather a component made for
matching database schemata. So it had to be integrated within the framework of the Alignment API. This is a
relatively simple step since it suffices to subclass the BasicAlignment class and to implement the align()

method. In this case, the OWLAPIAlignment class has been extended. This class provides all the services
for loading the ontologies, simplifying the implementation of align(). The new class, called ODEAlignment

asks the Semantic Mapper the relation it finds between each pair of entities of both ontologies.

An additional problem has been the fact that the algorithm was not expected to deal with URIs while the
Alignment API, as a semantic web component, was expecting URIs, so the Semantic Mapper has been
reengineered for accepting URIs.

4.4 Results

The Semantic Mapper is integrated in the Alignment server as is OLA. The following figures shows the Se-
mantic Mapper in action both from the HTML interface and the NeOn Alignment plug-in.Then the Semantic
Mapper will be visible under the HTML interface (Figure 4.1) as well as the NeOn Alignment plug-in (Fig-
ure 3.3) and can be used for matching ontologies (Figure 4.2 and 4.3).

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 26 of 59 NeOn Integrated Project EU-IST-027595

Figure 4.2: Semantic Mapper results call from the HTML interface.

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 27 of 59

Figure 4.3: Semantic Mapper match call from the NeOn toolkit.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 28 of 59 NeOn Integrated Project EU-IST-027595

Chapter 5

Integration of Scarlet

5.1 Presentation

Scarlet is a system for matching ontologies by using ontologies found on the web. It has been fully described
in Deliverable D3.3.1 (though the “Scarlet” name has been given to the system afterward).

Scarlet finds ontologies on the web (thanks to a search engine like Swoogle or Watson) and finds correspon-
dences between terms in ontologies (and even in less structured resources like thesaurus) depending on the
relations the corresponding concepts have in the found ontologies.

5.2 Specific requirements

Scarlet is generally long to process (several hours) so we developed an asynchronous option for the match
call in the Alignment server. This works by allocating a URI for the requested alignment and returning the
URI immediately, i.e., before the alignment has been computed. The computation of the alignment is run in
a separate thread of the Alignment server and once finished it is assigned the URI. Until this process has
ended, requesting the alignment from the server returns an error, but once computation has reached its end,
the alignment is returned and can be manipulated normally.

This has required some reengineering of the Alignment server cache which used to generate the URI at
the end of the process. The asynchronous mode is visible in the interfaces through the "Asynchronous"
checkbox. It has been useful for all the other matchers.

Scarlet needs an ontology search engine for working. So far it has been based on the Swoogle search
engine. Unfortunately, the version we were using has stoped working before a few weeks before delivery.
Scarlet is thus currently reengineered to be used with Watson (this was planned but not so early because
Watson evolves a lot).

5.3 Integration

Consequently, Scarlet is not yet available in the server.

5.4 Results

Scarlet integrated within the Alignment server and the NeOn Alignment plug-in can be used in the same way
as the Semantic Mapper and OLA.

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 29 of 59

Chapter 6

Connection with Oyster

6.1 Presentation

Oyster is a Peer-to-Peer application (described in Deliverable 1.4.1) that exploits semantic web techniques
in order to provide a solution for exchanging and re-using ontologies. The goal is a decentralized knowledge
sharing environment using Semantic Web technologies that allows developers to easily share ontologies and
alignments. To achieve this, Oyster implements the proposal for a metadata standard, so called Ontology
Metadata Vocabulary (OMV) as the way to describe ontologies.

In the context of NeOn we have extended the OMV so that it can deal with alignment metadata. The goal is
to be able to share metadata about alignments and ultimately to be able to find a particular alignment.

Oyster is an implementation of the registry services of NeOn. Further it provides an API and a Web Service
interface to query, create, and manipulate ontology metadata information according to the OMV model.

Oyster offers a user driven approach where each peer has its own local registry of ontology metadata and
also has access to the information of others registries, thus creating a virtual decentralized ontology metadata
registry.

The goal of connecting the Alignment server to Oyster is to be able, for other Oyster peer, to obtain infor-
mation about stored alignments in the servers and to the Alignment servers to find which alignments involve
particular ontologies.

6.2 Specific requirements

For the integration of Oyster and the Alignment server, we have used the Oyster API. We could have used the
Oyster web service interface. Unfortunately it was not completed for the OMV alignment metadata extension.

The Oyster API requires that a Kaon2 server be running on the server machine. This operation is docu-
mented in the Alignment server documentation and does not present any difficulty.

6.3 Integration

Each Alignment server can thus be a peer of Oyster. As such, it has a metadata repository about the
alignments it permently stores. Each time the server has to store a new alignment in its own database, this
alignment metadata is stored in by the Oyster peer metadata registry. The peer regularly connects its master
in order to communicate its activity and the new content it has.

We developed a particular abstraction of registery (that we call Directory) within the Alignment server, that
is called at critical points (when another server is sought, when an alignment is stored, at launch time).
Oyster is seen by the server as such a directory.

The metadata generated towards the Oyster network is currently minimal with regard to the OMV extension.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 30 of 59 NeOn Integrated Project EU-IST-027595

OMVAlignment
type: string
level: string
dateCreation: date
processingTime: double
purpose: string

OMVOntology

OMVAlignmentMethod

OMVParty

usedMethod
*..1

hasSourceOntology

hasTargetOntology1..1

creator

1..*

Figure 6.1: UML characterization of the common core between OMV and the Alignment format.

It is displayed in Figure 6.1.

6.4 Results

The Alignment server-Oyster connection is fully functional. It is not currently possible to illustrate this through
screendumps.

The next step will be that the Alignment servers use Oyster to find other alignments and ontologies that are
close to another ontology.

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 31 of 59

Chapter 7

Conclusions

This deliverable has presented software developed in NeOn for providing matching support within, and out-
side, the NeOn toolkit. This matching support is meant, in particular, to contribute recontextualising ontolo-
gies. It can be used for other purposes. One of the notable add-on that we are considering is the generation
of modules (as described in Deliverable 1.1.3) from aligned ontologies.

The provided software integrates the Alignment server presented in Deliverable 3.3.1 with the NeOn toolkit
through a dedicated plug-in. This plug-in can work either independently of any Alignment server, and thus
rely on local matching algorithms, or take advantage of Alignment servers and use both their embedded
matchers and their stored alignments. The interface between the NeOn Alignment plug-in and the Alignment
server uses SOAP over HTTP.

We also have enhanced the Alignment server by integrating several matching algorithms developed by NeOn
partners (OLA, Semantic Mapper and Scarlet) and connected it to the Oyster metadata sharing system. We
also have improved the alignment server, in particular with asynchronous matching (many other improve-
ments have been made since Deliverable D3.3.1, but they are not relevant in this deliverable).

7.1 Current state of the prototypes

All prototypes described here are working systems (the exception of Scarlet should be solved soon). Most of
them, beside the Semantic Mapper, are available as a free download. Appendix A and B explain how to set
them up. They are also available from the public demonstration server http://aserv.inrialpes.fr.

7.2 Further developments

There are several lines of development that will follow this first integration within the NeOn toolkit. We discuss
them briefly:

– Improving the integration of the plug-in within the NeOn toolkit: the NeOn toolkit and its interfaces
evolve. We thus have to make the plug-in evolve for taking the best advantage of it.

– Graphic interface. There is currently no way to graphically visualise or edit the returned alignments.
We are currently investigating two ways to deal with this: integrating the plug-in with the Ontoprise
OntoMap plug-in (closed source) or taking advantage of display developed by JSI.

– Watson integration. Watson allows to find ontologies. We would like to integrate better with Watson
so that it is possible to find ontologies aligned with a particular ontology or to find ontologies close to
another one.

– New matchers. The Alignment server is always open to the integration of new matchers. In particular,
Deliverable D3.3.3 will present the integration of the Data extractor developed specifically by JSI.

– Matcher evaluation. Finally, it is not sufficient to add matchers to the Alignment server offer. We will
proceed to an evaluation of these matchers in the context of the NeOn applications.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 32 of 59 NeOn Integrated Project EU-IST-027595

Appendix A

Installing the NeOn Alignment plug-in

A.1 Get the NeOn toolkit

A version of the NeOn toolkit is available at http://www.neon-toolkit.org.

From this site, you download a zipped NeOn toolkit file according to your Operating System (OS). After
unzipping this file, a new directory is created, and within it you have a directory "plugins" and an executable
file.

For instance, for Linux, download the zipped file "NeOnToolkit-1.0-extended-B723-Linux.zip".

These descriptions have been made with the version 1.0 of the open source version of the NeOn toolkit1

A.2 Get and install the NeOn Alignment plug-in

The last version of the NeOn Alignment plug-in can be obtained from the
http://alignapi.gforge.inria.fr web site. The plug-in is currently in
plugins/neon/lib/neonalign.jar of the last release of the Alignment API.

The neonalign.jar jar-file must be put it in the "plugins" directory of the NeOn toolkit.

The version described by this deliverable is version 3.2.

A.3 Run the NeOn toolkit with the plug-in

To run the NeOn toolkit with the NeOn Alignment plug-in, launch the NeOn toolkit with the executable file
(e.g. under Linux, run the "NeonToolKit.sh" script). This will bring an interface screen like that of Figure A.1.

A.4 Use the plug-in with the Alignment server

To activate the NeOn Alignment plug-in from the NeOn toolkit Menu, click on the "Align" menu or the button
on Toolbar, a view "Alignment Server" for the plug-in will be opened.

