

 NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 — “Semantic-based knowledge and content systems”

D3.1.3 Improved NeOn formalism for context
representation

Deliverable Co-ordinator: Guilin Qi

Deliverable Co-ordinating Institution: UKarl

Other Authors: Peter Haase

This deliverable provides a common formalism for representing context of ontologies. We follow
the generic definition of context as modifiers of semantics introduced in our previous work. As a
main contribution, we provide a syntax compatible with the Networked Ontology Model and the
OWL 1.1 ontology language, which enables the representation of (arbitrary) context information
within an ontology. We provide three instantiations of specific context languages based on the
abstract definition and the common representation syntax. These three forms of context cover
Provenance, Argumentation and Mapping information.

Document Identifier: NEON/2007/D3.1.3/1.0 Date due: February 29, 2008
Class Deliverable: NEON EU-IST-2005-027595 Submission date: February 29, 2008
Project start date March 1, 2006 Version: 1.0
Project duration: 4 years State: Final

Distribution: Public

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 2 of 44 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is part of the NeOn research project funded by the IST Programme of the Commission of the
European Communities by the grant number IST-2005-027595. The following partners are involved in the
project:

Open University (OU) – Coordinator Universität Karlsruhe – TH (UKARL)
Knowledge Media Institute – KMi Institut für Angewandte Informatik und Formale
Berrill Building, Walton Hall Beschreibungsverfahren – AIFB
Milton Keynes, MK7 6AA Englerstrasse 11
United Kingdom D-76128 Karlsruhe, Germany
Contact person: Martin Dzbor, Enrico Motta Contact person: Peter Haase
E-mail address: {m.dzbor, e.motta}@open.ac.uk E-mail address: pha@aifb.uni-karlsruhe.de
Universidad Politécnica de Madrid (UPM) Software AG (SAG)
Campus de Montegancedo Uhlandstrasse 12
28660 Boadilla del Monte 64297 Darmstadt
Spain Germany
Contact person: Asunción Gómez Pérez Contact person: Walter Waterfeld
E-mail address: asun@fi.ump.es E-mail address: walter.waterfeld@softwareag.com
Intelligent Software Components S.A. (ISOCO) Institut ‘Jožef Stefan’ (JSI)
Calle de Pedro de Valdivia 10 Jamova 39
28006 Madrid SL–1000 Ljubljana
Spain Slovenia
Contact person: Jesús Contreras Contact person: Marko Grobelnik
E-mail address: jcontreras@isoco.com E-mail address: marko.grobelnik@ijs.si
Institut National de Recherche en Informatique University of Sheffield (USFD)
et en Automatique (INRIA) Dept. of Computer Science
ZIRST – 665 avenue de l’Europe Regent Court
Montbonnot Saint Martin 211 Portobello street
38334 Saint-Ismier, France S14DP Sheffield, United Kingdom
Contact person: Jérôme Euzenat Contact person: Hamish Cunningham
E-mail address: jerome.euzenat@inrialpes.fr E-mail address: hamish@dcs.shef.ac.uk
Universität Kolenz-Landau (UKO-LD) Consiglio Nazionale delle Ricerche (CNR)
Universitätsstrasse 1 Institute of cognitive sciences and technologies
56070 Koblenz Via S. Marino della Battaglia
Germany 44 – 00185 Roma-Lazio Italy
Contact person: Steffen Staab Contact person: Aldo Gangemi
E-mail address: staab@uni-koblenz.de E-mail address: aldo.gangemi@istc.cnr.it
Ontoprise GmbH. (ONTO) Food and Agriculture Organization
Amalienbadstr. 36 of the United Nations (FAO)
(Raumfabrik 29) Viale delle Terme di Caracalla
76227 Karlsruhe 00100 Rome
Germany Italy
Contact person: Jürgen Angele Contact person: Marta Iglesias
E-mail address: angele@ontoprise.de E-mail address: marta.iglesias@fao.org
Atos Origin S.A. (ATOS) Laboratorios KIN, S.A. (KIN)
Calle de Albarracín, 25 C/Ciudad de Granada, 123
28037 Madrid 08018 Barcelona
Spain Spain
Contact person: Tomás Pariente Lobo Contact person: Antonio López
E-mail address: tomas.parientelobo@atosorigin.com E-mail address: alopez@kin.es

D3.1.3 Improved NeOn formalism for context representation Page 3 of 44

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this document, even
if they might not have directly contributed to the writing of this document or its parts:

• UKARL

• INRIA

• JSI

Change Log

Version Date Amended by Changes
0.1 10-11-2007 Guilin Qi Create the Deliverable

0.2 10-01-2007 Peter Haase Revise Chapter 3 and Chapter 4

0.3 12-01-2007 Guilin Qi Revise Chapter 4

0.4 29-01-2007 Peter Haase and Guilin Qi Revise Chapter 3 and Chapter 4

0.5 31-01-2007 Peter Haase and Guilin Qi Final Write-up

0.6 05-03-2007 Peter Haase and Guilin Qi Final Revision by Incorporating Review’s
Comments

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 4 of 44 NeOn Integrated Project EU-IST-027595

Executive Summary

Real life ontologies and corresponding data are produced by individuals or groups in certain settings for
specific purposes. Because of this, they can almost never be considered as something absolute in their
semantics, but instead can be viewed as valid in a certain context. In deliverable D3.1.1 we introduced
a generic and abstract definition of context as modifiers of semantics and surveyed a number of different
approaches to dealing with context along this generic definition. In NeOn deliverable D3.1.2, we instantiated
the abstract definition for specific types of context relevant for NeOn.

In this deliverable we continue our previous work on the NeOn formalisms for context representation. We
first address the question how context can be syntactically represented to be able to relate an ontology with
its context. Our approach is directly built on the networked ontology model and is compatible with the OWL
1.1 language, support for which is provided in the NeOn infrastructure. In terms of our generic definition of
context, we provide a common representation for the knowledge language and the context language. With
our proposed formalism, we enable representing arbitrary context information itself in the form of an OWL
ontology.

We then instantiate our generic definition of context to three specific forms of context: Provenance, Argumen-
tation and Mapping. Provenance is a form of context that is typically available for automatically generated
ontologies – e.g. in ontology learning; Argumentation Structures are a form of context that is obtained in
collaborative ontology engineering processes; Mappings are a form of context that is obtained by ontology
mapping systems to achieve an interoperation between applications or data relying on different ontologies.
For each of these types of context, we gave an example to show how it can be represented by the syntactical
representation. Finally, we discuss the semantics of the three types of context by relating them to our abstract
definition of context.

D3.1.3 Improved NeOn formalism for context representation Page 5 of 44

Contents

1 Introduction 9

1.1 NeOn Big Picture . 9

1.2 Context Representation in NeOn . 9

1.3 Overview of the Deliverable . 11

2 A Generic Definition for Context 12

2.1 Formal abstract definition of context for an ontology . 12

3 Representing Context in OWL Ontologies 14

3.1 Requirements and Difficulties . 14

3.2 Overview of the Approach . 15

3.3 Representing Context as Annotations . 15

3.4 Representing Context using Context Ontologies . 16

3.5 Comparison and Translation from Annotations to Context Ontologies 18

3.6 Summary . 18

4 Instantiation 19

4.1 Provenance . 19

4.1.1 Provenance Context . 19

4.1.2 Usage of Provenance Context . 21

4.1.3 Ontology learning example . 23

4.1.4 Instantiation of the Generic Definition . 23

4.2 Argumentation . 24

4.2.1 The University example . 26

4.2.2 Instantiation of the Generic Definition . 27

4.3 Mapping . 27

4.3.1 A Common Metamodel for OWL Ontology Mappings 27

4.3.2 Concrete Syntax using DL-safe Mappings . 30

4.3.3 Instantiation of the Generic Definition . 30

4.4 Summary . 31

5 Conclusion 34

5.1 Summary . 34

5.2 Roadmap . 34

A Translation of an Ontology to its Metaview 35

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 6 of 44 NeOn Integrated Project EU-IST-027595

Bibliography 42

D3.1.3 Improved NeOn formalism for context representation Page 7 of 44

List of Tables

4.1 Ontology learning example . 23

4.2 Ranking on class definitions . 26

A.1 Translation of Lists . 37

A.2 Translation of Ontology Annotations . 37

A.3 Translation of Entity Annotations . 37

A.4 Translation of Entities . 37

A.5 Translation of Entity Declarations . 37

A.6 Translation of Data Ranges . 37

A.7 Translation of Object Property Expressions . 38

A.8 Translation of Boolean Concepts . 38

A.9 Translation of Object Property Restrictions . 38

A.10 Translation of Datatype Property Restrictions . 39

A.11 Translation of Class Axioms . 39

A.12 Translation of Object Property Axioms . 40

A.13 Translation of Data Property Axioms . 40

A.14 Translation of Assertions . 41

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 8 of 44 NeOn Integrated Project EU-IST-027595

List of Figures

1.1 Relationships between different workpackages in NeOn . 10

3.1 Alternatives for Representing Context . 16

3.2 Facts represented in the OWL 1.1 Metaontology . 17

4.1 Provenance Context . 20

4.2 Provenance: Grounding Ontology Elements . 21

4.3 The major concepts of the argumentation ontology and their relations 25

4.4 University ontology . 32

4.5 OWL mapping metamodel: mappings . 33

4.6 OWL mapping metamodel: queries . 33

D3.1.3 Improved NeOn formalism for context representation Page 9 of 44

Chapter 1

Introduction

1.1 NeOn Big Picture

Real life ontologies and corresponding data are produced by individuals or groups in certain settings for
specific purposes. Because of this, they can almost never be considered as something absolute in their
semantics and are often inconsistent with ontologies created by other parties under other circumstances.
In order to fully utilize networked ontologies, those disagreements must be identified prior to using them for
reasoning. Each ontology can be viewed as valid (or appropriate) in a certain context. We are interested in
knowledge expressed as a set of assertions and rules. If such a set of assertions is put into a context, then
this means that the context alters some of the meaning of the set of assertions. From the theoretical side, we
could say that whenever the contextual information is necessary, the target ontology cannot have fully defined
static semantics because it depends on some external information which we call context. We could call such
ontologies parametric ontologies because their semantics depends on the value of contextual parameters.
It is the goal of the work performed in WP3 to develop appropriate techniques for dealing with context. As
shown in Figure 1.1, this work belongs to the central part of the research and development WPs in NeOn.
One of the key points of this workpackage is to model and provide a formalization of the context. This model
will support both a proper representation of the information particular to the context and its formalization that
allows reasoning with the modeled context.

1.2 Context Representation in NeOn

The notion of context has a very long history within several research communities, leading to vast stud-
ies about how to define a context, how to take into account information coming from the context, how to
contextualize or de-contextualize knowledge and information, etc.

In D3.1.1 we surveyed the state-of-the-art on dealing with context. We identified several possible usages
of context for ontologies and gave an overview of some present approaches for representing and reasoning
with context which may be relevant for NeOn. We provided an abstract and generic mathematical definition
of context, based on which we compared the different approaches. In terms of the usages of context, we
found that supporting viewpoints and perspectives and dealing with inconsistent, uncertain and vague infor-
mation, will play a paramount role in NeOn. To be able to address these usage scenarios for context, we
identified that the following approaches for contexts are relevant for NeOn: The networked ontology model
developed in WP1 provides the most obvious form of context: Ontologies will be embedded in a network of
ontologies, which forms the context for its interpretation. In the networked scenarios of NeOn, ontologies
are not treated as isolated entities, but are related to other ontologies in various networked ways, including
versioning and mapping information etc. These other ontologies together with these links can be understood
as a context for the ontology, as they will (in some cases) alter the knowledge which can be inferred from the
ontology. Reasoning with inconsistent ontologies exploiting context information is important when different
information sources with contradicting information will be integrated. Contextual information can be used to

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 10 of 44 NeOn Integrated Project EU-IST-027595

Figure 1.1: Relationships between different workpackages in NeOn

resolve such conflicts. It can be used to select relevant consistent parts of the knowledge base which suffice
for the task at hand. Contextual information provides guidance for this selection process, as usually different
possibilities exist for resolving an inconsistency. For example, in NeOn deliverable D1.2.2, we apply the con-
fidence values which are provenance information to resolve inconsistency and incoherence. Context-based
selection functions appear promising for addressing a number of different problems. Finally, a combination
of possibilistic and probabilistic logics seems to be required to deal with the various forms of vagueness and
uncertainty in a contextualized way. The numerical values or priority information attached to elements of an
ontology will provide important context information to deal with imprecision in an ontology.

