
2006–2007 © Copyright lies with the respective authors and their institutions.

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 – “Semantic-based knowledge and content systems”

D6.6.1 Realisation & early evaluation of basic NeOn tools in NeOn
toolkit V1

Deliverable Co-ordinator: Michael Erdmann

Deliverable Co-ordinating Institution: Ontoprise GmbH (ONTO)

Other Authors: Dirk Wenke (ONTO)

This document accompanies the main contribution of this deliverable D6.6.1, which is
the first open-source distribution of the NeOn Toolkit. This deliverable addresses plug-
in developers that plan to implement functionality based on the NeOn Toolkit.

Document Identifier: NEON/2007/D6.6.1/v1.2 Date due: August 31, 2007
Class Deliverable: NEON EU-IST-2005-027595 Submission date: August 31, 2007
Project start date: March 1, 2006 Version: v1.2
Project duration: 4 years State: Final
 Distribution: Public

NeOn-project.org

Page 2 of 22 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is a part of the NeOn research project funded by the IST Programme of the
Commission of the European Communities by the grant number IST-2005-027595. The following
partners are involved in the project:

Open University (OU) – Coordinator
Knowledge Media Institute – KMi
Berrill Building, Walton Hall
Milton Keynes, MK7 6AA
United Kingdom
Contact person: Martin Dzbor, Enrico Motta
E-mail address: {m.dzbor, e.motta} @open.ac.uk

Universität Karlsruhe – TH (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren – AIFB
Englerstrasse 28
D-76128 Karlsruhe, Germany
Contact person: Peter Haase
E-mail address: pha@aifb.uni-karlsruhe.de

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Pérez
E-mail address: asun@fi.upm.es

Software AG (SAG)
Uhlandstrasse 12
64297 Darmstadt
Germany
Contact person: Walter Waterfeld
E-mail address: walter.waterfeld@softwareag.com

Intelligent Software Components S.A. (ISOCO)
Calle de Pedro de Valdivia 10
28006 Madrid
Spain
Contact person: Jesús Contreras
E-mail address: jcontreras@isoco.com

Institut ‘Jožef Stefan’ (JSI)
Jamova 39
SI-1000 Ljubljana
Slovenia
Contact person: Marko Grobelnik
E-mail address: marko.grobelnik@ijs.si

Institut National de Recherche en Informatique
et en Automatique (INRIA)
ZIRST – 655 avenue de l'Europe
Montbonnot Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: jerome.euzenat@inrialpes.fr

University of Sheffield (USFD)
Dept. of Computer Science
Regent Court
211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

Universität Koblenz-Landau (UKO-LD)
Universitätsstrasse 1
56070 Koblenz
Germany
Contact person: Steffen Staab
E-mail address: staab@uni-koblenz.de

Consiglio Nazionale delle Ricerche (CNR)
Institute of cognitive sciences and technologies
Via S. Martino della Battaglia,
44 - 00185 Roma-Lazio, Italy
Contact person: Aldo Gangemi
E-mail address: aldo.gangemi@istc.cnr.it

Ontoprise GmbH. (ONTO)
Amalienbadstr. 36
(Raumfabrik 29)
76227 Karlsruhe
Germany
Contact person: Jürgen Angele
E-mail address: angele@ontoprise.de

Food and Agriculture Organization
of the United Nations (FAO)
Viale delle Terme di Caracalla 1
00100 Rome
Italy
Contact person: Marta Iglesias
E-mail address: marta.iglesias@fao.org

Atos Origin S.A. (ATOS)
Calle de Albarracín, 25
28037 Madrid
Spain
Contact person: Tomás Pariente Lobo
E-mail address: tomas.parientelobo@atosorigin.com

Laboratorios KIN, S.A. (KIN)
C/Ciudad de Granada, 123
08018 Barcelona
Spain
Contact person: Antonio López
E-mail address: alopez@kin.es

mailto:@open.ac.uk
mailto:pha@aifb.uni-karlsruhe.de
mailto:asun@fi.upm.es
mailto:walter.waterfeld@softwareag.com
mailto:jcontreras@isoco.com
mailto:marko.grobelnik@ijs.si
mailto:jerome.euzenat@inrialpes.fr
mailto:hamish@dcs.shef.ac.uk
mailto:staab@uni-koblenz.de
mailto:aldo.gangemi@istc.cnr.it
mailto:angele@ontoprise.de
mailto:marta.iglesias@fao.org
mailto:tomas.parientelobo@atosorigin.com
mailto:alopez@kin.es

D6.6.1 Realisation & early evaluation of basic NeOn tools in NeOn toolkit V1 Page 3 of 22

2006–2007 © Copyright lies with the respective authors and their institutions.

