

 NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 — “Semantic-based knowledge and content systems”

D1.5.2 Implementation of Metadata Evolution

Deliverable Co-ordinator: Diana Maynard

Deliverable Co-ordinating Institution: University of Sheffield (USFD)

Other Authors: Niraj Aswani (USFD); Wim Peters (USFD); Sofia Angeletou
(OU); Mathieu d’Aquin (OU)

This document describes the implementation of the approach to modelling some of the dynam-
ics of (semantic) metadata that were described in D1.5.1 [MPD+07]. The deliverable comprises
three main parts. First, we describe an implementation of the methodology for capturing changes
to the metadata as a result of ontology evolution such as deleted concepts. We have developed
an example client in GATE, known as the NeOnOntologyServiceLR, which implements the re-
fined ontology API and which connects the GATE services with the NeOn ontology services. In
the second and third parts, we describe the implementation of two methodologies for capturing
changes to the ontology resulting from the metadata: SARDINE (an instance of the SAFE plugin)
and a folksonomy application.

Document Identifier: NEON/2008/D1.5.2/v1.0 Date due: February 29, 2007
Class Deliverable: NEON EU-IST-2005-027595 Submission date: February 29, 2007
Project start date March 1, 2006 Version: v1.0
Project duration: 4 years State: Final

Distribution: Public

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 2 of 31 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is part of the NeOn research project funded by the IST Programme of the Commission of the
European Communities by the grant number IST-2005-027595. The following partners are involved in the
project:

Open University (OU) – Coordinator Universität Karlsruhe – TH (UKARL)
Knowledge Media Institute – KMi Institut für Angewandte Informatik und Formale
Berrill Building, Walton Hall Beschreibungsverfahren – AIFB
Milton Keynes, MK7 6AA Englerstrasse 11
United Kingdom D-76128 Karlsruhe, Germany
Contact person: Martin Dzbor, Enrico Motta Contact person: Peter Haase
E-mail address: {m.dzbor, e.motta}@open.ac.uk E-mail address: pha@aifb.uni-karlsruhe.de
Universidad Politécnica de Madrid (UPM) Software AG (SAG)
Campus de Montegancedo Uhlandstrasse 12
28660 Boadilla del Monte 64297 Darmstadt
Spain Germany
Contact person: Asunción Gómez Pérez Contact person: Walter Waterfeld
E-mail address: asun@fi.ump.es E-mail address: walter.waterfeld@softwareag.com
Intelligent Software Components S.A. (ISOCO) Institut ‘Jožef Stefan’ (JSI)
Calle de Pedro de Valdivia 10 Jamova 39
28006 Madrid SL–1000 Ljubljana
Spain Slovenia
Contact person: Jesús Contreras Contact person: Marko Grobelnik
E-mail address: jcontreras@isoco.com E-mail address: marko.grobelnik@ijs.si
Institut National de Recherche en Informatique University of Sheffield (USFD)
et en Automatique (INRIA) Dept. of Computer Science
ZIRST – 665 avenue de l’Europe Regent Court
Montbonnot Saint Martin 211 Portobello street
38334 Saint-Ismier, France S14DP Sheffield, United Kingdom
Contact person: Jérôme Euzenat Contact person: Hamish Cunningham
E-mail address: jerome.euzenat@inrialpes.fr E-mail address: hamish@dcs.shef.ac.uk
Universität Kolenz-Landau (UKO-LD) Consiglio Nazionale delle Ricerche (CNR)
Universitätsstrasse 1 Institute of cognitive sciences and technologies
56070 Koblenz Via S. Marino della Battaglia
Germany 44 – 00185 Roma-Lazio Italy
Contact person: Steffen Staab Contact person: Aldo Gangemi
E-mail address: staab@uni-koblenz.de E-mail address: aldo.gangemi@istc.cnr.it
Ontoprise GmbH. (ONTO) Food and Agriculture Organization
Amalienbadstr. 36 of the United Nations (FAO)
(Raumfabrik 29) Viale delle Terme di Caracalla
76227 Karlsruhe 00100 Rome
Germany Italy
Contact person: Jürgen Angele Contact person: Marta Iglesias
E-mail address: angele@ontoprise.de E-mail address: marta.iglesias@fao.org
Atos Origin S.A. (ATOS) Laboratorios KIN, S.A. (KIN)
Calle de Albarracín, 25 C/Ciudad de Granada, 123
28037 Madrid 08018 Barcelona
Spain Spain
Contact person: Tomás Pariente Lobo Contact person: Antonio López
E-mail address: tomas.parientelobo@atosorigin.com E-mail address: alopez@kin.es

D1.5.2 Implementation of Metadata Evolution Page 3 of 31

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this document, even
if they might not have directly contributed to the writing of this document or its parts:

• University of Sheffield

• Open University

• University of Karlsruhe

Change Log

Version Date Amended by Changes
0.1 01-01-2008 Diana Maynard First template
0.2 18-01-2008 Diana Maynard Description of SARDINE and Ontolo-

gyAPI
0.3 30-01-2008 Diana Maynard Description of OU work on folksonomies
0.4 04-03-2008 Diana Maynard Changes following reviewer’s comments

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 4 of 31 NeOn Integrated Project EU-IST-027595

Executive Summary

This document describes the implementation of the approach to modelling some of the dynamics of (seman-
tic) metadata that were described in D1.5.1 [MPD+07]. The deliverable comprises three main parts. First, we
describe an implementation of the methodology for capturing changes to the metadata as a result of ontology
evolution such as deleted concepts. We have developed an example client in GATE, known as the NeOnOn-
tologyServiceLR, which implements the refined ontology API and which connects the GATE services with the
NeOn ontology services. This is based on the change typology described in D1.5.1, the idea being that when
changes are made to the ontology (e.g. new concepts added, deleted or moved), such changes should also
be reflected in the metadata (instances) in order to preserve potentially valuable information. In the second
and third parts, we describe the implementation of two methodologies for capturing changes to the ontology
resulting from the metadata. The SARDINE application is an instance of the SAFE plugin which extracts rela-
tional information about fish from a set of texts and suggests new additions to the ontology, using information
extraction techniques based on GATE. It makes use of linguistic patterns to find examples of relations such
as hyponyms and synonyms between known fish names and unknown entities, which can then be added as
new concepts in the ontology according to the relations proposed. This is realised as part of the SAFE plugin
for the NeOn toolkit. The folksonomy application investigates how information gathered from folksonomies
can be used to improve existing fisheries ontologies. The method is a complementary approach to the SAR-
DINE method, but uses folksonomies rather than textual documents as a starting point, and makes use of
lexical and conceptual information filtering to generate new potential changes to the ontology structure (such
as new concepts to be added). Both of these two applications are based on the Fisheries Use Case in NeOn.