Considering these findings, in this deliverable we define the NeOn formalism for context representation.
We first recall the generic definition of context. We then consider how the context can be syntactically
represented to be able to relate an ontology with its context and propose so called groundlings of the context
representation within OWL that allow to specify the context itself in the form of an OWL ontology. Finally,
we instantiate our generic definition of context for three specific forms of context: Provenance, Arguments
and Mapping. For example, in a provenance ontology, each of the ontology elements is associated with a
confidence value, a relevance value, and some provenance elements that can be used to generate formal
or informal explanations for particular results. We also illustrate how the specific types of context can be
represented by the context ontologies.

The work given in this deliverable is closely related to other activities in WP3. In deliverable D3.8.1, sev-
eral ontology learning tools are presented. These tools can automatically generate ontologies attached with
provenance information. In deliverable D3.3.1, the Alignment Server is given as the infrastructure for con-

D3.1.3 Improved NeOn formalism for context representation Page 11 of 44

textualizing ontologies by finding relations that it has with other ontologies. In our deliverable, we provide a
common metamodel and concrete syntax for the mapping generated by the Alignment Server and ontology
mediation module given in deliverable D3.2.1. We give an example to illustrate how the grounded ontology
in deliverable D3.2.1 can be represented by the model used to represent provenance context.

1.3 Overview of the Deliverable

In this deliverable we start with a generic and abstract definition of context in Chapter 2. This definition was
already used in the state-of-the-art deliverable on context representation languages D3.1.1 [HHR+06]. We
provide an OWL-based syntax for context in Chapter 3. In Chapter 4 we then present instantiations of this
generic definition for a number of types of contexts that we identified as particularly interesting for the NeOn
project. We conclude with a roadmap for future work in Chapter 5.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 12 of 44 NeOn Integrated Project EU-IST-027595

Chapter 2

A Generic Definition for Context

In this chapter we recapitulate the formal definition of context of an ontology1, which we first provided in
D3.1.1 [HHR+06]. This definition is not intended to be operationalized in a reasoner. The purpose of this
definition rather is to provide a basis for a characterization and comparison of different context representation
formalisms within a common framework by instantiating the generic definition.

Contexts as modifiers of semantics. We are interested in knowledge expressed as a set of assertions
and rules. Examples are knowledge bases (or ontologies), and relations between such knowledge bases.

If such a set of assertions is put into a context, then this means that the context alters some of the meaning
of the set of assertions. In other words, the context acts as a modifier for the semantics of a knowledge base.

2.1 Formal abstract definition of context for an ontology

Let K be a knowledge base, which comes with an associated semantics S(K). Thus, S is a function which
associates a semantics to any knowledge base K.

Now, given a context C and a knowledge base K, we denote by S′(K,C) the semantics of K in the context
C. Thus, S′ is a function which associates to any knowledge base K and context C a semantics, e.g.
expressed by the set of all logical consequences of K in the context C.

If we have empty context (denoted by ∅), then often we require S′(K, ∅) = S(K).
Note that there is a convenient way to describe the function S′ in many cases. Given a knowledge base K
and context C, it will often be possible to create a knowledge base K ′ such that S′(K,C) = S(K ′). In these
cases, reasoning within a context can be reduced to changes of the knowledge base K (converting it into
K ′), and by reusing existing reasoners.

Formal Definition of Context We will now go into further detail. Taking some language L, a knowledge
base on L is a (possibly infinite) set of statements over L. Let KB(L) denote the set of all knowledge bases
expressible in L.

Now, we consider a language Lk called knowledge language. A semantics for Lk can be formalized as a
function S : KB(Lk) → KB(Lk) assigning to a knowledge base K a knowledge base S(K) containing all
logical consequences of K expressible in the knowledge language.

Let furthermore be Lc a language called context language for expressing contextual knowledge. An Lc-
context semantics for Lk is then a function S : KB(Lk) × KB(Lc) → KB(Lk). (The overloading of the
symbol S is by purpose.)

1Please note that within this deliverable we do not distinguish between the use of the notion of "ontology" and that of "knowledge
base". However, for the logical characterization, we tend to prefer the term "knowledge base".

D3.1.3 Improved NeOn formalism for context representation Page 13 of 44

In practice, one will mostly impose further restrictions on the knowledge base one works with. E.g., a knowl-
edge base could be required to contain only certain kinds of expressions from Lk – as an easy example, take
a database containing only tuples of entities (or, similarly, a logic program containing only ground facts) while
the entailed knowledge (respectively the expressible queries) could have a much more complex structure.
Another common constraint to knowledge bases is that they have to be finite (or at least finitely representable
in some sense). The set of finite knowledge bases over some language Lk will be denoted by KBfin(Lk).
In many cases, additional constraints will be reasonable. In particular, we will call a context semantics

• conservative, if S(K, ∅) = S(K) for all K ∈ KB(Lk). This means that, if an empty context (i.e. no
contextual information) is provided, the semantics coincides with the “pure” semantics of the knowledge
language.

• extensive, if K ⊆ S(K,C) for all K ∈ KB(Lk) and for all C ∈ KB(Lc), i.e., all statements of the
knowledge base are as well logical consequences of it. In other words, any information stated in the
knowledge base can be deduced to be valid (and cannot be spoilt by whatever context provided).

• knowledge-monotone, if K1 ⊆ K2 implies S(K1, C) ⊆ S(K2, C) for all K1,K2 ∈ KB(Lk) and
C ∈ KB(Lc), i.e., all logical consequences remain valid if the knowledge base is augmented and the
context does not change. Note, that this is not always the case (cf. non-monotonic semantics by closed
world assumption).

• context-monotone, if C1 ⊆ C2 implies S(K,C1) ⊆ S(K,C2) for all C1, C2 ∈ KB(Lc) and K ∈
KB(Lk), i.e., if the information given by the context increases, the derivable information does so as
well. In particular, no previously valid consequence can be invalidated by adding more contextual
knowledge.

• idempotent, if S(S(K,C), C) = S(K,C) for all C ∈ KB(Lc) and K ∈ KB(Lk), i.e., taking all
consequences of a knowledge base under a certain context and then taking again all consequences
under the same context will yield nothing new.

• dependently reducible, if there is a function σ : KB(Lk)×KB(Lc)→ KB(Lk), such that S(K,C) =
S(σ(K,C), ∅), i.e., knowing a knowledge base K and a context C, one can determine a new finite
knowledge base with the same set of consequences as K with context C. I.e. for every contextualized
knowledge base we can determine a logically equivalent knowledge base without context.

• independently reducible, if there is a function τ : KB(Lc) → KB(Lk) such that S(K,C) =
S(K ∪ τ(C), ∅) for all K ∈ KB(Lk) and C ∈ KB(Lc), i.e., any context can be "translated" into
Lk (independently from K) and simply added to the knowledge base. In this case, contextual reason-
ing could be reduced to pure reasoning over Lk, such that existing methods could easily be employed
for this.

The above definition is very abstract. This is done on purpose to accommodate the many practically important
ways of context usage. In Chapter 4, we give some examples of concrete instances of the abstract definition.
Many more notions of context fit our general definition. In the project, we will have to determine which
concrete instances will be used and supported by the NeOn system. These instances will have to be dealt
with on an individual basis when realizing the NeOn system.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 14 of 44 NeOn Integrated Project EU-IST-027595

Chapter 3

Representing Context in OWL Ontologies

In this chapter we address the question how context can be syntactically represented so as to relate an
ontology to its context. In terms of our generic definition of context, we provide a common representation for
the knowledge language Lk and the context language Lc.

Within NeOn, the knowledge language is already specified by the networked ontology model [HBP+07],
defining OWL as the primary knowledge language. Yet, for the context language Lc, no commonly accepted
representation formalism exists. With our proposed formalism, we enable representing arbitrary context
information itself in the form of an OWL ontology. It should be noted, that this approach is only targeting the
syntactic representation of the context in OWL, but does not attempt to capture the semantics of the context
languages within the OWL language. The semantics of the context language can be instantiated by specific
forms of context following the generic definition from Chapter 2.

3.1 Requirements and Difficulties

Without going into the intricacies of specific context languages (as we will do in the subsequent chapter), we
here present a very small sample scenarios to illustrate the requirements for representing context. We will
later come back to this scenario as a running example to demonstrate the context representation formalism.

Example 1 Consider an ontology learning application that automatically extracts ontologies from a document
corpus with abstracts in natural language. A fragment of the document with DOI http://dx.doi.org/
10.1016/S0166-3615(03)00067-8 in the corpus is: A web-based system called Karlsruhe’s virtual
documentation (KaViDo) tool for collaborative research and development is presented. The objectives of
KaViDo are to record and document development processes, to manage the competencies of distributed
experts, to exchange user experiences and to assist product development. KaViDo is a browser-based tool.
XML is used to exchange data between KaViDo and other applications.

An ontology learning tool (such as Text2Onto) might extract from the text that KaViDo is an instance of
the classes tool and application. These facts we may formally want to represent in a domain ontology.
Additionally, we may want to represent that Text2Onto was the agent producing these facts, and that these
facts are afflicted with uncertainty (e.g. a degree of confidence).

In this example we observe a combination of two levels of information that need to be represented: The first
type of statements directly concerns the application domain (the domain described in the document corpus,
e.g. software tools). We refer to these statements as domain-level information. Additionally, we encounter
facts that do not directly talk about the application domain, but that describe the domain-level information
itself (e.g. facts about the source of information), i.e. context information about the facts. In the following, we
discuss the limitations of current ontology languages w.r.t. the support of domain- and context information
and derive requirements that need to be fulfilled for representing context information.

http://dx.doi.org/10.1016/S0166-3615(03)00067-8
http://dx.doi.org/10.1016/S0166-3615(03)00067-8

D3.1.3 Improved NeOn formalism for context representation Page 15 of 44

In OWL as the knowledge language, statements about the domain in Example 1 can be represented using
the following ontology OD.

(1) ClassAssertion(a:Tool a:kavido)

Note, however, that OD represents the extracted information only partially, it does not capture the context
information about source and confidence of the fact. In OWL, accommodating this context information would
require modifying the domain ontology. Context and domain information would then be interpreted within
a single model. Certain semantic interactions between these two levels of information would be possible,
which lead to unintended consequences or even undecidability of reasoning [Mot07].

To avoid this, applications must manage domain- and context information explicitly, which is often cumber-
some and error prone. It is therefore desirable to shift this burden to the ontology management infrastructure,
which should provide the management of domain- and context information as a standardized service.

The representation framework should ensure a clear logical separation between the two types of information
in two different ontologies. These two ontologies, however, should not be completely isolated, as this would
make keeping all aspects of information in synchrony quite difficult. Ideally, the storage mechanism should
allow us to physically group domain- and metalevel information, but interpret each one of them independently.
Besides, interactions between these two levels of information should be supported in a controlled manner by
a query language.

3.2 Overview of the Approach

We present a simple, but yet semantically sound framework for the representation of context information that
can easily be integrated into current ontology management systems and reasoners. Our framework is based
on the observation that the domain and context information have distinct universes of discourse.

