

 NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 — “Semantic-based knowledge and content systems”

D2.5.1: A Library of Ontology Design Patterns: reusable
solutions for collaborative design of networked

ontologies.

Deliverable Co-ordinator: Valentina Presutti

Deliverable Co-ordinating Institution: CNR

Other Authors: Aldo Gangemi (CNR), Stefano David (CNR), Guadalupe
Aguado de Cea (UPM), Mari Carmen Suárez-Figueroa (UPM), Elena Montiel-
Ponsoda (UPM), María Poveda (UPM) - (see the executive summary for details
on respective contributions).

This deliverable collects the work made so far in the task 2.5 of WP2 on reusable modeling
solutions for collaborative ontology design.

Document Identifier: NEON/2007/D2.5.1/v1.2 Date due: February 15th, 2008
Class Deliverable: NEON EU-IST-2005-027595 Submission date: February 13th, 2008
Project start date March 1, 2006 Version: v1.2
Project duration: 4 years State: Final

Distribution: Public

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 2 of 183 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is part of the NeOn research project funded by the IST Programme of the Commission of the
European Communities by the grant number IST-2005-027595. The following partners are involved in the
project:

D2.5.1 Library of Ontology Design Patterns Page 3 of 183

Open University (OU) – Coordinator Universität Karlsruhe – TH (UKARL)
Knowledge Media Institute – KMi Institut für Angewandte Informatik und Formale
Berrill Building, Walton Hall Beschreibungsverfahren – AIFB
Milton Keynes, MK7 6AA Englerstrasse 11
United Kingdom D-76128 Karlsruhe, Germany
Contact person: Martin Dzbor, Enrico Motta Contact person: Peter Haase
E-mail address: {m.dzbor, e.motta}@open.ac.uk E-mail address: pha@aifb.uni-karlsruhe.de
Universidad Politécnica de Madrid (UPM) Software AG (SAG)
Campus de Montegancedo Uhlandstrasse 12
28660 Boadilla del Monte 64297 Darmstadt
Spain Germany
Contact person: Asunción Gómez Pérez Contact person: Walter Waterfeld
E-mail address: asun@fi.ump.es E-mail address: walter.waterfeld@softwareag.com
Intelligent Software Components S.A. (ISOCO) Institut ‘Jožef Stefan’ (JSI)
Calle de Pedro de Valdivia 10 Jamova 39
28006 Madrid SL–1000 Ljubljana
Spain Slovenia
Contact person: Jesús Contreras Contact person: Marko Grobelnik
E-mail address: jcontreras@isoco.com E-mail address: marko.grobelnik@ijs.si
Institut National de Recherche en Informatique University of Sheffield (USFD)
et en Automatique (INRIA) Dept. of Computer Science
ZIRST – 665 avenue de l’Europe Regent Court
Montbonnot Saint Martin 211 Portobello street
38334 Saint-Ismier, France S14DP Sheffield, United Kingdom
Contact person: Jérôme Euzenat Contact person: Hamish Cunningham
E-mail address: jerome.euzenat@inrialpes.fr E-mail address: hamish@dcs.shef.ac.uk
Universität Kolenz-Landau (UKO-LD) Consiglio Nazionale delle Ricerche (CNR)
Universitätsstrasse 1 Institute of cognitive sciences and technologies
56070 Koblenz Via S. Marino della Battaglia
Germany 44 – 00185 Roma-Lazio Italy
Contact person: Steffen Staab Contact person: Aldo Gangemi
E-mail address: staab@uni-koblenz.de E-mail address: aldo.gangemi@istc.cnr.it
Ontoprise GmbH. (ONTO) Food and Agriculture Organization
Amalienbadstr. 36 of the United Nations (FAO)
(Raumfabrik 29) Viale delle Terme di Caracalla
76227 Karlsruhe 00100 Rome
Germany Italy
Contact person: Jürgen Angele Contact person: Marta Iglesias
E-mail address: angele@ontoprise.de E-mail address: marta.iglesias@fao.org
Atos Origin S.A. (ATOS) Laboratorios KIN, S.A. (KIN)
Calle de Albarracín, 25 C/Ciudad de Granada, 123
28037 Madrid 08018 Barcelona
Spain Spain
Contact person: Tomás Pariente Lobo Contact person: Antonio López
E-mail address: tomas.parientelobo@atosorigin.com E-mail address: alopez@kin.es

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 4 of 183 NeOn Integrated Project EU-IST-027595

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this document, even
if they might not have directly contributed to the writing of this document or its parts:

• Partner 1: CNR

• Partner 2: UPM

• Partner 3: UKO-LD

• Partner 4: INRIA

Change Log

Version Date Amended by Changes
1.0 10-01-2008 Valentina Presutti Draft sent to the internal reviewer
1.1 01-02-2008 Valentina Presutti Pre-Final version completed (clarification

of definitions, correction of errors and ad-
dition of examples)

1.2 13-02-2008 Valentina Presutti and Aldo
Gangemi

Final version completed (all review issues
addressed and contribution from UPM
partner added. Title updated. Positioning
within WP2 tasks. Some DOLCE-related
patterns validation)

1.3 15-02-2008 Valentina Presutti and Aldo
Gangemi

Some formatting updates to the final ver-
sion

D2.5.1 Library of Ontology Design Patterns Page 5 of 183

Executive Summary

This deliverable collects the work made so far in the task 2.5 of WP2 on reusable modeling solutions for
collaborative ontology design. The focus of 2.5 is on the reusability aspects of collaboration, rather than on
specific modeling support for collaboration proper.
The work presented assumes a broad notion of ontology design pattern, which, also exploiting the similarities
with software engineering patterns, encompasses solutions ranging from logical to content modeling, from
mapping to lexico-syntactic presentation, from naming to reengineering, etc.
Ontology design patterns so characterized constitute a repository of solutions to recurrent modeling prob-
lems, and comply with the vision of collaborative ontology design formalized in D2.1.1.
The main focus of this deliverable is on content ontology design patterns, while the next version will contain
more material on the other types of patterns. The deliverable consists of three parts: the first part (chapters 1
to 3) explains the basic notions, pattern types, the historical background, and a minimal semantics for pattern
operations, also providing examples, diagrams, and instantiations.
The second part (chapter 4) is a catalog of content patterns, which is neither exhaustive nor definitive, but
gives a hint of what is being incrementally populated on a dedicated public portal, http://www.ontologydesignpatterns.org,
where patterns can be proposed, discussed, and recommended. The template used for the presentation has
been optimized for the web and defined in an OWL annotation schema; it is the same used on the semantic
web portal.
The third part (Appendix A) is an appendix that includes a presentation of catalog patterns according to a
template tailored for software engineers (but less appropriate for the web), and is compatible with the prelim-
inary presentation of patterns in D5.1.1.
T2.5 work is related to experimental and user study work that is being carried out in WP5, as well as to the
modularization work that is being carried out in WP1. A preliminary (now obsolete) version of the Appendix
was in fact presented in D5.1.1, while experimental settings for ontology design patterns evaluation are pre-
sented in D5.6.1. A preliminary liaison between content patterns and modularization semantics is presented
in D1.1.3.
Ongoing and future work in T2.5 will focus on the pattern portal and evaluation, while theoretical refinements
will be mainly related to the ontology modularization semantics and algebra presented in D1.1.3, OMV and
Oyster (WP1-WP6), and the evaluation, selection and reengineering methods from T2.2.

Contribution details
CNR has coordinated the editing of the deliverable, and has contributed the first (except section 2.2.5)) and
second parts.
UPM has contributed the Appendix (A) and section 2.2.5.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 6 of 183 NeOn Integrated Project EU-IST-027595

Contents

1 Introduction 13

1.1 Background . 15

2 Ontology Design Patterns 16

2.1 Definition of Ontology Design Pattern . 16

2.2 Types of Ontology Design Patterns . 18

2.2.1 Structural OPs . 19

2.2.2 Correspondence OPs . 25

2.2.3 Reasoning OPs . 27

2.2.4 Presentation OPs . 28

2.2.5 Lexico-Syntactic OPs . 29

2.2.6 Content OPs (CPs) . 34

3 Creation and Usage of Content Ontology Design Patterns 36

3.1 Requirements and use cases . 36

3.2 Operations . 37

3.2.1 Covering . 37

3.2.2 Clone . 38

3.2.3 Composition . 41

3.2.4 Specialization and Generalization . 43

3.2.5 Expansion . 44

3.2.6 Import . 45

3.3 Definition of Content Ontology Design Pattern (CP) . 45

3.3.1 Ontological resources that are not CPs . 47

3.3.2 Content Ontology Design Anti-pattern (AntiCP) . 47

3.4 Where do CPs come from? . 47

3.4.1 Examples of CP creation . 49

3.5 The CP annotation schema . 51

3.6 How to use content ontology design patterns . 53

3.6.1 Matching between intent and use case . 54

3.6.2 Pattern-based ontology evaluation . 55

D2.5.1 Library of Ontology Design Patterns Page 7 of 183

4 Catalogue of Content Ontology Design Patterns 60

4.1 General . 61

4.1.1 Types of entities . 61

4.1.2 Description . 63

4.1.3 Situation . 64

4.1.4 Classification . 66

4.1.5 N-ary Classification . 67

4.1.6 Description and Situation . 68

4.1.7 Object Role . 69

4.2 Parts and collections . 71

4.2.1 Part of . 71

4.2.2 Time Indexed Part of . 71

4.2.3 Componency . 73

4.2.4 Constituency . 75

4.2.5 Collection Entity . 76

4.3 Semiotics . 77

4.3.1 Intension Extension . 77

4.3.2 Information Realization . 79

4.4 Quantities and Dimensions . 80

4.4.1 Region . 80

4.4.2 Region Overlap . 82

4.4.3 Parameter . 83

4.4.4 Parameter Region . 85

4.5 Participation . 86

4.5.1 Participation . 86

4.5.2 Co-participation . 87

4.5.3 N-ary Participation . 89

4.6 Organization, Management, and Scheduling . 90

4.6.1 Precedence . 90

4.6.2 Agent Role . 91

4.6.3 Task Role . 93

4.6.4 Time-Indexed Person Role . 94

4.6.5 Basic Plan Description . 95

4.6.6 Basic Plan Execution . 97

4.6.7 Basic Plan . 99

4.7 Business . 101

4.7.1 Price . 101

4.7.2 Sales and Purchase Order Contracts . 102

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 8 of 183 NeOn Integrated Project EU-IST-027595

4.8 Time . 104

4.8.1 Time Interval . 104

4.9 Space . 106

4.9.1 Move . 106

4.10 Life Science . 108

4.10.1 Linnean Taxonomy . 108

4.11 Multimedia . 109

4.11.1 Multimedia Data Segment Decomposition . 109

4.12 Towards a Web Portal of CPs . 111

A Software Engineering templates 113

A.1 General . 113

A.2 Parts and collections . 123

A.3 Semiotics . 130

A.4 Quantities and Dimensions . 134

A.5 Participation . 138

A.6 Organization, Management, and Scheduling . 143

A.7 Business . 159

A.8 Time . 166

A.9 Space . 168

A.10 Life Science . 171

A.11 Multimedia . 175

Bibliography 179

D2.5.1 Library of Ontology Design Patterns Page 9 of 183

List of Tables

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 10 of 183 NeOn Integrated Project EU-IST-027595

List of Figures

2.1 Ontology Design Pattern definition . 18

2.2 Ontology Design Pattern types . 19

2.3 The n-ary relation Logical OP . 21

2.4 An example of usage of the n-ary relation Logical OP . 21

2.5 The classes as values Logical OP . 22

2.6 An example of usage of the classes as values Logical OP . 22

2.7 The transitive reduction Logical OP . 23

2.8 An example of usage of the transitive reduction Logical OP 24

2.9 The relation between datatype values Logical OP . 25

2.10 An example of usage of the relation between datatype values Logical OP 25

2.11 The modular architecture Architectural OP . 26

2.12 Relation between CPs and Logical OPs. 35

3.1 The agent role CP . 38

3.2 The time indexed person role CP . 39

3.3 The definition of the DUL:Agent class. 39

3.4 The definition of the AgentClone class. 40

3.5 The definition of the DUL:SocialAgent class. 41

3.6 The result of a partial clone of the DUL:SocialAgent class. 42

3.7 The agent role CP . 43

3.8 The task role CP . 43

3.9 The composition of agent role and task role CPs . 44

3.10 Containment vs Subsumption: an example of AntiCP . 48

3.11 The CP extraction process. 50

3.12 The information realization CP extraction from Dolce Ultra Lite ontology. 50

3.13 Ontology elements extracted and specialized from the Dolce Ultra Lite ontology. 52

3.14 The music industry example. 55

4.1 The types of entities CP . 62

4.2 The types of entities example scenario. 62

4.3 The description CP . 63

D2.5.1 Library of Ontology Design Patterns Page 11 of 183

4.4 The description example scenario: preparation of a coffee. 64

4.5 The situation CP . 65

4.6 The situation example scenario: a particular preparation of a coffee. 65

4.7 The classification CP . 66

4.8 The classification example scenario: classification of an operating system. 66

4.9 The n-ary classification CP . 67

4.10 The n-ary classification example scenario: different operating systems. 68

4.11 The description and situation CP . 69

4.12 The object role CP . 70

4.13 The object role example scenario: an old glass used as a flower pot. 70

4.14 The part of CP . 72

4.15 The part of example scenario: brain and heart are parts of the human body, substantia nigra is
part of brain. Notice that by transitivity, also substantia nigra is inferred as part of human body
(blue association denotes the inferred relation). 72

4.16 The time indexed part of CP . 72

4.17 The time indexed part of example scenario: Toyota Yaris pneumatics changing over time. . . . 73

4.18 The componency CP . 74

4.19 The componency example scenario . 74

4.20 The constituency CP . 75

4.21 The constituency example scenario . 75

4.22 The collection entity CP . 76

4.23 The collection entity example scenario: members of the Laboratory for Applied Ontology. . . . 77

4.24 The intension extension CP. 78

4.25 The intension extension example scenario. 78

4.26 The information realization CP . 80

4.27 The information realization scenario: the I Me Mine John Lennon’s biography. 80

4.28 The region CP . 81

4.29 The region example scenario: number of wheels. 81

4.30 The region CP . 82

4.31 The region example scenario . 83

4.32 The parameter CP . 84

4.33 The parameter example scenario: phases of a book. 84

4.34 The parameter region CP . 85

4.35 The parameter region example scenario . 86

4.36 The participation CP. 87

4.37 The participation example scenario . 87

4.38 The co-participation CP . 88

4.39 The co-participation example scenario: co-participation in the ISWC 2007 conference. 88

4.40 The n-ary participation CP . 89

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 12 of 183 NeOn Integrated Project EU-IST-027595

4.41 The n-ary participation example scenario: co-participation of objects to a certain event at a
certain time, place, etc. 90

4.42 The precedence CP. 91

4.43 The precedence CP . 91

4.44 The agent role CP . 92

4.45 The agent role example scenario . 92

4.46 The task role CP . 93

4.47 The task role example scenario: system configuration (administrator) and content writing (au-
thor). 94

4.48 The time indexed person role CP . 95

4.49 The time indexed person role example scenario. 96

4.50 The basic plans description CP . 96

4.51 The basic plan description example scenario. 97

4.52 The basic plan execution CP . 98

4.53 The basic plans execution example scenario: the ISWC paper writing. 99

4.54 The basic plans CP . 100

4.55 The price CP . 101

4.56 The price example scenario: the price of macbook pro 2.2. GHz expressed in Euro and Dollars.102

4.57 The sales and purchase order contracts CP . 103

4.58 The sales and purchase order contracts example scenario: a purchase of Queen Greatest hits
album. 104

4.59 The time interval CP . 105

4.60 The time interval example scenario . 105

4.61 The move CP . 106

4.62 The move example scenario . 106

4.63 The Linnean taxonomy CP . 108

4.64 The Linnean taxonomy example . 109

4.65 The multimedia data segment decomposition CP . 110

4.66 The ODP publishing and quality workflow. 112

D2.5.1 Library of Ontology Design Patterns Page 13 of 183

Chapter 1

Introduction

In the NeOn Deliverable 2.1.1, a complex model of collaborative ontology design (C-ODO) has been
provided, including basic distinctions and associations between ontology projects, design workflows, design
rationales, design solutions, etc.
The notion of “pattern” has proved useful in design, as exemplified in diverse areas such as architecture,
software engineering, etc. Within C-ODO, Ontology design Patterns (OP) play a crucial role, since they
summarize the good practices to be applied within design solutions, and keep track of the design rationales
that have motivated their adoption. Following a line of research dating back at least to 2003, in this
deliverable we provide a library of OPs, accompanied by a minimal theoretical framework and methods to
apply them in realistic ontology projects.
Although preliminarily, we will also liaise the catalogue and the meta-model for OPs to related NeOn work,
notably the networked ontology model (WP1) and the meta-models for mapping and modularity (WP1), the
reengineering models and methods (WP2), and the NeOn methodology (WP5).
In the remainder of this introduction, we provide a motivation why patterns are important in ontology design.

Computational ontologies in the context of information systems are artifacts that encode a description
of some world (actual, possible, counterfactual, impossible, desired, etc.), for some purpose. They have a
(primarily logical) structure, and must match both domain and task : they allow the description of entities
whose attributes and relations are of concern because of their relevance in a domain for some purpose, e.g.
query, search, integration, matching, explanation, etc.
Like any artifact, ontologies have a lifecycle: they are designed, implemented, evaluated, fixed, exploited,
reused, etc. In this deliverable, we focus on patterns for ontology design [Gan05, GLP+07].
Despite the original ontology engineering approach, when ontologies were seen as “portable” components
[Gru93], and the key role played by ontologies in the semantic web and interoperability issues, today one of
the most challenging and neglected areas of ontology design is reusability. The possible reasons include at
least: size and complexity of the major reusable ontologies, opacity of design rationales in most ontologies,
lack of criteria in the way existing knowledge resources (e.g. thesauri, database schemata, lexica) can be
reengineered, and brittleness of tools that should assist ontology designers.
Nowadays, an average user that is trying to build or reuse an ontology, or an existing knowledge resource,
is typically left with just some limited assistance in using unfriendly logical structures, some large, hardly
comprehensible ontologies, and a bunch of good practices that must be discovered from the literature.
A typical usage scenario includes e.g. a large set of web ontologies that are evaluated (usually in an
implicit way) against the intended domain and tasks. The selected ontology (if any) is reused, and then
an adaptation process is started in order to cope with the implicit requirements from an ontology project.
This scenario is costly in many cases, and automatic selection mechanisms do not help with the adaptation
process.
Another typical scenario includes so-called “reference” or “core” ontologies that are supposed to be directly
reused and specialized. Unfortunately, even if well designed, they are usually large and cover more

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 14 of 183 NeOn Integrated Project EU-IST-027595

knowledge than what a designer might need. In this case, it is hard to reuse only the “useful pieces” of the
ontology, and consequently the cost of reuse is higher than developing a new ontology from scratch.
On the other hand, the success of very simple and small ontologies like FOAF [BM05] and SKOS [MB05]
shows the potential of really portable, or “sustainable” ontologies. The lesson learnt supports the new
approach to ontology design, which is sketched here.
Under the assumption that there exist classes of problems that can be solved by applying common solutions
(as it has been experienced in software engineering), we propose to support reusability on the design side
specifically. We propose small (or cleverly modularized) ontologies with explicit documentation of design
rationales, and best reengineering practices. These components need specific functionalities in order to be
implemented in repositories, registries, catalogues, open discussion and evaluation forums, and ultimately
in new-generation ontology design tools.
In this deliverable, we will provide a typology of OPs, but we will mainly focus on a catalogue of small,
motivated ontologies that can be used as building blocks in ontology design. A formal framework for
(collaborative) ontology design that justifies the use of building blocks with explicit rationales is presented
in [GLP+07]. We call these basic building blocks to be used in ontology design Content Ontology design
Patterns (Content OPs, [Gan05]). Content OPs are small ontologies that mediate between use cases
(problem types) and design solutions. They are used as modeling components: ideally, an ontology results
from a composition of design patterns, with appropriate dependencies between them.

Throughout experiences in ontology engineering projects1 at the Laboratory for Applied Ontology (LOA),2 as
well as in other ongoing international projects that have experimented with these ideas, typical conceptual
patterns have emerged out of different domains, for different tasks, and while working with experts having
heterogeneous backgrounds.
For example, a simple participation pattern (including objects taking part in events) emerges in domain
ontologies as different as enterprise models [GF94], legal norms [GPS01], sofware management [OMGS04],
biochemical pathways [GCB04], and fishery techniques [GFK+04].
Other, more complex patterns have also emerged in the same disparate domains: the role-task pattern, the
information-realization pattern, the description-situation pattern, etc.
Moreover, since Content OPs are strictly related to small use cases, they are transparent with respect to the
rationales applied to the design of a certain ontology. Content OPs are therefore an additional tool to achieve
tasks such as ontology evaluation, matching, modularization, etc.
For example, an ontology can be evaluated against the presence of certain patterns (which act as unit tests
for ontologies, cf. [VG06]) that are typical of the tasks addressed by a designer. Furthermore, mapping
and composition of patterns can facilitate ontology mapping and alignment/merging: two ontologies drafted
according to Content OPs can be mapped in an easier way: Content OP hierarchies are more stable and
more easily maintainable than local, partial, scattered ontologies. Finally, Content OPs can be also used in
training and educational contexts for ontology engineers.
Content OPs are a very beneficial kind of patterns for ontology design, because they provide solutions to
domain-oriented problems, but there are other types of OPs, which will be also introduced in this chapter for
a general overview.
The content of this deliverable is organized as follows: section 1.1 gives some background notions; chapter
2 defines what an OP is and introduces a typology of OPs; chapter 3 focuses on Content OPs, defines the
typical operations used for, and describes ways to create and work with Content OPs. Chapter 4 contains a
catalogue of Content OPs. Finally, the catalogue is presented by means of a software engineering-oriented
template.

1For example, in the projects IKF : http://www.ikfproject.com/About.htm, FOS: http://www.fao.org/agris/aos/, WonderWeb:
http://wonderweb.semanticweb.org, and Metokis: http://metokis.salzburgresearch.at

2http://www.loa-cnr.it

D2.5.1 Library of Ontology Design Patterns Page 15 of 183

1.1 Background

The term “pattern” appears in English in the 14th century and derives from Middle Latin “patronus” (meaning
“patron”, and, metonymically, “exemplar”, i.e. something proposed for imitation).3 As Webster’s puts it, a
pattern has a set of senses that show a reasonable degree of similarity (see italics): a) a form or model
proposed for imitation, b) something designed or used as a model for making things, c) a model for making
a mold, d) an artistic, musical, literary, or mechanical design or form, e) a natural or chance configuration,
etc., and, f) a discernible coherent system based on the intended interrelationship of component parts’.
In the seventies, the architect and mathematician Christopher Alexander introduced the term “design pattern”
for shared guidelines that help solve design problems. In [Ale79] he argues that a good (architectural) design
can be achieved by means of a set of rules that are “packaged” in the form of patterns, such as “courtyards
which live”, “windows place”, or “entrance room”. Design patterns are then assumed as archetypal solutions
to design problems in a certain context.
Taking seriously the architectural metaphor, the notion has been eagerly endorsed by software engineering
[GW99, GHJV95, MHG02], and DBMS applications with so-called data model patterns [Hay96]. In these
areas, pattern is used as a general term for formatted guidelines in software reuse, and, more recently, has
also appeared in requirements analysis, conceptual modelling, and ontology engineering [CTP00, GW04,
Rei00, DWW04, Sva04, Sos03].4 While traditional design patterns appear more like a collection of shortcuts
and suggestions related to a class of context-bound problems and success stories, in recent work there is a
tendency towards a more formal encoding of design patterns (notably [BFL98, GW04, MHG01]), and even
towards using ontology patterns to encode software engineering patterns [OMGS04].
Ontology engineering literature has tackled the notion of design pattern at least since [CTP00, Rei00], while
in the context of Semantic Web research and application the notion has been introduced by [GCB04, RR04,
Sva04]. In particular, [GCB04, Sva04] take a foundational approach that anticipates that presented in [Gan05]
(which is closely related to this chapter). Some work [Blo05, BS05] has also attempted a learning approach
(by using case-based reasoning) to derive and rank patterns with respect to user requirements. The research
has also addressed domain-oriented patterns, e.g. for content objects and multimedia [GBCL05, ATS+07],
software components [Obe06], business modelling and interaction [GP07], etc. Moreover, the root of what
we call here Logical OPs can be found in [Bra77], where so-called description logics were conceived as a
way of representing knowledge in a structural manner by singling out the most relevant and tractable patterns
from first-order logic (and beyond).

3 Cf. Online Etymology Dictionary: http://www.etymonline.com
4In software engineering, formal approaches to design patterns, based on dedicated ontologies, are being investigated, e.g. in

so-called semantic middleware [OMGS04]

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 16 of 183 NeOn Integrated Project EU-IST-027595

Chapter 2

Ontology Design Patterns

In this chapter, we define the concept of Ontology Design Pattern (OP) and provide its ontological context
according to the C-ODO ontology [CLN+07]. We identify OP types, group them into families, and provide
some examples.
In this chapter, we use the following formatting conventions: terms represented by either typewriter font
(in ordinary text), or by typewriter italic font (within text of definitions) refer to ontology elements.
Each term includes a prefix, which identifies the ontology namespace it belongs to.

2.1 Definition of Ontology Design Pattern

The goal of this section is to give a precise definition of OP. C-ODO includes formal definitions for the notion of
OP in terms of concepts from the DOLCE Ultra-Lite ontology1. The OP definition is at the end of this section.
Before, we clarify the meaning of each ontology element involved in that definition. The namespaces we use
below and their corresponding prefixes are the followings:

• the default namespace is http://www.loa-cnr.it/ontologies/OD/odSolutions.owl#

• dul: is for http://www.loa-cnr.it/ontologies/DUL.owl#

• oddata: is for http://www.loa-cnr.it/ontologies/OD/odData.owl#

• owl: is for http://www.w3.org/2002/07/owl#

• rdf: is for http://www.w3.org/1999/02/22-rdf-syntax-ns#

• rdfs: is for http://www.w3.org/200/01/rdf-schema#

An OP is an information object, which is defined as follows.

Definition 1 (Information Object) An information object i.e. dul:InformationObject is a piece of
information about some entity that can be interpreted by an agent. It is encoded within some system for
information encoding, and realized by some entity. Consequently, information objects are dependent from an
encoding as well as from a concrete realization.

Examples of information objects are: a musical composition, a text, a word, a picture. From a communi-
cation perspective, an information object can play the role of ‘message’. From a semiotic perspective, it
plays the role of ‘expression’. Information objects can express a description (the ontological equivalent of a
meaning/conceptualization)2, which is defined as follows.

1http://www.loa-cnr.it/ontologies/DUL.owl
2see also sections 4.3.2 and 4.3.1

D2.5.1 Library of Ontology Design Patterns Page 17 of 183

Definition 2 (Description) A description (dul:Description) represents a conceptualization (e.g. a
mental object or state), hence it is dependent on some agent and communicable. Descriptions can also
be taken as reifications of cognitive contexts or logical n-ary relations. Descriptions use concepts, are ex-
pressed by information objects and can be satisfied by situations.

A description can be thought also as a descriptive context that defines concepts in order to model a relational
context out of a set of data or observations. For example, a plan is a description of some actions to be
executed by agents in a certain way, with certain parameters; a diagnosis is a description that provides an
interpretation for a set of observed entities, etc.3. The factual counterpart of descriptions are situations,
which are defined as follows.

Definition 3 (Situation) A situation (dul:Situation) is a setting for entities, typically consistent with a
Description.

A situation can be seen as a relational context created by an observer on the basis of a description. For
example, the execution of a plan is a setting for some actions executed by agents according to certain
parameters and expected workflows from a plan, a diagnosed situation is a context of observed entities
that is interpreted on the basis of a diagnosis, etc. Two descriptions of a same situation are possible. The
time and space (and possibly other values) of a situation are the time and space of the events and objects
occurring in the setting.4.
OPs express a design pattern schema, which is a description that can be satisfied by some design solution.
Design pattern schemas are defined as follows.

Definition 4 (Design Pattern Schema) A design pattern schema (DesignPatternSchema) is the de-
scription of an OP. It includes the roles, tasks, and parameters needed in order to solve an ontology design
issue.

For example, a design pattern schema for content creation provides instructions to clone, choose, compose,
or specialize an existing ontology or collection of ontology elements, possibly according to good practices.
Structural descriptions of OPs have simpler, non-procedural descriptions, which are called here skins.

Definition 5 (Design Pattern Skin) A design pattern skin (DesignPatternSkin) is a design pattern
schema describing the pure structure of an OP. It identifies the elements to be put into an ontology that
is supposed to reuse an OP.

Design pattern schemas and design pattern skins define element roles that only can be played by ontology
elements. For example, a skin for a partof OP would be defined e.g. with one element role for a mereological
relation, and two element roles e.g., part, and whole, for two entities of a same category (e.g. either objects
or events). Ontology elements and element roles are defined below.

Definition 6 (Ontology Element) An ontology element (oddata:OntologyElement) is an (identified)
element from an ontology. Ontology elements are also modelled in the Ontology Definition Metamodel (ODM)
[ea05], the Ontology Metadata Vocabulary (OMV) [HBP+07], etc.

Examples of ontology elements include e.g. OWL classes, OWL properties, and OWL restrictions.

Definition 7 (Element Role) An element role (ElementRole) is a concept that classifies an ontology ele-
ment.

3see also sections 4.1.2 and 4.1.6
4see also sections 4.1.3 and 4.1.6

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 18 of 183 NeOn Integrated Project EU-IST-027595

Figure 2.1: Ontology Design Pattern definition

Design pattern schemas and design pattern skins can be satisfied by design solutions, which are defined as
follows.

Definition 8 (Design Solution) A design solution (DesignSolution) is a situation that includes only
formal expressions (at least one Content OP or logical construct), and their relations.

For example, the use of the part of Content OP (also presented in section 4.2.1), in order to model the parts
of a country is a design solution. It is a setting for the partOf relation (which is an ontology element) and its
arguments.
Finally, in agreement with above definitions, and as depicted in Figure 2.1, we define:

Definition 9 (Ontology Design Pattern) An OP (OntologyDesignPattern) is a modeling solution to
solve a recurrent ontology design problem. It is an dul:InformationObject that dul:expresses a
DesignPatternSchema (or skin). Such schema can only be satisfied by DesignSolutions. Design
solutions provide the setting for oddata:OntologyElements that play some ElementRole(s) from
the schema.

The concept of OP abstracts from the particular formalism that is used in order to represent them. However,
the representation formalism is a key aspect for their usage. In the context of this deliverable, we deal with
OPs for the OWL representation language in the DL species. For this reason, we refer to OWL DL semantics
[OWL04] to define the notions of OWL ontology element and OWL DL axiom, which will be used in the rest
of the document.

Definition 10 (OWL Ontology Element, oe) An OWL Ontology Element is an identified element in
an OWL DL ontology, which dul:isClassifiedBy one of the following: owl:Class,
owl:DatatypeProperty, owl:ObjectProperty, OWL Individual, or OWL Property Value.

Definition 11 (OWL DL Axiom, ax) An OWL DL Axiom is an assertion, which is built by means of one
of the following elements: rdfs:subClassOf, owl:equivalentClass, owl:disjointWith,
owl:complementOf, rdfs:subPropertyOf, owl:equivalentProperty, owl:hasValue,
owl:inverseOf, rdfs:domain, rdfs:range, owl:sameAs, owl:oneOf, and
owl:differentFrom.

2.2 Types of Ontology Design Patterns

Our definition of OP includes a wide range of modeling solution types.

D2.5.1 Library of Ontology Design Patterns Page 19 of 183

Figure 2.2: Ontology Design Pattern types

One might expect OPs to be easily comparable to software engineering design patterns. The same anal-
ogy has been done with architecture, linguistics, and other disciplines. Ontology engineering and software
engineering show many similarities from the pragmatic viewpoint, but they are quite different from the theo-
retical viewpoint. Therefore, we use comparisons between ontology engineering and software engineering
for clarifying concepts and intuitions behind the definitions, but we do not take theoretical aspects of OP as
dependent on those of software engineering (or other fields).
Our concept of “pattern” is associable with that of “good/best practice” in software engineering, hence it
includes a wider range of solution types. For example, naming conventions in software engineering are con-
sidered good practices, but they are not design patterns.5 In ontology engineering “naming” is an important
design activity, which can have a strong impact on the usage of the ontology e.g., for selection, mapping, etc.
That’s why we classify ontology naming conventions as OPs.
In order to prevent confusion, we distinguish the different types of OPs by grouping them into six families (cf.
Figure 2.2): Structural OPs, Correspondence OPs, Content OPs (CPs), Reasoning OPs, Presentation OPs,
and Lexico-Syntactic OPs . Each family addresses different kinds of problems, and can be represented with
different levels of formality.
Structural OPs can be either Logical OPs or Architectural OPs. Correspondence OPs can be either Reengi-
neering OPs, or Mapping OPs. CPs can be distinguished in terms of the domain they represent. Reasoning
OPs are typical reasoning procedures. Presentation OPs relate to ontology usability from a user perspective;
e.g., we distinguish between Naming OPs and Annotation OPs. Lexico-Syntactic OP are linguistic structures
or schemas that permit to generalize and extract some conclusions about the meaning they express.
Each family of OPs can be associated with a catalogue. This deliverable presents a catalogue of CPs (chap-
ter 4) that will be extended in next versions, and a sample catalogue including entries for each type of OPs (a
preliminary catalogue of Logical OPs is also contained in [SFBG+07].6 The next version of this deliverable
will also contain at least a catalogue of Reasoning OPs.)
As a graphical representation of Logical OPs and CPs, we use an OWL profile for UML, where UML general-
ization (an arrow with a large end) is used to represent owl:subClassOf, UML association (an arrow with
a small end) is used to represent owl:ObjectProperty, UML class (a large box) is used to represent
owl:Class, and a special, UML-object-like box is used to represent owl:Restriction.

2.2.1 Structural OPs

Structural OPs includes Logical OPs and Architectural OPs. Logical OPs are compositions of logical con-
structs that solve a problem of expressivity, while Architectural OPs are defined in terms of composition
of Logical OPs that are used in order to affect the overall shape of the ontology; i.e., an Architectural OP
identifies a composition of Logical OPs that are to be exclusively used in the design of an ontology.

5Actually, software engineering design patterns are always associated to naming conventions, which can be then considered as
part of the design pattern.

