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Executive Summary

Next generation semantic applications are characterized by a large number of ontologies, some of them
constantly evolving. As the complexity of semantic applications increases, more and more knowledge are
embedded in applications, typically drawn from a wide variety of sources. This new generation of applications
thus likely rely on ontologies embedded in a network of already existing ontologies. Ontologies and metadata
have to be kept up to date when application environments and users’ needs change. One of the major
challenges in managing these networked and dynamic ontologies is to handle potential inconsistencies in
single ontologies, and inconsistencies introduced by integrating multiple distributed ontologies.

We have proposed a general approach for dealing with inconsistency and incoherence in networked ontolo-
gies in NeOn deliverable D1.2.1 [QHJ07] and provided evaluation results on our approach in NeOn deliver-
able D1.2.2 [QHJV07]. According to the evaluation results given in deliverable D1.2.2, although the approach
can be used to handle real life ontology in reasonable time, efficiency is still a problem if we want to deal with
large ontologies. We especially need efficient algorithm for finding minimal unsatisfiability-preserving sub-
ontologies (MUPS) of an ontology w.r.t an unsatisfiable concept. Moreover, we do not focus on networked
ontologies in previous work. This work continues the work done in previous deliverables and considers
diagnosing and repairing networked ontologies.

In this deliverable, we first propose an algorithm for finding MUPS of an ontology w.r.t an unsatisfiable con-
cept. We first define a relevance-based ordering on the MUPS, which allows us to associate a relevance
degree with each of the MUPS to facilitate the comparison among them. Specifically, we use a syntactic
selection function based on concept relevance, whose intuition is to select axioms that are closely connected
to the unsatisfiable concept. We then present an algorithm to find a set of MUPS for an unsatisfiable con-
cept. The algorithm incrementally selects subsets of the ontology using the selection function and finds a
set of MUPS from these sub-ontologies for the concept. When computing MUPS from a sub-ontology, our
algorithm allows for different strategies: It either computes a set of MUPS that satisfies some condition(s) or
computes all MUPS. Our algorithm is based on a black-box approach, and thus it can be implemented using
any DL reasoner.

We then propose an algorithm to repair the inconsistent mappings in networked ontologies. Given two on-
tologies O1 and O2. SupposeM is a mapping between them which is inconsistent. We take the union O
of O1 and O2 and assume that it is more reliable than mappingM. Then we treat the problem of mapping
repairing as the problem of DL-based ontology revision, i.e., problem of revising M by O. To revise M,
we apply our revision-based algorithm in possibilistic logic given in [Qi08] to find a diagnosis for the dis-
tributed system by treatingM as a possibilistic description logics knowledge base (see [QPJ07] for details
of possibilistic description logics).

Our evaluation on the algorithm for repairing mappings is done by considering the following evaluation mea-
sures: the first measure is the runtime of the algorithm and the second measure is the correctness or mean-
ingfulness of the results of our approach.

Our experiment shows that our algorithm for finding MUPS is faster than the best algorithm for finding all
MUPS of an ontology w.r.t. an unsatisfiable concept. We also compare our algorithm for mapping revision
with the one given by Meilicke et.al. in [MST07] to show the efficiency and effectiveness of our algorithm.
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Chapter 1

Introduction

1.1 The NeOn Big Picture

Next generation semantic applications will be characterized by a large number of ontologies, some of them
constantly evolving. As the complexity of semantic applications increases, more and more knowledge will be
embedded in applications, typically drawn from a wide variety of sources. This new generation of applications
will thus likely rely on ontologies embedded in a network of already existing ontologies. Ontologies and
metadata will have to be kept up to date when application environments and users’ needs change. We argue
that in this scenario it will become prohibitively expensive for people to directly adopt the current approach
to semantic integration, where the expectation is to produce a single, globally consistent semantic model
that serves the needs of application developers and fully integrates a number of pre-existing ontologies. In
contrast to the current model, future applications will very likely rely on networks of contextualized ontologies,
which are usually locally, but not globally consistent.

This report is part of the work performed in WP 1 on “Dynamics of Networked Ontologies”. The goal of this
work package is to develop an integrated approach for the evolution process of networked ontologies and
related metadata. As shown in Figure 1.1, WP1 belongs to the central part of the research and development
WPs in NeOn. The tasks of WP1 are heavily inter-related with other work packages. For the individual
phases of the process we will develop new methods that consider the complex relationships in a network of
ontologies. These include dependencies, mappings, different versions and also take possible inconsistencies
into account.

Specific goals in this workpackage include support for:

1. representing, managing and interpreting dependencies between multiple networked ontologies

2. evolution of networked ontologies in exploiting various models of change propagation, which have
different applicabilities depending on the model of coordination and control

3. maintaining partial/local consistency of a set of networked ontologies, which might not be globally
consistent

4. evolving metadata along with changing ontologies and predicting future structural changes in ontolo-
gies.

1.2 Motivation and Goals of this Deliverable

The problem of inconsistency (or incoherence) handling in ontologies has attracted a lot of attention. Incon-
sistency can occur due to several reasons, such as modeling errors, migration or merging ontologies, and
ontology evolution. Many approaches were proposed to handle inconsistency in ontologies based on existing
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Figure 1.1: Relationships between different workpackages in NeOn

techniques for inconsistency management in traditional logics, such as propositional logic and nonmonotonic
logics [PSK05, HvHtT05]. In NeOn deliverable D1.2.2, we proposed a general approach for resolving incon-
sistency and incoherence in a single ontology and provided instantiation of the general approach. We also
reported evaluation results of our instantiated approach. When resolving incoherence, we adapt the CS-Tree
algorithm in [dlBSW03] for finding minimal unsatisfiable subsets to calculate all the minimal unsatisfiability-
preserving sub-ontologies (MUPS).

This deliverable continues the work given in D1.2.2. We mainly tackle the following two problems:

Firstly, several methods have been proposed to find all MUPS and then minimal incoherence-preserving
sub-TBox (MIPS) (see [SC03, KPHS07, BPS07]). Although practical techniques to find all possible MUPS
exist, efficiency is still a problem (see [SHCvH07]). As shown in [BPS07], in the worst case the number of
MUPS for an unsatisfiable concept is exponential in the size of the ontology. Therefore, several approaches
for resolving incoherence were given which do not calculate all the MUPS [Sch05, MST07].

To solve the above problem, we propose a novel algorithm for finding MUPS of an ontology w.r.t. an unsatisfi-
able concept by using a relevance-based selection function, called relevance-based algorithm. Our algorithm
is based on a black-box approach, and thus it can be implemented using any DL reasoner. We first define
a relevance-based ordering on the MUPS, which allows us to associate a relevance degree with each of the
MUPS to facilitate the comparison among them. Specifically, we use a syntactic selection function based
on concept relevance, whose intuition is to select axioms that are connected to the unsatisfiable concept to
some extent. We then present an algorithm to find a set of MUPS for an unsatisfiable concept. The algo-
rithm incrementally selects subsets of the ontology using the selection function and finds a set of MUPS from

2006–2008 c© Copyright lies with the respective authors and their institutions.
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these sub-ontologies for the concept. When computing MUPS from a sub-ontology, our algorithm allows for
different strategies: It either computes a set of MUPS that satisfies some condition(s) or computes all MUPS.

Secondly, theoretically, our approach given in D1.2.2 can be used to resolve inconsistencies in networked
ontologies by considering the problem of mapping repair as the problem of ontology revision. However, the
algorithm for mapping repair given in D1.2.2 requires to compute all the MUPS of an ontology w.r.t. an
unsatisfiable concept. Therefore, it is not very efficient. In this deliverable, we propose a new algorithm
for mapping revision based on the relevance-based algorithm for finding MUPS of an ontology w.r.t. an
unsatisfiable concept.

The algorithms are implemented and evaluated by using the KAON2 reasoner1 for the reasoning tasks. We
also evaluate the efficiency and effectiveness of our algorithms using some real ontologies as data sets. By
comparing our relevance-based algorithm and the algorithm given in [KPHS07], we show the advantage of
introducing the selection function to find MUPS incrementally. We also show that our algorithm for map-
ping revision is better than the one given by Meilicke et.al. in [MST07] by comparing their efficiency and
effectiveness.

The work presented in this deliverable is closely related to several activities in WP3. The confidence values
attached to mappings can be viewed as a kind of provenance information, where provenance is a form
of context that is typically available for automatically generated ontologies (see D3.1.3). Therefore, in our
deliverable, we provide a practical usage of provenance to deal with inconsistency in networked ontologies.
In deliverable D3.3.1, the Alignment Server is given as the infrastructure for contextualizing ontologies by
finding relations that it has with other ontologies. Our approach for mapping revision provides a way to
improve the quality of the automated generated mapping by the Alignment API.

1.3 Overview of the Deliverable

This deliverable is structured as follows. We first provide some background knowledge in Chapter 2. After
that, we present our relevance-based algorithm in Chapter 3 and revision-based algorithm in Chapter 4.
Experimental Results are reported in Chapter 5. Chapter 6 summarizes the conclusions and discusses
future work.