D1.5.2 Implementation of Metadata Evolution Page 5 of 31

Contents

1 Introduction 8

2 Mechanisms for dealing with ontology changes 9
2.1 Introduction to GATE and its Ontology API . 9

2.2 GATE Ontology Services . 9

2.2.1 NeONOntologyServiceLR . 11

2.2.2 Event logging . 11

2.2.3 Ontology Event Model . 15

2.2.4 What happens when a resource is deleted? . 17

3 Bottom-up approach to ontology evolution: experiments with fish 18
3.1 SARDINE . 18

3.2 Pattern matching rules for ontology population and acquisition 18

3.2.1 Finding hyponyms . 19

3.2.2 Finding synonyms . 20

3.3 Analysis of Results . 20

3.4 Implementation of SARDINE . 21

4 Experiments with folksonomies 23
4.1 Introduction . 23

4.2 Methodology . 23

4.2.1 Ontological Entity selection . 24

4.2.2 Capturing folksonomy information . 24

4.2.3 Lexical filtering of tags . 25

4.2.4 Conceptual Filtering . 25

4.3 Case Study: Evolving the FAO biological entity ontologies using Flickr 25

4.3.1 Step 1 . 26

4.3.2 Step 2 . 26

4.3.3 Step 3 . 26

4.3.4 Step 4 . 26

4.3.5 Results . 27

4.4 Summary . 28

5 Conclusions 29

Bibliography 30

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 6 of 31 NeOn Integrated Project EU-IST-027595

List of Tables

3.1 Statistical information about new concepts proposed . 21

3.2 Examples of new hyponyms found . 21

4.1 Candidate concepts and relations . 27

4.2 Irrelevant results due to ontological term ambiguity . 28

4.3 Low similarity relations . 28

D1.5.2 Implementation of Metadata Evolution Page 7 of 31

List of Figures

2.1 Relationship between GATE, SAFE and the NeOn Toolkit . 10

2.2 Parameters for establishing connection with GOS . 11

2.3 GATE Ontology Editor . 12

2.4 Options allowing users to load and export event log . 13

3.1 Annotation of a synonym in GATE . 19

3.2 New ontology generated by SARDINE . 22

4.1 Methodology for folksonomy-based ontology evolution . 24

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 8 of 31 NeOn Integrated Project EU-IST-027595

Chapter 1

Introduction

This document describes the implementation of the approach to modelling some of the dynamics of semantic
metadata that were described in D1.5.1 [MPD+07]. This is motivated by the need to propagate changes in
an ontology to its metadata, and vice versa. For example, if a user deletes concepts from the ontology,
it is important to have a mechanism for dealing with any associated metadata, in order not to lose vital
information. If a user adds new concepts to the ontology, then it may be necessary to return to the text to
check whether additional instances can be found which should be used to populate these new concepts in
the ontology. Furthermore, not only are ontologies dynamic and subject to structural change, but so are the
texts and instances from which the ontologies may be derived. If we get additional relevant textual material
and/or find new instances in that text, it may be necessary to modify the ontology to take into consideration
this new information (for example, adding new concepts or new relations between existing concepts in the
ontology).

It is important to note carefully the distinction between semantic metadata and ontology metadata, as de-
scribed in D1.5.1. Semantic metadata refers essentially to metadata describing meaning (in the texts), while
ontology metadata refers to metadata describing the ontology and its content. So texts are annotated with
semantic metadata which indicate, for example, that a certain phrase contains an instance of a concept in
the ontology: this metadata may thus be used to populate the ontology. Here we can therefore generally
understand (semantic) metadata as referring to instances in the ontology. In this deliverable we shall use the
term metadata to refer exclusively to semantic metadata rather than ontology metadata. The overall goal of
NeOn’s work package 1 is to develop an integrated approach to the evolution process of networked ontolo-
gies and related metadata. Within this context, the more specific goal of T1.5 is to capture the evolution of
metadata due to changed concepts, relations or related metadata in one of the networked ontologies, and to
capture changes to the ontology caused by the metadata. In D1.5.1 we proposed a methodology to capture
(1) the evolution of metadata and (2) changes to the ontology. In this deliverable, we describe the actual
implementation of our approaches for evolution of metadata and evolution of ontologies.

Chapter 2 describes the mechanisms we have implemented in GATE to deal with changes to the ontology and
the effect this has on the metadata. Chapters 3 and 4 describe the mechanisms implemented for dealing with
changes to the ontology caused by the introduction of metadata: the first of these describes our SARDINE
application which analyses fisheries texts and generates potential new concepts for the ontology; Chapter
4 describes some experiments with folksonomies to determine how changes in folksonomies can lead to
changes in a related ontology.

D1.5.2 Implementation of Metadata Evolution Page 9 of 31

Chapter 2

Mechanisms for dealing with ontology
changes

2.1 Introduction to GATE and its Ontology API

The approach to handling the evolution of metadata is implemented in GATE [CMBT02]. GATE is the archi-
tecture (and framework for the IE components) for the SAFE plugin in NeOn. SAFE (Semantic Annotation
Factory Environment) consists of various GATE Services (GaS) which perform annotation on text1. Figure
2.1 depicts the architecture of the relationship between the NeOn Toolkit (NTK), GATE, and SAFE. As shown
in the diagram, one instantiation of SAFE in the toolkit is in the form of the SARDINE application, described
in more detail in Section 3.1, which analyses text with respect to an existing ontology and makes sugges-
tions for new concepts to be added to the ontology. Other SAFE applications will include ANNIE, a generic
Information Extraction system for analysing textual documents [MTC+02], and applications for annotating
different kinds of information. GATE also contains mechanisms for creating, viewing and editing ontologies
[BTMC04].

In addition to the generic OWLIM2 Ontology Language Resource (LR) in GATE, we have created a new
Ontology LR which is designed to take into account changes to the ontology in a way which preserves
related data, as proposed in D1.5.1. In the following sections, we describe the GATE Ontology Services and
the Ontology Event Model.

2.2 GATE Ontology Services

The GATE Ontology Service (GOS) is based on OWLIM [Kir06]. OWLIM stands for OWL In Memory and
is a Semantic Repository developed in Java. It is packaged as a Storage And Inference Layer (SAIL) for
the Sesame RDF database. The GOS allows users to upload a knowledge base to the server by creating
a new repository for individual ontologies and provides various service methods to add, delete and modify
data into the repository. Below we give a brief overview of the GATE Ontology Services and a client, known
as NeONOntologyServiceLR, that has been developed for accessing the GATE Ontology Services.

There are more than 130 methods published as part of the GOS. These methods allow creating new reposi-
tories on the server running GOS and storing ontological data in them. These methods allow population and
manipulation of the data in repositories. The web service definition file3. (WSDL) lists these methods and
gives more details about the parameters that need to be provided with each method. Below we list some of
these methods.

