

 NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 — “Semantic-based knowledge and content systems”

D2.3.1 Practical Methods to Support Collaborative
Ontology Design

Deliverable Co-ordinator: Klaas Dellschaft

Deliverable Co-ordinating Institution: Universität Koblenz-Landau (UKO-
LD)

Other Authors: Klaas Dellschaft(UKO-LD), Aldo Gangemi(CNR), Jose
Manuel Gomez (ISOCO), Holger Lewen(UKARL), Valentina Presutti(CNR),
Margherita Sini (FAO)

This deliverable describes a set of methods for collaborative editing of ontologies, consensus
reaching and capturing the design rationale of ontology elements.

Document Identifier: NEON/2008/D2.3.1/1.2 Date due: January 31, 2008
Class Deliverable: NEON EU-IST-2005-027595 Submission date: February 11, 2008
Project start date March 1, 2006 Version: 1.2
Project duration: 4 years State: Draft

Distribution: Public

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 2 of 71 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is part of the NeOn research project funded by the IST Programme of the Commission of the
European Communities by the grant number IST-2005-027595. The following partners are involved in the
project:

Open University (OU) – Coordinator Universität Karlsruhe – TH (UKARL)
Knowledge Media Institute – KMi Institut für Angewandte Informatik und Formale
Berrill Building, Walton Hall Beschreibungsverfahren – AIFB
Milton Keynes, MK7 6AA Englerstrasse 11
United Kingdom D-76128 Karlsruhe, Germany
Contact person: Martin Dzbor, Enrico Motta Contact person: Peter Haase
E-mail address: {m.dzbor, e.motta}@open.ac.uk E-mail address: pha@aifb.uni-karlsruhe.de
Universidad Politécnica de Madrid (UPM) Software AG (SAG)
Campus de Montegancedo Uhlandstrasse 12
28660 Boadilla del Monte 64297 Darmstadt
Spain Germany
Contact person: Asunción Gómez Pérez Contact person: Walter Waterfeld
E-mail address: asun@fi.ump.es E-mail address: walter.waterfeld@softwareag.com
Intelligent Software Components S.A. (ISOCO) Institut ‘Jožef Stefan’ (JSI)
Calle de Pedro de Valdivia 10 Jamova 39
28006 Madrid SL–1000 Ljubljana
Spain Slovenia
Contact person: Jesús Contreras Contact person: Marko Grobelnik
E-mail address: jcontreras@isoco.com E-mail address: marko.grobelnik@ijs.si
Institut National de Recherche en Informatique University of Sheffield (USFD)
et en Automatique (INRIA) Dept. of Computer Science
ZIRST – 665 avenue de l’Europe Regent Court
Montbonnot Saint Martin 211 Portobello street
38334 Saint-Ismier, France S14DP Sheffield, United Kingdom
Contact person: Jérôme Euzenat Contact person: Hamish Cunningham
E-mail address: jerome.euzenat@inrialpes.fr E-mail address: hamish@dcs.shef.ac.uk
Universität Kolenz-Landau (UKO-LD) Consiglio Nazionale delle Ricerche (CNR)
Universitätsstrasse 1 Institute of cognitive sciences and technologies
56070 Koblenz Via S. Marino della Battaglia
Germany 44 – 00185 Roma-Lazio Italy
Contact person: Steffen Staab Contact person: Aldo Gangemi
E-mail address: staab@uni-koblenz.de E-mail address: aldo.gangemi@istc.cnr.it
Ontoprise GmbH. (ONTO) Food and Agriculture Organization
Amalienbadstr. 36 of the United Nations (FAO)
(Raumfabrik 29) Viale delle Terme di Caracalla
76227 Karlsruhe 00100 Rome
Germany Italy
Contact person: Jürgen Angele Contact person: Marta Iglesias
E-mail address: angele@ontoprise.de E-mail address: marta.iglesias@fao.org
Atos Origin S.A. (ATOS) Laboratorios KIN, S.A. (KIN)
Calle de Albarracín, 25 C/Ciudad de Granada, 123
28037 Madrid 08018 Barcelona
Spain Spain
Contact person: Tomás Pariente Lobo Contact person: Antonio López
E-mail address: tomas.parientelobo@atosorigin.com E-mail address: alopez@kin.es

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 3 of 71

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this document, even
if they might not have directly contributed writing parts of this document:

• Consiglio Nazionale delle Ricerche (CNR)

• Food and Agriculture Organization of the United Nations (FAO)

• Intelligent Software Components S.A. (ISOCO)

• Universität Karlsruhe – TH (UKARL)

• Universität Koblenz-Landau (UKO-LD)

Change Log

Version Date Amended by Changes
0.1 09-10-2007 Klaas Dellschaft First draft outline
0.2 14-11-2007 Klaas Dellschaft Integrated the contribution of FAO
0.3 01-02-2008 Klaas Dellschaft Updated contributions from FAO. Editing

of chapter 2.
0.4 06-02-2008 Klaas Dellschaft Editing of chapter 2. Added conclusions

and executive summary.
1.0 11-02-2008 Klaas Dellschaft Final editing and proof reading before

sending to QA.
1.1 06-03-2008 Klaas Dellschaft Integrated short definition of collaboration

and clarification of relationship between
work in WP2 and WP3.

1.2 14-04-2008 Klaas Dellschaft Implemented the suggested changes
from the QA.

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 4 of 71 NeOn Integrated Project EU-IST-027595

Executive Summary

In this deliverable, we will identify a list of features that are required for supporting collaborative ontology
design. The focus is on scenarios where the development team is distributed over multiple locations, like it is
the case for the FAO and the invoicing case study.

For example, in the FAO case study the world-wide users of the AGROVOC ontology can also participate
in its further development. Currently, they can only provide suggestions via mailing lists or a web form. But
for the future it is planned to allow direct collaborative editing by the users. Nevertheless, FAO staff will still
review the changes before they are published in an official version of AGROVOC.

In the invoicing case study, several Spanish laboratories organized in the PharmaInnova cluster are col-
laborating for defining a common invoice model which can be used for exchanging invoices between the
laboratories. Currently, all participants have to physically meet at one place but for reducing the costs and
required person effort the physical meetings should be reduced to a minimum and be replaced with online
techniques for collaboration over the internet.

Based on an analysis of the previously described case studies and state-of-the-art ontology editing tools with
collaboration support like Collaborative Protégé, a list of required features can be identified. The list includes
features like the annotation of ontology elements with further explanations of, e. g. their design rationale or
the support for computer-mediated communication between the different participants of the ontology design
process.

Three different techniques will be explained in more detail, each addressing one or more of the identified
required features. Furthermore, we will provide pointers to related work in other workpackages of NeOn
which also provide techniques for supporting collaborative ontology design.

First, we will describe the WikiFactory framework that addresses the problem of collaboratively editing an
ontology. It allows for deploying a given ontology into a semantic wiki like the Semantic MediaWiki. Then, the
ontology can be modified by editing the created wiki pages. It has the advantage that also domain experts,
who are typically not familiar with sophisticated ontology editing tools, can easily contribute to maintaining an
ontology. Furthermore, the collaborative editing features of the wiki can be reused for editing ontologies.

The second technique is related to supporting the discussion and decision taking processes during the
ontology design process. Cicero, a wiki based tool will be presented. It supports its users in applying the
idea of issue based information systems (IBIS). In previous studies it was shown that an IBIS like structure
leads to more efficient and better structured discussions.

The discussions captured with Cicero reflect the design rationale of the corresponding discussed ontology
elements. They are an important part of the provenance information of ontology elements, explaining their
current state. Knowing and documenting the design rationale of ontology elements is especially of impor-
tance in the case of collaborative ontology design. In this deliverable, we will make a proposal of how to
easily add the required provenance annotations to an ontology by integrating the Cicero tool with the NeOn
toolkit.

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 5 of 71

Note on Sources and Original Contributions

The NeOn consortium is an inter-disciplinary team, and in order to make deliverables self-contained and
comprehensible to all partners, some deliverables thus necessarily include state-of-the-art surveys and as-
sociated critical assessment. Where there is no advantage to recreating such materials from first principles,
partners follow standard scientific practice and occasionally make use of their own pre-existing intellectual
property in such sections. In the interests of transparency, we here identify the main sources of such pre-
existing materials in this deliverable:

• Chapter 4 is partially based on [DS08].

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 6 of 71 NeOn Integrated Project EU-IST-027595

Contents

1 Introduction 11

2 Requirements for Collaborative Ontology Engineering 12
2.1 Collaboration Scenarios: Ontology Engineering at FAO . 12

2.1.1 The AGROVOC Thesaurus and Concept Server . 12

2.1.2 FNA: The Food, Nutrition and Agriculture Ontology . 15

2.1.3 CWR: Crop Wild Relative Ontology . 15

2.1.4 Generalized Scenario . 16

2.2 Collaboration Scenarios: Electronic Invoice Management . 16

2.3 Analysis of Existing Tools . 18

2.3.1 Collaborative Protégé . 18

2.3.2 Collaborative Ontology Engineering in the 90s . 23

2.3.3 Further Current Tools . 25

2.3.4 Trends in collaborative ontology editing . 26

2.4 List of Required Features . 26

2.5 Collaboration Support in NeOn . 27

3 Collaborative Editing 29
3.1 The WikiFactory Framework . 30

3.2 How WikiFactory Works: a running example . 32

3.3 Related Work . 35

3.4 Concluding Remarks . 37

4 Argumentation 38
4.1 Issue Based Information Systems (IBIS) . 38

4.1.1 Extensions of IBIS . 39

4.1.2 Benefits . 40

4.2 Compendium . 41

4.2.1 Personal Organization with Compendium . 41

4.2.2 Documenting Group Discussions in Compendium . 42

4.2.3 Conclusion . 43

4.3 Cicero . 43

4.3.1 Asynchronous Group Discussions . 46

4.3.2 Establishing Provenance Links . 46

4.3.3 Conclusion . 47

4.4 Comparison of Compendium and Cicero . 48

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 7 of 71

5 Conclusion 49

A Manual of the Cicero Argumentation Tool 51
A.1 About the Argumentation Tool . 51

A.2 Installation and Configuration . 51

A.2.1 Installing Cicero . 51

A.2.2 Configuration . 52

A.3 Getting Access and Log In . 54

A.4 The Project Page . 55

A.4.1 Creating a Project . 56

A.4.2 Managing the Project Properties . 56

A.5 The Issue Page . 59

A.5.1 Creating an Issue . 59

A.5.2 Issue States . 61

A.5.3 The Discussion Page . 61

A.5.4 Taking a Decision . 64

A.5.5 Managing the Issue Properties . 66

Bibliography 67

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 8 of 71 NeOn Integrated Project EU-IST-027595

List of Tables

4.1 Comparison of Compendium and Cicero. 48

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 9 of 71

List of Figures

2.1 Current workflow for collaborative content maintenance of AGROVOC. 13

2.2 Planned workflow for collaborative management of AGROVOC. 14

2.3 Workflow for the FNA Ontology. 15

2.4 Workflow for the CWR Ontology. 16

2.5 Proposed workflow for Collaborative Ontology management and use (covering entire life cy-
cle). Participants may access the same ontology through the same tool, or the same ontology
from different tools . 17

2.6 Core components of the Collaborative Protégé architecture [TN07]. 19

2.7 Example of an annotated class. The icon next to the class “FourSeasons” indicates an existing
annotation. The annotation is displayed in the collaboration panel along with details such as
author or creation date. 20

2.8 Example of an annotated change. The class “IceCream” has been deleted and the collabora-
tion panel displays the change with an additional explanation by user WP2. 21

2.9 Example of an Agree / Disagree vote proposal. For class “Country” it is proposed that the list
of individuals should be extended. User WP2 has voted “I agree” and given an explanation for
the vote. 21

2.10 Example of the filtering mechanism. The class “Pizza” was selected and then the resulting
comments and annotations where filtered by author WP2. This results in a list of annotations
which can then be selected to see the details. 22

2.11 Example of the search mechanism. The user searched for all annotations by author WP2 that
were created November 26th 2007. 23

2.12 Example of a discussion thread. The reply “No, I think some Pizzas are missing.” annotates the
question “Do you think all existing Pizzas have been properly represented in this ontology?”.
Creator and creation date are stored and displayed on the details tab. 24

2.13 Example of a chat. The red exclamation mark indicates new messages. 24

3.1 WikiFactory architecture . 31

3.2 The WikiFactory Deployer GUI . 32

3.3 SMW categories pages . 33

3.4 New Individual page details . 34

3.5 Restriction Editor page . 34

3.6 IRE Individual representation . 35

3.7 IRE Class representation . 36

3.8 IRE Property representation . 36

4.1 Documenting the design rationale with the Potts and Bruns model (adapted from [PB88]). . . . 39

4.2 Adapted version of the DILIGENT argumentation model as it is used in Cicero. 40

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 10 of 71 NeOn Integrated Project EU-IST-027595

4.3 Example for a discussion in Compendium. 42

4.4 Overview page of an issue in Cicero. 44

4.5 Discussion page in Cicero to which new solution proposals and arguments can be posted. . . . 45

4.6 Mapping between tools and the parts of the argumentation model that they support. 47

A.1 The Cicero installation form. 52

A.2 Adding a new cicero administrator . 53

A.3 Start page of Cicero. 55

A.4 Overview page of a project in Cicero. 56

A.5 Editing the project description and the advanced settings. 57

A.6 Editing the access rights and user roles. 58

A.7 Overview page of an issue in Cicero. 60

A.8 Form for creating a new issue in Cicero. 60

A.9 Issue States in Cicero . 62

A.10 Discussion page of an issue in Cicero. 63

A.11 Form for replying to a solution proposal. 63

A.12 Relations between issues, solution proposals and arguments. 64

A.13 Issue overview page during a running preferential voting. 65

A.14 Form in Cicero for casting the ballot during a voting. 65

A.15 Editing the issue properties in Cicero. 66

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 11 of 71

Chapter 1

Introduction

In this deliverable, we will identify a list of features that are required for supporting collaborative ontology
design. Loosely speaking, with the term collaboration we mean either (i) situations of reuse-oriented collabo-
ration (e. g. reusing existing ontologies or ontology design patterns, making an ontology functional to a given
task through appropriate evaluation and selection, re-engineering thesauri, folksonomies, subject directories,
textual data) or (ii) situations of active interaction between agents for producing a knowledge resource (e. g.
collaborative editing and annotation of ontology elements and changes, discussing and getting consensus
on design solutions and their rationales in context).

More precisely, the notion of collaborative workflow has been defined in C-ODO [CGL+07a] as a special
type of epistemic workflow. Epistemic workflow is one of C-ODOŠs key-concepts, it subsumes other types
of workflows, like interaction or usage, for which the bonds between the agents involved in the workflow are
weaker than in the case of collaboration.

Collaborative workflows are typically based on teams that include accountable agents, i. e. accountable
agents are conscious of their participation to the same plan and share a same goal. The focus of this deliv-
erable is on collaboration scenarios where the development team is distributed over multiple locations, like it
is the case for the FAO and the invoicing case study. The relevant case study scenarios will be described in
Chapter 2. Based on an analysis of the scenarios and state-of-the-art ontology editing tools with collabora-
tion support like Collaborative Protégé, this chapter also contains a list of features required for collaborative
ontology design.

In the rest of the deliverable, we will describe concrete techniques that support the required features and
that facilitate collaborative ontology design. In Chapter 3, we will describe the WikiFactory framework that
addresses the problem of collaboratively editing an ontology. It allows for deploying a given ontology into
a semantic wiki like the Semantic MediaWiki. The WikiFactory approach has the advantage that also do-
main experts, who are typically not familiar with sophisticated ontology editing tools, can easily contribute to
maintaining an ontology.

The second technique described in Chapter 4 is related to supporting the discussion and decision taking
processes during collaborative ontology design. The Cicero extension for Semantic MediaWiki supports its
users in applying the idea of issue based information systems (IBIS). Having an IBIS like structure leads to
more efficient and better structured discussions. The manual of the tool is available in Appendix A. Further-
more, we will describe in Section 4.3.2 how Cicero may be used for capturing provenance information of
ontology elements by integrating the Cicero tool and the NeOn toolkit.

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 12 of 71 NeOn Integrated Project EU-IST-027595

Chapter 2

Requirements for Collaborative Ontology
Engineering

In this chapter, we will identify features that are relevant for collaborative ontology engineering and that should
be supported within NeOn. We start by describing the collaboration scenarios in the case studies. After that,
we will analyze the collaboration features of existing tools like Collaborative Protégé. We close this chapter
with the list of required features and give pointers to the corresponding chapters in this deliverable or to other
NeOn deliverables which address one or more of the listed features.