1http://kaon2.semanticweb.org/
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Chapter 2

Preliminaries

2.1 Debugging in Description Logics

We presume that the reader is familiar with Description Logics (DLs) and refer to the DL handbook [BCM+03]
for more details. A DL-based ontology (or knowledge base) O = (T ,R,A) consists of a set T of concept
axioms (TBox), a set R of role axioms (RBox), and a set A of assertional axioms (ABox). Concept axioms
(or terminology axioms) have the form C v D where C and D are (possibly complex) concept descriptions,
and role axioms are expressions of the form RvS, where R and S are (possibly complex) role descriptions.
The ABox contains concept assertions of the form C(a) where C is a concept and a is an individual name,
and role assertions of the form R(a, b), where R is a role and a and b are individual names.

An interpretation I = (4I , ·I) consists of a non-empty domain set 4I and an interpretation function ·I ,
which maps from concepts and roles to subsets of the domain and binary relations on the domain, respec-
tively. Given an interpretation I, we say that I satisfies a concept axiom C v D (resp., a role inclusion
axiom R v S) if CI⊆DI (resp., RI ⊆ SI ). Furthermore, I satisfies a concept assertion C(a) (resp., a role
assertion R(a, b)) if aI∈CI (resp., (aI , bI)∈RI ). An interpretation I is called a model of an ontology O, iff
it satisfies each axiom in O. A concept C in an ontology O is unsatisfiable if for each model I of O, CI = ∅.
An ontology O is incoherent if there exists an unsatisfiable concept in O.

Example 1 Consider the following ontology (taken from the Proton ontology, c.f. experiments in Section 5)

O = { Manager v Employee, Employee v JobPosition, Leader v JobPosition, JobPosition v Situation,
Situation v Happening, Leader v ¬ Patent, Happening v ¬ Manager, JobPostion v ¬ Employee, JobPosi-
tion(lectureship) }.
There are two unsatisfiable concepts in this ontology: Employee and Manager. Therefore, O is an inco-
herent ontology.

We generalize the notion of MUPS given in [SC03].

Definition 1 1 Let C be an unsatisfiable concept in an ontology O. A setM⊆O is a minimal unsatisfiability-
preserving sub-ontology (MUPS) of O w.r.t. C if C is unsatisfiable in M, and C is satisfiable in every
sub-ontology O′ ⊂M. The set of all MUPS of O w.r.t. C is denoted as mups(C,O)

A MUPS of O w.r.t. C is a minimal sub-ontology of O in which C is unsatisfiable. It can be viewed as a
justification of concept unsatisfiability [KPHS07]. Therefore, we sometimes call a MUPS as a justification.

Example 2 In Example 1, concept Manager has the following two MUPS:

(1)M1 = { Manager v Employee, Employee v JobPosition, JobPostion v ¬ Employee }
(2)M2 = { Manager v Employee, Employee v JobPosition, JobPosition v Situation, Situation v Happen-
ing, Happening v ¬ Manager }.

1MUPS is defined for a TBox in [SC03]. Its extension to an ontology is straightforward.

2006–2008 c© Copyright lies with the respective authors and their institutions.
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2.2 Selection Functions

We introduce the notion of selection function in a single ontology given in [HvHtT05], which will be used in
our algorithm to extract a subset of an ontology relevant to a subsumption to some degree.

Definition 2 (Selection Function) Let L be an ontology language (denoting sets of axioms), a selection
function for L is a mapping sL: P(L)×L×N→ P(L) such that sL(O,φ, k) ⊆ O, where P(L) is the power
set of L.

That is, a selection function selects a subset of an ontology w.r.t. an axiom at step k. A syntactic relevance-
based selection function is given as follows.

Let φ be an axiom in a DL-based ontology. We use I(φ), C(φ) and R(φ) to denote the sets of individual
names, concept names, and role names appearing in φ respectively.

A specific selection function based on syntactic relevance is employed in our algorithm. We begin with
defining direct relevance between two axioms.

Definition 3 Two axioms φ and ψ are directly relevant iff there is a common name which appears both in φ
and ψ, i.e., I(φ) ∩ I(ψ) 6= ∅ or C(φ) ∩ C(ψ) 6= ∅ or R(φ) ∩R(ψ) 6= ∅.

Based on the notion of direct relevance, we can define the notion of relevance between an axiom and an
ontology.

Definition 4 An axiom φ is relevant to an ontology O iff there exists an axiom ψ in O such that φ and ψ are
directly relevant.

We introduce the relevance-based selection function which can be used to find all the axioms in an ontology
that are relevant to an axiom to some degree.

Definition 5 Let O be an ontology, φ be an axiom and k be an integer. The relevance-based selection
function, written srel, is defined inductively as follows:

srel(O,φ, 0) = ∅
srel(O,φ, 1) = {ψ ∈ O : φ and ψ are directly relevant}
srel(O,φ, k) = {ψ ∈ O : ψ is directly relevant to srel(O,φ, k − 1)}, where k > 1.

We call srel(O,φ, k) the k-relevant subset of O w.r.t. φ. For convenience, we define sk(O,φ) =
srel(O,φ, k) \ srel(O,φ, k − 1) for k ≥ 1.

To apply the relevance-based selection function to a concept, we need to construct a new axiom which states
that this concept is sub-concept of a fresh concept which does not appear in the ontology. For notational
simplicity, we use srel(O,C, k) to denote srel(O,C v D, k) where D is a fresh concept. Similarly, sk(O,C)
indicates sk(O,C v D).

Example 3 Consider the ontology given in Example 1.

O = { Manager v Employee, Employee v JobPosition, Leader v JobPosition, JobPosition v Situation,
Situation v Happening, Leader v ¬ Patent, Happening v ¬ Manager, JobPosition v ¬ Employee, JobPosi-
tion(lectureship) }.
We have

s1(O,Manager) = { Manager v Employee, Happening v ¬ Manager }
s2(O,Manager) = { Employee v JobPosition, JobPosition v ¬ Employee, Situation v Happening }
s3(O,Manager) = { Leader v JobPosition, JobPosition v Situation, JobPosition(lectureship) }
s4(O,Manager) = { Leader v ¬ Patent }
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2.3 Hitting Set Tree Algorithm

We briefly introduce some notions Reiter’s Hitting Set Tree algorithm given in [Rei87] which will be used in
our algorithm. We follow the reformulated notions in Reiter’s theory given in [KPHS07]. Given a universal set
U , and a set C = {S1, ..., Sn} of subsets of U which are conflict sets, i.e. subsets of the system components
responsible for the error. In the case of finding justifications, the universal set corresponds to ontology and a
conflict set corresponds to a MUPS [KPHS07]. A hitting set T for C is a subset of U such that Si ∩ T 6= ∅
for all 1 ≤ i ≤ n. A hitting set is used to repair conflicts. That is, if we remove elements in T from U , then
we resolve all the conflict sets in C. In practice, we want to remove as little information as possible to resolve
conflicts. This can be captured by the notion of a minimal hitting set. A minimal hitting set T for C is a hitting
set such that no T ′ ⊂ T is a hitting set for C. A minimal hitting set is a hitting set which is minimal w.r.t. a
set-inclusion relation. Alternatively, we can define the minimality based on the cardinality of a set. A hitting
set T is cardinality-minimal if there is no other hitting set T ′ such that |T ′| < |T |.
Reiter’s algorithm is used to calculate minimal hitting sets for a collection C = {S1, ..., Sn} of sets by con-
structing a labeled tree, called a Hitting Set Tree (HST). Given a collection C of sets, a HST T is the smallest
edge-labeled and node-labeled tree, such that the root is labeled by X if C is empty. Otherwise it is labeled
with any set in C. For each node n in T , let H(n) be the set of edge labels on the path in T from the root to
n. The label for n is any set S ∈ C such that S ∩H(n) = ∅, if such a set exists. If n is labeled by a set S,
then for each σ ∈ S, n has a successor, nσ joined to n by an edge labeled by σ. For any node labeled by
X, H(n), i.e. the labels of its path from the root, is a hitting set for C. The HST algorithm usually results in
several minimal hitting sets. We randomly choose one of them as output of the algorithm.

Figure 2.1 shows a HST T for the collection C = {{1, 2, 3, 4, 5, 6}, {3, 4, 5}, {1, 2, 4, 6}, {1, 2}, {4, 7}}
of sets. T is created breadth first, starting with root node n0 labeled with {1, 2, 3, 4, 5, 6}. For diagnostic
problems the sets in the collection are conflict sets which are created on demand. In our case, conflict
sets for a terminological diagnosis problem can be calculated by a standard DL engine (by definition each
incoherent subset of T is a conflict set).

2.4 Diagnosing and Repairing Mappings

In this section, we introduce some notions of diagnosing and repairing mappings, which have been given in
[MST07].

We first introduce the notion of correspondence between elements of two ontologies and mapping defined
in [ES07]. Note that our definitions are compatible with the mapping metamodel given in NeOn deliverable
D1.1.2 [HBP+07].

Given two ontologies O1 and O2, describing the same or largely overlapping domains of interest. We can
define the correspondences between elements of them.