• createRepositoryFromUrl
1See http://www.gate.ac.uk/projects/neon/safe-plugin.html for more information
2http://www.ontotext.com/owlim/
3The WSDL file can be downloaded from http://gate.ac.uk/sale/gos/owlim.wsdl

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 10 of 31 NeOn Integrated Project EU-IST-027595

Figure 2.1: Relationship between GATE, SAFE and the NeOn Toolkit

• addClass

• isTopClass

• addSubClass

• getSubClasses

• addIndividual

• addAnnotationProperty

• addDatatypeProperty

• addObjectProperty

• addAnnotationPropertyValue

• removeObjectPropertyValues

• setEquivalentClassAs

• getDomain

• ... etc.

Implementation of the services is based on the the GATE Ontology API. More information on this can be found
at http://gate.ac.uk/sale/tao/#chapt:ontologies. However, to meet the requirements of the NeON project,
certain changes had to be made to the GATE Ontology Services. Below we list these NeON-specific changes.

D1.5.2 Implementation of Metadata Evolution Page 11 of 31

2.2.1 NeONOntologyServiceLR

To illustrate a use of the GATE Ontology Services, we have developed an example client in GATE, known
as the NeONOntologyServiceLR. It implements the GATE Ontology API but internally talks to the GATE
Ontology Services. In other words, the client, when initiated, establishes the connection to the server running
GOS and thereafter communicates with it to obtain various pieces of information stored on the server. Figure
2.2 shows a screenshot of the parameter window to establish connection with the GOS.

Figure 2.2: Parameters for establishing connection with GOS

This information is then displayed in the GATE Ontology Editor (see Figure 2.3) which allows users to ma-
nipulate data into the repository. It provides various functions including creating a new repository on the
server by providing a URL of the ontology, saving the ontological data into a file on the local system and
obtaining the change log (explained later) since the original state of the ontology. Users can save ontologies
into various formats (rdf/xml, ntriples, n3 and turtle). The client also allows exporting the events log into a
file by selecting the "Save Ontology Event Log" option from the options menu. Similarly, users can also load
the exported event log and apply the changes on a different ontology by using the "Load Ontology Event
Log" option. Figure 2.4 shows a screenshot of the options in the editor allowing users to save the ontology
in different formats and to load and export the ontology event log.

2.2.2 Event logging

Ontologies stored on the server can be accessed by various people/applications from all over the world.
Different people can introduce different changes to the ontology, and therefore we need to keep track of the
changes made to the ontology as they arise. Each change made to the ontology is logged onto the server.
Users of the GOS can then download these changes by using one of the service methods published by GOS.
Any change made to the ontology can be described by a set of triples either added to or deleted from the
repository. For example, when a new class is added to the ontology, the following statement is added to the
repository:

<classURI> <rdf:type> <owl:Class>

Below we give illustrations of service methods and resulting event logs collected from the server running
GOS. Each line in the event log entries is a triple describing the change made to the ontology.

// Adding a new instance "Rec1" of type "Recognized"
// 1st argument = name of the repository

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 12 of 31 NeOn Integrated Project EU-IST-027595

Figure 2.3: GATE Ontology Editor

// 2nd argument = URI of the concept
// 3rd argument = URI of the new instance
service.addIndividual("neonRepository",
"http://proton.semanticweb.org/2005/04/protons#Recognized",
"http://proton.semanticweb.org/2005/04/protons#Rec1");

Resulting Event Log:
====================
// Here + indicates the addition
+ <http://proton.semanticweb.org/2005/04/protons#Rec1>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://proton.semanticweb.org/2005/04/protons#Recognized>

// Adding a label (annotation property) to the instance
// with value "Rec Instance"
// 1st argument = name of the repository
// 2nd argument = URI of the instance
// 3rd argument = URI of the RDFS.label
// 4th argument = label
service.addAnnotationPropertyValue("neonRepository",

"http://proton.semanticweb.org/2005/04/protons#Rec1",
"http://www.w3.org/2000/01/rdf-schema#label",

D1.5.2 Implementation of Metadata Evolution Page 13 of 31

Figure 2.4: Options allowing users to load and export event log

"Rec Instance");

Resulting Event Log:
====================
+ <http://proton.semanticweb.org/2005/04/protons#Rec1>
<http://www.w3.org/2000/01/rdf-schema#label>
<Rec Instance>
<http://www.w3.org/2001/XMLSchema#string>

// Adding a new class called TrustSubClass
// 1st argument = name of the repository
// 2nd argument = URI of the new concept
// 3rd argument = 0 indicates OWL CLASS
service.addClass("neonRepository", "http://proton.semanticweb.org/2005/04/TrustSubClass", 0);

Resulting Event Log:
====================
+ <http://proton.semanticweb.org/2005/04/protons#TrustSubClass>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.w3.org/2002/07/owl#Class>

// TrustSubClass is a subClassOf the class Trusted

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 14 of 31 NeOn Integrated Project EU-IST-027595

// 1st argument = name of the repository
// 2nd argument = URI of the super class
// 3rd argument = URI of the sub class
service.addSubClass("neonRepository",
"http://proton.semanticweb.org/2005/04/protons#Trusted",

"http://proton.semanticweb.org/2005/04/protons#TrustSubClass");

Resulting Event Log:
====================
+ <http://proton.semanticweb.org/2005/04/protons#TrustSubClass>
<http://www.w3.org/2000/01/rdf-schema#subClassOf>
<http://proton.semanticweb.org/2005/04/protons#Trusted>

// Deleting a property called hasAlias and all relevant statements
// 1st argument = name of the repository
// 2nd argument = URI of the property to be deleted
// 3rd argument = indicates whether the sub properties should be deleted
// return an array of URIs that are deleted because of this operation
String[] deletedResources =
service.removePropertyFromOntology("neonRepository",

"http://proton.semanticweb.org/2005/04/protons#hasAlias",
false);

Resulting Event Log:
====================
// Here - indicates the deletion
// * indicates any value in place
- <http://proton.semanticweb.org/2005/04/protons#hasAlias> <*> <*>
- <*> <http://proton.semanticweb.org/2005/04/protons#hasAlias> <*>
- <*> <*> <http://proton.semanticweb.org/2005/04/protons#hasAlias>

// Deleting a label set on the instance Rec1
// 1st argument = name of the repository
// 2nd argument = URI of the instance
// 3rd argument = URI of the annotation property LABEL
// 4th argument = value of the label
service.removeAnnotationPropertyValue("neonRepository",
"http://proton.semanticweb.org/2005/04/protons#Rec1",
"http://www.w3.org/2000/01/rdf-schema#label",
"Rec Instance");

Resulting Event Log:
====================
- <http://proton.semanticweb.org/2005/04/protons#Rec1>
<http://www.w3.org/2000/01/rdf-schema#label>
<Rec Instance>
<http://www.w3.org/2001/XMLSchema#string>