Work package participants
The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed writing parts of this document:

Ontoprise

University of Karlsruhe

Change Log
Version Date Amended by Changes

0.1 2007-07-01 Dirk Wenke Development of open source code

0.2 2007-08-01 Michael Erdmann Initial version of deliverable document

0.3 2007-08-14 Dirk Wenke Documentation of extension points

1.0 2007-09-05 Michael Erdmann Preparation of review-ready version

1.1 2007-09-19 Michael Erdmann Final version for submission

1.2 2007-10-10 Michael Erdmann Incorporation of QA feedback

Executive Summary
This document accompanies the main contribution of this deliverable D6.6.1, which is the first
open-source distribution of the NeOn Toolkit. This deliverable addresses plug-in developers that
plan to implement functionality based on the NeOn Toolkit.

The open-source distribution of the NeOn Toolkit comprises nine plug-ins offering functionality for
managing frame-like ontologies (creating, loading, editing, storing). They also include means for
searching within ontologies and visualizing them.

In this document developers learn about prerequisites needed to start developing plug-ins for the
NeOn Toolkit and which extension-points are defined to enable integration of new functionality.

Page 4 of 22 NeOn Integrated Project EU-IST-027595

Table of Contents

1 Introduction ...6

2 Starting Point / Initial Situation ..7
2.1 OntoStudio ..7
2.2 Extensibility ...7
2.3 Basic NeOn Toolkit Features...8

3 The Open-Source Code Version of the NeOn Toolkit ...9
3.1 Contents..9
3.2 Prerequisites for Using and Extending the Source code..10
3.3 Source Code Management..10
3.4 Release Plan...11

4 Extension-points Reference ...13
4.1 The extendableTreeProvider Extension-Point ...13

4.1.1 Description... 13
4.1.2 Configuration Mark-up.. 13
4.1.3 API... 14

4.2 The extendableDropHandler Extension-Point..15
4.2.1 Description... 15
4.2.2 Configuration Mark-up.. 16
4.2.3 API... 17

4.3 The entityProperties Extension-Point...17
4.3.1 Description... 17
4.3.2 Configuration Mark-up.. 17
4.3.3 API... 17

5 OWL Roadmap...19

6 Conclusion...21

7 Reference...22

D6.6.1 Realisation & early evaluation of basic NeOn tools in NeOn toolkit V1 Page 5 of 22

2006–2007 © Copyright lies with the respective authors and their institutions.

List of Figures
Figure 3.1 Release plan for the NeOn Toolkit ... 12
Figure 5.1 The Stack of APIs for the NeOn Toolkit for FLogic and OWL Models........................... 19
Figure 5.2 The APIs of the NeOn Toolkit as Planned for the Next Release................................... 20

Page 6 of 22 NeOn Integrated Project EU-IST-027595

1 Introduction

One of the main goals of the NeOn project is the design of a reference architecture for the
establishment of an open, common framework for tools for developing and working with ontologies.
One main requirement for such a platform is a sound architecture that can be easily understood
and easily extended to support different needs of the Semantic Web community and users.

The NeOn architecture aims at establishing an infrastructure rather than just implementing an
ontology editor. With this deliverable we present the first open-source version of the NeOn Toolkit.
It is a reference implementation that consists of basic ontology modelling support and the basic
hooks for extensions to be plugged into the system by other parties in later stages of the project.

Since the main contribution of this deliverable is a piece of source code, we restrict the
presentation here to a brief overview of the work done and the resulting artefacts.

The structure of this report is as follows. Section 2 describes briefly the initial situation before
creating the open-source version of the toolkit. Section 3 presents the contents of the open-source
deliverable. Section 4 presents the documentation of the important extension-points that allow
extending the toolkit’s functionality. We close with some concluding remarks and an outlook
towards future developments.

D6.6.1 Realisation & early evaluation of basic NeOn tools in NeOn toolkit V1 Page 7 of 22

2006–2007 © Copyright lies with the respective authors and their institutions.

2 Starting Point / Initial Situation

2.1 OntoStudio

The starting point for the NeOn toolkit is the ontology engineering platform of ontoprise,
OntoStudio. OntoStudio is a the front-end counterpart to OntoBroker, a very fast datalog based
FLogic inference machine. Consequently the focus of the OntoStudio development has been on
the support of various tasks around the application of rules. This includes the direct creation of
rules (via a graphical rule editor) but also the application of rules for the dynamic integration of
datasources (using a database schema import and a mapping tool).