Connection To connect to the INRIA’s Alignment server from the NeOn Alignment plug-in, you have to type
"aserv.inrialpes.fr" for hostname and "80" for port (see Figure A.2).

1We are currently working towards using the subsequent versions of the NeOn toolkit.

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 33 of 59

Figure A.1: The NeOn toolkit (version 1.0) with embedded NeOn Alignment plug-in.

Figure A.2: Connecting to the INRIA Alignment server.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 34 of 59 NeOn Integrated Project EU-IST-027595

Appendix B

Installing and extending the Alignment
server

B.1 Get and install the Alignment server

The last version of the Alignment server can be obtained from the http://alignapi.gforge.inria.fr web
site. Download and unzip the zip file corresponding to the desired version.

The version described by this deliverable is version 3.2.

Running the Alignment server without extensions requires opening some TCP ports and running a DBMS
server. This has been described in Appendix A of Deliverable D3.3.1 and in Appendix A of the Alignment API
and server documentation. We concentrate here on extensions.

We assume that the directory $LIB contains the jar files that come with the server release (they can be
moved anywhere).

B.2 Install WordNet

Wordnet is required by several algorithms: JWNLAlignment, OLA and Semantic mapper. Therefore it may
be necessary to install wordnet. It can be obtained from http://wordnet.princeton.edu/.

We assume that it will be installed in a directory denoted by variable $WNHOME.
The installiation goes through a classic:

$./configure
$ make
$ make install

In addition, the Semantic mapper requires the installation of the WordNet Java Native library. This library
uses native code (supposed faster) to access WordNet from Java.
We suggest that you follow the instructions from http://wnjn.sourceforge.net and you recompile the
wnjn native code so that it is compatible with your machine. This is achieved simply by:

$ ant -Dtarget.wnx="30"

"30" is the version of WordNet used.

We assume that the resulting dynamic library (either for Linux or Windows) is installed in a directory denoted
by variable $WNJNLIB (by default /usr/local/lib/wnjn).

B.3 Connect to the Oyster system

Oyster is freely available from http://ontoware.org/projects/oyster2/.

Just put in $LIB the libraries:

http://ontoware.org/projects/oyster2/

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 35 of 59

– oyster2.jar
– kaon2.jar
– org.eclipse.jface_3.1.0.jar
– org.eclipse.equinox.common_3.2.0.v20060603.jar

Oyster requires that a Kaon2 repository containing the metadata be running. This repository can easily be
launched by:

$ java -cp $LIB/kaon2.jar org.semanticweb.kaon2.server.ServerMain
-registry -rmi -ontologies O2serverfiles

such that O2serverfiles is the directory in which Kaon 2 will find its ontologies and store its annotations
(this directory comes with the Oyster release).

B.4 Add new matching algorithms

B.4.1 Adding OLA

OLA is available from http://ola.gforge.inria.fr. We have used a version made from the subversion
repository which goes beyond version 2.0.

Just put in $LIB the libraries:

– mtj.jar
– ontographs.jar
– sboatools.jar
– sboaalgorithms.jar

Do not forget the -Dwndict=$WNHOME argument to the server.

B.4.2 Adding Semantic mapper

Semantic Mapper is available from UPM.

Just put in $LIB the libraries:

– semanticmapper-0.2.jar
– wnjn-1.0.jar

Do not forget to add the -Djava.library.path=$WNJNLIB/dict Java switch when launching the alignment
server.

B.5 Launching the alignment server

We have added in the build file for the alignment server a target aserv which regenerates a proxy jar file
lib/aserv.jar listing the extension libraries that have to be embedded within the server. The server will
find out the embedded matchers from this list of libraries. So, it may be necessary to modify the build file
(more precisely the manifest declaration of the aserv target) to embed new matchers.
The full sequence for launching the server is:

$ ant aserv
$ java -Djava.library.path=$WNJNLIB -jar $LIB/aserv.jar -Dwndict=$WNHOME/dict -O -H -W &

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 36 of 59 NeOn Integrated Project EU-IST-027595

Appendix C

Semantic mapper

This appendix describes the Semantic Mapper algorithm, an algorithm capable of discovering and generat-
ing automatically concept specifications, attributes and interrelations of a conceptual model –an antology-
according to the elements of a relational model. The main purpose of the Semantic Mapper algorithm is to
help build a conceptual coverage, expressed in R2O, over a relational model M based on a given ontology
O. Although this process is automatic, the results will not be completed or directly exploitable; on the other
hand, because of its heuristic nature, it should be supervised and validated by any user with a deep knowl-
edge of the semantics underlying the models. The first implementation of the algorithm includes only the
lexical-semantic correlation, while the application of heuristics has been left for a subsequent prototype.

In the introduction section we describe the analysis of the problem, that is, the disparity of models; this
disparity makes necessary to establish correspondences.

C.1 Introduction

When the models need to capture and represent any kind of knowledge, they are usually conditioned by a
set of implicit suppositions (previous experience, or the designers’ subjective knowledge) or of explicit and/or
pragmatic suppositions (purpose of the model). These suppositions provoke disparity or difference between
any two models, and even between models that model the same domain.

This disparity adopts different forms, which in literature have been organized into types or levels. We briefly
describe here the different kinds of disparity and have organized them into levels according to the character-
izations.

Euzenat [Euzenat, 2001] and [Euzenat et al., 2004] organize heterogeneity into four levels: the lexical-
syntactic level, which depends on the representation language selected for the models to be compared;
the terminological level, which depends on the names selected to refer to the different entities described in
the model; the conceptual level, which is related to the entities selected to model a domain and which can
include differences in coverage, granularity or perspective; and finally, the semiotic /pragmatic level, which
is originated because different users or communities interpret the same model differently.

Corcho [Corcho, 2005] distinguishes four levels: lexical, syntactical, semantic and pragmatic. The first two
levels are equivalent to the lexical-syntactic levels defined in [Euzenat et al., 2004]; the semantic level focuses
on the different expressivity that the existing knowledge representation paradigms have; and the pragmatic
level is equivalent to the pragmatic level defined in [Euzenat et al., 2004].
[Dou et al., 2003] distinguishes two levels of disparity between models: syntactical (because of the lan-
guage in which those models are expressed) and semantic (because of the different decisions taken by the
experts).

Visser et al. [Visser et al., 1997] identify two large levels, and they refer to the differences that take place
within each one as non-semantic (because of the language or representation paradigm) and semantic (be-
cause of the set of "implicit suppositions" of conceptual type).

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 37 of 59

Klein [Klein, 2001] distinguishes the same two levels that Visser et al. do, but he refers to them as the
language level or meta-model, which includes expressivity differences and modes of knowledge represen-
tation of languages, and as the ontology level or model level, which includes the different ways in which a
domain can be modelled.

Tamma [Tamma, 2001] distinguishes two levels: syntactical and semantic, and both correspond with Visser’s
[Visser et al., 1997].

Chalupski [Chalupsky, 2000] identifies three classes of disparity: modelling conventions, which are dif-
ferences encountered in the design decisions; differences of coverage and granularity, which can be in-
cluded generically as semantic differences according to [Euzenat et al., 2004]; and finally, differences in the
representation paradigm, which are different theories used for specific parts of the domain, such as the
representation of time or space.

Grosso et al. [Grosso et al., 1998] analyze the differences between two models of knowledge and classify
the differences into groups; they also emphasize the fundamental differences which they attribute to the
differences in the primitives that each model provides.

Hamer and Mcleod [Hammer and McLeod, 1993] focus on a heterogeneity spectre based on four levels of
abstraction: the meta-data language level, which uses different languages of specification of the conceptual
model; the meta-data specification level, which includes the different ways of modelling a domain; the
object comparatibility level, which groups together terminological differences; and finally, the data format
level, which refers to the different ways in which atomic values can be stored in two different models.

Kim and Seo [Kim and Seo, 1991] also present two levels: the structural level, which refers to the different
structures in which the information systems organize their data, and the semantic level, which refers to the
content and meaning of each item of information.

Figure C.1 compiles the proposed classifications by relating them with each other.

Figure C.1: Different types of disparity organized into levels according to the characterizations appeared in
the literature.

C.2 Automatic mapping discovery

This section describes the Semantic Mapper algorithm, an algorithm capable of discovering and generating
automatically specifications of concepts, attributes and interrelations of a conceptual model –an antology-
according to the elements of a relational model. The main purpose of the Semantic Mapper algorithm
is to help build a conceptual coverage, expressed in R2O, over a relational model M based on a given
ontology O. Although this process is automatic, the results will not be completed or directly exploitable;
additionally, because of its heuristic nature it should be supervised and validated by any user who knows the

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 38 of 59 NeOn Integrated Project EU-IST-027595

semantics underlying the models. The first implementation of the algorithm includes only the lexical-semantic
correlation, while the application of heuristics has been left for a subsequent prototype.

C.2.1 Foundations of the mapping discovery process

The process of the automatic mapping discovery between ontologies and relational models is based on the
following hypotheses:

1. The hypothesis of the lexical-semantic correlation between elements of two models. It is possible
to forecast the semantic relation between elements pertaining to two models from the lexical relation
existing between the terms that represent them. It is quite sensible to think that when designing a
model (being this a relational model, an ontology or any other model), the elements that compose
such a model should have comprehensible and meaningful names instead of random names or codes
since the latter complicate the management and use of the model. In other words, the names of the
elements of a model (relations, attributes, concepts, etc.,) have detectable semantic "clues" that permit
inferring the semantic relations existing between them. For example, a synonymy relation between two
terms would probably hide a conceptual relation of equivalence.