6The definition of Logical OP has changed from the time of writing of [SFBG+07], however some of the Logical OPs included
there still comply with the new definition given in this deliverable.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 20 of 183 NeOn Integrated Project EU-IST-027595

Logical Ontology Design Patterns

Logical OPs are only expressed in terms of a logical vocabulary, because their signature (the set of predicate
names, e.g. the set of classes and properties in an OWL ontology) is empty (with minor exceptions, e.g.
the default inclusion of owl:Thing in OWL). On one hand, Logical OPs are independent from a specific
domain of interest (i.e. they are content-independent), on the other hand Logical OPs depend on the ex-
pressivity of the logical formalism that is used for representation. In other words, Logical OPs help to solve
design problems where the primitives of the representation language do not directly support certain logical
constructs. For example, if the representation language is OWL, and a designer needs to represent a relation
between more than two elements, a Logical OP is needed in order to express an n-ary relation semantics
by only using class and binary relation primitives. A Logical OP can be applied more than once in the same
ontology in order to solve the same modeling problem. In this context we deal with OWL DL and we define
Logical OPs as follows.

Definition 12 (Logical Ontology Design Pattern) A logical design pattern is a formal expression, whose
only parts are expressions from the logical vocabulary of OWL DL, that solve a problem of expressivity.

We can informally divide Logical OPs into two types:

• Logical macros compose OWL DL constructs; e.g. the universal+existential OWL macro, described
in [Vra05], allows to model a recurrent intuitive quantification, as from the following example: “all
horses have parents that are horses”, requiring both an owl:allValuesFrom restriction (only horses can
be parents of horses) and a owl:someValuesFrom restriction (all horses have parents).

• Transformation patterns translate a logical expression from a logical language into another, which
approximates the semantics of the first, in order to find a trade-off between requirements and expres-
sivity. For example, the so called n-ary relation pattern, documented in [NA05] with respect to OWL,
is a transformation pattern from first-order logic to OWL DL. Other Logical OPs are documented in
[SFBG+07, NA05].

In this section, we include four samples of Logical OPs: n-ary relation, classes as values, transitive
reduction, and relation between datatypes. Each description is accompanied by two diagrams.

• The first diagram shows the meta model elements needed for representing the Logical OP in OWL
DL. Such elements are defined as an extension of the OWL ODM ontology, which encodes OWL DL
constructs in a metamodel7. Such ontology is referred to by the prefix a.

• The second diagram shows an example of usage for the Logical OP.

N-ary relation

The aim of this Logical OP is to solve the issue of modeling n-ary relations in an ontology expressed in
OWL DL, which only natively supports the expressivity for binary relations. Figure 2.3 shows a diagram
depicting the metamodel extension for the n-ary relation pattern. This Logical OP consists of defining
a class that represents a relation with n≥1 arguments. Such a class is an instance of the metamodel class
NaryRelationClass. Although applicable to relations with any arity, NaryRelationClass is typically
instantiated for relations with three or more arguments. An instance of NaryRelationClass has to be
the domain of object properties that represent the projections of the n-ary relation, i.e., instances of the
metamodel class NaryRelationProjection. NaryRelationProjection instances are object

D2.5.1 Library of Ontology Design Patterns Page 21 of 183

Figure 2.3: The n-ary relation Logical OP

Figure 2.4: An example of usage of the n-ary relation Logical OP

properties that only can have as their range a class of the type NaryRelationArgumentType, which
represents the reification of the type of the arguments from a n-ary relation.

An example is the exam relation, which involves four arguments: the topic of the exam, the student that gives
the exam, the grade that the student obtains, and the date at which the exam take place. Figure 2.4 depicts
the relation exam represented by the n-ary relation Logical OP. We introduce the class Exam that represents
the relation. For each argument of the relation we introduce either an object or a datatype property. For each
object property we define a class that represents the type of the value for the object property range. For the
example, we introduce the classes Topic, Grade, and Student, and the object properties onTopic,
hasGrade, and involvesStudent. Finally, the atDate datatype property is used to express the date
of the exam. All object properties and the datatype properties are constrained to have one at most or exactly
one value for a given exam. Several CPs in chapter 4 (e.g. situation, time-indexed part of) instantiate this
Logical OP.

7The OWL ODM ontology is available at http://www.loa-cnr.it/codeps/owl/owl10a.owl, which is an extension/revision of
http://owlodm.ontoware.org/OWL1.0.owl

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 22 of 183 NeOn Integrated Project EU-IST-027595

Classes as values

The aim of this Logical OP is to express that a class is the value for a relation. This is not possible in
OWL DL, since a class cannot be part of the ABox. Figure 2.5 shows a diagram depicting the metamodel
extension for the classes as values Logical OP. The metamodel class ReifiedClass includes the reifi-
cations of classes that are introduced in a model. An individual from ReifiedClass is the subject of an
owl:hasValue restriction that has to be defined in order to relate the class to its reification. Such a restric-
tion is a class of type HasClassAsValue. The individual that reifies the class can be used as representing
the value for the class.

Figure 2.5: The classes as values Logical OP

For example, consider an ontology that introduces a class representing the students of a university, while
you want to assert that the subject of a certain regulation are “the students”. Figure 2.6 depicts how to solve
this design issue by adopting the classes as values Logical OP. The class Student is the class of all the
students of the university, while the class Subject models the subject of a regulation e.g., the collection
of all students from the university. The class Regulation represents the regulations of the university.
The isAssociatedWithSubject object property associates each element of a certain class with a
qualified instance of the class Subject, by means of a owl:hasValue restriction. The object property
hasSubject associates a regulation with its subject, which uniquely identifies a class of the model. In the
case of students, this can be e.g. the individual students, that represents students as an individual from
the class Subject.

Figure 2.6: An example of usage of the classes as values Logical OP

Several CPs in chapter 4 (e.g. classification, agent-role) instantiate this Logical OP.

Transitive reduction

The aim of the transitive reduction Logical OP is to represent the transitive reduction of an object property
in an OWL model, without defining that object property as transitive. This is obtained by defining the object

D2.5.1 Library of Ontology Design Patterns Page 23 of 183

property as sub-property of another object property, which is a transitive property. The result is that the
transitive closure of the sub property is the transitive closure of its super property. Figure 2.7 shows a
diagram depicting the metamodel extension for this Logical OP. The class TransitiveProperty is the
set of all transitive object properties. The class TransitivelyReducedProperty represents the object
properties, the transitive closure of which is given by the transitive closure of one or more instances of
TransitiveProperty. As an example of application of this pattern, the reader can refer to e.g. the
componency CP in section 4.2.3. Consider also the following as an example of requirements for a domain

Figure 2.7: The transitive reduction Logical OP

problem: a project is composed only of procedures, which in turn are composed only of activities. Activities of
a certain procedure are said to be part of the project the procedure is a component of. Certain responsibilities
and roles apply only to components of the project, while others apply also to sub-components. Now, consider
activities a1 and a2 that compose the procedure pr1, and the activities a3 and a4 that compose the procedure
pr2. The project p is composed of pr1 and pr2.
If we apply the transitive reduction pattern to componentOf relation as sub-property of the partOf relation, with
partOf as transitive and componentOf as transitively reduced, the previous assumptions let us infer that pr1
and pr2 are part of p as well as a1, a2, a3, and a4. Furthermore, a1 and a2 are part of pr1, and a3 and a4 are
part of pr2. Figure 2.8 depicts an ontology that addresses the above requirements, by using the transitive
reduction Logical OP. We define the classes Project, Procedure, and Activity that correspond
to the domain entities expressed by requirements. The partOf object property is transitive, while the
componentOf object property is defined as subproperty of partOf and does not inherit the characteristic
of being transitive. The transitive reduction of componentOf is the transitive closure of partOf.

Relation between datatype values

The aim of this Logical OP is to relate two datatype values, a relation that is not expressible in OWL DL.
As an example, consider the need of modeling the fact that a certain data value is preferred to another in

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 24 of 183 NeOn Integrated Project EU-IST-027595

Figure 2.8: An example of usage of the transitive reduction Logical OP

a certain context. Figure 2.9 shows a diagram depicting the metamodel extension for this Logical OP. The
instances of the metamodel class DataValueClass are classes defined in the model in order to represent
certain data values. Such classes are in the domain of one instance of RepresentsDataValue, which
is the class of the datatype properties that relate classes of type DataValueClass with the value they are
meant to represent. Finally, RelationBetweenDataValue is the class of object properties that relate
two classes of type DataValueClass and that express the relation between two datatype values.
A variant of this Logical OP is to have a NaryRelationClass that reifies the
RelationBetweenDataValue (see above), when the data values to be related are more than
two. For example, consider you want to represent that a certain name is preferred to another one by a
couple who is waiting for a baby. Figure 2.10 shows an ontology that addresses this requirement. We define
the class Name, the instances of which represent names. Each of them is related to a xsd:string. At the
bottom of the figure there is an example of instantiation. name1 is associated with the string Linda. while
name2 to the string Arianna, respectively. The preferredTo relationship enables us to express that
Linda is preferred to Arianna.

Architectural Ontology Design Patterns

Architectural OPs affect the overall shape of the ontology: their aim is to constrain ‘how the ontology should
look like’. Architectural OPs are defined in terms of Logical OPs, or compositions of them. They are used in
the design of an ontology as a whole, by providing the composition of Logical OPs that have to be exclusively
employed when designing an ontology. Examples of Architectural OPs are: Taxonomy, Modular Architec-
ture, Lightweight Ontology, etc. They have been presented in [SFBG+07]. OWL species as well as the
different varieties of description logics are other examples of Architectural OP, as they describe a specific set
of logical constructs that can be used in defining the ontology.
For example, the Modular Architecture Architectural OP consists of an ontology network, where the in-
volved ontologies play the role of modules (according to definitions given in [HBP+07] and in section 3.3.
The modules are connected by the import operation8 with one root ontology that imports all the modules.

8See section 3.2.6

D2.5.1 Library of Ontology Design Patterns Page 25 of 183

Figure 2.9: The relation between datatype values Logical OP

Figure 2.10: An example of usage of the relation between datatype values Logical OP

Figure 2.11 shows the structure of a modular architecture ontology.

2.2.2 Correspondence OPs

Correspondence OPs include Reengineering OPs and Mapping OPs. Reengineering OPs provide designers
with solutions to the problem of transforming a conceptual model, which can even be a non-ontological
resource, into a new ontology. Mapping OPs are patterns for creating semantic associations between two
existing ontologies.

Reengineering Ontology Design Patterns

Reengineering Ontology Design Patterns (Reengineering OPs) are transformation rules applied in order to
create a new ontology (target model) starting from elements of a source model. The target model is an
ontology, while the source model can be either an ontology, or a non-ontological resource e.g., a thesaurus
concept, a data model pattern, a UML model, a linguistic structure, etc.
Reengineering OPs are described in terms of metamodel transformation rules. We distinguish two types of
Reengineering OPs.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 26 of 183 NeOn Integrated Project EU-IST-027595

Figure 2.11: The modular architecture Architectural OP

• Schema reengineering patterns are rules for transforming a non-OWL DL metamodel into an OWL
DL ontology. For example, consider the use of SKOS [MB05] for Knowledge Organization Systems
(KOS) reengineering. The following set of rules describes a simple example of Reengineering OP for
conversion of a KOS to a knowledge base (an OWL ABox), based-on the SKOS [MB05] TBox. The
symbol “ 7→” is to be read “is transformed to”.

kos2skosABox :

KOS 7→ skos:ConceptSchema (2.1)

Descriptor 7→ skos:Concept (2.2)

Broader Term 7→ skos:broader (2.3)

Related Term 7→ skos:related (2.4)

The rule (2.1) states that, given a KOS, it maps to an instance of the class
skos:ConceptSchema, while the rule (2.2) maps each descriptor in the KOS to a specific
instance of the class skos:Concept. The rule (2.3) relates to the case of having two de-
scriptors d1 and d2 in the KOS, where d1 is broader than d2. Given the corresponding in-
stances of skos:Concept skos:c1 and skos:c2, the broader term relationship between
d1 and d2 maps to an object property value having the subject skos:c1, the object prop-
erty skos:broader, and the object skos:c2. Finally, the rule (2.4) relates to the case of
having two descriptors d1 and d2 in the KOS that are related terms. Given the corresponding
instances of skos:Concept skos:c1 and skos:c2, the related term relationship between
d1 and d2 maps to an object property value having the subject skos:c1, the object property
skos:related, and the object skos:c2.

Transformation Logical OPs (2.2.1) are a kind of schema reengineering patterns. In principle, all
modeling problems can be represented as higher-order logical expressions, and if we have to represent

D2.5.1 Library of Ontology Design Patterns Page 27 of 183

them e.g. in OWL DL, we implicitly apply a schema reengineering pattern in order to stay within the
expressivity of OWL DL. However, we also (pragmatically) distinguish between transformation and
schema reengineering patterns because of the different intention of the designer. In the first case, the
designer wants to directly represent a modeling solution in OWL DL,9 while in the second case the
designer wants to reengineer an existing non-OWL DL model into an OWL DL ontology.

• Refactoring patterns provide designers with rules for transforming, i.e. “refactoring”, an existing OWL
DL “source” ontology into a new OWL DL “target” ontology. In this case, the transformation rule has the
effect of changing the type of the ontology elements that are involved in the refactoring. For example,
let’s consider the case in which an ontology defines an object property for representing the relation
of preparing a coffee, which holds between agents and coffees. Now, let’s consider a change of
requirements, so that a designer has to represent that the coffee is prepared by an agent at a certain
time by using a certain tool. In order to address such a change, in OWL DL a designer has to apply
an n-ary relation Logical OP, because preparing a coffee has now four arguments: agent, coffee, time
interval, and tool. The n-ary relation Logical OP plus the description of how to apply it in order to
replace an object property from an existing ontology is a refactoring pattern.

Mapping Ontology Design Patterns

Mapping OPs refer to the possible semantic relations between mappable elements, as defined in [HBP+07].
There are three basic semantic relations that are used for mapping assertions: equivalence, containment,
and overlap. They can be supplemented by their negative counterparts i.e., not equivalent, not contained,
and not overlap or disjoint, respectively. Mapping OPs provide designers with solutions to relate two ontolo-
gies without changing the logical types (e.g. owl:Class) of the ontology elements involved.
We also consider an additional semantic relation that we call clonedness, which states that the ontology
element oe1 in one ontology is the clone of an ontology element oe2 in the other ontology. Depending on
which of the two elements is the cloned one, clonedness can be expressed in one or the other direction.
Such a semantic relation holds e.g., between an ontology element of a CP and an ontology element of the
reference ontology, from which it has been cloned. More details about the clone operation that produces
such a semantic relation between ontology elements is contained in section 3.2.2. As CPs play the role of
modules with respect to the ontologies that reuse them, clonedness should be considered in the definition of
the semantics for modular ontologies in NeOn10.
Pragmatically speaking, clonedness is different from mapping, because clonedness is a relation emerging
when generating a new ontology as a partial copy of the first, while mapping is established between two
existing (and usually mutually independent) ontologies.

2.2.3 Reasoning OPs

At the time of writing we have investigated Reasoning OPs only at a preliminary level, although we plan to
deepen this branch of OP-related work. A catalogue of Reasoning OPs could be included in the next version
of this deliverable. Reasoning OPs are applications of Logical OPs oriented to obtain certain reasoning
results, based on the behavior implemented in a reasoning engine. Examples of Reasoning OPs include:
classification, subsumption, inheritance, materialization, de-anonymizing, etc.
Reasoning OPs, when declared on top of an ontology, inform about the state of that ontology, and let a
system decide what reasoning has to be performed on the ontology in order to carry out queries, evaluation,
etc. Examples of Reasoning OPs are so called normalizations. In [VS07, VSPS07] five normalizations have
been identified, which are summarized as follows:11

9In the pragmatics of an ontology designer, the fact that all modeling solutions are representable as higher-order logic expressions
is hardly relevant, and such implicit reengineering has been never documented as actually happening.

10Deliverable D1.1.3 and later versions
11For more details the reader can refer to [VS07, VSPS07]

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 28 of 183 NeOn Integrated Project EU-IST-027595

• Name all relevant classes, so no anonymous complex class descriptions are left (restriction de-
anonymizing)

• Name anonymous individuals (skolem de-anonymizing)

• Materialize the subsumption hierarchy (automatic subsumption) and normalize names

• Instantiate the deepest possible class or property

• Normalize property instances (property value materialization)

When all known Reasoning OPs have been performed on an ontology, it can be considered as normalized.

2.2.4 Presentation OPs

Presentation OPs deal with usability and readability of ontologies from a user perspective. They are meant
as good practices that support the reuse of patterns by facilitating their evaluation and selection.

Naming Ontology Design Patterns

Naming OPs are conventions about how to create names for namespace, files, and ontology elements in
general (classes, properties, etc.). Naming OPs are good practices that boost ontology readability and
understanding by humans, by supporting homogeneity in naming procedures. Examples of Naming OPs
include:

Namespace declared for ontologies: it is recommended to use the base URI of the organization that pub-
lishes the ontology (e.g. http://www.w3.org for the W3C, http://www.fao.org for the
FAO, http://www.loa-cnr.it for the Laboratory for Applied Ontologies (LOA) etc.) followed by
a reference directory for the ontologies (e.g. http://www.loa-cnr.it/ontologies/). Addi-
tionally, it is also important to choose an approach for encoding versioning, either on the name, or on
the reference directory.

Class names: should not contain plurals, unless explicitly required by the context. Names like Areas is
considered bad practice, if e.g. an instance of the class Areas is a single area, not a collection of
areas. It is also recommended to use readable names instead of e.g. alphanumerical codes. It is
also useful to include the name of the parent class as a suffix of the class name e.g. MarineArea
rdfs:subClassOf Area. Furthermore, class names conventionally start with a capital letter e.g.
Area instead of area.

Property names: usually start with a lower case letter e.g. specializes instead of Specializes.

Annotation Ontology Design Patterns

Annotation OPs provide annotation properties or annotation property schemas that can be used in order to
improve the understandability of ontologies and their elements. Examples of Annotation OPs include:

labels: each class and property should be annotated with meaningful labels with the annotation property
rdfs:label, with also translations in different languages.12

comments: each ontology and ontology element should be annotated with the rationale they are based on
by means of the annotation property rdfs:comment, or other user-defined annotation properties.
This information is crucial for “manual” selection and evaluation.

12More advanced practices for multilingual in ontologies are described in deliverable D2.4.1 from this workpackage.

D2.5.1 Library of Ontology Design Patterns Page 29 of 183

2.2.5 Lexico-Syntactic OPs

Lexico-Syntactic OPs can be defined as linguistic structures or schemas that consist of certain types of
words following a specific order, and that permit to generalize and extract some conclusions about the
meaning they express. In this work, Lexico-Syntactic OPs have been formalized basing on some notations
used for describing the syntax of languages, like the BNF notation, and on the way in which those patterns
have been represented in previous studies as [Hea92, SJN04, VVS06]. The elements represented in
the formalized patterns are considered to be necessary for identifying the relation of interest supposedly
expressed by the pattern. For example, in one of the patterns that corresponds to the "subClassOf"
relation, NP<subclass> be NP<superclass>, a Noun Phrase (abbreviated NP) should appear before the verb
-represented by its basic form or lemma, be in this example- and the verb should in its turn be followed by
another Noun Phrase. In this way, sentences in English like “Dolphins are warm blooded mammals” could
be asserted of expressing a hyponymy-hyperonymy relation between the two Noun Phrases.
A Noun Phrase is a phrase whose main word is a noun or a pronoun, and that is optionally accompanied by a
set of modifiers, as for example, determiners, adjectives, etc. Following the previous example, warm blooded
mammals would constitute a NP. NPs can represent classes, properties or relations. This information has
been linked to the NP for the sake of clarity. In some Lexico-Syntactic OPs we have even differentiate
between super- and sub-class. Verbs expressing the conceptual relation in question are represented by its
lemma or base form, be in the case of the Dolphins example. In principle, the verb form that we encounter in
NL sentences should not modify the meaning of the pattern.
The elements represented in the pattern are the ones considered to be necessary for the pattern to express
a certain relation. Optional elements, i.e. the ones that may appear or not without modifying the basic
meaning of the pattern, have been indicated by the use of [], as included in Table 2. Any other element
should in principle be ignored, because it does neither provide any information nor affect or modify the basic
meaning expressed by the sentence in NL. Tables 1 and 2 show the rest of abbreviations and symbols
used in the formalization of the Lexico-Syntactic OPs. Some abbreviations have been extracted from
the annotation system of the Penn Treebank Project [San91] that corresponds to the part-of-speech tags
obtained by annotating NL texts with the GATE tool.
The identification of Lexico-Syntactic OPs associated with OPs and their exploitation is an on-going research
that, up to now, has resulted in the first version of a set of Lexico-Syntactic OPs related to some OWL
constructs, and some Logical OPs. For describing such linguistic information we use the following template:

Lexico-Syntactic Patterns

Formalization
NL representations of the ODP in the form of

formalized patterns

Examples
NL expressions matching the Lexico-Syntactic OP

in question

Abbreviations used in the Lexico-Syntactic OPs and their meaning
CD Cardinal Number [San91]

CATV
Verbs of classification {classify in/into, comprise in, contain in, compose of, group
in/into, divide in/into, fall in/into, belong to}

CN
Class Name: generic name for class type plus preposition {class of, group of, type
of, member of, subclass of, category, etc.}

NEG No, not
NP Noun Phrase

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 30 of 183 NeOn Integrated Project EU-IST-027595

PARA Paralinguistic symbol, such as colon (:).
PREP Preposition
RPRO Relative Pronoun {that, which, whose. . . }
VB Verb, base form [Hea92]

Table 1: Abbreviations used in the formalization of Lexico-
Syntactic OPs

Other symbols
() Group of two or more elements
* Repetition
[] Optional element

¬ Element that should not appear in the
specified position in the pattern

Table 2: Symbols used in the formalization of Lexico-Syntactic
OPs

To date, we have identified Lexico-Syntactic OPs (for the English language) for the following OWL DL
constructs: subClassOf, equivalence between classes, object property, subpropertyOf relation, datatype
property, existential restriction, universal restriction, disjointness, union of classes. Furthermore, we have
identified Lexico-Syntactic OPs for the following Logical OPs13: multiple-inheritance, exhaustive classes,
and n-ary relation.

Lexico-Syntactic OP associated with rdfs:subClassOf

Lexico-Syntactic OP

Formalization

NP<subclass> be NP<superclass>

[(NP<subclass>,)* and] NP<subclass> be [CN]
NP<superclass>

[(NP<subclass>,)* and] NP<subclass> (group
in | into | as) | (fall into) | (belong to) CN
NP<superclass>

NP<superclass> CATV [CD] [CN] [PARA]
(NP<subclass>,)*and NP <subclass>

Examples

Amphibians are divided into three groups: frogs
and toads, newts and salamanders, and

caecilians.

13The reader can refer to [SFBG+07] for the Logical OPs that are not included in this deliverable

D2.5.1 Library of Ontology Design Patterns Page 31 of 183

Lexico-Syntactic OP associated with multiple inheritance between owl:Class(es)

Lexico-Syntactic OPs

Formalization
[(NP<subclass>,)* and] NP<subclass> be | CATV
[CN] NP<superclass> and NP<superclass>

Examples
Amphibians are water-living and land-living

animals.

Lexico-Syntactic OP associated with owl:equivalentClass

Lexico-Syntactic OP

Formalization

NP<class> be (the same as) | (equivalent to) |
(equal to) | like NP<class>

NP<class> call | denominate | designate by|as |
name NP<class>

NP<class> have (the same) | equal charac-
teristic | feature | attribute | quality | property as)
NP<class>

Examples

4,2 onces are equivalent to 120 grams
Poison dart frogs are also called poison-arrow

frogs.

Lexico-Syntactic OP associated with owl:ObjectProperty

Lexico-Syntactic OP

Formalization

NP<class> have NP<class> 1

NP<class> VB ¬ (be | have | CATV) NP<class>

Examples
Birds have feathers.

Birds build nests

1Ambiguous pattern. In some cases, it can also express the Logical Pattern for Modelling Datatype Property
or the Simple Part-Whole Relation Content Pattern, amongst others. Research in this sense is currently
being conducted.

Lexico-Syntactic OP associated with rdfs:subPropertyOf

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 32 of 183 NeOn Integrated Project EU-IST-027595

Lexico-Syntactic OP

Formalization

NP<property> specialize | (be more specific than)
NP<property>

NP <property> contain | include | (be subproperty
of) NP<property>

Examples Feathers include contour feathers.

Lexico-Syntactic OP associated with owl:DatatypeProperty

Lexico-Syntactic OP

Formalization

NP<class> have NP<property> 1

NP<class> have [CARD] property|ies | char-
acteristic|s | attribute|s PARA (NP<property>,)*
and NP<property>

(NP<property>,)* and NP<property> be prop-
erty|ies | characteristic|s | attribute|s of [CN]
NP<class>

NP<class> be describe | define by
(NP<property>,)* and NP<property>

Examples
Some unique properties of mammals are hair,

sweat glands, producing milk, and giving live birth.

1Ambiguous pattern. (cf. 1.2.4)

Lexico-Syntactic OP associated with owl:someValuesFrom (existential restriction)

Lexico-Syntactic OP

Formalization

NP<class> [must] have NP<class> *

Every | any | all NP<class> [must] have NP<class>
*

Examples Every bird has feathers.

Lexico-Syntactic OP associated with owl:allValuesFrom (universal restriction)

D2.5.1 Library of Ontology Design Patterns Page 33 of 183

Lexico-Syntactic OP

Formalization

NP<class> [can] just | only | exclusively | entirely
have [relation|s to] NP<class>

NP<class> VB just | only | exclusively | entirely
NP<class>

Examples Herbivore eat only plants.

Lexico-Syntactic OP associated with owl:unionOf

Lexico-Syntactic OP

Formalization

NP<class> be union | sum | join of (NP<class>,)*
and NP<class>

NP<class> (consist of) | (made up of) | com-
prise | (be constitute of) [PARA] (NP<class>,)* and
NP<class>

(NP<class>,)* and NP<class> make up | con-
stitute NP<class>

Examples

The deep-sea consists of four zones: the
mesopelagic, the bathypelagic, the abyssopelagic

and the hadal zone.

Lexico-Syntactic OP associated with owl:disjointWith

Lexico-Syntactic OP

Formalization

NP<superclass> be | classify in|into | group in |
into [either] NP<subclass> or NP<subclass>

(NP<class>,)* and NP<class> (have NEG) |
(do NEG have) elements | individuals | instances
in common

(NP<class>,)* and NP<class> do NEG share
elements | individuals | instances

NP<superclass> be divide | split |separate be-
tween | among NP<subclass> and NP<subclass>

Examples Animals are either vertebrates or invertebrates.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 34 of 183 NeOn Integrated Project EU-IST-027595

Lexico-Syntactic OP associated with Exhaustive Classes Logical OP (LP-EC-01)

Lexico-Syntactic OP

Formalization

NP<superclass> include | comprise | (be
composed of) [all] [CARD] [CN] [PARA]
(NP<subclass>,)* and NP<subclass>

NP<superclass> divide in|into [CARD] [CN]
[PARA] (NP<subclass>,)* and NP<subclass>

Examples
Vertebrates include: mammals, amphibians,

reptiles, birds, and fish.

Lexico-Syntactic OP associated with n-ary relation Logical OP (LP-NR-01)

Lexico-Syntactic OP

Formalization

NP<class> VP NP<class> [PREP] NP<class>

NP<class> VP NP<class> RPRO VP NP<class>

Examples Bird feathers provide birds insulation.

2.2.6 Content OPs (CPs)

CPs encode conceptual, rather than logical design patterns. In other words, while Logical OPs solve design
problems independently of a particular conceptualization, CPs propose patterns for solving design problems
for the domain classes and properties that populate an ontology, therefore addressing content problems
[Gan05].
From the theoretical perspective, CPs should be compared to knowledge patterns, which are conceived in
[CTP00] as axiom schemas that are invariant under signature morphisms, i.e. when the predicates in the
signature change, the pattern does not change. On the other hand, that definition would make CPs similar
to Logical OPs, since no signature change would affect the pattern.
A possible improvement is to require that knowledge patterns have a non-empty signature, since Logical
OPs have an empty one. But even with this addition, the unconditional invariance under signature change
that is required for knowledge patterns would violate the intuition of CPs. For example, if we consider the
agent-role CP, which has a signature including the predicates: {Agent, hasRole, Role}, and we change it by
preserving downward taxonomical ordering, e.g.: {Person, hasRole, Employee}, the invariance of the pattern
is ensured, because persons are agents and employee is a kind of role. But if we change it in less intuitive
ways, by violating downward taxonomical ordering, or even giving up taxonomical ordering at all, e.g.: {Ob-
ject, hasRole, Object} (upward taxonomical ordering), or {Nose, hasRole, Water} (no taxonomical ordering),
the invariance of the pattern is lost.14 For these reasons, we restrict the definition in [CTP00] for CPs, as
being invariant under signature morphisms that preserve downward taxonomical ordering.
CPs are instantiations of Logical OPs (or of compositions of Logical OPs), featuring a non-empty signature.
Hence, they have an explicit non-logical vocabulary for a specific domain of interest (i.e. they are content-
dependent). They are typically reused by performing specialization, expansion, and composition (see chapter

14Unless one wants to use a pattern-based ontology to achieve unusual or creative effects, as in poetry.

D2.5.1 Library of Ontology Design Patterns Page 35 of 183

3).
In analogy to conceptual modeling (cf. the difference between class and use case diagrams in the Unified
Modeling Language (UML) [Obj04]) and knowledge engineering (cf. the distinction between domain and
task ontologies in the Unified Problem-solving Method development Language (UPML) [ML00]), modeling
problems solved by CPs have two components: a domain and a use case (or task). A same domain can
have many use cases (e.g. different scenarios in a clinical information context), and a same use case can
be found in different domains (e.g. different domains with a same “expert finding” scenario). A typical way of
capturing use cases is by means of so called competency questions [GF94].
A competency question is a typical query that an expert might want to submit to a knowledge base of its
target domain, for a certain task. In principle, an accurate domain ontology should specify all and only the
conceptualizations required in order to answer all the competency questions formulated by, or acquired from,
experts.
Based on the above assumptions, we also characterize CPs as distinguished ontologies. They cover a spe-
cific set of competency questions (requirements), which represent the problem they are a solution for. A
CP is associated with the set of ontology elements it consists of. Furthermore, CPs show certain charac-
teristics i.e., they are: computational, small and autonomous, hierarchical, cognitively relevant, linguistically
relevant, and constitute good practices for domain experts (these characteristics are explained in some detail
in section 27).

CPs can be also described in terms of the relation they can have with Logical OPs, as depicted in Figure
2.12.
On the left side, LP is the set of all Logical OPs, while LPincludes all valid combinations of Logical OPs. On

Figure 2.12: Relation between CPs and Logical OPs.

the right side of the picture, the set O identifies all possible ontologies, and CP identifies the set of all CPs.
Our intuition is that there is a relation, which we call exemplification, between elements of CP and elements
of LP, with cardinality (0...n) on the LPside, and cardinality (0...n) on the CP side. Informally, exemplification
corresponds to instantiation of Logical OPs, where CPs are the instances.
The next two chapters focus on CPs. Chapter 3 contains a more precise definition of CP, and describes
how CPs are created and used. Chapter 4 contains a catalogue of CPs that is structured according to the
different domains they address issues for.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 36 of 183 NeOn Integrated Project EU-IST-027595

Chapter 3

Creation and Usage of Content Ontology
Design Patterns

This chapter better characterizes Content OPs, and can be used as an introduction to create, manipulate,
and apply them. The operations on CPs are described in section 3.2. A more precise definition of CP is
given in section 2.2.6. Section 3.4 describes four approaches for the creation of CPs, while section 3.6
describes the possible situations of CP selection and usage that can occur in practice.
Definitions in this chapter are enriched (where possible) with a formal semantics that is based on the
assumption that with any ontology O1 (then also for each CP CP1), we can associate two unique sets:
the set OEO1 (OECP1) of all ontology elements oe1...n from O1 (CP1), and the set AXO1 (AXCP1) of all
axioms ax1...n from O1 (CP1).
CPs are components that represent, and possibly help solving a modelling problem (requirement, use case)
arising across different scenarios. The terms requirement, use case, and scenario are used in ontology
design in order to express concepts similar to those referred by the same terms when they are used in
software engineering. However, there are some differences that we highlight in the next section in order to
prevent confusion. Furthermore, the concept of requirement is key for defining the notion of CP.

3.1 Requirements and use cases

A software engineering requirement describes a user functionality that a software system under development
has to address. The term requirement is also used for the document that describes user requirements, which
is usually written by a software engineer using a natural language. A typical requirements document describe
functionalities that may be redundant, overlapping, contradictory, or even incompatible. Software engineers
use such document in order to perform a requirement analysis that results in the production of a system
specification. Typically, contradictory and incompatible problems can be discovered and fixed by analyzing
the system specification. Unfortunately, system specifications are often represented by using languages that
do not have a complete formal semantics. Therefore, finding such problems is one of the trickiest issues in
software engineering.
A use case represents a typical interaction between a user and a system in order to accomplish a task.
It describes the possible ways that allow a user to complete that task as lists of steps, some of which are
carried out by the system without the need of user interaction. Use cases encompass also the possibilities
of errors and failures of the system.
Finally, a scenario instantiates a use case, and is based on a real case example.
Ontology engineering requirements are expressed in terms of competency questions (cqs), which express
classes of queries that users might want to submit to a knowledge base. Cqs can be expressed in different
ways; the most common is a set of natural language questions, which show the intended use of the system.

D2.5.1 Library of Ontology Design Patterns Page 37 of 183

Requirements can be either asserted, or automatically extracted from natural language documents by ex-
ploiting Natural Language Processing (NLP) [] techniques. Questions can also be either transformed to or
directly expressed as SQL-like queries by following query matching techniques.
Since competency questions are elicited by users or extracted by corpora, they can be affected by the same
problems as software engineering requirements. However, in ontology engineering the analogous of soft-
ware system specification is a formal theory, i.e. an ontology. This makes the task of discovering either
contradictions or incompatibilities in the ontology equivalent to performing a consistency checking operation,
which is included in most reasoning engines1.
Given the above assumptions, definition 13 introduces the notion of ontology requirement.

Definition 13 (Ontology Requirement, Req) A Requirement is a non-empty set of competency questions
cq that are each other neither contradictory nor incompatible, while they can be either overlapping or redun-
dant.

Req ≡ {cq1, . . . , cqn} 6= ∅ (3.1)

cqi 6= cqj ,∀i 6= j

The notion of use case in ontology engineering is equivalent to that of Req, whereas a scenario is intended
as a possible state that can be represented in the knowledge base. Intuitively, Req refers to the theory (the
TBox), while scenarios refer to the instances (the ABox).

3.2 Operations

CP creation and usage rely on a common set of operations: covering that connects CPs and requirements,
clone that copies an ontology element from an existing ontology, composition between CPs, specialization
and generalization that define a partial ordering over CPs, and expansion, a relation between CPs on one
side, and either ontology elements (oe) or axioms (ax) on the other side. The operations are defined below.

3.2.1 Covering

The covering operation has the purpose of expressing that a CP satisfies all cqi in a requirement.

Definition 14 (Covering, cov(CP, Req1)) Let’s Req1 be a set of competency questions, which corresponds
to a number of possible queries q1, . . . , qn to be submitted to a knowledge base kb. A CP covers Req1 if it is
as expressive as it is needed to store the necessary knowledge for answering q1, . . . , qn.