2.1 Collaboration Scenarios: Ontology Engineering at FAO

In the following, we will describe the actual ontology engineering workflows of three different ontologies that
were developed at FAO. We will show that, despite their differences in size and scope, for developing all three
ontologies the collaboration between several persons was crucial. We will also discuss how the workflows
may be further improved by providing a better collaboration support.

2.1.1 The AGROVOC Thesaurus and Concept Server

AGROVOC is a multilingual thesaurus developed by FAO since 1983. Originally, it was only available in
printed copy, but since 2000 it is available online. Originally, the development of the thesaurus was done by
several experts who met regularly in order to discuss how to enrich it. The collaboration was therefore with
face-to-face meetings.

Translations of the thesaurus are currently done in partner countries. Experts meet and organize themselves
for the development of a version of the thesaurus in the national language. FAO provides guidelines1 and
tools2 for this task, but some countries also have their own tools. Once the national version is completed, it
is sent to FAO for inclusion in the master copy of the thesaurus and published online.

For some time now, it has been possible to add new terms to AGROVOC by direct suggestions from users all
over the world: the suggestions, in multiple languages, arrive to FAO through the means of a specific web-
form or emails. The suggestions are then evaluated and committed to the ontology by the FAO AGROVOC
team (see Fig. 2.1).

At the beginning of 2007, FAO has promoted a virtual conference, called the AGROVOC E-conference. This
has been recognized as an effective means for further collaboration between AGROVOC experts and users
all over the world. It didn’t require any working mission or trips by participants, with consequent save of
money and time, and allowed asynchronous participations, with consequent benefit of giving time to users to

1ftp://ftp.fao.org/gi/gil/gilws/aims/publications/papers/agrovoc_translation_guidelines.pdf
2http://www.fao.org/aims/tools_thes.jsp

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 13 of 71

Figure 2.1: Current workflow for collaborative content maintenance of AGROVOC.

reply when and from where was more convenient for them. In this case, a mediated communication over the
internet was used for organizing the work.

Both activities of creating and maintaining AGROVOC involve many actors who need to collaborate, e.g.
during the sequential actions of initial creation and translation. The collaboration takes place between the
different sequential actions as well as within them:

• The creation of terms involves many domain experts to identify what are the best terms to use for the
thesaurus. Furthermore, it has to be decided which terms may be created as non-descriptors or where
they should be put in the hierarchy (i.e. assign broader terms and/or narrower terms).

• The translation of terms involves discussions between translators and domain experts in order to eval-
uate and define the best translation of a term.

Therefore, for the collaborative aspects of the creation and maintenance of an ontology we need to consider
collaborations over different steps performed by different people as well as collaboration among several
participants for every single step. For these reasons, FAO recognizes the need for making the development
and the maintenance of AGROVOC more collaborative and especially more direct for users without the
mediating action of FAO staff members. In parallel with this, the idea to convert AGROVOC to a more
complete structure allowing the representation of more information (such as linguistic information for terms,
or the ability to have multiple translations of a specific term, etc.) has been investigated.

As a result, FAO has undertaken the development of a new system, called the AGROVOC Concept Server
Workbench, which allows collaborative and distributed management of the new restructured AGROVOC (in
this case we can talk of an AGROVOC Ontology). The resulting workflow is shown in Fig. 2.2 (more details
about the editorial workflow are also available in [PWHd07]). The collaboration in this case is much more
effective because:

• AGROVOC editors all over the world can have direct access to a unique and homogenized mainte-
nance tool;

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 14 of 71 NeOn Integrated Project EU-IST-027595

Figure 2.2: Planned workflow for collaborative management of AGROVOC.

• changes are immediate and there is no need to wait for FAO actions (eventually only validations of
proposed changes);

• all users can immediately see and benefit from other users contributions;

• the cycle of adding data to AGROVOC and using it is more immediate, because after the data are
inserted and eventually validated, they become immediately available for remote access through web
services or for download (currently, a new version of AGROVOC is published only every three months).

In this case we have identified several roles for people interacting with each other:

• Domain Experts: Librarians, indexers and AGROVOC users all over the world can be seen as domain
experts which need to enrich the ontology (AGROVOC concept server). They can be further divided
into:

– ontology experts (the ones that work on the hierarchies and relationships of concepts),

– terminology specialists (the ones that are interested only on the translations of terms).

• AGROVOC Experts: The AGROVOC managers who can validate and/or publish changes of the domain
experts.

• Ontology Engineers and the AGROVOC DB Manager.

There are several activities these actors may be involved into, such as:

• concept or term creation and editing,

• concept or term deprecation,

• concept or term annotation (e.g. management of images and definitions, etc.),

• relationship management,

• validation of changes,

• publication of new versions.

Collaborative tools should in this case analyze the different actions users may perform in order to facilitate
maintenance tasks (e.g. identify categories of annotations, etc.). In addition to that, logs should record every
user actions, and the system may provide statistics on user activities.

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 15 of 71

Figure 2.3: Workflow for the FNA Ontology.

2.1.2 FNA: The Food, Nutrition and Agriculture Ontology

The “Food, Nutrition and Agriculture” Ontology has been developed in FAO in 2004 to store metadata el-
ements of the FNA journals3. During its development, the KAON format and tools were used (mainly the
OI-modeller). The ontology was developed using the effort of 3 people (one metadata expert, one ontology
engineer and one domain expert).

The collaborative workflow for the creation of the ontology was pretty easy, because the metadata expert
exported needed data from databases and compiled them into a topic-map file. This file was then passed to
the ontology expert who converted this file into a KAON ontology and checked that all the needed elements
were present and eventually created them. Then, a trained domain expert took the KAON file and used the
KAON interface for completing the ontology with all needed relationships and adding multi-linguality. The
editorial workflow can in this case be considered linear (see Fig. 2.3).

The maintenance of the FNA ontology does not require specific tools or actions because it is only seldom
changed and thus it is sufficient if the trained ontology editor updates the ontology using the KAON OI-
modeler tool. However, this is a special case requiring only a minimum of collaboration.

2.1.3 CWR: Crop Wild Relative Ontology

The Crop Wild Relative Ontology contains a subset of about 400 terms highly relevant to crop wild relatives.
Terms with high relevance to the CWR domain are grouped into themes, roughly corresponding to AGROVOC
(top level) categories, or indicatives of the thematic sources from which the terms were collected (biological
and geographical online dictionaries etc.), with an attempt to balance the number of terms between the
groups. For the import into the ontology structure, the themes were converted to namespaces in order to
preserve the grouping and allow manipulation within ontology client programs on terms based on namespace
grouping. Before the import, the namespaces were slightly modified and adapted to some other existing
ontologies. The ontology is available as OWL Full and OWL DL.

The collaborative workflow involved FAO staff and an external collaborator who provided his knowledge as a
domain expert. FAO prepared the requirement and the minimal set of terms from AGROVOC that were used
for the development of the ontology. The compiled information was sent to the domain expert who manually
populated the ontology. The ontology was sent back to FAO for analysis and final set-up (including model
restructuring and language enrichment). The resulting workflow is shown in Fig. 2.4.

In this case we also have several steps performed by different actors. The CWR development is particularly
interesting as there was a clear distinction between ontology engineers and ontology editors. Their roles are
very different and they performed actions in different steps. However, it is desirable and needed to have a
tighter collaboration between the different actors.

3http://www.fao.org/ag/agn/publications/fna/index.jsp?lang=en

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 16 of 71 NeOn Integrated Project EU-IST-027595

Figure 2.4: Workflow for the CWR Ontology.

2.1.4 Generalized Scenario

In general, the collaborative workflow for the development of ontologies has the following steps and corre-
sponding actors (cf. Fig. 2.5):

• The initial ontology design and population is done by one or more ontology engineers who are generally
preparing the structure of the ontology.

• Afterward, one or more domain experts or ontology editors are further populating the initial ontology.
Also information specialists may be involved who populate the ontology from databases etc.

• Next, translators may translate the elements of the ontology.

• Finally, the ontology is integrated into the information system and published by ontology or IT experts.

The identified activities may be executed in subsequent steps (like in the case of the FNA or CWR ontology)
or they may be executed in parallel (like in the case of AGROVOC). Having parallel activities instead of
subsequent steps increases the amount of interaction and collaboration between the different participants
and roles of an ontology engineering project.

2.2 Collaboration Scenarios: Electronic Invoice Management

The term collaboration can be defined as the act of working together while accomplishing a united goal. This
definition implies involvement of a number of different agents cooperating in such task. However, collabo-
rative processes can be supported by tools that are not themselves of a collaborative nature, e. g. workflow
representation and reasoning tools, but which on the other hand can assist processes of a collaborative
nature.

In this regard, collaboration in the context of electronic invoicing can be seen in the activity of defining invoice
models. During this activity, creators of invoice models and standards take care of the definition of invoice
models for the pharmaceutical sector. This is usually a collaborative process where representatives of the
different participating organizations, like the laboratories of PharmaInnova, physically meet and negotiate
the information that must be contained in such models. For the case of the PharmaInnova pharmaceutical
cluster, the subjects of discussion for this argumentation-intensive process are:

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 17 of 71

Figure 2.5: Proposed workflow for Collaborative Ontology management and use (covering entire life cycle).
Participants may access the same ontology through the same tool, or the same ontology from different tools

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 18 of 71 NeOn Integrated Project EU-IST-027595

• Data types contained in the invoice model. So far: compulsory by law, compulsory for integration, and
informative.

• Main concepts of the invoice model: head, body, and summary.

• Specific fields in each concept.

• Relations and constraints between the different fields of the invoice model.

As can be anticipated, this is not an efficient way to agree on a common conceptual model to be shared by
the different organizations members of a cluster like PharmaInnova. More powerful tools for supporting the
consensus reaching process are required. They would especially be useful in the case of dynamic sectorial
clusters like PharmaInnova, where the addition of a new member might trigger a new round of discussions.

In this context, collaborative argumentation tools should enable domain experts with no background in ontol-
ogy engineering to develop themselves such consensual models representing the required information. The
key issue here is usability: how to make the use of such tools easy for domain experts. If this is achieved, the
models, resulting from the cooperation among partners, will reflect with higher accuracy the requirements of
all the members of the target community, in our case the pharmaceutical laboratories.

But such an approach would also have two further advantages: First, it would result in reduced effort of
expensive human resources and travel costs because face-to-face meetings can be avoided. Second, such
approach would also advance the democratization of the internal processes of a cluster like PharmaInnova
because it would ensure that all member laboratories, regardless of their size, have equal rights to participate.

For the future, it is planned to do an experiment that involves the WikiFactory framework and the Cicero
argumentation tool that are described in Chapter 3 and 4. In the experiment, it will be assumed that a new
member has joined the PharamaInnova cluster and that its invoice model has to be incorporated into the
common model. In this scenario, WikiFactory will be used for viewing and comparing the two invoice models
with each other while Cicero supports an asynchronous discussion and decision taking process between the
participants in the experiment. Further planning and conducting the experiment will be subject to future work
in WP2.

2.3 Analysis of Existing Tools

In the following, we will analyze the collaboration features in existing tools. The main focus will be on the
recently developed Collaborative Protégé, but also other tools will be described.

2.3.1 Collaborative Protégé

In order to extend the Protégé Ontology Engineering environment with collaborative functionalities, several
new features have become part of the full Protégé installation. In Collaborative Protégé4 users can annotate
ontology elements as well as ontology changes. Also voting and user interaction via chat are supported.
Collaborative Protégé has been developed as an extension of the multi-user Protégé system, which already
allowed multi-user-access and editing [TN07]. It works by having one dedicated server running that coordi-
nates all users connecting to the server in client mode.

Figure 2.6 presents a sketch of the core components of the Collaborative Protégé architecture. The user only
interacts with the ontology editor component (which is provided by the underlying Protégé system) and the
annotation component which is driven by a RDF(S) annotation ontology providing structure for the annotation
types. The change tracking component converts the user GUI interactions into change annotations attached
to the changed ontology components.

4http://protege.stanford.edu/doc/collab-protege/

http://protege.stanford.edu/doc/collab-protege/

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 19 of 71

Figure 1: Core components of the Collaborative
Protégé architecture that support the annotation of
ontology components and of changes in the ontology.

any change that occurs in the ontology. The tool also pro-
vides support for different visualizations of the annotations,
which can be customized by the user by specifying different
filtering criteria. A user may search through the available
annotations by specifying simple or complex search criteria.

The main purpose of this prototype is to gather users
requirements for a collaborative ontology development envi-
ronment. Currently, the prototype is available as a stand-
alone application and as an applet. However, after gathering
the users requirements and feedback, we envision that the
functionalities offered by the current prototype will be im-
plemented in a web-based application.

2.1 System Functionality
The system is an extension of the existing Protégé tool and

takes advantage of the existing Protégé functionality, such
as ontology editing and structured instance acquisition.

The main functionality provided by the Collaborative Protégé
prototype are:

• Annotation of ontology elements, such as classes, prop-
erties, individuals

• Annotation of ontology changes, such as class creation,
deletion, renaming, etc.

• Support for change proposals and voting of proposals

• Support for filtering of existing annotations

• Support for searching of annotations based on simple
or complex criteria

• Support for discussion threads

Another important feature that is currently only exper-
imental is the support of ratings for existing user annota-
tions. This feature enables the implementation of different
web-of-trust algorithms.

2.2 System Design
Figure 1 shows a diagram of the core components of the

system that support the collaborative development of on-
tologies and specifically the ontology and changes annota-
tion process. The user interacts with the Ontology Editor
Component and the Annotation Component. The editing

component is provided by the underlying Protégé system.
The Annotation Component allows the user to annotate on-
tology components, such as classes, properties and individ-
uals, as well as ontology changes, such as class creation or
deletion, with annotation types defined in the Annotation
ontology.

The Annotation ontology is a RDF(S) ontology that pro-
vides the structure for the annotation types supported by
the tool. The annotation types are extensions of the An-
notea [2] annotations and contain concepts such as Com-
ment, Advice, Example, etc. User annotations are stored
as instances of the predefined annotation classes and can be
used for annotating both ontology components as well as
ontology changes.

The Change tracking component is responsible for inter-
cepting the user actions in the GUI and creating change
annotations attached to the changed ontology components.
Change annotation types are defined in the Annotation on-
tology.

The system supports also discussion threads by allowing
the users to reply to the comments of other users. This is
realized by a flexible representation of annotations, which
can themselves be annotated. The system supports also
the rating and voting of proposals, which are represented as
annotation types in the Annotation ontology.

Other components of the system are the searching and
the filtering components, which are crucial in dealing with
large bodies of annotations. The filtering component will be
used in future versions of the system to create user-defined
views of an ontology based on user preferences.

2.3 Software Architecture
The system is implemented as a plug-in of the existing

Protégé system. The prototype enables several Protégé clients
to connect through Remote Method Invocation (RMI) to a
server that stores a repository of ontologies.

The current prototype can be used both as a stand-alone
application for the cases in which several users edit the same
ontology at different timepoints, or in a multi-user setting,
in which multiple clients may edit the same ontology in a
concurrent fashion. In the multi-user setting, the clients
may connect either by using Protégé rich client or by using
the Protégé applet client.

2.4 The Graphical User Interface
The graphical user interface of the Collaborative Protégé

builds on top of the available plug-ins of the Protégé user
interface and provides additional graphical components for
editing and browsing the annotations. Figure 2 shows a
screenshot of the Collaborative Protégé in which the classes
view has been enhanced with an annotations panel in which
the user can edit and browse the annotations.

The annotations panel provides different views of the an-
notations:

• Changes annotations view

• Ontology Components annotations view

• All annotations view (both Changes and Ontology Com-
ponents annotations)

• Discussions thread view

Figure 2.6: Core components of the Collaborative Protégé architecture [TN07].

It is also noteworthy that the current version can be used both as a stand-alone application (several users
edit the same ontology at different timepoints) or in a multi-user setting (where multiple clients can edit the
same ontology in a concurrent fashion). More details can be found in a first publication on Collaborative
Protégé [TN07]. In the following, we will list its collaboration features in a little bit more detail.

Annotation of ontology elements

Ontology components (classes, properties and instances) can be annotated by using the annotation tab in
the collaborative panel. This is done by clicking on the component you want to annotate so it is selected and
then selecting the annotation to add. As can be seen in Fig. 2.7, other users can see the annotation along
with details such as author.

Annotation of ontology changes

In Collaborative Protégé, all changes are tracked by the system. Changes include the creation, deletion or
renaming of ontology components. This enables the user to also annotate changes. In order to do so, the
change has to be selected in the collaboration panel and then the type of annotation has to be selected (see
also Fig. 2.8.

Support for change proposals and voting proposals

Currently, two different types of change and voting proposals are implemented in Collaborative Protégé:
The Agree / Disagree proposal with the respective Agree / Disagree votes, and a Five Stars proposal with
the corresponding Five Star vote. Proposals can be started in any of the Annotations, Changes, All or
Discussion Threads tabs. They can also be linked to ontology components or changes by selecting them
and then starting the proposal. In Fig. 2.9 you can see an example of such a voting. Currently, a proper
workflow for the voting mechanism has not yet been implemented, but is announced for upcoming versions.