Definition 6 Let O1 and O2 be two ontologies, Q be a function that defines sets of matchable elements
Q(O1) and Q(O2). A correspondence is a 4-tuple 〈e, e′, r, α〉 such that e ∈ Q(O1) and e′ ∈ Q(O2), r is a
semantic relation, and α is a confidence value from a suitable structure 〈D,≤〉.

In Definition 6, there is no restriction on function Q, semantic relation r and domain D. Similar to the paper
[MST07], we only consider correspondences between concepts and restrict r to be one of the semantic
relations from the set {≡,v,w}, and assume D = [0.0, 1.0].
From a set of correspondences, we can define the notion of a mapping as follows. We follow the definition of
a mapping given in [HBP+07].

Definition 7 Given ontologies O1 and O2, let Q be a function that is given in Definition 6. M is a set of
correspondences. ThenM is a mapping between O1 and O2 iff for all correspondences 〈e, e′, r, α〉 ∈ M
we have e ∈ Q(O1) and e′ ∈ Q(O2).

2006–2008 c© Copyright lies with the respective authors and their institutions.
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Figure 2.1: HST with small conflict sets

That is, a mapping is a set of correspondences whose elements are matchable.

Given a mapping between two ontologies O1 and O2, we can define the notion of a distributed system2

[ZE06].

Definition 8 A distributed system is a triple D = 〈O1, O2,M〉, where O1 and O2 are ontologies andM is
a mapping between them. We call O1 the source ontology and O2 the target ontology.

Given a distributed system, there is no unique semantics for it. Three semantics for distributed systems
have been proposed in [ZE06]. While theoretically interesting, none of their semantics has been used in
practice. Another important semantics for a distributed system is defined by Distributed Description Logics
(DDL). Algorithms for reasoning tasks in DDL, such as consistency checking, have been implemented as
an extension DRAGO system [ST05]. Although the complexity of reasoning in a DDL is the same as that of
reasoning in the local language of the DDL, the implementation DRAGO system lacks optimization so that
the system runs slowly for real life ontologies. In our work, we follow the notion of consistency of mapping
given in [MS07]. This semantics is the same as that of the mapping system described in [HM05], which has
been discussed in NeOn deliverable D1.1.2 [HBP+07].

Example 4 Take the two ontologies CRS and EKAW in the domain of conference management systems as
an example, which are real-life ontologies provided by OAEI conference 3. For simplicity, we use a subset of

2In [ZE06], they do not restrict to two ontologies. To simplify discussions, we consider only two ontologies in our work.
3http://oaei.ontologymatching.org/2007/
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each ontology in our example. The source ontology O1 with namespace ns1 and the target ontology O2 with
namespace ns2 contain the following axioms:

ns1 : Paper v ns1 : Document, ns1 : PC_Member v ns1 : Possible_Review
ns1 : Conference_Paper v ns1 : Paper, ns1 : Workshop_Paper v ns1 : Paper,
ns2 : article v ns2 : document, ns2 : program v ¬ns2 : document,

(2.1)

The mappingM between O1 and O2 is obtained by the ontology matching system HMatch and is a subset
of the mapping which is available online 4. The correspondences inM are listed as follows:

m1 : 〈ns2 : article, ns1 : Conference_Paper,v, 0.65〉,
m2 : 〈ns1 : Workshop_Paper, ns2 : article,v, 0.65〉,
m3 : 〈ns1 : Document, ns2 : program,v, 0.8〉,
m4 : 〈ns2 : program, ns1 : Document,v, 0.8〉,
m5 : 〈ns2 : document, ns1 : Document,v, 0.93〉

(2.2)

Definition 9 Let O1 and O2 be two ontologies andM be a mapping between them. The union O1∪MO2 of
O1 and O2 connected byM is defined as O1∪MO2 = O1∪O2∪{t(x) : x ∈M} with t being a translation
function that converts correspondences into axiom in the following way:

t(〈C,C ′, r, α〉) = CrC ′

That is, we first translate all the correspondences in the mappingM into DL axioms, then the union of the two
ontologies connected by the mapping is the set-union of the two ontologies and the translated axioms. Take
a correspondence in Example 4 as an example. t(〈ns2 : article, ns1 : Conference_Paper,v, 0.4〉) =
ns2 : article v ns1 : Conference_Paper.

Definition 10 Given two ontologies O1 and O2 and a mappingM between them. ThenM is consistent iff
there exists no concept C in Oi with i ∈ {1, 2} such that C is satisfiable in Oi but unsatisfiable in O1∪MO2.
Otherwise,M is inconsistent.

An inconsistent mapping is a mapping such that there is a concept that is satisfiable in a local ontology but
unsatisfiable in the union of the two ontologies connected by the mapping. It has been argued in [MS07] and
[MST07] that an inconsistent mapping is a mapping that contains erroneous correspondences. In Example 4,
the mappingM is inconsistent since there are three unsatisfiable concepts ns1 : Workshop_Paper, ns2 :
article and ns2 : document in O1 ∪M O2 which are satisfiable in both O1 and O2.

In [MST07], the notion of diagnosis for a classical knowledge base is applied to a distributed system. We
adapt their definition as follows.

Definition 11 Given a distributed system 〈O1, O2,M〉, where O1 and O2 are ontologies andM is a map-
ping between them. A diagnosis for the distributed system is the minimal setM′ ⊆M such thatM\M′ is
consistent w.r.t. O1 and O2.

Intuitively speaking, a diagnosis for a distributed system is a minimal set of correspondences such that
the mapping in the distributed system becomes consistent after removing these correspondences. Fol-
lowing Example 4, both {ns1 : Document v ns2 : program} and {ns2 : article v ns1 :
Conference_Paper, ns1 : Workshop_Paper v ns2 : article, ns2 : document v ns1 : Document}
are diagnoses for the distributed system 〈O1, O2,M〉.
We adapt the notion of a minimal conflict set of a distributed system given in [MST07] as follows.

4http://webrum.uni-mannheim.de/math/lski/ontdebug/index.html
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Definition 12 Given a distributed system 〈O1, O2,M〉, where O1 and O2 are ontologies andM is a map-
ping between them. SupposeM is an inconsistent mapping. A subset C ofM is a conflict set for a concept
A in Oi (i = 1, 2) iff A is satisfiable in Oi but unsatisfiable in O1 ∪C O2. C is a minimal conflict set for A in Oi

iff C is a conflict set for A and there exists no C′ ⊂ C which is also a conflict set for A in Oi.

A minimal conflict set for a concept in one of the ontologies is a minimal subset of the mapping that, together
with the local ontologies, is responsible for the unsatisfiability of the concept in the distributed system. It is
similar to the notion of a MUPS of a single ontology w.r.t. an unsatisfiable concept. For example, C = {ns1 :
Document v ns2 : program, ns1 : Workshop_Paper v ns2 : article} is a minimal conflict set for
concept Workshop_Paper in O1.
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Chapter 3

A Relevance-based Algorithm for Finding
MUPS

In this chapter, we first introduce a relevance-based ordering on MUPS and then present an algorithm that
computes a set of MUPS attached with relevance degrees.

3.1 Relevance-based Ordering on MUPS

We define an ordering on MUPS using the relevance-based selection function.

Definition 13 Let O be an ontology and C be an unsatisfiable concept in O. srel is the relevance-based
selection function given by Definition 5. A relevance-based ordering on the set of all the MUPS for C, written
�rel,C , is defined as follows: for any two MUPS J1 and J2 for C,

J1 �rel,C J2 iff drel,C(J1) ≥ drel,C(J2)

where, drel,C(Ji) = max{k : Ji ∩ sk(O,C) 6= ∅} is used to measure the relevance degree of Ji w.r.t. C.

That is, MUPS J1 is less relevant to C than J2 if and only if the element in J1 which is furthest from C is less
relevant to that in J2 which is furthest from C.

Example 5 (Example 3 Continued) Concept Manager has the following two MUPS:

(1) J1 = { Manager v Employee, Employee v JobPosition, JobPosition v ¬ Employee }
(2) J2 = {Managerv Employee, Employeev JobPosition, JobPositionv Situation, Situationv Happening,
Happening v ¬ Manager }.
By Example 3, we have drel,Manager(J1) = 2 and drel,Manager(J2) = 3. Therefore, J2 �rel,Manager J1. It is
clear that J1 is much easier to understand than J2.

Let us consider an important property of the relevance-based ordering:

Proposition 1 Let O be an ontology and C be an unsatisfiable concept in O. Given a MUPS J for C,
suppose k = drel,C(J), then J ∩ sj(O,C) 6= ∅ for any 0 < j ≤ k.