For example, consider the following competency questions:

• cq1: who did play a specific role in a certain period?

• cq2: which role does have a certain person at a certain time?

Let’s define Req = {cq1, cq2}. Now consider two CPs: agent role, and time indexed person role. They are
described in sections 4.6.2, and 4.6.4, respectively. For the sake of readability we show here the diagrams
that describe them. Our aim is to verify if the following statements hold.

cov(agent role, Req) (3.2)

cov(time indexed person role, Req) (3.3)

1A similar approach is used in software engineering model checking techniques, but they are mostly used in academic contexts
and for systems dealing with sensitive information and time constraints.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 38 of 183 NeOn Integrated Project EU-IST-027595

Figure 3.1 shows the UML diagram of the agent role CP. Such CP allows us to represent agents, the
roles they play, and the relation between them. Persons can be modeled by specializing the class Agent.
However, both competency questions ask for information about temporal indexing, which is not included in
this CP. Therefore, the statement (3.2) is false.

Figure 3.1: The agent role CP

Figure 3.2 shows the UML diagram of the time indexed person role CP. Such CP allows us to represent
persons, the roles they play, and the time interval at which the relation between them holds. This CP models
all the knowledge we need in order to answer cq2 as well, therefore the statement (3.3) is true.

3.2.2 Clone

The clone operation consists of duplicating an ontology element, which is used as a prototype.2 We distin-
guish three kinds of clones:

• shallow clone: consists of creating a new ontology element oe2 by duplicating an existing ontology
element oe1. OWL restrictions of and axioms defined for oe1 and oe2 will be exactly the same

• deep clone: consists of creating a new ontology element oe2 by duplicating an existing ontology ele-
ment oe1, and by deep-cloning a new ontology element for each one that is referred in oe1’s axiomati-
zation, recursively

• partial clone: consists of deep-cloning an ontology element, but by keeping only a subset of its axioms,
and of partial-cloning the kept elements, recursively.

Some ontology design tools support the shallow clone operation e.g., TopBraid Composer3, while deep clone
and partial clone are not yet supported by any existing tool.

Definition 15 (Shallow Clone) Given an ontology element oe1, shallow clone creates a new ontology ele-
ment oe2, which is the copy of oe1, and assigns a new name to it. The ontology element oe1 plays the role of
prototype.

2There is a strong analogy between the clone operation in object oriented software programming and ontology element clone
operation

3http://www.topbraidcomposer.com/

D2.5.1 Library of Ontology Design Patterns Page 39 of 183

Figure 3.2: The time indexed person role CP

For example, suppose we want to perform a shallow clone of the class DUL:Agent. The axiomatization
of DUL:Agent is shown in Figure 3.3.4. When we perform a shallow clone of the class DUL:Agent, the
result is the creation of a new class. We assign to the new class the name AgentClone. Figure 3.4 depicts

Figure 3.3: The definition of the DUL:Agent class.

the axiomatization of the class AgentClone. As the reader can notice, the class AgentClone has the
same semantics as the DUL:Agent i.e., the OWL axioms defined for it involve the same ontology elements
as those defined for DUL:Agent

Definition 16 (Deep Clone) Given an ontology element oe1, deep clone creates a new ontology element
oe2, which is the copy of oe1, and assigns a new name to it. Furthermore, all ontology elements that are

4The figure depicts a screenshot of the ontology editor with the detail of the axioms defined for the class DUL:Agent

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 40 of 183 NeOn Integrated Project EU-IST-027595

Figure 3.4: The definition of the AgentClone class.

involved in the axiomatization of oe1 are cloned by means of a deep clone, recursively. All axioms of the
copies are updated in order to involve the copies instead of the prototypes. The result is a new ontology that
does not have any explicitly formalized dependence on the first one.

In order to better understanding how deep clone works, the reader can refer to the mechanism of object-
oriented deep clone, typically used in the Prototype software engineering design pattern [GHJV95].

Definition 17 (Partial Clone) Given an ontology element oe1, partial clone creates a new element oe2,
which is the copy of oe1, and assign a new name to it. The oe1 ontology element is used as a prototype
for a deep clone based on a selected set of axioms from oe2. The other axioms are not copied in oe2. All the
ontology elements involved in the recursive process are copied by means of partial clone.

For example, consider a partial clone of the class DUL:SocialAgent. The axiomatization of
DUL:SocialAgent is shown in Figure 3.5. We decide to select and keep two restrictions from the proto-
type. Such restrictions are identified in the figure by the orange arrows. Figure 3.6 depicts the ontology that
results from the partial clone of DUL:SocialAgent. The ontology is composed of the following ontology
elements:

• SocialAgentClone, which is the partial clone of SocialAgent.

• PhysicalAgentClone, which is the partial clone of PhysicalAgent.

• isActedByClone, which is the partial clone of isActedByClone.

These three ontology elements are exactly those involved in the axioms we selected for the partial clone of
SocialAgent. It can be noticed that the definition of the class SocialAgentClone consists of the two
previously selected restrictions (updated in order to involve only local ontology elements). In order to define
the other ontology elements, the same rules are followed. Section 3.4 shows how partial clone is used in the
process of extracting a pattern from a reference ontology.

D2.5.1 Library of Ontology Design Patterns Page 41 of 183

Figure 3.5: The definition of the DUL:SocialAgent class.

3.2.3 Composition

The composition operation relates two CPs and results into a new ontology. The resulting ontology is com-
posed of the union of the ontology elements and axioms from the two CPs, plus the ontology elements and
axioms5 that are added in order to link the CPs.
We define an identity element for the composition operation i.e., the empty CP.

Definition 18 (Empty CP, CP0) The empty CP is identified by CP0 ≡ ∅

Definition 19 (Composition, cmp(CP1, CP2)) The composition of CP1 and CP2 consists of creating a
semantic association between CP1 and CP2 by adding at least one new axiom, which involves ontology
elements from both CP1 and CP2. The composition operation has the following semantics:
Let OECP1 ≡ {oecp11, . . . , oecp1n} be the set of ontology elements from CP1, AXCP1 ≡
{axcp11, . . . , axcp1m} be the set of axioms of CP1, OECP2 ≡ {oecp21, . . . , oecp2k} be the set of ontology
elements from CP2, AXCP2 ≡ {axcp21, . . . , axcp2q} be the set of axioms of CP2, OE ≡ {oe1, . . . , oer},
and AX ≡ {ax1, . . . , axs} be the sets of ontology elements and axioms (respectively) used for composing
CP1 with CP2. Now we can introduce:

OCP1CP2 = cmp(CP1, CP2)
OEOCP1CP2 ≡ (OECP1 ∪OECP2 ∪OE)
AXOCP1CP2 ≡ (AXCP1 ∪AXCP2 ∪AX)

(3.4)

Furthermore, if Req3 ≡ Req1 ∪Req2, then

cov(CP1, Req1), cov(CP2, Req2)⇒ cov(OCP1CP2, Req3) (3.5)

And, when composing with the empty CP

cmp(CP,CP0) = CP (3.6)
5typically at least an OWL axiom

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 42 of 183 NeOn Integrated Project EU-IST-027595

Figure 3.6: The result of a partial clone of the DUL:SocialAgent class.

With the previous axioms, we state that the composition between two CPs involves at least one new axiom.
This is due to the fact that each CP has its own namespace. For example, consider the two CPs: CP1 and
CP2. CP1 includes an axiom for the class cp1:Agent to be a subclass of the class cp1:Object. CP2

includes an axiom for the class cp2:Object to be a subclass of the class cp2:Entity.
Assuming that the intension of cp1:Object is the same as the intension of cp2:Object,
cmp(CP1, CP2) must include an OWL axiom that states the equivalence between the two classes. This
means that at least one additional OWL axiom is needed.
An objection could be: why does not CP1 directly include cp2:Object? In this case the composition would
not need any additional OWL axiom. The answer is that that case is not a composition, but a specialization,
which is defined in the next section.

As an example of composition, let us consider the following competency questions.

• cq1: Who has this role?

• cq2: Who has a suitable role in order to perform that task?

• cq3: Which role is assigned this task to?

The CP catalogue contains the agent role CP such that cov(agent role, cq1) and the task role CPs such
that cov(task role, cq3). Sections 4.6.2, and 4.6.3 describe agent role CP and task role, respectively. For
the sake of readability, we include their UML diagrams in Figures 3.7, and 3.8, respectively.

Diagram: The first CP (agent role) allows to represents agents, the roles they play, and the relations be-
tween them. The second CP (role task) allows to represent roles, the task they are assigned to, and the
relations between them. In order to cover cq2, we need an ontology that contains both CPs. Figure 3.9
shows the diagram of the ontology that results from the composition of agent role and task role CPs. The
prefixes or: and agentrole: are to be associated with the agent role CP6, while the prefix taskrole:
identifies the namespace of the task role CP. The composed ontology consists of all the ontology elements
and axioms of both CPs plus an additional OWL axiom, which states the equivalence between the class
or:Role, and the class taskrole:Role.

6The prefix agentrole: identifies the namespace of the agentrole CP, while the prefix or: identifies the namespace of the
object role CP that is imported by agent role.

D2.5.1 Library of Ontology Design Patterns Page 43 of 183

Figure 3.7: The agent role CP

Figure 3.8: The task role CP

3.2.4 Specialization and Generalization

Specialization and generalization introduce a partial order between CPs, which is defined in terms of their
taxonomical order. The subsumption relation between ontology elements of two CPs determines which of
the two CPs is more or less general than the other one. Specialization and generalization only rely on
rdf:subClassOf, and owl:subPropertyOf OWL axioms, and always have a CP as result.

Definition 20 (Specialization, spc(CP1)) A content pattern CP2 specializes CP1 if at least one on-
tology element of CP2 is a taxonomical subelement, i.e., it is either a rdfs:subClassOf or an
rdfs:subPropertyOf, of an ontology element of CP1. The specialization operation has the fol-
lowing semantics. Let OECP1 ≡ (oecp11, . . . , oecp1n) be the set of ontology elements of CP1, and
OECP2 ≡ (oecp21, . . . , oecp2k) be the set of ontology elements of CP2. Then

CP2 = spc(CP1)⇔ ∃oecp1i ∈ CP1, oecp2j ∈ CP2 | oecp2j v oecp1i

1 ≤ i ≤ n1, 1 ≤ j ≤ n2 (3.7)

Definition 21 (Generalization, gen(CP1)) A content pattern CP2 generalizes CP1 if at least one on-
tology element of CP1 is a taxonomical subelement, i.e., it is either a rdfs:subClassOf or an

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 44 of 183 NeOn Integrated Project EU-IST-027595

Figure 3.9: The composition of agent role and task role CPs

rdfs:subPropertyOf, of an ontology element of CP2. The generalization operation has the fol-
lowing semantics. Let OECP1 ≡ (oecp11, . . . , oecp1n) be the set of ontology elements of CP1, and
OECP2 ≡ (oecp21, . . . , oecp2k) be the set of ontology elements of CP2. Then

CP2 = gen(CP1)⇔ ∃oecp2i ∈ CP2, oecp1j ∈ CP1 | oecp1j v oecp2i

1 ≤ i ≤ n2, 1 ≤ j ≤ n1 (3.8)

3.2.5 Expansion

The expansion operation relates a CP to a set of ontology elements, and a set of axioms. It consists of adding
new ontology elements and axioms to a CP. The resulting ontology is composed of the ontology elements
and axioms of the CP, plus the added ontology elements and axioms.
We define two identity elements for the expansion operation i.e., the empty sets OE0 and AX0.

Definition 22 (Empty OE, OE0) The empty set of ontology elements is identified by OE0 ≡ ∅

Definition 23 (Empty AX, AX0) The empty set of OWL axioms is identified by AX0 ≡ ∅

Definition 24 (Expansion, expn(CP1, OE,AX)) Given a CP CP1 such that cov(CP1, Req1), a set of on-
tology elements OE, and a set of OWL axioms AX , the expansion of CP1 by means of OE and AX consists
of creating a new ontology O which contains all the ontology elements and axioms of CP1, OE, and AX ,
and such that cov(O,Req1). Let OECP1 ≡ {oecp11, . . . , oecp1n} be the set of ontology elements of CP1

such that OECP1 6= OE, AXCP1 ≡ {axcp11, . . . , axcp1m} be the set of OWL axioms from CP1 such that
AXCP1 6= AX . Let finally OEO be the set of ontology elements from O, and AXO be the set of OWL
axioms from O. Then we define:

O = expn(CP1, OE,AX)⇔
∃oe ∈ OE, ∃ax ∈ AX | oe /∈ OECP1 ∧ ax /∈ AXCP1 ∧

@CP2 6= CP1 | oe ∈ OECP2 ∧ ax ∈ AXCP2

OEO ≡ OECP1 ∪OE

AXO ≡ AXCP1 ∪AX

D2.5.1 Library of Ontology Design Patterns Page 45 of 183

Where OECP2 ≡ {oecp21, . . . , oecp2k} and AXCP2 ≡ {axcp21, . . . , axcp2q} are the set of ontology
elements and the set of axioms from the CP CP2, respectively.
And, when expanding with the empty set of ontology elements or OWL axioms

expn(CP,OE0, AX0) = CP (3.9)

In practice, CP expansion requires that additional elements and axioms that are added to a CP do not come
from other CPs, otherwise those cases are actually compositions.

3.2.6 Import

The basic mechanism for CP reuse is import. It is also the only one directly supported in the OWL vocabulary
with owl:import. Import is applicable to ontologies, hence also to CPs. If an ontology O2 imports an
ontology O1, all the ontology elements and OWL axioms from O1 are included in O2. However, the imported
ontology elements and axioms cannot be modified, i.e., the ontology elements and axioms are read-only
entities for O2. By importing a CP, an ontology ensures the set of inferences allowed by the CP in its
corresponding knowledge base.

Definition 25 (Import, import(O1, CP1)) Let OEO1, and AXO1 be the set of ontology elements and the
set of axioms of the ontology O1, respectively. Let OECP1, and AXCP1 be the set of ontology elements and
the set of axioms of the CP CP1, respectively. The import operation has the following semantics:

O2 = import(O1, CP1)
OEO2 ≡ OEO1 ∪OECP1

AXO2 ≡ AXO1 ∪AXCP1 (3.10)

Where OEO2 and AXO2 are the set of ontology elements and the set of axioms of O2, respectively.

3.3 Definition of Content Ontology Design Pattern (CP)

A CP is a networked ontology that can play the role of a module for another ontology, according to the
following definition7:

Definition 26 (Networked Ontology) An ontology that is a member of a network of ontologies. A Network
of Ontologies is a collection of ontologies related together via a variety of different relationships such as
mapping, modularization, version, and dependency relationships.

In practice, an ontology is networked when it has some relation to other ontologies.

Definition 27 (Content Ontology Design Pattern, CP) CPs are distinguished networked ontologies and
have their own namespace. They cover a specific set Req of competency questions (requirements), which
represent the problem they provide a solution for. A CP emerges from existing conceptual models and can
be extracted from a reference ontology (based on the clone operation), can be reengineered from other
conceptual models (e.g. data models), can be created by composition of other CPs, by expansion of a CP,
and either by specialization or generalization of another CP. A CP is associated with two sets, which are
both unique: the set of its ontology elements, and the set of its OWL axioms. CPs exemplify logical design
patterns, or some composition of them. Furthermore, CPs show the following characteristics:

7Compliant with C-ODO and [HBP+07]

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 46 of 183 NeOn Integrated Project EU-IST-027595

Characteristics of CPs

• Requirements covering components. A CP is defined in terms of the requirements it satisfies, which
are expressed in terms of competency questions. Formally, given a CP CP1, cov(CP1, Req1) →
Req1 6= ∅. This aspects is also important for stating the relevance of the CP with reference to a certain
domain.

• Computational components. CPs have to be represented and encoded in a computational logic i.e.,
OWL DL in this context, in order to be processed by parsers and automatic reasoners, and to be
(re)used as building blocks in ontology design.

• Small, autonomous components. Regardless of the particular way a CP has been created (section
3.4 describes ways to create a CP), it is a small, autonomous ontology. Smallness and autonomy of
CPs facilitate ontology designers: composing CPs enable them to govern the complexity of the whole
ontology, because of the explicit rationales and the amount of know-how provided by the users of a
same CP library. Smallness also allows diagrammatical visualizations that are aesthetically acceptable
and easily memorizable.

• Hierarchical components. A CP can be an element in a partial order, where the ordering relation
requires that at least one of the classes or properties in the pattern is either specialized or generalized.
A hierarchy of CPs can be built by specializing or generalizing some of the elements (either classes or
relations).

• Cognitively relevant components. CP visualization must be intuitive and compact, and should catch
relevant, “core” notions of a domain. An interesting result from cognitive learning [Gar83] is that the
development of expert skills typically “selects” patterns of concepts that are richly interconnected, and
in normal cases, these patterns are applied without an explicit reference to the underlying detailed
knowledge acquired during the training period.
This result matches the need to quickly reason or to automatize certain tasks, and the experimental
data on short-term memory capacity. For this reason, independently of the generality at which a CP
is singled out, it must contain the central notions that “make rational thinking move” for an expert in a
given domain for a given task.

• Reasoning relevant components. A CP has to allow some form of inference.

• Linguistically relevant components. Many CPs nicely match linguistic patterns called frames. A frame
can be described as a lexically founded ontology design pattern; frames typically encode argument
structures for verbs, e.g. the frame Desiring associates elements (or “semantic roles”) such as Experi-
encer, Event, FocalParticipant, LocationOfEvent, etc. The richest repository of frames is FrameNet
[BFL98]. Frames can be used for validating CPs with respect to lexical coverage, for lexicalizing them,
and can be reengineered in order to populate the CP catalogue (cf. [ont]).

• Best practice components. A CP should be used to describe a “good practice” of modelling. Good
practices are intended here as local, thus derived from experts. The quality of CPs is currently based
on the personal experience and taste of the proposers, or on the provenance of the knowledge resource
where the CP comes from. However, evidence from reusability across different projects, large-scale
applications, and open rating systems will provide a good base for CP evaluation.

Section 3.3.1 presents a non-exhaustive list of examples of ontological resources that are not CPs. We also
give a definition of Content Ontology Design Anti-Pattern (CAP).

D2.5.1 Library of Ontology Design Patterns Page 47 of 183

3.3.1 Ontological resources that are not CPs

All ontologies that do not comply to definition 27, hence do not show the CPs characteristics, are not CPs.
The most important characteristics that distinguish a CP from an ontology that is not a CP are that they
typically neither respond to any competency question, nor allow relevant inferences. In other words, small
ontologies that lack such a relevance for a certain domain are not CPs. Examples of small ontologies that
cannot be considered CPs are the following:

• Either a single isolated class, or a list of unrelated classes.

• Either a single property with neither range nor domain explicitly defined, or a list of properties like that.

• Either a class with a single subclass, or a non-branching taxonomy.

Pointing out what ontologies are not CPs is useful in order to distinguish what is a Content Ontology Design
Anti Pattern (AntiCP) from ontologies that are not CPs.

3.3.2 Content Ontology Design Anti-pattern (AntiCP)

Content Ontology Anti Patterns (AntiCPs) are ontologies that implement bad modeling practices. In other
words, they are based on wrong assumptions or rationales. AntiCPs produce the side-effect of inferring
wrong or undesired knowledge, or of preventing the capability to infer the desired knowledge.

Definition 28 (Content Antipattern, AntiCP) A content antipattern complies to all CP characteristics ex-
cept one. It can be distinguished from a CP because its relevance with respect of its specific domain is that
it encodes the wrong way to solve the modeling problem. Hence, it is a bad practice component (against the
best practice component characteristics of CPs).

It is worth to highlight that AntiCPs should not be confused with CPs that are not suitable in a certain context.
In those cases, the matching between the competency questions and the actual use case is wrong. In other
words, an AntiCP is always an AntiCP.

A typical example of AntiCP is characterized by using subsumption in order to model part relations. For
example, consider the case of an ontology that describes geo-political areas and that addresses a scenario
featuring three kinds of areas: nations e.g., Italy, regions e.g., Lazio, and cities e.g., Rome. Nations have
control on regions, which in turn have control on cities. The AntiCP is to model the part relation that holds
between nations, regions, and cities as a subsumption instead of a partonomy.
Figure 3.10 shows a diagram of an AntiCP for this example. All classes are subclasses of a parent class
Area. The class that represents nations is modeled as the parent of the class that represents regions, which
in turn is the parent of the class that represents cities. This modeling choice is wrong because it produces
the side-effect of inferring that e.g., everything that is a city is also a region and a state. This is obviously
wrong: nations, states, and cities are disjoint sets, and should be modeled as siblings with a common parent
class, e.g. Area. The part relation can be modeled as a transitive object property that encodes the part
relation. E.g., the part of CP is a solution to this modeling issue, and is described in detail in section 4.2.1.
Other examples of AntiCPs have been detected during the evaluation of preliminary versions of the FAO
ontologies. Such evaluation is described in section 3.6.2. In the literature, [RDH+04] also contains a useful
list of AntiCPs.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 48 of 183 NeOn Integrated Project EU-IST-027595

Figure 3.10: Containment vs Subsumption: an example of AntiCP

3.4 Where do CPs come from?

Content ontology design patterns (CPs) come from the experience of ontology engineers in modeling foun-
dational [MGG+05], core [GB04], or domain ontologies. Informally, the distinction between these three kinds
of ontologies relates to the degree by which an ontology covers the domain of interest:

• Foundational ontologies [MGG+05], like DOLCE [Dol] and SUMO [PNL02], axiomatize general con-
cepts and relations, and are reusable across any domains.

• Core ontologies [GB04], like the Core Ontology of Fishery [GFK+04], and the Core Legal Ontology,8

focus on a domain application without being restricted to specific applications or specific subareas.
They can be built in agreement with foundational ontologies or based on general principles and well-
founded methodologies.

• Domain ontologies, like the Gene ontology,9 and the Unified Medical Language System (UMLS)
[oM03], deal extensively with a specific domain of interest, deepen the coverage on a certain area
of a domain, or address a specific use case within a domain.

Assuming those distinctions, there are four ways of creating CPs, which can be summarized as follows:

Reengineering from other data models A CP can be the result of a reengineering process applied to
conceptual modeling languages, primitives, and styles. [GP07] describes a reengineering approach for cre-
ating CPs starting from UML diagrams [Obj04], workflow patterns [VDATHKB03], and data model patterns
[Hay96].

8http://www.loa-cnr.it/ontologies/CLO/CoreLegal.owl
9http://www.geneontology.org/

D2.5.1 Library of Ontology Design Patterns Page 49 of 183

Other knowledge resources that can be reengineered to produce candidate CPs are database schemas,
knowledge organization systems (e.g. thesauri), and lexica (cf. [SAd+07] for reengineering techniques on
these resources).

Specialization/Composition of other CPs A CP can be created either by composition of other CPs or
by specialization of another CP, (both composition and specialization can be combined with expansion). For
example, nary-participation CP composes situation and participation CPs.

Extraction from reference ontologies A CP can be extracted from an existing ontology, which acts as
the “source” ontology. Extraction of a CP is a process consisting of (partial) cloning the ontology elements
of interest from the source ontology. In this case, the CP corresponds to a fragment of the source ontology,
which constitutes its axiomatic background context. A CP is axiomatized according to the fragment it extracts.
Since it depends on its background, a CP inherits the axiomatization (and the related reasoning service) that
is already in place. E.g., the co-participation pattern depends on a set of axioms from the DOLCE ontology
[Dol], which state that an event has at least one participant, that co-participation requires two participants in
a same event, that participants must participate at least partly at the same time, etc. If a modeler specializes
the co-participation pattern for representing e.g. an academic lecture or a football match, the reasoning
services will operate with reference to the co-participation axioms, without the need for encoding them again.
However, a CP is autonomous, and only the axioms that have been extracted from the reference ontology
are actually used by an ontology that reuses a CP. Therefore, reasoning services do not need to also process
the general axiomatic context from the reference ontology.

Creation by combining extraction, specialization, generalization, and expansion The definition of a
CP can be the result of an extraction (see above), followed by specialization and/or generalization of some
ontology elements, and expansion. Furthermore, a CP can be obtained by partial cloning elements from
more than one source ontology. Figure 3.11 shows the typical process that is performed by an ontology
engineer for creating a CP by extraction from a reference ontology, possibly including specialization and
expansion. Circles with a dashed line refer to specialization and expansion, which could be skipped. The
creation of a CP starts with the creation of a new ontology. A suitable namespace is assigned to the new
ontology. Each pattern has its own namespace that does not depend on that of the source ontology. The
source ontology(ies) is(are) imported. Elements of the source ontology must not be modified. Some tools
allow designers to modify imported ontologies, when they are locally stored and writable. In such a case, it
is a good practice to lock the imported ontologies in order to set the access permissions as read-only.
The creation proceeds with the partial cloning of the ontology elements of interest. Then, restrictions of the
new elements are updated with local references, and if needed, some ontology elements are specialized.
At this point, if there are still references to external ontology elements (even to those belonging to source
ontologies), they are removed, and possible expansions are performed. Class disjointness is checked. The
reasoner is launched to check consistency, and to infer implicit knowledge. Some inferences might be kept
and transformed into asserted knowledge. Finally, the imports are removed, and the CP (and its elements)
are annotated.
CPs are published on a web portal (ODP) and are annotated with the annotation properties defined in the
CP annotation schema10. The CP annotation schema is presented in section 3.5.

3.4.1 Examples of CP creation

In this section, we show the process of creation of two CPs, which are part of the CP catalogue (chapter 4).
First, we describe the creation of the information realization CP (see 4.3.2) that is performed by extraction

10http://www.ontologydesignpatterns.org/patternannotationschema.owl, currently available at http://wiki.loa-
cnr.it/index.php/LoaWiki:patternannotationschema. See section 4.12 for further details about ODP.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 50 of 183 NeOn Integrated Project EU-IST-027595

Figure 3.11: The CP extraction process.

from the Dolce Ultra Lite ontology11. This CP represents the relations between information objects like
poems, songs, formulas, etc., and their physical realizations like printed books, recorded tracks, physical
files, etc. Figure 3.12 depicts some screenshots12 of the ontology editor while we extract the information
realization CP.
We create a new OWL ontology for the CP named cps:informationrealization.owl13. We
import the source ontology i.e., Dolce Ultra Lite.
In order to highlight the ontology element that we are going to clone, we have drawn some orange arrows
over the screenshots. The class we clone from the Dolce Ultra Lite ontology is the one that represents
information objects i.e., DUL:InformationObject14

The upper part of the picture (the first screenshot) depicts the axiomatization of
DUL:InformationObject, in the bottom left part, the (shallow) clone operation is executed on
DUL:InformationObject15. The result of the shallow clone operation is a new class belonging to the
namespace of the information realization CP. We name this class InformationObject as it is shown
in the third screenshot. Some of the inherited axioms are removed and references to external elements
e.g., DUL:InformationRealization, are replaced by references to local elements. In practice,
DUL:InformationRealization is replaced by the local element InformationRealization.
Note that this action is performed only after we have cloned DUL:InformationRealization and
have created a local InformationRealization. In order to complete the extraction, we clone the
two object properties: DUL:realizes, and DUL:isRealizedBy, and create the local realizes and
isRealizedBy object properties. We remove undesired axioms, and replace external references with
local ones.
In the bottom right of the picture, we show the resulting axiomatization of InformationObject. Notice
also that we have kept the comment. Finally, we have updated the axioms for the DUL:isRealizedBy
object property, and replaced DUL:isRealizedBy with isRealizedBy.
We use the same approach for all other ontology elements we want to clone. Once cloning is completed, we
remove the import and save the CP. Figure 4.26 in section the 4.3.2 shows a UML diagram of the resulting
ontology i.e., the information realization CP.
As a second example, we describe the creation of the time indexed person role CP16 that is performed by
combination of extraction and specialization. This CP represents the temporal index for the relation between
persons and the roles they play.

11http://www.loa-cnr.it/ontologies/DUL.owl
12The figure contains three screenshots overlapped.
13the prefix cps: is for http://www.ontologydesignpatterns.org/codeps/owl/
14DUL is the prefix for the Dolce Ultra Lite ontology namespace.
15The shallow clone operation is implemented by some ontology editors e.g., TopBraid Composer -

http://www.topbraidcomposer.com/
16See 4.6.4)

D2.5.1 Library of Ontology Design Patterns Page 51 of 183

Figure 3.12: The information realization CP extraction from Dolce Ultra Lite ontology.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 52 of 183 NeOn Integrated Project EU-IST-027595

Figure 3.13: Ontology elements extracted and specialized from the Dolce Ultra Lite ontology.

We create a new OWL ontology for the CP, and assign a name to it. We import the Dolce Ultra Lite ontology,
that is the source ontology for this CP. Figure 3.13 depicts two screenshots of the Classes and Properties
tabs of the ontology editor. In order to highlight the Dolce Ultra Lite classes and properties that we partially
clone in order to create the time indexed person role CP, we have drawn some orange arrows. This
CP is created by combining extraction and specialization. The class TimeIndexedPersonRole is
intended to be a specialization of the Dolce Ultra Lite class DUL:Classification (pointed by the blue
arrow). In practice, we clone DUL:Classification and then create a subclass of the clone, which
is TimeIndexedPersonRole. The other classes and properties are partially cloned with the same
approach described above for the information realization CP. Figure 4.48 of section 4.6.4 shows a UML
diagram of the time indexed person role CP. Both information realization and time indexed person role
are described in detail in sections 4.6.4 and 4.3.2, respectively.

3.5 The CP annotation schema

The CP annotation schema has been defined in the context of this deliverable. It consists of a set of anno-
tation properties that are used in order to annotate CPs. All OWL files implementing the CPs presented in
chapter 4 are annotated by means of this schema, and any new OWL CP should follow the same specifica-
tion.

hasIntent: This annotation property is used in order to describe the intent of the content pattern.

D2.5.1 Library of Ontology Design Patterns Page 53 of 183

coversRequirements: this annotation property is used for exemplifying possible requirements the con-
tent pattern provides a solution for. Requirements are expressed as natural language competency
questions.

scenarios: this annotation property is used for exemplifying possible scenarios the content pattern allows
to represent. Scenarios are expressed as natural language sentences.

extractedFrom: this annotation property should be assigned with a URI, which points to the reference
ontology which the annotated pattern has been extracted from (i.e. the reference ontology that the
ontology elements have been deeply or partially cloned from). The range is not explicit in the definition
of the annotation property because it would turn the ontology into OWL Full. E.g. The participation
CP is extracted from the Dolce Ultra Lite ontology, hence the value for this annotation property is
http://www.loa-cnr.it/ontologies/DUL.owl.

reengineeredFrom: this annotation property should be assigned with a URI, which points to the concept
schema, page, or anything else from which the annotated pattern was reengineered. If the source does
not have any URI e.g., a printed book, this property value should provide information as precise as pos-
sible in order to identify the source. This property is alternative to the extractedFrom property because
it is used when the pattern comes from a concept schema that is not an owl ontology. For example
CPs, which are reengineered from data model patterns, rdf schemas, etc. should be annotated with
this property. E.g. The basicpersonalfoaf pattern is extracted from the rdf FOAF specification, hence
the value for this annotation property is http://xmlns.com/foaf/spec/20071002.rdf

isSpecializationOf: this annotation property is useful for CPs and its elements. Its value is a URI,
which refers either to a CP that is specialized by the annotated one, or to an ontology element that is
specialized by the annotated one.

hasComponent: this annotation property is useful for CPs. Its value is a URI, which refers to another CP
that is a component of the annotated one.

isCloneOf: this annotation property value should be assigned with a URI, which points to the class
or property of the reference ontology, from which the ontology element has been deeply or partially
cloned by. Domain and range are not explicit in the definition of the annotation property because
this would turn the ontology into OWL Full. The domain is an ontology element i.e., a class or a
property. E.g. the Object class of the object-role CP has been partially cloned from the dul:Object
class of the Dolce Ultra Lite ontology, hence the value for this annotation property in that case is
http://www.loa-cnr.it/ontologies/DUL.owl#Object. This annotation property is typ-
ically used when the CP only includes few clones of classes from a certain ontology. For example, if
a CP is reengineered from a non-ontological resource, it is not extracted from any ontology. However,
the designer might want to clone some classes from existing ontologies that are suitable for completing
the CP.

hasConsequences: this annotation property is used for briefly describing the benefits and/or possible
trade-offs when using the CP.

relatedCPs: this annotation property can be used to indicate other CPs (if any) that specialize, gener-
alize, include, or are components of the CP. Furthermore, this field may indicate other CPs that are
typically used in conjunction with the described one. Important similarities and differences with other
patterns can be also described here.

3.6 How to use content ontology design patterns

Supporting reuse and alleviating difficulties in ontology design activities are the main goals of setting up a
catalogue of CPs. In order to be able to reuse CPs, two main functionalities must be ensured: selection and

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 54 of 183 NeOn Integrated Project EU-IST-027595

application.
Selection of CPs corresponds to finding the most appropriate CP for the actual domain modeling problem.
Hence, selection includes search and evaluation of available CPs. This task can be performed by applying
typical procedures for ontology selection e.g., [SLM06] and evaluation [GCCJ06].
Informally, the intent of a CP must match its use case. Once a CP has been selected, it has to be applied to
the design of a domain ontology. Typically, CP application is performed by means of import, specialization,
composition, or expansion (see section 3.4). In realistic design projects, such operations are usually
combined.

3.6.1 Matching between intent and use case

Several situations of matching between the intent of CPs and actual use cases can occur, each associated
with a different approach to using CPs. The following summary assumes a manual (re)use of CPs. However,
an initial library of CPs will be available online by end of January 2008. An automatic support to their selection
and usage should take into account the principles informally explained in the summary below.

• Precise matching. The CP matches the intent, which is directly usable to describe the local use case:
the CP has only to be imported in the domain ontology. Expansion is performed when needed.

• Broader matching. The CP matches an intent that is more general than the local use case: the Related
patterns field of the CP’s catalogue entry may contain references to less general CPs that specialize
it. If none of them is appropriate, the CP has firstly to be imported, then it has to be specialized in
order to cover the domain part to be represented. Expansion is performed when needed.

• Narrower matching. The CP matches an intent that is more specific than the local use case: the
odpschema:specializationOf17 property of the ODP annotation schema may contain refer-
ences i.e., URIs, to more general CPs it is the specialization of. The same information is reported
in the Related patterns field of the CP’s catalogue entry. If none of them is appropriate, a new CP
should be created for the local use case and imported. The new CP will be more general than the one
discovered, and they will have to be mutually related. Expansion is performed when needed.

• Partial matching. The CP partly matches an intent that does not cover all aspects of the local use
case (it is simpler): the Related patterns field of the CP’s catalogue entry may contain CPs it is a
component of. If none of such compound CPs is appropriate, the local use case has to be partitioned
into smaller pieces. One of these pieces will be covered by the selected CP. For the other pieces, other
CPs have to be selected. All selected CPs have to be imported and composed. If the actual use case
is not too big, it is worth to add a new entry to the catalogue of CPs for the resulting composed CP.
Expansion is performed when needed.