OntoStudio supports a knowledge model that is tightly coupled to F-Logic (respectively its
proprietary XML serialization OXML). Import and export to OWL and RDF(S) is possible but
restricted to statements which can directly be expressed in F-Logic. Despite some minor
syntactical details the Ontoprise FLogic dialect conforms semantically to the F-Logic definition of
[Kifer et al. 1995]. Ontoprise actively participates in the F-Logic Forum1 to work on future versions
of the F-Logic language and further standardization efforts.

OntoStudio’s underlying knowledge model is identical to the model used by the OntoBroker
reasoner and thus allows easy integration of reasoning into the GUI application. OntoBroker
[Ontoprise 2007b] currently is integrated with KAON22 , to support reasoning about both F-Logic
rules as well as OWL-DL axioms. After finishing this integration the GUI will be able to also support
both modelling paradigms.

2.2 Extensibility

Based on Eclipse, NeOn Toolkit provides an open framework for plugin developers. It already
provides a number of plugins such as a query plugin, a visualizer, or a rule debugger. Along with
the Eclipse philosophy “everything is a plugin” NeOn Toolkit is highly modular. A central datamodel
plugin is the entry point (and a minimal requirement) for every plugin. Though, the capabilities of
the underlying OntoStudio are in line with the NeOn approach and fulfil the corresponding
requirements, some very basic aspects for NeOn are missing. The following list is a high-level
summary of the most important points rather than a detailed mapping to requirements.

✓ modular and extensible platform

✓ extensive rule support

✓ integration capabilities for “non semantic” technology

✗ not yet native OWL/DL support – this native support of OWL ontologies is currently under
development by ontoprise. The underlying datamodel is implemented on the basis of
KAON2 already. The GUI level support for OWL ontologies will follow within the next few
months (cf. Section 5 for some details about the plans to support OWL)

✗ not yet lifecycle support – WP5: “NeOn lifecycle methodology” is dedicated to this issue.

1 http://projects.semwebcentral.org/mailman/listinfo/forum-flogic
2 http://kaon2.semanticweb.org/

http://projects.semwebcentral.org/mailman/listinfo/forum-flogic
http://kaon2.semanticweb.org/

Page 8 of 22 NeOn Integrated Project EU-IST-027595

✗ not yet collaboration capabilities – NeOn workpackages WP1 “Dynamics of networked
ontologies” and WP2 “Collaborative aspects for networked ontologies” is working on this
subject.

The plug-in support of Eclipse/NeOn Toolkit allows adding this and other functionalities, as
needed. To “hook into” the architecture developers need to extend so-called extension-points,
which are provided to modify the main components of OntoStudio (cf. Section 4).

The Ontology Navigator is a completely modifiable and extensible view on (not necessarily)
ontology elements. Developers can show additional elements (almost everywhere) in the
hierarchical view, can define specific drag and drop operations and are supported by the definition
of additional context menus and actions (cf. Sections 4.1 and 4.2).

The Entity Properties View displays property pages for almost all ontology elements of the user
interface. Property pages for additional elements can be integrated in this view by the use of the
corresponding extension point (cf. Section 4.3).

2.3 Basic NeOn Toolkit Features

The current build of the NeOn Toolkit comes in two configurations:

• a basic one allowing modelling of frame-like ontologies and visualizing them, and

• an extended one supporting graphical rule-modelling and debugging, query answering and
lots more.

The open-source implementation of the NeOn Toolkit is aligned with the basic version as it is
provided now. During the course of the project we expect an increase of the number of basic plug-
ins that are shipped with the basic configuration and might be open-source as well. Also, plug-ins
by other partners of the NeOn Consortium will be developed and published.

D6.6.1 Realisation & early evaluation of basic NeOn tools in NeOn toolkit V1 Page 9 of 22

2006–2007 © Copyright lies with the respective authors and their institutions.

3 The Open-Source Code Version of the NeOn Toolkit

In the Eclipse world “everything is a plug-in” and thus the functionality of OntoStudio is comprised
of many different plug-ins. The basic ones will be provided as open-source to form the basis of the
NeOn Toolkit implementation.