Concretely, we propose two alternative mechanisms for storing context information in an OWL ontology
in a way that does not affect the semantics of domain information, as shown in Figure 3.1. In the first
alternative (1), context information is represented as annotations to the axioms of the domain ontology. I.e.,
domain and context information are managed in the same ontology, but as the annotations constitute non-
logical information, the interpretation domains do not conflict. In the second alternative, domain information
and context information are managed in two separate ontologies with independent first order models. The
relationship between the domain and context information is established by providing a so-called metaview on
the domain ontology within the context ontology. The metaview reifies the domain ontology and thus allows
to make statements about the elements in the domain ontology.

Our framework depends on certain features of OWL 1.11—an extension of OWL that is currently being
standardized by W3C. We assume that the reader is familiar with OWL 1.1 concepts and its Functional-Style
Syntax, which we use in the examples in the following.

3.3 Representing Context as Annotations

With this alternative, domain- and context information are stored in the same physical ontology using OWL
1.1 annotations. OWL 1.0 already allowed for annotations on ontology entities: concepts, properties, and
individuals can have information that is akin to comments in programming languages. OWL 1.1 extends this
idea to axioms as well. Thus, annotations in OWL 1.1 have the form (2) or (3), depending on whether the
value of the annotation is an individual or a constant. Such annotations can be associated in OWL 1.1 with
entities, axioms, and even ontologies.

(2) Annotation(annotationURI individual)

(3) Annotation(annotationURI constant)

1http://www.webont.org/owl/1.1/

2006–2008 c© Copyright lies with the respective authors and their institutions.

http://www.webont.org/owl/1.1/

Page 16 of 44 NeOn Integrated Project EU-IST-027595

Domain
Level

Context
Level

Alternative 1 Alternative 2

Combined Ontology Context Ontology

OWL Axioms
(logical)

OWL Annotations
(non logical)

Domain Ontology
co:imports

OWL Axioms
(logical)

OWL Axioms
(logical)

Figure 3.1: Alternatives for Representing Context

Thus, we represent statements from Example 1 using an ontology OD that contains the following OWL
axioms.

(4)

ClassAssertion(
Annotation(a:source a:Text2Onto)
Annotation(a:confidence “0.5")

a:Tool a:kavido)

In this way, domain- and context information is managed physically in one place. The annotations consti-
tute non-logical information, meaning that their treatment is outside the (regular) semantics of OWL. They
can thus be stored within the original ontology without causing undesired semantic effect to domain-level
information.

3.4 Representing Context using Context Ontologies

In the second alternative, domain and context information are represented in two separate ontologies OD
and OC . These ontologies is situated on a different meta-level: The domain ontology describes the domain
of interest, the context ontology provides information about the facts in the domain ontology. The first-order
models of OD and OC are independent.

OD only represents the domain level information, for example:

(5)
ClassAssertion(

a:Tool a:kavido)

The ontologyOC consists of three main parts: (1) a reified representation of the axioms ofOD, (2) the logical
representation of the context information for OD, and (3) a description of the context (metalevel) domain.

Part (1) of OC – the reified representation of OD – we also call the metaview of OD. For its representation,
we created a metaontology OODM (ODM standing for Ontology Definition Metamodel) that captures the
structure of OWL 1.1 ontologies.2 This metaontology is directly based on the networked ontology model
described in [HBP+07].

2http://owlodm.ontoware.org/OWL1.1

http://owlodm.ontoware.org/OWL1.1

D3.1.3 Improved NeOn formalism for context representation Page 17 of 44

Figure 3.2: Facts represented in the OWL 1.1 Metaontology

Figure 3.2) shows a UML-based representation of a part of this metaontology, describing the facts in an
ontology.

For example, a class assertion is described inOODM using the following axiom (mo: is the namespace prefix
used in OODM); it states that a class assertion is a kind of fact and that it has exactly one class and one
individual.
SubClassOf(mo:ClassAssertion

ObjectIntersectionOf(mo:Fact
ObjectExactCardinality(1 mo:class mo:Description)
ObjectExactCardinality(1 mo:individual mo:Individual)))

In appendix A, we define a function µ, that defines the mapping from a domain-level OD ontology into its
metaview representation according to the metaontology.3 Each axiom α of OD is represented in OC as a
unique fresh individual xα. Then, α is represented in OC by following the structure defined by OODM . For
example, assertion (5) is assigned an individual x(5), and it is represented with the following set of assertions
in OC .

(6) ClassAssertion(mo:ClassAssertion x(5))

(7) ObjectPropertyAssertion(x(5) mo:class a:Tool)

(8) ObjectPropertyAssertion(x(5) mo:individual a:kavido)

Part (2) of OC represents the actual context information in the form of statements about the reified facts of
the domain ontology. Thus, the context information is interpreted in OC as domain level information. For
example, the context information about the fact (5) is translated into the assertion (10).

(9) ObjectPropertyAssertion(x(5) a:source a:Text2Onto)

(10) DataPropertyAssertion(x(5) a:confidence “0.5")

Part (3) of OC axiomatizes the context (metalevel) domain. For example, the statement that Text2Onto is
a high quality source can be represented by axiom (11). This information can be quite complex and may
involve advanced OWL 1.1 constructs; for example, (12) says that manually entered information comes from

3We provide a default implementation in KAON2. This implementation is able to generate the metaview on the domain ontology
OD on the fly, i.e. when interpreting OC . As such the reified ontology does not need to be physically managed, but only needs to
exist as a virtual ontology.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 18 of 44 NeOn Integrated Project EU-IST-027595

some (unknown) high-quality source.

(11) ClassAssertion(a:Text2Onto a:HighQuality)

(12)
SubClassOf(

ObjectHasValue(a:agent a:Manual)
ObjectSomeValuesFrom(a:source a:HighQuality))

As the axiomatization of the context information is placed in a separate ontologyOC , the relationship between
OD and OC needs to be established, This is done in the following way: The domain-level ontology OD can
contain an ontology annotation with a special predefined URI co:import and the value being equal to OC .
This instructs to interpret OC as context information for OD.

3.5 Comparison and Translation from Annotations to Context Ontologies

The two alternative representations presented above exhibit advantages and disadvantages that make them
applicable for different use cases.

When representing context information as annotations, the context information constitutes non-logical in-
formation, i.e. it is disregarded by a reasoner. Instead one can think of the annotations as comments. If
reasoning over the context information is not required, this simple representation is typically sufficient. A
drawback is that the annotations can only have a simple structure (OWL 1.1 currently only supports annota-
tions by entity and by constant, but not by more complex structures). The main advantage lies in the fact that
domain- and context information can physically be managed in a single ontology.

The main advantage of representing context information in a separate context ontology is that context in-
formation can be queried and reasoned over using standard ontology reasoners, as the context information
itself constitutes logical information. It is also possible to query domain information and context information
in an integrated way. Further, more complex context structures can be represented (using all primitives avail-
able in the ontology language). The main disadvantage lies in the increased complexity and the fact that two
separate ontologies for domain and context information need to be managed.

The decision for one of the alternatives is not irreversible: In appendix A, we define a function µ, that takes
a domain-level OD ontology containing axioms with context information embedded in annotations and trans-
lates it into another ontology µ(O), that corresponds to the context ontology OC . The basic idea of this
translation function is that the logical information in the domain ontology becomes reified in OC (correspond-
ing to part (1) of OC), while the non-logical annotations (the context information) are turned into logical
information (corresponding to part (2) of OC). The inverse translation is only possible for simple context in-
formation (that can be translated into annotations by entities and constants), more complex structures would
require complex annotations, which are currently not available in OWL1.1.

3.6 Summary

In this chapter, we have presented a proposal how represent context information in OWL ontologies. The
approach is directly built on the networked ontology model and is compatible with the OWL 1.1 language,
support for which is provided in the NeOn infrastructure.

In the approach, we distinguish two alternatives for managing the context information: In the first alternative,
context information is represented as annotations to the elements of domain ontology. In the second alter-
native, context information itself is represented as logical information in an ontology separate to the domain
ontology. The relationship with the elements of the domain ontology is established by reifying the domain
ontology using a meta-ontology.

The representation formalism is generic in the sense that it can accommodate arbitrary forms of context
languages. For a given context language one needs to define its vocabulary in the form of a context ontology.
In the following chapter, we will provide context vocabularies for specific forms of context.

D3.1.3 Improved NeOn formalism for context representation Page 19 of 44

Chapter 4

Instantiation

In this chapter we instantiate our generic definition of context for three specific forms of context: Provenance,
Arguments and mapping. Provenance is a form of context that is typically available for automatically gener-
ated ontologies – e.g. in ontology learning; Argumentation Structures are a form of context that is obtained
in collaborative ontology engineering processes; Mappings are a form of context that is obtained by ontology
mapping systems to achieve an interoperation between applications or data relying on different ontologies.

NeOn has in its core the ambitious scenario that ontologies are developed in the open environment in a dis-
tributed fashion. Moreover, it is not just the ontologies and meta-data that are distributed, but we also assume
that they are built by distributed teams. In terms of the usages of context, this means that supporting view-
points and perspectives will play a paramount role in NeOn. In the scenarios addressed by NeOn, information
sources typically cannot be easily integrated without violating the overall consistency of the system. Thus
dealing with inconsistent information will be another important usage of context, where information about
the provenance of ontological structures, about various contexts and user profiles leads to the generation
of local consistent views out of a globally inconsistent network of ontologies. Closely related is the problem
of dealing with uncertain and vague information, which will play an important role in the NeOn scenarios,
where ontologies are generated from a variety of sources that may be imprecise, vague and contextualized
in the first place (e.g. natural language text) and where automated ontology learning algorithms introduce an
additional dimension of uncertainty.

4.1 Provenance

4.1.1 Provenance Context

Provenance is a form of context that is typically available for ontologies. It shows how statements are orga-
nized among agents on the web and where the sources of the ontology elements are. In NeOn deliverable
D2.3.1, two kinds of provenance are considered: data provenance and provenance supporting collaborative
ontologies. Data provenance is usually related to the instance level of an ontology. It has been widely used
in the area of database systems. The role of provenance in collaborative ontology engineering is to track the
reasons why a change has occurred and to record the history of design process. In this section, we focus on
data provenance.

In the following, we introduce a model for representing provenance. The main part of the model is shown in
Figure 4.1. We associate with each of the ontology elements a confidence and a relevance value. The confi-
dence value indicates how confident the system is about the correctness of an ontology element. Relevance
value denotes the relevance of an ontology element with respect to a particular domain given by a source.

In addition to confidence and relevance values each ontology element is associated with some provenance
elements that can be used to generate formal or informal explanations for particular results. The source of a
provenance element is an InformationObject. A provenance element can be also provided by an agent. We
also associate with each of the provenance elements a confidence and a relevance value. The confidence

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 20 of 44 NeOn Integrated Project EU-IST-027595

Figure 4.1: Provenance Context

(resp. relevance) value of an ontology element is computed by aggregating confidence values of those
provenance elements associated with the ontology element. Both confidence and relevance values can be
considered as context annotations. Typical examples for sources of provenance elements which may lead
to the creation of a subclass-of relation, for instance, include Hearst patterns [Hea92] and hyponymy
relationships in WordNet [Fel98].

The model given by Figure 4.1 is general and can be grounded for different purpose. Figure 4.2 gives
one grounding. An InformationObject has three subclasses: WeightedReference, Term and Document. We
associated with each of the WeightedReference elements a weight which refers to an InformationObject. Let
us illustrate this model by a grounded ontology in Example 2 that can be obtained by the ontology population
module given in NeOn deliverable D3.2.1. In this ontology, the concept X is associated a set of pairs (Term,
Weight), i.e., pair(term1,0.3).

Example 2 Consider we want to ground an ontology by relating the ontology elements with a set of pairs
(Term, Weight), e.g. concept(X, [pair(term1, 0.3), pair(term2, 0.9), ...]).