• Redundant matching. The CP matches an intent that is more complex than the local use case: the
the odpschema:hasComponent property of the OP annotation schema may contain references,
to CPs it is composed of, the same information is reported in the Related patterns field of the CP’s
catalogue entry. One of the component CPs could be a precise matching CP for the local use case. If
none of the component CPs is adequate, a new CP is extracted from the selected one and associated
to it by annotation and by updating the Related patterns field. The CP is then imported. Expansion
is performed when needed.

As an example of usage we design a small fragment of an ontology for the music industry domain. The
ontology fragment addresses the following competency questions:

17odpschema is a prefix for http://www.ontologydesignpatterns.org/patternsannotationschema.owl

D2.5.1 Library of Ontology Design Patterns Page 55 of 183

Figure 3.14: The music industry example.

• Which recordings of a certain song do exist in our archive?

• Who did play a certain musician role in a given band during a certain period?

The first competency question requires to distinguish between a song and its registration, while the second
competency question highlights the issue of assigning a given musician role e.g., singer, guitar player, etc.,
to a person who is member of a certain band, at a given period of time. The intent of information realization
is related to the first competency question with a broader matching. The intent of the time indexed person
role partially and broadly matches the second competency question. The second requirement also requires
to represent a membership relation between a person and a band18. Let’s consider a case in which we can-
not find more specialized CPs for reusing. We proceed by following the above guidelines. Figure 3.14 shows
a screenshot of the resulting ontology fragment. In the bottom part of the screenshot we find the import
tab where the information realization19 and time indexed person role20 CPs are imported. Additionally,
we import the time interval CP that allows us to assign a date to the time interval21 In order to complete
our ontology fragment we create: the class Song that specializes ir:InformationObject, the class
Recording that specializes ir:InformationRealization, the class MusicianRole that special-
izes tipr:Role, the class Band, and the object property memberOf (and its inverse) with domain i.e.,
tipr:Person, and range i.e., Band.

3.6.2 Pattern-based ontology evaluation

CPs can also be used as tools for evaluating ontologies. We have started a pattern-based evaluation of
preliminary versions of FAO ontologies that have been developed in the context of WP7, and we used
CPs as well as other types of OPs for achieving our goal. Although the definition of a NeOn method
for pattern-based ontology evaluation is still ongoing work (it will be one of the arguments of next NeOn

18The collection entity CP addresses membership.
19We use the prefix ir for this CP.
20We use the prefix tipr for this CP.
21The time interval CP also defines two additional sub-properties of the hasIntervalDate for expressing a start and an end

date to the time interval.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 56 of 183 NeOn Integrated Project EU-IST-027595

deliverable D2.2.2a), we think such an experience deserves to be reported here.

We report the results of the evaluation analysis that has been performed on the first set of ontologies cre-
ated for the FSDAS. Although some of the issues that emerged during this evaluation have already been
addressed in the latest version of the ontologies (to the date of this deliverable), their description is relevant
to assess typical antipatterns that happen to be followed during the development of ontologies from KOSes.
According to the criteria mentioned in chapter 2, we provide evaluation about the modeling style that should
be sound according to the known best practices of ontology design. Therefore, we provide a critique by per-
forming pattern-based analysis, according to the theoretical work that has been presented in this deliverable
as well as in deliverables D5.1.1 [SFBG+07], and D2.2.1 [SAd+07].

For the sake of clarity, we group the issues by highlighting the OPs that address them.

Namespace Naming: no convention has been used for giving a namespace to the different FAO ontolo-
gies. For example, one has http://www.owl-ontologies.com/Ontology1160137180.owl,
another has http://www.fao.org/onto.owl, and another, which however uses a good practice,
has http://www.fao.org/commodities-ISSCFC.owl. It is recommended to establish a unique
convention for naming ontology namespaces, and stay with it, so that ontology creators do not have the re-
sponsibility of this task and are not obliged to know how to be aligned with other ontologies from the same or-
ganization. The third approach mentioned allows users to recognize the provenance of the ontology. A good
practice is to compose the namespace by concatenating the organization base URI with a meaningful name
that describes the topic of the ontology. Another good practice is to define a convention for encoding version-
ing information in the name: http://www.fao.org/commodities-ISSCFC20070712.owl, or in
the reference directory, e.g. http://www.fao.org/2007/07/12/commodities-ISSCFC.owl.
The latest practice is recommended by W3C22.

Class and Property Names: some class and property names contain plurals e.g. Areas, hasParts.
This is to be considered a bad practice unless it is explicitly required by the context. For example, a class
the instances of which are single areas should be named Area and should not be named Areas. More-
over, some class and property names are unreadable because they are alphanumeric codes, e.g. in the
Commodities-ISSCFC ontology. A good practice for naming conventions of classes and properties is to give
them a readable name either directly to the class, or to its label. This allows tools to visualize hierarchies and
diagrams with readable names. The FAO designers have applied a lexicalization pattern (commented in next
bullet) in order to associate readable names to ontology elements. Unfortunately, current tools are not able
to exploit personalized patterns for visualizing readable names.

Lexicalization: The requirement to be addressed is the following: each concept encoded by the class of
the ontology has to be associated to one name for each supported language. This requirement is identified
as multilingual lexicalization of ontology classes.
This issue might be addressed by means of the rdfs:label annotation property. Each class can be anno-
tated by a number of labels corresponding to the number of supported languages23. However, this solution
keeps the names out of the theory and knowledge base, with the consequence of preventing reasoning on
names. To move around this issue, we need to include a class for names, and to associate each class to
its corresponding name instance. The name instance is then associated with the different lexicalizations by
means of appropriate datatype properties24.
FAO designers adopted an alternative solution in order to encode multilingual lexicalization of ontology

22http://www.w3.org
23The value of the label includes the standard code e.g., {en} for English, of the specific language by which the name

is expressed
24E.g., one for each supported language.

D2.5.1 Library of Ontology Design Patterns Page 57 of 183

classes. It consists of defining a class for names i.e., Name and creating a dummy instance for each class,
which is then related to an instance of the class Name (the one which names the class) through the hasName
relation. For example:

Crustacean rdfs:subClassOf Commodity
Crustacean_concept rdf:type Crustacean
Crustacean_lexitem rdf:type Name
Crustacean_concept hasName Crustacean_lexitem

This solution creates an explicit path from classes to lexicalizations through the dummy instance
Crustacean_concept. However, there is an issue with the dummy instance: it is ontologically wrong.
Each instance of the class Crustacean should be (in this domain) a crustacean commodity, not a dummy
object. For this reason, this solution is provides us with an example of AntiCP.
A possible good solution is provided by composing two CPs: intension extension25 and lexicalization26.
The intension extension CP represents the relation between a concept and the information object that
expresses it, through the isExpressedBy relation. The lexicalization CP solves the dummy instance
problem by providing the class Concept. The instances of this class are used instead of dummy instances.
Concepts are the reified counterparts of classes, which represent their intensional semantics (where the
formal semantics of classes is only extensional). Classes are related to concepts by means the relation
classifiedBy, to which a owl:hasValue restriction is defined. This means that each class is associ-
ated to a specific instance of Concept. The class LexicalItem represents names. A name is associated
with a concept through the expressedBy object property. For example:

Crustacean rdfs:subClassOf Commodity
Crustacean_concept rdf:type Concept
Crustacean_lexitem rdf:type LexicalItem
Crustacean rdfs:subClassOf (classifiedBy hasValue Crustacean_concept)
Crustacean_concept expressedBy Crustacean_lexitem

Alternative solutions for ontology lexicalization are described in the NeOn deliverable D2.4.1 [MPPdC+07].

Part of: in the FAOareas.owl ontology we identified a typical AntiCP. Even if this ontology is not included
in the prototype set of ontologies, we believe it is worth to mention this issue because it is one of the lessons
learnt by FAO experts in the context this work. In the above mentioned ontology a relation partOf is
defined in order to model partonomies. The relation is defined as functional and not transitive. There exist
plenty of design patterns on partOf relations, either in general or for specific domains, including geographic
partonomies e.g., see section 4.2.1. Most patterns agree on having the partOf (or isPartOf) relation
as transitive (unless a system-oriented view is taken), and not functional, because something can be part of
more than one individual. The modeling choice in this ontology (being partOf functional and non-transitive)
is against the good practice.

Subsumption hierarchy of areas: from the past FOS project we know that there is a distinction between
areas, subareas, divisions, and subdivisions. They are modeled as ontology classes. What is more,
such distinction creates a partition, i.e. no instance of one distinct class can be instance of another. In
FAOareas.owl the four classes are modeled by means of a subsumption pattern, which creates the bad
consequence of having all finer partitions to be instances of coarser partitions i.e., it is an AntiCP. The good
practice in this case is to create disjoint classes, and relate them by means of restrictions on the partOf
relation (by following the guidelines above described). For example:

25Described in 4.3.1
26Exemplification of the classes as values LP described in section 2.2.1 under the Logical Ontology Design Pattern paragraph.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 58 of 183 NeOn Integrated Project EU-IST-027595

Area rdfs:subClassOf MarineArea
SubArea rdfs:subClassOf MarineArea
SubArea rdfs:subClassOf (partOf someValuesFrom Area)

The previous pattern is known as granular partition: by effect of the transitivity of partOf, all finer granu-
larity marine areas will result to be necessarily partOf at least one (or exactly one) marine area from each
of the granularity levels above it.

Political objects versus physical objects: a class Territory has been defined in order to model
physical territories, but it also encodes political properties of these territories e.g. isSuccessorOf, which
is used in order to state that a new political unit has been created at some time, for the same territory. A
good pattern here is to have political geographic objects as distinct from physical territories, in order to keep
physical and political properties distinct.

Collections: the class Groups represents collections having territories as members. The FAO design-
ers put such class under the class Areas27 by means of a subsumption pattern. Nevertheless, the class
Groups should not be put there because collection are usually understood as different from (geographical)
areas. The motivation is that a collection of areas has not the same properties as a single area in usual
conceptualization patterns. For example, it is common to say that “Italy has a beautiful climate”, and that “the
NATO accepted a new member”, while it is counterintuitive to say that “NATO has a beautiful climate” or that
“Italy accepted a new member”.

Layered taxonomies: the species.owl ontology encodes a natural taxonomy. Currently, FAO de-
signers approach such issue by representing the different layers as a subsumption hierarchy. This is
an anti-pattern, because causes e.g. species to be also genus, families, etc. Natural taxonomies that
distinguish between e.g. species, genus, family, etc. constitute a so-called linnean taxonomy (see section
4.10.1. A linnean taxonomy can be represented at the meta-level, or at the object level, depending on the
logical level of representation chosen for species, genera, families, etc. FAO designers want to represent
elements of the linnean taxonomy at the object level. In this case, the best practice is to model the layers as
disjoint classes, and to relate them by means of a relation which indicates the next layer. For example, by
assuming the relations from the FAO ontology as kinds of such a relation, we have the following:

Species rdfs:subClassOf (belongsToGenus someValuesFrom Genus)
i_Salmon_shark rdf:type Species
i_Mako_sharks rdf:type Genus
i_Salmon_shark belongsToGenus i_Mako_sharks

However, when we use this pattern with differentiated relations, we need to assert specifically all higher
layers for lower layers. For example, if:

i_Mako_sharks isOfFamily i_Mackerel_sharks-porbeagles_nei

we would like to automatically infer that:

27The class Areas represents single areas, and according to the class and property names pattern it should be named Area
(see above).

D2.5.1 Library of Ontology Design Patterns Page 59 of 183

i_Salmon_shark hasHigherRank i_Mackerel_sharks-porbeagles_nei

This automatic inference can be obtained by declaring relations like belongsToGenus and isOfFamily
as subPropertyOf hasHigherRank, and declaring hasHigherRank as transitive:

hasHigherRank rdf:type TransitiveProperty
belongsToGenus rdfs:subPropertyOf hasHigherRank
isOfFamily rdfs:subPropertyOf hasHigherRank

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 60 of 183 NeOn Integrated Project EU-IST-027595

Chapter 4

Catalogue of Content Ontology Design
Patterns

Ontology design patterns (OPs) have a strong analogy to software engineering (SE) patterns. The main-
stream approach for describing SE patterns is to use a template and to collect them by means of a catalogue.
A description of the most well-known SE pattern templates can be found at Martin Fowler’s web site.1

The templates used for describing SE patterns follow quite closely that suggested by Alexander [Ale79]:
given an artifact type, the pattern provides examples of it, its context, the problem addressed by the pattern,
the involved “forces” (requirements and constraints), and a solution.
In order to describe CPs we follow a similar approach, but the template used for the presentation has been
optimized for the web and defined in an OWL annotation schema; it is the same used on the semantic web
portal http://www.ontologydesignpatterns.org. This chapter contains a catalogue of CPs that are classified
according to the domain they share i.e, the domain of the modeling issues they solve. Each CP is described
by means of a catalogue entry, which is composed of the following information fields, defined in the annota-
tion schema:

• Name: indicates a name for the CP.

• Intent: describes the goal of the CP.

• Also Known as: indicates alternative names (if any) for the CP.

• Extracted from: contains the URI (if any) of the ontology where the CP has been extracted from.
Alternatively, if the CP is the result of a reengineering process, the Reengineered from: field is used,
which indicates the source model. This field could be omitted e.g., if the CP is a specialization or
composition of other CPs.

• Requirements: contains a list of competency questions expressed in natural language, that are cov-
ered by the CP.

• Diagram: depicts a UML class diagram that graphically represents the CP.

• Example: provides the reader with a possible scenario. This field sometimes includes a UML diagram
that graphically represents individuals and relationships complying to the scenario. This field can also
contain more specific requirements that can be solved by specializing the CP.

• Elements: describes the elements (classes and properties) included in the CP, and their role within
the CP.

• Consequences: contains a description of the benefits and/or possible trade-offs when using the CP.

1http://www.martinfowler.com/articles/writingPatterns.html#CommonPatternForms

D2.5.1 Library of Ontology Design Patterns Page 61 of 183

• Known uses: gives examples of real ontologies where the CP is used. In this presentation of the
catalogue, this field is omitted, because CPs as building blocks are presented here for the first time.
They are extracted from real ontologies, and on the base of experiences of reuse of those ontologies.
However, the content of this field should refer to ontologies that reuse the CP as a building block.

• Related patterns: indicates other CPs (if any) that specialize, generalize, include, or are components
of the CP. Furthermore, this field may indicate other CPs that are typically used in conjunction with the
described one. Important similarities and differences with other patterns can be also described here.

• Building block: contains the URI of the OWL implementation of the CP, i.e. the reusable component
available for download.

• References: optional, may contain references to resources (e.g. papers, theories, blogs) that are
related to the knowledge encoded in the CP. In the catalog included in this deliverable, this field is not
used, but a lot of references can be found in the web sets of the reference ontologies where the CP
are extracted from.

The web addresses that are used in this chapter are abbreviated with a prefix followed by the name of the
OWL file according to the following:

• odp: is for http://www.ontologydesignpatterns.org/2

• loa: is for http://www.loa-cnr.it/ontologies/

The CP catalogue is an evolving resource. The main aim of this chapter is to present the way the catalogue is
organized, and how the CPs are described. Many patterns are extracted from the DOLCE UltraLite reference
ontology, because it has proved along many years to contain useful solutions that can be easily specialized.
Other patterns show different approaches for reengineering, specializing, and composing. The CPs pre-
sented here will be certified by a quality committee of experts and published on ODP3. It is not our aim to
build a complete catalogue by ourselves: a catalogue of CPs is inherently a collaboratively built resource,
since it is composed of emerging good practices.

4.1 General

4.1.1 Types of entities

Name: types of entities.

Intent: to identify and categorize the most general types of things in the domain of discourse.

Extracted from : loa:DUL.owl

Requirements: what kind of entity is that? Is this an event or an object? Is this an abstract value or a
quality of an entity?

Diagram: Figure 4.1 shows the UML diagram of this CP.

2Temporarily CPs owl files are stored at the loa: address. Therefore, the reader should read loa: in place of odp: for the building
blocks’ URL.

3http://www.ontologydesignpatterns.org

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 62 of 183 NeOn Integrated Project EU-IST-027595

Figure 4.1: The types of entities CP

Example: that copy of Divina Commedia is a book (Object), the porosity (Quality) of the paper used is 5
mls/min (Abstract). The Rock Music Festival (Event) is organized by a friend of mine (Object). Figure 4.2
shows the UML diagram of this scenario.

Figure 4.2: The types of entities example scenario.

Elements: the types of entities CP consists of the following elements.

• Abstract, any entity that cannot be located in space-time. E.g. mathematical entities, formal se-
mantics elements, regions within dimensional spaces, etc.

• Event, any physical, social, or mental process, event, or state. More theoretically, events can be
classified in different ways, possibly based on aspect (e.g. stative, continuous, achievements, etc.), or
on agentivity, typical participants (e.g. human, physical, abstract, food, etc.).

• Object, any physical, social, or mental object, or a substance.

• Quality, any aspect of an entity (but not a part of it), which cannot exist without that entity. For
example, the way the surface of a specific physical object looks like is a Quality.

The four elements are defined as disjoint with each other. The four classes are an exhaustive partition of the
class Entity.

D2.5.1 Library of Ontology Design Patterns Page 63 of 183

Consequences: the type of any element of the knowledge base is always known.

Building block: odp:typesofentities.owl

4.1.2 Description

Name: description.

Intent: to formally represent a conceptualization or a descriptive context.

Extracted from: loa:DUL.owl

Requirements: which are the assumptions, under which a certain thing is described? which are the con-
cepts involved in the description of a certain thing? what is the interpretation of this case/event/observation?

Diagram: Figure 4.3 shows the UML diagram of this CP.

Figure 4.3: The description CP

Example: when I prepare a coffee I use a heater, a certain amount of water, and a coffee mix. Figure 4.4
shows the UML diagram of this scenario.

Elements: the description CP consists of the following elements.

• Description, a description represents a conceptualization. It can be thought also as a descriptive
context that defines concepts in order to see a relational context out of a set of data or observations.
For example, a Plan is a description of some actions to be executed by agents in a certain way, with
certain parameters; a diagnosis is a description that provides an interpretation to a set of observed
entities, etc.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 64 of 183 NeOn Integrated Project EU-IST-027595

Figure 4.4: The description example scenario: preparation of a coffee.

• Concept, a concept can be an idea, notion, role, or even a reified class, and is defined in a descrip-
tion. Once defined, a concept can be used in other descriptions.

• isDefinedIn, a relation between a description and a concept, e.g. a workflow for a governmental
organization defines the role officer, or the Italian Traffic Law defines the role Vehicle. In order to be
used, a concept must be previously defined in another description. defines is its inverse.

• isConceptUsedIn, a more generic relation holding between a description and a concept.
usesConcept is its inverse.

Consequences: this CP allows the designer to represent both a (descriptive) context and the elements
that characterize and are involved in that context.

Related patterns: with respect to other patterns, descriptions are abstractions of situations (cf. the situa-
tion pattern), and in some complex use cases (e.g. matching executions to plan models), the two patterns
can be composed (see the descriptionandsituation pattern). The classifies relation (see classifica-
tion pattern) relates concepts to entities at some time.

Building block: odp:description.owl

4.1.3 Situation

Name: situation.

Intent: to represents facts, circumstances, observed contexts.

Extracted from: loa:DUL.owl

Requirements: what entities are involved in that situation (setting, state of affairs, fact, scenario, ...)?

Diagram: Figure 4.5 shows the UML diagram of this CP.

Example: I prepared a coffee with my heater, 300 ml of water, and an Arabica coffee mix. Figure 4.6 shows
the UML diagram of this scenario.

D2.5.1 Library of Ontology Design Patterns Page 65 of 183

Figure 4.5: The situation CP

Figure 4.6: The situation example scenario: a particular preparation of a coffee.

Elements: the situation CP consists of the following elements.

• Entity

• Situation, a combination of circumstances involving a set of entities. It can be seen as a relational
context, reifying a relation among the entities involved. In fact, it provides an explicit vocabulary to the
n-ary relation Logical OP (see within section 2.2.1).

• hasSetting, a relation between entities and situations, e.g. this morning I’ve prepared my coffee
with a new fantastic Arabica (i.e.: (an amount of) a new fantastic Arabica hasSetting the preparation
of my coffee this morning). isSettingFor is its inverse.

Consequences: this CP allows the designer to model both a certain situation, and the entities that are
involved.

Related patterns: a situation typically complies to a description, see description CP, section 4.1.2. If it
deals with quantities and/or dimensions it can be composed with e.g., parameter, region, price, etc. It is
specialized by e.g., n-ary classification, time indexed part of, n-ary participation, etc..

Building block: odp:situation.owl

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 66 of 183 NeOn Integrated Project EU-IST-027595

4.1.4 Classification

Name: classification.

Intent: to represent the relations between concepts (roles, task, parameters) and entities (person, events,
values), which concepts can be assigned to. To formalize the application (e.g. tagging) of informal knowledge
organization systems such as lexica, thesauri, subject directories, folksonomies, etc., where concepts are
first-order elements.

Extracted from: loa:Dul.owl

Requirements: what concept is assigned to this entity? Which category does this entity belong to?

Diagram: Figure 4.7 shows the UML diagram of this CP.

Figure 4.7: The classification CP

Example: Mac OSX 10.5 is classified as an an operating system in the Fujitsu-Siemens product catalog.
Figure 4.8 shows the UML diagram of this scenario.

Figure 4.8: The classification example scenario: classification of an operating system.

Elements: the classification CP consists of the following elements.

• Concept, an idea, notion, role, constraint, a reified class, etc. In fact, it provides an explicit vocabulary
to some uses of the classes as values Logical OP (see within section 2.2.1), e.g. for the case of ‘this
book is about beauty in the Middle Age’.

• Entity, anything: real, possible, or imaginary, which some modeler wants to talk about for some
purpose.

• classifies, a relation between a Concept and an Entity, e.g. the role ‘student’ classifies
a Person ‘John’. isClassifiedBy is its inverse.

D2.5.1 Library of Ontology Design Patterns Page 67 of 183

Consequences: it is possible to make assertions about e.g., categories, types, roles, which are typically
considered at the meta-level of an ontology. Instances of Concept reify such elements, which are therefore
put in the ordinary domain of an ontology. It is not possible to parametrize the classification over different
dimensions e.g., time, space, etc.

Related patterns: typically combined with descriptionandsituation. It is specialized by cat:objectrole.
The n-ary classification CP provides an alternative to this if classification has to be qualified over different
dimensions.

Building block: odp:classification.owl.

4.1.5 N-ary Classification

Name: n-ary classification.

Intent: to represent the relations between concepts (roles, task, parameters), and entities (person, activ-
ities, values) which concepts are assigned to, as well as the time when, the place where, the agent who,
or other dimensions that characterize the assignment. To formalize the application (e.g. tagging over time),
of informal knowledge organization systems such as lexica, thesauri, subject directories, folksonomies, etc.,
where concepts are first-order elements.

Requirements: what concept is assigned to this entity at that time? Which category does this entity belong
to at that time?

Diagram: Figure 4.9 shows the UML diagram of this CP.

Figure 4.9: The n-ary classification CP

Example: the operating system I used in 2005 was Microsoft Windows XP, in 2006 I moved to Mac OS X
10.5. Figure 4.10 shows the UML diagram of this scenario.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 68 of 183 NeOn Integrated Project EU-IST-027595

Figure 4.10: The n-ary classification example scenario: different operating systems.

Elements: the n-ary classification CP consists of the following elements.

• Classification, a special kind of Situation (see section 4.1.3) that allows to include time indexing
for the classifies relation in situations. The following is a complex example that exploits the full expres-
sivity of this pattern. If a situation s “my old cradle is used in these days as a flower pot” is a setting
for the entity “my old cradle” and the TimeIntervals “8June2007” and “10June2007”, and we know that
s satisfies a functional description for aesthetic objects, which defines the concepts “flower pot” and
“flower”, then we also need to know what concept classifies “my old cradle” at what time. In order to
solve this issue, we need to create a sub-situation s1 for the classification time: “my old cradle is a
flower pot in 8June2007”. Such sub-situation s1 isPartOf s.

• Concept, an idea, notion, role, constraint, a reified class, etc.

• classificationIncludes, a relation between entities and classifications.
isIncludedInClassification is its inverse.

Consequences: it is possible to make assertions about e.g., categories, types, roles, which are typically
considered at the meta-level of an ontology. Instances of Concept reify such elements, which are therefore
put in the ordinary domain of an ontology. It is also possible to parametrize the classification over different
dimensions e.g., time, space, agents, etc.

Related patterns: specializes the situation CP, and has the time interval CP as component. It is a more
expressive alternative to the classification CP.

Building block: odp:naryclassification.owl

4.1.6 Description and Situation

Name: description and situation

Intent: to represents a conceptualization and its factual grounding i.e. a situation. To represent both a
situational context and its interpretation.

Requirements: what is the description (conceptualization) of this situation (combination of circumstances)?
What are the situations (combinations of circumstances) that satisfy this description (conceptualization)?

D2.5.1 Library of Ontology Design Patterns Page 69 of 183

Figure 4.11: The description and situation CP

Diagram: Figure 4.11 shows the UML diagram of this CP.

Example: I make coffee by following the recipe of my mom.

Elements: the descriptionandsituation CP consists of the elements of its components (see 4.1.2 and
4.1.3). The following elements are defined locally.

• describes, the relation between a description and an entity: for example, a description gives a
unity to a collection of parts (the components, or constituents), by assigning a role to each of them
in the context of a whole object (the system). A same entity can be given different descriptions, for
example, an old cradle can be given a unifying description based on the original aesthetic design, the
functionality it was built for, or a new aesthetic functionality in which it can be used as a flower pot.
isDescribedBy is its inverse.

• satisfies, a relation between a situation and a description, e.g. the execution of a plan satisfies
that plan. isSatisfiedBy is its inverse.

Consequences: this CP allows designers to put in the same domain of discourse both a combination of
circumstances and the conceptualization they can be described by.

Related patterns: is composed by other three CPs, description (see 4.1.2), situation (see 4.1.3), and
classification (see 4.1.4).

Building block: odp:descriptionandsituation.owl

4.1.7 Object Role

Name: object role

Intent: to represent objects and the role they play.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 70 of 183 NeOn Integrated Project EU-IST-027595

Requirements: what role does this object play? which objects do play that role?

Diagram: Figure 4.12 shows the UML diagram of this CP.

Figure 4.12: The object role CP

Example: this old glass is used as a flower pot. Figure 4.13 shows the UML diagram of this CP.

Figure 4.13: The object role example scenario: an old glass used as a flower pot.

Elements: the object role CP consists of the following elements.

• Object, any physical, social, or mental object, or a substance.

• Role, a concept that classifies an object.

• hasRole, a relation between an object and a role, e.g. the person ‘John’ has role ‘stu-
dent’.IsRoleOf is its inverse.

Consequences: it is possible to make assertions about roles, which are typically considered at the meta-
level of an ontology. Instances of Role reify such elements, which are therefore put in the ordinary domain
of an ontology. It is not possible to parametrize the classification over different dimensions e.g., time, space,
etc.

Related patterns: it specializes the classification CP. It is specialized by agent role.

Building block: odp:objectrole.owl

D2.5.1 Library of Ontology Design Patterns Page 71 of 183

4.2 Parts and collections

4.2.1 Part of

Name: part of.

Intent: to represents entities and their parts.

Also Known as: part-whole.

Extracted from: loa:DUL.owl

Requirements: what is this entity part of? What are the parts of this entity?

Diagram: Figure 4.14 shows the UML diagram of this CP.

Example: Brain and heart are parts of the human body, substantia nigra is part of brain. Figure 4.15 shows
the UML diagram of this scenario.

Elements: the part of CP consists of the following elements.

• Entity: anything: real, possible, or imaginary, which some modeler wants to talk about for some
purpose.

• isPartOf: a transitive relation expressing part-whole relations between any entities, e.g. brain is a
part of the human body. When specializing this pattern, take care of restricting the domain and range
appropriately, since it could be counterintuitive to use this relation arbitrarily, e.g. between animals and
planets. hasPart is its inverse.

Consequences: this CP allows designers to represent entities and their parts i.e., part-whole relations,
with transitivity. The temporal aspect of this relations cannot be expressed; in order to solve this issue the
time indexed part of (4.2.2) CP can be used.

Related patterns: the time indexed part of is used as alternative when the temporal indexing has to be
represented. Part of CP is specialized by componency (4.2.3). Sometimes this CP is wrongly used in order
to model constituency and membership. These two modeling problems are addressed by constituency
(4.2.4), and collection entity (4.2.5) CPs, respectively.

Building block: odp:partof.owl

4.2.2 Time Indexed Part of

Name: time indexed part of.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 72 of 183 NeOn Integrated Project EU-IST-027595

Figure 4.14: The part of CP

Figure 4.15: The part of example scenario: brain and heart are parts of the human body, substantia nigra
is part of brain. Notice that by transitivity, also substantia nigra is inferred as part of human body (blue
association denotes the inferred relation).

Intent: to represent objects that have temporary parts

Requirements: when was this object part of this other one? which object was this one part of at a certain
time? what are the parts of this object at a certain time?

Diagram: Figure 4.16 shows the UML diagram of this CP.

Figure 4.16: The time indexed part of CP

Example: my Toyota Yaris mounted Michelin pneumatics in 2007, but in 2008 it mounts Pirelli pneumatics.
Figure 4.17 shows the UML diagram of this scenario.

D2.5.1 Library of Ontology Design Patterns Page 73 of 183

Figure 4.17: The time indexed part of example scenario: Toyota Yaris pneumatics changing over time.

Elements: the following elements are locally defined:

• Object: any physical, social, or mental object, or a substance

• TimeIndexedPartOf: a situation that includes at least two objects and one time interval, at which
the part-whole relationship holds.

Consequences: this CP allows designers to represent part-whole relations with a temporal index (holding
at a certain time).

Related patterns: this CP specializes situation (4.1.3) and is composed of part of (4.2.1), and time
interval (4.8.1).

Building block: odp:timeindexedpartof.owl

4.2.3 Componency

Name: componency.

Intent: to represent (non-transitively) that objects either are proper parts of other objects, or have proper
parts.

Also Known as: composition.

Requirements: what is this object component of? What are the components of this object?

Diagram: Figure 4.18 shows the UML diagram of this CP.

Example: a turbine is a proper part of an engine, both are parts of a car. Furthermore, the engine and a
battery are proper parts of the car. Figure 4.19 shows the UML diagram of this scenario.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 74 of 183 NeOn Integrated Project EU-IST-027595

Figure 4.18: The componency CP

Figure 4.19: The componency example scenario

Elements: the componency CP consists of the elements of its components. The following elements are
defined locally.

• Object, any physical, social, or mental object, or a substance.

• hasComponent, the has part relation without transitivity, holding between an object (the system) and
another (the component), and assuming a design that structures the system object. For an explicit
pattern encoding design, see the ‘designobject’ pattern. The componency pattern uses the transitive
reduction logical pattern to preserve transitive on the superproperty from the partof pattern. In practice,
the partof pattern acts here as the transitive reduction of the componency pattern. It is sub-property of
texttthasPart of part of CP. isComponentOf is its inverse.

Consequences: this CP allows designers to represent part-whole relations. It allows to distinguish be-
tween parts and proper parts. Relation of proper part is not transitive, and implies a simple part of relation,
which is transitive. Temporal indexing is not expressible.

Related patterns: specializes the part of (4.2.1) CP. It is an exemplification of the transitive reduction
(2.2.1) Logical OP.

Building block: odp:componency.owl

D2.5.1 Library of Ontology Design Patterns Page 75 of 183

4.2.4 Constituency

Name: constituency

Intent: to represent the constituents of a layered structure.

Extracted from: loa:DUL.owl

Requirements: which are the constituents of this entity? what does this entity is constituent of?

Diagram: Figure 4.20 shows the UML diagram of this CP.

Figure 4.20: The constituency CP

Example: Different types of wood constitute this table. Figure 4.21 shows the UML diagram of this scenario.

Figure 4.21: The constituency example scenario

Elements: the constituency CP consists of the following elements.

• Entity, anything real, possible, or imaginary, which some modeler wants to talk about for some
purpose.

• hasConstituent, constituency depends on some layering of the world described by the ontology.
For example, scientific granularity (e.g. body-organ-tissue-cell) or ontological ‘strata’ (e.g. social-
mental-biological-physical) are typical layerings. Intuitively, a constituent is a part belonging to a lower
layer. Since layering is actually a partition of the world described by the ontology, constituents are
not properly classified as parts, although this kinship can be intuitive for common sense. Example of

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 76 of 183 NeOn Integrated Project EU-IST-027595

constituents include the wood pieces constituting a table, the persons constituting a social system, the
molecules constituting a person, the atoms constituting a river, etc. In all these examples, we notice a
typical discontinuity between the constituted and the constituent object: e.g. a table is conceptualized
at a functional layer, while wood pieces are conceptualized at a material layer, a social system is
conceptualized at a different layer from the persons that constitute it, a person is conceptualized at a
different layer from the molecules that constitute them, and a river is conceptualized at a different layer
from the atoms that constitute it. isConstituentOf is its inverse.

Consequences: a desirable advantage of this CP is that we are able to talk e.g. of physical constituents of
non-physical objects (e.g. systems), while this is typically impossible in terms of parts.

Related patterns: it has to be distinguished from part of (4.2.1), collection entity (4.2.5), and compo-
nency (4.2.3).

Building block: odp:constituency.owl

4.2.5 Collection Entity

Name: collection entity.

Intent: to represent collections and groups of entities by means of a membership relation.

Also Known as: membership.

Extracted from: loa:DUL.owl

Requirements: which groups does this object belong to? which are the members of this collection? who
are the members of this group or collective?

Diagram: Figure 4.22 shows the UML diagram of this CP.

Figure 4.22: The collection entity CP

D2.5.1 Library of Ontology Design Patterns Page 77 of 183

Figure 4.23: The collection entity example scenario: members of the Laboratory for Applied Ontology.

Example: Aldo Gangemi, Alfio Gliozzo and Valentina Presutti are members of the Laboratory for Applied
Ontology. Figure 4.23 shows the UML diagram of this scenario.

Elements: the collection entity CP consists of the following elements.

• Collection, any container for entities that share one or more common properties. E.g. ‘stone
objects’, ‘the nurses’, ‘the Louvre Egyptian collection’. A collection is not a logical class: a collection is
a first-order entity, while a class is a second-order one.

• Entity, anything: real, possible, or imaginary, which some modeler wants to talk about for some
purpose.

• hasMember, a relation between collections and entities, e.g. ‘my collection of saxophones includes
an old Adolphe Sax original alto’ (i.e. my collection has member an Adolphe Sax alto). isMemberOf
is its inverse.

Consequences: it allows to represents groups, collectives, reified sets and classes, and their members. In
fact, it provides an explicit vocabulary to some uses of the classes as values Logical OP (see within section
2.2.1), e.g. for the case of ‘this book is about lions’.

Related patterns: it has to be distinguished from part of (4.2.1), componency (4.2.3), and constituency
(4.2.4).