// Resetting the entire ontology (Deleting all statements)
// 1st argument = name of the repository
service.cleanOntology("neonRepository");

D1.5.2 Implementation of Metadata Evolution Page 15 of 31

Resulting Event Log:
====================
- <*> <*> <*>

2.2.3 Ontology Event Model

Event logging enables a user to know that the ontology has been modified by another user (possibly at some
remote location) and to know how it differs (e.g. concept X is new to the ontology). For a deleted or modified
concept or instance, we might want to check that nothing else is adversely affected. For an additional concept
in the ontology, we might need to find new instances of this concept from our text (either manually or automat-
ically). In other words, the overall idea here is to log these events as they occur. The GATE Ontology API has
its own event model which notifies the registered listeners about the different events related to ontologies (the
Ontology interface provides methods to get registered to listen these events). These events are fired when
a resource is added, modified or deleted from the ontology. An interface called OntologyModificationListener
is created with five methods (see below) that need to be implemented by the listeners of ontology events.
Whilst the server running GOS is responsible for recording all the changes made by all the users connected
to the GOS, sometimes a user may want to know about the changes he/she introduced to the ontology. In
order to record user specific changes, each instance of the NeOnOntologyServiceLR client registers itself as
a litener of these events. As a result, whenever user makes any change to the ontology, apart from it being
logged on the server, it is also stored locally. The GUI also provides an option to export such a local event
log to a file.

public void resourcesRemoved(Ontology ontology, String[] resources);

This method is invoked whenever an ontology resource (a class, property or instance) is removed from the
ontology. Deleting one resource can also result into the deletion of other dependent resources (more details
on how deletion works are explained later). The second parameter, an array of strings, provides a list of URIs
of resources deleted from the ontology.

public void resourceAdded(Ontology ontology, OResource resource);

This method is invoked whenever a new resource is added to the ontology. The parameters provide refer-
ences to the ontology and the resource being added to it.

public void ontologyRelationChanged(Ontology ontology, OResource resource1,
OResource resource2, int eventType);

This method is invoked whenever a relation between two resources (e.g. OClass and OClass, RDFProperty
and RDFProperty etc) is changed. Example events are the addition or removal of a subclass or a subproperty,
two classes or properties being set as equivalent or different and two instances being set as same or different.
The first parameter is the reference to the ontology, the next two parameters are the resources being affected
and the final parameters is the event type. Please refer to the list of events specified below for different types
of events.

public void resourcePropertyValueChanged(Ontology ontology,
OResource resource, RDFProperty property,
Object value, int eventType);

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 16 of 31 NeOn Integrated Project EU-IST-027595

This method is invoked whenever any property value is added or removed to a resource. The first parameter
provides a reference to the ontology in which the event took place. The second provides a reference to the
resource affected, the third parameter provides a reference to the property for which the value is added or
removed, the fourth parameter is the actual value being set on the resource and the fifth parameter identifies
the type of event.

public void ontologyReset(Ontology ontology)

This method is called whenever the ontology is reset, i.e. when all the resources in the ontology are deleted.

Below we list specific event types that the ontology event methods (as discussed above) capture and notify
to the users.

OCLASS_ADDED_EVENT
ANONYMOUS_CLASS_ADDED_EVENT
CARDINALITY_RESTRICTION_ADDED_EVENT
MIN_CARDINALITY_RESTRICTION_ADDED_EVENT
MAX_CARDINALITY_RESTRICTION_ADDED_EVENT
HAS_VALUE_RESTRICTION_ADDED_EVENT
SOME_VALUES_FROM_RESTRICTION_ADDED_EVENT
ALL_VALUES_FROM_RESTRICTION_ADDED_EVENT
SUB_CLASS_ADDED_EVENT
SUB_CLASS_REMOVED_EVENT
EQUIVALENT_CLASS_EVENT
ANNOTATION_PROPERTY_ADDED_EVENT
DATATYPE_PROPERTY_ADDED_EVENT
OBJECT_PROPERTY_ADDED_EVENT
TRANSITIVE_PROPERTY_ADDED_EVENT
SYMMETRIC_PROPERTY_ADDED_EVENT
ANNOTATION_PROPERTY_VALUE_ADDED_EVENT
DATATYPE_PROPERTY_VALUE_ADDED_EVENT
OBJECT_PROPERTY_VALUE_ADDED_EVENT
RDF_PROPERTY_VALUE_ADDED_EVENT
ANNOTATION_PROPERTY_VALUE_REMOVED_EVENT
DATATYPE_PROPERTY_VALUE_REMOVED_EVENT
OBJECT_PROPERTY_VALUE_REMOVED_EVENT
RDF_PROPERTY_VALUE_REMOVED_EVENT
EQUIVALENT_PROPERTY_EVENT
OINSTANCE_ADDED_EVENT
DIFFERENT_INSTANCE_EVENT
SAME_INSTANCE_EVENT
RESOURCE_REMOVED_EVENT
RESTRICTION_ON_PROPERTY_VALUE_CHANGED
SUB_PROPERTY_ADDED_EVENT
SUB_PROPERTY_REMOVED_EVENT

An ontology is responsible for firing various ontology events. Objects wishing to listen to the ontology events
must implement the methods above and must be registered with the ontology using the following method.

addOntologyModificationListener(OntologyModificationListener oml);

The following method cancels the registration.

removeOntologyModificationListener(OntologyModificationListener oml);

D1.5.2 Implementation of Metadata Evolution Page 17 of 31

2.2.4 What happens when a resource is deleted?

Resources in an ontology are connected with one another, for example, one class can be a sub or superclass
of the other. A resource can have multiple properties attached to it. Taking these various relations into
account, changes in one resource can affect other resources in the ontology. Below we describe what
happens when a resource is deleted.

• When a class is deleted, all subclasses and instances of this class are shifted to the superclass of
this class. If there is no superclass, the immediate subclasses become top classes and the instances
are deleted. If there is any property where this class is assigned as Domain or Range, the property
is deleted. All the statements are also removed from the repository where there is a mention of this
class. This ensures that the class is completely deleted from the repository.

• When an instance is deleted, all the statements are removed from the repository where there is a
mention of this instance. This ensures that the instance is completely deleted from the repository.

• When a property is deleted, all subproperties of this property are shifted to the superproperty of this
property. If there is no super property, the immediate subproperties become top properties. All the
statments are also removed from the repository where there is a mention of this property. This ensures
that the property is completely deleted from the repository.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 18 of 31 NeOn Integrated Project EU-IST-027595

Chapter 3

Bottom-up approach to ontology evolution:
experiments with fish

In this chapter, we describe our work on SARDINE which generates potential new concepts for the ontology,
based on analysis of the text. This work is carried out in conjunction with WP6 and WP7. In WP6, we develop
the SAFE plugin for the NeOn toolkit, of which SARDINE is one application within the plugin. In WP7, we
develop methods for ontology population and acquisition as part of the Fisheries case study.