2. The hypothesis of the confinement based on patterns. A set of patterns is considered and according
to these patterns the elements of a conceptual model (an ontology) can be presented confined in a
relational model. Only these patterns are regarded in the algorithm described below.

According to what these hypotheses suggest, the mapping discovery method here proposed should have
two main components: a linguistic component and a structural one.

1. The linguistic component will detect lexical relations between the terms used to identify the elements of
both models so as to infer semantic relations from them. This is, in fact, a comparison between elements,
though they are taken in isolation, regardless of the context in which they occur and of their relation with
other elements of the same model. An example of the type of mappings that this component will detect is
that which exists between a concept of the ontology O and an attribute of the relational model M because
both have the same name. To detect this type of relations we will use a series of linguistic resources
(glossaries, thesauri, lexical databases, etc.) whose quality and suitability will guarantee the success of the
discovery process.

2. The structural component will be in charge of applying the described patterns to the results of the
linguistic component in order to generate concept, attribute and relation specifications. Unlike in the previous
case, the structural component takes into account the elements in the context of the model in which they
are defined and also their structure and their relation with other elements. An example of the type of
mapping that this component will detect is the mapping between an attribute AO of the ontology O and an
attribute AM of the relational model M because AO has as a domain a concept CO, which is related in its
turn to the relation RM of M to which AM belongs.

Both components exploit exclusively the meta-information of the models, that is, the information of the rela-
tional schema and the information of the ontology description; however, they do not exploit the information of
the individuals that the components contain (in the case of the relational model, tuples, whereas in the case
of the ontology, instances). Therefore, this is a schema-only based approach, according to the classification
of [Rahm and Bernstein, 2001].

C.2.2 Specification of the mapping discovery process

The process of automatic mapping discovery that the Semantic Mapper algorithm implements has as its main
goal –given an ontology O and a relational model M – to automatically generate a conceptual coverage of
the relational model M based on the ontology O and the expression of this conceptual coverage through

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 39 of 59

the R2O language. The following expression specifies declaratively the behaviour of the Semantic Mapper
algorithm:

Ψ(O,M,R) RC(O,M)

Where

– Ψ Represents the operation of the Semantic Mapper algorithm

– O and M are the ontology and the relational model to be aligned, respectively.

– R is a set of resources used in the process of discovering, where the specific models of entry O and
M are also used. Such resources can be of two kinds: own and external. The former (own resources)
constitute the core of the algorithm and make up the "heuristic knowledge" (parameters, rules, etc.) on
which this knowledge is based. The latter (external resources) are configurable to some extend and
interchangeable; these resources are the thesauri, term glossaries, domain ontologies and any other
linguistic resources used by the component with the same name.

– The covering RC(O,M) is the result of the Semantic Mapper algorithm.

More specifically, if we consider that a conceptual coverage of a relational model M based on an ontology
O is composed of a set of concepts, attribute and interrelation specifications, then the discovery process
carried out by the Semantic Mapper algorithm will consist in inferring and formalizing a set of specifications
of elements of the ontology O according to the relational model M , using for this purpose the R2O language.

The operation carried out by the Semantic Mapper algorithm with respect to each pair of elements of the
models will be formalized as follows:

ΨE(E ′M (EO),SO(EO),SM (EM),R) EM (EO)

Where EO and EM are the elements trying to get in relation; the first element belongs to the terminology or
signature of the ontology O, whereas the second belongs to the relational model M .

Additionally

– ΨE represents the Semantic Mapper operation at the element level.

– E ′M (EO) represents an a priori specification for EO, and is either the result of previous iterations of the
Semantic Mapper algorithm or has been introduced manually by the user.

– SO(EO) and SM (EM) represent the structural information available in the model M for EM and in
the model O for EO (obviously, the name of the concept is included)

– R represents the set of own resources or external resources that the algorithm uses to infer its results
(as it happens in the general case).

– The specification EM (EO) (in which EM is involved) is the result of the Semantic Mapper operation
and will be a revision of E ′M (EO), proposed as entry argument to the algorithm operation. Note that in
some cases EM (EO) = E ′M (EO), which is the same as saying that the semantic relation between the
EO and EM elements does not add any information to the EO specification.

To conclude, we can consider the global result of the operation carried out by the Semantic Mapper algorithm
as the accumulation of its operations over each pair of elements of the two models.

Ψ(O,M,R) =
⋃

∀EO∈O,EM∈M

ΨE(E ′M (EO),SO(EO),SM (EM),R)

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 40 of 59 NeOn Integrated Project EU-IST-027595

C.2.3 Lexical-semantic correlation

The lexical-semantic correlation is a property of the models which permits inferring the semantic relation
between elements1 pertaining to two different models from the lexical relation between the terms with which
they are represented.

Therefore, if the relational model M1 defines the relation Work, the ontology O1 defines the concept Job,
and both terms are synonyms , then we can infer the semantic relation between the elements that both terms
represent _ in this case probably the relation of equivalence, though, in general, the semantic relation to
be inferred will also depend on the lexical relation from which it is inferred and on the type of elements (
concepts, relations, etc.)

It is important to note that lexical relations refer specifically to terms or expressions, and that they have
an informal nature (for example, synonymy is the semantic relation that holds between two words that can
express the same or very similar meaning), whereas semantic relations refer specifically to elements of
a model(concepts, attributes, etc.) and are, therefore, formalizable logical relations and unambiguous (for
example, the equivalence between two concepts supposes that every instance of the first concept is an
instance of the second). The following expression formalizes the notion of the lexical-semantic correlation:

rlex(termA, termB) ⇒ rsem(A,B)

In this expression, termA is the term used to name element A, and termB is the term corresponding to
element B. Given the lexical relation rlex between termA and termB , we can infer the semantic relation
rsem between elements A and B. The terms termA and termB do not have to be simple or atomic2, as it
could be expected from this expression, they can be complex terms composed of other simple terms. The
expression below generalizes the previous one for any type of term.

∧
∀i∈1..n,∀j∈1..m

ri,j
lex(termi

A, termj
B) ⇒ rsem(A,B)

termA = term1
A . . . termn

A

termB = term1
B . . . termm

B

In this expression, termA is a generic term composed of a sequence of simple terms termA =
term1

A . . . termn
A, which is used to name the element A, whereas termB (with a similar structure

termB = term1
B . . . termm

B) is used to name element B.

The lexical relations rlex that will be considered for the pair of terms termA and termA are the standard
ones: rlex ∈ {sin, hiper, hipo, ant} synonymy annotated as syn(termA, termB), hyponymy annotated
as hypo(termA, termB), hyperonymy annotated as hiper(termA, termB) and antinomy annotated as
ant(termA, termB).
The semantic relations rsem between two elements A and B to be inferred from the previous lexical rela-
tions are the following: rsem ∈ {≡,v,w,⊥,u} annotated equivalence A ≡ B; more/less generic (impli-
cation in both senses) A v B and A w B, disjunction (or empty intersection) A ⊥ B, and overlapping (or
generic intersection) A uB.

The process of inferring the semantic relation rsem(A,B) from the lexical relation rlex(termA, termB) in
the case of simple terms is based on the ideas put forward by [Bouquet et al., 2003] and [Magnini et al.,
2003]. When dealing with complex terms, the semantic relation is inferred from the semantic relations existing
between the basic terms of which they are composed. To carry out this process, we propose the propagation
algorithm.

11 Any element of a model: concepts, attributes, or relations for ontologies, and relations and attributes for a relational model
2They can not be decomposed into other terms; for example, Publication or Author are atomic or simple terms, whereas Scientific

publication or Main author are complex terms

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 41 of 59

C.2.4 Pattern confinement

As mentioned in the previous section, a semantic relation between an element (concept, attribute or relation)
pertaining to an ontology and other element pertaining to a relational model will be interpreted differently
depending on the type of element in question. Thus, the equivalence between an ontology concept and a
relation of a relational model will not be considered in the same fashion, nor will be a relation between a
concept and a relational model. Below we describe each possible case.

The ideas commented in this section will be implemented through a set of heuristic rules.

Concept confinement

In [Barrasa, 2007] we describe how concepts of an antology can appear confined to a relational model;
therefore, in accordance to that description, it will be necessary to identify the relation or relations of the
relational model of those concepts with the key attributes that will permit identifying exclusively the individuals
of a concept. Additionally, (and if possible) they will also permit identifying the condition and gathering
expressions.

A semantic relation between a concept and an element (relation or attribute) of a relational model inferred
from the lexical-syntactical correlation between the terms that identify them should be interpreted as follows:

Interpretation of semantic relations between ontology concepts and relations of the relational models

The presence of a semantic relation 3 rsem (≡, v, etc.) between the concept C of the ontology O and the
relation R of the relational model M will be interpreted within the context of the Semantic Mapper algorithm
as follows:

Assume IM is the interpretation (∆IM, ·IM) of all the possible interpretations of the ontology O, which
coincides with the purpose with which the ontology was built; and assume likewise the interpretation IMR =
(∆IM, ·IMR) that describes the semantics of the relational model M based on the intended meaning of the
ontology (note that domain described on the interpretation is the same as the ontology domain); given that a
semantic relation is established between the concept C of the ontology O and the relation R of the relational
model M , then we can verify that

rsem(C,R) ⇒ rconj(CIM, RIMR)

Where rconj is a relation between sets among equals, included, includes, disjoint (rconj ∈ {=,⊆,⊇,∩ =
∅}). The mapping between rsem and rconj is given in table C.1

Semantic Relation

Equivalence (C ≡ R) C ≡ R ⇒ CIM = RIMR

Implication (C v R) C v R ⇒ CIM ⊆ RIMR

Empty intersection (C ⊥ R) C ⊥ R ⇒ AIM ∩RIMR = ∅
Generic intersection (C uR) C uR ⇒ CIM ∩RIMR 6= ∅

Table C.1: Semantic relations between ontology concepts and relations of the relational model.