Building block: odp:collectionentity.owl

4.3 Semiotics

4.3.1 Intension Extension

Name: intension extension.

Intent: to represent the intensional expression (meaning) and extensional reference of information objects.

Extracted from: loa:DUL.owl

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 78 of 183 NeOn Integrated Project EU-IST-027595

Requirements: what is this information about? what does this information object mean? which information
object does express this meaning? which information object this entity is a reference of?

Diagram: Figure 4.24 shows the UML diagram of this CP.

Figure 4.24: The intension extension CP.

Example: the term “sicilian tuna fisherman” expresses the concept of sicilian tuna fisherman and is about
the sicilian tuna fishermen collective. Figure 4.25 shows the UML diagram of this scenario.

Figure 4.25: The intension extension example scenario.

Elements: This CP defines the following elements:

• Entity, anything: real, possible, or imaginary, which some modeler wants to talk about for some
purpose.

• SocialObject, any Object that exists within some communication event, in which at least one
physical object participates in. In other words, all objects that have been created in the process of
social communication: for the sake of communication (information objects), or for incorporating new
individuals (social agents, places), or for contextualizing existing entities (situations), or for collecting
existing entities (collections), or for describing existing entities (descriptions, concepts).

• InformationObject, a piece of information, such as a musical composition, a text, a word, a
picture, independently from how it is concretely realized.

D2.5.1 Library of Ontology Design Patterns Page 79 of 183

• expresses, the relation between an information object and a ‘meaning’. Meaning is here repre-
sented by the class SocialObject. The following clarifies this choice. What is a meaning is depen-
dent on the background approach/theory that one assumes. For example, lexicographers that write
dictionaries, glossaries, etc. assume that the meaning of a term is a paraphrase (or ‘gloss’, or ‘defi-
nition’). Another approach is provided by concept schemes like thesauri and lexicons, which assume
that the meaning of a term is a ‘concept’, possibly encoded as a ‘lemma’, ‘synset’, or ‘descriptor’. Still
another approach is that of psychologists and cognitive scientists, which often assume that the mean-
ing of an information object is a concept encoded in the mind or cognitive system of an agent. The
logical approach to meaning is completely different, since it assumes that the meaning of a term is
equivalent to the set of individuals that the term can be applied to; for example, the meaning of ‘Ali’ is
e.g. an individual person called Ali, the meaning of ‘Airplane’ is e.g. the set of airplanes, etc. Finally,
an approach taken by structuralist linguistics and frame semantics is that a meaning is the relational
context in which an information object can be applied; for example, a meaning of ‘Airplane’ is situated
e.g. in the context (’frame’) of passenger airline flights. All these different takes on what is meaning
can be represented by some subclass of SocialObject. isExpressedBy is its inverse.

• isAbout, a relation between information objects and any entity (including information objects). It can
be used to talk about entities are references of proper nouns: e.g. the proper noun ‘Leonardo da Vinci’
is about the person Leonardo da Vinci; as well as to talk about sets of entities that can be described
by a common noun: e.g. the common noun ‘person’ is about the set of all persons in a domain of
discourse. Sets of entities can be represented as collections. isReferenceOf is its inverse.

Consequences: this CP allows designers to model information objects, their meanings, the entities of the
world they are about, and the relations between them.

Related patterns: can be composed with the information realization (section 4.3.2) CP.

Building block: odp:intensionextension.owl

4.3.2 Information Realization

Name: information realization

Intent: to represent information objects and physical entities that realize them.

Extracted from: loa:DUL.owl

Requirements: what physical entities do realize this information object? what information objects are
realized by this physical entity?

Diagram: Figure 4.26 shows the UML diagram of this CP.

Example: John Lennon’s biography I Me Mine has been realized in a limited 2000-copy edition. Figure
4.27 shows the UML diagram of this scenario.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 80 of 183 NeOn Integrated Project EU-IST-027595

Figure 4.26: The information realization CP

Figure 4.27: The information realization scenario: the I Me Mine John Lennon’s biography.

Elements: the information realization CP consists of the following elements.

• InformationObject, a piece of information, such as a musical composition, a text, a word, a
picture, independently from how it is concretely realized.

• InformationRealization, a concrete realization of an information object, e.g. the written doc-
ument containing the text of a law.

• realizes, a relation between an information realization and an information object, e.g. the paper
copy of the Italian Constitution realizes the text of the Constitution. isRealizedBy is its inverse.

Consequences: this CPs allows designers to model information objects and their realizations. This allows
the to reasons about physical objects and the information they realize by keeping them distinguished.

Related patterns: it is specialized by multimedia data segment decomposition (section 4.11.1).

Building block: odp:informationrealization.owl

4.4 Quantities and Dimensions

4.4.1 Region

Name: region.

D2.5.1 Library of Ontology Design Patterns Page 81 of 183

Intent: to represent segments of a dimensional space (e.g. representing time, space, physical quantities,
etc.) that can be used as values for a quality of an entity, or for talking about attribute values of an entity.

Extracted from: loa:DUL.owl

Requirements: what are the attribute values of this entity? which entities have this attribute value?

Diagram: Figure 4.28 shows the UML diagram of this CP.

Figure 4.28: The region CP

Example: the number of wheels of my truck is 12. Figure 4.29 shows the UML diagram of this scenario.

Figure 4.29: The region example scenario: number of wheels.

Elements: the region CP consists of the following elements.

• Entity, anything real, possible, or imaginary, which some modeler wants to talk about for some
purpose.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 82 of 183 NeOn Integrated Project EU-IST-027595

• Region, any region in a dimensional space (a dimensional space is a maximal region), which can be
used as a value for a quality of an entity, or directly as an attribute value of an entity. For example, time
intervals, space regions, physical attributes, amounts, social attributes are all regions. Regions are not
data values in the ordinary knowledge representation sense, because data values are computed as
symbols, while regions are not computed as symbols, but as constants referring to non-computational
entities.

• hasRegion, a relation between entities and regions. isRegionFor is its inverse.

• hasRegionDataValue, a datatype property that encodes values for a region, e.g. a float for the
Region Height.

Consequences: this CP allows to represent and reason on dimensions.

Related patterns: typically used with parameter (section 4.4.3)and basic plan (section 4.6.7). It is a
component of parameter region (section 4.4.4).

Building block: odp:region.owl

4.4.2 Region Overlap

Name: region overlap.

Intent: to represent overlapping regions.

Requirements: which regions (values) do overlap with this one? Does these two regions (values) overlap?

Diagram: Figure 4.30 shows the UML diagram of this CP.

Figure 4.30: The region CP

D2.5.1 Library of Ontology Design Patterns Page 83 of 183

Example: the time of my leave overlaps with the time of your arrival. Figure 4.31 shows the UML diagram
of this scenario.

Figure 4.31: The region example scenario

Elements: the region overlap CP consists of the element of its component i.e., the region CP (section
4.4.1). The following elements are locally defined.

• overlaps, a schematic relation between any entities, e.g. ‘the chest region overlaps with the ab-
domen region’, ‘my spoken words overlap with hers’, ‘the time of my leave overlaps with the time of
your arrival’, ‘fibromyalgia overlaps with other conditions’. Subproperties and restrictions can be used
to specialize overlaps for objects, events, time intervals, etc. It is a symmetric property.

Related patterns: it expands the region CP (section 4.4.1). It is typically used with parameter (section
4.4.3) and basic plans (section 4.6.7) CPs .

Building block: odp:regionoverlap.owl

4.4.3 Parameter

Name: parameter.

Intent: to represent parameters, which are constraints or selections on observable values.

Extracted from: loa:DUL.owl

Requirements: what is the parameter for this concept? What are the possible values of this parameter?
What concept is this parameter for?

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 84 of 183 NeOn Integrated Project EU-IST-027595

Diagram: Figure 4.32 shows the UML diagram of this CP.

Figure 4.32: The parameter CP

Example: books can be either draft or complete. Figure 4.33 shows the UML diagram of this CP.

Figure 4.33: The parameter example scenario: phases of a book.

Elements: the parameter CP consists of the following elements.

• Concept, a concept is a social object, and is defined in a description .

• Parameter, a concept that classifies a region; the difference between a region and a parameter is
that regions represent sets of observable values, e.g. the height of a given building, while parameters
represent constraints or selections on observable values, e.g. ‘VeryHigh’. Therefore, parameters can
also be used to constrain regions, e.g. VeryHigh on a subset of values of the region Height applied to
buildings, or to add an external selection criterion , such as measurement units. For example, a Meter
parameter can be used on a subset of values from the Region Length.

• isParameterFor, a concept can have a parameter that constrains the attributes that a classified
entity can have in a certain situation, e.g. a 4WheelDriver Role definedIn the ItalianTrafficLaw has a
MinimumAge parameter on the Amount 16.. hasParameter is its inverse.

• hasParameterDataValue, parametrizes values from a datatype. For example, a
Parameter AgeForDriving hasParameterDataValue 18 on datatype xsd:int, in
the Italian traffic code. In this example, AgeForDriving isDefinedIn the Norm
ItalianTrafficCodeAgeDriving.

D2.5.1 Library of Ontology Design Patterns Page 85 of 183

Consequences: more complex parametrization requires workarounds. E.g. AgeRangeForDrugUsage
could parametrize data value: 14 to 50 on the datatype:xsd:int. Since complex
datatypes are not allowed in OWL1.0, a solution to this can only work by creating two ‘sub-
parameters’: MinimumAgeRangeForDrugUsage (that hasParameterDataValue 14) and
MaximumAgeRangeForDrugUsage (that hasParameterDataValue 50), which are compo-
nents of the main parameter AgeRangeForDrugUsage. Ordering on subparameters can be created by
using the precedence CP.

Related patterns: typically used with region (section 4.4.1) and basic plan (section 4.6.7).

Building block: odp:parameter.owl

4.4.4 Parameter Region

Name: parameter region.

Intent: to represent relations between parameters and regions.

Requirements: which parameter does parametrize this region? Which regions are parametrized by this
parameter?

Diagram: Figure 4.34 shows the UML diagram of this CP.

Figure 4.34: The parameter region CP

Example: the preparation of a book goes through phases such as “draft” and “complete”. Figure 4.35
shows the UML diagram of this CP.

Elements: the parameter region CP consists of the elements of its components i.e., region (section 4.4.1)
and parameter (section 4.4.3) CPs. The following elements are locally defined:

• parametrizes, the relation between a parameter, e.g. ‘MajorAgeLimit’, and a region, e.g. ‘18_year’.
For a more data-oriented relation, see hasDataValue. isParametrizedBy is its inverse.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 86 of 183 NeOn Integrated Project EU-IST-027595

Figure 4.35: The parameter region example scenario

Consequences: this CP allows designers to model dimensions as individuals that can be put in the domain
of an ontology.

Related patterns: is the composition of parameter (section 4.4.3) and region (section 4.4.1) CPs.

Building block: odp:parameterregion.owl

4.5 Participation

4.5.1 Participation

Name: participation.

Intent: to represent participation of an object in an event.

Extracted from: loa:DUL.owl

Requirements: which objects do participate in this event? Which events do this object participate in?

Diagram: Figure 4.36 shows the UML diagram of this CP.

Example: Aldo Gangemi participates in the premiere of the La Dolce Vita. Figure 4.37 shows the UML
diagram of this CP.

Elements: the participation CP consists of the following elements.

• Event, any physical, social, or mental process, event, or state.

• Object, any physical, social, or mental object, or substance

• hasParticipant, a relation between events and objects. isParticipantIn is its inverse.

D2.5.1 Library of Ontology Design Patterns Page 87 of 183

Figure 4.36: The participation CP.

Figure 4.37: The participation example scenario

Consequences: it is possible to model whatever relation between objects and events. Using cardinality
restrictions appropriately allows to limit the number of participants, e.g. ‘life of’ is a specialization of this
pattern that requires a functional object property (cardinality 1. . .1).

Related patterns: co-participation (section 4.5.2) allows to model the relation between two objects that
participate in a same event (implicitly); n-ary participation (section 4.5.3) allows to model participation over
different dimensions e.g., temporal, spatial, etc., as well as explicitly relate more than one object to the same
event; object role (section 4.1.7), n-ary classification (section 4.1.5) are examples of CPs that can be
composed with this CP.

Building block: odp:participation.owl

4.5.2 Co-participation

Name: co-participation.

Intent: to represent the participation of two objects in a same event.

Requirements: what objects do participate in a same event?

Diagram: Figure 4.38 shows the UML diagram of this CP.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 88 of 183 NeOn Integrated Project EU-IST-027595

Figure 4.38: The co-participation CP

Example: Valentina Presutti and Aldo Gangemi participate in the ISWC 2007 conference. Figure 4.38
shows the UML diagram of this scenario.

Figure 4.39: The co-participation example scenario: co-participation in the ISWC 2007 conference.

Elements: the co-participation CP consists of the elements of its component i.e., the participation CP
(section 4.5.1). The following elements are defined locally.

• coparticipatesWith, a relations between two objects participating in a same event. This prop-
erty is symmetric.

Consequences: it allows to assert that two objects (e.g. persons) participate in a same event. The co-
participatesWith property can also be inferred by means of a rule or a CONSTRUCT SparQL query, e.g.:
(coparticipatesWith ?x ?y) ← (hasParticipant ?z ?x) ∧ (hasParticipant ?z ?y). This CP does not
allow either to represent participation over different dimensions e.g., time, space, etc., or to represent co-
participation of more than two objects in the same event (unless applied repeatedly). In order to address
these issues a better choice is the n-ary participation (section 4.5.3) CP.

Related patterns: expands the participation CP (section 4.5.1).

Building block: odp:coparticipation.owl

D2.5.1 Library of Ontology Design Patterns Page 89 of 183

4.5.3 N-ary Participation

Name: n-ary participation.

Intent: to represent a participation situation that involves objects, events, time, etc.

Requirements: which objects do participate in this event? When do the event in which these objects
co-participate take place? Where did the events in which those objects participated take place?

Diagram: Figure 4.40 shows the UML diagram of this CP.

Figure 4.40: The n-ary participation CP

Example: Aldo Gangemi, Valentina Presutti and Alfio Gliozzo participated in the 2007 edition of ISCW with
a paper. Figure 4.41 shows the UML diagram of this scenario.

Elements: the n-ary participation CP consists of the elements of its components i.e., participation CP
(section 4.5.1) and situation CP (section 4.1.3). The following elements are defined locally.

• NaryParticipation, a participation situation with n elements involved.

• isIncludedInParticipation, a relation between objects, events, time intervals and situations
of participation. participationIncludes is its inverse.

Consequences: it is possible to represent participation and co-participation of objects to events over dif-
ferent dimensions e.g., time, space, etc.

Related patterns: specializes and expands the composition of the participation (section 4.5.1) time in-
terval (section 4.8.1) and situation (section 4.1.3) CPs. It is also an exemplification of the n-ary relation
Logical CP (section 2.2.1).

Building block: odp:naryparticipation.owl

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 90 of 183 NeOn Integrated Project EU-IST-027595

Figure 4.41: The n-ary participation example scenario: co-participation of objects to a certain event at a
certain time, place, etc.

4.6 Organization, Management, and Scheduling

4.6.1 Precedence

Name: precedence.

Intent: to represent sequences of entities by means of ordering relations between each other.

Also Known as: sequence.

Extracted from: loa:DUL.owl

Requirements: which entities(y) do(es) precede this one? which entities(y) do(es) follow this one? Is this
entity before this one? Is this entity after this one?

Diagram: Figure 4.42 shows the UML diagram of this CP.

D2.5.1 Library of Ontology Design Patterns Page 91 of 183

Figure 4.42: The precedence CP.

Example: implementation follows design, and design follows analysis. Figure 4.43 shows the UML diagram
of this CP.

Figure 4.43: The precedence CP

Elements: the precedence CP consists of the following elements.

• Entity, anything real, possible, or imaginary, which some modeler wants to talk about for some
purpose.

• follows, a relation between entities, expressing a ‘sequence’ schema. E.g. ‘year 2000 follows 1999’,
‘preparing coffee’ follows ‘deciding what coffee to use’, ‘II World War follows I World War’, ‘in the Milan
to Rome autoroute, Florence follows Bologna’, etc. precedes is its inverse.

Consequences: This CP allows designers to model sequences involving any kind of entity. The order be-
tween two entities can be inferred thanks to the transitivity of the properties involved. It is not possible to
express direct (intransitive) precedence, which can be modelled by specializing precedence and exemplify-
ing the transitive reduction Logical OP (section 2.2.1, paragraph on transitive reduction).

Related patterns: it can be used between tasks, processes, time intervals, spatially locates objects, situa-
tions, etc. In general with Organization, Management, and Scheduling CPs (section 4.6).

Building block: odp:precedence.owl

4.6.2 Agent Role

Name: agent role.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 92 of 183 NeOn Integrated Project EU-IST-027595

Intent: to represent agents, the roles they play, and the relations between them.

Requirements: what agent does play this role? What is the role played by that agent?

Diagram: Figure 4.44 shows the UML diagram of this CP.

Figure 4.44: The agent role CP

Example: Aldo Gangemi plays the roles of father, saxophonist, and senior researcher. Figure 4.45 shows
the UML diagram of this scenario.

Figure 4.45: The agent role example scenario

Elements: the agent role CP consists of the elements of the CPs it reuses i.e., object role CP (section
4.1.7). The following elements are locally defined.

• Agent, any agentive object , either physical, or social. Disjoint with Role. It is the clone of
loa:DUL.owl#Agent

Consequences: it is possible to make assertions on roles played by agents without involving the agents
that play those roles, and vice versa. Temporal, spatial, or other dimensional aspects of roles are not ex-
pressible. In order to address these issues, the n-ary classification (section 4.1.5) can be specialized.

D2.5.1 Library of Ontology Design Patterns Page 93 of 183

Related patterns: specializes the object role CP. The time-indexed person role CP (section 4.6.4) spe-
cializes this CP and allows to represent temporariness of roles played by persons. It can be generalized for
including whatever objects or, alternatively the n-ary classification CP (section 4.1.5) can be specialized in
order to obtain the same expressivity.

Building block: odp:agentrole.owl

4.6.3 Task Role

Name: task role.

Intent: to represent tasks, roles, and the assignment of tasks to roles.

Extracted from: loa:DUL.owl

Requirements: which roles is this task assigned to? which are the tasks of this role?

Diagram: Figure 4.46 shows the UML diagram of this CP.

Figure 4.46: The task role CP

Example: the administrator is in charge of making the configuration of the system, while the authors will
write the content to be published. Figure 4.47 shows the UML diagram of this scenario.

Elements: the task role CP consists of the following elements.

• Task, an event type (concept) that classifies an action to be executed.

• Role, a concept that classifies an object.

• hasTask, a relation between roles and tasks, e.g. ‘students have the duty of giving exams’ (i.e. the
Role ‘student’ hasTask the Task ‘giving exams’). isTaskOf is its inverse.

Consequences: tasks and roles are in the domain of your ontology, and you can talk about them, e.g. in
order to plan or configure projects, systems, or organizations.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 94 of 183 NeOn Integrated Project EU-IST-027595

Figure 4.47: The task role example scenario: system configuration (administrator) and content writing (au-
thor).

Related patterns: usually it is composed with object role (section 4.1.7) or agent role (section 4.6.2) CP.
It is a component of basic plan description CP (section 4.6.5).

Building block: odp:taskrole.owl

4.6.4 Time-Indexed Person Role

Name: time-indexed person role.

Intent: to represent a person that plays a certain role at a certain time interval (or at a certain place, in a
certain way, etc.).

Examples: who was playing a certain role at a certain time interval? When did a certain person play this
role?

Diagram: Figure 4.48 shows the UML diagram of this CP.

Example: Valentina Presutti was a Ph.D student in 2005 and a junior researcher in 2006. Figure 4.49
shows the UML diagram of this scenario.

Elements: the time-indexed person role CP consists of the elements of the CPs it reuses i.e., n-ary
classification CP (section 4.1.5) and agent role CP (section 4.6.2). The following elements are defined
locally.

• Entity: anything: real, possible, or imaginary, which some modeler wants to talk about for some
purpose.

• Person: persons in commonsense intuition, i.e. either as physical agents (humans) or social per-
sons.

• Role: a concept that classifies a person.

• TimeInterval: any region in a dimensional space that represents time.

D2.5.1 Library of Ontology Design Patterns Page 95 of 183

Figure 4.48: The time indexed person role CP

• TimeIndexedPersonRole: a situation that expresses time indexing for the relation between per-
sons and the roles they play.

• hasRole: a relation between a role and an entity, e.g. ‘John is considered a typical rude man’;
‘your last concert constitutes the achievement of a lifetime’; ‘20-year-old means she’s mature enough’.
isRoleOf is its inverse

• isSettingFor: a relation between time indexed role situations and related entities, e.g. ‘I was the
director between 2000 and 2005’, i.e.: ‘the situation in which I was a director is the setting for a the role
of director, me, and the time interval’. hasSetting is its inverse.

Consequences: the CP allows to assign a time interval to roles played by persons.

Related patterns: it is the specialization of n-ary classification (section 4.1.5) and agent role (section
4.6.2) CPs.

Building block: odp:timeindexedpersonrole.owl

4.6.5 Basic Plan Description

Name: basic plan description.

Intent: to represent the conceptualization of a plan, the concepts that are included in or defined by such a
conceptualization, and the relations between them.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 96 of 183 NeOn Integrated Project EU-IST-027595

Figure 4.49: The time indexed person role example scenario.

Extracted from: this CP is the composition of other CPs, however it reflects a fragment of the
loa:PlansLite.owl ontology.

Requirements: what are the concepts involved in this plan? What is the main goal/objective of this plan?
What is(are) the goal(s) of this plan? What are the roles, tasks, and parameter that are defined by this plan?

Diagram: Figure 4.50 shows the UML diagram of this CP.

Figure 4.50: The basic plans description CP

Example: in order to write a paper, the editor has to perform a grammar check, and put all sections together.
The authors have to write the content. Content writing has to be finished by the internal deadline, while the
other tasks start after the internal deadline. The grammar check is the last thing to do. Figure 4.51 shows
the UML diagram of this scenario.

D2.5.1 Library of Ontology Design Patterns Page 97 of 183

Figure 4.51: The basic plan description example scenario.

Elements: the basic plan description CP consists of the elements of its components i.e., description
(section 4.1.2), parameter (section 4.4.3), part of (section 4.2.1), and task role (section 4.6.3) CPs. The
following elements are defined locally.

• Goal, the description of a situation that is desired by an agent (physical, social, computational), and
usually associated with a plan that describes how to actually achieve it.

• Plan, a description having an explicit goal, to be achieved by executing the plan.

• isRoleDefinedIn, a relation between a description and a role, e.g. the role ‘Ingredient’ is defined
in the recipe for a cake. definesRole is its inverse.

• isTaskDefinedIn, a relation between a description and a task, e.g. the task ‘bake’ is defined in a
recipe for a cake. definesTask is its inverse.

• isMainGoalIn, a main goal characterizes the overall plan, and can be defined as a goal that is part
of a plan but not of one of its subplans. hasMainGoal is its inverse.

Consequences: plan descriptions and the concepts involved are put in the domain of your ontology, and
can be modelled as first-order entities. This is the same domain of discourse as the resources, time, space,
etc. that are needed for the execution of that plan (section 4.6.6).

Related patterns: it expands the composition of other CPs: description (section 4.1.2), parameter (sec-
tion 4.4.3), part of (section 4.2.1), and task role (section 4.6.3).

Building block: odp:basicplandescription.owl

4.6.6 Basic Plan Execution

Name: basic plan execution.

Intent: to represent the execution of a plan and the entities that are involved in that execution.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 98 of 183 NeOn Integrated Project EU-IST-027595

Extracted from: this CP is the composition of other CPs as indicated below. However, it reflects a fragment
of the loa:PlansLite.owl and loa:DUL.owl ontologies.

Requirements: which actions, agents, objects, and regions are in the setting of this plan execution? Which
agents in the setting of this plan execution do perform this action? Which actions in the settings of this plan
execution are performed by this agent? Which is the value of the parameter that is in the setting of this plan
execution?

Diagram: Figure 4.52 shows the UML diagram of this CP.

Figure 4.52: The basic plan execution CP

Example: Aldo performed the grammar check for the ISWC paper by the end of June. Figure 4.53 shows
the UML diagram of this scenario.

Elements: the basic plan execution CP consists of the the elements of its components i.e., situation
(section 4.1.3), participation (section 4.5.1), agent role (section 4.6.2), and region (section 4.4.1). The
following elements are defined locally.

• Action, an event with at least one agent that is participant in, and that executes a task that is defined
in a plan.

• PlanExecution, situations that proactively satisfy a plan.

• isActionIncludedIn, a relation between actions and plan executions. includesAction is its
inverse.

D2.5.1 Library of Ontology Design Patterns Page 99 of 183

Figure 4.53: The basic plans execution example scenario: the ISWC paper writing.

• isAgentIncludedIn, a relation between agents and plan executions. includesAgent is its
inverse.

• isObjectIncludedIn, a relation between objects and plan executions. includesObject is its
inverse.

• isRegionIncludedIn, a relation between regions and plan executions. includesRegion is its
inverse.

• isParticipantInAction, a relation between an object and a action, e.g. ‘a mass of snow is
a participant in an avalanche’, ‘an agent, some sugar, flour, etc. are participants in the cooking of a
cake’. ActionHasParticipant is its inverse.

Consequences: plan executions and elements involved in their settings are put in the same domain of
discourse.

Related patterns: this CP is the composition of situation (section 4.1.3), participation (section 4.5.1),
agent role (section 4.6.2) and region (section 4.4.1).

Building block: odp:basicplansexecution.owl

4.6.7 Basic Plan

Name: basic plan.

Intent: to represent description of plans, their executions, the relations between them and their related
concepts and entities.

Also Known as: description and execution of plans.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 100 of 183 NeOn Integrated Project EU-IST-027595

Requirements: which plan description does this plan execution satisfy? What executions do satisfy this
plan description? Which objects are classified by these roles from this plan? Which actions are classified by
this task from this plan? which region is parametrized by this parameter from this plan?

Diagram: Figure 4.54 shows the UML diagram of this CP.

Figure 4.54: The basic plans CP

Example: we wrote our ISWC paper by following our plan for writing, including role and task distribution
and parameters for length, deadlines, etc.

Elements: the basic plan CP consists of the elements of its components i.e., basic plan description
(section 4.6.5) and basic plan execution (section 4.6.6). The following elements are defined locally.

• GoalSituation, a goal situation is a situation that satisfies a goal. A goal situation is not part of a
plan execution. This helps to account for the following cases: a) Execution of plans containing abort
or suspension conditions, since the plan would be satisfied even if the goal has not been reached,
b) Incidental satisfaction, as when a situation satisfies a goal without being intentionally planned (but
anyway desired).

• conceptualizes, a relation stating that an agent is internally representing a social object . E.g.,
‘John believes in the conspiracy theory’; ‘Niels Bohr created the solar-system metaphor for the atomic
theory’; ‘Jacques assumes all swans are white’; ‘the task force members share the attack plan’.
isConceptualizedBy is its inverse.

• classifies, a relation between a Concept and an Entity, e.g. the Role ‘student’ classifies a Person
‘John’. isClassifiedBy is its inverse.

• isExecutedIn, a relation between an action and a task, e.g. ‘putting some water in a pot and
putting the pot on a fire until the water starts bubbling’ executes the task ‘boiling’. It is sub-property of
classifies. executesTask is its inverse.

• parametrizes, the relation between a parameter, e.g. ‘MajorAgeLimit’, and a region, e.g. ‘18_year’.
It is sub-property of classifies. isParametrizedBy is its inverse. For a more data-oriented
relation, see hasDataValue

D2.5.1 Library of Ontology Design Patterns Page 101 of 183

• isSatisfiedBy, a relation between a situation and a description, e.g. the execution of a plan
satisfies that plan. satisfies is its inverse.

Consequences: this CP allows designers to put plan descriptions/concepts and their executions/resources
in the same domain of discourse.

Related patterns: it is defined by combining and expanding other CPs i.e., basic plan description (section
4.6.5) and basic plan execution (section 4.6.6).

Building block: odp:basicplans.owl

4.7 Business

4.7.1 Price

Name: price.

Intent: to represent the price of an entity (e.g. product, service) in a certain currency.

Requirements: what is the price of this entity expressed in a certain currency? Which is the currency of
the price of this entity? what is the price of this entity?

Diagram: Figure 4.55 shows the UML diagram of this CP.

Figure 4.55: The price CP

Example: the european price of the macbook pro 2.2 GHz is 1899, 00 Euro, while the US price is 1999, 00
US Dollars. Figure 4.56 shows the UML diagram of this scenario.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 102 of 183 NeOn Integrated Project EU-IST-027595

Figure 4.56: The price example scenario: the price of macbook pro 2.2. GHz expressed in Euro and Dollars.

Elements: the price CP consists of the following elements.

• Currency, a system of money used in a particular country.

• Entity, anything that can have a price.

• Price, the amount of money expected, required, or given in payment for something.

• hasCurrency, a relation between prices and the currencies they are expressed by.

• hasPrice, a relation between entities and their prices. isPriceOf is its inverse.

• hasValue, the numerical value of a price.

Consequences: allows designers to represent the price of an entity in different currencies.

Related patterns: used in sales and purchase order contracts (section 4.7.2).

Building block: odp:price.owl

4.7.2 Sales and Purchase Order Contracts

Name: sales and purchase order contracts.

Intent: to describe the purchase orders and sales orders, by which an organization buys and sells goods
and services, and to extend these to encompass the more general concept of contract or agreement.

Reengineered from: ‘Data Model Patterns’. David C. Hay, 1996. ISBN: 00-932633-29-3.

Requirements: who are the parties in this sale (purchase) order contract? What is the line item of this sale
(purchase) order contract? What catalogue items are sold (purchased) according to this contract? Which
organizations (persons) are involved in this sale (purchase) order?

Diagram: Figure 4.57 shows the UML diagram of this CP.

Example: the “Messagerie Musicali” store buys 1000 pieces of the Queen Greatest hits album from the
“EMI music records” company. Figure 4.58 shows the UML diagram of this scenario.

D2.5.1 Library of Ontology Design Patterns Page 103 of 183

Figure 4.57: The sales and purchase order contracts CP

Elements: the sales and purchase order contracts CP consists of the elements of the component it
reuses i.e., price CP (section 4.7.1); in addition, the following elements are defined locally.

• Contract, an agreement between two parties that has at least one line item as a proper part.

• PurchaseOrder, an agreement by which an organization buys goods and services.

• SalesOrder, an agreement by which an organization sells goods and services.

• Organization, an organized body of people with a particular purpose, especially a business, so-
ciety, association, etc. Examples of organizations are: company, firm, corporation, institution, group,
consortium, conglomerate, agency, association, society, informal outfit.

• Party, a role played in a contract by either a person or an organization e.g., vendor, seller, etc.

• Person, a social person.

• CatalogueItem, an individual article or unit, that is part of the set of items that can be sold or
bought.

• LineItem, a part of a purchase or sales order. A line item refers only to a catalogue item, with which
associates a price and a quantity.

• FixedPrice, a fixed price.

• between, a relation between contracts and its parties.

• boughtVia, a relation between a catalogue item and a line item. forCatalogueItem is its
inverse.

• hasProperPart, a relation between contracts and line items. isProperPartOf is its inverse.

• hasRole, a relation between either persons or organization, and roles. isRoleOf is its inverse.

• hasTotalPrice, a relation between line items and their total price. isTotalPrice is its inverse.

• purchaseOrderValue, a relation between purchase orders and their fixed price.
isPriceOfPurchaseOrder is its inverse.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 104 of 183 NeOn Integrated Project EU-IST-027595

Figure 4.58: The sales and purchase order contracts example scenario: a purchase of Queen Greatest hits
album.

• salesOrderValue, a relation between sales orders and their fixed price.
isPriceOfSalesOrder is its inverse.

• hasDate, the date of a contract.

• hasNumber, the number of a contract.

• hasQuantity, the quantity of a line item.

Consequences: this CP allows designers to put sales and purchase order in the same domain of discourse
of items that are involved in the sales or purchase.

Related patterns: reuses the price CP (section 4.7.1).

Building block: odp:salespurchaseordercontracts.owl

4.8 Time

4.8.1 Time Interval

Name: time interval.

Intent: to represent time intervals.

Requirements: what is the end time of this interval? What is the starting time of this interval? What is the
date of this time interval?

Diagram: Figure 4.59 shows the UML diagram of this CP.

D2.5.1 Library of Ontology Design Patterns Page 105 of 183

Figure 4.59: The time interval CP

Example: the time interval “January 2008” starts at 2008−01−0 and ends at 2008−01−31. Figure 4.60
shows the UML diagram of this scenario.

Figure 4.60: The time interval example scenario

Elements: the time interval CP consists of the following elements.

• TimeInterval, any region in a dimensional space that represents time.

• hasIntervalDate, a datatype property that encodes values from xsd:date for a time interval; a
same time interval can have more than one xsd:date value: begin date, end date, date at which the
interval holds, as well as dates expressed in different formats: xsd:gYear, xsd:dateTime, etc.

• hasIntervalEndDate, the end date of a time interval.

• hasIntervalStartDate, the start date of a time interval.

Consequences: the dates of the time interval are not part of the domain of discourse, they are datatype
values. If there is the need of reasoning about dates this CP should be used in composition with the region
CP (section 4.4.1).

Related patterns: it is a component of time-indexed person role (section 4.6.4), time indexed part of
(section 4.2.2), and can be composed with other CPs when temporal aspects need to be represented.

Building block: odp:timeinterval.owl

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 106 of 183 NeOn Integrated Project EU-IST-027595

4.9 Space

4.9.1 Move

Name: move.

Intent: to represent the action of moving a physical object from a place to another.

Extracted and Reengineered from: http://cidoc.ics.forth.gr/cidoc_v4.2.owl

Requirements: which is the destination of this object? where does this object come from? which is the
itinerary of this object?

Diagram: Figure 4.61 shows the UML diagram of this CP.

Figure 4.61: The move CP

Example: Monet’s painting "Impression sunrise" was moved for the first Impressionist exhibition in 1874.
Figure 4.62 shows the UML diagram of this scenario.

Figure 4.62: The move example scenario

D2.5.1 Library of Ontology Design Patterns Page 107 of 183

Elements: the move CP consists of the following elements.

• Move, comprises changes of the physical location of a physical object. Note, that the class move
inherits the property took place at a place. This property should be used to describe the trajectory or
a larger area within which a move takes place, whereas the properties moved to (was destination of),
moved from (was origin of) describe the start and end points only. Moves may also be documented to
consist of other moves (via consists of (forms part of)), in order to describe intermediate stages on a
trajectory. In that case, start and end points of the partial moves should match appropriately between
each other and with the overall event.

• PhysicalObject, comprises items of a material nature that are units for documentation and have
physical boundaries that separate them completely in an objective way from other objects. The class
also includes all aggregates of objects made for functional purposes of whatever kind, independent of
physical coherence, such as a set of chessmen. Typically, instances of physical object can be moved
(if not too heavy). The decision as to what is documented as a complete item, rather than by its parts
or components, may be a purely administrative decision or may be a result of the order in which the
item was acquired.