Proof 1 It is clear that J ∩ sk(O,C) 6= ∅. Suppose that J ∩ sj(O,C) = ∅ for some j < k. Then for any
axiom φ in srel(O,C, j − 1) ∩ J and any axiom ψ in J \ srel(O,C, j − 1), φ and ψ are not directly relevant
because φ can be only directly relevant to axioms in srel(O,C, j − 1) or axioms in sj(O,C). We show that
J cannot be a MUPS. Let us construct an ontology O′ which contains exact those elements of J . According
to [KPSH05], any MUPS for an unsatisfiable concept must be generated by a black-box algorithm for finding

2006–2008 c© Copyright lies with the respective authors and their institutions.
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a single MUPS. Therefore J must be generated by the black-box algorithm. In the black-box algorithm,
relevance-based selection function srel is applied to select axioms from O′. It is clear that the algorithm will
select axioms from s1(O,C) ∩O′, s2(O,C) ∩O′, etc. However, it will stop selecting axiom when it reaches
sj−1(O,C)∩O′ because there is no element in sj(O,C)∩O′. So the MUPS found by the algorithm will not
include any axiom in J \ srel(O,C, j − 1). Contradiction.

The Proposition 1 states that if the relevance degree of a MUPS for a concept is k, then it contains at least
one axiom in the ontology that is relevant to the concept with degree j for any 0 < j < k.

Corollary 1 Let O be an ontology and C be an unsatisfiable concept in O. Given two MUPS J1 and J2 for
C, suppose J1 �rel,C J2, if J2 ∩ sk(O,C) 6= ∅ then J1 ∩ sk(O,C) 6= ∅ for all k, but not vice versa.

Corollary 1 follows from Proposition 1. According to Corollary 1, suppose MUPS J1 is less relevant to C than
J2, if J2 is k-relevant to C, then J1 must be k-relevant to C as well, where a MUPS is k-relevant to C if and
only if it has non-empty intersection with sk(O,C). Proposition 1 and Corollary 1 together tell us that if we
want to find MUPS for a concept in an ontology that are more relevant to the concept, we should select those
axioms in the ontology that are more relevant to the concept.

3.2 Relevance-based Algorithm for Finding MUPS

Our algorithm receives an ontology O, an unsatisfiable concept C in O and a strategy for computing MUPS
as inputs, and outputs a set of weighted MUPS

−→
J and a set of hitting sets HS for mups(C,O), which we

call global hitting sets. In our algorithm, we consider two strategies when expanding the hitting set tree by
invoking Algorithm 2: (1) All_Just_Relevance is to compute all the MUPS when we expand the HST by using
Algorithm 2, and (2) CM_Just_Relevance computes those MUPS that are in nodes of the cardinality-minimal
hitting sets in the local HST1 expanded by Algorithm 2.

First of all, we find the first k such thatC is unsatisfiable in the k-relevant subsetO′ ofO, i.e., the “if" condition
in line 19 is satisfied. We then call Algorithm 2 to find a set of MUPS for C in O′ and a set of local hitting sets
for mups(C,O′). After that, we associate a relevance degree to each found MUPS in line 21.

We then add to O′ axioms in O that are directly relevant to O′. Since HSlocal is not empty, the “if" condition
in line 7 is always satisfied. In the first “for" loop, we get all the hitting sets that are global hitting sets, i.e., C
becomes satisfiable if we remove axioms in such a hitting set from O (lines 8-10). We exclude from HSlocal

those hitting sets that have been selected (line 11). Now if we choose the strategy CM_Just_Relevance and
there exists a global hitting set in HS, then the algorithm terminates and returns the found weighted MUPS
and global hitting sets. Alternatively, if HSlocal is empty, then there is no hitting set tree to expand anymore.
So the algorithm terminates and returns the found weighted MUPS and hitting sets (lines 12-13). If none of
the conditions in line 12 is satisfied, we expand the hitting set tree in lines 15-18. For each local hitting set
P that has been found before, we call Algorithm 2 to find a set of MUPS for C in O′ \ P and a set of local
hitting sets for mups(C,O′ \ P ) (line 16). After that, we update the set of weighted MUPS and the set of
local hitting sets (lines 17-18).

In Algorithm 2, we first find a single MUPS (line 3) and add it to J which contains all the MUPS generated
by the algorithm (line 4). We then create all the possible branches from the node corresponding to the new
found MUPS (lines 5-6). In the “while" loop, we first find all the branches that do not need to expand and
all the branches to be expanded (steps 9-14). Our algorithm terminates and returns the found MUPS and
hitting sets if any of the following condition holds: (1) The strategy CM_Just_Relevance is chosen and we
have found a local hitting set, (2) the input concept C is satisfiable in the input ontology (i.e. HS1 = ∅ in the
first iteration of “while" loop), and (3) there is no branch to expand (i.e. HS2 = ∅). If none of the conditions
is satisfied, then we expand the branches stored in HS2. For each P ∈ HS2, we first find a single MUPS for

1We call the HST constructed using Algorithm 2 as a local HST, and the hitting sets found in this algorithm as local hitting sets.
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Algorithm 1: REL_JUSTS(C,O,compute_justs_strategy)
Data: An ontology O and an unsatisfiable concept C of O, and the strategy compute_justs_strategy to

compute MUPS.
Result: A set of weighted MUPS

−→
J and a set of global hitting sets HS

begin1

Globals : strategy ← compute_justs_strategy;
−→
J ← ∅2

O′ ← HS ← HSlocal ← ∅; k ← 13

Srel ← sk(O,C)4

while Srel 6= ∅ do5

O′ ← O′ ∪ Srel6

if HSlocal 6= ∅ then7

for P ∈ HSlocal do /* Get global hitting sets */8

if C is satisfiable in O \ P then9

HS ← HS ∪ {P}10

HSlocal ← {P |P ∈ HSlocal and P 6∈ HS}11

if (strategy 6=All_Just_Relevance and HS 6= ∅) or (HSlocal = ∅) then12

return (
−→
J ,HS) /* Early termination */13

HStemp ← HSlocal14

for P ∈ HStemp do /* Expand hitting set tree */15

(J ,HS′local)← COMPUTE_JUSTS(C,O′ \ P )16
−→
J ←

−→
J ∪ {(J, k)|J ∈ newly found MUPS}17

HSlocal ← HSlocal ∪ {P ∪ P ′|P ′ ∈ HS′local} \ {P}18

else if C is unsatisfiable in O′ then19

(J ,HSlocal)← COMPUTE_JUSTS(C,O′)20
−→
J ← {(J, k)|J ∈ J } /* Associate relevance degree */21

k ← k + 122

Srel ← sk(O,C)23

return (
−→
J ,HS)24

end25

C in O \ P and add it to J (steps 19 and 20). We then create all the possible new branches (lines 21-22)
and go to another iteration of “while" loop.

To compute a single MUPS, we can take the methods given in [KPHS07]. For example, SINGLE_JUST(C,O)
in Algorithm 2 can be the black-box algorithm in [KPHS07]. It first expands a freshly generated ontology O′

which is a superset of a MUPS using a relevance-based selection function. Then O′ is pruned to find the
final MUPS, where a window-based pruning strategy is used to minimize the number of satisfiability-check
calls to the reasoner.

We show the correctness of Algorithm 1 when the strategy All_Just_Relevance is chosen, i.e., our algorithm
finds all the MUPS for mups(C,O) when it terminates.

Theorem 1 Let the strategy to compute MUPS in Algorithm 1 be to compute all MUPS
(compute_justs_strategy = all_Justification). Suppose

−→
J is the set of weighted MUPS returned

by REL_JUSTS(C,O, compute_justs_strategy), then mups(C,O) = {J |∃k, (J, k) ∈
−→
J }. For each

(J, k) ∈
−→
J , we have k = drel,C(J ).

Proof 2 (sketch) It is easy to check that Algorithm 1 will terminate and return
−→
J = ∅ when C is satisfiable in

O. So we assume that C is unsatisfiable in O. Since it has been shown that HST algorithm can be used to

2006–2008 c© Copyright lies with the respective authors and their institutions.
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Algorithm 2: COMPUTE_JUSTS(C,O)
Data: An ontology O and an unsatisfiable concept C of O
Result: A set of MUPS J for C in O and a set of hitting sets HS
begin1

HS ← HS1 ← ∅2

J ← SINGLE_JUST(C,O)3

J ← J ∪ {J}4

for a ∈ J do /* Create all possible branches. */5

HS1 ← HS1 ∪ {{a}}6

while true do7

HS2 ← ∅8

for (P ∈ HS1) do9

if C is satisfiable in O \ P then /* Local hitting sets */10

HS ← HS ∪ {P}11

else /* Branches need to be expanded */12

HS2 ← HS2 ∪ {P}13

14

if (strategy 6=All_Just_Relevance and HS 6= ∅) or (HS1 = ∅) or (HS2 = ∅) then15

return (J ,HS)16

HS1 ← ∅17

for P ∈ HS2 do18

J ← SINGLE_JUST(C,O \ P )19

J ← J ∪ {J}20

for a ∈ J do21

HS1 ← HS1 ∪ {P ∪ {a}}22

end23

find all the MUPS in [KPHS07], we only need to show that Algorithm 1 expand all the branches of the hitting
set tree for mups(C,O). This can be seen from the following facts: (1) for each local hitting set in HSlocal,
if it is a global hitting set, then it is stored in the set HS (lines 8-10); (2) Early termination will not happen
unless there is no local hitting set to expand, i.e., we have found all the global hitting sets; (3) in Algorithm
2, since we have chosen the strategy All_Just_Relevance, the algorithm terminates only if there is no more
branch that can be expanded, i.e., either HS1 = ∅ or HS2 = ∅. Since we add all the possible branches to
HS1 (lines 5-7 and lines 22-24), all the branches have been explored when the algorithm terminates. It is
clear that k = drel,C(J ) according to steps 17 and 21 of Algorithm 1.