3.1 Contents

The open-source version of the NeOn Toolkit consists of a set of nine plugs-ins.

com.ontoprise.ontostudio.datamodel:

This plug-in represents the core plug-in of the NeOn Toolkit since it represents the internal
datamodel and thus the knowledge representation aspect of the application. It provides
access to the underlying datamodel via an API. The datamodel is realized by OntoBroker,
respectively its storage functionality.

com.ontoprise.ontostudio.gui:

This plug-in contains the core UI components and connects them with the underlying
datamodel via the com.ontoprise.ontostudio.datamodel plug-in. The main UI
elements include the ontology navigator and the property editors for the different ontology
entities.

com.ontoprise.ontostudio.io:

Provides functionality to import and export ontologies in different formats from and to the
local file system or a WebDAV server (Web-based Distributed Authoring and Versioning).

com.ontoprise.ontostudio.swt:

Here, the basic Eclipse SWT (Standard Widget Toolkit3) classes are extended and
customized to support the GUI plug-in.

com.ontoprise.ontostudio.ontovisualize:

The ontovisualize plug-in contains a view to graphically visualize ontologies using the
JPowerGraph library4 which is customized in the following plug-in.

com.ontoprise.jpowergraph:

Integration of the jpowergraph library and some extensions for the visualization plug-in.

com.ontoprise.ontostudio.search:

This plug-in provides some search functionalities for ontological entities like concepts,
attributes, relations and instances.

org.neontoolkit.plugin:

This is the branding plug-in. With this plug-in the toolkit can be customized regarding the
splash-screen, the about-dialog etc.

org.neontoolkit.gui:

3 http://www.eclipse.org/swt/
4 https://sourceforge.net/projects/jpowergraph/

http://www.eclipse.org/swt/
https://sourceforge.net/projects/jpowergraph/

Page 10 of 22 NeOn Integrated Project EU-IST-027595

In this plug-in the extension points and associated Java interfaces are specified that allow
for extending the toolkit with additional functionality (cf. Section 4).

org.neontoolkit.help:

In this plug-in we define the on-line documentation for the basic features of the NeOn
Toolkit as specified in [NeOn D6.7.1]. The documentation is available via the Help
Contents entry of the Help menu.

3.2 Prerequisites for Using and Extending the Source code

In order to built and extend the NeOn Toolkit developers must install JDK 1.5. Since Eclipse is a
development environment make sure that the development kit of Java is installed and not only the
runtime environment (JRE). Make sure the environment variables are properly set to refer to the
JDK’s bin folder rather than the JRE’s bin folders.

Developers must obtain copies of the basic Eclipse development environment version 3.2.1 two
additional features. The Eclipse IDE can be found at http://www.eclipse.org/downloads/.

The Eclipse Modelling Framework (EMF) consists of a number of plug-ins for meta-modelling and
support for model-driven architectures. It can be downloaded from
http://www.eclipse.org/modeling/emf/downloads/ or can be installed from within the Eclipse IDE
using the feature update mechanism. EMF version 2.2.0 is required to ensure compatibility with
Eclipse 3.2.1.

The Graphical Editing Framework (GEF) provides a framework for developing graphical editors
and visualizations. It can be downloaded from http://download.eclipse.org/tools/gef/downloads/.
Alternatively the feature update mechanism of the Eclipse IDE can be used. It is important that the
version of GEF is compatible with the Eclipse platform version 3.2.1. It is recommended to use
GEF version 3.2.1.

For setting up the IDE, install Eclipse 3.2.1 and copy the EMF and GEF files into the proper folders
(plug-ins and features) in the installation folder of Eclipse 3.2.1.
All other required libraries are contained in the libs-folders of the plug-ins shipped and need not be
installed separately.

The software deliverable contains three more files:

• ontoconfig.prp

• log4j.properties

• neon.key.xml

These files contain required configuration information. They must be copied into the root folder of
your Eclipse installation. In Eclipse speak it is ${eclipse_home},

3.3 Source Code Management

The source-code will be hosted on the OntoWare software repository at
http://ontoware.org/projects/neon-toolkit/

The software version actually delivered as part of this deliverable is available to NeOn partners via
the CollabSpace:

http://neon-project.org/ACollab/

http://www.eclipse.org/downloads/
http://www.eclipse.org/modeling/emf/downloads/
http://download.eclipse.org/tools/gef/downloads/
http://ontoware.org/projects/neon-toolkit/
http://neon-project.org/ACollab/

D6.6.1 Realisation & early evaluation of basic NeOn tools in NeOn toolkit V1 Page 11 of 22

2006–2007 © Copyright lies with the respective authors and their institutions.

> NeOn General
> File Library

> Tools
> NeOn Toolkit

In contrast to the open OntoWare server, which is accessible by everyone, the CollabSpace is
password-protected and only authorized users (from the NeOn consortium) can access the source-
code.