SARDINE aims to find new mentions of fish1 from a corpus, and adds them to the ontology as new instances
or concepts (or makes suggestions about where to add them). It operates as a GATE Annotation Service
(GaS), taking as input the text to be processed and producing as output an OWL file. This will be discussed
more fully in Section 3.4.

3.1 SARDINE

The idea behind SARDINE is to identify new mentions of fish species from text. This includes both finding
known fish names that are listed in the ontology, and also identifying potential new fish names not listed in
the ontology, and their relationship with existing known fish (and potentially, other entities within the fisheries
domain). The GATE application used by SARDINE finds instances of fish in the text and annotates them
with information from the ontology (in this case, we use Figis2). We also find instances of fish using other
lexical resources such as WordNet[ME90] and Agrovoc3. For the new fish names found, SARDINE attempts
to classify them in the ontology, based on linguistic information such as synonyms and hyponyms of existing
fish, as explained in the following section.

3.2 Pattern matching rules for ontology population and acquisition

The GATE application for finding fish names uses ontology-based information extraction techniques based
on pattern matching (see for example [MBC03, MLP07, CV05]). We first recognise known fish names in
the text, in order to help us find new kinds of fish. The application essentially uses linguistic and contextual
information to find (guess) relations between fish, such as synonyms and hyponyms. This enables us to add
links between existing instances, and to suggest new instances to be included in the ontology, based on their
relation with existing instances.

For example, "rainbow trout" is an example of a known fish that is listed in Figis. When we find an example
of it in the text, we extract the following information:

1When we talk about fish in this document, we refer to all kinds of marine life.
2figis: http://www.fao.org/aims/aos/fi/species_v1.0.owl
3See http://www.fao.org/aims/ag_intro.htm for more information

D1.5.2 Implementation of Metadata Evolution Page 19 of 31

Figure 3.1: Annotation of a synonym in GATE

name = rainbow trout
family = Salmonids_nei
source = Figis
uri = http://www.fao.org/aims/aos/fi/species_v1.0.owl#31005_2934

We then use a set of heuristics to find synonyms and hyponyms of known fish, described below.

3.2.1 Finding hyponyms

The application extracts candidate subclasses of existing elements from the species ontology, using the
following heuristics:

• Noun phrases extending existing identified labels from the species ontology, e.g. "Japanese flounder",
"Suberites sponges" (where "flounder" and "sponge" are existing labels);

• Hearst patterns [Hea92]: "especially", "such as", "including", "and other", "or other". Basically here we
look for patterns of the type "X such as Y", where Y is frequently found to be a hyponym of X.

The application then annotates the new (proposed) instance of a fish with the following information:

name = Suberites Sponges

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 20 of 31 NeOn Integrated Project EU-IST-027595

is_hyponym = true
original_source = Figis
hyponym_of_string = sponges
uri = http://www.fao.org/aims/aos/fi/species_v1.0.owl#31005_2951
rule = NounFishClass

This tells us the string annotated, the fact that it is a hyponym, the ontology which lists the hypernym (the
previously known fish), the name of the hypernym (in this case "sponges", the URI of the hypernym, and the
rule used by our application to find the new fish.

3.2.2 Finding synonyms

The application extracts candidate synonyms of existing elements from the species ontology (i.e. new in-
stances of the same class), using the following heuristics:

• apposition: here we find for example bracketed mentions of recognized fish names, e.g. "Mummichogs
(Fundulus Heteroclitus) were the most common single prey item" where "Mummichogs" and "Fundulus
Heteroclitus" are synonyms. Usually these are instances of the English name and the Latin name for
the same fish.

• list membership: here we find new instances among lists of recognised instances of fish, e.g. "Tuna,
clams and herring", where we know that tuna and herring are both fish, but know nothing about clams:
we can predict that clams are also fish.

The application then annotates the new (proposed) instance of a fish with the following information:

name = Mummichogs
original_source = WordNet
synonym_of_string = Fundulus heteroclitus
uri = http://www.fao.org/aims/aos/fi/species_v1.0.owl#31005_2960
rule = WordNetLookup

Figure 3.1 depicts a screenshot of the annotation of a synonym (mummichogs) in GATE.

3.3 Analysis of Results

We performed some experiments using the FIGIS factsheets described earlier, to investigate how many
new concepts had been found. We found no occurrences of synonyms in these documents, although we
did find many occurrences in other kinds of documents about fish. Future work will focus on expanding
the patterns in order to rectify this. However, we found 2160 instances of potential new hyponyms. Note
that we refer to instances because some terms occurred more than once, so the number of distinct new
hyponyms is less. Table 3.1 shows some statistical information about them. Additionally, we found 574
instances of potential new hyponyms matching non-classified concepts. These were new concepts proposed
by the system that were not based on any relation with existing concepts (for example, a phrase containing
an adjective modifying the word "fish"). However, many of these would probably not be included as new
concepts as they were spurious. Table 3.2 shows some examples of hyponyms found, together with their
hypernym. On the left we see hyponyms that would be accepted as new concepts; on the right we see
examples of spurious hyponyms that would not be accepted. Many of these spurious examples could be
eliminated by using a better stoplist (for example, preventing certain adjectives occurring before a known fish
name to be included in the pattern).

D1.5.2 Implementation of Metadata Evolution Page 21 of 31

Number of documents 1384
Total new hyponyms found 2160
Total new hyponyms of existing concepts 1586
New hyponyms of concepts in Figis 150
New hyponyms of concepts in WordNet 783
New hyponyms of concepts in Agrovoc 653

Table 3.1: Statistical information about new concepts proposed

New concept Hypernym Spurious concept hypernym
Gulf sturgeon sturgeon dorsal rays ray
Tropical tunas tuna traditional tuna tuna
scomber vernalis scomber Suborder Clupeidae clupeidae
golden carp carp Cape Cod cod
horse mackerel mackerel facilitated blue mussel mussel

Table 3.2: Examples of new hyponyms found

3.4 Implementation of SARDINE

As mentioned earlier, SARDINE is a GATE Annotation Service (GaS). It takes as input the text to be pro-
cessed: in this case we use corpora from the fisheries domain, such as factsheets about fish from the FAO.
The output is a set of OWL files containing mentions and any newly created candidate entities. One OWL
file is produced for each document. The reason for producing separate OWL files is that it is rather unwieldy
to produce one huge OWL file for the whole corpus, and it is easier to manipulate this way, because each
generated file can be integrated (or not) into a larger ontology. The newly generated concepts are only
suggestions, and should therefore be verified by a domain expert before integration takes place.