We show the correctness of Algorithm 2 when the strategy CM_Just_Relevance is chosen, i.e., it computes
those MUPS that are nodes of the cardinality-minimal hitting sets in the local hitting set tree expanded by
Algorithm 2.

Theorem 2 Suppose strategy CM_Just_Relevance is an input of Algorithm 1. Suppose J and HS are
returned by COMPUTE_JUSTS(C,O), then for each local hitting set J ∈ J , there is no other local hitting set
J ′ in mups(C,O) such that |J ′| < |J |.

Proof 3 Since we choose strategy CM_Just_Relevance, there are three cases where the algorithm termi-
nates (lines 15-16). Case 1: HS 6= ∅, i.e., there is a hitting set in mups(C,O). In this case, all the hitting
sets in HS has the same cardinality l. It is impossible to find a hitting set whose cardinality is less than l.
Otherwise, since we expand the hitting set in the breadth-first manner, this hitting set must have been put



D1.2.3 Diagnosing and repairing inconsistent networked ontologies Page 21 of 35

{1, 2} 

{6, 7, 8, 9} 

1 2

{1, 3, 4, 5}

6 7 8 9

1 3

6
7 8

9

4 5 1 3 4 51 3 4 51 3 4 5

{1, 3, 4, 5} 

{6, 7, 8, 9} 

{1, 3, 4, 5} {1, 3, 4, 5} 

Figure 3.1: Finding MUPS using relevance-based algorithm

in HS before and the algorithm should have terminated. This is a contradiction. Case 2: HS1 = ∅. In this
case, we must have that there is no MUPS for C in O, so mups(C,O) = ∅ = J . Case 3: HS2 = ∅. In this
case, we have expanded all the branches and we must have found a hitting set, i.e., condition HS 6= ∅ is
satisfied. So the conclusion holds.

We go through our algorithm to compute some MUPS by considering the following example.

Example 6 Given an ontology including the following axioms:

1: U v A, 2: U v ¬A, 3: U v C, 4: C v ¬B,
5: A v B, 6: U v G, 7: G v E, 8: U v F ,
9: F v ¬E, 10: U v D, 11: D v E, 12: C v K,
13: K v ¬H , 14: B v H

We denote each axiom by a natural number (1..14) for simplicity. In O there is only one unsatisfiable con-
cept U . For the concept U , we obtain the following subsets of O using selection function: s1(O,U) =
{1, 2, 3, 6, 8, 10}, s2(O,U) = {4, 5, 7, 9, 11, 12} and s3(O,U) = {13, 14}. All the MUPS for U are listed as
follows:

J = {{1, 2}, {1, 3, 4, 5}, {6, 7, 8, 9}, {8, 9, 10, 11}, {1, 3, 5, 12, 13, 14}}.
We illustrate our algorithm where CM_Just_Relevance is chosen in Figure 3.1, where each distinct node in
a rectangular box represents a MUPS, and each sub-tree outlined in a rectangular box shows the process to
compute MUPS for a sub-ontology by invoking Algorithm 2.

k = 1 : O′ = srel(O,U, 1). A MUPS J = {1, 2} is computed by Algorithm 2 and set as the root node of the
hitting set tree (HST) (see the top rectangular box in Figure 3.1). Then two possible branches {1} and {2}
can be generated from J (see lines 5-7 of Algorithm 2). Since U turns satisfiable in O′ \ {1} and O′ \ {2}
(see lines 10-14), we know the two branches are local hitting sets and then go back to Algorithm 1 (see
lines 15-16). We then associate relevance degree 1 to each returned MUPS in HS = {{1}, {2}} (line 22 of
Algorithm 1).
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k = 2 : O′ = srel(O,U, 2). Since no local hitting sets are global (see lines 7-10 of algorithm 1), we need to
expand each branch stored in HS.

Take branch {2} as an example (suppose we have expanded branch {1} in the left rectangular box below
the root node). We call Algorithm 2 with inputs U and O′ \ {2}. The MUPS J1 = {6, 7, 8, 9} which has
been computed before is reused and is set as the root node of local HST for mups(U,O′ \ {2}). Check
each possible branch originated from J1, none of them is a local hitting set and so we need to generate a
new MUPS along each branch (see lines 18-21). For example, we generate J2 = {1, 3, 4, 5} along branch
{6} and construct new branches {6, 1}, {6, 3}, {6, 4} and {6, 5}. Similarly other branches {7}, {8} and {9}
in O′ \ {2} can be generated and expanded. We then go to next iteration to check each newly generated
branch and denote those local hitting sets with ’

√
’ (otherwise, with ’×’). From the figure we can see that 8

local hitting sets are found in O′ \ {2}. Then we go back to Algorithm 1 and associate relevance degree 2 to
the newly computed MUPS {1, 3, 4, 5}. Also, we replace the prefix-branch {2} with new paths by combining
the newly found local hitting sets with {2} in line 18 of Algorithm 1.

k = 3 : O′ = srel(O,U, 3). In this iteration, we check all possible branches and find 8
global hitting sets which are marked with ’

√
’ outside the rectangular box. The condition in line

12 of Algorithm 1 is satisfied, so the algorithm terminates and outputs global hitting sets HS =
{{1, 8}, {1, 9}, {2, 8, 3}, {2, 8, 5}, {2, 9, 3}, {2, 9, 5}}
and a set of weighted MUPS

−→
J = {({1, 2}, 1), ({6, 7, 8, 9}, 2), ({1, 3, 4, 5}, 2)}.

Since our relevance-based algorithm is based on modified HST algorithm [Rei87], similar to [KPHS07], we
can apply the optimized techniques in Reiter’s HST algorithm in our algorithm: We can apply MUPS reuse,
which means if the current edge path in any branch of the HST does not overlap with a MUPS, then this
MUPS can be used as a new node to this branch. This optimization can be applied in the following ways.
First, some MUPS found in previous iterations may be reused. For example (see Figure 3.1), the MUPS
{6, 7, 8, 9} in oval border is reused among different sub-ontologies: one sub-ontology is srel(O,U, 2) \ {1}
and another one is srel(O,U, 2) \ {2}. Second, in one sub-ontology, it is possible to reuse some previously
found MUPS along different branches. For example, in the sub-ontology srel(O,U, 2)\{2}, MUPS {1, 3, 4, 5}
is reused three times since this MUPS has no interaction with each branch (i.e. {6}, {7},{8} or {9}).
Early path termination can be applied to our algorithm in different ways. First, if the current edge path in any
branch of the HST is a superset of some hitting set, this path is a hitting set as well and it is not necessary
to further expand this branch. For example, the path {2, 8, 1} marked with ⊗ in Figure 3.1 is a superset of
{1, 8} which is a previously found hitting set. Second, the current edge can be terminated if it is a prefix-path
of some found hitting set. For instance, path {a1, a2} is a prefix-path of a hitting set {a1, a2, a3}. Finally,
if strategy CM_Just_Relevance is chosen in our algorithm, once we found some local hitting sets, the other
branches correspond to non-local hitting sets can be terminated. See the figure again, the branches marked
with ‘×’ in each rectangular box are not expanded anymore.
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Chapter 4

A Revision-based Algorithm for Mapping
Repair

In this chapter, we present a revision-based algorithm for repairing mappings. The idea is described as
follows. Given two ontologies O1 and O2. Suppose M is a mapping between them which is inconsistent.
We take the union O of O1 and O2 and assume that it is more reliable than the mapping M. Then we
treat the problem of mapping repair as the problem of DL-based ontology revision (this has been pointed out
in [QHH+08] and [MST08]), i.e., problem of revising M by O. To revise M, we apply our revision-based
algorithm given in [Qi08] to find a diagnosis for the distributed system by treating M as a possibilistic DL
knowledge base 1[QPJ07]. More specifically, given a mappingM, we can translate it into a possibilistic DL
knowledge base OM using the translation function defined in Definition 9: OM = {(t(〈C,C ′, r, α〉), α) :
〈C,C ′, r, α〉 ∈ M}.
We need to define the notion of an inconsistency degree of a distributed system, which will be used to define
our algorithm.

Definition 14 Given a distributed system D = 〈O1, O2,M〉, the β-cut (resp. strict β-cut) set of D, denoted
as D≥β (resp. D>β), is defined as D≥β = {O1 ∪O2} ∪ {t(〈C,C ′, r, α〉) : 〈C,C ′, r, α〉 ∈ M, α ≥ β} (resp.
D>β = {O1 ∪O2} ∪ {t(〈C,C ′, r, α〉) : 〈C,C ′, r, α〉 ∈ M, α > β}).