Support for filtering of existing annotations

The mechanism for filtering annotations becomes especially useful when a multitude of comments or anno-
tations are present for an ontology component and one is only interested in certain types of annotation or
annotation by a specific user. In Fig. 2.10 you can see an example of such a filtered list of annotations.

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 20 of 71 NeOn Integrated Project EU-IST-027595

Figure 2.7: Example of an annotated class. The icon next to the class “FourSeasons” indicates an existing
annotation. The annotation is displayed in the collaboration panel along with details such as author or
creation date.

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 21 of 71

Figure 2.8: Example of an annotated change. The class “IceCream” has been deleted and the collaboration
panel displays the change with an additional explanation by user WP2.

Figure 2.9: Example of an Agree / Disagree vote proposal. For class “Country” it is proposed that the list of
individuals should be extended. User WP2 has voted “I agree” and given an explanation for the vote.

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 22 of 71 NeOn Integrated Project EU-IST-027595

Figure 2.10: Example of the filtering mechanism. The class “Pizza” was selected and then the resulting
comments and annotations where filtered by author WP2. This results in a list of annotations which can then
be selected to see the details.

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 23 of 71

Figure 2.11: Example of the search mechanism. The user searched for all annotations by author WP2 that
were created November 26th 2007.

Support for searching of annotations based on simple or complex criteria

When filtering is not expressive enough, users can use the search tab to ask more expressive queries. For
example the time period, type of annotation, author or text can be entered. Fig. 2.11 provides a screenshot
of such a query.

Support for discussion threads

Similar to the world wide web forums a discussion in Collaborative Protégé consists of different discussion
threads where users can post comments and replies. This can also be used for a more asynchronous
discussion. Fig. 2.12 provides an exemplary discussion thread.

Live Chat

Basically like any other chat on the world wide web, the chat feature implemented in Collaborative Protégé
enables all users connected to the same server to interact in live discussions. A chat tab (see Fig. 2.13)
displays messages along with author and time stamp.

2.3.2 Collaborative Ontology Engineering in the 90s

Before we discuss collaborative features in other current ontology editors, we briefly outline features sup-
ported by tools that were used in the 90s. [DSW+00] is a widely cited study that was performed by the
University of Amsterdam in 2000 to compare the state of the art in ontology engineering tools back then. We
will now give a quick summary of these tools’ collaborative features based on the study. We will only men-

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 24 of 71 NeOn Integrated Project EU-IST-027595

Figure 2.12: Example of a discussion thread. The reply “No, I think some Pizzas are missing.” annotates
the question “Do you think all existing Pizzas have been properly represented in this ontology?”. Creator and
creation date are stored and displayed on the details tab.

Figure 2.13: Example of a chat. The red exclamation mark indicates new messages.

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 25 of 71

tion those tools, that had collaborative features, and dismiss tools that only allowed asynchronous editing by
exchanging the ontologies themselves via file.

Ontolingua

Ontolingua5 [FFR97] was designed specifically with collaboration in mind. It is the only tool in the study
supporting full synchronous editing of ontologies. Ontolingua runs on a server and can be accessed by
multiple users using a standard web-browser. Using Ontolingua, several users can edit the same ontology
at the same time with changes made visible to other users after they click on anything. Thereby consistency
between the server version and the user version of an ontology is ensured. Also all users in a shared session
are aware of changes made by other users and they have access to a shared undo-list. Together with the
redo-list, this enables quick reverts to different versions of the ontology, similar to the way versioning of Wiki
pages are managed in current Wikis. Using access management, ontologies can be locked for editing while
still being available for browsing by other users.

WebOnto

The collaborative mode in WebOnto6 [Dom98] is based on a feature called broadcast and receive mode. Ba-
sically when a user enables the broadcast mode and then enters the edit mode, changes are broadcasted to
other users in receiving mode. However concurrent editing is not possible, since the ontology is automatically
locked when one user is entering the edit mode. Viewing is still possible for other users.

Another feature for supporting collaboration in WebOnto is the annotation tool, which allows users to draw
anything with a “drawing pencil” into the graphical window. These drawings are then displayed in all con-
nected clients in real time.

Ontosaurus

In Ontosaurus7[SPKR96] it is possible to work synchronously on an ontology, but every time a change is
made the ontology is locked. Other users can see which user is editing and when the lock was created.
They can then choose to email the editor or override the lock. After changes are made, the ontology must be
updated and the user should return to the browse mode. This then removes the edit locks. One drawback is
that it is not easily possible for other users to see which change was made, and by whom and when.

2.3.3 Further Current Tools

After seeing the collaboration features of first generation ontology engineering tools, we will now explore
collaborative features of current tools. While it is safe to say that currently Collaborative Protégé has no real
competitor since it can build both on the huge user-base and also the stable underlying Protégé ontology
engineering environment, there are some ontology editors also putting more focus on collaborative aspects.
An overview (including a table comparing functionalities) can also be found in a report on the Collaborative
Knowledge Construction (CKC) challenge [NCA07], in which several tools competed. In the following we will
give a brief description of the ontology engineering tools that can be deemed useful.

HOZO

The latest version of the Hozo Ontology Engineering Environment8 [KKIM02] also supports asynchronous
ontology construction [KSKM07]. In Hozo, ontologies usually consist of (multiple) inter-connected modules.

5http://www.ksl.stanford.edu/software/ontolingua/
6http://kmi.open.ac.uk/projects/webonto/
7http://www.isi.edu/isd/ontosaurus.html
8Hozo.http://www.hozo.jp/

2007–2008 c© Copyright lies with the respective authors and their institutions.

http://www.ksl.stanford.edu/software/ontolingua/
http://kmi.open.ac.uk/projects/webonto/
http://www.isi.edu/isd/ontosaurus.html
Hozo. http://www.hozo.jp/

Page 26 of 71 NeOn Integrated Project EU-IST-027595

When a user checks out a module for editing it locally, it is locked and other users cannot edit it. When it is
checked in again, Hozo uses the declared dependencies between the modules to identify conflicts. Based
on a list of changes, users can decide to accept or reject changes made by other users. Its main focus is
building and integrating ontology modules along with a conflict detection mechanism.

OntoWiki

OntoWiki9 [ADR06] is a purely web-based application that allows collaborative building of ontologies. It also
features different views on the data. The system keeps track of all the changes applied to the knowledge
base and users can review this information. When editing classes or properties, OntoWiki redirects to pOWL,
a web-based ontology authoring and management tool. OntoWikis main purpose is knowledge acquisition.

DBin

DBin10 [TMN06] is a P2P system that allows users to collaboratively create knowledge bases. To facilitate
this task, DBin allows the creation of domain- or task-specific user interfaces from a collection of components
(such as ontology editors, views, forums or other plugins). Users can edit an ontology directly on the server
and also track the changes made by other users. Provenance information is also provided by the system.
DBin runs locally and connects to a P2P network from there.

SWOOP

SWOOP [KPS+06] allows collaborative ontology development by using an Annotea [KKPS02] plugin. The
generated annotations can then be published and distributed using any public Annotea Server.

2.3.4 Trends in collaborative ontology editing

Comparing the tools from the 90s with up-to-date ontology engineering tools, one can see that the concurrent
editing of an ontology has become more and more important. In Collaborative Protégé, the locking and
protection mechanisms can not be observed by the users. So the ontology is not locked because one user
edits it, but the system itself ensures consistencies of all clients. Relying on open standards like Annotea
ensures compatibility with other tools and should be encouraged. Also live communication and the ability
to annotate changes as well as ontology elements can be considered must-have features. So collaboration
should be made easy, with the tool tackling the underlying problems like synchronization without having a
noticeable effect (like an edit-lock) on the user.

2.4 List of Required Features

Based on the collaboration scenarios described in Section 2.1 and 2.2 as well as the analysis of existing
tools for collaborative ontology engineering in Section 2.3, the following features should be supported within
NeOn:

• Annotation of ontology elements and changes: One of the most important features of all collabora-
tive ontology engineering tools is the annotation of ontology elements, be it classes, properties or
instances. Furthermore, ontology changes can also be annotated for justifying them. A good inte-
gration and visualization of the annotation feature within the tool is important. While the editing and
adding of annotations can be performed in a separate annotation tab, an in place mouse-over display

9http://3ba.se
10http://dbin.org

http://3ba.se
http://dbin.org

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 27 of 71

right at the annotated ontology element would increase usability. Also an icon indicating the existence
of annotations is helpful (depending on the number of annotations, the opacity / color could change).

• Discussion threads and change/voting proposals: To guide the collaborative workflow, discussion
threads and voting proposals are indispensable. Ideally, these mechanisms would incorporate a for-
malized argumentation framework, structuring the decision making process.

• Chat : As with any form of communication mechanism on the web nowadays, the direct chat enables
people to talk about things ad hoc without thinking where to put it. Also, sometimes one wants instant
feedback and not start a forum thread or similar. And when talking about multiple ontology elements
at once, it is easier to just start discussing in the chat instead of distributing the discussion among
multiple ontology elements with individual discussion threads or annotations.

• Logging and versioning: Similar to Wikipedia, sometimes it is needed to quickly undo a change. If
someone accidentally deletes a concept or with malicious intents, other users should be able to quickly
restore it. Also it is good to keep an overview on who changed what so that one can for example see
if an expert user has made a change or a novice. Furthermore, the logging can be analyzed for
providing user statistics, e. g. the number of actions a user has done. In the FAO use case, it would
also be interesting to group the statistics by country or language.

• Search within ontology elements and annotations / changes: Ideally, the search functionality of a tool
allows not only for searching the ontology elements, but also the annotations and changes users made.

• Access right control and security : Depending on the type of the project and the sensitivity of the infor-
mation, not everybody should have access to the whole ontology. Here, access control and security
measures come into play. Access right management should work on both individual user and group
level.

• Customization of user interfaces: Different users may have different needs and roles and/or they may
perform different actions (e. g. work on a specific module or with specific languages). For example, in
the FAO case study we may have searches that customize the results based on the user – e. g. not
logged in terminology editors can find only published concepts or terms, while registered users may
retrieve also temporary or not yet validated terms. Based on this, it would be good to make the tool
customizable and be able to save the preferences.

• Sharing of documents: While creating terminologies or ontologies it is very essential to make use of
existing documents which may be a reference for specific terminologies. One important function may
be sharing documents or text corpora in specific languages or covering a specific domain.

2.5 Collaboration Support in NeOn

Within NeOn, several techniques have been developed for supporting the above mentioned required fea-
tures for collaborative ontology engineering. Two concrete techniques, the WikiFactory framework and the
Cicero argumentation tool, will be described in this deliverable while others (e. g. techniques for versioning of
ontologies and propagation of metadata) are described in the deliverables of other NeOn workpackages.

The WikiFactory framework will be described in Chapter 3. It allows for deploying an existing ontology
into semantic wikis (e. g. the Semantic MediaWiki). The wiki can then be used for collaboratively viewing
and editing the ontology. Typically, wikis have integrated logging and versioning mechanisms as well as
other collaboration features like discussion pages and access right control (usually on the level of the whole
ontology and not on individual elements). WikiFactory thus addresses several of the required collaboration
features.

Furthermore, in Chapter 4 we will describe the Cicero argumentation tool. It facilitates an asynchronous
discussion and decision taking process between participants of ontology engineering projects and supports

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 28 of 71 NeOn Integrated Project EU-IST-027595

its users in applying the idea of issue based information systems. Cicero addresses the need for holding
discussion in collaborative ontology engineering as well as change and voting proposals. Furthermore,
the planned integration with the NeOn toolkit will allow for the annotation of ontology elements with the
corresponding discussion as well as searching the content of discussions from within the NeOn toolkit.

As mentioned above, further techniques for supporting collaborative ontology engineering have been de-
veloped in other NeOn workpackages. For example, in WP1 concrete proposals of status annotations for
ontology elements are made. Annotations might be related to the scope or the definition of an ontology
element. Furthermore, a framework for managing changes and versions of ontologies is proposed. More
details are available in [PWHd07].

Other required features will be supported by techniques from WP4. For example, there is ongoing work on
how to manage access rights in ontologies (see [KGLCA07]) or how to provide customized views and user
interfaces.

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 29 of 71

Chapter 3

Collaborative Editing

A web ontology describes a domain of interest, and is used by software applications in order to accomplish
specific tasks on that domain. In order to be effective, a web ontology should encapsulate as much knowl-
edge as needed for addressing such tasks. In business and organizational contexts, collaboration between
ontology engineers and domain experts is essential in order to effectively build ontologies.

Over the semantic web, domain experts are web users, who need simple supporting tools to create and
maintain their knowledge. Domain experts might not be familiar with formal languages, while they are usually
confident with web browsing. Therefore, a web-based interaction between domain experts and ontologies is
an obvious choice.

Hypertextual browsing and web-based editing of ontologies is not a new thing: hypertextual visualization of
ontologies has been available since Ontolingua in 1992 [ARJ96], and web-based editing since Ontosaurus
in 1995 [BRKT96]. Hypertexts and web forms are good visualization solutions, but past and current tools
typically pre-configure one or more visualization choices. They neither attempt to align the structure of
ontologies to related web content, nor allow the customization of the interface to the expertise level of the
users. The WikiFactory tool is a first step towards semantically synchronous, customizable web ontology
development and collaborative knowledge management. Simply put, WikiFactory is able to couple each
element of an ontology (e. g., class, property, individual) to a wiki page (or to another web element), which
contains the description of the semantics for that element. The coupling keeps web elements and ontology
elements synchronized. Once the coupling is made, a domain expert is able to add elements, or to detect
errors or gaps, i. e., he/she is able to validate the ontology or the associated content, by simply browsing and
editing those pages.

A good story that supports the motivation for such a tool is exemplified here with reference to the UN-FAO
case study described in Section 2.1. A group of FAO domain experts, in charge of maintaining the AGROVOC
[agr] ontology, has been asked to validate the OWL version of AGROVOC [SLL+05]. They have explicitly
required not to use ontology editors and tools such as Protégé [Sta] or Swoop [MIN], as they find those tools
non-intuitive. Furthermore, they prefer browsing the ontology by simply ’clicking’ on its links, using a common
web browser.

Their requests have been partly satisfied by automatically generating HTML documentation from Protégé,
exploiting the OWLDoc functionality. OWLDoc can be compared to the Javadoc documentation [Sun] for
Java classes. In an OWLDoc, each HTML page represents either a class, a property, or an individual of the
ontology, and contains links to other ontology elements. Users can browse the ontology by following those
links.

FAO domain experts have found the OWLDoc very friendly, and they have been able to efficiently discover
errors and gaps. However, the OWLDoc does not provide them with editing functionalities, as it just generates
static pages. Therefore, feedback coming from the domain experts evaluation has to be reported to ontology
engineers, who in turn have to apply those changes to the ontology, and to produce an updated OWLDoc.
This collaboration may be recursively necessary once further changes to the OWLDoc have to be applied.

Although the use of such technologies has been effective, the resulting workflow is awkward for several

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 30 of 71 NeOn Integrated Project EU-IST-027595

reasons, including the fact that domain experts are geographically distributed, and the bad practice of putting
tasks that can be performed by experts on the shoulders of ontology engineers.

On the contrary, if domain experts would use pages of a Wiki site, they could modify their contents directly
from a web browser, and immediately see the changes.

Wikis are script-based applications that enable the friendly and quick online creation and editing of web
pages. An example of a wiki is the MediaWiki [med]1. Some wikis also provide semantic features; these
wikis are known as semantic wikis (e. g. Semantic Media Wiki [Wik], IkeWiki [Sch06] or SweetWiki [BG06]).

A page in a semantic wiki encapsulates informal as well as formal definitions about the ontology element
it represents. Formal content is encoded within the pages by including annotations, which are expressed
in terms of additional syntactic constructs (very similar to syntactic constructs used for traditional formatting
purposes). Existing semantic wikis typically allow users to (i) associate a page with either a class, a property,
or an individual, (ii) type links between individuals by means of semantic relations that express facts, and
(iii) express subclassof relations. Furthermore, semantic wikis typically allow users to export and save the
underlying ontology in a standard format e. g., RDF[W3C] or OWL[MvH04]. Exporting the ontology is useful
to perform some automatic processing and to reason on it. However, in order to fully exploit such semantic
features, users must be familiar with formal languages.

Potentially, semantic wikis can be seen as powerful ’lightweight’ collaborative tools for ontology creation and
evolution, as they are capable of combining a friendly collaborative authoring environment with the strengths
of semantic web technologies. To this aim, they should support a large number of semantic features and
present them by means of an appropriate user-oriented interface.