The following example clarifies this notion: The ontology O1 includes the concept FootballT eam. The
relational model M1 in its turn includes the relation EnglishFootballTeams with the Id, name and country
attributes.

3Obtained from a set of lexical relations (rlex (sin, hiper, etc.) between the term termC ,used for naming the concept C of O,
and the term termR, used for naming the relation R de M

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 42 of 59 NeOn Integrated Project EU-IST-027595

Relational Model M1 (fragment)
EnglishFootballTeams(Id, name, country)

Ontology O1 (fragment)
class-def FootballTeam
slot-def name
domain FootballTeam

Let’s suppose a “more general than” semantic relation between the concept of FootballT eam O1 , and the
relation EnglishFootballTeams of M1, then we can verify that

FootballT eam w EnglishFootballTeams ⇒
FootballT eamIM ⊇ EnglishFootballTeamsIMR

Interpretation of semantic relations between ontology concepts and relational model attributes

The presence of a semantic relation 4, used for naming the attribute A of M , rsem, between a concept
C of the ontology O and an attribute A of the relational model M will be interpreted also as a semantic
relation between the concept C and the relation RA formed as the projection of the relation R that contains
it (RA = {x.A|x ∈ R}) over the attribute A; or it can be interpreted from the perspective of the relational
algebra RA = πAR.

This type of relations reveals a “structuring disparity” situation or what is the same, a scenario in which a
structured element of the ontology (concept) is confined to an element of the relational model that lacks
structure (attribute).

Once we have clarified this point, we can add that its semantics is identical to the semantics of the above
case. The following expression formalizes this idea:

rsem(C,A) rsem(C,RA) ⇒ rconj(CIM, RIMR
A), RA = {x.A|x ∈ R}

Example: In the example the ontology O includes the concepts Person and Address associated through
the ad-hoc relation livesAt; in its turn ,the relational model M1 includes the relation Clients with the at-
tributes ID, Name and Address, among others.

Relational Model M1 (fragment)
Clients(Id, name, address,. . .)

Ontology O1 (fragment)
class-def Person
class-def Address
slot-def Name
domain Person
range Address

In the ontology O1, the information relative to the address is modelized as a class (a concept) with its corre-
sponding structure- which is organized in attributes- , but in the relational model M1, the same information is
modelized as an attribute –whose internal structure is nil. Let’s suppose a semantic relation of equivalence
between the concept Address of O1 and the attribute Address of M1, then we can verify that

Address ≡ address ⇒AddressIM = Raddress
IMR , where

Raddress = {x.address|x ∈ Clients}
4 As in the above case, the semantic relation is inferred from a set of lexical relations ri,j

lex between the term termC (possibly
complex), used for naming the concept C of O, and the term termA (possibly complex)

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 43 of 59

Attribute confinement

If we agree with how the attributes of an ontology can appear confined to a relational model, then we need
to identify the concept to which the attributes belong (their domain) and from this, to identify the attribute or
attributes of the relational model where the ontology attribute is and also the eventual transformation function
that will permit calculating the first attributes from the second ones. Additionally, (if possible) the condition
and gathering expressions that describe the attribute specification will also be identified.

Interpretation of the semantic relations between ontology attributes and relational model attributes

The presence of a semantic relation rsem (≡, v, etc.)5 between a conceptual attribute AC of the ontology O
and a relational attribute AR of the relational model M will be interpreted as the participation (not necessarily
exclusive) of AR in the specification of AO. The following expression formalizes this notion:

rsem(AO, AR) ⇒ AIM
O = CAR

IMR , AR ∈ CAR

rsem /∈ {⊥,u}

Let’s assume two interpretations IM and IMR of the same domain ∆ (which coincides with the intended
meaning of the ontology) for the ontology and the relational model respectively. The fact that there exists a
semantic relation different from the disjunction or overlapping relation between AO and AR means that AR

forms part of the set of relational attributes of CAR
equivalent to AO, that is, that the interpretation functions

·IM and ·IMR of IM and IMR respectively assign the same subset of ∆×∆ to AO and to the set CAR
.

Example:The ontology O1 includes the concept Publication and its attribute MainAuthor. The relational
model M1 in its turn includes the relation Articles, one of whose attributes is Authors.

Relational Model M1 (fragment)
Articles(Id, title, authors)

Ontology O1 (fragment)
class-def Publication
slot-def MainAuthor
domain Publication

In this case the set of attributes CAR
contains exclusively the attribute authors.

Interpretation of the semantic relations between ontology attributes and relations of the relational
model.

We can interpret the presence of a semantic relation rsem
6 rsem (≡, v, etc.) between the attribute AC of

the ontology O1 and the relation R of the relational model M1 in the same way as in the aforementioned
case, though now all the attributes of the relation R (att(R)) form part of the set CAR

.

rsem(AO, R) ∧AIM
O ⇒ CAR

IMR , att(R) ⊆ CAR

rsem /∈ {⊥,u}

This kind of semantic mapping shows a structuring disparity or, what is the same, that a non-structured
element of the ontology (attribute) is confined to a structured element (relation) of the relational model.

5 Obtained from the set of lexical relations rlex (syn, hiper, etc.)) between the terms term termAO and term termAR , which
are used to name the attribute AO of O and the relational attribute AR of M respectively.

6 Obtained from a set of lexical relations Xri,j
lex (sin, hiper, etc.) between the term termAO , used for naming the attribute AO of

O, and the term termR, used for naming the relation R of M .

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 44 of 59 NeOn Integrated Project EU-IST-027595

Example: The ontology O1 includes the concept DesktopEquipment and the attribute components of such
concept. The relational model M1 in its turn includes the relation PCs and the relation components, which
are linked to each other through the association relation PCsComponents.

Relational Model M1 (fragment)
PCs(Id, name, ReleaseDate)
Components(Id, name, manufacturer)
PCsComponents(IdPC, IdComponent)
fkPCsComponents.IdPC
referencesPCs.Id

fkPCsComponents.IdComponent
referencesComponents.Id

Ontology O1 (fragment)
class-def DesktopEquipment
slot-def hasComponent
domain DesktopEquipment

Assume a semantic relation of equivalence between the attribute hasComponents of O1 and the relation
Components of M1 –inferred obviously from the lexical relation of synonymy between the attribute name
(term) hasComponents of O and the relation name (term) Components of M – then, the following expression
will be verified:

hasComponents ≡ Components ⇒ hasComponentsIM = CAR

IMR ,

{Id, name, manufacturer} ⊆ CAR

Confinement of relations

The Semantic Mapper algorithm does not use the linguistic component to discover the mappings between
ontology interrelations and elements of the relational model (relations and/or attributes). This is so because
the occasions in which a significant name is used for identifying the elements implementing such a name are
scarce, as can be seen in the relation PCsComponents of the above example, which implements the relation
existing between the relations PCs and Components.

To detect this kind of elements we should rely on the structural component, identifying the so-called “relational
paths”, which are links between relations through integrity restrictions (foreign keys)

C.2.5 Description of the Semantic Mapper Algorithm

The algorithm, which will be executed sequentially, is composed of the following steps:

1. Detection of semantic relations between each pair of ontology elements and the relational model ter-
minologies

2. Iterative application of the heuristic rules, until no new results are obtained. These heuristic rules will
be in charge of constructing concept and attribute specifications

3. Application of the heuristic rules to explain the relations.

C.2.6 Discovery of semantic relations between terms

In this section we describe the part of the Semantic Mapper algorithm that puts into use the notions of the
lexical-semantic correlation between models. The goal here is to discover the semantic relations between el-
ements of an ontology (concepts and attributes) and elements of a relational model (relations and attributes).

The procedure here describedpermits identifying the general semantic relation between two elements of
each model.

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 45 of 59

The type of semantic relations to be discovered (rsem = {≡,v,w,⊥,u}) is more expressive than one
degree of “abstract similarity” or of “semantic proximity”, defined as a numeric value in an in a given interval
(generally (0,1)), as it occurs in most parts of the Schema Matching. Such expressivity can be exploited by
the structural component for constructing specifications.

As it is mentioned in each section, some of the notions proposed in [Magnini et al., 2003], [Bouquet et al.,
2003] and [Giunchiglia et al., 2005] have been taken and adapted with the purpose of establishing mappings
between relational databases and ontologies.

>From the methodological point of view, the process of discovering semantic relations between elements
of two models (a process dealt with in the previous sections) will be implemented in an algorithm that is
composed of three basic phases: pre-process, calculus of semantic relations between elements described
with simple terms, and propagation of those relations to elements described with compound terms.

Pre-process

The goal of the process here described is to translate a set of relations of informal nature defined over terms
into other formal relations and without ambiguity. To do this, we should first translate the terms – generally
described in natural language – into logical expressions that permit reasoning over such expressions and,
specifically, into a prepositional logic expression that will describe the “entity” (though quite often that prepo-
sitional logic expression will be referred to as a concept). This entity should be understood as an element of
the model and not as a term.