The β-cut set ofD is the union ofO1,O2 and axioms translated from correspondences in the mapping whose
confidence values are greater than or equal to β. It is adapted from the notion of cut set in possibilistic DLs
in [QPJ07]. In Example 4, D>0.65 = O1 ∪O2 ∪ {t(m3), t(m4), t(m5)}.

Definition 15 Given a distributed system D = 〈O1, O2,M〉, the inconsistency degree of D, denoted by
Inc(D), is defined as Inc(D) = max{α : D≥αis inconsistent}.

The inconsistency degree of a distributed system is the maximum confidence value α such that the α-cut set
of D is inconsistent.

We describe the idea of our algorithm (Algorithm 3) as follows. Given a distributed systemD = 〈O1, O2,M〉,
we first translate the mappingM into a possibilistic DL knowledge base OM. Our algorithm first computes
the inconsistency degree of the distributed system. Suppose OM = {(φi, αi) : i = 1, ..., n} where n is the
number of correspondences. Let us rearrange the weights of axioms in OM such that β0>β2>...>βl > 0,
where βi (i = 0, ..., l) are all the distinct weights appearing in OM. Let Si = {φ : (φ, α)∈OM, α =
βi}. Suppose Inc(D) = βi. We revise Si by D>βi

2. Suppose the result of revision is S′i ∪ D>βi
. Let

M′ =M\ {〈C,C ′, r, α〉 : 〈C,C ′, r, α〉 ∈ M, α = βi, t(〈C,C ′, r, α〉) ∈ (Si \ S′i)}. We then compute the

1A possibilistic DL knowledge base is a finite set of weighted DL axioms, where the weight of an axiom is interpreted as the
necessity degree of the axiom.

2We do not specify a revision operator in our algorithm. However, the conditions that a revision operator should satisfy will be
specified. To instantiate our algorithm, we will give a specific algorithm for DL knowledge base revision later.

2006–2008 c© Copyright lies with the respective authors and their institutions.



Page 24 of 35 NeOn Integrated Project EU-IST-027595

Algorithm 3: A revision-based algorithm for repairing mappings
Data: A distributed system D = 〈O1, O2,M〉 and a revision operator ◦
Result: A repaired distributed system D◦ = 〈O1, O2,M◦〉
begin1

b := 0, dinc := 02

D◦ := D3

Rearrange the weights inM such that β0>β2>...>βl > 04

Si := {t(〈C,C ′, r, α〉) : 〈C,C ′, r, α〉∈M, α = βi, i = 0, ..., l}5

whileM◦ in D◦ is inconsistent do6

dinc := GetInconsistencyDegree(D◦, b)7

if βk == dinc then8

Stemp := Sk \ (Sk ◦ (D◦)>dinc
)9

M◦ :=M◦ \ {〈C,C ′, r, α〉 : t(〈C,C ′, r, α〉) ∈ Stemp, α = βk}10

b := k11

return D◦12

end13

inconsistency degree of the distributed system D′ = 〈O1, O2,M′〉. Suppose Inc(D′) = βj where j > i.
We revise Sj by D′

>βj
. We iterate the revision process until the mapping becomes consistent.

In line 2 of Algorithm 3, we set the initial value of variable b which will be used in the proce-
dure GetInconsistencyDegree(D◦, b), where b is the begin pointer used by the binary search in
GetInconsistencyDegree(D◦, b). The procedure GetInconsistencyDegree(D◦) is similar to the algo-
rithm for computing the inconsistency degree in [QPJ07].

We have not specified a revision operator in Algorithm 3. However, we require that the revision operator ◦
used in the algorithm should satisfy the following properties:

• Inclusion: O ◦O′ ⊆ O ∪O′

• Success: O′ ⊆ O ◦O′

That is, the revision operator should result in an ontology which is a subset of the union of the original ontology
and the newly received ontology and is a superset of the newly received ontology. These two conditions can
infer that for any ontologies O and O′ in a DL language L, O ◦O′ is an ontology in language L.

In the following, we present an algorithm to implement a concrete revision operator which is similar to the
relevance-based debugging algorithm given in Chapter 3. We handle unsatisfiable concepts in the union of
the local ontologies and the ontology translated from the mapping one by one until we resolve the inconsis-
tency. For each unsatisfiable concept to be handled, we first select axioms that are relevant to it iteratively
by the relevance-based selection function until the concept is unsatisfiable in these axioms. We find a local
hitting set for the selected subontologies by calling the procedure COMPUTE_JUSTS(C,O,O′). We then
select those axioms that are directly relevant to the selected axioms and further expand the local hitting set.
We continue this process until the inconsistency is resolved.

Example 7 To illustrate Algorithm 3, we follow Example 4. First of all, we need to reorder all the distinct
confidence values in a descending order β0 = 0.93 > β1 = 0.8 > β2 = 0.65 and the corresponding layers
of correspondence axioms are S0 = {t(m5)}, S1 = {t(m3), t(m4)} and S2 = {t(m1,m2)} respectively.
Then, we go into the while loop in line 6 sinceM is inconsistent. Based on the current D◦ and b = 0, we
obtain the current inconsistency degree 0.8 by Algorithm 4 (see Part 1 for details). So k = 1. As we know
that β1 = 0.8, we use ((D)◦)>0.8 to revise S1 and the revision result is (Sk \ {t(m3)})∪ (D◦)>0.8 according
to Algorithm 2 (see Part 2 for details). Therefore, we remove m3 fromM◦ (see lines 9 and 10). Then we
assign the current k = 1 to the begin pointer b and go to another iteration of while loop. Since the modified
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Algorithm 4: GetInconsistencyDegree
Data: A distributed system D◦ = 〈O1, O2,M〉 and the begin pointer b0
Result: The inconsistency degree dinc

begin1

b := b02

D := D◦3

m := 0 // m is the middle pointer of the binary search4

Rearrange the weights inM such that β0>β1>...>βl > 05

e := l6

if D≥βe is consistent then7

return 08

else if D≥βb
is inconsistent then9

return βb10

else11

while b < e do12

m := p(b+ e)/2q13

if D≥βm is consistent then14

b := m15

else16

e := m17

if e = b+ 1 then18

return βm19

end20

M◦ becomes consistent when m3 is removed from it, the whole process of Algorithm 3 can be terminated
and the result is D◦ = 〈O1, O2,M\ {m3}〉.
Part 1 (compute inconsistency degree): The input data is D◦ = D and b0 = 0. So D = D◦ and b = 0.
The end pointer is l = 2 since we only have three distinct weights in M. Since D≥β2 is inconsistent and
D≥β0 is consistent, we go to the while loop in line 12 of Algorithm 4. Since b = 0 < e = 2, we go into while
loop and get m = 1. Since D≥βm is inconsistent, we assign m = 1 to e. According to lines 18 and 19, we
return β1 = 0.8 as the result.

Part 2 (relevance-revision): The input data isO = S1 andO′ = D>0.8. Suppose the first found unsatisfiable
concept is article. We keep on selecting the k-relevant axioms in O ∪ O′ w.r.t. the concept article until
Ot = O∪O′ (i.e. article becomes unsatisfiable inOt). Then we go to line 16 to compute the minimal conflict
sets and a diagnose (see Part 2-1). We get the conflict set {t(m3)} and a diagnose HS = {t(m3)}. After
this, we go to lines 17 and 18 of Algorithm 5. Since all the axioms have been selected, we can terminate the
process and return (S1 \ {t(m3)}) ∪ D>0.8.

Part 2-1 (compute justifications): The input data is C = article, O = S1 and O′ = D>0.8 for Algorithm 6.
First of all, we compute a minimal conflict set J = {t(m3)} in line 2. Since there is only one axiom in J ,
we get HS = {t(m3)} in line 4. In the while loop, we return ({{t(m3)}}, {t(m3)} since O \ {t(m3)} ∪ O′
becomes consistent (see lines 6 and 7).
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Algorithm 5: REL_REVISION(O, O′)
Data: Two ontologies O and O′

Result: A revised ontology O ◦O′
begin1

Global: J ← ∅2

k ← 13

Ot ← HS ← ∅4

forall C ∈ GETALLCONCEPTS(O ∪O′) do5

if O ∪O′ |= C v ⊥ then6

Srel ← sk(O ∪O′, C)7

while Srel 6= ∅ do8

Ot ← Ot ∪ Srel9

if HS 6= ∅ then10

if C is satisfiable in O ∪O′ \HS then11

break12

(J ,HS′)← COMPUTE_JUSTS(C,Ot ∩O \HS,Ot ∩O′)13

HS ← HS ∪HS′14

else if C is unsatisfiable in Ot then15

(J ,HS)← COMPUTE_JUSTS(C,Ot ∩O,Ot ∩O′)16

k ← k + 117

Srel ← sk(O ∪O′, C)18

return (O \HS) ∪O′19

end20

Algorithm 6: COMPUTE_JUSTS(C,O,O′)
Data: Two ontologies O and O′, and an unsatisfiable concept C of O ∪O′
Result: A set of MUPS J for C in O and a hitting set HS
begin1

J ← SINGLE_JUST(C,O,O′)2

J ← J ∪ {J}3

HS = {ax} for some ax ∈ J4

while true do5

if C is satisfiable in (O \HS) ∪O′ then /* Local hitting set */6

return (J ,HS)7

J ← SINGLE_JUST(C,O \HS,O′)8

J ← J ∪ {J}9

HS = {ax} for some ax ∈ J10

end11
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Chapter 5

Experiments

In this section, we present the evaluation results of our algorithms. The algorithms were implemented in Java
as part of the RaDON plugin1 for the NeOn Toolkit 2 using KAON2 as a reasoner. To fairly compare with the
debugging algorithm in [KPHS07] and mapping repairing algorithm in [MST07], we re-implemented the algo-
rithms with KAON2 API (we call them as All_Just_Alg algorithm and RepairMapping algorithm respectively).