With the SAFE plugin loaded into the NeOn toolkit, the user simply clicks on the SAFE button, and will be
prompted for a directory containing the texts to process, and a directory for the output (this would normally
be a new blank directory). SARDINE calls the GaS once for each document to be processed. The generated
OWL file is placed in a corresponding file in the output directory. The new ontology can be viewed in the
NeOn Toolkit in the usual way. Figure 3.2 depicts one such ontology in the toolkit.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 22 of 31 NeOn Integrated Project EU-IST-027595

Figure 3.2: New ontology generated by SARDINE

D1.5.2 Implementation of Metadata Evolution Page 23 of 31

Chapter 4

Experiments with folksonomies

4.1 Introduction

This section describes the methodology and the results of our investigation of folksonomy-based ontology
evolution. Folksonomies are popular Web2.0 ecosystems enjoying high interest from web users. Their
basic entities are resources, users and tags. Users upload and annotate resources with their personally
selected tags. Due to the usability and strong social dimension of folksonomies, they are updated very
frequently, i.e. users upload and annotate new resources with new tags daily or even several times a day.
Unlike folksonomies, ontologies evolve much more slowly and under the influence of a much more restricted
community (i.e. ontology engineers). As a result, they often lag behind folksonomies in terms of content.
This constitutes a motivation for our work: we wish to leverage the dynamic nature of folksonomies in order
to evolve the content of existing ontologies.

The aim of this study is to approach the ontology evolution problem in a bottom-up manner, initiating the
process at a low level with user contributed content from folksonomies. The study of folksonomy-based
ontology evolution and the experimentation with real data sets aim at identifying alternative or complementary
ways to perform ontology evolution.

More specifically, the exploitation of statistical information from folksonomies can provide helpful insights into
the possible knowledge gaps of ontologies. For example, the high co-occurrence rate between two terms
(tags) in folksonomies indicates with a high probability that they are related [SM07, BKS06], even though they
may not belong to the same ontology or even if they don’t both belong to any ontology. This means that it
may be necessary to introduce a new relation between them in the ontology (in case they belong to the same
ontology) or to add one of them as a new candidate entity (class, property or individual) for the ontology.

The main objective of this work is to experiment with FAO resources and real datasets from folksonomies,
and to draw some conclusions about the entire procedure of bottom-up folksonomy-based ontology evolution.

4.2 Methodology

As previously mentioned, our goal is to exploit the rapid evolution of folksonomy content in order to perform
ontology evolution. The core idea of our approach is to use folksonomies for identifying tags that often co-
occur with the entities of a given ontology. These related tags can potentially indicate new - candidate entities
that could be added to the ontology. Although the nature of the two sources (folksonomies and ontologies)
is diverse and their alignment is a complex procedure, the basic steps of the process are depicted in Figure
4.1.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 24 of 31 NeOn Integrated Project EU-IST-027595

Figure 4.1: Methodology for folksonomy-based ontology evolution

4.2.1 Ontological Entity selection

Although the ontology evolution is meant to be bottom-up, i.e. initiated from a low level, the involvement of
ontological entity names at this level is the domain/case-defining step. Thus the selection of entities, classes,
properties and individuals depending on the ontology and the required level of evolution is performed first.
The local names or labels of the entities are further used to query folksonomies for related tags as described
below.

4.2.2 Capturing folksonomy information

As folksonomies are diverse and data intensive, the information they contain covers a wide range of topics.
Thus the first sub-goal of this work is to extract from them only the necessary information. As previously
mentioned, the goal is to identify related tags for the ontological entities. Related studies [SM07, BKS06]
have shown that the co-occurrence of tags in various resources indicates relatedness amongst them. Various
statistical algorithms have thus been proposed for identifying clusters of related tags based on their co-
occurrence. We rely on such algorithms to identify tags that are potentially related to the ontological terms
acquired in Step 1. The clustering of folksonomy tags can be repeated at regular time intervals in order to
reveal new related tags as the folksonomy evolves.

D1.5.2 Implementation of Metadata Evolution Page 25 of 31

4.2.3 Lexical filtering of tags

One of the main characteristics of folksonomies is the unrestricted way in which users can tag their resources.
This increases the user contribution but also increases the noise in the system. Although all the tags tend
to be important to the users, not all of them are important in the ontology evolution procedure. Therefore,
it is necessary to perform lexical filtering operations in order to exclude the tags that introduce noise in the
process, thereby increasing the performance. More specifically, in this experiment we remove non-English
tags and all non-alphabetical tags (e.g. those containing special characters or numbers). We also normalise
the tags by replace all plurals with their singular equivalents. The output of this step is a set of related tags
for each concept, lexically filtered.

4.2.4 Conceptual Filtering

Once the related tags have been lexically processed, the last step of our approach is to perform a conceptual
filtering before suggesting candidate entities to be added into the original ontology. The reason for that is to
increase the accuracy of suggestions. As described in more detail in the following case study, the related
tags returned through the clustering algorithms from folksonomies are frequently too general (and usable in
several different domains, e.g., Object) and therefore do not necessarily contribute any significant knowledge
to the domain of the original ontology.

In order to avoid the suggestion of many candidate entities with low relevance, we perform conceptual filtering
on the related tag sets exploiting the IS-A hierarchy of WordNet[ME90]. We use the similarity formula of Wu
and Palmer [WP94] to calculate the conceptual distance between two WordNet terms. This is a function of
the path length between the two terms, and number of common ancestors in the conceptual hierarchy of
WordNet. Using this approach, we are able to obtain not only a similarity degree between two terms, but also
the connecting path between them in WordNet.

Applying this strategy pairwise on each ontological concept and each of its related tags, we are able to
identify the following cases:

• The related tag is not contained in the ontology. In this case, provided that the similarity is higher than
a given threshold, we can suggest (1) that the tag is added as a new entity in the ontology and (2) also
the way it should be connected to the rest of the ontology (i.e., the entity to which it relates and the
type of relation).

• The related tag is contained in the ontology already. In this case, we propose the connecting path
given by WordNet to be a candidate relation between the two entities.

These two cases can cover the following possible changes in ontologies according to the specifications made
in D 1.5.1 [MPD+07]:

add superclass C
add subclass C
add equivalent class C

In the following case study, we describe the method in more detail and give some examples.

4.3 Case Study: Evolving the FAO biological entity ontologies using Flickr

Flickr1, the folksonomy we used to acquire real data sets, is one of the fastest growing and most popular
folksonomies among web users. An additional reason for selecting Flickr is the wide range of domains
covered by its photos. This can provide more confidence on the diverse and rich vocabulary with which the

1http://www.flickr.com

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 26 of 31 NeOn Integrated Project EU-IST-027595

users annotate their photos. The ontology to be evolved was the biological entity ontology of FAO which
contains 10604 classes describing biological species2.

4.3.1 Step 1

First, we selected the 8108 entities - classes with a non null "hasNameEN" data property, out of the 10604
total classes3.