There are two paths for contributing to the NeOn Toolkit development. Firstly, users and
developers are invited to provide feedback, bug-reports and patches. This can be done via the
NeOn Toolkit portal at http://www.neon-toolkit.org/, which hosts mailing-lists, a forum and a
Bugzilla installation. Secondly, all NeOn Partners should implement their scientific achievements
as plug-ins for the Toolkit. These, plug-ins can be uploaded to the NeOn Toolkit portal or to
OntoWare. If appropriate some basic plug-ins will be integrated into the basic setup and can be
delivered with the other open-source plug-ins.

Currently, we restrict direct, unsupervised contributions to the open-source plug-ins, which
constitute the basis of the NeOn Toolkit. I.e. the uploaded source code is essentially read-only
(also when hosted on OntoWare). Contributions are welcome but must not be committed to the
repository directly but must be scrutinized be the core development team of the basic plug-ins.
This, of course, does not prevent any development of plug-ins or their distribution. The restriction
only applies to the nine plug-ins listed above (cf. Section 3.1)

3.4 Release Plan

Currently, the open-source plug-ins of the NeOn Toolkit are in Alpha-status, which means that they
are feature complete but will undergo some more changes and small updates in the near future.

For January 2008 we plan the Beta-release for these plug-ins before we release the final and
completely QA’ed5 version in April 2008.

5 Quality Assurance

http://www.neon-toolkit.org/

Page 12 of 22 NeOn Integrated Project EU-IST-027595

Figure 3.1 Release plan for the NeOn Toolkit

D6.6.1 Realisation & early evaluation of basic NeOn tools in NeOn toolkit V1 Page 13 of 22

2006–2007 © Copyright lies with the respective authors and their institutions.

4 Extension-points Reference

This section describes the additional extension-points that are provided by the open-source plug-
ins of the NeOn Toolkit. They enable developers to enrich the existing functionalities of the
application. The large set of extension points provided by the eclipse framework itself will not be
described here. For documentation please refer to the Platform Plug-in Developer Guide in the
online-documentation of the Eclipse IDE or to the Eclipse homepage (http://www.eclipse.org).

We present extension-points for the main component in NeOn Toolkit:

• The Ontology Navigator can be extended to support additional elements in its hierarchical
structure and to support additional drag-and-drop actions.

o org.neontoolkit.gui.extendableTreeProvider and

o org.neontoolkit.gui.extendableDropHandler.

o Note: New context menu entries can be defined by using the
org.eclipse.ui.popupMenus extension-point.

• The Entity Properties View can be extended to support the display and modification of
additional entity types.

o org.neontoolkit.gui.entityProperties.

4.1 The extendableTreeProvider Extension-Point

4.1.1 Description

The Ontology Navigator does not provide any elements of the tree itself, it just collects the
elements from the different extensions of the

org.neontoolkit.gui.extendableTreeProvider

extension-point and displays them.

In general, the different extensions are ordered hierarchically, which means that providers can be
defined as sub-providers of other providers. Sub-providers can provide additional children to
elements provided by their parent providers, e.g. if provider B is defined as a sub-provider of
provider A, and the system is querying for the children of an element E provided by A, provider B
will be called, too, to provide additional children for E. The complete schema of this extension-point
and the interface to implement it are described below.

4.1.2 Configuration Mark-up

The extension element and its three attributes point, id and name are general Eclipse means
to specify the extension of an extension point.

<!ELEMENT extension (provider*)>
<!ATTLIST extension

point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>

http://www.eclipse.org

Page 14 of 22 NeOn Integrated Project EU-IST-027595

• point - a fully qualified identifier of the target extension point

• id - an optional identifier of the extension instance

• name - an optional name of the extension instance

The provider element actually specifies the class that implements a TreeProvider.
<!ELEMENT provider (viewContribution*)>
<!ATTLIST provider

id CDATA #REQUIRED
class CDATA #REQUIRED
sub-provider-of CDATA #IMPLIED>

• id - a unique identifier used to reference this content provider.

• class - the fully qualified name of the class that implements
org.neontoolkit.gui.navigator.ITreeDataProvider. In most cases it should be
sufficient to extend the default implementation in
com.ontoprise.ontostudio.gui.navigator.DefaultTreeDataProvider

• sub-provider-of - The unique identifier of a parent provider in the provider hierarchy. This
attribute is optional, i.e. providers located on the root level of the tree have no parent
providers.