The experiments regarding debugging were performed on a Linux 2.6.16.1 System and 1024MB maximal
heap space was set. Sun’s Java 1.5.0 Update 6 was used for Java-based tools. For computing justifications
of a single unsatisfiable concept in each run, we set a time limit of 30 minutes. As the data sets for repairing
mappings are relatively small, our experiments about repairing were performed on a laptop with 1.69 GHz
Intel Pentium-M processor and 1 GB of RAM using Windows XP Service Pack 2. Sun’s Java 1.5.0 Update 6
was used for Java-based tools and the maximum heap space was set to 800MB.

5.1 Data Sets

5.1.1 Data sets for debugging

Ontology Classes Properties EquClass SubClass. DisjClass. SubProp. Domain Range Axioms

CHEM-A 48 19 18 46 6 4 18 18 114
CONFTOOL-CMT (HMatch) 68 95 1 111 70 0 95 95 457
CRS-SIGKDD (HMatch) 64 45 7 81 12 0 44 44 213
Proton 266 111 0 278 1,346 49 82 60 1,826

CONFTOOL-EKAW (HMatch) 112 69 0 189 117 8 60 60 485
EKAW-SIGKDD (HMatch) 123 61 7 204 74 8 51 51 440
KM1500 9,842 548 0 8,853 2,091 0 548 548 12,656

Table 5.1: Statistics of the ontologies in the data set.

Table 5.1 shows some characteristics of the data sets used for our experiments. CHEM-A was provided by
Maryland University3. Proton is a basic upper-level ontology enriched with disjointness axioms[?]. KM1500 is
created by the Text2Onto ontology learning tool. The rest of data sets4 are generated by merging ontologies
and axioms resulting from a translation of the matching-results of ontology alignment system HMatch [?]. All
the data sets are available for download5.

We divide the data sets into two groups. Group one consists of four ontologies: CHEM-A, CONFTOOL-CMT,
CRS-SIGKDD, Proton. For these ontologies, all the justifications of an unsatisfiable concept can be computed
within the resource limits (i.e. the maximal heap space is 1024MB and the maximal time-out period is 30

1http://radon.ontoware.org/
2http://www.neon-toolkit.org/
3http://www.mindswap.org/ontologies/debugging/
4http://webrum.uni-mannheim.de/math/lski/ontdebug/index.html
5http://radon.ontoware.org/downloads/datasets-iswc08.zip
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minutes). Group two consists of three ontologies: CONFTOOL-EKAW, EKAW-SIGKDD, KM1500. For some
unsatisfiable concepts in these ontologies, we cannot compute all of the justifications within the resource
limits. Particularly, for ontology KM1500, it is impossible to compute all the justifications for most of the
unsatisfiable concepts. Still, we use the ontologies to show how relevant justifications can be computed.

5.1.2 Data sets for mapping repair

Source ontology Target ontology # Axioms (source / target) # Mappings # Unsati. concepts
CRS EKAW 69 / 248 44 42

EKAW CMT 248 / 246 46 18
EKAW CRS 248 / 69 80 47
EKAW SIGKDD 248 / 122 70 42

Table 5.2: Statistics of data sets for mapping repair.

For this scenario, we use the ontology mapping data sets provided by the University of Mannheim.6 The data
sets include some source ontologies and mappings used in the ontology alignment evaluation initiative7,
which provides a platform to evaluate ontology matching systems. For our test, we use as source ontologies
different ontologies about the domain of scientific conferences: CONFTOOL (a SIF(D) ontology), CMT (a
ALCIF(D) ontology), EKAW (a SHIN ontology), CRS (a DL-Lite ontology) and SIGKDD (a ALI(D)
ontology). The pairwise mappings were generated automatically by the HMatch system. We selected these
mappings for our experiments because they are more problematic and the resulting ontology including source
ontology, target ontology and their mappings contains more unsatisfiable concepts. Thus it would be more
interesting to deal with those harder parts of mappings.

5.2 Experimental Results on Relevance-based Debugging Algorithm

ontology Strategy # Unsatisf. # Justifications # Justifications Justification_Size # Hitting sets
Concepts All Avg Avg Avg

All_Just_Alg 37 412 11 9 195
CHEM-A All_Just_Relevance 37 412 11 9 195

CM_Just_Relevance 37 37 1 7 4
All_Just_Alg 26 351 14 6 191

CONFTOOL-CMT All_Just_Relevance 26 351 14 6 191
CM_Just_Relevance 26 43 2 4 3
All_Just_Alg 19 64 3 5 14

CRS-SIGKDD All_Just_Relevance 19 64 3 5 14
CM_Just_Relevance 19 21 1 4 3
All_Just_Alg 24 41 2 6 9

Proton All_Just_Relevance 24 41 2 6 9
CM_Just_Relevance 24 24 1 6 4

Table 5.3: The evaluation results for data sets in group one.

To evaluate the efficiency of our algorithm over data sets in group one, we compute all the justifications
for all unsatisfiable concepts using All_Just_Alg and our relevance-based one with both strategies (i.e.
All_Just_Relevance and CM_Just_Relevance). Figure 5.1 shows the average execution time for each unsat-
isfiable concept.8 We observe that our algorithm is much faster than All_Just_Alg to compute the justifications
in average when strategy CM_Just_Relevance is chosen. This is because fewer justifications are generated.
Take the ontology CONFTOOL-EKAW as an example. The average number of justifications returned by
All_Just_Relevance is about 14, whilst the average number is 2 when strategy CM_Just_Relevance is cho-
sen. Another observation is that our algorithm outperforms All_Just_Alg when strategy All_Just_Relevance

6http://webrum.uni-mannheim.de/math/lski/ontdebug/index.html
7http://om2006.ontologymatching.org/
8Please note that the results show the total time to compute the justifications, including the time to check satisfiability, unlike the

results reported in [KPHS07], which excluded the time for satisfiability checking.
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Figure 5.1: The average time to compute justifications for an unsatisfiable concept.

is chosen. It shows the advantage of incrementally increasing the size of the ontology using the selection
function.

Relevance Degree k 1 2 3 4 5 6 7 8 9
srel(CONFTOOL-EKAW, Trip, k) 5 26 93 251 372 468 483 483 483
srel(EKAW-SIGKDD, Workshop_Paper, k) 5 59 173 275 368 427 435 435 435
srel(KM1500, framework, k) 57 1,335 6,678 9,730 10,892 11,206 11,305 11,336 11,342
srel(KM1500, experience, k) 48 1,286 6,675 9,856 10,897 11,218 11,307 11,335 11,342

Table 5.4: Number of axioms selected by srel depending on the relevance degree k

Table 5.4 shows the number of axioms that have been selected by the selection function srel for a given
relevance degree k. We can see that sometimes the set of axioms is expanded very fast using the
relevance-based selection function. For example, |srel(O,C, 1)| = 57, |srel(O,C, 2)| = 1, 278 and
|srel(O,C, 3)| = 5, 343 for C=framework and O is the ontology KM1500. However, by considering the
large size of ontology KM1500 (i.e. 12,656 axioms in total), it is still promising to apply the relevance-based
selection function to alleviate the heavy burden to find justifications over the entire ontology. The advantage
of using relevance-based algorithm can be further seen in the results below. We show the evaluation results

(O, C) Strategy # of Justifications Total # of found # Found hitting sets Time (sec)
k = 1 k = 2 k = 3 justifications

(CONFTOOL-EKAW, All_Just_Alg n.a. n.a. n.a. 34 2,208 TO
Trip) All_Just_Relevance 0 0 80 80 2 TO

CM_Just_Relevance 0 0 3 3 2 3
(EKAW-SIGKDD, All_Just_Alg n.a. n.a. n.a. 41 3,279 TO
Workshop_Paper) All_Just_Relevance 0 61 TO 61 20 TO

CM_Just_Relevance 0 4 – 4 2 2

(KM1500, framework)
All_Just_Alg n.a. n.a. n.a. 1 0 TO
All_Just_Relevance 1 33 TO 34 2 TO
CM_Just_Relevance 1 9 – 10 2 96

(KM1500, experience)
All_Just_Alg n.a. n.a. n.a. 1 0 TO
All_Just_Relevance 1 6 10 17 6 TO
CM_Just_Relevance 1 – – 1 1 6

Table 5.5: The evaluation results over some unsatisfiable concepts.