In the context ontology, this information would be represented as follows (in OWL Functional Syntax):

ClassAssertion(odm:OWLClass X)

D3.1.3 Improved NeOn formalism for context representation Page 21 of 44

Figure 4.2: Provenance: Grounding Ontology Elements

ObjectPropertyAssertion(hasProvenance X p1)

ClassAssertion(Provenance p1)
ObjectPropertyAssertion(source p1 r1)
ObjectPropertyAssertion(source p1 r2)

ClassAssertion(WeightedReference r1)
ObjectPropertyAssertion(refersTo r1 term1)
DataPropertyAssertion(weight r1 "0.3")

ClassAssertion(WeightedReference r2)
ObjectPropertyAssertion(refersTo r2 term2)
DataPropertyAssertion(weight r1 "0.9")

Example 3 Based on the grounding with term vectors as shown in Example 2, one may also
want to represent the (cosine) distance between two concepts as contextual information, e.g. dis-
tance(concept(X),concept(Y),0.8). This could be done in the following way:

ClassAssertion(OWLClass X)
ClassAssertion(OWLClass Y)

ClassAssertion(Distance d_XY)
ObjectPropertyAssertion(entity1 d_XY X))
ObjectPropertyAssertion(entity2 d_XY Y)
DataPropertyAssertion(distance d_XY "0.8")

4.1.2 Usage of Provenance Context

In the following, we consider how provenance context can be exploited to deal with inconsistency and uncer-
tainty.

In many cases, the information derived from diverse sources leads to inconsistencies. This is especially
the case if information is derived using automatic knowledge acquisition tools such as wrappers [FK00] or

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 22 of 44 NeOn Integrated Project EU-IST-027595

information extraction systems (e.g. [Cir01], [BCRS06]) or tools for automatic or semi-automatic ontology
learning such as OntoLT [BOS03], OntoLearn [NVCN04], ASIUM [FN98], OntoGen [FGM07] or Text2Onto
[CV05] that aim at the semi- or even fully automatic extraction of ontologies from sources of textual data.
Common to all of them is the need for handling the uncertainty which is inherent in any kind of knowledge
acquisition process. Moreover, ontology-based applications which rely on learned ontologies have to face
the challenge of reasoning with large amounts of imperfect information resulting from automatic ontology
generation systems.

Different causes for the imperfection of information can be identified. According to [AM97] imperfection can
be due to imprecision, inconsistency or uncertainty. Imprecision and inconsistency are properties of the in-
formation itself - either more than one world (in the case of ambiguous, vague or approximate information) or
no world (if contradictory conclusions can be derived from the information) is compatible with the given infor-
mation. Uncertainty means that an agent, i.e. a computer or a human, has only partial knowledge about the
truth value of a given piece of information. One can distinguish between objective and subjective uncertainty.
Whereas objective uncertainty relates to randomness referring to the propensity or disposition of something
to be true, subjective uncertainty depends on an agent’s opinion about the truth value of information. In
particular, the agent can consider information as unreliable or irrelevant.

Depending on the type of imperfection, different approaches for interpreting the information may be adequate.
For each of them, the provenance of information can be exploited, as we have outlined in the deliverable
D3.1.1 [HHR+06].

There are mainly two classes of languages for dealing with uncertainty: probabilistic logic and possibilis-
tic logic. Dealing with probabilistic uncertainty in description logics has been recognized as an important
problem since 1994. Many approaches have been proposed to extend description logics with probabilistic
reasoning [Jae94, Hei94, GL02, DS05, NF04, DP04, KLP97]. These approaches can be classified accord-
ing to ontology languages, the supported forms of probabilistic knowledge and the underlying probabilistic
reasoning formalism. In probabilistic extensions of description logics, a probability value (or an interval) is
often attached to a conditional constraints of the form (D|C), where C and D are concepts. By contrast,
there is relatively few work on combining possibilistic logic and description logic. Possibilistic logic [DLP94]
or possibility theory offers a convenient tool for handling uncertain or prioritized formulas and coping with
inconsistency. It is very powerful to represent partial or incomplete knowledge [BLP04]. There are two dif-
ferent kinds of possibility theory: one is qualitative and the other is quantitative. Qualitative possibility theory
is closely related to default theories and belief revision [DP91, BDP92] while quantitative possibility can be
related to probability theory and can be viewed as a special case of belief function [DP98]. One of the major
problems with the quantitative possibility theory is that the weights attached to formulas are usually hard to
obtain. When numerical information is not available, we often use qualitative possibility theory. In this case,
a possibilistic knowledge base can be viewed as a stratified knowledge base, i.e. knowledge bases in which
all pieces of information are assigned a rank. The confidence values attached to axioms in possibilistic de-
scription logics are often used to represent priority levels of the axioms. A challenging problem here is to
extract ranking information from an inconsistent or incoherent ontology.

Fusing mutually inconsistent knowledge extracted from heterogeneous sources in essence requires (i) an
algorithm to pinpoint down where the inconsistencies arise, (ii) a procedure to resolve inconsistencies by
removing axioms leading to these inconsistencies, as well as (iii) a representation of the provenance of
axioms as context information on the basis of which to decide which axioms should be removed.

For the knowledge fusion scenario, we intend to build on the approach of [HV05] to find minimally inconsistent
axioms sets within a given ontology. The idea behind minimally inconsistent axiom sets is that the removal
of one axiom in each set will lead to consistency. The decision which axiom to remove can then indeed be
guided by the provenance context as described above.

D3.1.3 Improved NeOn formalism for context representation Page 23 of 44

Axiom t Confidence
Architecture v ¬Tool 0.10
Methodology v ¬Tool 0.10
Tool v Implementation 0.40
Application(kavido) 0.46
Tool(kavido) 0.46
Tool(amilcare) 1.0
Tool v ¬Application 0.3

Table 4.1: Ontology learning example

4.1.3 Ontology learning example

In this subsection, we use an example from [HV05] to illustrate how confidence values attached to axioms
of an ontology can be used to deal with imperfect information. In this example, the ontology is obtained by
ontology learning tool Text2Onto reported in NeOn deliverable D3.8.1.

Let us consider the ontology in the table 4.1. The example exhibits two forms of imperfection: First, the
elements of the learned ontology are uncertain, as indicated by the confidence values that are attached to
the axioms in the ontology. Second, the obtained knowledge is inconsistent: Here KaV iDo was identified to
be both an instance of Application and a Tool, however, Application and Tool were learned to be disjoint
concepts, so the ontology is inconsistent.

We may consider two ways to deal with inconsistency in the ontology: we can either delete some axioms to
restore inconsistency or tolerate the inconsistency and apply possibilistic logic approach.

To resolve inconsistency, we first need to find the minimally inconsistent sub-ontologies of the inconsistent
ontology based on the algorithm. There is only one minimally inconsistent sub-ontology which contains
the following axioms: Tool v ¬Application, Application(kavido), Tool(kavido). Taking the confidence
values of the axioms into account, we can resolve the inconsistency by removing the disjointness axiom
whose confidence value is the lowest. In this case, removing the axiom Tool v ¬Application would yield a
consistent ontology.

We next illustrate how to reason with the inconsistent ontology using possibilistic logic. In this case, the
confidence values attached to axioms are explained as certainty degrees of the axioms. We first need
to find the inconsistency degree of this ontology, which is the maximal weight of axioms such that all the
axioms whose weights are greater than or equal to it are inconsistent. An axiom can be inferred from the
ontology using possibilistic inference if and only if it can be inferred from axioms whose weights are greater
than the inconsistency degree. For the ontology in this example, its inconsistency degree is 0.3. So, we
can infer Tool(kavido) whose weight is 0.46, which is greater than 0.3. Furthermore, we can also infer
Implementation(amilcare) with confidence degree 0.40 using possibilistic inference.

4.1.4 Instantiation of the Generic Definition

Let K be a knowledge base in an ontology language L. The context information is the confidence and
relevance values attached to formulae in the knowledge base. In the case of probabilistic logic, the context
language is the conditional probabilistic terminology for probabilistic logic or conditional probability table for
Bayesian networks. The semantics of the context language is a knowledge base which consists of K and
probabilistic terminologies. In the case of possibilistic logic, the context information can be used to obtain
the weights or priority levels attached to formulae in the knowledge base. That is, S(K,C) is a weighted
knowledge base or a prioritized knowledge base.

We give more detailed explanations on how to use possibilistic OWL to represent and reason with provenance
context. We suppose that ontologies consist of a TBox and an ABox in the description logic SHOIQ(D+).
Given an ontology O = 〈T ,A〉, where T is a TBox and A is an ABox, a possibilistic ontology corresponding

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 24 of 44 NeOn Integrated Project EU-IST-027595

to O is a weighted ontology OP = 〈TP ,AP 〉 such that TP = {(φi, αi) : φ ∈ T } and AP = {(ψj , βj) : ψj ∈
A}, where αi, βj ∈ [0, 1]. To define the consequence relation of a possibilistic ontology, we need introduce
some notions.

Given a possibilistic ontology OP = 〈TP ,AP 〉 and α∈(0, 1], the α-cut of TP is TP,≥α =
{φ∈T |(φ, β)∈TP and β≥α} (the α-cut of A, denoted as AP,≥α, can be defined similarly). The α-cut
of OP is OP,≥α = (TP,≥α,AP,≥α). The inconsistency degree of OP , denoted Inc(OP), is defined as
Inc(OP) = max{α : OP,≥α is inconsistent}.
The consequence relation of possibilistic OWL DL is defined as follows: An axiom φ (which is either a
TBox axiom or an ABox assertion) can be inferred from a possibilistic ontology OP , written OP |=P φ, if
OP,>Inc(OP) |= φ, where OP,>Inc(OP) = OP,≥Inc(OP) \ {φ ∈ O : (φ, α)∈OP and α = Inc(OP)}.

4.2 Argumentation

Argumentation frameworks usually provide information that can be useful to provide information about the
context of ontology elements.

The two classical approaches on argumentation theory [Tou58, POT70] provide general schemas for rep-
resenting argumentative processes. However, argumentation is a large field in continuous evolution and
proposed frameworks vary from informal to rigorous formal ones. One acknowledged problem of these the-
ories is the fact that it is difficult to find the appropriate level of detail with which to represent arguments.
For some more details about argumentation theories see D2.1.1. In the case of ontology based argumen-
tation frameworks, DILIGENT [TPSS05] proposes an argumentation ontology that can be used to formally
represent the arguments exchanged by ontology engineers in ontology building processes. Some initial ex-
periments have been conducted. Another framework currently under development under the Neon Project is
C-ODO [CGL+06].

These frameworks usually provide important information that can be used in context representation and
moreover that can be used in inference processes. In the following paragraphs we are taking as starting
point the DILIGENT argumentation framework [TPSS05, Tem06], which is the core of the Cicero framework
given in NeOn deliverable D2.3.1. The DILIGENT argumentation ontology adapts, for ontology engineering
purposes, the IBIS methodology, which proposes one model to formally structure arguments. The DILIGENT
argumentation framework consists of two building blocks; a process and an argumentation ontology. In the
argumentation process five main activities take place: choose moderator, choose decision procedure, specify
issues, provide arguments and ideas, decide on issues and ideas. The argumentation ontology formalizes
the arguments exchanged during ontology engineering discussions.

The DILIGENT Argumentation Ontology is visualized in Figure 4.3. It formalizes the arguments exchanged
during ontology engineering discussions. The main concepts in this ontology are issues, solution proposals
and arguments. An issue introduces a new requirement or topic in a discussion from a conceptual point of
view. Issues may refer to particular ontology elements. They are used to discuss problems in the definition of
ontology elements without yet taking into account how the problems should be resolved and implemented in
the ontology. Solution proposals are put forward as ideas to address issues and refer to their formalization in
the ontology, for instance as a class, instance, relation or axiom. Typically, a solution proposal encompasses
one or more ontology changes that may affect the definition of ontology elements. New requirements or
topics are introduced as issues, which can be extended or refined by generalizing or specializing an issue.
When the experts start discussing how a given issue, a domain concept, can be represented in the ontology,
they discuss in terms of solution proposals, how domain knowledge can or should be formalized. Accepted
solution proposals trigger concrete ontology change operations. Arguments can be exchanged on particular
solution proposals, either supporting an idea or objecting (counter-argument).