The extensibility of the Ontology Navigator can be provided by other views as well, iff the class
implementing the view content is an instance of

com.ontoprise.ontostudio.gui.navigator.MTreeView.

To be able to define which contributions should be placed in which views, the provider definition
may contain a ViewContribution. The viewContribution must contain the identifier of the
view which should display the contents of this provider contribution. If no viewContribution is
defined, the provider contribution is considered as a contribution to the OntologyNavigator.

<!ELEMENT viewContribution >
<!ATTLIST viewContribution

id CDATA #IMPLIED>

• id - a unique identifier used to reference the component which should display the contents

of this extension.

4.1.3 API

The extendableTreeProvider is accompanied by the Java interface ITreeDataProvider,
i.e. classes extending the extendableTreeProvider extension-point must implement the
ITreeDataProvider interface. It provides the following methods:

• void dispose()
This method is invoked, when the object is disposed. Clean up operations can be done
here.

• int getChildCount(ITreeElement parentElement)
The number of child elements depending on the passed parent element parentElement is
returned.

D6.6.1 Realisation & early evaluation of basic NeOn tools in NeOn toolkit V1 Page 15 of 22

2006–2007 © Copyright lies with the respective authors and their institutions.

• ITreeElement[] getChildren(ITreeElement parentElement, int
topIndex, int amount)
Returns the subset of amount children of parentElement, beginning at index topIndex.

• ITreeElement[] getElements(ITreeElement parentElement, int
topIndex, int amount)
This method returns the given amount of root elements of this provider beginning at index
topIndex. The passed parentElement is an element of the parent provider or null if none.

• String getId()
Returns the id of this provider.

• Image getImage(ITreeElement element)
Returns the image of the tree element to be displayed in the UI. This method is only called
with ITreeElement created by this provider.

• TreeElementPath[] getPathElements(ITreeElement element)
This method is required for searching in the tree. If the passed element is provided by this
provider or by a sub-provider, this method returns a TreeElementPath containing only
the elements of the path from the element to the root of the tree which are provided by this
provider. If elements appear multiple times in the tree, multiple paths are possible, so an
array has to be returned.

• String getText(ITreeElement element)
Returns the text of the tree element to be displayed in the UI. This method is only called
with ITreeElement created by this provider.

• void setId(String id)
Sets the identifier of this provider. This method is invoked from the framework to set the id
specified in the plugin.xml.

• void setViewer(ComplexTreeViewer viewer)
Passes the reference to the TreeViewer that displays the content of this provider. The
reference is used to perform refresh operations.

• boolean isDragSupported()
Developers can define the general behaviour of elements provided by this provider. True is
returned if the elements can in general be dragged and a handler for this kind of drag is
registered. False is returned if these elements can not be dragged at all.

• boolean isDropSupported()
Developers can define the general drop policy on elements provided by this provider. True
is returned, if it is possible to drop elements on the elements of this provider, i.e. if a
dropHandler is registered for this kind of drop. False is returned if these elements do
not support drop operations at all.

4.2 The extendableDropHandler Extension-Point

4.2.1 Description

The extendableDropHandler extension-point enables developers to define additional
drag&drop operations on the Ontology Navigator. There are two kinds of drag&drop operations
possible:

• object-type-specific drag&drop and

• transfer-type-specific drag&drop.
In the case of object-type-specific drag&drop, developers can define which class will handle drops
from objects of a specific type A on objects of a specific type B. These object-type-specific
drag&drop operations only work within the application with components using a transfer type of

Page 16 of 22 NeOn Integrated Project EU-IST-027595

com.ontoprise.ontostudio.gui.navigator.SelectionTransfer.

The transfer-type-specific darg&drop works also between different applications as well as between
plug-ins within the application. For this kind of drag&drop the class used for the transfer operation
is used to determine the class handling the drag&drop operation. Thus, developers can define a
new transfer class and then register their own handler for this type of transfer on the Ontology
Navigator.

4.2.2 Configuration Mark-up

The extension element and its three attributes point, id and name are general Eclipse means
to specify the extension of an extension point.

<!ELEMENT extension (dropHandler*, transferHandler*)>
<!ATTLIST extension

point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>

• point - a fully qualified identifier of the target extension point

• id - an optional identifier of the extension instance

• name - an optional name of the extension instance

The dropHandler extension point specifies the classes for dragged objects, for drop targets and
for the actual implementation of the DropTargetListener.