for some unsatisfiable concepts in the data sets of group two in Table 5.5, where “TO" means time-out (the
time-out period is set to be 30 minutes) and “n.a." means “not applicable". “–" indicates the algorithm has
terminated.. The table shows the number of justifications for a given unsatisfiable concept depending on the
relevance degree k (note that this does not apply to All_Just_Alg), the total number of found justifications and
hitting sets, and the computation time. If the timeout was exceeded, the total number of justifications and hit-
ting sets refers to the number found until the timeout occurred. Strategy CM_Just_Relevance performs very

2006–2008 c© Copyright lies with the respective authors and their institutions.
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fast for all the selected unsatisfiable concepts. We can make the following observations: (1) For the large
data set KM1500 with more than 10 thousand axioms, only one justification is found by the All_Just_Alg
within 30 minutes. This is because this algorithm performs each satisfiability check over the entire ontol-
ogy, which is quite time-consuming. In contrast, our relevance-based algorithm only performs satisfiability
check over relatively smaller sub-ontologies krel(O,C, k) when k ≤ 3. Take the concept “experience" as an
example. Our algorithm with input strategy All_Just_Relevance returns 1, 6 and 10 justifications for k = 1
(|O′| = 48), k = 2 (|O′| = 1, 286) and k = 1 (|O′| = 6, 675) respectively. (2) For data sets CONFTOOL-
EKAW and EKAW-SIGKDD, our algorithm with input strategy All_Just_Relevance returns more justifications
than All_Just_Alg within the time limit and these justifications are most relevant to the unsatisfiable concept.
(1) and (2) together show the advantage of introducing the selection function to find justifications incremen-
tally. (3) Our algorithm with input strategy CM_Just_Relevance is much more efficient than other two (e.g. 3
seconds for concept “Trip" in CONFTOO-EKAW, 96 seconds for concept “framework" in KM1500), although
much less justifications are returned.

5.3 Experimental Results on Revision-based Algorithm for Mapping Repair

In the following, we evaluate our algorithm with respect to two measures: efficiency and meaningfulness.

Evaluation Measures To measure the efficiency, we provide the revision time including the time to check
whether the ontology is incoherent as well as the time to resolve the incoherence.

We also consider the measure of meaningfulness in [QHH+08]. Two users were asked to assess whether
the removal of an axiom in a particular revision was correct from their point of view. We provided the cor-
respondences in a mapping which have been removed by the algorithms to resolve incoherence. For each
correspondence, we asked the users to decide whether the removal: (1) was correct, (2) was incorrect,
or (3) whether they are unsure. For the evaluated results returned by each user, the correctness is then
measured by the ratio of correct removals:

Correctness = #Correct_Removals
#Total_Removals

Similarly we can define an “Error_Rate” based on the incorrect removals and an “Unknown_Rate” based on
the removals where the users were unsure. We combine the obtained Correctness (respectively Error_Rate
and Unknown_Rate) values from different users by averaging them. Note that the correctness is the same
as the measure of repair precision in [MST07].
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Figure 5.2: The performance of mapping revision algorithms.
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Evaluation Results We compare our algorithm with the algorithm given in [MST07] by simulating their
algorithm9, which we call RepairMapping algorithm. Figure 5.2 shows the efficiency of two algorithms to
repair mappings. Obviously, our revision-based algorithm outperforms RepairMapping algorithm in [MST07]
according to the selected data sets. Especially, for data set EKAW-CRS, the time for RepairMapping algo-
rithm is about four times as much as that for our algorithm. This is because, for our algorithm, (1)the search
space is limited by stratifying the correspondences according to their associated confidence values and thus
only a subset of all correspondences need to be checked for removal; (2)with stratification technique and
selection function, each satisfiability checking has been done based on a subset of a resulting ontology Or

which includes a source ontology, target ontology and the correspondences between them. However for Re-
pairMapping algorithm, the search space involves all the correspondences and every satisfiability checking
is based on the entire ontology Or.

Data Set Algorithm Correctness Error_Rate Unknown_Rate

CRS-EKAW Revision-based Algorithm 0.67 0.10 0.24
RepairMapping Algorithm 0.60 0.15 0.25

EKAW-CMT Revision-based Algorithm 0.93 0 0.07
RepairMapping Algorithm 0.88 0 0.12

EKAW-CRS Revision-based Algorithm 0.78 0.20 0.03
RepairMapping Algorithm 0.65 0.30 0.05

EKAW-SIGKDD Revision-based Algorithm 0.97 0.03 0
RepairMapping Algorithm 0.89 0.11 0

Table 5.6: Meaningfulness of the algorithms to repair mapping.

Table 5.6 shows the results for the meaningfulness of the mapping repair based on the expert users’ assess-
ment whether the removal was correct. That is, if the definition of a removed axiom does not make sense
according to the expert users’ experience, we consider the removal as correct.

From Table 5.6 we can see that overall the rate of correct removals for our algorithm is considerable higher
than that of the erroneous removals. This shows that generally the ranking of axioms in our approach works
well for resolving incoherence. By comparing with the meaningfulness of the RepairMapping algorithm, our
algorithm shows higher rate of correct removal and lower rate of error removal or unknown removal in most
cases. This observation is what we have expected. RepairMapping algorithm randomly computes a minimal
conflict set and then chooses an axiom with the lowest confidence value in this conflict set to remove when
resolving incoherence. Whilst our algorithm removes an axiom not only when it belongs to a minimal conflict
set and has lowest weight in this minimal conflict set but also when this minimal conflict set has not be
repaired by removing those axioms whose weights are greater than the lowest weight in it. For example,
there are two minimal conflict sets C1 = {m1,m3} and C2 = {m3,m5} for concept article in Example 4.
Since a RepairMapping algorithm randomly computes a minimal conflict set, we assume that it compute C1
first. The the algorithm removes m1. Since the revised mapping is still inconsistent. The algorithm computes
another minimal conflict set C2 and removes m3. Then the mapping becomes consistent. Whilst for our
algorithm, we will compute C2 first because m3 has higher weight than m1 and m5. Therefore, our algorithm
removes m3 but it does not remove m1.

9The algorithm given in [MST07] is based on distributed description logics [BS02], where mappings are translated into sets of
directed correspondences. So they use different semantics to interpret mappings in networked ontologies than ours.
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Chapter 6

Conclusion

6.1 Summary

In this deliverable we proposed a relevance-based algorithm to find MUPS for unsatisfiable concepts and
a revision-based algorithm to repair inconsistent mappings in networked ontologies. These two algorithms
together will provide important support for diagnosing and repairing inconsistent networked ontologies.

For the relevance-based algorithm, we first introduced a relevance-based ordering on MUPS for an unsat-
isfiable concept and thus provided a criterion of comparison between different MUPS. We then provided
a novel algorithm to find MUPS for an unsatisfiable concept based on a relevance-based selection func-
tion. Our algorithm allows for two different strategies when calculating MUPS: All_Just_Relevance and
CM_Just_Relevance. Using the first strategy, our algorithm can find all the MUPS for an unsatisfiable con-
cept. When the second strategy is chosen, our algorithm usually does not calculate all the MUPS but a subset
of them that satisfies some minimality condition. Based on experimental results, we showed that our algo-
rithm is very promising compared with the HST-based algorithm in [KPHS07] for both strategies. More specif-
ically, our algorithm is much more efficient than the HST-based one when the strategy CM_Just_Relevance
is chosen. Although only a small subset of the MUPS are returned by our algorithm when the strategy
CM_Just_Relevance is chosen, these MUPS still provide partially complete view of the unsatisfiability as
they correspond to hitting sets for the set of all the MUPS.

For the revision-based algorithm, we adapted the revision-based algorithm in possibilistic logic given in [Qi08]
to find a diagnosis for the distributed system by treating M as a possibilistic DL knowledge base. In our
algorithm, we need to compute the inconsistency degree of a distributed system and we do not specify a
concrete revision operator. We adapted the algorithm for computing the inconsistency degree in possibilistic
DL knowledge base given in [QPJ07]. We also presented an algorithm to implement a concrete revision
operator which is similar to the relevance-based debugging algorithm given in Chapter 3. Our algorithm has
been implemented by using KAON2 reasoner. Our evaluation on the algorithm for repairing mappings was
done by considering the following evaluation measures: the first measure is the runtime of the algorithm and
the second measure is the correctness or meaningfulness of the results of our approach. By our experimental
results, we can see that our algorithm can handle real life networked ontologies and results in meaningful
repairs to the mappings in the distributed system. We also compared our algorithm with an algorithm that
simulates the algorithm for repairing mappings given in [MST07]. The results showed that our algorithm is
more efficient and effective than the simulated algorithm.

6.2 Roadmap

There are a couple of problems left for future work. First, in the evaluation of our relevance-based algorithm,
while we have shown that even a simple syntax-based selection function yields useful results, for future
work we will investigate more powerful selection functions, such as a semantic relevance selection function.
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We will also extend our algorithm by considering uncertainty. Second, we consider only two measures for
evaluation of our revision-based algorithm. As a future work, we will compare our algorithm with the simulated
algorithm by considering some other measures, such as those given in [MST07].

2006–2008 c© Copyright lies with the respective authors and their institutions.
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