The concepts an ontology represents should be consensual, this requires some consensus building discus-
sions. In DILIGENT processes, concepts are only added to the ontology if they can be agreed upon, that
is after some arguments have been exchanged, positions by different actors have been issued on them and

D3.1.3 Improved NeOn formalism for context representation Page 25 of 44

Figure 4.3: The major concepts of the argumentation ontology and their relations

some decisions have been made. DILIGENT proposes examples, evaluations and justifications as particu-
larly useful argument types. Those involved in discussions can state positions. They clarify the position on
one of particular solution proposals under discussion. Possible positions are agreement and disagreement.
Once enough arguments have been provided and positions have been stated on them, decisions can be
made. In general, positions lead to decisions. Decisions are taken on issues. A decision has a status that
can vary from under-discussion, postponed, discarded and agreed. A decision records not only the issue on
which it was taken, but also both the positions issued when final with-votes (several positions) were cast and
the line of reasoning (a sequence of arguments) underlying the decision on that issue.

The argumentation structures can be exploited as context information in various ways in the ontology rea-
soning. In the following we will illustrate how this can be done for the task of diagnosis and repair. Diagnosis
and repair of ontologies is an important aspect of ontology engineering. This is especially the case in collab-
orative engineering environments, where there may be conflicts and disagreements about the meaning and
definition of concepts among the ontology engineers.

Reasoning agents can be useful in different steps of the argumentation process: Indeed, in every phase they
can act in place of a user, i.e. they can identify issues, they can propose solutions, they can take positions and
they can provide arguments. Identifying issues corresponds to the identification of a logical contradiction in
the ontology. To resolve the logical contradiction, it is important to pinpoint the erroneous class definitions in
the ontology which are responsible for the contradiction. (Please refer to [QHJ07] for an overview of different
approaches for this task.) When repairing an ontology, we usually have different alternatives to resolve the
incoherence, i.e. the diagnosis algorithms may generate a number of different solution proposals. Some
context information such as ranking information is often needed to select the best solution [KPSG06]. The

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 26 of 44 NeOn Integrated Project EU-IST-027595

class definitions PhDStudentsvStudents PhDStudentvEmpolyees StudentuEmployeesv ⊥
rank 0 1 2

Table 4.2: Ranking on class definitions

idea here is to use the argumentation structures as context information to define useful rankings for the
different solution proposals. Based on the ranking, the reasoning agent would define a position on a solution
proposal, i.e. recommending one (or multiple) solution proposals to implement. The final decision can then
either be done automatically (by accepting the recommendation of the reasoning agent) or it can be left to the
user. If the decision is left to the user, the individual arguments about the solution proposal can be presented
to the user (based on the argumentation ontology) in order to support the decision process.

4.2.1 The University example

Let us suppose we want to model the University domain with the purpose of inferring about the properties of
the several members of the University, find inconsistencies and be able to reason in several contexts. In a
DILIGENT ontology engineering process participants would start by proposing issues and after enough argu-
ments had been provided and that participants had reached an agreement as to what should be represented
in the ontology, the arguments would be attached to ontology elements. We will be using the real data from
the discussions that took place in one of the DILIGENT case studies, partially reported in [PST04]. We here
assume that the ontology targeted by Figure 4.4 (see page 32) contains concepts such as organization, and
in particular university, persons, employees, Professors, students, PhD students, study programs. All these
concepts are all related since university employees work at universities, both Professors and PhD students
are university employees, students are enrolled in study programs and these are offered by universities. In
the figure, we use the circle symbol to denote the disjointness of two concepts Students and (Uni)Employees.

This example contains a contradiction: PhDstudents are both subclass of Students (PhDstudentsvStudents)
and University Employees (PhDstudentsvEmployees), and these classes are disjoint
(StudentsuEmployeesv⊥). To resolve the contradiction, we can get an ordering relation on the ax-
ioms which are involved in the conflict based on argumentation information. Then we can simply delete the
axiom which has least priority.

Using the argumentation ontology, we can represent the following arguments:

Arguments for PhD students being students could be:

Pro - enrolled in student programm

Cons - pay taxes

Arguments for PhD students being Employees

Pro - Work on projects; Have a salary

Cons - have a scholarship; do not have a contract; do not pay taxes; (UK)

Arguments for students disjoint from employees

Pro - not payed (China); do not work; enrolled in study program

Cons - people that work and study in the evening

To resolve the incoherence in the University ontology, we have at least the following three solutions: (1) delete
the class definition PhDStudents is a subclass of Students, or (2) delete the class definition PhDStudents
is a subclass of Empolyees, or (3) delete the class definition “Students disjoint from Employees". However,
without extra information, we do not know which class definition should be deleted. In this case, we can turn
to argumentation ontology to get some ranking information on the class definitions. In the argumentation
ontology, the difference between numbers of argument support and against “PhD students being students"
is 0, the difference between numbers of argument support and against “PhD students being employees" is
1, and the difference between numbers of argument support and against “students disjoint from employees"
is 2 (see Table for details). Therefore, we can conclude that the class definition that “PhD students being

D3.1.3 Improved NeOn formalism for context representation Page 27 of 44

students" is has the least priority. So we can simply delete this class definition to restore coherence.

4.2.2 Instantiation of the Generic Definition

Let K be a knowledge base in an ontology language L. The context information C is then arguments which
are provided by actors and is stored in an argumentation ontology. The context language Lc is the ontology
language that is used to represent the argumentation ontology. The semantics of K in the context C is then
defined as follows: S(K,C) is the set of axioms that can be inferred fromK using information provided by C.
For example, if we useC to give a rank on axioms inK and get a new ontologyK ′ where all axioms inK ′ are
assigned a rank, and we apply possiblistic logic to infer new conclusions, then S(K,C) = {φ : K ′ |=P φ}.
It is clear that the context semantics is conservative and idempotent. According to the University example,
it is clear that the context semantics is not extensive because the axiom “PhD students being students" is
not included in the final result. It is neither knowledge-monotone nor context-monotone. For knowledge-
monotone, if we add an axiom PhDStudents(John) to state that John is a PhD student and an argument
for it and an argument against it. Then we may delete the axiom PhDStudents(John) and keep the class
definition that “PhD students being students". So knowledge-monotone is violated. For context-monotone,
suppose we have more arguments support the class definition “PhD students being students", for example,
PhD students need to attend lectures and PhD students have a student card, then we may delete the class
definition “PhD students being employees" to restore consistency.

4.3 Mapping

When people are modeling the same domain, they mostly produce different results, even when then use
the same language. Mappings have to be defined between these ontologies to achieve an interoperation
between applications or data relying on these ontologies. In NeOn deliverable D3.1.1, we have discussed
how mappings between ontologies supply context. For example, in C-OWL (Context OWL) [BGvH+03],
multiple ontologies are treated as separate entities, between which information interchange is realized only
by explicit mappings (so-called bridge rules). This chapter provides an extension for the metamodel for OWL
and SWRL to give additional support for mappings between heterogeneous ontologies.

Section 4.3.1 introduces the metamodel extension for OWL ontology mappings. While introducing the
various mapping aspects1, we discuss their representation in the metamodel. Accompanying UML diagrams
document the understanding of the metamodel.2

4.3.1 A Common Metamodel for OWL Ontology Mappings

This section presents the common metamodel extension for OWL ontology mappings in two subsections:
The first subsection presents mappings, after which the second subsection presents queries.

Mappings

We use a mapping architecture that has the greatest level of generality in the sense that other architectures
can be simulated. In particular, we make the following choices:

• A mapping is a set of mapping assertions that consist of a semantic relation between mappable ele-
ments in different ontologies. Figure 4.5 demonstrates how this structure is represented in the meta-

1Remember, however, that the OWL ontology mapping languages and their general aspects, are not part of our contribution.
2In doing so, meta-classes that are colored or carry a little icon again denote elements from the metamodel for OWL or SWRL.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 28 of 44 NeOn Integrated Project EU-IST-027595

model by the five metaclasses Mapping, MappingAssertion, Ontology, SemanticRelation and Map-
pableElement and their associations.

• Mappings are first-class objects that exist independent of the ontologies. Mappings are directed, and
there can be more than one mapping between two ontologies. The direction of a mapping is defined
through the associations sourceOntology and targetOntology of the metaclass Mapping, as the map-
ping is defined from the source to the target ontology. The cardinalities on both associations denote
that to each Mapping instantiation, there is exactly one Ontology connected as source and one as
target.

These choices leave us with a lot of freedom for defining and using mappings. For each pair of ontologies,
several mappings can be defined or, in case of approaches that see mappings as parts of an ontology,
only one single mapping can be defined. Bi-directional mappings can be described in terms of two directed
mappings.

The central class in the mapping metamodel, the class Mapping, is given four attributes. For the assumptions
about the domain, the metamodel defines an attribute DomainAssumption. This attribute may take specific
values that describe the relationship between the connected domains: overlap, containment (in either direc-
tion) or equivalence.

The question of what is preserved by a mapping is tightly connected to the hidden assumptions made by
different mapping formalisms. A number of important assumptions that influence this aspect have been
identified and formalized in [SSW05]. A first basic distinction concerns the relationship between the sets
of objects (domains) described by the mapped ontologies. Generally, we can distinguish between a global
domain and local domain assumption:

Global Domain assumes that both ontologies describe exactly the same set of objects. As a result, seman-
tic relations are interpreted in the same way as axioms in the ontologies. This domain assumption is
referred to as equivalence, whereas there are special cases of this assumption, where one ontology
is regarded as a global schema and describes the set of all objects, other ontologies are assumed to
describe subsets of these objects. Such domain assumption is called containment.

Local Domains do not assume that ontologies describe the same set of objects. This means that mappings
and ontology axioms normally have different semantics. There are variations of this assumption in the
sense that sometimes it is assumed that the sets of objects are completely disjoint and sometimes
they are assumed to overlap each other, represented by the domain assumption called Overlap.

These assumptions about the relationship between the domains are especially important for extensional
mapping definitions, because in cases where two ontologies do not talk about the same set of instances,
the extensional interpretation of a mapping is problematic as classes that are meant to represent the same
aspect of the world can have disjoint extensions.

The second attribute of the metaclass Mapping is called inconsistencyPropagation, and specifies whether
the mapping propagates inconsistencies across mapped ontologies. uniqueNameAssumption, the third
attribute of the metaclass Mapping, specifies whether the mappings are assumed to use unique names for
objects, an assumption which is often made in the area of database integration. The fourth attribute, URI, is
an optional URI which allows to uniquely identify a mapping and refer to it as a first-class object.

The set of mapping assertions of a mapping is denoted by the relationship between the two classes Mapping
and MappingAssertion. The elements that are mapped in a MappingAssertion are defined by the class
MappableElement. A MappingAssertion is defined through exactly one SemanticRelation, one source
MappableElement and one target MappableElement. This is defined through the three associations starting
from MappingAssertion and their cardinalities.

D3.1.3 Improved NeOn formalism for context representation Page 29 of 44

A MappingAssertion may optionally be attributed with a confidence value that indicates the degree to that
the assertion can be trusted or considered reliable.

A number of different kinds of semantic relations have been proposed for mapping assertions and are repre-
sented as subclasses of the abstract superclass SemanticRelation:

Equivalence (≡) Equivalence, represented by the metaclass Equivalence, states that the connected ele-
ments represent the same aspect of the real world according to some equivalence criteria. A very
strong form of equivalence is equality, if the connected elements represent exactly the same real world
object. Specific forms of the equivalence relation are to be defined as subclasses of Equivalence in
the specific metamodels of the concrete mapping formalisms.

Containment (v,w) Containment, represented by the metaclass Containment, states that the element in
one ontology represents a more specific aspect of the world than the element in the other ontology.
Depending on which of the elements is more specific, the containment relation is defined in the one
or in the other direction. This direction is specified in the metamodel by the attribute direction, which
can be sound (v) or complete (w). If this attribute value is sound, the source element is more specific
element than the target element. In case of the attribute value complete, it is the other way around,
thus the target element is more specific than the source element.