Based on the above discussion, we have designed and developed a software framework called WikiFactory,
a semantic web application whose innovative features can be summarized as follows:

Automatic deployment. Given an OWL ontology, WikiFactory is capable of creating automatically a corre-
sponding semantic wiki.

Synchronization. Any change applied to the wiki content is reflected upon the OWL ontology and vice
versa.

Help for users. WikiFactory helps users with a semantic assistant that exploits the capabilities of an OWL
reasoner.

Therefore, WikiFactory enables the same facilities as OWLDoc (in this case through a Semantic Wiki), but it
does not require a complex workflow such as the one described before, as it performs run-time synchroniza-
tion between an ontology and its wiki representation.

In the following, we describe the current beta version of WikiFactory, exemplifying its features within a test
case. In the test, we have used the FOSGeo ontology, which encodes a geographic ontology for the fishery
domain. The rest of the chapter is structured as follows. In the next section we discuss the main WikiFactory
functionalities and architecture. Section 3.2 describes the test case. Section 3.3 compares and contrasts our
solution to related work. Section 3.4 summarizes current and future work.

3.1 The WikiFactory Framework

WikiFactory, downloadable at the Sourceforge web site [Sou], is an open source framework that enables the
automatic creation of semantic wiki-based web sites and their dynamical management at run time. Figure
3.1 depicts the WikiFactory framework, which consists of distributed architectural components. The main
features of our framework are summarized as follows.

WikiFactory is ontology-driven: a web ontology represents the domain that the web site supports.2 It is

1See section 3.3 for additional references.
2Following common usage in semantic application descriptions, by ontology we mean here both OWL TBox and its related ABox,

i. e. its knowledge base.

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 31 of 71

Figure 3.1: WikiFactory architecture

used to automatically deploy the wiki and then to manage the life-cycle of the wiki at run time, thus allowing
the complete automatic detection of domain knowledge evolution.

WikiFactory enables the synchronization between the wiki and the ontology: on the server-side, as
illustrated in Figure 3.1, our framework includes an ontology manager for OWL ontologies. The domain
supported by the wiki site is represented by an OWL ontology, given as input to WikiFactory. The ontology
manager of our framework is then responsible for (i) detecting ("reasoner" in Figure 3.1) and managing
("ontology event handler" in Figure 3.1) changes that occur in the ontology and that must be reflected on
the wiki site and (ii) writing ("ontology writer" in Figure 3.1) the changes of the wiki site content that must be
reflected on the ontology.

WikiFactory is based on IRE and DnS theories: The way WikiFactory implements the deployment and
the synchronization between the OWL ontology and the wiki content is based on two models, namely IRE
[GP07] and DnS [GM03]. The OWL versions of IRE and DnS are available on the web3. DnS and IRE are
used to model WikiFactory operational semantics: for each ontology element, WikiFactory generates OWL
code so that (i) each ontology element is reified according to DnS, and (ii) the representation of web structure
elements (e. g., a wiki page) that contain information about an ontology element are typed according to IRE.
Ontology element reification and its associated web structure element are mutually associated by means
of a semantic relation that is defined in IRE [GP07], i. e., ProxyFor. The ontology writer is the WikiFactory
server-side component that carries out that task.

WikiFactory enables the use of Web Services and Semantic Web technologies: WikiFactory consists
of server-side and client-side components. Such components communicate by means of Web Service tech-
nologies, i. e. they use the SOAP protocol [GHM+06] and expose WSDL [CCMW01] interfaces to improve
interoperability with other semantic web applications.

WikiFactory enables wiki platform independence: the input OWL ontology is deployed to wiki pages
through an intermediate format named WIF [VO06]. For WikiFactory purposes we have extended the WIF
format in order to support semantic features. To this aim we referred to RDFa [AB06] expressivity. The
syntactic elements, which map semantic information (e. g., the type of a link) are organized by means of pat-
terns for document structures and embedded in specific attributes of in-line elements and heading metadata.
Any WikiPage is associated to a WikiTemplate indicating (i) the internal structures of that page, (ii)
how they are nested and connected, and (iii) where are the placeholders that will be substituted by instance
values. By applying templates, WikiFactory generates new documents (according to the WIF extended syn-
tax) through a server-side component named WikiFactory Commons Library. Such documents contain data
for each instance of the domain; these documents are finally delivered to a specific wiki clone. Extended
WIF expresses whatever can be written in a semantic wiki dialect. Developers can bind WikiFactory to their
platforms by implementing a bidirectional converter from WIF to any specific wiki syntax (see next bullet

3http://www.loa-cnr.it/ontologies/

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 32 of 71 NeOn Integrated Project EU-IST-027595

Figure 3.2: The WikiFactory Deployer GUI

point).

WikiFactory provides the automatic ontology-driven deployment and run time evolution of web sites:
WikiFactory client-side components are wiki clone-dependent, attached to the wiki and managed by Wik-
iFactory. They are responsible for (i) detecting and managing changes that wiki end-users perform upon
the content of the wiki pages (wiki event handler in Figure 3.1) and (ii) abstracting the underlying wiki clone
interactions. To achieve the latter purpose, we have designed a middleware layer constructed out of wiki-
dependent plugins. The plugins hide the implementation details of the specific wiki clone being used, and
expose an interface (the WikiFactory Bridge in Figure 3.1), used by WikiFactory server-side components. In
the current version, WikiFactory includes a plug-in for Semantic MediaWiki [Wik].

WikiFactory allows user-oriented support to express semantics over a semantic web: WikiFactory
guides users to express semantics as safely as possible: it enables users to express OWL constructs (it
supports a subset of OWL DL), and contextually disallows those constructs that can result as mistakes. For
example, for each page WikiFactory lists all properties that are applicable to the ontology element that wiki
page is about, according to definitions expressed in the OWL ontology for that ontology element. In addition
to end-user-oriented support, WikiFactory is designed to support ontology designers; to this aim, a set of
functionalities has been already designed and implemented to be part of an editor embedded within the wiki
(as shown in Figure 3.1).

3.2 How WikiFactory Works: a running example

In order to show how WikiFactory works in a realistic scenario, in this section we describe a test we have
carried out in order to verify two WikiFactory functionalities, among those earlier described; namely the
automatic ontology-driven deployment of semantic wikis and the synchronization between the wiki content
and the ontology.

The test ontology is a simplified version of the FAO Fishery Ontology Service Geo (FOSGeo) ontology, which
consists of 50 classes, 29 individuals and 29 object properties. The test consists of two main steps. The first
step regarded the ontology deployment over a semantic wiki. Note that, in general, this deployment produces
an ontology representation that is similar to OWLDoc. However, in such ontology representation hyperlinks
in pages represent semantic relations between resources and when the wiki content is changed by the wiki
users, the semantic content also changes dynamically.

The initial deployment is performed by the WikiFactory Deployer component, a Java application that requires
as input the path of the domain ontology to deploy, the ontology default namespace, the target wiki platform
and the URL of the target wiki site. Figure 3.2 shows the WikiFactory Deployer interface.

In our test, as illustrated in Figure 3.2, the WikiFactory Deployer is configured with the path of the FOSGeo
ontology and the default namespace “http://www.fao.org/aos/FOSGeo.owl#”. The chosen wiki

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 33 of 71

Figure 3.3: SMW categories pages

target platform is Semantic MediaWiki (note that WikiFactory can support any other semantic wiki platform)
and the wiki site URL is http://www.semanticfactory.org/wikitest/.

Once the deployment process is started, a parsing of the ontology is performed. In this parsing phase, for
each concept found (i. e., classes, individuals, properties) the WikiFactory Deployer creates a representation
of its wiki page by using an extended version of the Wiki Interchange Format (WIF)[VO06] (extended WIF
is able to capture the document semantics and helps to abstract from a particular wiki syntax). After the
parsing phase, the Deployer converts each WIF concept description to the wiki target syntax by applying an
XSLT transformation. This allows us to obtain the raw syntax for the final wiki page. Then, through a plugin
component installed in the wiki host, the Deployer physically writes the new pages in the wiki.

The output of the deployment process is a semantic wiki instantiated over the input ontology. Figure 3.3
shows the Semantic MediaWiki page obtained from the test ontology; the page lists all the class pages
available, given the initial ontology. For space reason we do not show the pages that list relations and
individuals.

Each wiki page contains hyperlinks with different meanings. In particular, class and individual pages have
links to classes (with the value of superclasses or rdf:types, respectively), and to applicable object properties.
Moreover, a special box that represents active restrictions is added to each page of a class or an individual
(in this latter case restrictions refer to those defined on the type of the individual). In addition, as WikiFactory
recognizes class disjointness, it builds a list of properties applicable to classes, i. e. this list does not contain
properties whose domain is disjoint from the current class.

The second step of the test verifies the synchronization functionality offered by our framework. We edit a new
page and WikiFactory synchronizes the new wiki content with the underlying ontology model. Afterwards, a
domain expert adds a page of an individual of type Province i. e., Napoli and WikiFactory automatically
inserts (i) a link in the page for each class type (subclasses included), (ii) a box for the active restrictions and,
finally (iii) the list of the applicable properties. Figure 3.4 shows the results of these operations.

On the ontology side, the corresponding OWL code is generated.

A further functionality offered by WikiFactory is the definition of a new restriction for a class. The restriction is
added by using the special wiki page Restriction Editor, shown in Figure 3.5. Each property displayed in the
list of the applicable properties for the class page has a link that allows us to add a new restriction over the
property. When we click on this link we are redirected to the Restriction Editor page, where we can choose
the type of restriction we wish to define over the property, and the corresponding restricted value type. Once
we submit our choice, the new restriction is created in the ontology and correctly displayed in the restriction
box of the restricted class’ wiki page.

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 34 of 71 NeOn Integrated Project EU-IST-027595

Figure 3.4: New Individual page details

Figure 3.5: Restriction Editor page

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 35 of 71

Figure 3.6: IRE Individual representation

As briefly stated above, WikiFactory implements the IRE [GP07] and DnS [GM03] models to control the
generation and the coupling of the OWL code for both the domain ontology and the wiki structure ontology.
The generated OWL code depends on the type of the ontology element, and describes the web element
(e. g. a wiki page) representing that specific ontology element.

WikiFactory generates and maintains two OWL ontologies, namely the domain ontology and the structure on-
tology. The structure ontology is filled e. g. with individuals of type wf:WikiPage, a class which represents
wiki pages. For example, consider the individual Chile in the domain ontology. As shown in Figure 3.6,
WikiFactory generates an OWL individual named ChileWP which is of type wf:WikiPage. Furthermore,
WikiFactory adds an assertion to the ontology, which states that the information contained in the wiki page
ChileWP is about the individual Chile of the domain ontology i. e., ChileWP ire:proxyFor Chile.
The relation ire:proxyFor is defined in the IRE ontology [GP07], and its rationale is motivated by the
need to distinguish between references to the information structure and references to the domain, in order to
enable correct identification of resources on the web.

Consider the class Figis-Country from the test domain ontology. In order to represent the domain
concept expressed by such class and the structure element associated with it, it would be needed to re-
late the class i. e., Figis-Country, to an individual i. e., Figis-CountryWP. This statement would
be in OWL Full. The same applies when object properties e. g., memberOf, are related to wiki page
individuals e. g., memberOfWP. Figures 3.7, and 3.8 show how WikiFactory deals with this issue. The
ontology writer reifies classes to individuals of the class edns:Concept, and object properties to individ-
uals of class edns:Description. these classes are defined in the DnS [GM03] ontology. In the test
case, the class Figis-Country is reified as the Figis-CountryConcept individual, while the ob-
ject property memberOf is reified as the memberOfDescription individual. Figis-CountryWP and
memberOfWP are respectively related to them by means of the ire:proxyFor object property. In order
to identify which concept is related to which class, an owl:hasValue restriction is used. For descriptions,
WikiFactory maintains an annotation property, namely wf:expressedByAnnotation, which allows the
tool to identify the reified object property.

3.3 Related Work

WikiFactory can be compared to other work by focusing on its functionalities:

• automatic model-driven deployment of semantic wiki sites (wiki-platform independence);

• synchronization between wiki content and ontology;

• user-oriented functionalities for exploiting semantic features;

• support for collaborative maintenance of web ontologies.

WikiFactory contribution is then characterized with reference to model-driven solutions for semantic web
portal management, to collaborative aspects of ontology design, and to semantic wikis.

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 36 of 71 NeOn Integrated Project EU-IST-027595

Figure 3.7: IRE Class representation Figure 3.8: IRE Property representation

WebML[CFB00] is the most relevant example of model-driven web portal development. WebML has a nota-
tion for specifying complex web sites at the conceptual level. The WebML approach allows users to generate
and deploy large web sites with a development process that undergoes several cycles, each of them pro-
ducing a prototype or a partial version of the application, which allows conducting testing and evaluation
since the early development phases. WebML users are mainly web designers, who can apply a software
development process for the creation of a complex web portal. However, WebML is not intended neither for
collaborative evolution nor for synchronization with a semantic knowledge base, as WikiFactory does.

There is valuable research effort on how to deal with collaborative ontology creation and growth. For an
extended discussion of the state-of-art, which spans from social to technological aspects of this issue, the
reader can refer to [CGL+06]. For example, some approaches address social aspects to be considered
when building tools [Ack01], [MS06]. [Ack01] clearly states the problems coming from the social-technical di-
vide. [Kol96] is a brief survey of the main studies on principles that seem to underline successful cooperative
communities. As far as ontology design is concerned, the DILIGENT methodology provides several require-
ments for supporting collaborative workflows [Vea06], [Tem06], and deals with argumentation [STV+06]. In
[NCLM06], further requirements for collaborative ontology development are identified. Available tools in-
clude e. g. Ontology Builder and Ontology Server (OBOS) [DWM01], and Co-OPR [Sea06], which presents
the integration of two existing tools (i. e., Compendium, and I-X). [Lu03] is a source of interesting points
on requirements and tool support, while [SSN93] and [Cha01] analyze aspects of human-computer interac-
tion (HCI). These contributions mainly address ontology engineers’ requirements. Our approach targets the
collaboration between teams of domain experts and ontology engineers, and the synchronization between
domain and structure ontologies, which enables the customization of the web elements (wiki pages or other),
based on the components of the collaborative lifecycle.

Wiki applications (the so-called WikiClones, to stress that they are derived from the original WikiWikiWeb
application [Web]) share the same basic philosophy as open editing and simple text-based syntax, but are
different on the side of additional services and application modules they offer. These features cover the
most varied areas: PurpleWiki [KEE] provides a full control on content fragments, JotSpot[Inc] integrates
collaborative tools, SnipSnap [JMLSSJ] allows users to in-line organigrams and UML diagrams. Particularly
interesting in the context of our work are those projects that aim at integrating wikis with Semantic Web
technologies, known as "SemanticWikiWikiWebs” [Sem].

Probably, the most popular semantic wiki is Semantic MediaWiki [Wik] (a MediaWiki [med] extension), which
provides users with semantic features such as defining categories, relations and articles, which correspond
to classes, properties, and individuals respectively. Furthermore, it provides functionalities for importing and
exporting OWL ontologies. Although Semantic MediaWiki allows users to define queries by supporting a

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 37 of 71

subset of SPARQL [PS05], it does not provide any reasoning yet.

OntoWiki [HBS05] is a semantic wiki with facilities for the visual presentation of a knowledge base, which
is represented as an information map with different views on instance data. In addition, it enhances the
browsing and retrieval of data of the knowledge base by offering semantic search strategies.

WikiFactory differs from the above mentioned semantic wikis. First, it is not a semantic wiki; rather it is wiki-
platform independent. WikiFactory is designed with a plug-in based architecture, i. e., it is possible to plug-in
modules for specific wiki platforms. In addition, WikiFactory is a server application, which automatically
enables the ontology-driven generation of a semantic wiki, and enriches the resulting semantic wiki with
additional semantic features. Moreover, it maintains the synchronization between the underlying ontology
and the wiki content.

3.4 Concluding Remarks

This paper has discussed the main functionalities of a software framework we have designed and imple-
mented, called WikiFactory. We have exemplified two of its main features: the automatic ontology-driven
deployment of a semantic wiki, and the run-time ontology-to-wiki synchronization. Through WikiFactory, do-
main experts from FAO case study described in Section 2.1 can browse their ontologies, and update it in
a collaborative way. Ontology engineers collaborate with domain experts and all updates are immediately
reflected on the ontology.

Ongoing work includes the experimental setting and execution of a user study to evaluate the actual im-
provement, with respect to existing technologies, on user satisfaction and economic impact, of collaborative
creation, validation, and evolution of ontologies with WikiFactory. The user study is planned with the following
characteristics:

• A team of AGROVOC [agr] experts from FAO will be split into two groups, say A and B.

• The OWL version of the AGROVOC [SLL+05] ontology will be deployed on a semantic wiki by using
WikiFactory.