The pre-process consists of four steps that are inspired in the implementation described in [Giunchiglia et
al., 2005]:

Step 1: Division of the terms into indivisible or atomic units. The division of a term (if possi-
ble/necessary) is carried out through the analysis of such term following a set of standard annotations.
The annotations specifically evaluated are Camel or capital letters at the beginning of each word (example:
PartTimeWorker), the use of separating signs, such as “-” or “-” (for example: part-time-worker), or the nor-
mal separation of words with blank spaces (for example, part time worker). Additionally, “multiwords” (in the
Wordnet terminology) or units composed of more than one word can also be detected in this step.

Example: the term “artificial-intelligent-book ” can be decomposed into two units: artificial-intelligence and
book instead of three units, as we may deduce from analysing the term if we consider only the notation
“separator”. - In the same way, “Black and White movie ” will be decomposed into two units: Black and
White and movie.

In the present implementation of the Semantic Mapper algorithm, the only linguistic resource used by the
algorithm for this pre-process is WordNet; however, the effectiveness of its performance can be increased
with thesauri, dictionaries or domain ontologies that permit detecting acronyms or multiwords specific to a
particular domain (for example: “OEPapers” could be decomposed into “Ontology Engineering” and “Papers”
if any of the auxiliary resources knew the acronym “OE”).

Step 2: Creation of simple concepts for each simple or atomic term detected in the previous step. As it was
mentioned before, “concept” should not be understood in this context as an ontology concept, but as a logical
expression that describes an entity or element of a model. Thus, a concept is built as the conglomeration
formed by uniting all the synsets7 of the lemmas8 found in WordNet that correspond to each atomic term
[Bouquet et al., 2003].

Example: In the previous step, the term “funding” does not require to be decomposed since it is a simple
or atomic term. The “concept” it originates (which will be annotated with brackets) is (funding) = Of the 8
senses that Wordnet proposes for funding, 2 appear as the noun “ funding” and 6 appear as the verb “fund”)

Step 3. Construction of complex concepts taking into account the logical connectives that are deduced
from the nexus or union atoms. A complex concept (here understood in the sense described above) is, put

7 Set of synonyms (Wordnet terminology)
8 The canonical form of a word

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 46 of 59 NeOn Integrated Project EU-IST-027595

simply, the composition of more than one simple concept through logical connectives. Remember that this
is a logical prepositional expression. Logical connectives can be obtained through the application of the
following heuristic rules:

1. Simple or atomic terms such as by, of, from, with, etc. or the absence of a nexus atom are translated
into connective or conjunction AND. Example: the term “PicturesFromItaly” would be decomposed
into the atoms “Pictures”, “From” and “Italy ”. Two of these atoms would yield the concepts (Picture)
and (Italy) and the third one would serve as the link between the other two, and would be translated
according to the previous rule into a connective type AND. The resultant complex concept of the pre-
process of the term “PicturesFromItaly ” would be the expression [Picture] ∧ [Italy].

2. The simple or atomic terms non, no and without are translated into the operator NOT or negation.

Example: the complex term “Non Technical” would be decomposed into the atoms “Non” and “Tech-
nical”; the first one would function as a logical operator translated according to the previous rule used
in negation NOT (_). The complex concept resultant of the pre-process of the term “Non Technical
“would be --- (Technical) .

3. The simple or atomic terms and or & are translated into the operator OR or disjunction.

Example: the complex term “PapersAndDeliverables” would be decomposed into its corresponding
atomic terms “Papers”, “And” and “Deliverables”. Two of the atomic terms would yield the concepts
(Paper) and (Deliverable) and the third one would function as a logical connective, which would be
translated according to the previous rule of disjunction OR. The complex concept resultant of the pre-
process of the term “PapersAndDeliverables” would be (Paper) (Deliverable).

The result of pre-processing each term is a “complex concept”, if we understand by this a logical expression
(∧,∨,¬) applied to a set of predicates or “concepts”, being these concepts the conglomeration formed by
the union of all the synsets of Wordnet for the lemmas of each of the atomic units, in which such term can
be decomposed.

Calculus of the semantic relation between simple concepts

To calculate the semantic relations between simple “concepts” involves applying a set of rules for implement-
ing the notion of the semantic-lexical correlation. For this purpose, the proposal described in [Bouquet et al.,
2003] can be used, though any other proposal could be equally valid9.

Equivalence (≡): Two “concepts” [A] and [B] are equivalent if at least one synset is common to [A] and
[B]. In other words, it is very likely that two elements are equivalent if their names are synonyms.

Less general (v): a “concept” [A] is less general than other concept [B] if there is a relation of hyponymy
(hypo) between any synset of [A] and [B]. In other words, it is very likely that element [A] is less
general than element [B] (there is implication between A and B) if the term used to name concept [A]
is a hyponym of the term used to name concept [B] (and the same occurs for the opposite case).

More general (w): A “concept” [A] is more general than other concept [B] if there exists a relation of hyper-
onymy between any synset of [A] and any of [B].

Disjuncts (⊥): Two concepts [A] and [B] are disjuncts ([A] ∧ [B] = ⊥) if there is a relation of antonymy
(ant) between any synset of [A] and any of [B]. In other words, it is very likely that two elements whose
names are antonyms be disjuncts.

9 The use of WordNet provides satisfying results when creating semantic relations between simple concepts; however, these
relations can be equally implemented if they are based on a set of domain ontologies or on any other resources that permit
generating such relations through the application of any type of heuristic.

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 47 of 59

Overlapping (u): This is the more general case, in which none of the previous relations can be confirmed
because Wordnet does not provide any relation between two “concepts”. Two elements, whose names
do not have any of the above relations, will usually have some degree of undetermined intersection
(eventually empty).

Table C.2 provides the mappings between lexical and semantic relations described above. In the table we
have used the following notation: a represents a synset of the concept [A] and b represents a synset of
concept B.

Lexical Rel. Semantic Rel.

∃a|a ∈ [A] ∧ a ∈ [B] A ≡ B

∃a, b|a ∈ [A] ∧ b ∈ [B] ∧ hipo(a, b) A v B

∃a, b|a ∈ [A] ∧ b ∈ [B] ∧ hiper(a, b) A w B

∃a, b|a ∈ [A] ∧ b ∈ [B] ∧ ant(a, b) A ⊥ B o A uB = ∅
– A uB

Table C.2: Correspondences between lexical and semantic relations.

Calculus of the semantic relation between complex concepts. Propagation.

Once we know the semantic relations between the simple “concepts10” that constitute complex terms, we
have to infer from these relations the relation between the corresponding complex “concepts”. The following
example clarifies this notion.

Example: Suppose the relation between TemporaryJob of the relational model MR1 and the concept Part-
TimeOccupations of the ontology O1. To calculate the semantic relation between their respective “complex
concepts” we should proceed as in the previous sections, decomposing both terms into their atomic ele-
ments11 and calculating for each of them the “associated concept”; and thus we have

TemporaryJobs [Temporary] ∧ [Job]
PartT imeOccupations [PartT ime] ∧ [Occupation]

We have calculated the semantic relation between each concept using WordNet and following the steps
described previously; the results obtained are the followings:

[Temporary] u [Job], [Temporary] u [PartT ime],
[Temporary] u [Occupation], [Job] u [PartT ime],
[Job] ≡ [Occupation], [PartT ime] u [Occupation]

The next question will be, how should be combined the set of semantic relations with basic concepts to infer
the semantic relation between [Temporary] ∧ [Job] and [PartT ime] ∧ [Occupation]?
To answer this question we propose an algorithm that propagates semantic relations between simple
concepts; such algorithm will calculate the corresponding complex concepts. To start with, we should
define a set of rules that should answer the following question: If we know the semantic relation between
any pair of simple concepts XA and XB , which will be the semantic relation between its intersection

∧n
i=1 xi

and
∧m

j=1 xj?

10 We should insist once more that we use the term “concept” in this context because it is convenient for us; therefore, it should
not be understood as a concept in a conceptual model but as an entity of any model (to differentiate the concept from the term that
identifies it). In our case, it could be a concept or an attribute of an antology or a relation or an attribute of a relational model.

11 Note that the chain “Part Time” is here considered as one term as it appears in thesauri, domain ontologies and WordNet, and
not as two independent words.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 48 of 59 NeOn Integrated Project EU-IST-027595

We should analyze one by one all the possible cases for n = 2 ∧m = 1 and then, for n = 1 ∧m = 2. We
can observe that this proposal is applied to any of the values of m and n.

Case 1: Suppose that [A], [B] and [C] are three concepts such that between [A] and [B] there is relation of
semantic equivalence ([A] ≡ [B]) What can we say of the relation between [A]∧ [C] and [B] for each of the
possible semantic relations between [C] and [B]?
The table below should be interpreted as follows: each cell contains the semantic relation between the
concept represented in its row and the concept represented in its column. Recall that the order is important
here because the semantic relations defined are not commutative.