Overlap (o) Overlap, represented by the metaclass Overlap, states that the connected elements represent
different aspects of the world, but have an overlap in some respect. In particular, it states that some
objects described by the element in the one ontology may also be described by the connected element
in the other ontology.

In some approaches, these basic relations are supplemented by their negative counterparts, for which the
metamodel provides an attribute negated for the abstract superclass SemanticRelation. For example, a
negated Overlap relation specifies the disjointness of two elements. The corresponding relations can be
used to describe that two elements are not equivalent (6≡), not contained in each other (6v) or not overlapping
or disjoint respectively (Ø). Adding these negative versions of the relations leaves us with eight semantic
relations that cover all existing proposals for mapping languages.

In addition to the type of semantic relation, an important distinction is whether the mappings are to be
interpreted as extensional or as intensional relationships, specified through the attribute interpretation of the
metaclass SemanticRelation.

Extensional The extension of a concept consists of the things which fall under the concept. In extensional
mapping definitions, the semantic relations are interpreted as set-relations between the sets of objects
represented by elements in the ontologies. Intuitively, elements that are extensionally the same have
to represent the same set of objects.

Intensional The intension of a concept consists of the qualities or properties which go to make up the
concept. In the case of intensional mappings, the semantic relations relate the concepts directly,
i.e. considering the properties of the concept itself. In particular, if two concepts are intensionally the
same, they refer to exactly the same real world concept.

The set of semantic relations can be extended by additional types of relations if needed. For
example, the SKOS vocabulary3 defines as possible relations: skos:semanticRelation,
skos:broader, skos:narrower, skos:related, skos:broaderTransitive,
skos:narrowerTransitive. However, the semantics of these relations is not formally defined.
We therefore do not include them as predefined relations in our model.

As mappable elements, the metamodel contains the class OWLEntity that represents an arbitrary part of
an ontology specification. While this already covers many of the existing mapping approaches, there are

3http://www.w3.org/TR/skos-reference/

2006–2008 c© Copyright lies with the respective authors and their institutions.

http://www.w3.org/TR/skos-reference/

Page 30 of 44 NeOn Integrated Project EU-IST-027595

a number of proposals for mapping languages that rely on the idea of view-based mappings and use se-
mantic relations between (conjunctive) queries to connect models, which leads to a considerably increased
expressiveness. These queries are represented by the metaclass OntologyQuery. Note that the metamodel
in principle supports all semantic relations for all mappable elements.

Queries

A mapping assertion can take a query as mappable element. Figure 4.6 demonstrates the class Query that
reuses constructs from the SWRL metamodel.

We reuse large parts of the rule metamodel as conceptual rules and queries are of very similar nature [TF05]:
A rule consists of a rule body (antecedent) and rule head (consequent), both of which are conjunctions of
logical atoms. A query can be considered as a special kind of rule with an empty head. The distinguished
variables specify the variables that are returned by the query. Informally, the answer to a query consists of
all variable bindings for which the grounded rule body is logically implied by the ontology. A Query atom also
contains a PredicateSymbol and some, possibly just one, Terms. In the SWRL metamodel, we defined the
permitted predicate symbols through the subclasses Description, DataRange, DataProperty, ObjectProperty
and BuiltIn. Similarly, the different types of terms, Individual, Constant, IndividualVariable and DataVari-
able are specified as subclasses of Term. Distinguished variables of a query are differentiated through an
association between Query and Variable.

4.3.2 Concrete Syntax using DL-safe Mappings

The mappings as described in the mapping metamodel can be represented in a separate context ontology,
as we have demonstrated it already for the argumentation and provenance ontology in the previous sections.

However, in the case of mappings as contextual information, it may also be desirable to interpret the map-
pings in the same interpretation domain as the domain ontologies themselves. For this, we can define specific
groundings of the mappings in specific mapping languages. In [HBP+07] we have discussed several of such
groundings, including for C-OWL and DL-safe mappings.

We here provide a small example of how a grounding of the mappings would be realized in DL-safe mappings
[HM05] where the mappings can be discovered by the Alignment Server described in D3.3.1. Simply speak-
ing, DL-safe mappings relies on OWL extended with the DL-safe subset of SWRL for the representation of
the mappings. Many mapping patterns can indeed be represented in OWL directly. For example, a mapping
assertion with an OWLClass as source and target element is represented as an EquivalentClasses axiom.

Example 4 Suppose we want to express a mapping assertion that specifies equivalence as semantic relation
between two classes X and Y with a confidence degree of 0.8.

The mapping would be expressed as a DL-safe mapping as follows:

(1) EquivalentClasses(Annotation(weight “0.8") X Y)

4.3.3 Instantiation of the Generic Definition

We consider how to use C-OWL to instantiate mapping as a type of context against the generic definition.
This can be done by two steps. We first use the weights attached to the mapping assertions to remove
erroneous mapping assertions. We then apply the C-OWL semantics on the revised ontologies. For the first
step, we can apply the debugging and repairing approach given in [MST07]. For the latter step, we consider
a set of (local) ontologies Oi where i ∈ I . Choosing therefrom one local ontology Ok to focus on, let Lk be
the local language of Ok, i.e. the set of statements only referring to concepts, individuals, and roles from Ok.
Furthermore, let L be the language built up from all concepts, individuals, and roles from all ontologies of
the context space. So obviously Lk ⊆ L. We use Lk as knowledge language and L as context language.
The semantic of Ok is then the set S(Ok) ⊆ L of the consequences we can derive when simply discarding

D3.1.3 Improved NeOn formalism for context representation Page 31 of 44

all “non-local” information, i.e. that about the other Oj with k 6= j and all bridge rules {Mij}i,j∈I . All other
ontologies together with the bridge rules constitute the context C for Ok. We are aware, that our notion of
context does not coincide with the use of the term in C-OWL, since in the C-OWL terminology, every Ok
is conceived as a context on its own. However, we argue that our terminology captures the intention more
precisely, since e.g. the information present in the mappings would in C-OWL terms be considered as outside
of any context.

Obviously, Ok ’s “global theory” S′(Ok, C) – all derivable consequences taking into account the distributed
information of the considered context space – in general deviates from S(OK).
Characterizing this kind of semantic, we find that it is obviously conservative, extensive, knowledge-
monotone, and context-monotone.

4.4 Summary

In this chapter, we considered three types of context which are of particular interest to NeOn project: prove-
nance, argumentation and mapping. For each of these types of context, we gave an example to show how
it can be represented by the syntax given in Chapter 3. The semantics of the context language was also
discussed. By doing this, we related these three types of context to the general definition of context given in
Chapter 2.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 32 of 44 NeOn Integrated Project EU-IST-027595

Figure 4.4: University ontology

D3.1.3 Improved NeOn formalism for context representation Page 33 of 44

Figure 4.5: OWL mapping metamodel: mappings

Figure 4.6: OWL mapping metamodel: queries

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 34 of 44 NeOn Integrated Project EU-IST-027595

Chapter 5

Conclusion

5.1 Summary

In this deliverable, we defined the NeOn formalism for context representation. We first recalled the generic
definition of context given in NeOn deliverable D3.1.1. We then presented a proposal how to represent
context information in OWL ontologies. The representation formalism is generic in the sense that it can
accommodate arbitrary forms of context languages. For example, it is used to represent the mappings as
described in the mapping metamodel. For a given context language one needs to define its vocabulary in the
form of a context ontology. So we provided context vocabularies for specific forms of context. We instantiated
our generic definition of context for three specific forms of context and illustrated how they can be represented
by the context ontologies.

5.2 Roadmap

We have developed context representation formalism which will serve as the foundation for representing
context in the NeOn project. There are a couple of issues that are worthwhile for further investigation. First,
we use OWL as an language to represent both ontology and context. There is some interest in NeOn project
where rule languages like F-logic and RIF can be used. We may consider exploring how to use RIF to
represent rules and context in the future. Second, we will combine the argumentation support tool developed
in WP2 and debugging tool developed in WP1 so that we can use context information to deal with inconsistent
information in ontologies. Third, in WP1, we have discussed how to apply context information to deal with
inconsistency and provide evaluation of our approaches. However, we have not considered mappings as a
context information for the purpose of debugging. As a future direction, we will incorporate mapping and
discuss how to deal with inconsistency in networked ontologies.

D3.1.3 Improved NeOn formalism for context representation Page 35 of 44

Appendix A

Translation of an Ontology to its Metaview

This appendix contains the formal specification of the transformation µ, which takes an OWL 1.1 ontology O
and generates its metaview µ(O). Given an ontology O, we define the ontology µ(O) as follows:

Ontology(<mo:the ontology URI of O>
Import(http : //owlodm.ontoware.org/OWL1 .1)

µ(α) for each ontology annotation α in O
µ(α) for each axiom α in O

)

(A.1)

The ontology URI of µ(O) is obtained by prepending the ontology URI of O with mo. The ontology µ(O)
imports the meta ontology of OWL 1.1 with the URI http : //owlodm.ontoware.org/OWL1 .1 ontology,
which defines OWL classes and properties for describing the syntactic structure of O.

The result of an application of the operator µ to ontology annotations is given in Table A.2. The result of an
application of µ to axioms is defined as

µ(α) = Λ(α) ∪ Ξ(α) (A.2)

where the functions Λ and Ξ map axioms, class descriptions, data ranges, object property, data property
expressions and lists in O to sets of ABox assertions, as defined in Tables A.1–A.14. These tables use the
following abbreviations:

• CLA for ClassAssertion,

• DPA for DataPropertyAssertion, and

• OPA for ObjectPropertyAssertion.

The ontology O contains named and unnamed objects. Classes, properties, datatypes, and individuals are
examples of named objects; each named object α is represented in µ(O) by an individual whose URI is
equal to the URI of α; we denote this individual as xα. In contrast, axioms, class descriptions, and property
expressions are examples of unnamed objects. For each unnamed object α, the transformation µ generates
a new individual that represents α in µ(O). To make the notation uniform, we denote this new individual
also as xα. We do not specify how to associate xα with α; however, we assume that each implementation
provides some way of obtaining xα from α and vice versa.

OWL 1.1 provides for complex property inclusion axioms that involve a chain of object properties. Similarly,
the restrictions on data properties can involve more than one property. In order to preserve the order of the
properties in these elements in the axiom metaview, we treat this chain as a list of objects. We denote a list
of objects as L[o1 . . . on]. Lists are unnamed objects. Hence, for a list α, we assume that there is a new

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 36 of 44 NeOn Integrated Project EU-IST-027595

individual xα that uniquely corresponds to α; furthermore, xL[] = mo:null . Nonempty lists are translated
into ABox assertions as shown in Table A.1.

Finally, OWL 1.1 allows each axiom to contain annotations. For all axiom types, their annotations are trans-
lated into assertions in the same way. If an axiom α is annotated with a URI ap and a constant value ct, then
Λ(α) contains the assertion (A.3). Similarly, if α is annotated with a URI ap and an individual in, then Λ(α)
contains the assertion (A.4).

DataPropertyAssertion(ap xα ct) (A.3)

ObjectPropertyAssertion(ap xα in) (A.4)

D3.1.3 Improved NeOn formalism for context representation Page 37 of 44

Table A.1: Translation of Lists

α Λ(α) Ξ(α)
L[e1 e2 . . . en] OPA(mo:first xL[e1 e2 ... en] e1) µ(e1) ∪ µ(L[e2 . . . en])

OPA(mo:rest xL[e1 e2 ... en] xL[e2 ... en])

Table A.2: Translation of Ontology Annotations

α µ(α)
AnnotationByConstant(ap ct) DPA(ap o ct)
AnnotationByEntity(ap in) DPA(ap o in)
Note: o is the URI of the ontology being translated.