<!ELEMENT dropHandler>
<!ATTLIST dropHandler

class CDATA #REQUIRED
dragClass CDATA #REQUIRED
dropClass CDATA #REQUIRED>

• class - the fully qualified name of the class that implements the interface

org.eclipse.swt.dnd.DropTargetListener.

• dragClass - The class name of dragged items.

• dropClass - The class name of the objects on which the drop can be performed.

The targetHandler extension point specifies the classes for the type of transfer and for the
actual implementation of the DropTargetListener.

<!ELEMENT transferHandler>
<!ATTLIST transferHandler

class CDATA #REQUIRED
transferClass CDATA #REQUIRED

• class - the fully qualified name of the class that implements the interface

org.eclipse.swt.dnd.DropTargetListener.

• transferClass - The class name of the transfer type this DropTargetListener is
associated with..

D6.6.1 Realisation & early evaluation of basic NeOn tools in NeOn toolkit V1 Page 17 of 22

2006–2007 © Copyright lies with the respective authors and their institutions.

4.2.3 API

For both types of drag&drop handling, the interface to implement is the
org.eclipse.swt.dnd.DropTargetListener

interface. The description of this interface can be found in the SWT documentation.

4.3 The entityProperties Extension-Point

4.3.1 Description

The org.neontoolkit.gui.entityProperties extension-point provides functionality to
integrate new property pages in the Entity Properties View. In this extension-point developers can
associate the property pages with specific types of elements selected in the user interface.

4.3.2 Configuration Mark-up

The extension element and its three attributes point, id and name are general Eclipse means
to specify the extension of an extension point.

<!ELEMENT extension (entityPropertyContributor *)>
<!ATTLIST extension

point CDATA #REQUIRED
id CDATA #IMPLIED
name CDATA #IMPLIED>

• point - a fully qualified identifier of the target extension point

• id - an optional identifier of the extension instance

• name - an optional name of the extension instance

The entityPropertyContributor extension point specifies the class with which the property
view is associated and the actual implementation class of the IEntityPropertyPage interface.

<!ELEMENT entityPropertyContributor>
<!ATTLIST entityPropertyContributor

id CDATA #IMPLIED
class CDATA #REQUIRED
activatorClass CDATA #IMPLIED>

• id - a unique identifier used to reference this property contributor.

• class - the fully qualified name of the class that implements
 org.neontoolkit.gui.properties.IEntityPropertyPage

• activatorClass - The class name of the type of elements the defined property page should
be shown for.

4.3.3 API

This extension point is associated with the interface

Page 18 of 22 NeOn Integrated Project EU-IST-027595

org.neontoolkit.gui.properties.IEntityPropertyPage.

This interface contains the following methods, which must be implemented:

• Composite createContents(Composite parent)
This method is invoked, when the property page is created. The passed parent component
is a TabbedContainer containing all defined property pages. In this method a
composite should be created with the TabbedConainer as parent. The contents of the
property page should be placed in this composite which should be returned afterwards.

• void deSelect()
This method is called if a different property page is about to show because another element
has been selected. Clean up operations can be done in this method.

• Image getImage()
Returns the image to display in the header of the Entity Properties View if the property page
is shown.

• boolean isDisposed()
Should return true if the property page is disposed or false otherwise.

• void refresh()
Is called if a refresh of the user interface of the property page is needed.

• void refreshData()
Is called if the datamodel has changed and a refresh of the displayed information in the
property page is needed.

• void setSelection(IWorkbench part, IStructuredSelection selection);
Is called by the framework if an element is selected somewhere in the application which
matches the defined activator class. The selected element is contained in the selection. In
this method the property page should update the contents to display the properties of the
selected element.

The GUI plug-in already provides an abstract implementation of this interface:
com.ontoprise.ontostudio.gui.properties.BasicEntityPropertyPage.

It can handle ontology elements such as concepts, relations, attributes and ontologies and
provides editing areas for identifiers and namespaces as well as optional documentation and
representation fields.

D6.6.1 Realisation & early evaluation of basic NeOn tools in NeOn toolkit V1 Page 19 of 22

2006–2007 © Copyright lies with the respective authors and their institutions.