4.3.2 Step 2

To obtain the related folksonomy tags for each entity, we used the "related tags" function of the Flickr API4.
This function returns the related tags of a tag in Flickr using statistical measures based on the co-occurrence
of tags. Looking for related tags in Flickr, we found that only 1216 out of the 8108 classes (15%) were used
by Flickr users to annotate their photos. Furthermore, only 123 out of the 1216 (10%), which equates to 2%
of the initial dataset of 8108, were found to return related tags in Flickr. This is possibly due to the following
reasons:

• Many of these tags were found to describe one or two photos in Flickr, thus there is the possibility that
these photos are only tagged with these entities. As a result, there are no co-occurring tags for them
in the system.

• The Flickr API characterises as related those tags that co-occur at least a certain number of times,
thus the entities that fall below this threshold are excluded.

The reduced data set consists of 123 ontological entities from the biological entity ontology, each with a set
of related tags of variable cardinality between 3 and 74.

4.3.3 Step 3

As discussed above, the tags retrieved from folksonomies require a certain amount of lexical processing
prior to looking for them in WordNet. The reason for this is to minimise the processing time. We remove the
redundant tags which are the non English tags, tags that appear in both singular and plural forms or tags that
contain special characters (such as "?", "*") or numbers.

4.3.4 Step 4

Using the strategy described above for each of the ontological entities, we looked for the WordNet-based
similarity between 2305 pairs of terms (ontological_entity, related_tag). Out of these pairs, 600 were found to
be related in WordNet with similarities varying from 0.2 to 1.0 (where a similarity of 1 indicates a synonym).
Experimenting with different similarity thresholds, we discovered that the highest number of relevant relations
is achieved with similarity higher or equal to 0.75. For this threshold, we acquired 159 relations which
correspond to 159 candidate changes for the ontology. It is important to point out that we only worked with
ontological classes as opposed to properties and individuals as the conceptual filtering methodology is only
able to support subsumption relations. Current work is focusing on alternative conceptual filtering methods
that can support all types of ontological entities such as properties and individuals.

2http://www.fao.org/aims/aos/fi/species_v1.0.owl
3See [Car07] for more information
4http://www.flickr.com/services/api

D1.5.2 Implementation of Metadata Evolution Page 27 of 31

Ontological Entity Related Tag Path SimDgr NCA
Albacore salmon albacore, long-fin_tunny→ 0.87 food_fish

tuna→ food_fish
← salmon

Albacore eel albacore, long-fin_tunny→ 0.76 teleost_fish
tuna→ scombroid→
percoid_fish→
spiny-finned_fish→
teleost_fish←
soft-finned_fish← eel

Bat fish batfish→ spiny-finned_fish 0.82 fish
→ teleost_fish→
bony_fish→ fish

Striped bass rockfish striped_bass, striper, 1.00 synonyms
Roccus_saxatilis, rockfish

Swordfish tuna swordfish→ scombroid 0.93 scombroid
← tuna

Humpback whale cetacean humpback_whale→ 0.88 cetacean
baleen_whale→ whale
→ cetacean

Scallop crab scallop→ shellfish 0.86 shellfish
← crab

Table 4.1: Candidate concepts and relations

4.3.5 Results

Below we demonstrate some representative results from the above case study. Table 4.1 contains examples
of how certain ontological entities were extended with tags retrieved from Flickr. For example, the first row
indicates that, according to Flickr usage, the term "salmon" often co-occurs with (and therefore might be
related to) the term "Albacore" (corresponding to an ontology entity with such a label). In WordNet these
two terms are siblings for the concept of food_fish, which is their nearest common ancestor. This relation
translates in the corresponding path and also in a high degree of similarity when computed with Wu and
Palmer’s formula.

We can see that there are various types of connections between ontological entities and related tags. "Striped
bass" is related to rockfish with the relation sameAs, while "Humpback whale" is a subClassOf "cetacean",
which does not belong to the ontology. Also "tuna" and "swordfish" are both subclasses of "scombroid"
which exists in the ontology, while "Albacore" and "eel" both belong to the ontology but connect through
"teleost_fish" which does not belong to the ontology. These new entities and their corresponding relations to
existing ontology entities are suggested as additions to the FAO ontology, thus leading to its evolution. Out
of the 159 candidate entities, 83 (52%) were valid relation suggestions and 21 of these suggested that the
corresponding tag should be added as a new class (superclass or subclass).

Table 4.2 indicates another interesting phenomenon, which is the 48% of the relations with high similarity
but which are invalid recommendations for the ontology. This happens because the ontological terms are
polysemous, and probably their non-fisheries related meanings are more popular in folksonomies. As a
result, an important outcome of this study is the necessity for disambiguation of the terms involved, either
from ontological sources or from folksonomies in order to avoid this phenomenon.

It is also interesting to analyse the results that returned low similarity. These are either generic concepts
in the domain of fisheries (e.g. animal) or concepts which do not belong to the domain of fisheries (e.g.
asparagus). It should be noted that the related tags were obtained by user-contributed annotations, thus

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 28 of 31 NeOn Integrated Project EU-IST-027595

Ontological Entity Related Tag SimDgr NCA
Banjo drum 0.77 musical_instrument
Torpedo tube 0.75 device
Thresher machine 0.87 machine

Table 4.2: Irrelevant results due to ontological term ambiguity

Ontological Entity Related Tag SimDgr NCA
Scallop asparagus 0.57 food
Ling buddhist 0.47 organism
Roach graffiti 0.40 object

Table 4.3: Low similarity relations

total conceptual correctness cannot be guaranteed. Table 4.3 shows some results for relations with low
similarity. We can see here that users in folksonomies have annotated images of "Scallop" with the term
"asparagus", although the conceptual relation between these terms is quite low. Also the ambiguous tags
Ling and Roach connect with non-fisheries related tags through very generic and high level concepts, thus
their similarity is low.

4.4 Summary

The experiments we have performed give us valuable insights into the bottom-up approach to ontology evo-
lution and also show where the limitations lie. Our next steps will therefore be to explore ways to overcome
these limitations and resolve the issues that hinder our methodology. These are: the disambiguation of onto-
logical entities (e.g. Banjo) prior to looking for related tags in folksonomies, the exclusion of very generic tags
as related entities depending on the domain of interest (e.g. animal) and the discovery of alternative ways to
retrieve related tags for ontological entities (2% of the 8108 ontological concepts were found to have related
tags in folksonomies). Also we are currently working on identifying a methodology to support conceptual fil-
tering for all types of ontological entities (classes, properties, individuals) using more sources of background
knowledge such as ontologies already available on the web using SCARLET 5 and WATSON 6 or Wikipedia
http://www.wikipedia.org. Finally, the ongoing work includes building appropriate I/O interfaces for our tool so
that it can accept OWL ontologies as input and return the enriched ontology as OWL.