Table A.3: Translation of Entity Annotations

α Λ(α) Ξ(α)
EntityAnnotation(EType(e) ann1 . . . annn) CLA(xα mo:EntityAnnotation)

⋃n
i=1 µ(anni)

OPA(mo:entity xα xe)
DPA(mo:entityAnnotation xα xann1)
. . .
DPA(mo:entityAnnotation xα xannn)

AnnotationByEntity(ap in) OPA(ap xα in) ∅
AnnotationByConstant(ap ct) DPA(ap xα ct) ∅

Note: EType is one of OWLClass,Datatype,ObjectProperty,DataProperty, or Individual.

Table A.4: Translation of Entities

α Λ(α) Ξ(α)
OWLClass(cl) CLA(cl mo:OWLClass) ∅
Datatype(dt) CLA(dt mo:DataType) ∅
Individual(in) CLA(op mo:Individual) ∅
ObjectProperty(op) CLA(op mo:ObjectProperty) ∅
DataProperty(dp) CLA(op mo:DataProperty) ∅

Table A.5: Translation of Entity Declarations

α Λ(α) Ξ(α)
Declaration(OWLClass (e)) CLA(xα mo:OWLClassDeclaration) µ(e)

OPA(mo:entity xα xe)
Declaration(Datatype (e)) CLA(xα mo:DatatypeDeclaration) µ(e)

OPA(mo:entity xα xe)
Declaration(ObjectProperty (e)) CLA(xα mo:ObjectPropertyDeclaration) µ(e)

OPA(mo:entity xα xe)
Declaration(DataProperty (e)) CLA(xα mo:DataPropertyDeclaration) µ(e)

OPA(mo:entity xα xe)
Declaration(Individual (e)) CLA(xα mo:IndividualDeclaration) µ(e)

OPA(mo:entity xα xe)

Table A.6: Translation of Data Ranges

α Λ(α) Ξ(α)
DataComplementOf(dr) CLA(xα mo:DataComplementOf) µ(dr)

OPA(mo:dataRange xα xdr)
DataOneOf(ct1 . . . ctn) CLA(xα mo:DataOneOf) ∅

DPA(mo:constants xα ct1)
. . .
DPA(mo:constants xα ctn)

DatatypeRestriction(dr facet ct) CLA(xα mo:DatatypeRestriction) µ(dr)
OPA(mo:dataRange xα xdr)
DPA(mo:restrictionValue xα ct)
DPA(mo:facetType xα facet)

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 38 of 44 NeOn Integrated Project EU-IST-027595

Table A.7: Translation of Object Property Expressions

α Λ(α) Ξ(α)
InverseObjectProperty(op) CLA(xα mo:InverseObjectProperty µ(op)

Table A.8: Translation of Boolean Concepts

α Λ(α) Ξ(α)
ObjectUnionOf(c1 . . . cn) CLA(xα mo:ObjectUnionOf)

⋃n
i=1 µ(ci)

OPA(mo:classes xα xc1)
. . .
OPA(mo:classes xα xcn)

ObjectIntersectionOf(c1 . . . cn) CLA(xα mo:ObjectIntersectionOf)
⋃n
i=1 µ(ci)

OPA(mo:classes xα xc1)
. . .
OPA(mo:classes xα xcn)

ObjectComplementOf(c) CLA(xα mo:ObjectComplementOf) µ(c)
OPA(mo:class xα xc)

ObjectOneOf(in1 . . . inn) CLA(xα mo:ObjectOneOf)
⋃n
i=1 µ(ini)

OPA(mo:individuals xα in1)
. . .
OPA(mo:individuals xα inn)

Table A.9: Translation of Object Property Restrictions

α Λ(α) Ξ(α)
ObjectSomeValuesFrom(op c) CLA(xα mo:ObjectSomeValuesFrom) µ(op) ∪ µ(c)

OPA(mo:objectProperty xα xop)
OPA(mo:class xα xc)

ObjectAllValuesFrom(op c) CLA(xα mo:ObjectAllValuesFrom) µ(op) ∪ µ(c)
OPA(mo:objectProperty xα xop)
OPA(mo:class xα xc)

ObjectExistsSelf(op) CLA(xα mo:ObjectExistsSelf) µ(op)
OPA(mo:objectProperty xα xop)

ObjectHasValue(op in) CLA(xα mo:ObjectHasValue) µ(op) ∪ µ(in)
OPA(mo:objectProperty xα xop)
OPA(mo:individual xα in)

ObjectMaxCardinality(n op c) CLA(xα mo:ObjectMaxCardinality) µ(op) ∪ µ(c)
DPA(mo:cardinality xα n)
OPA(mo:objectProperty xα xop)
OPA(mo:class xα xc)

ObjectMinCardinality(n op c) CLA(xα mo:ObjectMinCardinality) µ(op) ∪ µ(c)
DPA(mo:cardinality xα n)
OPA(mo:objectProperty xα xop)
OPA(mo:class xα xc)

ObjectExactCardinality(n op c) CLA(xα mo:ObjectExactCardinality) µ(op) ∪ µ(c)
DPA(mo:cardinality xα n)
OPA(mo:objectProperty xα xop)
OPA(mo:class xα xc)

D3.1.3 Improved NeOn formalism for context representation Page 39 of 44

Table A.10: Translation of Datatype Property Restrictions

α Λ(α) Ξ(α)
DataSomeValuesFrom(dp dr) CLA(xα mo:DataSomeValuesFrom) µ(dp) ∪ µ(dr)

OPA(mo:dataProperties xα xdp)
DPA(mo:dataRange xα xdr)

DataSomeValuesFrom(dp1 . . . dpn dr) CLA(xα mo:DataSomeValuesFrom) µ(L[dp1 . . . dpn]) ∪
OPA(mo:dataProperties µ(dr)

xα xL[dp1 ... dpn])
DPA(mo:dataRange xα xdr)

DataAllValuesFrom(dp dr) CLA(xα mo:DataAllValuesFrom) µ(dp) ∪ µ(dr)
OPA(mo:dataProperties xα xdp)
DPA(mo:dataRange xα xdr)

DataAllValuesFrom(dp1 . . . dpn dr) CLA(xα mo:DataAllValuesFrom) µ(L[dp1 . . . dpn]) ∪
OPA(mo:dataProperties µ(dr)

xα xL[dp1 ... dpn])
DPA(mo:dataRange xα xdr)

DataHasValue(dp ct) CLA(xα mo:DataHasValue) µ(dp)
OPA(mo:dataProperty xα xdp)
DPA(mo:constant x(α) ct)

DataMaxCardinality(n dp dr) CLA(xα mo:DataMaxCardinality) µ(dp) ∪ µ(dr)
DPA(mo:cardinality xα n)
OPA(mo:dataProperty xα xdp)
OPA(mo:dataRange xα xdr)

DataMinCardinality(n dp dr) CLA(xα mo:DataMinCardinality) µ(dp) ∪ µ(dr)
DPA(mo:cardinality xα n)
OPA(mo:dataProperty xα xdp)
OPA(mo:dataRange x xdr)

DataExactCardinality(n dp dr) CLA(xα mo:DataExactCardinality) µ(dp) ∪ µ(dr)
DPA(mo:cardinality xα n)
OPA(mo:dataProperty xα xdp)
OPA(mo:dataRange xα xdr)

Table A.11: Translation of Class Axioms

α Λ(α) Ξ(α)
SubClassOf(c1 c2) CLA(xα mo:SubClassOf) µ(c1) ∪ µ(c2)

OPA(mo:subClass xα xc1)
OPA(mo:superClass xα xc2)

EquivalentClasses(c1 . . . cn) CLA(xα mo:EquivalentClasses)
⋃n
i=1 µ(ci)

OPA(mo:classes xα xc1)
. . .
OPA(mo:classes xα xcn)

DisjointClasses(c1 . . . cn) CLA(xα mo:DisjointClasses)
⋃n
i=1 µ(ci)

OPA(mo:classes xα xc1)
. . .
OPA(mo:classes xα xcn)

DisjointUnion(c c1 . . . cn) CLA(xα mo:DisjointUnion) µ(c) ∪
⋃n
i=1 µ(ci)

OPA(mo:class xα xc)
OPA(mo:disjointClasses xα xc1)
. . .
OPA(mo:disjointClasses xα xcn)

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 40 of 44 NeOn Integrated Project EU-IST-027595

Table A.12: Translation of Object Property Axioms

α Λ(α) Ξ(α)
SubObjectPropertyOf(op1 op2) CLA(xα mo:SubObjectPropertyOf) µ(op1) ∪ µ(op2)

OPA(mo:subObjectProperties xα xop1)
OPA(mo:superObjectProperty xα xop2)

SubObjectPropertyOf(CLA(xα mo:SubObjectPropertyOf) µ(op) ∪
SubObjectPropertyChain(OPA(mo:subObjectProperties µ(L[op1 . . . opn])
op1 . . . opn) xα xL[op1 ... opn])

op) OPA(mo:superObjectProperty xα xop)
EquivalentObjectProperties(CLA(xα mo:EquivalentObjectProperties)

⋃n
i=1 µ(opi)

op1 . . . opn) OPA(mo:objectProperties xα xop1)
. . .
OPA(mo:objectProperties xα xopn)

DisjointObjectProperties(CLA(xα mo:DisjointObjectProperties)
⋃n
i=1 µ(opi)

op1 . . . opn) OPA(mo:objectProperties xα xop1)
. . .
OPA(mo:objectProperties xα xopn)

ObjectPropertyDomain(op c) CLA(xα mo:ObjectPropertyDomain) µ(op) ∪ µ(c)
OPA(mo:objectProperty xα xop)
OPA(mo:domain xα xop)

ObjectPropertyRange(op c) CLA(xα mo:ObjectPropertyRange) µ(op) ∪ µ(c)
OPA(mo:objectProperty xα xop)
OPA(mo:range xα xop)

InverseObjectProperties(op1 op2) CLA(xα mo:InverseObjectProperties) µ(op1) ∪ µ(op2)
OPA(mo:objectProperty1 xα xop1)
OPA(mo:objectProperty2 xα xop2)

TransitiveObjectProperty(op) CLA(xα mo:TransitiveObjectProperty) µ(op)
OPA(mo:objectProperty xα xop)

FunctionalObjectProperty(op) CLA(xα mo:FunctionalObjectProperty) µ(op)
OPA(mo:objectProperty xα xop)

InverseFunctionalObjectProperty(op) CLA(xα µ(op)
mo:InverseFunctionalObjectProperty)

OPA(mo:objectProperty xα xop)
ReflexiveObjectProperty(op) CLA(xα mo:ReflexiveObjectProperty) µ(op)

OPA(mo:objectProperty xα xop)
IrreflexiveObjectProperty(op) CLA(xα mo:IrreflexiveObjectProperty) µ(op)

OPA(mo:objectProperty xα xop)
SymmetricObjectProperty(op) CLA(xα mo:SymmetricObjectProperty) µ(op)

OPA(mo:objectProperty xα xop)
AntisymmetricObjectProperty(op) CLA(xα mo:AntisymmetricObjectProperty) µ(op)

OPA(mo:objectProperty xα xop)

Table A.13: Translation of Data Property Axioms

α Λ(α) Ξ(α)
SubDataPropertyOf(dp1 dp2) CLA(xα mo:SubDataPropertyOf) µ(dp1) ∪ µ(dp2)

OPA(mo:subDataProperty xα xdp1)
OPA(mo:superDataProperty xα xdp2)

EquivalentDataProperties(dp1 . . . dpn) CLA(xα mo:EquivalentDataProperties)
⋃n
i=1 µ(dpi)

OPA(mo:dataProperties xα xdp1)
. . .
OPA(mo:dataProperties xα xdpn)

DisjointDataProperties(dp1 . . . dpn) CLA(xα) mo:DisjointDataProperties)
⋃n
i=1 µ(dpi)

OPA(mo:dataProperties xα xdp1)
. . .
OPA(mo:dataProperties xα xdpn)