• Place, comprises extents in space, in particular on the surface of the earth, in the pure sense of
physics: independent from temporal phenomena and matter. The instances of place are usually de-
termined by reference to the position of "immobile" objects such as buildings, cities, mountains, rivers,
or dedicated geodetic marks. A place can be determined by combining a frame of reference and a
location with respect to this frame. It may be identified by one or more instances of place appellation.
It is sometimes argued that instances of place are best identified by global coordinates or absolute
reference systems. However, relative references are often more relevant in the context of cultural doc-
umentation and tend to be more precise. In particular, we are often interested in position in relation to
large, mobile objects, such as ships. For example, the place at which Nelson died is known with refer-
ence to a large mobile object, H.M.S Victory. A resolution of this place in terms of absolute coordinates
would require knowledge of the movements of the vessel and the precise time of death, either of which
may be revised, and the result would lack historical and cultural relevance. Any object can serve as a
frame of reference for place determination. The model foresees the notion of a "section" of an physical
object as a valid place determination.

• consistsOf, describes the decomposition of an instance of move into discrete, subsidiary move.
The sub-moves into which the move is decomposed form a logical whole, although the entire
picture may not be completely known, and the sub-moves are constitutive of the general move.
formsPartOf is its inverse.

• moved, identifies the physical object that is moved during a move event. The property implies the
object’s passive participation. In reality, a move must concern at least one object. movedBy is its
inverse.

• tookPlaceAt, describes the spatial location of a move. The related place should be seen as an
approximation of the geographical area within which the phenomena that characterize the move in
question occurred. took place at (witnessed) does not convey any meaning other than spatial position-
ing (generally on the surface of the earth). witnessed is its inverse.

• movedFrom, identifies the starting place of a move. A move will be linked to an origin, such as the
move of an artifact from storage to display. A move may be linked to many origins. In this case the
move describes the picking up of a set of objects. The area of the move includes the origin, route and
destination. wasOriginOf is its inverse.

• movedTo, identifies the destination of a move. A move will be linked to a destination, such as the move
of an artifact from storage to display. A move may be linked to many terminal instances of places. In

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 108 of 183 NeOn Integrated Project EU-IST-027595

this case the move describes a distribution of a set of objects. The area of the move includes the origin,
route and destination. wasDestinationOf is its inverse.

Consequences: this CP allows designers to represent moves of physical objects as paths that can be
divided into many parts. The temporal aspect is not modeled. In order to address temporal indexing it might
be composed with the time interval CP (section 4.8.1).

Building block: odp:move.owl

4.10 Life Science

4.10.1 Linnean Taxonomy

Name: Linnean taxonomy.

Intent: to represent the layered classification invented by Linnaeus in the XVIII century. The schema un-
derlying this pattern can be applied to any kind of layered classification.

Reengineered from: http://en.wikipedia.org/wiki/Linnaean_taxonomy
http://en.wikipedia.org/wiki/Taxon, and http://en.wikipedia.org/wiki/Taxonomic_rank.

Requirements: what is the taxon of this (group of) organism(s)?

Diagram: Figure 4.63 shows the UML diagram of this CP.

Figure 4.63: The Linnean taxonomy CP

D2.5.1 Library of Ontology Design Patterns Page 109 of 183

Example: Homo is a Genus of Family Hominidae of Order Primates. Figure 4.64 shows the UML diagram
of this scenario.

Figure 4.64: The Linnean taxonomy example

Elements: the linnean taxonomy CP consists of the following elements.

• Taxon, a concept denoting a type of organism or of a group of organisms.

• Kingdom, the highest traditional taxon. E.g., in the case of humans the kingdom is ‘Animalia’.

• Phylum, the second highest traditional taxon. E.g., in the case of humans the phylum is ‘Chordata’.

• Class, the third highest traditional taxon. E.g., in the case of humans the class is ‘Mammalia’.

• Order, the fourth highest traditional taxon. E.g., in the case of humans the order is ‘Primates’.

• Family, the fifth highest traditional taxon. E.g., in the case of humans the family is ‘Hominidae’.

• Genus, the sixth highest traditional taxon. E.g., in the case of humans the genus is ‘Homo’.

• Species, the lowest traditional taxon. E.g., in the case of humans the species is ‘Homo sapiens’.

• hasHigherRank, relates two taxa, where the first is more specific than the sec-
ond..hasLowerRank is its inverse.

• hasDirectHigherRank, sub-property of hasHigherRank. It relates two taxa, where the first is
more specific than the second and there is no other taxon that is both more general than the first and
more specific than the second. hasDirectLowerRank is its inverse.

Building block: odp:linnean taxonomy.owl

4.11 Multimedia

4.11.1 Multimedia Data Segment Decomposition

Name: multimedia data segment decomposition.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 110 of 183 NeOn Integrated Project EU-IST-027595

Intent: to represent decompositions of multimedia content into segments (inspired by MPEG-7). A segment
is the most general abstract concept in MPEG-7 and can refer to a region of an image, a piece of text, a
temporal scene of a video or even to a moving object tracked during a period of time.

Extracted from: http://multimedia.semanticweb.org/COMM/multimedia-ontology.owl

Requirements: which are the roles involved in this segmentation algorithm? which media does realizes
this multimedia data? to which segment algorithm does this segment decomposition comply?

Diagram: Figure 4.65 shows the UML diagram of this CP.

Figure 4.65: The multimedia data segment decomposition CP

Example: The Figueiredo’s segmentation algorithm is used for image segmentation.

Elements: the multimediadatasegmentdecomposition CP consists of the elements of its components.
The following elements are defined locally.

• MultimediaData, the main idea of MPEG-7 is to describe digital multimedia content by the means
of some (XML-) metadata. Thus, we will consider multimedia data as a subconcept of digital data that
is described by some other digital data. Multimedia data is an abstract base concept that has to be
specialized for specific media types, e.g. image data carries the visual content of an image. Multimedia
data is realized by some physical media.

• Media, multimedia data is realized by some physical media. An image is an example for a media.
In the case of a JPEG image we would consider JPEG as the corresponding information encoding
system that orders the physical image. For the multimedia ontology it is important to include the
physical realization of multimedia data as some MPEG-7 description tools have to be attached to the

D2.5.1 Library of Ontology Design Patterns Page 111 of 183

physical media of multimedia content. This holds for the media information description tools that are
specified in MPEG-7 part 5, clause 8.

• SegmentationAlgorithm, a segmentation algorithm decomposes a multimedia data entity in one
or more other multimedia data entities. It always defines exactly one input role for the multimedia entity
that is decomposed.

• SegmentDecomposition, the decomposition of a multimedia data entity is considered as a situa-
tion which satisfies a description that is provided by a segmentation algorithm or a method which has
been applied to perform the segmentation. The application of methods corresponds to manual or semi-
automatic segmentations. An example would be the handcrafted selection of segments using a magic
wand tool. The segment decomposition corresponds to the MPEG-7 ‘SegmentDecompositionType’.

• InputSegmentRole, this role has to be played by within a decomposition situation. The role iden-
tifies the multimedia data entity that is being decomposed into segments.

• OutputSegmentRole, a multimedia data entity that plays this role represents a segment in a seg-
ment decomposition. Segment roles are only defined by methods or algorithms. The segment role
corresponds to the name of the MPEG-7 ‘SegmentType’. The MPEG-7 description tools that are listed
inside the ‘SegmentType’ can be attached to the multimedia data entities that play a segment role.

• plays, This is the immediate relation between roles and object. A role classifies the position (function,
use, relevance, ...) of an object within a context (description). Roles can be ordered, interdependent,
at different layers, etc. playedBy is its inverse.

Consequences: The CP allows designers to describe segmentation algorithm for multimedia objects and
their executions. Furthermore, it allows to distinguish between multimedia data and their realizations.

Related patterns: it specializes the composition of the descriptions and situations, information realiza-
tion, and object role.

Building block: odp:multimediadatasegmentdecomposition.owl

4.12 Towards a Web Portal of CPs

For reusability in ontology design, it is key to have a repository of CPs with appropriate services, e.g. where
CPs can be added and retrieved, and to guarantee that published CPs have a high level of quality.
With the above principles in mind, we have set up the Ontology Design Patterns Web portal4 (ODP), where
CPs are collected, classified, described with a specific template (the one used in this chapter for the catalogue
entries), and available for download (as building blocks). They comply to the definition of CP given in section
2.2.6. The Web portal is open to contribution from all Web users. They are only required to register in
order to have authoring rights. A lightweight workflow is implemented in order to guarantee both quality and
openness. Below we give a brief description of the ODP and its quality workflow. The ODP will be available
for testing to a restrict group of people from the NeOn community starting from end of February. Our aim
is to collect feedback, fix possible problems, and add features based on this testing period. The ODP will
be presented at the next European Semantic Web Conference in the context of a NeOn event, and also
supported during a workshop at the same conference on Reuse and Reengineering over the Semantic Web.
As a temporary resource, a flat list of CPs is available for download (in the form of OWL building block files)
at http://wiki.loa-cnr.it/index.php/LoaWiki:CPRepository .

4http://www.ontologydesignpatterns.org

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 112 of 183 NeOn Integrated Project EU-IST-027595

Figure 4.66: The ODP publishing and quality workflow.

ODP organization and quality workflow

ODP users can play four different roles, each associated with an authoring rights policy:

• Registered user u: any user who is registered to the ODP;

• Reviewer r: a member of the quality committee;

• Publisher p): a member of the CP publishers committee.

The ODP content is organized in three areas: Catalogue, Reviews, and Talk. All areas are readable by any
Web user (including users who are not registered). Authoring rights are policed as follows:

• Proposing and Discussing (PD). All u users can raise and participate in discussions about e.g., design
problems, experiences with CPs, etc. Furthermore, specific templates are available to submit a new
CP to the reviewers committee with the aim of publishing it, as well as to propose modeling issues and
discuss practical experiences.

• Reviewing (R). The content of this area relates to CPs that are under review. Each CP is assigned
to a representative of r users who are in charge of describe the rationales that motivates revisions of
proposed CP i.e., peer reviewing. CPs have dedicated pages where all discussions, decisions, and
rationales about their review process are kept. This area is accessible for authoring to r users.

• Catalogue (C). This area contains the catalogue entries, which are described in terms of the entry
template used for the catalogue and presented earlier in this chapter; p users can author pages in this
area.

Figure 4.66 sketches the ODP quality and publishing workflow, and associated roles.

D2.5.1 Library of Ontology Design Patterns Page 113 of 183

Appendix A

Software Engineering templates

In this appendix, the CPs presented in the catalogue of chapter 4 are put in an alternative presentation
format, which is compliant to that defined in deliverable D5.1.1 [SFBG+07], and that is tailored to software
engineers.

A.1 General

Slot Value

General Information

Name Types Of Entities

Identifier CP-TOE-01

Type of
Component

Content Pattern (CP)

Use Case

General
Express that a entity can be only an object, an abstract, an event or a

quality.

Examples
Suppose that someone wants to express the formal semantics elements

which are mathematical entities.

Ontology Design Pattern

Informal

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 114 of 183 NeOn Integrated Project EU-IST-027595

General
The pattern instantiates classes Class and Union, and the object property

disjointWith.

Graphical

(UML)
Diagram for
the General

Solution

Formalization

General

SubClassOf(Abstract Entity)
SubClassOf(Object Entity)

DisjointClasses(Abstract Object)
EquivalentClasses(ObjectUnionOf(Abstract Object Event Quality) Entity)

DisjointClasses(Object Event)
DisjointClasses(Event Quality)
DisjointClasses(Abstract Event)

SubClassOf(Event Entity)
DisjointClasses(Object Quality)

SubClassOf(Quality Entity)
DisjointClasses(Abstract Quality)

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC and LP-Di.

Slot Value

General Information

Name Description

Identifier CP-DES-01

Type of
Component

Content Pattern (CP)

D2.5.1 Library of Ontology Design Patterns Page 115 of 183

Use Case

General
Represents the conceptualization of an idea, notion, role or even a reified

class.

Examples
Suppose that someone wants to describe the process of ’preparing a

coffee’.

Ontology Design Pattern

Informal

General

The pattern consists in a ‘defines’ (and its inverse ‘isDefinedIn’) relation
between ‘descriptions’ and ‘concepts’.

The pattern should instantiate the classes Class and ObjectProperty and
the object properties inverseOf and disjointWith.

Graphical

(UML)
Diagram for
the General

Solution

Formalization

General

DisjointClasses(Concept Description)
InverseObjectProperties(isDefinedIn defines)
ObjectPropertyDomain(isDefinedIn Concept)

ObjectPropertyRange(isDefinedIn Description)
ObjectPropertyRange(defines Concept)

InverseObjectProperties(isDefinedIn defines)
ObjectPropertyDomain(defines Description)

Relationships

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 116 of 183 NeOn Integrated Project EU-IST-027595

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-OP and LP-Di.

Comments

Comments Once defined, a Concept can be used in other descriptions.

Slot Value

General Information

Name Situation

Identifier CP-SI-01

Type of
Component

Content Pattern (CP)

Use Case

General
Express a situation of anything (real, possible, or imaginary) which some

modeller wants to talk about for some purpose.

Examples
Suppose that I want to represent that ‘this morning I’ve prepared my coffee

with a new fantastic Arabica’.

Ontology Design Pattern

Informal

General

The pattern consists in a ‘isSettingFor’ (and its inverse ‘hasSetting’) relation
between ‘situations’ and ‘entities’.

The pattern should instantiate the classes Class and ObjectProperty with
the universal restriction allValuesFrom and the existential restriction

someValuesFrom. Also the object properties inverseOf and subClassOf are
instantiated.

Graphical

D2.5.1 Library of Ontology Design Patterns Page 117 of 183

(UML)
Diagram for
the General

Solution

Formalization

General

SubClassOf(Situation Entity)
SubClassOf(Situation ObjectAllValuesFrom(isSettingFor Entity))

SubClassOf(Situation ObjectSomeValuesFrom(isSettingFor Entity))
InverseObjectProperties(isSettingFor hasSetting)

ObjectPropertyDomain(isSettingFor Situation)
ObjectPropertyRange(isSettingFor Entity)

ObjectPropertyRange(hasSetting Situation)
ObjectPropertyDomain(hasSetting Entity)

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-SC, LP-OP,
LP-UR and LP-ER . This pattern is imported in the CP-NPAR and CP-TIPO

ones.

Slot Value

General Information

Name Classification

Identifier CP-Cl-01

Type of
Component

Content Pattern (CP)

Use Case

General
This pattern represents the relations between concepts e.g., roles, task, and

entities to which concepts are assigned to e.g., person, activities.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 118 of 183 NeOn Integrated Project EU-IST-027595

Examples
Suppose that someone wants to represent that the Role ’student’ classifies

a Person ’John’

Ontology Design Pattern

Informal

General

The pattern consist of the classes ’Entity’ and ’Concept’ and the relations
’classifies’ and ’isClassifiedBy’ between ’Entity’ and ’Concept’.

The pattern should instantiate the classes Class and ObjectProperty with
the universal restriction allValuesFrom. The object property inverseOf is

also instantiated.

Graphical

(UML)
Diagram for
the General

Solution

Formalization

General

SubClassOf(Concept ObjectAllValuesFrom(classifies Entity))
SubClassOf(Entity ObjectAllValuesFrom(isClassifiedBy Concept))

InverseObjectProperties(classifies isClassifiedBy)
ObjectPropertyDomain(isClassifiedBy Entity)

ObjectPropertyRange(isClassifiedBy Concept)
ObjectPropertyDomain(classifies Concept)

ObjectPropertyRange(classifies Entity)

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC and LP-UR.

D2.5.1 Library of Ontology Design Patterns Page 119 of 183

Slot Value

General Information

Name Description and Situation

Identifier CP-DAS-01

Type of
Component

Content Pattern (CP)

Use Case

General
This pattern represents conceptualizations i.e., descriptions, and

corresponding groundings i.e., situations.

Examples
Suppose that someone wants to represent that the execution of a Plan is

compiant to (satisfies) a certain plan description.

Ontology Design Pattern

Informal

General

The pattern partially consist of the relations: ’satisfies’ between ’Situation’
and ’Description’ and ’describes’ between ’Description’ and ’Entity’. The rest

of classes and relations are shown in the next slot (in a graphical way).

The pattern should instantiate the classes Class and ObjectProperty with
the universal restriction allValuesFrom and the existential restriction
someValuesFrom. The object properties inverseOf, subClassOf and
equivalentClass and the relation between ontologies import are also

instantiated.

Graphical

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 120 of 183 NeOn Integrated Project EU-IST-027595

(UML)
Diagram for
the General

Solution

Formalization

General

Imports(<http://www.ontologydesignpatterns.org/ codeps/owl/situation.owl>)
Imports(<http://www.ontologydesignpatterns.org/

codeps/owl/classification.owl>)
Imports(<http://www.ontologydesignpatterns.org/

codeps/owl/description.owl>)
EquivalentClasses(<situation.owl#Entity> <classification.owl#Entity>)

EquivalentClasses(<description.owl#Concept>
<classification.owl#Concept>)

DisjointClasses(<description.owl#Concept> <situation.owl#Situation>)
DisjointClasses(<description.owl#Description> <situation.owl#Situation>)

SubClassOf(<description.owl#Description>
ObjectAllValuesFrom(isSatisfiedBy <situation.owl#Situation>))

D2.5.1 Library of Ontology Design Patterns Page 121 of 183

SubClassOf(<description.owl#Description> ObjectAllValuesFrom(describes
<situation.owl#Entity>))

SubClassOf(<situation.owl#Situation> ObjectSomeValuesFrom(satisfies
<description.owl#Description>))

SubClassOf(<situation.owl#Situation> ObjectAllValuesFrom(satisfies
<description.owl#Description>))

SubClassOf(<classification.owl#Concept>
ObjectSomeValuesFrom(<description.owl#isDefinedIn>

<description.owl#Description>))
SubClassOf(<classification.owl#Concept>

ObjectAllValuesFrom(<description.owl#isDefinedIn>
<description.owl#Description>))

SubClassOf(<classification.owl#Entity>
ObjectAllValuesFrom(isDescribedBy <description.owl#Description>))

ObjectPropertyRange(isSatisfiedBy <situation.owl#Situation>)
InverseObjectProperties(satisfies isSatisfiedBy)

ObjectPropertyDomain(isSatisfiedBy <description.owl#Description>)
ObjectPropertyDomain(describes <description.owl#Description>)

InverseObjectProperties(isDescribedBy describes)
ObjectPropertyRange(describes <situation.owl#Entity>)

ObjectPropertyRange(isDescribedBy <description.owl#Description>)
ObjectPropertyDomain(isDescribedBy <situation.owl#Entity>)
ObjectPropertyRange(satisfies <description.owl#Description>)

ObjectPropertyDomain(satisfies <situation.owl#Situation>)

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-SC, LP-OP,
LP-EQ, LP-UR, LP-ER, AP-MD, CP-SI, CP-DES and CP-CL.

Slot Value

General Information

Name Object - Role

Identifier CP-OR-01

Type of
Component

Content Pattern (CP)

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 122 of 183 NeOn Integrated Project EU-IST-027595

Use Case

General This pattern represents the relation between objects and the roles they play.

Examples
Suppose that someone wants represents that the person ’John’ has role

’student’.

Ontology Design Pattern

Informal

General

The pattern consist of the classes ’Role’ and ’Object’ and the following
relations: ’isRoleOf’, ’hasRole’ and ’isClassifiedBy’ between ’Role’ between

’Object’.

The pattern should instantiate the classes Class and ObjectProperty with
the universal restriction allValuesFrom. The object property inverseOf is

also instantiated.

Graphical

(UML)
Diagram for
the General

Solution

Formalization

General

SubClassOf(Role ObjectAllValuesFrom(isRoleOf Object))
SubClassOf(Object ObjectAllValuesFrom(hasRole Role))

SubClassOf(Object
ObjectAllValuesFrom(<classification.owl#isClassifiedBy> Role))

InverseObjectProperties(hasRole isRoleOf)
ObjectPropertyDomain(isRoleOf Role)
ObjectPropertyRange(isRoleOf Object)
ObjectPropertyDomain(hasRole Object)

ObjectPropertyRange(hasRole Role)

Relationships

D2.5.1 Library of Ontology Design Patterns Page 123 of 183

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-OP and LP-UR.

A.2 Parts and collections

Slot Value

General Information

Name Part Of

Identifier CP-PO-01

Type of
Component

Content Pattern (CP)

Use Case

General This pattern serves to represent entities formed by other entities.

Examples
Suppose that someone wants to represent that the human body has a brain

as part.

Ontology Design Pattern

Informal

General

The pattern consists in a class ‘entity’ that have a transitive relation
“isPartOf’ (and its inverse ‘hasPart’).

The pattern should instantiate the classes Class and ObjectProperty with
the universal restriction allValuesFrom. Also the

http://www.w3.org/TR/2004/REC-owl-guide-20040210/
TransitiveProperty and the object property inverseOf are needed.

Graphical

2006–2008 c© Copyright lies with the respective authors and their institutions.

http://www.w3.org/TR/2004/REC-owl-guide-20040210/

Page 124 of 183 NeOn Integrated Project EU-IST-027595

(UML)
Diagram for
the General

Solution

Formalization

General

SubClassOf(Entity ObjectAllValuesFrom(hasPart Entity))
SubClassOf(Entity ObjectAllValuesFrom(isPartOf Entity))

TransitiveObjectProperty(hasPart)
ObjectPropertyDomain(hasPart Entity)
ObjectPropertyRange(hasPart Entity)

InverseObjectProperties(hasPart isPartOf)
TransitiveObjectProperty(isPartOf)

ObjectPropertyRange(isPartOf Entity)
ObjectPropertyDomain(isPartOf Entity)

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-OP and LP-UR.
This pattern is imported in CP-COM and CP-TIPO ones.

Slot Value

General Information

Name Time Indexed Part Of

Identifier CP-TIPO-01

Type of
Component

Content Pattern (CP)

Use Case

General
The patterns represents a situation that includes at least two Objects and

one TimeInterval, at which the part-whole relationship holds.

D2.5.1 Library of Ontology Design Patterns Page 125 of 183

Examples My car mounted the Michelin pneumatics last year, now it mounts the Pirelli..

Ontology Design Pattern

Informal

General

The pattern consists in a class ‘timeIndexedPartOf’ that have a relation
‘isSettingFor’ with ‘entiy’.

The pattern should instantiate the classes Class and ObjectProperty with
the universal restriction allValuesFrom and the existencial restriction

someValuesFrom. The object properties equivalentClass, subClassOf and
disjointWith is used in this case.

The ontology “TimeIndexedPartOf” imports the “PartOf” and “Situation”
ones.

Graphical

(UML)
Diagram for
the General

Solution

Formalization

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 126 of 183 NeOn Integrated Project EU-IST-027595

General

Imports(<http://www.ontologydesignpatterns.org/ codeps/owl/situation.owl>)
Imports(<http://www.ontologydesignpatterns.org/ codeps/owl/partof.owl>)

SubClassOf(TimeInterval <partof.owl#Entity>)
DisjointClasses(TimeInterval <situation.owl#Situation>)

DisjointClasses(TimeInterval Object)
EquivalentClasses(<situation.owl#Entity> <partof.owl#Entity>)

SubClassOf(Object <partof.owl#Entity>)
SubClassOf(timeindexedpartof ObjectAllValuesFrom
(<situation.owl#isSettingFor> <situation.owl#Entity>))
SubClassOf(timeindexedpartof ObjectMinCardinality(3

<situation.owl#isSettingFor>))
SubClassOf(timeindexedpartof ObjectSomeValuesFrom

(<situation.owl#isSettingFor> TimeInterval))
SubClassOf(timeindexedpartof ObjectSomeValuesFrom

(<situation.owl#isSettingFor> Object))
SubClassOf(timeindexedpartof <situation.owl#Situation>)

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-OP, LP-SC,
LP-UR, LP-ER, LP-Di, LP-EQ, AP-MD, CP-SI and CP-PO.

Slot Value

General Information

Name Componency

Identifier CP-COM-01

Type of
Component

Content Pattern (CP)

Use Case

General Express that an object can be the compendium of other objects.

Examples An engine is composed of pieces.

Ontology Design Pattern

D2.5.1 Library of Ontology Design Patterns Page 127 of 183

Informal

General

The pattern consists in a class ‘object’ that have a reflexive relation
‘hasComponent’ (and its inverse ‘isComponentOf’).

The pattern should instantiate the classes Class and ObjectProperty with
the universal restriction allValuesFrom and the object property inverseOf.

The ontology “Componency” imports the “ParOf” ones.

Graphical

(UML)
Diagram for
the General

Solution

Formalization

General

Imports(<http://www.ontologydesignpatterns.org/ codeps/owl/partof.owl>)
SubClassOf(Object ObjectAllValuesFrom(hasComponent Object))

SubClassOf(Object <partof.owl#Entity>)
SubClassOf(Object ObjectAllValuesFrom(isComponentOf Object))

InverseObjectProperties(isComponentOf hasComponent)
SubObjectPropertyOf(hasComponent <partof.owl#hasPart>)

ObjectPropertyDomain(hasComponent Object)
ObjectPropertyRange(hasComponent Object)

InverseObjectProperties(isComponentOf hasComponent)
ObjectPropertyDomain(isComponentOf Object)

SubObjectPropertyOf(isComponentOf <partof.owl#isPartOf>)
ObjectPropertyRange(isComponentOf Object)

Relationships

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 128 of 183 NeOn Integrated Project EU-IST-027595

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-OP, LP-UR,
LP-SC, LP-SP, AP-MD and CP-PO.

Slot Value

General Information

Name Constituency

Identifier CP-CON-01

Type of
Component

Content Pattern (CP)

Use Case

General The pattern "constituency" is used to represent domains formed by layers.

Examples
We can represent that a social system is conceptualized at a different layer

from the persons that constitute it.

Ontology Design Pattern

Informal

General

The pattern consists in a class ‘entity’ that have a reflexive relation
‘hasConstituent’ (and its inverse ‘isConstituentOf’).

The pattern should instantiate the classes Class and ObjectProperty with
the universal restriction allValuesFrom and the object property inverseOf.

Graphical

(UML)
Diagram for
the General

Solution

D2.5.1 Library of Ontology Design Patterns Page 129 of 183

Formalization

General

SubClassOf(Entity ObjectAllValuesFrom(<http://www.loa-
cnr.it/ontologies/DUL.owl#hasConstituent>

<http://www.loa-cnr.it/ontologies/DUL.owl#Entity>))
ObjectPropertyRange(hasConstituent Entity)
ObjectPropertyDomain(hasConstituent Entity)

InverseObjectProperties(isConstituentOf hasConstituent)
ObjectPropertyDomain(isConstituentOf Entity)

InverseObjectProperties(isConstituentOf hasConstituent)
ObjectPropertyRange(isConstituentOf Entity)

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-OP and LP-UR.

Slot Value

General Information

Name Collection Entity

Identifier CP-CE-01

Type of
Component

Content Pattern (CP)

Use Case

General
Express that a collection can be seen as a container for entities that share

one or more common properties

Examples Suppose that someone wants to represent a collection of stone objects.

Ontology Design Pattern

Informal

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 130 of 183 NeOn Integrated Project EU-IST-027595

General

The pattern consists in a ‘hasMember’ (and its inverse ‘isMemberOf’)
relation between ‘collection’ and ‘entity’.

The pattern should instantiate the classes Class and ObjectProperty with
the universal restriction allValuesFrom and the object property inverseOf.

Graphical

(UML)
Diagram for
the General

Solution

Formalization

General

SubClassOf(Collection ObjectAllValuesFrom(hasMember Entity))
SubClassOf(Entity ObjectAllValuesFrom(isMemberOf Collection))

InverseObjectProperties(isMemberOf hasMember)
ObjectPropertyDomain(isMemberOf Entity)

ObjectPropertyRange(isMemberOf Collection)
InverseObjectProperties(isMemberOf hasMember)

ObjectPropertyRange(hasMember Entity)
ObjectPropertyDomain(hasMember Collection)

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-OP and LP-UR.

A.3 Semiotics

Slot Value

General Information

Name Intension- Extension

Identifier CP-IE-01

D2.5.1 Library of Ontology Design Patterns Page 131 of 183

Type of
Component

Content Pattern (CP)

Use Case

General
This pattern allows representing the intensional expression and extensional

reference of information objects.

Examples

This pattern can be used to talk about e.g. entities are references of proper
nouns: the proper noun ’Leonardo da Vinci’ isAbout the Person Leonardo

da Vinci.

Ontology Design Pattern

Informal

General

The pattern consists on the one hand in a ‘expresses’ (and its inverse
‘isExpressedBy’) relation between ‘information objects’ and ‘social objects’

and on the other hand in a ‘isAbout’ (and its inverse ‘isReferenceOf’)
relation between ‘information objects’ and ‘entities’.

The pattern should instantiate the classes Class and ObjectProperty with
the universal restriction allValuesFrom and the object properties subClassOf

and inverseOf. Moreover the pattern indicates a minimum cardinality.

Graphical

(UML)
Diagram for
the General

Solution

Formalization

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 132 of 183 NeOn Integrated Project EU-IST-027595

General

SubClassOf(SocialObject ObjectAllValuesFrom(isExpressedBy
InformationObject))

EntityAnnotation(OWLClass(Entity) Label("Entità"@it))
SubClassOf(Entity ObjectAllValuesFrom(isReferenceOf InformationObject))

SubClassOf(InformationObject ObjectAllValuesFrom(isAbout Entity))
SubClassOf(InformationObject ObjectMinCardinality(1 expresses))

SubClassOf(InformationObject SocialObject)
SubClassOf(InformationObject ObjectAllValuesFrom(expresses

SocialObject))
InverseObjectProperties(isReferenceOf isAbout)

ObjectPropertyDomain(isAbout InformationObject)
ObjectPropertyRange(isAbout Entity)

ObjectPropertyDomain(isReferenceOf Entity)
ObjectPropertyRange(isReferenceOf InformationObject)

InverseObjectProperties(isReferenceOf isAbout)
InverseObjectProperties(expresses isExpressedBy)

ObjectPropertyRange(isExpressedBy InformationObject)
ObjectPropertyDomain(isExpressedBy SocialObject)
ObjectPropertyDomain(expresses InformationObject)

ObjectPropertyRange(expresses SocialObject)

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-SC, LP-OP and
LP-UR.

Slot Value

General Information

Name Information - Realization

Identifier CP-IR-01

Type of
Component

Content Pattern (CP)

Use Case

General Express that a piece of information is represented by a concrete realization.

D2.5.1 Library of Ontology Design Patterns Page 133 of 183

Examples
Suppose that someone wants to express that the paper copy of the Italian

Constitution realizes the text of the Constitution.

Ontology Design Pattern

Informal

General

The pattern consists in a ‘realizes’ (and its inverse ‘isRealizedBy’) relation
between ‘InformationRealization’ and ‘InformationObjects’.

The pattern should instantiate the classes Class and ObjectProperty with
the universal restriction allValuesFrom and the existencial restriction

someValuesFrom. Also the object properties inverseOf and disjointWith are
instantiated.

Graphical

(UML)
Diagram for
the General

Solution

Formalization

General

SubClassOf(InformationRealization ObjectSomeValuesFrom (realizes
InformationObject))

DisjointClasses(InformationRealization InformationObject)
SubClassOf(InformationObject ObjectAllValuesFrom(isRealizedBy

InformationRealization))
SubClassOf(InformationObject ObjectSomeValuesFrom(isRealizedBy

InformationRealization))
ObjectPropertyDomain(realizes InformationRealization)

InverseObjectProperties(realizes isRealizedBy)
ObjectPropertyRange(realizes InformationObject)

ObjectPropertyRange(isRealizedBy InformationRealization)
ObjectPropertyDomain(isRealizedBy InformationObject)

InverseObjectProperties(realizes isRealizedBy)

Relationships

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 134 of 183 NeOn Integrated Project EU-IST-027595

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-OP, LP-UR,
LP-ER and LP-Di.

A.4 Quantities and Dimensions

Slot Value

General Information

Name Region

Identifier CP-Re-01

Type of
Component

Content Pattern (CP)

Use Case

General
This pattern represents regions that are portions of a dimensional space

which can be used as a value for a quality of an Entity.

Examples Suppose that someone wants to represent that the color of my car is red.

Ontology Design Pattern

Informal

General

The pattern consist of the classes ’Entity’ and ’Region’ and the relations
’hasRegion’ and ’isRegionFor’ between ’Entity’ and ’Region’ and ’overlaps’

between ’Region’ and ’Region’.

The pattern should instantiate the classes Class, DatatypeProperty,
SymmetricObjectProperty and ObjectProperty with the universal restriction

allValuesFrom. The object property inverseOf is also instantiated.

Graphical

D2.5.1 Library of Ontology Design Patterns Page 135 of 183

(UML)
Diagram for
the General

Solution

Formalization

General

SubClassOf(Entity ObjectAllValuesFrom(hasRegion Region))
SubClassOf(Region ObjectAllValuesFrom(overlaps Region))

SubClassOf(Region ObjectAllValuesFrom(isRegionFor Entity))
ObjectPropertyRange(overlaps Entity)
SymmetricObjectProperty(overlaps)

InverseObjectProperties(overlaps overlaps)
ObjectPropertyDomain(overlaps Entity)

ObjectPropertyDomain(isRegionFor Region)
InverseObjectProperties(isRegionFor hasRegion)

ObjectPropertyRange(isRegionFor Entity)
ObjectPropertyDomain(hasRegion Entity)
ObjectPropertyRange(hasRegion Region)

DataPropertyDomain(hasRegionDataValue Region)

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-OP, LP-DP and
LP-UR.

Slot Value

General Information

Name Parameter

Identifier CP-Pm-01

Type of
Component

Content Pattern (CP)

Use Case

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 136 of 183 NeOn Integrated Project EU-IST-027595

General
This pattern represents parameters which are constraints or selections on

observable values.

Examples
Suppose that someone wants to represent that the minimum age to drive is

18.

Ontology Design Pattern

Informal

General

The pattern consist of the classes ’Parameter’ and ’Concept’ and the
relations ’hasParameter’ and ’isParameterFor’ between ’Parameter’ and

’Concept’.

The pattern should instantiate the classes Class, DatatypeProperty and
ObjectProperty with the universal restriction allValuesFrom. The object

property inverseOf is also instantiated.

Graphical

(UML)
Diagram for
the General

Solution

Formalization

General

SubClassOf(Parameter ObjectAllValuesFrom(isParameterFor Concept))
SubClassOf(Concept ObjectAllValuesFrom(hasParameter Parameter))

ObjectPropertyRange(hasParameter Parameter)
ObjectPropertyDomain(hasParameter Concept)

InverseObjectProperties(hasParameter isParameterFor)
ObjectPropertyRange(isParameterFor Concept)

ObjectPropertyDomain(isParameterFor Parameter)
DataPropertyDomain(hasParameterDataValue Parameter)

Relationships

D2.5.1 Library of Ontology Design Patterns Page 137 of 183

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-OP, LP-DP and
LP-UR.