5 OWL Roadmap

The Support for OWL ontologies will be steadily improving over the course of the next 6 months.
Currently the NeOn Toolkit fully supports FLogic modelling (ontologies and rules) and importing
and exporting of OWL ontologies. Since the underlying datamodel is still a FLogic datamodel this
import/export is limited to a subset of OWL primitives. Furthermore no native support for modelling
OWL axioms exists yet. By October we plan to support a special notion of ontology project that can
natively load, visualize and store OWL ontologies. Nevertheless the modelling support, i.e. the
interaction capabilities of the user to modify or extend OWL ontologies will still be limited.
Nevertheless some means for creating OWL axioms will be supported using special forms similar
to the look-and-feel of the FLogic perspective. For January 2008 we plan to completely support
OWL modelling using text-editors for entering specific aspects of the ontology. Also, the form-
based modelling aspects will be extended. At this time the NeOn Toolkit will provide means to
convert between OWL and FLogic ontologies with a simple user-interaction. For April next year we
plan the next version of the NeOn Toolkit core components. This release will cover complete form-
based OWL modelling and also a number of other plug-ins developed by other NeOn Partners.

On the API / plug-in development level we will follow a similar time-line. Currently only the FLogic
aspects of the NeOn Toolkit datamodel are exposed to developers.

Figure 5.1 The Stack of APIs for the NeOn Toolkit for FLogic and OWL Models.

In October we will provide means to access the full functionality of the underlying datamodel via
the Kaon2 API. This API supports both FLogic and OWL. At the beginning of next year we plan to
provide an API that can cover the common aspects of OWL and FLogic models in a way that plug-
ins that do not care about the underlying semantics can access the datamodel and retrieve
relevant information regardless of whether OWL axioms or FLogic Literals are stored in the mode.

Page 20 of 22 NeOn Integrated Project EU-IST-027595

Figure 5.2 The APIs of the NeOn Toolkit as Planned for the Next Release.

D6.6.1 Realisation & early evaluation of basic NeOn tools in NeOn toolkit V1 Page 21 of 22

2006–2007 © Copyright lies with the respective authors and their institutions.

6 Conclusion

In this deliverable we presented the first open-source version of the NeOn Toolkit. It comprises a
set of plug-ins to model and manage frame-like ontologies. We also presented documentation for
plug-in developers, such as the relevant extension-points for extending NeOn Toolkit. The user-
level documentation of the basic features can be found in [NeOn D6.7.1].

The software represents the first version. It is currently in alpha-stage and will stabilize over the
next few months. A version that has undergone major quality assurance is planned for next April.
By that date, we will also have implemented extended support for OWL ontologies.

Given the descriptions in this report it should be easily possible to create the basic NeOn Toolkit
for all platforms that support Java JDK1.5 and Eclipse 3.2.1 and fulfil the requirements mentioned
in Section 0.

Finally, we invite the Semantic Web community (within and outside of the NeOn consortium) to
review the software, to learn from it, to provide feedback and to start implementing own plug-ins for
the NeOn Toolkit.

Page 22 of 22 NeOn Integrated Project EU-IST-027595

7 Reference

[Kifer et al. 1995]
Michael Kifer, Georg Lausen, James Wu: Logical Foundations of Object-Oriented and
Frame-Based Languages. Journal ACM 42(4): 741-843 (1995)

[Ontoprise 2007a]
Ontoprise GmbH: OntoStudio User Manual V2.0. Ontoprise GmbH, Karlsruhe 2007.
http://www.ontoprise.com/content/e799/e893/e938/e954/index_eng.html

[Ontoprise 2007b]
Ontoprise GmbH: OntoBroker User Guide V5.0. Ontoprise GmbH, Karlsruhe 2007.
http://www.ontoprise.com/content/e799/e893/e938/e954/e956/UserGuide_OntoBroker_5.0_
eng.pdf

[NeOn D6.2.1]
Walter Waterfeld, Moritz Weiten, Peter Haase: Deliverable D6.2.1: Specification of NeOn
reference architecture and NeOn APIs. NeOn Project Deliverable, 2007.
http://www.neon-project.org/web-content/
index.php?option=com_weblinks&task=view&catid=17&id=57

[NeOn D6.3.1]
Moritz Weiten, Michael Erdmann: Deliverable D6.3.1: First Implementation of critical
Infrastructure Components. NeOn Project Deliverable, 2007.
http://www.neon-project.org/web-content/
index.php?option=com_weblinks&task=view&catid=17&id=58

[NeOn D6.7.1]
Michael Erdmann, Thomas Hemp: Deliverable D6.7.1: Beta release of the Core NeOn
Online Documentation. NeOn Project Deliverable, 2007.

http://www.ontoprise.com/content/e799/e893/e938/e954/index_eng.html
http://www.ontoprise.com/content/e799/e893/e938/e954/e956/UserGuide_OntoBroker_5.0_
http://www.neon-project.org/web-content/
http://www.neon-project.org/web-content/