DataPropertyDomain(dp c) CLA(xα mo:DataPropertyDomain) µ(dp) ∪ µ(c)
OPA(mo:dataProperty xα xdp)
OPA(mo:domain xα xc)

DataPropertyRange(dp dr) CLA(xα mo:DataPropertyRange) µ(dp) ∪ µ(dr)
OPA(mo:objectProperty xα xdp)
OPA(mo:range xα xdr)

FunctionalDataProperty(dp) CLA(xα mo:FunctionalDataProperty) µ(dp)
OPA(mo:dataProperty xα xop)

D3.1.3 Improved NeOn formalism for context representation Page 41 of 44

Table A.14: Translation of Assertions

α Λ(α) Ξ(α)
ClassAssertion(in c) CLA(xα mo:ClassAssertion) µ(in) ∪

OPA(mo:individual xα in) µ(c)
OPA(mo:description xα xc)

ObjectPropertyAssertion(op in1 in2) CLA(xα mo:ObjectPropertyAssertion) µ(op) ∪
OPA(mo:objectProperty xα xop) µ(in1) ∪
OPA(mo:sourceIndividual xα in1) µ(in2)
OPA(mo:targetIndividual xα in2)

NegativeObjectPropertyAssertion(op in1 in2) CLA(xα
mo:NegativeObjectPropertyAssertion) µ(op) ∪

OPA(mo:objectProperty xα xop) µ(in1) ∪
OPA(mo:sourceIndividual xα in1) µ(in2)
OPA(mo:targetIndividual) xα in2)

SameIndividual(in1 . . . inn) CLA(xα) mo:SameIndividual)
⋃n
i=1 µ(ini)

OPA(mo:individuals) xα in1)
. . .
OPA(mo:individuals) xα inn)

DifferentIndividuals(in1 . . . inn) CLA(xα) mo:DifferentIndividuals)
⋃n
i=1 µ(ini)

OPA(mo:individuals) xα in1)
. . .
OPA(mo:individuals) xα inn)

DataPropertyAssertion(dp in ct) CLA(xα mo:DataPropertyAssertion) µ(op) ∪
OPA(mo:dataProperty) xα xop) µ(in)
OPA(mo:sourceIndividual) xα in)
DPA(mo:targetValue) xα ct)

NegativeDataPropertyAssertion(dp in ct) CLA(xα
mo:NegativeDataPropertyAssertion) µ(dp) ∪

OPA(mo:dataProperty) xα xop) µ(in)
OPA(mo:sourceIndividual) xα in)
DPA(mo:targetValue) xα ct)

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 42 of 44 NeOn Integrated Project EU-IST-027595

Bibliography

[AM97] P. Smets A. Motro. Uncertainty Management In Information Systems. Springer, 1997.

[BCRS06] P. Buitelaar, P. Cimiano, S. Racioppa, and M. Siegel. Ontology-based information extraction with
soba. In Proceedings of the International Conference on Language Resources and Evaluation
(LREC), 2006.

[BDP92] Salem Benferhat, Didier Dubois, and Henri Prade. Representing default rules in possibilistic
logic. In KR, pages 673–684, 1992.

[BGvH+03] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuckenschmidt. C-OWL: Con-
textualizing Ontologies. In Second International Semantic Web Conference ISWC’03, volume
2870 of LNCS, pages 164–179. Springer, 2003.

[BLP04] S. Benferhat, S. Lagrue, and O. Papini. Reasoning with partially ordered information in a possi-
bilistic logic framework. Fuzzy Sets and Systems, 144(1):25–41, 2004.

[BOS03] P. Buitelaar, D. Olejnik, and M. Sintek. OntoLT: A protégé plug-in for ontology extraction from
text. In Proceedings of the International Semantic Web Conference (ISWC), 2003.

[CGL+06] Carola Catenacci, Aldo Gangemi, Jos Lehmann, Malvina Nissim, and Valentina Presutti. De-
sign rationales for collaborative development of networked ontologies - state of the art and the
collaborative ontology design ontology. Technical report, CNR; NeOn Deliverable D2.1.1, 2006.

[Cir01] F. Ciravegna. Adaptive information extraction from text by rule induction and generalization. In
Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI), pages
1251–1256, 2001.

[CV05] Philipp Cimiano and Johanna VèŮŻlker. Text2onto - a framework for ontology learning and
data-driven change discovery. In Andres Montoyo, Rafael Munoz, and Elisabeth Metais, editors,
Proceedings of the 10th International Conference on Applications of Natural Language to Infor-
mation Systems (NLDB), volume 3513 of Lecture Notes in Computer Science, pages 227–238,
Alicante, Spain, JUN 2005. Springer.

[DLP94] Didier Dubois, Jérôme Lang, and Henri Prade. Possibilistic logic. In Handbook of logic in
Aritificial Intelligence and Logic Programming, pages 439–513, 1994.

[DP91] Didier Dubois and Henri Prade. Epistemic entrenchment and possibilistic logic. Artif. Intell.,
50(2):223–239, 1991.

[DP98] Didier Dubois and Henri Prade. Possibility theory: qualitative and quantitative aspects. In
Handbook of Defeasible Reasoning and Uncertainty Management Systems, pages 169–226,
1998.

[DP04] Z. Ding and Y. Peng. A Probabilistic Extension to Ontology Language OWL. In Proceedings of
the 37th Hawaii International Conference On System Sciences (HICSS-37)., Big Island, Hawaii,
January 2004.

D3.1.3 Improved NeOn formalism for context representation Page 43 of 44

[DS05] Michael Dürig and Thomas Studer. Probabilistic abox reasoning: Preliminary results. In De-
scription Logics, 2005.

[Fel98] C. Fellbaum. WordNet, an electronic lexical database. MIT Press, 1998.

[FGM07] Blaz Fortuna, Marko Grobelnik, and Dunja Mladenic. Ontogen: Semi-automatic ontology editor.
In HCI (9), pages 309–318, 2007.

[FK00] F. Freitag and N. Kushmerick. Boosted Wrapper Induction. In Proceedings of the 17th National
Conference on Artificial Intelligence (AAAI), pages 577–583, 2000.

[FN98] D. Faure and C. Nedellec. A corpus-based conceptual clustering method for verb frames and
ontology. In Proceedings of the LREC Workshop on Adapting lexical and corpus resources to
sublanguages and applications, 1998.

[GL02] Rosalba Giugno and Thomas Lukasiewicz. P-shoq(d): A probabilistic extension of shoq(d) for
probabilistic ontologies in the semantic web. In JELIA, pages 86–97, 2002.

[HBP+07] Peter Haase, Saartje Brockmans, Raul Palma, Jérôme Euzenat, and Mathieu d’Aquin. Updated
version of the networked ontology model. Technical Report D1.1.2, University of Karlsruhe, AUG
2007.

[Hea92] M.A. Hearst. Automatic acquisition of hyponyms from large text corpora. In Proceedings of the
14th International Conference on Computational Linguistics, pages 539–545, 1992.

[Hei94] Jochen Heinsohn. Probabilistic description logics. In UAI’94, pages 311–318, 1994.

[HHR+06] Peter Haase, Pascal Hitzler, Sebastian Rudolph, Guilin Qi, Marko Grobelnik, Igor Mozetič, Dam-
jan Bojadžiev, Jérôme Euzenat, Mathieu d’Aquin, Aldo Gangemi, and Carola Catenacci. D3.1.1
context languages - state of the art. Technical Report D3.1.1, Universität Karlsruhe, August
2006.

[HM05] P. Haase and B. Motik. A Mapping System for the Integration of OWL-DL Ontologies. In In
Proceedings of the ACM-Workshop: Interoperability of Heterogeneous Information Systems
(IHIS05), November 2005.

[HV05] Peter Haase and Johanna Völker. Ontology learning and reasoning - dealing with uncertainty
and inconsistency. In Paulo C. G. da Costa, Kathryn B. Laskey, Kenneth J. Laskey, and Michael
Pool, editors, Proceedings of the Workshop on Uncertainty Reasoning for the Semantic Web
(URSW), pages 45–55, NOV 2005.

[Jae94] Manfred Jaeger. Probabilistic reasoning in terminological logics. In KR’94, pages 305–316,
1994.

[KLP97] Daphne Koller, Alon Y. Levy, and Avi Pfeffer. P-classic: A tractable probablistic description logic.
In Proc. of AAAI’97, pages 390–397, 1997.

[KPSG06] Aditya Kalyanpur, Bijan Parsia, Evren Sirin, and Bernardo Cuenca Grau. Repairing unsatisfiable
concepts in owl ontologies. In ESWC’06, pages 170–184, 2006.

[Mot07] Boris Motik. On the Properties of Metamodeling in OWL. Journal of Logic and Computation,
17(4):617–637, 2007.

[MST07] Christian Meilicke, Heiner Stuckenschmidt, and Andrei Tamilin. Repairing ontology mappings.
In Proc. of AAAI’07, pages 1408–1413, 2007.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 44 of 44 NeOn Integrated Project EU-IST-027595

[NF04] Henrik Nottelmann and Norbert Fuhr. pdaml+oil: A probabilistic extension to daml+oil based on
probabilistic datalog. In Proceedings Information Processing and Management of Uncertainty in
Knowledge-Based Systems, pages 227–234, 2004.

[NVCN04] R. Navigli, P. Velardi, A. Cucchiarelli, and F. Neri. Extending and enriching WordNet with On-
toLearn. In Proc. of the GWC 2004, pages 279–284, 2004.

[POT70] Chaim Perelman and Lucie Olbrechts-Tyteca. TraitåžŘéIJš de l’argumentation: La nouvelle
rhåžŘéIJštorique. Paris: Presses Universitaires de France, 1970.

[PST04] Helena Sofia Pinto, Steffen Staab, and Christoph Tempich. Diligent: Towards a fine-grained
methodology for distributed, loosely-controlled and evolving engineering of ontologies. In Proc.
of ECAI’04, pages 393–397, 2004.

[QHJ07] Guilin Qi, Peter Haase, and Qiu Ji. D1.2.1 consistency models for networked ontologies. Tech-
nical Report D1.2.1, Universität Karlsruhe, FEB 2007.

[SSW05] L. Serafini, H. Stuckenschmidt, and H. Wache. A Formal Investigation of Mapping Languages
for Terminological Knowledge. In Proceedings of the 19th International Joint Conference on
Artificial Intelligence - IJCAI05, Edinburgh, UK, August 2005.

[Tem06] Christoph Tempich, editor. Ontology Engineering and Routing in Distributed Knowledge Man-
agement Applications. 2006.

[TF05] Sergio Tessaris and Enrico Franconi. Rules and queries with ontologies: a unifying logical
framework. In Description Logics, 2005.

[Tou58] S. Toulmin. The Uses of Argument. Cambridge University Press, Cambridge, UK, 1958.

[TPSS05] Christoph Tempich, Helena Sofia Pinto, York Sure, and Steffen Staab. An argumentation on-
tology for distributed, loosely-controlled and evolving engineering processes of ontologies (dili-
gent). In Proc. of ESWC’06, pages 241–256, 2005.

	Introduction
	NeOn Big Picture
	Context Representation in NeOn
	Overview of the Deliverable

	A Generic Definition for Context
	Formal abstract definition of context for an ontology

	Representing Context in OWL Ontologies
	Requirements and Difficulties
	Overview of the Approach
	Representing Context as Annotations
	Representing Context using Context Ontologies
	Comparison and Translation from Annotations to Context Ontologies
	Summary

	Instantiation
	Provenance
	Provenance Context
	Usage of Provenance Context
	Ontology learning example
	Instantiation of the Generic Definition

	Argumentation
	The University example
	Instantiation of the Generic Definition

	Mapping
	A Common Metamodel for OWL Ontology Mappings
	Concrete Syntax using DL-safe Mappings
	Instantiation of the Generic Definition

	Summary

	Conclusion
	Summary
	Roadmap

	Translation of an Ontology to its Metaview
	Bibliography