[B] [B] [B] [B] [B]
[A] ≡ ≡ ≡ ≡ ≡
[C] ≡ ⊥ v w u
[AC] ≡ ⊥ v w u

Each column (all headed with [B]) represents a possible relation between the concepts [C] and [B]. (It is
obviously a compiling table in which only one relation will be true each time). The third row (headed with
[AC])12 lists each of the semantic relations between [AC] and [B] derived from the relations for each simple
concept. Thus, each column should be interpreted as the set of expressions that follow:

The first:
([A] ≡ [B]) ∧ ([C] ≡ [B]) ⇒ [AC] ≡ [B]

The second:
([A] ≡ [B]) ∧ ([C] ⊥ [B]) ⇒ [AC] ⊥ [B]

The third:
([A] ≡ [B]) ∧ ([C] v [B]) ⇒ [AC] v [B]

The fourth:
([A] ≡ [B]) ∧ ([C] w [B]) ⇒ [AC] w [B]

The fifth:
([A] ≡ [B]) ∧ ([C] u [B]) ⇒ [AC] u [B]

Each expression is a tautology easily demonstrable in propositional logic13 though the most intuitive way
to understand the propagation of the semantic relations is probably by establishing an analogy with the set
theory. Each concept is compared with a set while the semantic relations are compared with their equivalent
in the set theory.

Semantic Rela-
tion

Set operations

[A] ≡ [B] A = B
[A] ⊥ [B] A ∩B = ∅
[A] v [B] A ⊆ B
[A] w [B] A ⊇ B
[A] u [B] A ∩B 6= ∅

12 Abbreviated notation for ([B] ∧ [C]
13 For example, through its truth table associated. Take, for example, the first of the expressions : Exp = [(a = b) ∧ (c = b)]→

[(a ∧ c) = b]

a b c a = b c = b a = b ∧ c = b a ∧ c (a ∧ c) = b Exp
0 0 0 1 1 1 0 1 1
0 0 1 1 0 0 0 1 1
0 1 0 0 0 0 0 0 1
0 1 1 0 1 0 0 0 1
1 0 0 0 1 0 0 1 1
1 0 1 0 0 0 1 0 1
1 1 0 1 0 0 0 0 1
1 1 1 1 1 1 1 1 1

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 49 of 59

For brevity reasons, of each case studied we will show its graphical representation, using notation sets of only
one of the expressions analyzed. Fig C.2 shows the situation described by the fifth of the expressions (which
corresponds to the fifth column in the table). The sets A and B are coincidental because the concepts [A]
and [B] are equivalent. The set C will have some intersection with B because the semantic relation between
the concepts [B] and [C] is of overlapping. It is easy to prove that the relation between A ∩ C and B is of
inclusion: A ∩ C ⊆ B, which, when translated into semantic relations between concepts, is the same as to
affirm that [A] ∧ [C] v [B] o [AC] v [B]
.

Figure C.2: Example using set notations of the propagation of semantic relations from equivalence.

Case 2. Suppose that [A], [B] and [C] are three concepts such that between [A] and [B] there exists an
overlapping semantic relation ([A] u [B]). What can be said of the relation between ([A] ∧ [C] and [B] for
each of the possible semantic relations between [C] and [B]?
As in the other cases, each expression is a tautology easily demonstrable in propositional logic; however, we
have wanted to make a more intuitive representation based on the set theory.

[B] [B] [B] [B] [B]
[A] u u u u u
[C] ≡ ⊥ v w u
[AC] v ⊥ v u u

Figure C.3 shows graphically the situation described by the second of the expressions (corresponding to
the second column in the table). The sets A and B have non-disjunct intersection because between the
concepts [A] and [B] there exists some semantic overlapping. The set C has not intersection with B
because the semantic relation between the concepts [B] and [C] is of semantic disjunction (though nothing
prevents C from having intersection with A in a more general case). It is easy to prove that A∩C and B are
disjunct sets: (A ∩ C) ∩ B = ∅, which, when translated into semantic relations between concepts, means
that [A] ∧ [C] ⊥ [B] or [AC] ⊥ [B]

Case 3: Suppose that [A], [B] and [C] are three concepts such that between [A] and [B] there exists a
semantic relation of the less general type [A], [B] What can be said of the relation between [A]∧ [C] and
[B] for each of the possible semantic relations between [C] and [B]?
As in previous cases, the following table compiles each possible relation between the concepts [B] and [C].
In the table, the last row (headed with [AC] lists every semantic relation between [AC] and [B], which are
derived from the relations for each simple concept by means of propagation rules.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 50 of 59 NeOn Integrated Project EU-IST-027595

Figure C.3: The set theory is here used to show an example of the propagation of semantic relations starting
from semantic overlapping.

[B] [B] [B] [B] [B]
[A] v v v v v
[C] ≡ ⊥ v w u
[AC] v ⊥ v v v

Thus, each of the rows can be interpreted as the set of expressions that follow next:

The first:
([A] v [B]) ∧ ([C] ≡ [B]) ⇒ [AC] v [B]

The second:
([A] v [B]) ∧ ([C] ⊥ [B]) ⇒ [AC] ⊥ [B]

The third:
([A] v [B]) ∧ ([C] v [B]) ⇒ [AC] v [B]

The fourth:
([A] v [B]) ∧ ([C] w [B]) ⇒ [AC] v [B]

The fifth:
([A] v [B]) ∧ ([C] u [B]) ⇒ [AC] v [B]

As in the other cases, each expression is a tautology easily demonstrable in propositional logic.

Figure C.4 shows graphically the situation described by the fourth of the expressions (which corresponds to
the fourth column of the table). The set A is included in set B because between concepts [A] and [B] there
is a semantic relation of the type “less general”. The set C is a superset of B because the semantic relation
that exists between concepts [C] and [B] is of the type “more general”. Ii is easy to prove that A ∩ C is a
subset of B: (A ∩ C) ⊆ B, which, when translated into semantic relations between concepts, means that
[A] ∧ [C] v [B] or [AC] v [B]

Case 4: Suppose that [A], [B] and [C] are three concepts such that between [A] and [B] there is a semantic
relation of the type “more general” ([A] w [B]). What can be said about the relation between [A] ∧ [C] and
[B] for each of the possible semantic relations between [C] and [B] ?

As in the other cases, the table below compiles each possible relation between concepts [C] and [B]. In the
table the last row (headed with [AC]) lists every semantic relation between [AC] and [B] derived from the
existing relations for each simple concept by means of propagation rules.

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 51 of 59

Figure C.4: Example using notation sets of the propagation of semantic relations from the “less general”
semantic relation.

[B] [B] [B] [B] [B]
[A] w w w w w
[C] ≡ ⊥ v w u
[AC] ≡ ⊥ v w u

Thus each column should be interpreted as the set of expressions that follow:

The first:
([A] w [B]) ∧ ([C] ≡ [B]) ⇒ [AC] ≡ [B]

The second:
([A] w [B]) ∧ ([C] ⊥ [B]) ⇒ [AC] ⊥ [B]

The third:
([A] w [B]) ∧ ([C] v [B]) ⇒ [AC] v [B]

The fourth:
([A] w [B]) ∧ ([C] w [B]) ⇒ [AC] w [B]

The fifth:
([A] w [B]) ∧ ([C] u [B]) ⇒ [AC] u [B]

As in the other cases, each expression is a tautology easily demonstrable in prepositional logic.

Fig. C.5 shows graphically the situation described by the fifth expression (corresponding to the fifth column
of the table). The set A is a superset of B because between concepts [A] and [B] there exists a semantic
relation of the “more general” type. The set C has no empty intersection with B because the semantic
relation between concepts [C] and [B] is of overlapping. It is easy to prove that A ∩ C has no empty
intersection with B, which, when translated into semantic relations, means that ([A]∧ [C]u [B] o [AC]u [B]

Case 5: Suppose that [A], [B] and [C] are three concepts such that between [A] and [B] there exists a
disjunct semantic relation ([A] ⊥ [B]). What can be said of the relation between [A] ∧ [C] and [B] for each
of the possible semantic relations between [C] and [B] ?

As in the other cases, the table below compiles each semantic relation possible between concepts [C] and
[B]. In this table, the last row (headed with [AC]) lists each of the semantic relations between [AC] and [B]
derived from the relations for each simple concept by means of the propagation rules.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 52 of 59 NeOn Integrated Project EU-IST-027595

Figure C.5: Example using notation sets of the propagation of semantic relations from the “more general”
semantic relation.

[B] [B] [B] [B] [B]
[A] ⊥ ⊥ ⊥ ⊥ ⊥
[C] ≡ ⊥ v w u
[AC] ⊥ ⊥ ⊥ ⊥ ⊥

Thus, each column should be interpreted as the following set of expressions:

The first:
([A] ⊥ [B]) ∧ ([C] ≡ [B]) ⇒ [AC] ⊥ [B]

The second:
([A] ⊥ [B]) ∧ ([C] ⊥ [B]) ⇒ [AC] ⊥ [B]

The third:
([A] ⊥ [B]) ∧ ([C] v [B]) ⇒ [AC] ⊥ [B]

The fourth:
([A] ⊥ [B]) ∧ ([C] w [B]) ⇒ [AC] ⊥ [B]

The fifth:
([A] ⊥ [B]) ∧ ([C] u [B]) ⇒ [AC] ⊥ [B]

As in the other cases, each expression is a tautology easily demonstrable in propositional logic.

Fig C.6 shows graphically the situation described by the fourth expression (corresponding to the fourth col-
umn of the table). The sets A and B are disjunct because between the concepts [A] and [B] exists a
relation of semantic disjunction. The concept [C] is a superset of [B] because the semantic relation be-
tween the concepts [C] and [B] is of the “more general” type. It is easy to prove that A ∩ C and B are
disjunct: (A ∩ C) ∩ B = ∅, which, when translated into semantic relations between concepts, means that
[A] ∧ [C] ⊥ [B] or [AC] ⊥ [B]
In table C.3 we can see the set of propagation rules of the semantic relations we have described so far. They
are shown as a set of operations for combining semantic relations through the application of the intersections
between the elements of the left side of the expression. 14 The expression “vertical propagation” (↓ ˆ) is used

14The calculus table

[B]
[A] ⊥
[C] ≡
[AC] ⊥

is equivalent to:
([A] ⊥ [B]) ∧ ([C] ≡ [B])⇒ [AC] ⊥ [B]

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 53 of 59

Figure C.6: Example using notation sets of the propagation of semantic relations from thedisjunction seman-
tic relation.