Slot Value

General Information

Name Parameter - Region

Identifier CP-PmR-01

Type of
Component

Content Pattern (CP)

Use Case

General
This pattern is the composition of the parameter and region CPs and

represents relations between parameters and regions.

Examples

Suppose that someone wants to represent that the age of majority is 18
years old, and that there is the need of reasoning on the dimension “18

years old«« .

Ontology Design Pattern

Informal

General

The pattern consist of the classes ’Parameter’ and ’Region’ and the relations
’parametrizes’ and ’isParametrizedBy’ between ’Parameter’ and ’Region’.

The pattern should instantiate the classes Class and ObjectProperty with
the universal restriction allValuesFrom. The object property inverseOf and

the dependency import are also instantiated.

Graphical

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 138 of 183 NeOn Integrated Project EU-IST-027595

(UML)
Diagram for
the General

Solution

Formalization

General

Imports(<http://www.ontologydesignpatterns.org/
codeps/owl/parameter.owl>)

Imports(<http://www.ontologydesignpatterns.org/ codeps/owl/region.owl>)
SubClassOf(<region.owlchar35Region>

ObjectAllValuesFrom(isParametrizedBy <parameter.owlchar35Parameter>))
SubClassOf(<parameter.owlchar35Parameter>

ObjectAllValuesFrom(parametrizes <region.owlchar35Region>))
ObjectPropertyRange(parametrizes <region.owlchar35Region>)

ObjectPropertyDomain(parametrizes <parameter.owlchar35Parameter>)
InverseObjectProperties(isParametrizedBy parametrizes)

ObjectPropertyRange(isParametrizedBy <parameter.owlchar35Parameter>)
ObjectPropertyDomain(isParametrizedBy <region.owlchar35Region>)

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-OP, LP-UR and
AP-MD.

A.5 Participation

Slot Value

D2.5.1 Library of Ontology Design Patterns Page 139 of 183

General Information

Name Participation

Identifier CP-PAR-01

Type of
Component

Content Pattern (CP)

Use Case

General Express that objects take part in events, without temporal indexing.

Examples
Suppose that someone wants to represent that a person takes part in an

international conference.

Ontology Design Pattern

Informal

General

The pattern consists in a ‘isParticipantIn’ (and its inverse ‘hasParticipant’)
relation between ‘objects’ and ‘events’.

The pattern should instantiate the classes Class and ObjectProperty with
the universal restriction allValuesFrom and the object properties inverseOf

and disjointWith.

Graphical

(UML)
Diagram for
the General

Solution

Formalization

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 140 of 183 NeOn Integrated Project EU-IST-027595

General

SubClassOf(Event ObjectAllValuesFrom(hasParticipant Object))
SubClassOf(Event ObjectSomeValuesFrom(hasParticipant Object))

DisjointClasses(Event Object)
SubClassOf(Object ObjectSomeValuesFrom(isParticipantIn Event))

SubClassOf(Object ObjectAllValuesFrom(isParticipantIn Event))
ObjectPropertyDomain(hasParticipant Event)

InverseObjectProperties(isParticipantIn hasParticipant)
ObjectPropertyRange(hasParticipant Object)

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-OP, LP-UR,
LP-ER and LP-Di. This pattern is imported in the patterns: CP-NPAR and

CP-COP.

Slot Value

General Information

Name Coparticipation

Identifier CP-COP-01

Type of
Component

Content Pattern (CP)

Use Case

General Express that an object can co-participate in an event with other object.

Examples
Suppose that someone wants to represent that two persons take part to the

same international conference.

Ontology Design Pattern

Informal

D2.5.1 Library of Ontology Design Patterns Page 141 of 183

General

The pattern consists in a imported class ‘object’ that have a reflexive and
symmetric relation ‘coparticipateWith’ (and its inverse ‘isRoleOf’).

The pattern should instantiate the classes Class and ObjectProperty with
the universal restriction allValuesFrom and the object property inverseOf.

The ontology “Coparticipation” imports the “Participation” ones.

Graphical

(UML)
Diagram for
the General

Solution

Formalization

General

Imports (<http://www.ontologydesignpatterns.org/codeps/
owl/participation.owl>)

SubClassOf (<participation.owl#Object>
ObjectSomeValuesFrom(coparticipatesWith <participation.owl#Object>))

InverseObjectProperties(coparticipatesWith coparticipatesWith)
ObjectPropertyRange(coparticipatesWith <participation.owl#Object>)

SymmetricObjectProperty(coparticipatesWith)
ObjectPropertyDomain(coparticipatesWith <participation.owl#Object>)

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-OP, LP-ER,
CP-PAR and AP-MD.

Slot Value

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 142 of 183 NeOn Integrated Project EU-IST-027595

General Information

Name N-Ary Participation

Identifier CP-NPAR-01

Type of
Component

Content Pattern (CP)

Use Case

General Express that participation can be composed of several entities.

Examples
Suppose that someone wants to represent that a two persons take part at

the different events at a certain time.

Ontology Design Pattern

Informal

General

The pattern should instantiate the classes Class and ObjectProperty with
the universal restriction allValuesFrom and the existencial restriccion
someValuesFrom. The object properties inverseOf, disjointWith and

subObjectPropertyOf are instantiated.

The ontology “NaryParticipation” imports the “Situation” and “Participation”
ones.

Graphical

(UML)
Diagram for
the General

Solution

D2.5.1 Library of Ontology Design Patterns Page 143 of 183

Formalization

General

Imports(<http://www.ontologydesignpatterns.org/ codeps/owl/situation.owl>)
Imports(<http://www.ontologydesignpatterns.org/

codeps/owl/participation.owl>)
SubClassOf(NaryParticipation

ObjectSomeValuesFrom(participationIncludes TimeInterval))
SubClassOf(NaryParticipation

ObjectSomeValuesFrom(participationIncludes <participation.owl#Event>))
SubClassOf(NaryParticipation

ObjectSomeValuesFrom(participationIncludes <participation.owl#Object>))
SubClassOf(NaryParticipation <situation.owl#Situation>)

SubClassOf(NaryParticipation ObjectAllValuesFrom(participationIncludes
<situation.owl#Entity>))

DisjointClasses(<situation.owl#Situation> TimeInterval)
ObjectPropertyDomain(isIncludedInParticipation <situation.owl#Entity>)

SubObjectPropertyOf(isIncludedInParticipation <situation.owl#hasSetting>)
ObjectPropertyRange(isIncludedInParticipation NaryParticipation)
ObjectPropertyRange(participationIncludes <situation.owl#Entity>)

ObjectPropertyDomain(participationIncludes NaryParticipation)
SubObjectPropertyOf(participationIncludes <situation.owl#isSettingFor>)

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-OP, LP-UR,
LP-ER , LP-Di, CP-SI, CP-PAR and AP-MD.

A.6 Organization, Management, and Scheduling

Slot Value

General Information

Name Precedence

Identifier CP-PRE-01

Type of
Component

Content Pattern (CP)

Use Case

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 144 of 183 NeOn Integrated Project EU-IST-027595

General Using this pattern we can express a ‘sequence’ schema.

Examples
Imagine that we want to represent that ’preparing coffee’ follows ’deciding

what coffee to use’.

Ontology Design Pattern

Informal

General

The pattern consists in a class ‘entity’ that have a transitive relation “follows’
(and its inverse ‘precedes).

The pattern should instantiate the classes Class and ObjectProperty with
the universal restriction allValuesFrom. Also the

http://www.w3.org/TR/2004/REC-owl-guide-20040210/
TransitiveProperty and the object property inverseOf are needed.

Graphical

(UML)
Diagram for
the General

Solution

Formalization

General

SubClassOf(Entity ObjectAllValuesFrom(follows Entity))
SubClassOf(Entity ObjectAllValuesFrom(precedes Entity))

InverseObjectProperties(follows precedes)
ObjectPropertyRange(precedes Entity)

TransitiveObjectProperty(precedes)
ObjectPropertyDomain(precedes Entity)

ObjectPropertyRange(follows Entity)
TransitiveObjectProperty(follows)

ObjectPropertyDomain(follows Entity)

Relationships

http://www.w3.org/TR/2004/REC-owl-guide-20040210/

D2.5.1 Library of Ontology Design Patterns Page 145 of 183

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-OP and LP-UR.

Slot Value

General Information

Name Agent-Role

Identifier CP-AR-01

Type of
Component

Content Pattern (CP)

Use Case

General Express that agents can have different roles.

Examples
Suppose that someone wants to express that ’John’ is a person who has the

role ’student’.

Ontology Design Pattern

Informal

General

The pattern consists in a ‘hasRole’ (and its inverse ‘isRoleOf’) relation
between ‘roles’ and ‘agents’.

The pattern should instantiate the classes Class and ObjectProperty with
the universal restriction allValuesFrom and the object property inverseOf.

Graphical

(UML)
Diagram for
the General

Solution

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 146 of 183 NeOn Integrated Project EU-IST-027595

Formalization

General

DisjointClasses(Role Agent)
SubClassOf(Role ObjectAllValuesFrom(isRoleOf Agent))
SubClassOf(Agent ObjectAllValuesFrom(hasRole Role))

ObjectPropertyDomain(hasRole Agent)
InverseObjectProperties(isRoleOf hasRole)

ObjectPropertyRange(hasRole Role)
ObjectPropertyDomain(isRoleOf Role)
ObjectPropertyRange(isRoleOf Agent)

InverseObjectProperties(isRoleOf hasRole)

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-OP, LP-UR and
LP-Di.

Slot Value

General Information

Name Task Role

Identifier CP-TR-01

Type of
Component

Content Pattern (CP)

Use Case

General
Express that objects which participate in an event can play different roles,

and that roles have different task. The tasks are executed in the event.

Examples
Suppose that someone wants to represent that John is a student and

students have the duty of giving exams.

Ontology Design Pattern

Informal

D2.5.1 Library of Ontology Design Patterns Page 147 of 183

General

The pattern consists in two imported classes ‘object’ and ‘even’t related to
one another by de ‘hasPart’ and ‘isParticipantIn’ relations. Also the pattern
relates the classes ‘objec’t with ‘role’, ‘role’ with ‘task’ and ‘task’ with ‘event’

using the relations ‘hasRole’ (‘isRoleOf’), hasTask (‘isTaskOf’) and
‘isExecutedIn’ (‘executes’) respectively.

The pattern should instantiate the classes Class and ObjectProperty with
the universal restriction allValuesFrom and the existencial restriccion

someValuesFrom. Morever the object properties inverseOf and disjointWith
are instanciated.

The ontology imports the “Participation” ontology.

Graphical

(UML)
Diagram for
the General

Solution

Formalization

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 148 of 183 NeOn Integrated Project EU-IST-027595

General

Imports(<http://www.ontologydesignpatterns.org/codeps/owl/
participation.owl>)

DisjointClasses(<participation.owl#Event> Role)
DisjointClasses(<participation.owl#Event> Task)

DisjointClasses(Role Task)
SubClassOf(Role ObjectAllValuesFrom(hasTask Task))
SubClassOf(Task ObjectAllValuesFrom(isTaskOf Role))

ObjectPropertyDomain(hasRole <participation.owl#Object>)
InverseObjectProperties(hasRole isRoleOf)

ObjectPropertyRange(hasRole Role)
ObjectPropertyRange(isRoleOf <participation.owl#Object>)

ObjectPropertyDomain(isRoleOf Role)
ObjectPropertyRange(isExecutedIn <participation.owl#Event>)

ObjectPropertyDomain(isExecutedIn Task)
InverseObjectProperties(executes isExecutedIn)

ObjectPropertyDomain(executes <participation.owl#Event>)
ObjectPropertyRange(executes Task)
ObjectPropertyDomain(isTaskOf Task)
ObjectPropertyRange(isTaskOf Role)

InverseObjectProperties(hasTask isTaskOf)
ObjectPropertyDomain(hasTask Role)
ObjectPropertyRange(hasTask Task)

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-OP, LP-ER,
LP-UR, LP-Di, CP-PAR and AP-MD.

Slot Value

General Information

Name Basic Plan Description

Identifier CP-BPD-01

Type of
Component

Content Pattern (CP)

Use Case

D2.5.1 Library of Ontology Design Patterns Page 149 of 183

General
This pattern represents the conceptualization of a plan and the concepts

that are included in such a conceptualization.

Examples
Suppose that someone wants to represent that the recipe for a cake defines

the task ’boil’ and the role ’ingredient’.

Ontology Design Pattern

Informal

General

The pattern partially consist of the classes ’Goal’ and ’Plan’ and the
following relations: ’definesTask’ between ’Description’ and ’Task’;

’hasMainGoal’ between ’Plan’ and ’Goal’; and ’definesRole’ between
’Description’ and ’Role’. The rest of classes and relations are shown in the

next slot (in a graphical way).

The pattern should instantiate the classes Class and ObjectProperty with
the universal restriction allValuesFrom and the existential restriction

someValuesFrom. The object properties inverseOf, subClassOf,
subPropertyOf and equivalentClass and the relation between ontologies

import are also instantiated.

Graphical

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 150 of 183 NeOn Integrated Project EU-IST-027595

(UML)
Diagram for
the General

Solution

Formalization

General

Imports(<http://www.ontologydesignpatterns.org/codeps/owl/ partof.owl>)
Imports(<http://www.ontologydesignpatterns.org/codeps/owl/ taskrole.owl>)

Imports(<http://www.ontologydesignpatterns.org/codeps/owl/
description.owl>)

Imports(<http://www.ontologydesignpatterns.org/codeps/owl/
parameter.owl>)

SubClassOf(Plan ObjectMaxCardinality(1 hasMainGoal))
SubClassOf(Plan ObjectAllValuesFrom(definesTask <taskrole.owl#Task>))
SubClassOf(Plan ObjectAllValuesFrom(definesRole <taskrole.owl#Role>))

SubClassOf(Plan ObjectSomeValuesFrom(<partof.owl#hasPart> Goal))
SubClassOf(Plan ObjectAllValuesFrom(hasMainGoal Goal))

SubClassOf(Plan <description.owl#Description>)
SubClassOf(Goal <description.owl#Description>)

D2.5.1 Library of Ontology Design Patterns Page 151 of 183

EquivalentClasses(<description.owl#Concept> <parameter.owl#Concept>)
SubClassOf(<taskrole.owl#Role> <description.owl#Concept>)

SubClassOf(<taskrole.owl#Role> ObjectAllValuesFrom(isRoleDefinedIn
Plan))

SubClassOf(<taskrole.owl#Task> <description.owl#Concept>)
SubClassOf(<taskrole.owl#Task> ObjectAllValuesFrom(isTaskDefinedIn

Plan))
InverseObjectProperties(definesTask isTaskDefinedIn)

ObjectPropertyDomain(definesTask <description.owl#Description>)
SubObjectPropertyOf(definesTask <description.owl#defines>)

SubObjectPropertyOf(definesTask <description.owl#usesConcept>)
ObjectPropertyRange(definesTask <taskrole.owl#Task>)

ObjectPropertyRange(hasMainGoal Goal)
InverseObjectProperties(isMainGoalIn hasMainGoal)

ObjectPropertyDomain(hasMainGoal Plan)
InverseObjectProperties(isRoleDefinedIn definesRole)

ObjectPropertyDomain(definesRole <description.owl#Description>)
SubObjectPropertyOf(definesRole <description.owl#defines>)

ObjectPropertyRange(definesRole <taskrole.owl#Role>)
SubObjectPropertyOf(definesRole <description.owl#usesConcept>)

SubObjectPropertyOf(isTaskDefinedIn <description.owl#isConceptUsedIn>)
ObjectPropertyDomain(isTaskDefinedIn <taskrole.owl#Task>)

SubObjectPropertyOf(isTaskDefinedIn <description.owl#isDefinedIn>)
ObjectPropertyRange(isTaskDefinedIn <description.owl#Description>)

ObjectPropertyRange(isMainGoalIn Plan)
ObjectPropertyDomain(isMainGoalIn Goal)

ObjectPropertyRange(isRoleDefinedIn <description.owl#Description>)
SubObjectPropertyOf(isRoleDefinedIn <description.owl#isDefinedIn>)

ObjectPropertyDomain(isRoleDefinedIn <taskrole.owl#Role>)
SubObjectPropertyOf(isRoleDefinedIn <description.owl#isConceptUsedIn>)

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-SC, LP-OP,
LP-EQ, LP-SP, LP-UR, LP-ER, AP-MD, CP-Pm, CP-DES, CP-TR and

CP-PO.

Slot Value

General Information

Name Basic Plan Execution

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 152 of 183 NeOn Integrated Project EU-IST-027595

Identifier CP-BPE-01

Type of
Component

Content Pattern (CP)

Use Case

General
This pattern represents the conceptualization of a plan and the concepts

that are included in such a conceptualization.

Examples
Suppose that someone wants to represent something like ’this morning I’ve

prepared my coffee and had my fingers burnt’.

Ontology Design Pattern

Informal

General

The pattern partially consist of the classes ’Goal’ and ’Plan’ and the
following relations: ’definesTask’ between ’Description’ and ’Task’;

’hasMainGoal’ between ’Plan’ and ’Goal’; and ’definesRole’ between
’Description’ and ’Role’. The rest of classes and relations are shown in the

next slot (in a graphical way).

The pattern should instantiate the classes Class and ObjectProperty with
the universal restriction allValuesFrom and the existential restriction

someValuesFrom. The object properties inverseOf, subClassOf,
subPropertyOf and equivalentClass and the relation between ontologies

import are also instantiated.

Graphical

D2.5.1 Library of Ontology Design Patterns Page 153 of 183

(UML)
Diagram for
the General

Solution

Formalization

General

Imports(<http://www.ontologydesignpatterns.org/ codeps/owl/region.owl>)
Imports(<http://www.ontologydesignpatterns.org/ codeps/owl/situation.owl>)

EquivalentClasses(<region.owl#Entity> <situation.owl#Entity>)
SubClassOf(Object ObjectAllValuesFrom(isParticipantIn Action))

SubClassOf(Object ObjectSomeValuesFrom(isParticipantIn Action))

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 154 of 183 NeOn Integrated Project EU-IST-027595

SubClassOf(Action ObjectSomeValuesFrom(hasParticipant Agent))
SubClassOf(Action ObjectAllValuesFrom(hasParticipant Object))

SubClassOf(Action ObjectAllValuesFrom(isActionIncludedIn
PlanExecution))

SubClassOf(PlanExecution <situation.owl#Situation>)
SubClassOf(PlanExecution ObjectAllValuesFrom(includesRegion

<region.owl#Region>))
SubClassOf(PlanExecution ObjectAllValuesFrom(includesObject Object))
SubClassOf(PlanExecution ObjectAllValuesFrom(includesAction Action))

SubClassOf(PlanExecution ObjectSomeValuesFrom(includesAgent Agent))
SubClassOf(PlanExecution ObjectAllValuesFrom(includesAgent Agent))

SubClassOf(PlanExecution ObjectSomeValuesFrom(includesAction Action))
SubClassOf(Agent ObjectAllValuesFrom(isAgentIncludedIn

<situation.owl#Situation>))
SubClassOf(Agent Object)

SubObjectPropertyOf(includesRegion <situation.owl#isSettingFor>)
ObjectPropertyDomain(includesRegion <situation.owl#Situation>)

ObjectPropertyRange(includesRegion <region.owl#Region>)
InverseObjectProperties(includesRegion isRegionIncludedIn)

ObjectPropertyRange(hasParticipant Object)
ObjectPropertyDomain(hasParticipant Action)

InverseObjectProperties(hasParticipant isParticipantIn)
ObjectPropertyRange(isAgentIncludedIn <situation.owl#Situation>)

ObjectPropertyDomain(isAgentIncludedIn Agent)
SubObjectPropertyOf(isAgentIncludedIn <situation.owl#hasSetting>)

InverseObjectProperties(includesAgent isAgentIncludedIn)
ObjectPropertyRange(isRegionIncludedIn <situation.owl#Situation>)

ObjectPropertyDomain(isRegionIncludedIn <region.owl#Region>)
SubObjectPropertyOf(isRegionIncludedIn <situation.owl#hasSetting>)

ObjectPropertyRange(includesAction Action)
InverseObjectProperties(isActionIncludedIn includesAction)

ObjectPropertyDomain(includesAction <situation.owl#Situation>)
SubObjectPropertyOf(includesAction <situation.owl#isSettingFor>)
ObjectPropertyDomain(includesAgent <situation.owl#Situation>)

ObjectPropertyRange(includesAgent Agent)
SubObjectPropertyOf(includesAgent <situation.owl#isSettingFor>)

ObjectPropertyRange(includesObject Object)
SubObjectPropertyOf(includesObject <situation.owl#isSettingFor>)
ObjectPropertyDomain(includesObject <situation.owl#Situation>)

InverseObjectProperties(isObjectIncludedIn includesObject)

D2.5.1 Library of Ontology Design Patterns Page 155 of 183

ObjectPropertyDomain(isActionIncludedIn Action)
SubObjectPropertyOf(isActionIncludedIn <situation.owl#hasSetting>)
ObjectPropertyRange(isActionIncludedIn <situation.owl#Situation>)

ObjectPropertyDomain(isObjectIncludedIn Object)
ObjectPropertyRange(isObjectIncludedIn <situation.owl#Situation>)

SubObjectPropertyOf(isObjectIncludedIn <situation.owl#hasSetting>)
ObjectPropertyRange(isParticipantIn Action)

ObjectPropertyDomain(isParticipantIn Object)

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-SC, LP-OP,
LP-EQ, LP-SP, LP-UR, LP-ER, AP-MD, CP-Pm, CP-DES, CP-TR and

CP-PO.

Slot Value

General Information

Name Basic - Plan

Identifier CP-BP-01

Type of
Component

Content Pattern (CP)

Use Case

General This pattern represents plans descriptions and their executions.

Examples

Suppose that someone wants to represent the description of a plan for
quality assurance of a software product and a its specific execution applied

to a certain software product.

Ontology Design Pattern

Informal

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 156 of 183 NeOn Integrated Project EU-IST-027595

General

The pattern partially consist of the class ’GoalSituation’ and the following
relations: ’conceptualizes’ between ’Agent’ and ’Plan’; ’satisfies’ between

’Situation’ and ’Description’; ’parametrizes’ between ’Parameter’ and
’Region’; ’executesTask’ between ’Action’ and ’Task’; and ’classifies’

between ’Concept’ and ’Entity’. The rest of classes and relations are shown
in the next slot (in a graphical way).

The pattern should instantiate the classes Class and ObjectProperty with
the universal restriction allValuesFrom and the existential restriction
someValuesFrom. The object properties inverseOf, subClassOf and
equivalentClass and the relation between ontologies import are also

instantiated.

Graphical

(UML)
Diagram for
the General

Solution

Formalization

D2.5.1 Library of Ontology Design Patterns Page 157 of 183

General

Imports(<http://www.ontologydesignpatterns.org/
codeps/owl/basicplansdescription.owl>)

Imports(<http://www.loa-cnr.it/ontologies/PlansLite.owl>)
Imports(<http://www.ontologydesignpatterns.org/

codeps/owl/objectrole.owl>)
Imports(<http://www.ontologydesignpatterns.org/

odeps/owl/basicplansexecution.owl>)
Imports(<http://www.ontologydesignpatterns.org/ codeps/owl/region.owl>)

DisjointClasses(<parameter.owl#Parameter> <taskrole.owl#Role>)
DisjointClasses(<description.owl#Concept> <situation.owl#Situation>)

DisjointClasses(<description.owl#Concept>
<basicplansexecution.owl#Agent>)

DisjointClasses(<basicplansexecution.owl#Object> <region.owl#Region>)
DisjointClasses(<basicplansexecution.owl#Object>

<basicplansexecution.owl#Action>)
EquivalentClasses(<objectrole.owl#Role> <taskrole.owl#Role>)

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 158 of 183 NeOn Integrated Project EU-IST-027595

EquivalentClasses(<situation.owl#Entity> <partof.owl#Entity>)
EquivalentClasses(<basicplansexecution.owl#Object>

<objectrole.owl#Object>)
EquivalentClasses(GoalSituation

ObjectIntersectionOf(ObjectSomeValuesFrom(satisfies
<basicplansdescription.owl#Goal>) <situation.owl#Situation>))

EquivalentClasses(ObjectIntersectionOf(<situation.owl#Situation>
ObjectSomeValuesFrom(satisfies <basicplansdescription.owl#Plan>))

<basicplansexecution.owl#PlanExecution>)
EquivalentClasses(<situation.owl#Entity> <partof.owl#Entity>)

EquivalentClasses(<basicplansexecution.owl#Object>
<objectrole.owl#Object>)

SubClassOf(<basicplansdescription.owl#Plan>
ObjectAllValuesFrom(isSatisfiedBy

<basicplansexecution.owl#PlanExecution>))
SubClassOf(<parameter.owl#Parameter>

ObjectAllValuesFrom(parametrizes <region.owl#Region>))
SubClassOf(<description.owl#Concept> ObjectAllValuesFrom(classifies

<situation.owl#Entity>))
SubClassOf(<taskrole.owl#Role>

ObjectAllValuesFrom(<objectrole.owl#isRoleOf> <objectrole.owl#Object>))
SubClassOf(<region.owl#Region> ObjectAllValuesFrom(isParametrizedBy

<parameter.owl#Parameter>))
SubClassOf(<basicplansexecution.owl#Object>

ObjectAllValuesFrom(<objectrole.owl#hasRole> <taskrole.owl#Role>))
SubClassOf(<basicplansexecution.owl#Object>

ObjectAllValuesFrom(isClassifiedBy <taskrole.owl#Role>))
SubClassOf(GoalSituation <situation.owl#Situation>)

SubClassOf(<basicplansexecution.owl#PlanExecution>
ObjectAllValuesFrom(satisfies <basicplansdescription.owl#Plan>))

SubClassOf(<taskrole.owl#Task> ObjectAllValuesFrom(isExecutedIn
<basicplansexecution.owl#Action>))

InverseObjectProperties(classifies isClassifiedBy)
ObjectPropertyDomain(isClassifiedBy <situation.owl#Entity>)

ObjectPropertyRange(isClassifiedBy <description.owl#Concept>)
SubObjectPropertyOf(<objectrole.owl#isRoleOf> classifies)

ObjectPropertyDomain(conceptualizes <basicplansexecution.owl#Agent>)
ObjectPropertyRange(conceptualizes <basicplansdescription.owl#Plan>)

InverseObjectProperties(conceptualizes isConceptualizedBy)
InverseObjectProperties(isParametrizedBy parametrizes)

ObjectPropertyDomain(isParametrizedBy <region.owl#Region>)

D2.5.1 Library of Ontology Design Patterns Page 159 of 183

ObjectPropertyRange(isParametrizedBy <parameter.owl#Parameter>)
SubObjectPropertyOf(isParametrizedBy isClassifiedBy)

SubObjectPropertyOf(isExecutedIn classifies)
InverseObjectProperties(isExecutedIn executesTask)

ObjectPropertyRange(isExecutedIn <basicplansexecution.owl#Action>)
ObjectPropertyDomain(isExecutedIn <taskrole.owl#Task>)

ObjectPropertyRange(satisfies <description.owl#Description>)
ObjectPropertyDomain(satisfies <situation.owl#Situation>)

InverseObjectProperties(satisfies isSatisfiedBy)
ObjectPropertyRange(parametrizes <region.owl#Region>)

ObjectPropertyDomain(parametrizes <parameter.owl#Parameter>)
SubObjectPropertyOf(parametrizes classifies)

ObjectPropertyRange(isSatisfiedBy <situation.owl#Situation>)
ObjectPropertyDomain(isSatisfiedBy <description.owl#Description>)

SubObjectPropertyOf(executesTask isClassifiedBy)
ObjectPropertyDomain(executesTask <basicplansexecution.owl#Action>)

ObjectPropertyRange(executesTask <taskrole.owl#Task>)
ObjectPropertyRange(classifies <situation.owl#Entity>)

ObjectPropertyDomain(classifies <description.owl#Concept>)
SubObjectPropertyOf(<objectrole.owl#hasRole> isClassifiedBy)

ObjectPropertyRange(isConceptualizedBy
<basicplansexecution.owl#Agent>)

ObjectPropertyDomain(isConceptualizedBy
<basicplansdescription.owl#Plan>)

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-SC, LP-OP,
LP-EQ, LP-SP, LP-UR, LP-ER, AP-MD, CP-Re, CP-OR, CP-BPD and

CP-BPE.

A.7 Business

Slot Value

General Information

Name Price

Identifier CP-Pr-01

Type of
Component

Content Pattern (CP)

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 160 of 183 NeOn Integrated Project EU-IST-027595

Use Case

General This pattern represents the price of an entity in a certain currency.

Examples
Suppose that someone wants to represent that the price of a coffee is one

euro.

Ontology Design Pattern

Informal

General

The pattern consist of the classes ’Entity’, ’Price’ and ’Currency’ and the
relations ’hasPrice’ and ’isPriceOf’ between ’Entity’ and ’Price’ and

’hasCurrency’ between ’Price’ and ’Currency’.

The pattern should instantiate the classes Class, DatatypeProperty and
ObjectProperty. The object properties inverseOf and disjointWith are also

instantiated.

Graphical

(UML)
Diagram for
the General

Solution

Formalization

D2.5.1 Library of Ontology Design Patterns Page 161 of 183

General

DisjointClasses(Currency Price)
DisjointClasses(Price Entity)

DisjointClasses(Currency Entity)
SubClassOf(Price DataMinCardinality(1 hasValue))

SubClassOf(Price ObjectExactCardinality(1 hasCurrency))
ObjectPropertyRange(isPriceOf Entity)
ObjectPropertyDomain(isPriceOf Price)

InverseObjectProperties(isPriceOf hasPrice)
ObjectPropertyRange(hasCurrency Currency)

ObjectPropertyDomain(hasCurrency Price)
ObjectPropertyRange(hasPrice Price)

ObjectPropertyDomain(hasPrice Entity)
DataPropertyDomain(DataProperty(hasValue) OWLClass(Price))

DataPropertyRange(DataProperty(hasValue) xsd:float)

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-OP, LP-DP and
LP-Di.

Slot Value

General Information

Name Sales Purchase Order Contracts

Identifier CP-SPOC-01

Type of
Component

Content Pattern (CP)

Use Case

General

This pattern describes the purchase orders and sales orders by which an
organization buys and sells goods and services, and it extends these to

encompass the more general concept of contract or agreement.

Examples
Suppose that someone wants to represent that he bought a stock of wine at

a certain price.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 162 of 183 NeOn Integrated Project EU-IST-027595

Ontology Design Pattern

Informal

General

The pattern partially consist of the classes ’CatalogueItem’,
’PurchaseOrder’, ’Contract’, ’LineItem’, ’Organization’, ’FixedPrice’, ’Person’,

’Party’, and ’SalesOrder’ and the following relations: ’hasProperPart’
between ’Contract’ and ’LineItem’; ’hasTotalPrice’ between ’LineItem’ and

’Price’; ’boughtVia’ between ’LineItem’ and ’CatalogueItem’;
’salesOrderValue’ between ’FixedPrice’ and ’SalesOrder’; ’hasRole’ whose
range is ’Party’ and its domain is de union of ’Person’ and ’Organization’;

’purchaseOrderValue’ between ’FixedPrice’ and ’PurchaseOrder’; and
’between’ between ’Contract’ and ’Party’. The rest of classes and relations

are shown in the next slot (in a graphical way).

The pattern should instantiate the classes Class, DatatypeProperty and
ObjectProperty with the universal restriction allValuesFrom. The object

properties inverseOf, unionOf, subClassOf, subPropertyOf and disjointWith
and the relation between ontologies import are also

D2.5.1 Library of Ontology Design Patterns Page 163 of 183

instantiated.