• Team A will validate the OWL version of AGROVOC by using WikiFactory. They will directly implement
their changes from the wiki pages and will be provided with support by ontology engineers using the
same wiki as a means for collaboration, and possibly using other editors and tools with the domain
ontology synchronized by WikiFactory.

• Team B will validate the OWL version of AGROVOC by using the workflow described in Section 2.1.1.

• A time interval t will be defined, after which the two teams will be swapped. After an additional t, the
experiment will stop.

The user study will allow us to have a quality evaluation from users, based on the comparison between the
two methods. Ontology engineers will validate the resulting modified ontologies, in order to evaluate the
correctness of the changes. In addition, further future work includes:

• Realization of an environment for argumentation support with WikiFactory;

• The implementation of a repository of ontology design patterns, publicly maintained with WkiFactory;

• An extended support to more complex OWL constructs (e. g., complex OWL restriction types).

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 38 of 71 NeOn Integrated Project EU-IST-027595

Chapter 4

Argumentation

Creating and designing an ontology is a complex task that requires the collaboration of domain and ontology
engineering experts (cf. Section 2.1). For coming to a consensual model of a domain that is expressed by
an ontology, the participants in the engineering process must discuss their different viewpoints in an efficient
manner. Thus, discussions are an important part of collaborative ontology engineering.

In Section 4.1, we will present the idea of issue based information systems (IBIS) and how they provide
benefits in discussion and decision taking processes. After that in Section 4.2 and 4.3, we will present the
Compendium tool and the Cicero tool which both implement the idea of IBIS. As we will show in Section 4.4,
they are best suited for complementary scenarios: Compendium has its strengths in documenting group
meetings, Cicero is better suited for asynchronous collaboration.

4.1 Issue Based Information Systems (IBIS)

The original idea of Issue Based Information Systems was proposed by Horst Rittel and colleagues at the
beginning of the 1970s (see [KR70] and [RW73]). The main purpose of IBIS is to support the decision making
process for wicked problems. Wicked problems have the following properties:

• During problem formulation it is difficult to identify the requirements for a good solution and the relevant
influencing factors. Only by developing possible solutions one gets a sufficient understanding of the
problem for identifying the requirements and influence factors.

• There are no wrong or correct solutions but only better or worse solutions.

• It is not possible to try several solution proposals out and then select the best one (e. g. because of the
costs of realizing a single solution).

• The problem is unique to the extent that previously developed solutions can not be adapted to the new
problem.

During collaborative decision making processes, IBIS helps to structure the issue or problem and to si-
multaneously derive possible solutions with the help of discussions between the different stakeholders. A
discussion in IBIS is centered around a topic for which a number of issues exist. While discussing an issue,
the participants exchange their different perspectives on the problem and propose possible solutions.

In IBIS, a discussion starts with a first definition of the issue or problem and subsequently different solutions
may be proposed by the participants. The solutions are then supported or objected by arguments. Further-
more, one may relate issues with each other. For example, one issue may generalize another issue or it
may be a relevant analogy (i. e. arguments and solution proposals apply in an analogous way). By making
such relations between issues explicit, the participants get a better understanding of the problem and the
discussion is easier to follow.

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 39 of 71

Figure 4.1: Documenting the design rationale with the Potts and Bruns model (adapted from [PB88]).

4.1.1 Extensions of IBIS

Originally, IBIS was designed for supporting the coordination and planning of political decision processes but
the above listed properties of wicked problems also apply in other domains with project-oriented work. Thus,
several extensions of the original IBIS approach were proposed, i. e. for adapting it to other domains or for
extending its functionality.

In [PB88], Potts and Bruns adapt the IBIS approach to workflows in which a discussion usually leads to the
creation or change of a concrete artifact. For example, in ontology engineering such an artifact might be an
ontology element or a requirements document. In the Potts and Bruns model, the discussion serves as a
connection between the old and the new version of a changed artifact (see Fig. 4.1). This helps to document
the rationale of making certain changes to the artifact so that the changes are better understandable at a
later point in time.

In [Lee90] and [Lee91], the quite simple Potts and Bruns model is extended by further elements to the De-
cision Representation Language (DLR). One important goal of the DLR was to keep the balance between
human usability, machine usability and expressiveness. All three goals are addressed in DLR by introduc-
ing new elements that help to better express the structure of arguments. For example, DLR distinguishes
supporting and denying justifications but it also introduces additional elements like question or viewpoint.

A further extension of IBIS is the Procedural Hierarchy of Issues (PHI) [McC79, McC91]. PHI supports the
definition of a hierarchy of issues. In such a hierarchy, the solution of an issue depends on the solutions of
its subissues. Also the arguments can be organized hierarchically. The hierarchical organization helps in
dealing with a larger amount of issues and arguments in a single project. For example, in IBIS the users
can typically handle 30-50 issues in a single project while in PHI usually 200-400 issues can be handled
(cf. [DMMP06]).

In [MYBM91], MacLean and colleagues propose the Questions, Options and Criteria (QOC) approach that
introduces criteria and assessments. The criteria are used for coming to a decision about which solution
should be implemented for a certain issue. For example, such a criterion might be a desirable property of an
ideal solution or a concrete requirement. Subsequently, all solutions of an issue are assessed in how far they
fulfill the previously defined criteria. Criteria and assessments are in principle specializations of arguments
in IBIS. However an important distinction between IBIS and QOC is that QOC requires the usage of the
specialized arguments every time a decision is made. Thus, it helps the users to better structure the decision
process to come to a decision more easily.

The DILIGENT methodology (see [PST04]) for collaboratively developing ontologies also proposes an argu-
mentation framework that contains ideas from IBIS and the Rhetorical Structure Theory RST (see [MT87]).

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 40 of 71 NeOn Integrated Project EU-IST-027595

Figure 4.2: Adapted version of the DILIGENT argumentation model as it is used in Cicero.

From RST, the DILIGENT argumentation framework mainly takes a number of argument types. RST was
originally used for annotating texts and for analyzing their argumentation structure. For this purpose, RST
introduces different argument types like justification, example or an elaboration of previously said things.

In the context of a small case study, Pinto and colleagues showed in [PST04] first evidence that the argument
types are to a varying extent useful for bringing a discussion to a successful conclusion. By asking the users
of the argumentation framework to concentrate their discussion on the most effective argument types they
were able to show that the participants of the case study needed less time for coming to a solution. For the
Cicero argumentation tool (see Section 4.3), the DILIGENT argumentation framework was further simplified
in order to make it more easily understandable and usable. The simplified argumentation model is shown in
Fig. 4.2.

4.1.2 Benefits

Using IBIS or one of its extensions has benefits during as well as after the decision making process:

• During the Decision Process: According to the understanding of Rittel and his colleagues, the main
benefit of IBIS is a better support of the decision making process (see [KR70]). For example, IBIS
helps in structuring the current problem and thus in getting a better understanding of it. The better un-
derstanding may then lead to a better coverage of the different aspects of the problem and to additional
solution proposals. Furthermore, IBIS and its extensions help in balancing the reasons for or against
a certain solution proposal.

• After the Decision Process: A further benefit of IBIS and its extensions is the improved documen-
tation of the decision making process. In conventional approaches often only the final decision is
documented. All other alternative solutions proposals and the reasons for the decision are lost. But
the knowledge about the other solutions and the reasons may be useful at a later point in time, e. g.
if the requirements change and a new solution has to be devised (for an example from the software
lifecycle see [BB06]).

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 41 of 71

Generally, one can distinguish more- and less-intrusive approaches for supporting decision making pro-
cesses. The more-intrusive approaches like IBIS prescribe a certain structure for capturing a discussion
which has to be followed by the user. Often, the more-intrusive approaches lead to a change in the way the
users discuss with each other.

The goal of less-intrusive approaches is to restrict users in their discussions as little as possible. Instead
of being prescriptive they are more descriptive. Thus, less-intrusive approaches are mainly suitable for
documenting a discussion and their main benefit is after the decision process. In contrast the more-intrusive
approaches they do not only document the discussion but they also try to increase the efficiency of the
decision making process by changing the style of how the users discuss with each other (cf. [DMMP06]).

However depending on the current phase in the decision making process one can further differentiate. For
example, in [HA06] they point out that during the initial collection of solution proposals a less focused or
intrusive approach may be beneficial because otherwise there is an increased probability of overlooking
possible solutions and concentrating on unimportant aspects of the problem. However when coming to a
decision about which solution should be implemented, a more-intrusive approach is actually beneficial as it
helps in structuring and evaluating the different arguments for and against the solutions.

Since the initial proposal of IBIS in [KR70], several tools have been implemented for supporting users in
applying IBIS or one of its extensions in their decision making processes. An overview of tools that were
developed in the 1990s is available in [DMMP06]. In the following, we will only highlight two tools: First,
in Section 4.2 we will describe Compendium. Compendium can be seen as the successor of the tools
that have been developed in the 1990s as it incorporates many lessons learned from these tools. Second,
in Section 4.3 we will present Cicero. Cicero is a web-based tool developed in the context of NeOn that
supports the user in applying the DILIGENT argumentation framework.

4.2 Compendium

Compendium is a Java based tool that helps in applying the IBIS or the QOC approach on decision making
processes. It incorporates several of the lessons learned from other IBIS and QOC tools that have been
developed in the 1990s. It is continuously under further development by the Compendium Institute that offers
it as an open source software.1 The Compenidum Institute also offers training material for download and it
regularly organizes workshops.

Compendium may be used by a single person but it can also be used for collaborating in a team. It helps
in collecting issues, solution proposals and arguments that are then represented as a graph in which the
users can easily add relations between the different elements and quickly get an overview of the discussion.
Furthermore, Compendium allows for linking to external documents like web sites or word documents, e. g. for
referencing relevant text passages that support an argument (see Fig. 4.3). The way of using Compendium
depends on whether it is used for personal organization or for documenting and reflecting discussions in a
group (see below).

4.2.1 Personal Organization with Compendium

Compendium can be used by a single user for organizing his tasks and documents. For example, it is
possible to drag any document from the computer and drop it in Compendium. The user can then establish
links to other documents and annotate it with ideas, arguments or decisions. Furthermore, the documents
can be annotated with keywords or tags for flexibly organizing and structuring all objects that are relevant
for a certain topic. For the previous applications of Compendium, the IBIS approach isn’t so much in the
foreground. Instead, Compendium is used more like a hypertext system that offers additional functionality
that may alternatively be found in e. g. Mind Mapping tools.

1Compendium can be downloaded free of charge from the web site http://www.compendiuminstitute.org/.

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 42 of 71 NeOn Integrated Project EU-IST-027595

Figure 4.3: Example for a discussion in Compendium.

4.2.2 Documenting Group Discussions in Compendium

Compendium can also be used in a team for collaboratively developing solutions. Several scenarios exist for
using Compendium in a team:

• Synchronous Documentation of Group Meetings: In this scenario, all participants of a discussion
are together in one room or they may be connected via a video conference. A single, dedicated person,
the dialogue mapper, is responsible for summarizing the discussed issues, solutions and arguments
with the help of Compendium. For this purpose, he uses the structure that is proposed by IBIS. If a
decision has to be made or if the meeting should be summarized, all participants recapitulate the most
important points by looking at the documented discussion in Compendium (cf. [SSS+06]). This way,
no idea for solving the issue is lost and decisions are made in a more objective manner.

• Ex Post Documentation of Group Meetings: The actual group meeting is recorded, e. g. its audio
and/or video. After the meeting is finished, the most important issues, solutions and arguments are
structured and summarized in Compendium. Each element in Compendium references to the relevant
position in the recordings of the meeting so that one can quickly jump to it for recapitulating the details.
In this scenario, Compendium has more the role of an index of the complete record of the meeting but
it also provides a summary of the discussion.

• Compendium as Asynchronous Groupware: In this scenario, all participants run an instance of
Compendium and the communication mainly takes place in Compendium. For this purpose, all in-
stances of Compendium have read and write access on the same central database to which all
changes are written, i. e. all instances work on the same copy of the discussion. It can be seen as
a disadvantage of this scenario that each user can not only change and delete his own contributions

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 43 of 71

but also those of everyone else (e. g. if he thinks that a contribution is irrelevant or wrong). This might
be problematic as it isn’t possible to prevent the misuse of this feature within Compendium.

• Compendium as Synchronous Groupware: In this scenario, the communication between the par-
ticipants of a discussion is also mediated by Compendium. If Compendium is used as a synchronous
groupware, every participant works on his own copy of the discussion. They get notified by Com-
pendium if another participant makes changes to his copy of the discussion. Upon receipt of such a
change notification, each user has to explicitly agree that the change should also be applied in his
copy of the discussion. Disadvantages of this scenario are: (1) all participants must be online at the
same time for getting the change notifications and thus only synchronous collaboration is possible and
(2) it is not ensured that every participant sees the same issues, solutions and arguments in his copy
of the discussion. For example, the view on the discussion might differ if one participant didn’t apply a
change in his local copy.

4.2.3 Conclusion

Compendium is a mature tool that is based on many years of experience with capturing and documenting
design and decision making processes. Furthermore, an active user community has formed around Com-
pendium and it has been successfully used in different companies and organizations.2

All in all, Compendium allows for flexibly modeling a discussion. There is only very little guidance of the user
by the tool on how to use it for applying the IBIS approach to capturing and documenting discussions. In
order to use the tool in the intended manner one has to spend a larger effort for learning the usage of the tool
(e. g. by working through the tutorials on the Compendium web site or by attending one of the Compendium
workshops). Without the initially acquired knowledge about the IBIS or the QOC approach, one can compare
the functionality of Compendium with hypertext systems or tools for creating Mind Maps.

4.3 Cicero

Cicero is a web-based tool that supports asynchronous discussions for collaborative decision making and
design processes. The Cicero argumentation framework is further development of the DILIGENT argumen-
tation framework described in Section 4.1.1. The Cicero argumentation framework is shown in Fig. 4.2. The
goal of the further development was to simplify it without loosing its expressiveness. This way, the required
learning effort for the users should be reduced. Besides the argumentation framework, Cicero also contains
a functionality for actually deciding which of the solution proposals should be implemented.

To further reduce the required learning effort of new users, Cicero is developed as an extension of the
MediaWiki and Semantic MediaWiki3 that are already known to many users through Wikipedia. Thus, its
look and feel as well as its use style should already be known to a larger group of users. Cicero is being
developed as Open Source software by the ISWeb working group of the University Koblenz-Landau in the
context of NeOn.4

In an installation of Cicero, several projects may be hosted in which issues can be discussed by the mem-
bers of the project. For each issue and its related discussion, an overview page is created in Cicero that
summarizes the issue and all currently proposed solutions (see Fig. 4.4). The content of the overview page
is automatically generated and can not be edited by the users. For each overview page there also exists a
discussion page to which new solution proposals or arguments can be posted (see Fig. 4.5).

2At http://www.compendiuminstitute.org/library/casestudies.htm several case studies with Compendium are available.
3http://ontoworld.org/wiki/Semantic_MediaWiki
4Further information about downloading and installing Cicero are available on the web site of the ISWeb working group at

http://isweb.uni-koblenz.de/Research/Cicero/. Furthermore, a demo server is available at http://cicero.uni-koblenz.de/. The demo
server can be used for exploring the functionality of Cicero as well as for hosting actual projects.

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 44 of 71 NeOn Integrated Project EU-IST-027595

Figure 4.4: Overview page of an issue in Cicero.

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 45 of 71

Figure 4.5: Discussion page in Cicero to which new solution proposals and arguments can be posted.

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 46 of 71 NeOn Integrated Project EU-IST-027595

4.3.1 Asynchronous Group Discussions

In contrast with Compendium, Cicero is mainly designed for collaborative scenarios in which the partici-
pants of a discussion are separated in time and space. In these scenarios, regular meetings of all partici-
pants, possibly also in the same room, are in most cases no longer feasible. Instead, an asynchronous and
computer-mediated communication, as it is provided by Cicero, is better suited.

Furthermore, Cicero allows for defining fine-grained access to the projects and discussions that are hosted
on a single installation. For example, it is possible to give a certain group of users only read access to
discussions while other groups may actively participate in the discussions or in the decision making process.
The fine-grained access control allows for supporting different policies of user participation in a project. For
example, in the case of developing an ontology, during which change requests and their possible solutions are
discussed in Cicero, one may (1) give the users of the ontology only read access so that they are informed of
ongoing changes or (2) one may give them the rights for actively participating in discussing possible solutions
or (3) one may restrict all access to a smaller circle of developers.

Because Cicero is based on the MediaWiki software, it not only allows for discussing issues but it can also
be used like a normal Wiki for collaboratively editing documents. If there is a need for discussion during the
editing, then the extended functionality of Cicero may be used and the edited documents may be annotated
with the discussions. It is also possible to integrate Cicero with other editing tools like the NeOn toolkit (see
the following section).