↓∧ u ⊥ v w ≡
u u ⊥ v u v
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
v v ⊥ v v v
w u ⊥ v w ≡
≡ v ⊥ v ≡ ≡

Table C.3: Set of “vertical” propagation rules of the semantic relations.

to refer to the layout of the calculus table and in opposition to “horizontal propagations” (→ˆ) that come next.
It is, in fact, a table 15 -matrix- that, as it can be observed, is symmetric. This is so because the intersection
operation has this property (A ∧B ⇔ B ∧A).

So far we have described all the possibilities existing for n = 2 ∧m = 1 (vertical propagations↓ˆ); the same
should be done for n = 1 ∧ m = 2 (horizontal propagations →ˆ) though for brevity reasons, the second
block of propagation rules of the semantic relations will not be detailed but just synthesized in table C.4 as a
set of operations that combine semantic relations by applying intersections to the elements on the right side
of the expression “horizontal propagations” (→∧).
This table is symmetrical in the case of vertical propagations.

The following examples show the result of applying the propagation algorithm.

Example 1: Suppose that we want to calculate the relation between the terms SecondHandAutomobile and

15 The propagation matrix of the operations should not be confused with the calculus tables presented previously. In this case, the
elements of the row and column headings are semantic relations, whereas in the previous tables they were simple concepts.

→∧ u ⊥ v w ≡
u u ⊥ u w w
⊥ ⊥ ⊥ ⊥ ⊥ ⊥
v u ⊥ v w ≡
w w ⊥ w w w
≡ w ⊥ ≡ w ≡

Table C.4: Set of “horizontal” propagation rules of the semantic relations.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 54 of 59 NeOn Integrated Project EU-IST-027595

Car. To do this we build their associated concepts ([SecondHand] ∧ [Automobile])16.Then the semantic
relations between their elements are calculated with the help of WordNet, which yield [Automobile] ≡ [Car]
(these are equivalent elements), [SecondHand] u [Car]. By applying the propagation of the semantic
relations described in table C.3, we can deduce that the composition of the relations ≡ and u yields the
relation v as a result; therefore, [SecondHand]∧ [Automobile] v [Car], or, what is the same, Car is more
generic than SecondHandAutomobile.

Similarly, (and using now the propagation table C.4) it can be proved that the relation between Automobile
and PinkCar is [Automobile] w [pink] ∧ [Car], and thus Automobile is more generic than PinkCar

Example 2: The relation between SoccerTeam and SportTeam will be [Soccer] ∧ [Team] v [Sport] ∧
[Team] because [Soccer] v [Sport] and ([Team] ≡ [Team]. It is easy to prove by means of the propaga-
tion algorithm that SpanishSoccerTeam is less generic than (v) SportTeam; equally, SoccerTeam has
some overlapping with (∩) AmericanSportTeam.

C.2.7 Application of heuristics for constructing specifications

The semantic relations between elements of the ontology and the relational model discovered by the linguistic
component will serve as a base for constructing specifications of ontology concepts and attributes.

For each case of semantic relation between elements of the ontology and elements of the relational model
according to the type of element, the elements appear confined to a relational model if the following heuristics
are defined:

Heuristics for relations between concepts of the ontology and relations of the relational model

Table C.5 describes the heuristics associated with each possible semantic relation between a concept CO of
an antology O and a relation RM of the relational model M .

Semantic
Relation

Inferred
elements for EM (CO)

Desc.

Equivalence
(CO ≡ RM)

Key(EM (CO)) = pk(RM)
Rel(EM (CO)) = {RM}
eId
CO

:= exp(pk(RM))

Desc. 1

Implication
(CO v RM)

Key(EM (CO)) = pk(RM)
Rel(EM (CO)) = {RM}
eId
CO

:= exp(pk(RM))
eCond
CO

:= exp(att(RM))
o bien
Key(EM (CO)) ⊥ pk(RM)
Rel(EM (CO)) = {RM}
eId
CO

:= exp(att(RM) not in pk(RM))

Desc. 2

Implication
(CO w RM)

pk(RM) ⊆ Key(EM (CO))
RM ∈ Rel(EM (CO))

Desc. 3

Empty intersection
(CO ⊥ RM)

RM /∈ Rel(EM (CO)) Desc. 4

Table C.5: Heuristics associated with each possible semantic relation between concepts and relations.

1. If the ontology concept CO is equivalent to the relation RM of the relational model, then the concept
CO is probably confined exclusively to the relation RM ; therefore, the key of the specification will

16 Recall that [SecondHand] ∧ [Automobile] is the expanded notation for [SecondHand Automobile] and [Car]

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 55 of 59

coincide with the primary key of RM and, consequently, the expression EM (CO) will be defined over
the attributes that form such key.

2. If the ontology concept CO is less generic than the relation RM of the relational model, two situations
can be encountered

– The concept CO is confined exclusively to relation RM , but if the definition of the subset of the
individuals of RM that will produce instances of CO is required, then a definition of eId

CO
will be

given.

– The concept CO is confined to parts of the attributes of RM and uses a different key than the
concept RM does, because this concept probably defines a partial view of the relation.

3. If the ontology concept CO is more generic than the relation RM of the relational model, then all the
individuals of the relation will yield instances of the concept; therefore, it is not necessary to define
eCond
CO

, and RM will be one of the relations where CO is confined.

4. If the ontology concept CO is disjunct with the relation RM of the relational model, then such relation
will not form part of the concept specification.

Heuristics for relations between concepts of the ontology and relations of the relational model

Table C.6 describes the heuristics associated with each possible semantic relation between a concept CO of
the ontology O and an attribute AM of the relational model M .

Semantic
Relation

Inferred
elements for EM (CO)

Desc.

Equivalence
(CO ≡ AM)

Key(EM (CO)) = AM

eId
CO

:= exp(AM)
Desc. 1

Implication
(CO v AM)

Key(EM (CO)) = AM

eId
CO

:= exp(AM)
eCond
CO

:= exp(AM)

Desc. 2

Implication
(CO w AM)

AM ⊆ Key(EM (CO)) Desc. 3

Empty intersection
(CO ⊥ AM)

RM /∈ Rel(EM (CO))|AM ∈ att(RM) Desc. 4

Table C.6: Heuristics associated with each possible semantic relation between concepts and relational at-
tributes.

1. If the ontology concept CO is equivalent to the attribute AM of the relational model, then the concept
CO is probably confined to this attribute exclusively. Consequently, the only relation implied in the
specification of CO will be the RM that contains AM

2. If the ontology concept CO is less generic than the attribute AM of the relational model, then we have a
scenario similar to the previous one but with the difference that in this new scenario we need to define
an expression of condition eCond

CO
over the attribute AM .

3. If the ontology concept CO is more generic than the attribute AM of the relational model, then all the
individuals of the relation will produce instances of the concept, and thus it will be necessary to define
eCond
CO

.

4. If the ontology concept CO is disjunct with the attribute AM of the relational model, such attribute will
not be part of the concept specifications.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 56 of 59 NeOn Integrated Project EU-IST-027595

Heuristics for relations between ontology attributes and attributes of the relational model

Table C.7 compiles the heuristics associated with each possible relation between an attribute AO of the
ontology O and an attribute AM of the relational model M .

Semantic
relation

Inferred
elements for EM (AO)

Desc.

Equivalence
(AO ≡ AM)

eCond
AO

:= (true)
eTrf
AO

:= (constant(AM))
Desc. 1

Implication
(AO v AM) o
(AO w AM)

eCond
AO

:= (f(AM))
eTrf
AO

:= (f(AM , . . .))
Desc. 2

Empty intersection
(AO ⊥ AM)

AM does not take part in EM (AO) Desc. 3

Table C.7: Heuristics associated with each possible relation between ontology attributes and relational at-
tributes.

1. If the ontology attribute AO is equivalent to the relational attribute AM , then the transformation function
will be constant , and the value AM is left without modification.

2. If the ontology attribute AO is more or less general than the relational attribute AM , then AO will
require some transformation to obtain the AO values.

3. If the ontology attribute AO is disjunct with the relational attribute AM , then AM will not form part of
the AO specification

Heuristics for relations between ontology attributes and relations of the relational model

Table C.8 compiles the heuristics associated with each possible semantic relation between an attribute AO

of the ontology O and a relation AM of the relational model M .

Relación
semántica

Elementos
inferidos para EM (AO)

Desc.

Equivalence
(AO ≡ RM)

eCond
AO

:= (true)
eTrf
AO

:= (f(att(RM)))
Desc. 1

Implicación
(AO v RM) o
(AO w RM)

eCond
AO

:= (f(att(RM)))
eTrf
AO

:= (f(att(RM)))
Desc. 2

Intersección vacía
(AO ⊥ RM)

RM no participa en EM (AO) Desc. 3

Table C.8: Heuristics associated with each possible semantic relation between ontology attributes and rela-
tion of the relational model.

1. If the ontology attribute AO is equivalent to the relation RM , then AO is probably confined to such
relation. The transformation function will be any f that combines the values of the different attributes of
RM (att(RM))

2. If the ontology attribute AO is more or less general than the relation RM , then the attributes of RM will
require some transformation to obtain the values of AO. It will probably be necessary to define also
eCond
CO

over the attributes of RM ((att(RM)).