Graphical

(UML)
Diagram for
the General

Solution

Formalization

General

Imports(<http://www.ontologydesignpatterns.org/ codeps/owl/price.owl>)
DisjointClasses(Person Organization)

DisjointClasses(Person Party)
DisjointClasses(Contract Person)

DisjointClasses(Contract Organization)
DisjointClasses(Contract Party)

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 164 of 183 NeOn Integrated Project EU-IST-027595

DisjointClasses(Contract LineItem)
DisjointClasses(Party Organization)

DisjointClasses(CatalogueItem LineItem)
SubClassOf(Contract ObjectAllValuesFrom(between Party))
SubClassOf(Contract ObjectExactCardinality(2 between))

SubClassOf(Contract DataExactCardinality(1 hasNumber))
SubClassOf(Contract ObjectMinCardinality(1 hasProperPart))

SubClassOf(Contract DataExactCardinality(1 hasDate))
SubClassOf(Party owl:Thing)

SubClassOf(FixedPrice DataExactCardinality(1 <price.owl#hasValue>))
SubClassOf(FixedPrice <price.owl#Price>)

SubClassOf(SalesOrder Contract)
SubClassOf(SalesOrder ObjectExactCardinality(1 salesOrderValue))

SubClassOf(SalesOrder DataExactCardinality(1 hasDate))
SubClassOf(SalesOrder DataExactCardinality(1 hasSalesOrderNumber))

SubClassOf(<price.owl#Price> ObjectAllValuesFrom(<price.owl#isPriceOf>
ObjectUnionOf(CatalogueItem

SubClassOf(CatalogueItem <price.owl#Entity>)
SubClassOf(CatalogueItem ObjectAllValuesFrom(<price.owl#hasPrice>

FixedPrice))
SubClassOf(CatalogueItem ObjectAllValuesFrom(boughtVia LineItem))

SubClassOf(PurchaseOrder Contract)
SubClassOf(PurchaseOrder DataExactCardinality(1

hasPurchaseOrderNumber))
SubClassOf(PurchaseOrder ObjectExactCardinality(1

purchaseOrderValue))
SubClassOf(PurchaseOrder DataExactCardinality(1 hasDate))

SubClassOf(LineItem <price.owl#Entity>)
SubClassOf(LineItem ObjectAllValuesFrom(hasTotalPrice FixedPrice))

SubClassOf(LineItem DataMaxCardinality(1 hasQuantity))
SubClassOf(LineItem ObjectAllValuesFrom(<price.owl#hasPrice>

FixedPrice))
SubClassOf(LineItem ObjectExactCardinality(1 isProperPartOf))

SubClassOf(LineItem ObjectExactCardinality(1 forCatalogueItem))
SubObjectPropertyOf(isTotalPriceOf <price.owl#isPriceOf>)

ObjectPropertyRange(isTotalPriceOf LineItem)
InverseObjectProperties(isTotalPriceOf hasTotalPrice)

ObjectPropertyDomain(isTotalPriceOf <price.owl#Price>)
InverseObjectProperties(<price.owl#hasPrice> <price.owl#isPriceOf>)

ObjectPropertyDomain(forCatalogueItem LineItem)
ObjectPropertyRange(forCatalogueItem CatalogueItem)

D2.5.1 Library of Ontology Design Patterns Page 165 of 183

InverseObjectProperties(boughtVia forCatalogueItem)
ObjectPropertyDomain(hasRole ObjectUnionOf(PersonOrganization))

InverseObjectProperties(isRoleOf hasRole)
ObjectPropertyRange(hasRole Party)

InverseObjectProperties(hasProperPart isProperPartOf)
ObjectPropertyRange(isProperPartOf Contract)

ObjectPropertyDomain(isProperPartOf LineItem)
ObjectPropertyRange(between Party)

ObjectPropertyDomain(between Contract)
InverseObjectProperties(isPriceOfSalesOrder salesOrderValue)

SubObjectPropertyOf(isPriceOfSalesOrder <price.owl#isPriceOf>)
ObjectPropertyRange(isPriceOfSalesOrder SalesOrder)
ObjectPropertyDomain(isPriceOfSalesOrder FixedPrice)

ObjectPropertyDomain(isRoleOf Party)
ObjectPropertyRange(isRoleOf ObjectUnionOf(Person Organization))

ObjectPropertyRange(boughtVia LineItem)
ObjectPropertyDomain(boughtVia CatalogueItem)

ObjectPropertyDomain(hasTotalPrice LineItem)
SubObjectPropertyOf(hasTotalPrice <price.owl#hasPrice>)

ObjectPropertyRange(hasTotalPrice <price.owl#Price>)
ObjectPropertyRange(purchaseOrderValue FixedPrice)

ObjectPropertyDomain(purchaseOrderValue PurchaseOrder)
InverseObjectProperties(isPriceOfPurchaseOrder purchaseOrderValue)

SubObjectPropertyOf(purchaseOrderValue <price.owl#hasPrice>)
ObjectPropertyRange(salesOrderValue FixedPrice)

SubObjectPropertyOf(salesOrderValue <price.owl#hasPrice>)
ObjectPropertyDomain(salesOrderValue SalesOrder)

ObjectPropertyRange(isPriceOfPurchaseOrder PurchaseOrder)
SubObjectPropertyOf(isPriceOfPurchaseOrder <price.owl#isPriceOf>)

ObjectPropertyDomain(isPriceOfPurchaseOrder FixedPrice)
ObjectPropertyDomain(hasProperPart Contract)
ObjectPropertyRange(hasProperPart LineItem)

Declaration(hasPurchaseOrderNumber)
DataPropertyRange(DataProperty(hasPurchaseOrderNumber) xsd:int)

SubDataPropertyOf(DataProperty(hasPurchaseOrderNumber)
DataProperty(hasNumber))

DataPropertyDomain(DataProperty(hasPurchaseOrderNumber)
OWLClass(PurchaseOrder))

Declaration(hasSalesOrderNumber)
DataPropertyDomain(DataProperty(hasSalesOrderNumber)

OWLClass(SalesOrder))
DataPropertyRange(DataProperty(hasSalesOrderNumber) xsd:int)

SubDataPropertyOf(DataProperty(hasSalesOrderNumber)
DataProperty(hasNumber))

Declaration(hasDate)

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 166 of 183 NeOn Integrated Project EU-IST-027595

DataPropertyDomain(DataProperty(hasDate) OWLClass(Contract))
DataPropertyRange(DataProperty(hasDate) xsd:date)

Declaration(hasNumber)
DataPropertyDomain(DataProperty(hasNumber) OWLClass(Contract))

DataPropertyRange(DataProperty(hasNumber) xsd:int)
Declaration(hasQuantity)

DataPropertyRange(DataProperty(hasQuantity) xsd:int)
DataPropertyDomain(DataProperty(hasQuantity) OWLClass(LineItem))

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-SC, LP-OP,
LP-DP, LP-SP, LP-UR, LP-Di, LP-UO, AP-MD, and CP-Pr.

A.8 Time

Slot Value

General Information

Name Time - Interval

Identifier CP-TI-01

Type of
Component

Content Pattern (CP)

Use Case

General
This pattern represents the a time interval and associate a date with it. I

also allows to express a starting and an ending date for the interval.

Examples

Suppose that someone wants to represent that the time period for
registration in a congress starts on May 05, 2008 and ends on May 27,

2008.

Ontology Design Pattern

D2.5.1 Library of Ontology Design Patterns Page 167 of 183

Informal

General

The pattern consist of the classes ’TimeInterval’ and the relations
’hasIntervalStartDate’ and ’hasIntervalEndDate’ between ’TimeInterval’ and

’xsd:date’.

The pattern should instantiate the classes Class and DatatypeProperty.
The object property subPropertyOf is also instantiated.

Graphical

(UML)
Diagram for
the General

Solution

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 168 of 183 NeOn Integrated Project EU-IST-027595

Formalization

General

SubClassOf(TimeInterval DataMaxCardinality(1 hasIntervalEndDate))
SubClassOf(TimeInterval DataMaxCardinality(1 hasIntervalStartDate))

DataPropertyRange(hasIntervalStartDate xsd:date)
DataPropertyDomain(hasIntervalStartDate TimeInterval)

SubDataPropertyOf(hasIntervalStartDate hasIntervalDate)
DataPropertyDomain(hasIntervalDate TimeInterval)

DataPropertyRange(hasIntervalDate xsd:date)
DataPropertyRange(hasIntervalEndDate xsd:date)

DataPropertyDomain(hasIntervalEndDate TimeInterval)
SubDataPropertyOf(hasIntervalEndDate hasIntervalDate)

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-SP and LP-DP.

A.9 Space

Slot Value

General Information

Name Move

Identifier CP-Mo-01

Type of
Component

Content Pattern (CP)

Use Case

General
This pattern represents the action of moving a physical object from a place

to another.

Examples
Suppose that someone wants to represent that Monet’s painting

"Impression sunrise" was moved for the first Impressionist exhibition.

D2.5.1 Library of Ontology Design Patterns Page 169 of 183

Ontology Design Pattern

Informal

General

The pattern partially consist of the classes ’Move’, ’PhisicalObject’ and
’Place’ and the following relations: ’moved’ between ’Move’ and

’PhisicalObject’; ’movedFrom’ between ’Place’ and ’Move’; ’witnessed’
between ’Place’ and ’Move’; ’movedTo’ between ’Place’ and ’Move’; and

’consistsOf’ between ’Move’ and ’Move’. The rest of classes and relations
are shown in the next slot (in a graphical way).

The pattern should instantiate the classes Class and ObjectProperty. The
object properties disjointWith, inverseOf and subPropertyOf are also

instantiated.

Graphical

(UML)
Diagram for
the General

Solution

Formalization

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 170 of 183 NeOn Integrated Project EU-IST-027595

General

DisjointClasses(Move Place)
DisjointClasses(Move PhysicalObject)
DisjointClasses(PhysicalObject Place)

SubObjectPropertyOf(movedFrom tookPlaceAt)
ObjectPropertyRange(movedFrom Place)
ObjectPropertyDomain(movedFrom Move)

InverseObjectProperties(wasOriginOf movedFrom)
ObjectPropertyRange(tookPlaceAt Place)
ObjectPropertyDomain(tookPlaceAt Move)

InverseObjectProperties(tookPlaceAt witnessed)
ObjectPropertyDomain(movedBy PhysicalObject)

InverseObjectProperties(moved movedBy)
ObjectPropertyRange(movedBy Move)

ObjectPropertyDomain(consistsOf Move)
ObjectPropertyRange(consistsOf Move)

InverseObjectProperties(consistsOf formsPartOf)
ObjectPropertyRange(formsPartOf Move)
ObjectPropertyDomain(formsPartOf Move)

ObjectPropertyDomain(moved Move)
ObjectPropertyRange(moved PhysicalObject)

SubObjectPropertyOf(wasDestinationOf witnessed)
ObjectPropertyRange(wasDestinationOf Move)

ObjectPropertyDomain(wasDestinationOf Place)
InverseObjectProperties(wasDestinationOf movedTo)

ObjectPropertyRange(witnessed Move)
ObjectPropertyDomain(witnessed Place)
ObjectPropertyDomain(movedTo Move)

D2.5.1 Library of Ontology Design Patterns Page 171 of 183

ObjectPropertyRange(movedTo Place)
SubObjectPropertyOf(movedTo tookPlaceAt)
ObjectPropertyDomain(wasOriginOf Place)

SubObjectPropertyOf(wasOriginOf witnessed)
ObjectPropertyRange(wasOriginOf Move)

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-OP, LP-SP and
LP-Di.

A.10 Life Science

Slot Value

General Information

Name Linnaean Taxonomy

Identifier CP-LT-01

Type of
Component

Content Pattern (CP)

Use Case

General
This pattern represents the layered classification invented by Linneus in the

XVIII century.

Examples
Suppose that someone wants to represent that the human’s kingdom is

’Animalia’

Ontology Design Pattern

Informal

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 172 of 183 NeOn Integrated Project EU-IST-027595

General

The pattern consist of the classes ’Order’, ’Kingdom’, ’Class’, ’Taxon’,
’Species’, ’Family’, ’Phylum’ and ’Genus’ and the following relations:
’hasDirectHigherRank’, ’hasDirectLowerRank’, ’hasHigherRank’ and

’hasLowerRank’ between ’Taxon’ and ’Taxon’.

The pattern should instantiate the classes Class and ObjectProperty with
the universal restriction allValuesFrom. The object properties inverseOf,

subClassOf, unionOf, complementOf, disjointWith and subObjectProperty
are also instantiated.

Graphical

(UML)
Diagram for
the General

Solution

Formalization

D2.5.1 Library of Ontology Design Patterns Page 173 of 183

General

DisjointClasses(Class Phylum)
DisjointClasses(Class Kingdom)
DisjointClasses(Class Family)
DisjointClasses(Class Genus)

DisjointClasses(Class Species)
DisjointClasses(Class Order)

DisjointClasses(Kingdom Phylum)
DisjointClasses(Kingdom Order)
DisjointClasses(Kingdom Family)

DisjointClasses(Kingdom Species)
DisjointClasses(Kingdom Genus)
DisjointClasses(Order Species)
DisjointClasses(Order Phylum)
DisjointClasses(Order Family)
DisjointClasses(Order Genus)

DisjointClasses(Species Family)
DisjointClasses(Species Phylum)

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 174 of 183 NeOn Integrated Project EU-IST-027595

DisjointClasses(Species Genus)
DisjointClasses(Species Phylum)
DisjointClasses(Phylum Family)
DisjointClasses(Phylum Genus)
DisjointClasses(Genus Family)

SubClassOf(Class ObjectAllValuesFrom(hasDirectLowerRank Order))
SubClassOf(Class ObjectAllValuesFrom(hasHigherRank

ObjectUnionOf(Kingdom Phylum)))
SubClassOf(Class ObjectAllValuesFrom(hasDirectHigherRank Phylum))

SubClassOf(Class Taxon)
SubClassOf(Class ObjectAllValuesFrom(hasLowerRank

ObjectComplementOf(ObjectUnionOf(Class Kingdom Phylum))))
SubClassOf(Kingdom ObjectAllValuesFrom(hasDirectLowerRank Phylum))

SubClassOf(Kingdom ObjectAllValuesFrom(hasLowerRank
ObjectComplementOf(Kingdom)))

SubClassOf(Kingdom Taxon)
SubClassOf(Kingdom ObjectExactCardinality(0 hasHigherRank))

SubClassOf(Order ObjectAllValuesFrom(hasDirectHigherRank Class))
SubClassOf(Order ObjectAllValuesFrom(hasHigherRank

ObjectUnionOf(Class Kingdom Phylum)))
SubClassOf(Order ObjectAllValuesFrom(hasLowerRank

ObjectUnionOf(Species Genus Family)))
SubClassOf(Order Taxon)

SubClassOf(Order ObjectAllValuesFrom(hasDirectLowerRank Family))
SubClassOf(Species ObjectAllValuesFrom(hasHigherRank

ObjectComplementOf(Species)))
SubClassOf(Species ObjectAllValuesFrom(hasDirectHigherRank Genus))

SubClassOf(Species ObjectExactCardinality(0 hasLowerRank))
SubClassOf(Species Taxon)

SubClassOf(Phylum ObjectAllValuesFrom(hasLowerRank
ObjectComplementOf(ObjectUnionOf(Kingdom Phylum))))

SubClassOf(Phylum Taxon)
SubClassOf(Phylum ObjectAllValuesFrom(hasHigherRank Kingdom))

SubClassOf(Phylum ObjectAllValuesFrom(hasDirectLowerRank Class))
SubClassOf(Phylum ObjectAllValuesFrom(hasDirectHigherRank Kingdom))

SubClassOf(Genus Taxon)
SubClassOf(Genus ObjectAllValuesFrom(hasLowerRank Species))

SubClassOf(Genus ObjectAllValuesFrom(hasHigherRank
ObjectComplementOf(ObjectUnionOf(Species Genus))))

SubClassOf(Genus ObjectAllValuesFrom(hasDirectHigherRank Family))

D2.5.1 Library of Ontology Design Patterns Page 175 of 183

SubClassOf(Genus ObjectAllValuesFrom(hasDirectLowerRank Species))
SubClassOf(Family ObjectAllValuesFrom(hasLowerRank

ObjectUnionOf(Species Genus)))
SubClassOf(Family ObjectAllValuesFrom(hasHigherRank

ObjectComplementOf(ObjectUnionOf(Species Genus Family))))
SubClassOf(Family Taxon)

SubClassOf(Family ObjectAllValuesFrom(hasDirectLowerRank Genus))
SubClassOf(Family ObjectAllValuesFrom(hasDirectHigherRank Order))

TransitiveObjectProperty(hasHigherRank)
ObjectPropertyRange(hasHigherRank Taxon)

InverseObjectProperties(hasLowerRank hasHigherRank)
ObjectPropertyDomain(hasHigherRank Taxon)

ObjectPropertyDomain(hasDirectLowerRank Taxon)
ObjectPropertyRange(hasDirectLowerRank Taxon)

SubObjectPropertyOf(hasDirectLowerRank hasLowerRank)
InverseObjectProperties(hasDirectHigherRank hasDirectLowerRank)

SubObjectPropertyOf(hasDirectHigherRank hasHigherRank)
ObjectPropertyRange(hasDirectHigherRank Taxon)
ObjectPropertyDomain(hasDirectHigherRank Taxon)

TransitiveObjectProperty(hasLowerRank)
ObjectPropertyRange(hasLowerRank Taxon)
ObjectPropertyDomain(hasLowerRank Taxon)

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-SC, LP-OP,
LP-SP, LP-UR, LP-UO and LP-Di.

A.11 Multimedia

Slot Value

General Information

Name Multimedia Data Segment Descomposition

Identifier CP-MDSD-01

Type of
Component

Content Pattern (CP)

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 176 of 183 NeOn Integrated Project EU-IST-027595

Use Case

General
This pattern represents decompositions of multimedia content into

segments.

Examples
Suppose that someone wants to represent a specific algorithm for

segmenting videos into temporal scenes.

Ontology Design Pattern

Informal

General

The pattern partially consist of the classes ’Media’,
’SegmentDecomposition’, ’InputSegmentRole’, ’OutputSegmentRole’,

’SegmentationAlgorithm’ and ’MultimediaData’ and relation ’plays’ between
’MultimediaData’ and ’Role’. The rest of classes and relations are shown in

the next slot (in a graphical way).

The pattern should instantiate the classes Class and ObjectProperty with
the universal restriction allValuesFrom and the existential restriction
someValuesFrom. The object properties inverseOf, subClassOf and
subPropertyOf and the relation between ontologies import are also

instantiated.

Graphical

D2.5.1 Library of Ontology Design Patterns Page 177 of 183

(UML)
Diagram for
the General

Solution

Formalization

General

Imports(<http://www.ontologydesignpatterns.org/
codeps/owl/informationrealization.owl>

Imports(<http://www.ontologydesignpatterns.org/
codeps/owl/objectrole.owl>)

Imports(<http://www.ontologydesignpatterns.org/
codeps/owl/descriptionandsituation.owl>)

SubClassOf(MultimediaData ObjectSomeValuesFrom(plays
OutputSegmentRole))

SubClassOf(MultimediaData
ObjectSomeValuesFrom(<informationrealization.owl#isRealizedBy> Media))

SubClassOf(MultimediaData
ObjectAllValuesFrom(<informationrealization.owl#isRealizedBy> Media))

SubClassOf(SegmentationAlgorithm
DataAllValuesFrom(<description.owl#defines> MultimediaData))

SubClassOf(SegmentationAlgorithm
ObjectAllValuesFrom(<descriptionandsituation.owl#isSatisfiedBy>

SegmentDecomposition))

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 178 of 183 NeOn Integrated Project EU-IST-027595

SubClassOf(SegmentationAlgorithm <description.owl#Description>)
SubClassOf(SegmentationAlgorithm DataMinCardinality(1

<description.owl#defines>))
SubClassOf(OutputSegmentRole ObjectAllValuesFrom(playedBy

MultimediaData))
SubClassOf(OutputSegmentRole <objectrole.owl#Role>)
SubClassOf(InputSegmentRole <objectrole.owl#Role>)

SubClassOf(InputSegmentRole ObjectAllValuesFrom(playedBy
MultimediaData))

SubClassOf(SegmentDecomposition
ObjectSomeValuesFrom(<situation.owl#isSettingFor>

ObjectIntersectionOf(ObjectSomeValuesFrom(plays OutputSegmentRole)
MultimediaData)))

SubClassOf(SegmentDecomposition <situation.owl#Situation>)
SubClassOf(SegmentDecomposition

ObjectSomeValuesFrom(<situation.owl#isSettingFor>
ObjectIntersectionOf(MultimediaData
SubClassOf(SegmentDecomposition

ObjectSomeValuesFrom(<descriptionandsituation.owl#satisfies>
SegmentationAlgorithm))

SubClassOf(Media <informationrealization.owl#InformationRealization>)
SubClassOf(Media

ObjectAllValuesFrom(<informationrealization.owl#realizes>
MultimediaData))

SubObjectPropertyOf(<objectrole.owl#isRoleOf>
<classification.owl#isClassifiedBy>)

ObjectPropertyRange(playedBy MultimediaData)
ObjectPropertyDomain(playedBy <objectrole.owl#Role>)

SubObjectPropertyOf(playedBy <objectrole.owl#isRoleOf>)
InverseObjectProperties(plays playedBy)

ObjectPropertyRange(plays <objectrole.owl#Role>)
ObjectPropertyDomain(plays MultimediaData)

SubObjectPropertyOf(plays <objectrole.owl#hasRole>)
SubObjectPropertyOf(<objectrole.owl#hasRole>

<classification.owl#classifies>)

Relationships

Relations to
other

modelling
components

Relations to the following components: LP-DC / LP-PC, LP-SC, LP-OP,
LP-SP, LP-UR, LP-ER, AP-MD, CP-OR, CP-IR and CP-DAS.

D2.5.1 Library of Ontology Design Patterns Page 179 of 183

Bibliography

[Ale79] Christopher Alexander. The Timeless Way of Building. Oxford Press, 1979.

[ATS+07] Richard Arndt, Raphael Troncy, Steffen Staab, Lynda Hardman, and Miroslav Vacura. Comm:
Designing a well-founded multimedia ontology for the web. In Proceedings of the 4th Euro-
pean Semantic Web Conference (ISCW’07), Busan Korea, November 2007. Springer.

[BFL98] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The Berkeley FrameNet project. In
Christian Boitet and Pete Whitelock, editors, Proceedings of the Thirty-Sixth Annual Meeting
of the Association for Computational Linguistics and Seventeenth International Conference on
Computational Linguistics, pages 86–90, San Francisco, California, 1998. Morgan Kaufmann
Publishers.

[Blo05] Eva Blomqvist. Fully automatic construction of enterprise ontologies using design patterns:
Initial method and first experiences. In Robert Meersman, Zahir Tari, Mohand-Said Hacid,
John Mylopoulos, Barbara Pernici, . . . zalp Babaoglu, Hans-Arno Jacobsen, Joseph P. Loy-
all, Michael Kifer, and Stefano Spaccapietra, editors, OTM Conferences (2), volume 3761 of
Lecture Notes in Computer Science, pages 1314–1329. Springer, 2005.

[BM05] D. Brickley and L. Miller. Foaf vocabulary specification. Working draft, 2005.

[Bra77] Ronald J. Brachman. A Structural Paradigm for Representing Knowledge. Ph.d. thesis, Har-
vard University, USA, 1977.

[BS05] Eva Blomqvist and Kurt Sandkuhl. Patterns in ontology engineering: Classification of ontology
patterns. In Chin-Sheng Chen, Joaquim Filipe, Isabel Seruca, and JosŽ Cordeiro, editors,
ICEIS (3), pages 413–416, 2005.

[CLN+07] Carola Catenacci, Jos Lehmann, Malvina Nissim, Valentina Presutti, and Geri Steve. Design
rationales for collaborative development of networked ontologies Ð state of the art and the
collaborative ontology design ontology. Deliverable D2.1.1, NeOn project, 2007.

[CTP00] Peter Clark, John Thompson, and Bruce Porter. Knowledge patterns. In Anthony G. Cohn,
Fausto Giunchiglia, and Bart Selman, editors, KR2000: Principles of Knowledge Represen-
tation and Reasoning, pages 591–600, San Francisco, 2000. Morgan Kaufmann.

[Dol] DOLCE - Project Home Page. http://dolce.semanticweb.org.

[DWW04] Didier Dubois, Christopher A. Welty, and Mary-Anne Williams, editors. Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Ninth International Conference
(KR2004), Whistler, Canada, June 2-5, 2004. AAAI Press, 2004.

[ea05] Kendall E. et al. Ontology Definition Metamodel. http://www.omg.org/docs/ad/05-04-13.pdf,
2005. Revised submission to OMG.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 180 of 183 NeOn Integrated Project EU-IST-027595

[Gan05] Aldo Gangemi. Ontology Design Patterns for Semantic Web Content. In M. Musen et al.
(eds.): Proceedings of the Fourth International Semantic Web Conference, Galway, Ireland,
2005. Springer.

[Gar83] Howard Gardner. Frames of Mind: The Theory of Multiple Intelligences. Basic Books, New
York, 1983.

[GB04] Aldo Gangemi and Stefano Borgo, editors. Core Ontologies in Ontology Engineering 2004.
(Un)Successful cases and best practices for ontology engineering: reusing well-founded on-
tologies for domain content specification., Proceedings of the EKAW*04 Workshop on Core
Ontologies in Ontology Engineering, Northamptonshire (UK), October 2004. Laboratory for
Applied Ontology (ISTC-CNR) Italy, CEUR.

[GBCL05] Aldo Gangemi, Stefano Borgo, Carola Catenacci, and Jos Lehmann. Task Tax-
onomies for Knowledge Content. Deliverable D07 of the Metokis Project. http://www.loa-
cnr.it/Papers/D07_v21a.pdf, 2005.

[GCB04] Aldo Gangemi, Carola Catenacci, and Massimo Battaglia. Inflammation ontology design
pattern: an exercise in building a core biomedical ontology with descriptions and situations.
In Domenico Maria Pisanelli, editor, Ontologies in Medicine. IOS Press, Amsterdam, 2004.

[GCCJ06] A. Gangemi, C. Catenacci, M. Ciaramita, and Lehmann J. Modelling Ontology Evaluation and
Validation. In Proceedings of the Third European Semantic Web Conference. Springer, 2006.

[GF94] M. Gruninger and M. Fox. The role of competency questions in enterprise engineering, 1994.

[GFK+04] Aldo Gangemi, Frehiwot Fisseha, Johannes Keizer, Jos Lehmann, Anita Liang, Ian Pettman,
Margherita Sini, and Marc Taconet. A core ontology of fishery and its use in the fos project.
In Aldo Gangemi Stefano Borgo, editor, Proceedings of the EKAW*04 Workshop on Core
Ontologies in Ontology Engineering, Northamptonshire (UK), 2004. CEUR.

[GHJV95] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design Patterns. El-
ements of Reusable Object-Oriented Software. Addison-Wesley, March 1995. ISBN-10:
0201633612 ISBN-13: 978-0201633610.

[GLP+07] Aldo Gangemi, Jos Lehmann, Valentina Presutti, Malvina Nissim, and Carola Catenacci. C-
odo: an owl meta-model for collaborative ontology design. In Harith Alani, Natasha Noy,
Gerd Stumme, Peter Mika, York Sure, and Denny Vrandecic, editors, Workshop on Social
and Collaborative Construction of Structured Knowledge (CKC 2007) at WWW 2007, Banff,
Canada, 2007.

[GP07] Aldo Gangemi and Valentina Presutti. Ontology design for interaction in a reasonable enter-
prise. In Peter Rittgen, editor, Handbook of Ontologies for Business Interaction. IGI Global,
Hershey, PA, November 2007.

[GPS01] Aldo Gangemi, Domenico Maria Pisanelli, and Geri Steve. An ontological framework to rep-
resent norm dynamics. In R. Winkels, editor, Proceedings of the 2001 Jurix Conference,
Workshop on Legal Ontologies, Amsterdam, 2001.

[Gru93] T.R. Gruber. A translation approach to portable ontology specifications. Knowledge Acquisi-
tion, 5(2):199–220, 1993.

[GW99] J.-M. Le Goff and I. Willers. Design patterns for description-driven systems, 1999.

[GW04] Giancarlo Guizzardi and Gerd Wagner. A unified foundational ontology and some applications
of it in business modeling. In CAiSE Workshops (3), pages 129–143, 2004.

D2.5.1 Library of Ontology Design Patterns Page 181 of 183

[Hay96] David C. Hay. Data Model Patterns. Dorset House Publishing, 1996.

[HBP+07] Peter Haase, Saartje Brockmans, Raul Palma, Jerome Euzenat, and Mathieu dÕAquin. Up-
dated Version of the Networked Ontology Model. Deliverable D1.1.2, NeOn project, 2007.

[Hea92] M. A. Hearst. Automatic acquisition of hyponyms from large text corpora. In Proceedings of
the 14th International Conference on Computational Linguistics, pages 539–545, 1992.

[MB05] Alistar Miles and Dan Brickley. SKOS Core Vocabulary Specification. Technical report, World
Wide Web Consortium (W3C), November 2005. http://www.w3.org/TR/2005/WD-swbp-skos-
core-spec-20051102/.

[MGG+05] Claudio Masolo, Aldo Gangemi, Nicola Guarino, Alessandro Oltramari, and Luc Schneider.
The wonderweb library of foundational ontologies. Wonderweb deliverable d18, Laboratory
for Applied Ontology (ISTC-CNR), 2005.

[MHG01] David Maplesden, John G. Hosking, and John C. Grundy. A visual language for design pattern
modelling and instantiation. In HCC, pages 338–339. IEEE Computer Society, 2001.

[MHG02] David Mapelsden, John Hosking, and John Grundy. Design pattern modelling and instantia-
tion using dpml. In CRPIT ‘02: Proceedings of the Fortieth International Conference on Tools
Pacific, pages 3–11, Darlinghurst, Australia, Australia, 2002. Australian Computer Society,
Inc.

[ML00] E. Motta and W. Lu. A library of components for classification problem solving. ibrow project
ist-1999-19005: An intelligent brokering service for knowledge-component reuse on the
world- wide web. Technical report, KMI, 2000.

[MPPdC+07] Elena Montiel-Ponsoda, Wim Peters, Guadalupe Aguado de Cea, Mauricio Espinoza,
Mari Carmen Suárez-Figueroa, José Ángel, Ramos Gargantilla, Asunción Gómez-Pérez, In-
maculada Álvarez de Mon, Margherita Sini, Aldo Gangemi, Óscar Munoz, and Raúl Palma.
Multilingual ontology support. Deliverable D2.4.1, NeOn project, 2007.

[NA05] Natasha Noy and Alan Rector. Defining N-ary Relations on the Semantic Web: Use With
Individuals. Technical report, W3C, 2005. http://www.w3.org/TR/swbp-n-aryRelations/ (2004).

[Obe06] Daniel Oberle. Semantic Management of Middleware, volume I of The Semantic Web and
Beyond. Springer, New York, FEB 2006.

[Obj04] Object Management Group (OMG). Unified modeling language specification: Version 2, re-
vised final adopted specification (ptc/04-10-02), 2004.

[oM03] National Library of Medicine. Unified medical language system UMLS, 2003.
http://www.nlm.nih.gov/research/umls/.

[OMGS04] Daniel Oberle, Peter Mika, Aldo Gangemi, and Marta Sabou. Foundations for service on-
tologies: Aligning OWL-S to DOLCE. In Proceedings of the World Wide Web Conference
(WWW2004), volume Semantic Web Track, 2004.

[ont] Ontology design patterns web portal. http://www.ontologydesignpatterns.org.

[OWL04] OWL Web Ontology Language Semantics and Abstract Syntax. http://www.w3.org/TR/owl-
semantics/, 2004.

[PNL02] Adam Pease, Ian Niles, and John Li. The Suggested Upper Merged Ontology: A large ontol-
ogy for the semantic web and its applications. In Working Notes of the AAAI-2002 Workshop
on Ontologies and the Semantic Web, Edmonton, Canada, 2002.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 182 of 183 NeOn Integrated Project EU-IST-027595

[RDH+04] Alan L. Rector, Nick Drummond, Matthew Horridge, Jeremy Rogers, Holger Knublauch,
Robert Stevens, Hai Wang, and Chris Wroe. Owl pizzas: Practical experience of teaching
owl-dl: Common errors & common patterns. In EKAW, pages 63–81, 2004.

[Rei00] Jacqueline RenŽe Reich. Ontological design patterns: Metadata of molecular biological on-
tologies, information and knowledge. In Mohamed T. Ibrahim, Josef KŸng, and Norman
Revell, editors, DEXA, volume 1873 of Lecture Notes in Computer Science, pages 698–709.
Springer, 2000.

[RR04] Alan Rector and Jeremy Rogers. Patterns, properties and minimizing commitment: Recon-
struction of the galen upper ontology in owl. In Aldo Gangemi and Stefano Borgo, editors,
Proceedings of the EKAW*04 Workshop on Core Ontologies in Ontology Engineering. CEUR,
2004.

[SAd+07] Marta Sabou, Sofia Angeletou, Mathieu d’Aquin, Jesus Barrasa, Klaas Dellschaft, Aldo
Gangemi, Jos Lehmann, Holger Lewen, Diana Maynard, Dunja Mladenic, Malvina Nissim,
WimPeters, Valentina Presutti, and BorisVillazon. Methods for selection and integration of
reusable components from formal or informal user specifications. Deliverable D2.2.1, NeOn
project, 2007.

[San91] B. Santorini. Part-of-speech tagging guidelines for the penn treebank project.
http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/Penn-Treebank-Tagset.ps, 1991.

[SFBG+07] Mari Carmen Suarez-Figueroa, Saartje Brockmans, Aldo Gangemi, Asuncion Gomez-Perez,
Jos Lehmann, Holger Lewen, Valentina Presutti, and Marta Sabou. Neon modelling compo-
nents. Deliverable D5.1.1, NeOn project, 2007.

[SJN04] R. Snow, D. Jurafsky, and A.Y Ng. Learning syntactic patterns for automatic hypernym dis-
covery. Advances in Neural Information Processing Systems, (17), 2004.

[SLM06] Marta Sabou, Vanessa Lopez, and Enrico Motta. Ontology selection for the real semantic
web: How to cover the queen’s birthday dinner? In Steffen Staab and Vojtech Svatek, editors,
EKAW, volume 4248 of Lecture Notes in Computer Science, pages 96–111. Springer, 2006.

[Sos03] Dmitri Soshnikov. Ontological design patterns for distributed frame hierarchy. In Proceedings
of the 5th International Workshop on Computer Science and Information Technologies, Ufa,
Russia, 2003.

[Sva04] Vojtech Svatek. Design patterns for semantic web ontologies: Motivation and discussion. In
Proceedings of the 7th Conference on Business Information Systems, Poznan, 2004.

[VDATHKB03] W.M.P. Van Der Aalst, A.H.M. Ter Hofstede, B. Kiepuszewski, and A.P. Barros. Workflow
Patterns. Distributed and Parallel Databases, 14:5–51, 2003.

[VG06] Denny Vrandecic and Aldo Gangemi. Unit tests for ontologies. In Mustafa Jarrar, Claude
Ostyn, Werner Ceusters, and Andreas Persidis, editors, Proceedings of the 1st International
Workshop on Ontology content and evaluation in Enterprise, LNCS, Montpellier, France, OCT
2006. Springer.

[Vra05] Denny Vrandecic. Explicit knowledge engineering patterns with macros. In Chris Welty and
Aldo Gangemi, editors, Proceedings of the Ontology Patterns for the Semantic Web Work-
shop at the ISWC 2005, Galway, Ireland, NOV 2005.

[VS07] Denny Vrandecic and York Sure. How to design better ontology metrics. In Wolfgang May
and Michael Kifer, editors, Proceedings of the 4th European Semantic Web Conference
(ESWC’07), Innsbruck, Austria, JUN 2007. Springer. to appear.

D2.5.1 Library of Ontology Design Patterns Page 183 of 183

[VSPS07] Denny Vrandecic, York Sure, Raul Palma, and Francisco Santana. Ontology repository and
content evaluation. Deliverable D1.2.10v2, KnowledgeWeb project, 2007.

[VVS06] J. Völker, D. Vrandečić, and Y. Sure. Data-driven change discovery. Deliverable 3.3.3, SEKT
Project, 2006.

2006–2008 c© Copyright lies with the respective authors and their institutions.

	Introduction
	Background

	Ontology Design Patterns
	Definition of Ontology Design Pattern
	Types of Ontology Design Patterns
	Structural OPs
	Correspondence OPs
	Reasoning OPs
	Presentation OPs
	Lexico-Syntactic OPs
	Content OPs (CPs)

	Creation and Usage of Content Ontology Design Patterns
	Requirements and use cases
	Operations
	Covering
	Clone
	Composition
	Specialization and Generalization
	Expansion
	Import

	Definition of Content Ontology Design Pattern (CP)
	Ontological resources that are not CPs
	Content Ontology Design Anti-pattern (AntiCP)

	Where do CPs come from?
	Examples of CP creation

	The CP annotation schema
	How to use content ontology design patterns
	Matching between intent and use case
	Pattern-based ontology evaluation

	Catalogue of Content Ontology Design Patterns
	General
	Types of entities
	Description
	Situation
	Classification
	N-ary Classification
	Description and Situation
	Object Role

	Parts and collections
	Part of
	Time Indexed Part of
	Componency
	Constituency
	Collection Entity

	Semiotics
	Intension Extension
	Information Realization

	Quantities and Dimensions
	Region
	Region Overlap
	Parameter
	Parameter Region

	Participation
	Participation
	Co-participation
	N-ary Participation

	Organization, Management, and Scheduling
	Precedence
	Agent Role
	Task Role
	Time-Indexed Person Role
	Basic Plan Description
	Basic Plan Execution
	Basic Plan

	Business
	Price
	Sales and Purchase Order Contracts

	Time
	Time Interval

	Space
	Move

	Life Science
	Linnean Taxonomy

	Multimedia
	Multimedia Data Segment Decomposition

	Towards a Web Portal of CPs

	Software Engineering templates
	General
	Parts and collections
	Semiotics
	Quantities and Dimensions
	Participation
	Organization, Management, and Scheduling
	Business
	Time
	Space
	Life Science
	Multimedia

	Bibliography