4.3.2 Establishing Provenance Links

In [CGL+07b], the role of provenance in collaborative ontology engineering is described as “tracking the
reasons why a change has occurred and to record the history of the design process” (p. 61), i. e. two main
objectives of collecting provenance information can be identified:

• Documenting the history of changes to an ontology element.

• Documenting the design rationale of ontology elements.

The first objective of collecting provenance information is supported by version control systems like CVS, the
framework for ontology evolution described in [KN03] or the ontology evolution framework proposed in WP1
of NeOn (see [PWHd07] for more details). The latter framework captures and logs ontology changes and
stores them in an ontology change ontology. The collected information can be used for undoing or redoing
previous operations and also for maintaining different variants of an ontology.

The second objective of documenting the design rationale can be supported by establishing a relationship
between ontology entities and the corresponding discussion in Cicero that affected its design. For this pur-
pose, a plugin for integrating Cicero and the NeOn toolkit is currently under development. The plugin will
especially include the following functionality:

• Create issues from within the NeOn toolkit.

• Establish provenance links between issues created in the toolkit and the corresponding ontology ele-
ments.

• Allow for easily establishing provenance links between ontology changes made in the toolkit and solu-
tion proposals in Cicero.

• Allow for searching and filtering discussions:

– Full text search in issues, solution proposals and arguments.

– Filtering results for specific authors and dates.

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 47 of 71

Figure 4.6: Mapping between tools and the parts of the argumentation model that they support.

– Filtering results for the status of the discussion (e. g. running or decided).

– Filtering results for discussions with a provenance link to specific ontology elements.

In Fig. 4.6, it is shown which parts of the Cicero argumentation model are supported by the respective tools.
The actual discussions will be held in Cicero while editing and browsing the ontology will be supported by
the NeOn toolkit. The plugin will be used for editing and browsing the provenance links between the ontology
elements and the corresponding design rationale discussions in Cicero.

4.3.3 Conclusion

Cicero is mainly designed for collaborative scenarios in which participants are separated in time and space.
It may for example be used for discussing the issues in a project, instead of e. g. mailing lists or discussion
boards.

Compared to discussion boards, Cicero has the advantage that the specified structure of issues, solution
proposals and arguments allows for more systematically developing solutions for a certain issue. Further-
more, the specified structure enables new users to more quickly get an overview of ongoing discussions,
e. g. by reading the description of the issue and the proposed solutions first and then only reading arguments
related to selected solution proposals. Finally, Cicero also offers mechanisms for coming to a decision e. g.
by a voting of the participants or by only giving certain users the right to decide which solution should be
implemented.

Compared to mailing lists, Cicero additionally has the advantage that it is easier to find a certain discus-
sion topic and its related arguments and that the discussion isn’t scattered in the inboxes of the discussion
participants but centrally collected and documented.

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 48 of 71 NeOn Integrated Project EU-IST-027595

Compendium Cicero
Approach IBIS/QOC DILIGENT
Main Application Area Documentation of group discus-

sions by a dialogue mapper.
Collaboration in teams that are sep-
arated in space and time.

Specific Features Graphical representation of discus-
sions. Linking to audio and video
recordings of group meetings.

Flexible mechanism for access
rights. Collaborative editing of
documents.

License Open Source Open Source
Flexibility ++ ◦
Learnability ◦ ++
Communication Mode

asynchronous + ++
synchronous ◦ not supported
group meeting ++ not supported

Provenance Links no yes

Table 4.1: Comparison of Compendium and Cicero.

4.4 Comparison of Compendium and Cicero

A summary of both tools is available in Tab. 4.1. Compendium and Cicero have their strengths in comple-
mentary collaboration scenarios. Thus, a decision for one of the tools should in the first place be dependent
on the requirements of the existing scenario.

Compendium has its main application area in the synchronous or ex post documentation of group meetings.
The documentation will usually be done by a specialized dialogue mapper. Compendium may also be used
as a synchronous or asynchronous groupware but this is connected with certain restrictions and problems.

In contrast, Cicero has its main application area in scenarios where team members are separated in time
and space and thus regular meetings are not feasible. The tool is then used for computer-mediated, asyn-
chronous communication between the team members. Furthermore, its Wiki functionality may be used for
collaboratively editing documents. In the future, an important advantage of using Cicero for collaborative
ontology engineering will be its integration with the NeOn toolkit which leads to a better support of the ontol-
ogy engineering lifecycle. Amongst others, the integration will reduce the required effort for establishing the
provenance links between discussions of the design rationale and the affected ontology elements.

Compendium is all in all more flexible than Cicero with regard to modeling and capturing discussions. In
contrast to Cicero, it doesn’t enforce a certain approach e. g. that issues, solution proposals or arguments
are related to each other in a certain way. The flexibility of Compendium can be seen as an advantage as
well as a disadvantage: It can be seen as an advantage because the user isn’t restricted in his possibilities
and can thus be more creative in developing and documenting his ideas. But this can also be seen as a
disadvantage because especially the IBIS approach (or one of its extensions) for structuring discussions
should lead to a more systematical development and evaluation of solutions.

Compendium can also be used for applying the IBIS approach but the user isn’t guided by the tool in its
correct application. Instead, the user has to learn the approach either by attending a Compendium seminar
or by working through the tutorials on the Compendium web site. Cicero in contrast offers more guidance for
the users in applying the DILIGENT argumentation framework and in structuring the discussions. This helps
to reduce the learning effort that a user has to initially spend but it also decreases the flexibility of the tool.

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 49 of 71

Chapter 5

Conclusion

In this deliverable, we identified a list of features that are required for supporting a collaborative ontology
design process. The list is based on an analysis of the NeOn case studies and already existing tools with
collaborative ontology design features. According to the feedback of the future users of the collaborative
features, one can identify the following most important features:

• The annotation of ontology elements and ontology changes with e. g. scope notes or justifications for
a specific change is one of the most important collaboration features. Annotations help to increase the
awareness between the different editors of an ontology. Furthermore, they can be used for coordinating
the collaborative workflow (e. g. by annotating status labels).

• Facilitating the communication between the editors of an ontology by means of asynchronous and/or
synchronous communication media (e. g. forums or chats). An important objective of the communica-
tion support is to reduce the number of required face-to-face meetings for coordinating the collaborative
editing. It is especially important if the editors of an ontology are spread all over the world, like in the
FAO case study, or over a whole county, like in the invoicing case study.

• Furthermore, efficient means for logging ontology changes are required during collaborative editing of
ontologies. Such a log can e. g. be used for maintaining different versions of an ontology and/or for
undoing previously made changes. Especially an undo mechanism is expected to be very useful for
the case study partners.

With the WikiFactory framework and the Cicero argumentation tool we also presented two concrete tools that
address the collaborative editing, including mechanisms for logging and undoing changes, and the commu-
nication between the different editors of an ontology. Furthermore, we presented two concrete proposals of
how to ease the process of attaching provenance annotations to ontology elements and ontology changes
as well as how the social network of the editors can be analyzed.

Besides the techniques mentioned in this deliverable, there is also ongoing work in other NeOn deliverables
that addresses collaborative aspects of ontology design. For example, in [PWHd07] a framework for ontol-
ogy versioning and logging is presented as well as a framework for the propagation of ontology metadata
annotations. Furthermore, in [QH08] it is proposed how to extend the collection of provenance information to
ontology elements originating from an ontology learning step while in WP4 customized views and ontology
access rights are treated.

Currently, plugins are under development that integrate the functionality of the WikiFactory framework and
the Cicero argumentation tool into the NeOn toolkit. The WikiFactoryDeployer plugin1 provides the automatic
generation of semantic wikis (based on Semantic MediaWiki platform) from an ontology that is currently
loaded in the NeOn toolkit. It can also deploy the ontology into an instance of the Cicero argumentation

1http://www.neon-toolkit.org/wiki/index.php/WikiFactoryDeployer

2007–2008 c© Copyright lies with the respective authors and their institutions.

http://www.neon-toolkit.org/wiki/index.php/WikiFactoryDeployer

Page 50 of 71 NeOn Integrated Project EU-IST-027595

tool. For the Cicero plugin2 it is currently planned to support the functionality described in Section 4.3.2 until
August 2008.

2http://www.neon-toolkit.org/wiki/index.php/Cicero

http://www.neon-toolkit.org/wiki/index.php/Cicero

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 51 of 71

Appendix A

Manual of the Cicero Argumentation Tool

A.1 About the Argumentation Tool

Cicero is a web-based tool which supports asynchronous discussions between several participants. This
social software application is based on the idea of Issue Based Information Systems (IBIS) and the DILIGENT
argumentation framework. The DILIGENT argumentation framework was adapted for Cicero in order to make
it easier applicable on discussions and in order to reduce the learning effort by users.

The discussions in Cicero are organized in projects. It is possible to have different property values and
access rights for the different projects. Thus, projects are really independent of each other. More details
about how to create a project and define its properties and access rights is available in Section A.4.

In Cicero, a discussion starts with the issue that should be discussed. For this issue, several solutions
can be proposed. The solutions proposals can then be discussed with the help of supporting or objecting
arguments. Furthermore, Cicero also defines a workflow for coming to a decision. For this purpose, it
offers different decision procedures like preferential voting or that a responsible person is allowed for making
decisions. More details about the discussion and decision process is available in Section A.5

A.2 Installation and Configuration

A.2.1 Installing Cicero

To install Cicero you need to execute the following steps:

1. Install1 or upgrade2 to MediaWiki 1.11 (or higher).

Note that Cicero 1.00 has been tested with MediaWiki 1.11 and doesn’t work with versions of MediaWiki
prior to 1.11; it is also NOT guaranteed that Cicero 1.00 will work with versions of MediaWiki higher
than 1.11.

2. Install3 the MediaWiki extension Semantic MediaWiki 1.0 RC2 (or higher).

Note that Cicero 1.00 has been tested with Semantic MediaWiki 1.0 RC2 and doesn’t work with ver-
sions of Semantic MediaWiki prior to 1.0 RC2; it is also NOT guaranteed that Cicero 1.00 will work with
versions of Semantic MediaWiki higher than 1.0 RC2.

3. Extract the downloaded archive into the folder <MediaWikiPath>/extensions/. Note that after extracting
the archive, you will have a new folder called DILIGENTArgumentationTool which you should NOT
rename.

1See http://www.mediawiki.org/wiki/Installation
2See http://www.mediawiki.org/wiki/Manual:Upgrading
3See http://ontoworld.org/wiki/Semantic_MediaWiki

2007–2008 c© Copyright lies with the respective authors and their institutions.

http://www.mediawiki.org/wiki/Manual:Installation
http://www.mediawiki.org/wiki/Manual:Upgrading
http://ontoworld.org/wiki/Semantic_MediaWiki

Page 52 of 71 NeOn Integrated Project EU-IST-027595

4. Add the following line at the end of LocalSettings.php of your MediaWiki-installation:

include_once("extensions/DILIGENTArgumentationTool/DAT_DILIGENTArgumentationTool.php");

5. By calling the page

http://<serverName>/<MediaWikiFolder>/index.php?title=Special:DAT_InstallForm

Note that you need a Sysops-account within MediaWiki to be able to access the installation form. Here
you just have to click on the Install Cicero 1.00-button and the installation is executed automatically
(see area 1 in Fig. A.1). Make sure that in the LocalSettings.php of MediaWiki a database user account
is listed which has the right to create and alter tables.

Figure A.1: The Cicero installation form.

Note that - if for some reason - the installation becomes incomplete or defective you can execute the instal-
lation procedure at any time. The installation procedure will add the missing parts of the installation and will
repair the broken parts.

The user who installed the Cicero extension gets automatically assigned the role of a Cicero administrator.
In Subsection A.2.2, more details are available about the Cicero administrator -role and how to assign it to
further users.

A.2.2 Configuration

User groups

Predefined rights settings

The definition of the user groups used in Cicero are stored in the file UserManagement/DAT_UserRights.php.
Usually, it will not be necessary to manually change this file. It is used for changing the predefined public and
private rights-configurations described in Subsection A.4.2. They can be changed by adapting the values in
lines 25-88. The following lines

$datGroupPermissions["project member"][’changeprojectproperties’][’public’] = false;
$datGroupPermissions["project member"][’changeprojectproperties’][’private’] = false;
$datGroupPermissions["project member"][’createissue’][’public’] = true;
$datGroupPermissions["project member"][’createissue’][’private’] = false;
...

show an excerpt. For example if you prefer that in the predefined configuration public a project member
should not be able to create an issue, you need to change line 3 to

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 53 of 71

$datGroupPermissions["project member"][’createissue’][’public’] = false;

$datGroupPermissions has the following structure

$datGroupPermissions[<roleName>][<rightName>][<predefinedConfigurationName] = {true or false}

true stands for allowed while false means forbidden. Be sure to keep the hierarchical structure of the user
groups and the inheritance rule (for more details see Subsection A.4.2). Changes to this file will not have an
effect on the user rights of already created projects.

Add new Cicero administrator

For registering a plain user as a Cicero administrator, the User rights management page of the MediaWiki
can be used. The page can be accessed under the URL

http://<serverName>/<MediaWikiFolder>/index.php?title=Special:Userrights

Note that you need to be (at least) member of the Bureaucrats-group to access this page. There you can
type the loginname of the respective user. After clicking on the Edit User Groups-button (area 1 in Fig. A.2)
an interface appears below. It shows on the left the current memberships of the user (area 2). If the entry
Cicero admin already exists, the user already is a cicero administrator. But if the entry Cicero admin appears
on the right side (area 3), the user needs to be added to this group. You achieve this by selecting the entry
Cicero admin on the right side and clicking on the Save User Groups-button (area 4).

Figure A.2: Adding a new cicero administrator

Settings

The settings of the Cicero extension are mainly stored in the file DAT_Settings.php. You should normally
NOT change any of the values. If you have other MediaWiki extensions installed besides of Cicero and
SemanticMediaWiki which uses own namespaces, you probably need to change the following lines (34-37):

NAMESPACES
// namespace numbers for this extension
$namespaceNr = 102;
$namespaceDiscussionNr = 103;

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 54 of 71 NeOn Integrated Project EU-IST-027595

If another extension already uses the namespace numbers 102 and 103, change the values in
DAT_Settings.php into values unequal to these and bigger than 110.

If you want to deactivate the creation of accounts by users, you just need to out-comment the following line
(64) by adding // at the beginning:

$datGroupPermissions[’*’][’createaccount’] = true;

With this you restore the default behavior of your MediaWiki-installation.

If you want to change the default issue and voting timer within a project, you can change the following lines
(193-194):

$defaultIssueTimer = 0;
$defaultVotingTimer = 7;

The predefined values are 0 for the default issue timer and 7 for the default voting timer. These values are
shown in the interface for creating new projects (see Subsection A.4.1).

If you want to change the colors used on the project and issue article page, you can change the following
lines (196-199):

COLOR SETTINGS
$boxHeadlineBackground = "#C3C3FF";
$buttonAreaBackground = "#FFFF66";
$buttonAreaText = "#000000";

Note that you have to use the hexadecimal notation of the colors4.

Activation of the email-notifications in MediaWiki

For activating email-notifications on your MediaWiki-installation you need to add the following lines to the
LocalSettings.php:

#including external SMTP server
$wgSMTP = array(
"host" => ’examplehost.example.org’,
#"IDHost" => ’example.org’,
"port" => "25",
#"auth" => true,
#"debug" => false,
#"username" => ,
#"password" => ,

);

Usually you only have to indicate the host-address and the port (normally 25) of your delivery SMTP server.
Note that the lines with # are commented out and don’t have an effect. Remove the leading # if the corre-
sponding property needs to be set for configuring the access to your mail server.

A.3 Getting Access and Log In

After successfully installing MediaWiki, Semantic MediaWiki and the Cicero extension on your server, you
can now start using the features of Cicero. The Main page of MediaWiki is the place where you get the
first time in touch with the Cicero extension. Here, Cicero provides a dynamically updated list of all existing
projects in its installation. This way it is easy to access the different projects.

To log into the Wiki press the link on the upper right corner of the main page. It will show you an interface to
put in your user name and password. If you don’t have an account yet, create one (click on the appropriate

4See http://tomheller.de/theholycymbal/html-farben.html

http://tomheller.de/theholycymbal/html-farben.html

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 55 of 71

Figure A.3: Start page of Cicero.

link). While creating a new account you have to specify an email address. An email will be send to you
containing a link for the verification of the new account. This address will also be used for notifications later
on.

Note that in the default settings of MediaWiki users are not allowed to create their own user accounts.
Normally a MediaWiki-user with the rights of a Bureaucrat needs to create them. In Cicero, this default
setting of MediaWiki is overwritten, so that any user can create its own account. See Subsection A.2.2 if you
want to restore the default behavior.