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 57 of 59

3. If the ontology attribute AO is disjunct with the relation RM , then the attributes RM will not form part
of the AO specification.

C.2.8 Heuristic specification of ontology relations

The specification of ontology relations is carried out according to a heuristic procedure based on the search
of graphs among concept specifications. Given the ontology concepts A and B for which the specifications
EM (A) and EM (B) exist, the specification of the relation R (also of the ontology) whose domain is A
and whose range is B will be carried out by searching a minimum path (implicit or explicit) among the
relations implied in the specifications of A Rel(EM (A)) and B, Rel(EM (B)). Then, the notion of a graph of
restrictions for referential integrity in a relational model and that of the extended graph will be formalized.
These graphs are non-directed graphs and capture the links between relations; the graphs are produced by
foreign keys and implicit relations (the extended graph), and they are built as follows:

1. Each relation R of the model will produce a graph node.

2. Each explicit foreign key fki(R1.AR1 , R2.AR2) will produce an arc between the two relations R1 and
R2 that communicates.

3. When the graph is the extended one, potentially implicit the foreign keys will also be considered.

Over a graph of the type described above, we can define a explicit path CEx between the nodes R1 and
R2 of length n (long(C) = n) as an ordered sequence of n arcsA1, . . . , An of such graph, which forms a
non-cyclic path between the given node R1 and R2.

Similarly, an implicit path CIm of length n (long(CIm) = n) is defined between the nodes R1 and R2 in the
same way as in the previous case but now over the extended graph, that is, the graph that includes the arcs
due to potentially implicit foreign keys.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 58 of 59 NeOn Integrated Project EU-IST-027595

Bibliography

[Barrasa, 2007] J. Barrasa. Modelo para la definición automática de correspondencias semánticas entre on-
tologías y modelos relacionales. PhD thesis, Facultad de Informatica, Universidad Politecnica de Madrid,
Madrid, Spain, March 2007.

[Bouquet et al., 2003] P. Bouquet, L. Serafini, and S. Zanobini. Semantic coordination: A new approach
and an application. In Katya Sycara and Dieter Fensel, editors, Proceedings of the Second International
Semantic Web Conference, number LNCS 2870 in Lecture Notes in Computer Science, pages 130–145.
Springer Verlag, 2003.

[Chalupsky, 2000] Hans Chalupsky. Ontomorph: A translation system for symbolic logic. In Anthony G.
Cohn, Fausto Giunchiglia, and Bart Selman, editors, KR2000: Principles of Knowledge Representation
and Reasoning, San Francisco, CA, 2000. Morgan Kaufmann.

[Corcho, 2005] Oscar Corcho. A layered declarative approach to ontology translation with knowledge preser-
vation. IOS Press, Amsterdam, The Nederlands, 2005.

[Dou et al., 2003] D. Dou, D. McDermott, and P. Qi. Ontology translation on the semantic web. In Pro-
ceedings of the International Conference on Ontologies, Databases and Applications of Semantics, pages
952–969, Catania, Sicilia, Italy, 2003.

[Euzenat and Valtchev, 2004] Jérôme Euzenat and Petko Valtchev. Similarity-based ontology alignment in
OWL-lite. In Proc. 15th European Conference on Artificial Intelligence (ECAI), pages 333–337, Valencia
(ES), 2004.

[Euzenat et al., 2004] Jérôme Euzenat, Thanh Le Bach, Jesús Barrasa, Paolo Bouquet, Jan De Bo, Rose
Dieng-Kuntz, Marc Ehrig, Manfred Hauswirth, Mustafa Jarrar, Ruben Lara, Diana Maynard, Amedeo
Napoli, Giorgos Stamou, Heiner Stuckenschmidt, Pavel Shvaiko, Sergio Tessaris, Sven Van Acker, and
Ilya Zaihrayeu. State of the art on ontology alignment. deliverable 2.2.3, 2004.

[Euzenat et al., 2005] Jérôme Euzenat, Philippe Guérin, and Petko Valtchev. Ola in the oaei 2005 alignment
contest. In Ben Ashpole, Jérôme Euzenat, Marc Ehrig, and Heiner Stuckenschmidt, editors, Proc. K-Cap
2005 workshop on Integrating ontology, Banff (CA), pages 97–102, 2005.

[Euzenat et al., 2007] Jérôme Euzenat, Antoine Isaac, Christian Meilicke, Pavel Shvaiko, Heiner Stucken-
schmidt, Ondrej Svab, Vojtech Svatek, Willem Robert van Hage, and Mikalai Yatskevich. Results of the
ontology alignment evaluation initiative 2007. In Pavel Shvaiko, Jérôme Euzenat, Fausto Giunchiglia, and
Bin He, editors, Proc. 2nd ISWC 2007 international workshop on ontology matching (OM), Busan (KR),
pages 96–132, 2007.

[Euzenat, 2001] Jérôme Euzenat. Towards a principled approach to semantic interoperability. In Proceed-
ings of the IJCAI workshop on Ontologies and information sharing, Seattle (WA US), 2001.

[Euzenat, 2004] Jérôme Euzenat. An API for ontology alignment. In Proc. 3rd International Semantic Web
Conference (ISWC), volume 3298 of Lecture notes in computer science, pages 698–712, Hiroshima (JP),
2004.

D3.3.2: Matching ontologies for context: The NeOn Alignment plug-in Page 59 of 59

[Giunchiglia et al., 2005] Fausto Giunchiglia, Pavel Shvaiko, and Mikalai Yatskevich. S-match: an algorithm
and an implementation of semantic matching. In Y. Kalfoglou, M. Schorlemmer, A. Sheth, S. Staab,
and M. Uschold, editors, Semantic Interoperability and Integration, number 04391 in Dagstuhl Seminar
Proceedings. Internationales Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl, Germany,
2005.

[Grosso et al., 1998] William E. Grosso, John H. Gennari, Ray W. Fergerson, and Mark A. Musen. When
knowledge models collide (how it happens and what to do). In Proceedings of the 11th Workshop on
Knowledge Acquisition, Modeling and Management (KAW 98), Banff, Canada, April 1998.

[Haase et al., 2006] Peter Haase, Pascal Hitzler, Sebastian Rudolph, Guilin Qi, Marko Grobelnik, Igor
Mozetič, Damjan Bojadžiev, Jerome Euzenat, Mathieu d’Aquin, Aldo Gangemi, and Carola Catenacci.
Context languages – state of the art. Deliverable D3.1.1, NeOn, 2006.

[Hammer and McLeod, 1993] Joachim Hammer and Dennis McLeod. An approach to resolving semantic
heterogeneity in a federation of autonomous, heterogeneous database systems. Journal for Intelligent
and Cooperative Information Systems, 2(1):51–83, 1993.

[Kim and Seo, 1991] Won Kim and Jungyun Seo. Classifying schematic and data heterogeneity in multi-
database systems. Computer, 24(12):12–18, 1991.

[Klein, 2001] Michel Klein. Combining and relating ontologies: an analysis of problems and solutions. In
Asuncion Gomez-Perez, Michael Gruninger, Heiner Stuckenschmidt, and Michael Uschold, editors, Work-
shop on Ontologies and Information Sharing, IJCAI’01, Seattle, USA, August 4–5, 2001.

[Magnini et al., 2003] Bernardo Magnini, Luciano Serafini, and Manuela Speranza. Making explicit the se-
mantics hidden in schema models. In Proceedings of the Workshop on Human Language Technology for
the Semantic Web and Web Services, Sanibel Island, Florida. USA, 2003.

[Rahm and Bernstein, 2001] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic
schema matching. The VLDB Journal, 10(4):334–350, 2001.

[Tamma, 2001] Valentina Tamma. An ontology model supporting multiple ontologies for knowledge sharing.
PhD thesis, University of Liverpool, 2001.

[Visser et al., 1997] Pepjijn R. S. Visser, Dean M. Jones, T. J. M. Bench-Capon, and M. J. R. Shave. An anal-
ysis of ontological mismatches: Heterogeneity versus interoperability. In AAAI 1997 Spring Symposium
on Ontological Engineering, Stanford, USA, 1997.

2006–2008 c© Copyright lies with the respective authors and their institutions.

	Context through alignments within networked ontologies
	Contextualising ontologies through matching
	Support for matching ontologies
	The NeOn Alignment plug-in and Alignment server extensions
	Outline of the deliverable

	The NeOn Alignment plug-in
	Principles
	Implementation
	How to use the NeOn Alignment plug-in
	Stepwise examples

	Integration of OLA
	Presentation
	Specific requirements
	Integration
	Results

	Integration of the Semantic mapper
	Presentation
	Specific requirements
	Integration
	Results

	Integration of Scarlet
	Presentation
	Specific requirements
	Integration
	Results

	Connection with Oyster
	Presentation
	Specific requirements
	Integration
	Results

	Conclusions
	Current state of the prototypes
	Further developments

	Installing the NeOn Alignment plug-in
	Get the NeOn toolkit
	Get and install the NeOn Alignment plug-in
	Run the NeOn toolkit with the plug-in
	Use the plug-in with the Alignment server

	Installing and extending the Alignment server
	Get and install the Alignment server
	Install WordNet
	Connect to the Oyster system
	Add new matching algorithms
	Launching the alignment server

	Semantic mapper
	Introduction
	Automatic mapping discovery

	Bibliography