5http://scarlet.open.ac.uk/
6http://watson.kmi.open.ac.uk/

D1.5.2 Implementation of Metadata Evolution Page 29 of 31

Chapter 5

Conclusions

In this deliverable, we have described the implementation of the methodologies proposed in D1.5.1 for dealing
with ontology and metadata change. The top-down approach enables changes made to the ontology to be
propagated to the metadata so that as little information as possible is lost. For example, when a concept is
deleted from the ontology, usually any metadata (instances) belonging to that concept would be deleted with
it. However, this is not always desirable behaviour because often we would prefer to reclassify the instance at
a more general level. Klein and Noy [KN03] proposed a framework which captured a set of ontology changes,
which we used as a starting point in order to guide us in the creation of a more appropriate methodology
for our needs (as described in [MPD+07]), and base the implementation of our ontology change typology
on. D1.5.1 described how we used Klein and Noy’s framework in order to develop our own set of ontology
changes relevant to our needs; in the first part of this deliverable we have reported on the implementation
of these changes. The resulting implementation in SAFE also enables a user to be aware of changes to the
ontology made by another person at a distributed location, thereby aiding collaborative annotation.

The work described in the first part of this document is strongly related with the work carried out in T1.3
and described in [PHWD08]. This deliverable is concerned with a framework for networked ontology change
management. Currently changes made to an ontology in the NeOn toolkit cannot be propagated to the GATE
ontology management system and vice versa: this is one of the tasks planned for future work. The idea is
to link the change log created by GATE to the change log in the NeOn toolkit, such that changes made
to an ontology in GATE can be propagated back to the toolkit and vice versa, in order to aid collaborative
distributed ontology management.

The two applications, which implement the bottom-up approach both work on the basis of finding new entities
and relations in texts and proposing new concepts for an existing ontology. The first application, SARDINE,
uses linguistic techniques to find relations between known and new entities, and outputs the result as a new
ontology section. The second application uses techniques based on tag relatedness in folksonomies. The
current work is focusing on implementing appropriate interfaces to accept OWL ontologies as input and return
the enriched ontology as OWL. Both approaches provide valuable insights into bottom up ontology evolution.

2006–2008 c© Copyright lies with the respective authors and their institutions.

Page 30 of 31 NeOn Integrated Project EU-IST-027595

Bibliography

[BKS06] Grigory Begelman, Philipp Keller, and Frank Smadja. Automated tag clustering: Improving
search and exploration in the tag space. In Proceedings of the Collaborative Web Tagging Work-
shop at the WWW 2006, pages 22–26, Edinburgh, Scotland, May 2006.

[BTMC04] K. Bontcheva, V. Tablan, D. Maynard, and H. Cunningham. Evolving GATE to Meet New Chal-
lenges in Language Engineering. Natural Language Engineering, 10(3/4):349—373, 2004.

[Car07] Caterina Caracciolo. Revised and enhanced fisheries ontologies. Technical Report D7.2.2, NeOn
Project Deliverable, 2007.

[CMBT02] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: A Framework and Graphical
Development Environment for Robust NLP Tools and Applications. In Proceedings of the 40th
Anniversary Meeting of the Association for Computational Linguistics (ACL’02), 2002.

[CV05] P. Cimiano and J. Voelker. Text2Onto - A Framework for Ontology Learning and Data-driven
Change Discovery. In Proceedings of the 10th International Conference on Applications of Nat-
ural Language to Information Systems (NLDB), Alicante, Spain, 2005.

[Hea92] M. A. Hearst. Automatic acquisition of hyponyms from large text corpora. In Conference on
Computational Linguistics (COLING’92), Nantes, France, 1992. Association for Computational
Linguistics.

[Kir06] Atanas Kiryakov. OWLIM: balancing between scalable repository and light-weight reasoner. In
Proc. of WWW2006, Edinburgh, Scotland, 2006.

[KN03] M. Klein and N. F. Noy. A Component-Based Framework for Ontology Evolution. In Workshop on
Ontologies and Distributed Systems, IJCAI, 2003.

[MBC03] D. Maynard, K. Bontcheva, and H. Cunningham. Towards a semantic extrac-
tion of named entities. In Proceedings of RANLP-03, pages 255–261, 2003.
http://gate.ac.uk/sale/ranlp03/ranlp03.pdf.

[ME90] G. A. Miller (Ed.). WordNet: An on-line lexical database. International Journal of Lexicography,
3(4):235–312, 1990.

[MLP07] Diana Maynard, Yaoyong Li, and Wim Peters. Nlp techniques for term extraction and ontology
population. In P. Buitelaar and P. Cimiano, editors, Bridging the Gap between Text and Knowledge
- Selected Contributions to Ontology Learning and Population from Text. IOS Press, 2007.

[MPD+07] D. Maynard, W. Peters, M. D’Aquin, M. Sabou, and N. Aswani. Dynamics of metadata. Technical
Report D1.5.1, NeOn Project Deliverable, 2007.

[MTC+02] D. Maynard, V. Tablan, H. Cunningham, C. Ursu, H. Saggion, K. Bontcheva, and Y. Wilks. Archi-
tectural Elements of Language Engineering Robustness. Journal of Natural Language Engineer-
ing – Special Issue on Robust Methods in Analysis of Natural Language Data, 8(2/3):257–274,
2002.

D1.5.2 Implementation of Metadata Evolution Page 31 of 31

[PHWD08] R. Palma, P. Haase, Y. Wang, and M. D’Aquin. Propagation models and strategies. Technical
Report D1.3.1, NeOn Project Deliverable, 2008.

[SM07] Lucia Specia and Enrico Motta. Integrating folksonomies with the semantic web. In Enrico
Franconi, Michael Kifer, and Wolfgang May, editors, Proceedings of the European Semantic Web
Conference (ESWC2007), volume 4519 of LNCS, pages 624–639, Berlin Heidelberg, Germany,
July 2007. Springer-Verlag.

[WP94] Zhibiao Wu and Martha Palmer. Verb semantics and lexical selection. In 32nd. Annual Meeting
of the Association for Computational Linguistics, pages 133–138, Morristown, NJ, USA, 1994.

2006–2008 c© Copyright lies with the respective authors and their institutions.

	Introduction
	Mechanisms for dealing with ontology changes
	Introduction to GATE and its Ontology API
	GATE Ontology Services
	NeONOntologyServiceLR
	Event logging
	Ontology Event Model
	What happens when a resource is deleted?

	Bottom-up approach to ontology evolution: experiments with fish
	SARDINE
	Pattern matching rules for ontology population and acquisition
	Finding hyponyms
	Finding synonyms

	Analysis of Results
	Implementation of SARDINE

	Experiments with folksonomies
	Introduction
	Methodology
	Ontological Entity selection
	Capturing folksonomy information
	Lexical filtering of tags
	Conceptual Filtering

	Case Study: Evolving the FAO biological entity ontologies using Flickr
	Step 1
	Step 2
	Step 3
	Step 4
	Results

	Summary

	Conclusions
	Bibliography