After you have successfully logged into the system you will be redirected to the main page. To log out use
the corresponding link of the personal menu on the top of the page.

A.4 The Project Page

The overview page of a project can be reached from the main page of Cicero by using the links in the list of
projects at the bottom of the main page (see Fig. A.3). The project overview page has three main areas that
are shown in Fig. A.4:

1. A short introductory text that should summarize the project objectives. From here, also further pages
with more detailed information may be linked. It should enable new users to get familiar with the project.
The text may be changed in the settings of the project (see Subsection A.4.2).

2. An overview box with the most important properties of the project, e. g. who created the project, how
many issues are currently attached to the project etc. At the bottom of the overview box, all functions
that are available to the current user are shown. Functions for which the user does not have the
necessary access rights are not shown (see Subsection A.4.2 for a summary of the access rights
model of Cicero).

3. At the bottom of the page, two lists are available that contain the most recently modified issues and
users participating in the project. For getting a list of all issues or users, the links in the yellow area
have to be used.

The project overview page is automatically generated and updated by Cicero and need not be changed by
the user. The introductory text of the project can be changed in the project properties (see Subsection A.4.2).

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 56 of 71 NeOn Integrated Project EU-IST-027595

Figure A.4: Overview page of a project in Cicero.

A.4.1 Creating a Project

In Cicero, all issues and their discussions are related to a project. Thus, at least one project has to be created
before one can start with creating and discussing issues. There are two possibilities to create a new project
(see Fig. A.3):

• Using the Create Project link in the sidebar of Cicero. This link is accessible on each page of Cicero.

• Using the Create Project link next to the title of the project list on the start page of Cicero.

Only logged in users that have the Cicero administrator role can create projects (see Section A.2.1 for
instructions how to assign users the Cicero administrator role). If a user has the sufficient rights for creating
a project, he will see a form where the project can be configured. For more details on the configuration
options of a project see Subsection A.4.2.

A.4.2 Managing the Project Properties

The properties of a project can be divided into two different blocks: (1) The description of the project, the
advanced project settings, the default issue settings and (2) the management of the access rights of different
user roles and the assignment of specific roles to the different users. The page for managing the project
properties can be accessed from overview box on the overview page of the project (area 2 in Fig. A.4). The
link is only visible to users with sufficient access rights (either an Cicero administrator or, in most cases, a
Project Moderator).

Project Description, Advanced Project Settings and Default Issue Settings

In Fig. A.5, one can see the part of the project properties dialog in which the description of the project
(area 1), the advanced project settings (area 2) and the default issue settings (area 3) can be edited. The
description of the project will be shown on the overview page of the project (area 1 in Fig. A.4). It should give
new participants in the project a short introduction to the project objectives etc. The text may contain Wiki
markup for formatting, including links to subpages on which more details may be explained.

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 57 of 71

Figure A.5: Editing the project description and the advanced settings.

The advanced project settings contain the Self-registration option. If it is set to the value allowed then users
that are currently not participating in the project may register himself for participation. Self-registered users
are automatically assigned to the role Project Member (see below). This function is deactivated if the option
is set to the value forbidden.

In the default issue settings, one may change the default values that are used if a new issue is created, i. e.
which decision mode should be used, how many solution proposals may be selected during a decision and
the values of the issue and the voting timer. The details about these settings are available in Subsection A.5.5
about managing the issue properties.

Managing Access Rights and User Roles

In Fig. A.6, one can see the part of the project properties dialog in which the user roles in the project
can be edited (area 1) and assigned to the different participating users (area 2). The access rights in the
different projects hosted on a single Cicero installation are independent of each other. Besides the Cicero
administrators of the Wiki, in each project exist four predefined roles, to which different access rights can be
assigned: The Project Moderator, the Issue Moderator, the Project Member and the Anonymous User.

User roles are ordered hierarchically. This means, a project moderator always has equivalent or more rights
than an issue moderator and the issue moderator always has equivalent or more rights than a project member
and so on. A Cicero administrator automatically has all access rights to a project and its related issues.

If a user can register himself for participating in a project, he is always assigned to the role of a project
member (see Subsection A.4.2 for instructions how to activate the self-registration of users). Alternatively,
one can explicitly assign the roles to different users (see area 2 in Fig. A.6).

Depending on the access and participation policies that should be implemented in a project, one can assign
different access rights to the four roles. The following access rights exist in Cicero:

• Read Discussion: Allows access to the subpages of a project as well as to the overview pages of an
issue and its discussions. Without this access right, a user can only see the start page of a project
with the general information. Note that the title of issues are also shown to users which don’t have the
Read Discussion-right within a project.

• Participate in Discussion: Allows for actively participating in discussions of an issue, i. e. to provide
solution proposals and arguments.

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 58 of 71 NeOn Integrated Project EU-IST-027595

Figure A.6: Editing the access rights and user roles.

• Vote: Allows for participating in the decision taking process of an issue, i. e. to either participate in a
voting or to select a solution proposal for implementation (see Subsection A.5.5 for more details on the
decision taking process).

• Change Project Properties: Allows for managing the project properties as they are described in this
section, including the access rights and user roles. Thus, this right should usually only be given to a
very small and trusted group of users.

• Create Issue: Allows for raising new issues, i. e. creating a new issue overview page (see Subsec-
tion A.5.1).

• Change Issue Properties: Allows for accessing the issue properties as they are described in Subsec-
tion A.5.5).

Note that for the Anonymous User only the Read Discussion-right can be activated or deactivated. All other
rights are not selectable in the interface and are automatically set to deactivated.

There exists two predefined configurations of the access rights that can be selected with the drop-down list
in the upper-left corner of the role configuration panel (area 1 in Fig. A.6):

• Public: In a public project, all registered users are allowed for actively participating in discussions
and the decision taking procedure as well as in raising new issues. Managing the project and issue
properties are restricted to users that have assigned the role project moderator or issue moderator,
respectively.

• Private: In a private project, the plain project members only have read access to the whole project and
the related issues. Only issue moderators are allowed for participating in discussions and decision
taking procedures as well as in raising new issues.

It is possible to use one of the pre-configured role configurations as the basis for a customized role con-
figuration. Just select one of the pre-configurations and adapt it by adding or removing the marks in the
checkboxes. Note that during checking or unchecking a box also the inherited access rights are automati-
cally set for the more and less capable user groups (see above for details about the hierarchy of user groups).
So if a right for a user group is activated, it will automatically be activated for all more capable user groups.
Analogously, if a right for a user group is deactivated, it will automatically be deactivated for the less capable
user groups.

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 59 of 71

In area 2 in Fig. A.6, the panel for assigning roles to the users of a project is shown. To assign a role to a
user, one has to first search for his account in the database of the Wiki. A user can be searched by either
his Wiki account name, his real name or his e-mail address. The latter two are only optional information that
need not to be given by all users during their registration.

The search results are then shown in the user search list where one ore more users can be selected and then
assigned to one of the three predefined roles by clicking on e. g. the Add as Project Member button. Users
can also be removed from the different lists by clicking on the Remove User button under the respective list.

Note that the interface in the current version doesn’t avoid that a user is added to more than one user group.
You could for example add a user McSuarez to the project moderator - and the issue moderator -group at
the same time. But the Cicero will only store the highest group membership, which means that for the user
McSuarez only the project moderator -membership is considered, because a project moderator always has
the same or more rights than an issue moderator.

In order to avoid the administrative overhead of manually adding all users that are plain Project Members,
it is possible to enable the self-registration of users in a project (see Subsection A.4.2). They are then
automatically added as project members. By default, the self-registration is deactivated.

A.5 The Issue Page

For each issue, an overview page and a discussion page exists. The overview page of an issue can be
reached from the project overview page: Either the list of the 10 most recently added issues can be used for
accessing an issue (see area 3 in Fig. A.4) or the options Search for Issues and List all Issues can be used
(see area 2 and 3 in Fig. A.4).

The issue overview page has three main areas that are shown in Fig. A.7:

1. A description of the issue as it was entered during the creation.

2. A list of all solutions for the issue that were proposed up to now. If the description of a solution proposal
is too long only the first 30 words are initially shown. One can expand the description to its full length
by using the lens at the end of the corresponding description. This area also shows which solution is
selected for implementation once a decision is taken (see Subsection A.5.4).

3. An overview box with the most important properties of the issue, e. g. who created the issue, how
many solutions are proposed and how many arguments are given. Furthermore, one can access
from here the full discussion associated with the issue or change the properties of the issue. In order
to see the Change Issue Properties option, one needs to have the corresponding access right (see
Subsection A.4.2).

The issue overview page is automatically generated and updated by Cicero and need not be changed by
the user. The description and the settings of the issue can be changed in the issue properties (see Subsec-
tion A.5.5).

A.5.1 Creating an Issue

New issues can be added by using the corresponding option on the project overview page (see area 2 and
3 in Fig. A.4). In order to see the Add New Issue option, one needs to have the corresponding access right
(see Subsection A.4.2).

Creating a new issue is a simple task in Cicero and can be done very fast. In the form for creating a new issue
(see Fig. A.8) one only needs to enter a unique title for the issue and an initial description. The description
may contain Wiki markup for formatting, including links to related issues or web pages.

The issue is then create by clicking on the Save Issue button. The settings with regard to the decision taking
procedure and the issue and voting timer are set to the default values as they are specified in the project

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 60 of 71 NeOn Integrated Project EU-IST-027595

Figure A.7: Overview page of an issue in Cicero.

Figure A.8: Form for creating a new issue in Cicero.

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 61 of 71

settings (see Subsection A.4.2). The settings and the text describing an issue can later be changed on the
page for managing the issue properties (see Subsection A.5.5).

A.5.2 Issue States

During its lifetime, an issue passes through four different states. Depending on the state, different changes
to the issue are allowed. The states are summarized below and in Fig. A.9:

• Running: During the running state, all users with the corresponding access rights are allowed for
making changes to the issues like adding further solution proposals or arguments.

• Locked: An issue can reach the locked state only if the dictator mode is chosen for decision taking
(see Subsection A.5.4). During the locked state, no changes to the issue are allowed. Only a user with
the corresponding access rights is allowed for deciding which solution proposal should be implemented
as a response to the issue. As soon as the decision is taken, the state automatically changes to the
decided mode.

• Voting: An issue can reach the voting state only if a preferential voting is chosen for decision taking
(see Subsection A.5.4). During the voting state, no changes to the issue are allowed. All users with
the corresponding access rights are allowed for casting their ballot. The voting is finished either after
the time span set in the voting timer or it is manually finished by a user with the corresponding access
rights. As soon as the decision is taken, the state automatically changes to the decided mode.

• Decided: As soon as a decision is taken which solution proposal should be implemented in response
to the issue, the issue changes into the decided state. In this state, no changes to the issue are
possible. If it should be further discussed, the issue has to be set back to the running state by a user
with the corresponding access rights.

A.5.3 The Discussion Page

The discussion page is – as the name says – the place where the discussion of a certain issue is stored. It
can be reached from the issue page either through the tab-bar at the top or through the View Discussion link
in area 3 of the issue overview page (see Fig. A.7).

At the top of the page a table of content of the whole discussion is shown for quickly accessing specific
solution proposals or arguments (see area 1 in Fig. A.10). Directly below the table of contents, the subject of
discussion, i. e. the description of the issue, is repeated from the overview page.

Below the subject of discussion, the different solution proposals and their supporting or objecting arguments
are listed. To make a contribution to the discussion, one has to use Reply link next to the corresponding
heading to which it should refer. Two different kinds of contributions can be distinguished:

• Solution Proposal: As the name says, it proposes a possible solution of the current issue. During
taking a decision, one can select one or more solution proposals for being implemented as a response
to the issue (see Subsection A.5.4).

• Argument: In principle, an argument can either support or object a specific solution proposal. Three
different types of arguments exist:

– Example: An example corresponds to a pattern that should or should not be imitated (depending
on whether its a supporting or objecting example). They are used for illustrating similar cases
that may serve as a model for the solution proposal to which they reply.

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 62 of 71 NeOn Integrated Project EU-IST-027595

Figure A.9: Issue States in Cicero

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 63 of 71

Figure A.10: Discussion page of an issue in Cicero.

Figure A.11: Form for replying to a solution proposal.

– Evaluation: An evaluation gives criteria which help to assess the strengths and weaknesses of
a solution proposal.

– Justification: A justification describes the relevant circumstances that help to understand why a
certain solution is supported or objected by the author of the argument.

In Fig. A.11, the form for adding an argument to a solution proposal is shown. In the top left drop down
list, one can select the argument type and whether it supports or objects the solution proposal to which it
replies. In the box below, the argument text can be entered. The text may contain Wiki markup for formatting,
including links to external resources or files uploaded to the Wiki.

The different kind of contributions and how they are related to each other can also be seen in Fig. A.12. One
can see that solution proposals can only directly reply to the issue while the arguments can only directly reply
to a solution proposal. This results in a very flat hierarchy, showing the arguments with a small indent to their
solution proposals.

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 64 of 71 NeOn Integrated Project EU-IST-027595

Figure A.12: Relations between issues, solution proposals and arguments.

A.5.4 Taking a Decision

If the decision taking procedure for an issue should be started, the state of the issue has to be changed
from running to voting first. Under the precondition that there exists at least one solution proposal on the
discussion page of an issue, two different ways exist how this state transition may take place:

1. In the issue settings, an automatic issue timer can be set that triggers that transition of the issue state
from running to voting. By default, the issue timer is deactivated but in the project or issue settings a
specific number of days may be given after which this transition takes place (see Subsection A.4.2 and
A.5.5).

2. A user with the necessary access rights (see Subsection A.4.2) edits the issue properties and manually
starts the voting phase for an issue.

Furthermore, two basic modes for taking a decision can be distinguished:

• Preferential Mode: In the voting phase of the preferential decision mode, all users with the correspond-
ing access right can cast their ballot. Either automatically, by means of the voting timer determined
in the issue settings (see Subsection A.5.5), or manually by an authorized user, the voting phase is
closed after some time and the solution proposal with the most votes is marked as the decided solu-
tion. In case of a draw between two or more solution proposals a run-off ballot will start automatically.
As soon as a final decision is available, the results are shown on the issue overview page and the state
of the issue automatically changes to decided.

• Dictator Mode: In this mode, a user with the corresponding access rights locks the issue (see Sub-
section A.5.5). After that, he may go back to the issue overview page where a link to the page for
taking a decision is shown. Once, the user made his decision he returns to the overview page where
the result is shown and the issue state automatically changes to decided. Thus, the decision is only
made by a single user.

Depending on the selection mode of the issue (see Subsection A.5.5), the users can either select only a
single solution proposal during the decision taking phase or multiple solution proposals. In Fig. A.13 shows
how the look of the issue overview page during a running preferential voting. By clicking on the button in the
upper-left box, the user can change to the page shown in Fig. A.14 and cast his ballot. For the dictator mode
both pages look very similar.

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 65 of 71

Figure A.13: Issue overview page during a running preferential voting.

Figure A.14: Form in Cicero for casting the ballot during a voting.

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 66 of 71 NeOn Integrated Project EU-IST-027595

Figure A.15: Editing the issue properties in Cicero.

A.5.5 Managing the Issue Properties

The properties of an issue can be changed by choosing the corresponding option on the issue overview
page (area 3 in Fig. A.7). This option is only available for users with the corresponding access rights. In the
issue properties (see Fig. A.15), one can change the description of the issue (area 1) as well as its advanced
settings (area 2). The description may contain Wiki markup for formatting, including links to related issues or
web pages.

The values of the advanced issue settings are inherited from the project settings during the creation of the
issue (see Subsection A.4.2). More details on the meaning of the different settings are available in the sec-
tions about the different state of an issue and the available decision taking procedures (see Subsection A.5.2
and A.5.4).

The issue timer and the voting timer can be used for automatically triggering issue state transitions. The
issue timer gives the number of days after which an issue should automatically change from the running
state into either the voting or locked state, depending on the chosen decision mode. The voting timer gives
is only activated if preferential voting is chosen as the decision taking procedure. In this case, it gives the
number of days after which the voting is automatically closed. Setting either of both time spans to a value of
0 corresponds to deactivating the automatic state transition, i. e. a user with the corresponding access rights
has to manually change the state with the help of the issue state drop-down list.

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 67 of 71

Bibliography

[AB06] Ben Adida and Mark Birbeck. RDFa Primer 1.0 Embedding RDF in XHTML. Technical report,
World Wide Web Consortium, May 2006. http://www.w3.org/TR/xhtml-rdfa-primer/.

[Ack01] M.S. Ackerman. . In John Carroll, editor, HCI in the New Millennium, 2001.

[ADR06] S. Auer, S. Dietzold, and T. Riechert. OntoWiki-A Tool for Social, Semantic Collaboration. Inter-
national Semantic Web Conference, 4273:736–749, 2006.

[agr] Agrovoc. http://www.fao.org/agrovoc.

[ARJ96] Farquhar A., Fikes R., and Rice J. The ontolingua server: a tool for collaborative ontology
construction. In B. Gaines, editor, Proceedings of Knowledge Acquisition Workshop, Banff,
1996, 1996.

[BB06] Janet E. Burge and David C. Brown. Rationale-based support for software maintenance. In
Allen H. Dutoit, Raymond McCall, Ivan Mistrík, and Barbara Paech, editors, Rationale Manage-
ment in Software Engineering, pages 273–296. Springer, 2006.

[BG06] Michel Buffa and Fabien Gandon. Sweetwiki: semantic web enabled technologies in Wiki. In
WikiSym ’06: Proceedings of the 2006 international symposium on Wikis, pages 69–78, New
York, NY, USA, 2006. ACM Press.

[BRKT96] Swartout B., Patil R., Knight K., and Russ T. Toward distributed use of large-scale ontologies. In
B. Gaines, editor, Proceedings of Knowledge Acquisition Workshop, Banff, 1996, 1996.

[CCMW01] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web
Services Description Language (WSDL) 1.1. W3C, 1.1 edition, March 2001. URL:
http://www.w3c.org/TR/wsdl.

[CFB00] S. Ceri, P. Fraternali, and A. Bongio. Web Modeling Language (WebML): a modeling language
for designing web sites. In Proceedings of the 9th World Wide Web Conference (WWW9), pages
137–157, 2000.

[CGL+06] C. Catenacci, A. Gangemi, J. Lehmann, M. Nissim, and V. Presutti. Design rationales for col-
laborative development of networked ontologies. State of the art and the Collaborative Ontology
Design Ontology. Deliverable d2.1.1 of the neon project, NeOn project, 2006.

[CGL+07a] Carola Catenacci, Aldo Gangemi, Jos Lehmann, Malvina Nissim, Valentina Presutti, Gerardo
Steve, Nicola Guarino, Claudio Masolo, Holger Lewen, Klaas Dellschaft, and Marta Sabou.
Design rationales for collaborative development of networked ontologies – state of the art and
the collaborative ontology design ontology. Deliverable D2.1.1, NeOn Project, 2007.

[CGL+07b] Carola Catenacci, Aldo Gangemi, Jos Lehmann, Malvina Nissim, Valentina Presutti, Gerardo
Steve, Nicola Guarino, Claudio Masolo, Holger Lewen, Klaas Dellschaft, and Marta Sabou.
Design rationales for collaborative development of networked ontologies Ű- state of the art and
the collaborative ontology design ontology. Deliverable D2.1.1, NeOn Project, 2007.

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 68 of 71 NeOn Integrated Project EU-IST-027595

[Cha01] H.E. Chandler. The complexity of online groups: a case study of asynchronous collaboration.
ACM Journal of Computer Documentation, 25(1):17–24, 2001.

[DMMP06] Allen H. Dutoit, Raymond McCall, Ivan Mistrík, and Barbara Paech. Rationale management
in software engineering: Concepts and techniques. In Allen H. Dutoit, Raymond McCall, Ivan
Mistrík, and Barbara Paech, editors, Rationale Management in Software Engineering, pages
1–48. Springer, 2006.

[Dom98] J. Domingue. Tadzebao and WebOnto: Discussing, Browsing, and Editing Ontologies on the
Web. Proceedings of the 11th Knowledge Acquisition for Knowledge-Based Systems Workshop,
April 18th-23rd. Banff, Canada, 1998.

[DS08] Klaas Dellschaft and Steffen Staab. Unterstützung und Dokumentation kollaborativer Entwurfs-
und Entscheidungsprozesse. Technical Report 4/2008, Universität Koblenz-Landau, Arbeits-
gruppe ISWeb, 3 2008.

[DSW+00] AJ DUINEVELD, R. STOTER, MR WEIDEN, B. KENEPA, and VR BENJAMINS. WonderTools?
A comparative study of ontological engineering tools. International Journal of Human-Computer
Studies, 52(6):1111–1133, 2000.

[DWM01] A. Das, W. Wand, and D.L. McGuinness. Industrial Strength Ontology Management. In Pro-
ceedings of the International Semantic Web Working Symposium, 2001.

[FFR97] A. Farquhar, R. Fikes, and J. Rice. Ontolingua Server: a tool for collaborative ontology construc-
tion. International Journal of Human-Computers Studies, 46(6):707–727, 1997.

[GHM+06] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, Henrik Frystyk Nielsen,
Anish Karmarkar, and Yves Lafon. Soap version 1.2 part 1: Messaging framework. Technical
report, W3C, 2006.

[GM03] Aldo Gangemi and Peter Mika. Understanding the Semantic Web through Descriptions and
Situations. In Robert Meersman, Zahir Tari, and Douglas Schmidt et al., editors, On The Move
2003 Conferences (OTM2003). Springer Verlag, 2003.

[GP07] Aldo Gangemi and Valentina Presutti. A Grounded Ontology for Identity and Reference of Web
Resources. In Idenitity, Identifiers, Identifications – Entity-Centric Approaches to Information
and Knowledge Management on the Web (I3), WWW2007 Workshop, Banff, Alberta Canada,
May 2007.

[HA06] John Horner and Michael Atwood. Effective Design Rationale: Understanding the Barriers. In
Allen Dutoit, Raymond McCall, Ivan Mistrík, and Barbara Paech, editors, Rationale Management
in Software Engineering, pages 73–90. Springer, 2006.

[HBS05] M. Hepp, D. Bachlechner, and K. Siorpaes. OntoWiki: Community-driven Ontology Engineering
and Ontology Usage based on Wikis, 2005.

[Inc] JotSpot Inc. Jotspot beta: the application wiki. http://www.jotspot.com/.

[JMLSSJ] Jugel Matthias L. and Schmidt Stephan J. Snipsnap: the easy weblog and wiki software.
http://www.snipsnap.org/space/.

[KEE] Kim E. E. Purplewiki. http://purplewiki.blueoxen.net/cgi-bin/wiki.pl.

[KGLCA07] Alexander Kubias, Laurian Gridinoc, Angel Lopez-Cima, and Carlos Buil Aranda. The role of
access rights in ontology customization. Deliverable D4.4.1, NeOn Project, 2007.

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 69 of 71

[KKIM02] K. Kozaki, Y. Kitamura, M. Ikeda, and R. Mizoguchi. Hozo: An Environment for Building/Us-
ing Ontologies Based on a Fundamental Consideration of" Role" and" Relationship. Proc. of
EKAW2002, pages 213–218, 2002.

[KKPS02] J. Kahan, M.R. Koivunen, E. Prud’Hommeaux, and RR Swick. Annotea: an open RDF infras-
tructure for shared Web annotations. Computer Networks, 39(5):589–608, 2002.

[KN03] M. Klein and N. Noy. A component-based framework for ontology evolution. In Proceedings of
the Workshop on Ontologies and Distributed Systems, 2003.

[Kol96] P. Kollock. . In Proceedings of the Harvard Conference on Internet and Society, 1996.

[KPS+06] A. Kalyanpur, B. Parsia, E. Sirin, B.C. Grau, and J. Hendler. Swoop: A Web Ontology Editing
Browser. Web Semantics: Science, Services and Agents on the World Wide Web, 4(2):144–
153, 2006.

[KR70] Werner Kunz and Horst Rittel. Issues as elements of information systems. Working Paper
131, Institute of Urban and Regional Development, University of California, Berkeley, California,
1970.

[KSKM07] K. Kozaki, E. Sunagawa, Y. Kitamura, and R. Mizoguchi. Distributed Construction of Ontolo-
gies Using Hozo. In Proc. Workshop on Social and Collaborative Construction of Structured
Knowledge colocated with WWW2007 in Banff, 2007.

[Lee90] Jintae Lee. SIBYL: A Qualitative Decision Management System. In Patrick Winston and Sarah
Shellard, editors, Artificial Intelligence at MIT – Vol. 1: Expanding Frontiers. MIT Press, 1990.

[Lee91] Jintae Lee. Extending the potts and bruns model for recording design rationale. In ICSE ’91:
Proceedings of the 13th international conference on Software engineering, pages 114–125, Los
Alamitos, CA, USA, 1991. IEEE Computer Society Press.

[Lu03] Y. Lu. Roadmap for tool support for collaborative ontology engineering. Master
thesis, XiAn Transportation University, Department of Computer Science, 1994 (2003).
http://www.cs.uvic.ca/ chisel/thesis/YilingLu.pdf.

[McC79] Raymond McCall. On the structure and use of issue systems in design. PhD thesis, University
of California, Berkeley, 1979.

[McC91] Raymond McCall. PHI: A conceptual foundation for design hypermedia. Design Studies,
12(1):30–41, 1991.

[med] The MediaWiki Website. http://www.mediawiki.org/wiki/MediaWiki. Viewed on November 30th,
2006.

[MIN] MINDSWAP Research Group, Univesity of Maryland. “SWOOP: A Hypermedia-based Feather-
weight OWL Ontology Editor". http://www.mindswap.org/2004/SWOOP/. Viewed on November
29th, 2006.

[MS06] C. Mancini and S.B. Shum. Modelling discourse in contested domains: A semiotic and cognitive
framework. technical report kmi-06-14. Technical report, Open University, 2006. Final version
submitted to International Journal of Human-Computer Studies.

[MT87] William C. Mann and Sandra A. Thompson. Rhetorical structure theory: A theory of text or-
ganization. In Livia Polanyi, editor, The Structure of Discourse. Ablex Publishing Corporation,
Norwood, N.J., 1987.

2007–2008 c© Copyright lies with the respective authors and their institutions.

Page 70 of 71 NeOn Integrated Project EU-IST-027595

[MvH04] Deborah L. McGuinness and Frank van Harmelen. Owl Web Ontology Language Overview.
http://www.w3.org/TR/2004/REC-owl-features-20040210/, 2004. W3C Recommendation, W3C,
February 2004.

[MYBM91] Allan MacLean, Richard Young, Victoria Bellotti, and Tom Moran. Questions, options, and crite-
ria: Elements of design space analysis. Human-Computer Interaction, 6:201–250, 1991.

[NCA07] N.F. Noy, A. Chugh, and H. Alani. The CKC Challenge: Exploring Tools for Collaborative Knowl-
edge Construction. 2007.

[NCLM06] N.F. Noy, A. Chugh, W. Liu, and M.A. Musen. A Framework for Ontology Evolution in Collabo-
rative Environments. In Proceedings of The Semantic Web - ISWC 2006, volume 4273, pages
544–558. Springer-LNCS, 2006.

[PB88] Colin Potts and Glenn Bruns. Recording the reasons for design decisions. In ICSE, pages
418–427, 1988.

[PS05] Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for RDF, 2005.

[PST04] Helena Sofia Pinto, Steffen Staab, and Christoph Tempich. DILIGENT: Towards a fine-grained
methodology for distributed, loosely-controlled and evolving engineering of ontologies. In Ra-
mon López de Mántaras and Lorenza Saitta, editors, ECAI, pages 393–397. IOS Press, 2004.

[PWHd07] Raul Palma, Yimin Wang, Peter Haase, and Mathieu d’Aquin. Propagation models and strate-
gies. Deliverable D1.3.1, NeOn Project, 2007.

[QH08] Guilin Qui and Peter Haase. Improved neon formalisms for context representation. Deliverable
D3.1.3, NeOn Project, 2008.

[RW73] Horst W. J. Rittel and Melvin M. Webber. Dilemmas in a general theory of planning. Policy
Sciences, 4(2):155–169, June 1973.

[Sch06] Sebastian Schaffert. Ikewiki: A semantic wiki for collaborative knowledge management. In
1st International Workshop on Semantic Technologies in Collaborative Applications (STICA’06),
Manchester, UK, June 2006.

[Sea06] S.B. Shum and et al. Co-opr: Design and evaluation collaborative sensemaking and planning
tools for personnel recovery. Technical report kmi-06-07, Open University, UK, 2006.

[Sem] Semantic Wiki Wiki Web. http://c2.com/cgi/wiki?SemanticWikiWikiWeb.

[SLL+05] D. Soergel, B. Lauser, A. Liang, F. Fisseha, J. Keizer, and S. Katz. Reengineering thesauri for
new applications: Agrovoc example. Journal Of Digital Information, 4, 2005.

[Sou] SourceForge. http://www.sourceforge.net/. Viewed on May 15th, 2007.

[SPKR96] B. Swartout, R. Patil, K. Knight, and T. Russ. Ontosaurus: a tool for browsing and editing
ontologies. 9th Banff Knowledge Aquisition for KNowledge-based systems Workshop, 1996.

[SSN93] T.J.M. Sanders, W.P.M. Spooren, and L.G.M. Noordman. Coherence relations in a cognitive
theory of discourse representation. Cognitive Linguistics, 4(2):93–133, 1993.

[SSS+06] Simon Buckingham Shum, Albert Selvin, Maarten Sierhuis, Jeff Conklin, Charles Haley, and
Bashar Nuseibeh. Hypermedia Support for Argumentation-Based Rationale: 15 Years on from
gIBIS and QOC. In Allen Dutoit, Raymond McCall, Ivan Mistrík, and Barbara Paech, editors,
Rationale Management in Software Engineering, pages 111–132. Springer, 2006.

D2.3.1 Practical Methods to Support Collaborative Ontology Design Page 71 of 71

[Sta] Stanford Medical Informatics. Protégé Ontology Editor. http://protege.stanford.edu/. Viewed on
November 29th, 2006.

[STV+06] Y. Sure, C. Tempich, D. Vrandecic, S. Pinto, E. Paslaru Bontas, and M. Hefke. Sekt methodology:
Initial framework and evaluation of guidelines. Deliverable d7.1.2, SEKT project, 2006.

[Sun] Sun Microsystems. Javadoc Tool. http://java.sun.com/j2se/javadoc/. Viewed on May 11th, 2007.

[Tem06] C. Tempich. Ontology Engineering and Routing in Distributed Knowledge Management Applica-
tions. PhD thesis, University of Karlsruhe, 2006.

[TMN06] G. Tummarello, C. Morbidoni, and M. Nucci. Enabling Semantic Web communities with DBin:
an overview. International Semantic Web Conference, pages 943–950, 2006.

[TN07] Tania Tudorache and Natasha Noy. Collaborative Protégé. In Proc. Workshop on Social and
Collaborative Construction of Structured Knowledge colocated with WWW2007 in Banff, 2007.

[Vea06] D. Vrandecic and et al. Sekt methodology: Initial lessons learned and tool design. Deliverable
d7.2.1 of the sekt project, Institut AIFB, Universitaet Karlsruhe (TH), Germany, 2006.

[VO06] Max Völkel and Eyal Oren. Towards a Wiki Interchange Format (wif). In Max Völkel and Sebas-
tian Schaffert, editors, Proceedings of the First Workshop on Semantic Wikis – From Wiki To
Semantics, 2006.

[W3C] W3C. Resource Description Framework (RDF): Concepts and abstract syntax.
http://www.w3.org/TR/rfd-concepts/. Recommendation 10 February 2004.

[Web] Wiki Wiki Web. Cunningham and Cunningham Inc. http://c2.com.

[Wik] WikiMedia. “Semantic MediaWiki". http://meta.wikimedia.org/wiki/SemanticMediaWiki. Viewed
on November 30th, 2006.

2007–2008 c© Copyright lies with the respective authors and their institutions.

	Introduction
	Requirements for Collaborative Ontology Engineering
	Collaboration Scenarios: Ontology Engineering at FAO
	The AGROVOC Thesaurus and Concept Server
	FNA: The Food, Nutrition and Agriculture Ontology
	CWR: Crop Wild Relative Ontology
	Generalized Scenario

	Collaboration Scenarios: Electronic Invoice Management
	Analysis of Existing Tools
	Collaborative Protégé
	Collaborative Ontology Engineering in the 90s
	Further Current Tools
	Trends in collaborative ontology editing

	List of Required Features
	Collaboration Support in NeOn

	Collaborative Editing
	The WikiFactory Framework
	How WikiFactory Works: a running example
	Related Work
	Concluding Remarks

	Argumentation
	Issue Based Information Systems (IBIS)
	Extensions of IBIS
	Benefits

	Compendium
	Personal Organization with Compendium
	Documenting Group Discussions in Compendium
	Conclusion

	Cicero
	Asynchronous Group Discussions
	Establishing Provenance Links
	Conclusion

	Comparison of Compendium and Cicero

	Conclusion
	Manual of the Cicero Argumentation Tool
	About the Argumentation Tool
	Installation and Configuration
	Installing Cicero
	Configuration

	Getting Access and Log In
	The Project Page
	Creating a Project
	Managing the Project Properties

	The Issue Page
	Creating an Issue
	Issue States
	The Discussion Page
	Taking a Decision
	Managing the Issue Properties

	Bibliography

