

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 – “Semantic-based knowledge and content systems”

D6.3.1 First Implementation of critical Infrastructure Components

Deliverable Co-ordinator: Moritz Weiten

Deliverable Co-ordinating Institution: ontoprise GmbH (onto)

Other Authors: Michael Erdmann (ontoprise)

The NeOn toolkit constitutes together with the ontology repository and registry the NeOn
infrastructure. The purpose of the toolkit is to allow users to create ontologies in a networked way,
i.e. with lifecycle support and means to enable distributed and collaborative modelling.

As a starting point for the NeOn toolkit we present the ontology development environment
OntoStudio which is based on the Eclipse platform. Eclipse is a very flexible and extensible
framework and very well suited to host the multitude of features that will be developed within the
NeOn toolkit for networked ontologies.

Document Identifier: NEON/2007/D6.3.1/v1.1 Date due: February 28th 2007

Class Deliverable: NEON EU-IST-2005-027595 Submission date: March 30, 2007

Project start date: March 1, 2006 Version: v1.1

Project duration: 4 years State: Final

 Distribution: Restricted

NeOn-project.org

D6.3.1 First Implementation of critical Infrastructure Components Page 1 of 27

2007 © Copyright lies with the respective authors and their institutions.

NeOn Consortium

This document is part of a research project funded by the IST Programme of the Commission of
the European Communities, grant number IST-2005-027595. The following partners are involved in
the project:

Open University (OU) – Coordinator
Knowledge Media Institute – KMi
Berrill Building, Walton Hall
Milton Keynes, MK7 6AA
United Kingdom
Contact person: Martin Dzbor, Enrico Motta
E-mail address: @open.ac.uk

Universität Karlsruhe – TH (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren – AIFB
Englerstrasse 28
D-76128 Karlsruhe, Germany
Contact person: Peter Haase
E-mail address: pha@aifb.uni-karlsruhe.de

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Pérez
E-mail address: asun@fi.upm.es

Software AG (SAG)
Uhlandstrasse 12
64297 Darmstadt
Germany
Contact person: Walter Waterfeld
E-mail address: walter.waterfeld@softwareag.com

Intelligent Software Components S.A. (ISOCO)
Calle de Pedro de Valdivia 10
28006 Madrid
Spain
Contact person: Richard Benjamins
E-mail address: rbenjamins@isoco.com

Institut ‘Jožef Stefan’ (JSI)
Jamova 39
SI-1000 Ljubljana
Slovenia
Contact person: Marko Grobelnik
E-mail address: marko.grobelnik@ijs.si

Institut National de Recherche en Informatique et en
Automatique (INRIA)
ZIRST – 655 avenue de l'Europe
Montbonnot Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: jerome.euzenat@inrialpes.fr

University of Sheffield (USFD)
Dept. of Computer Science
Regent Court
211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

Universität Koblenz-Landau (UKO-LD)
Universitätsstrasse 1
56070 Koblenz
Germany
Contact person: Steffen Staab
E-mail address: staab@uni-koblenz.de

Consiglio Nazionale delle Ricerche (CNR)
Institute of cognitive sciences and technologies
Via S. Martino della Battaglia,
44 - 00185 Roma-Lazio, Italy
Contact person: Aldo Gangemi
E-mail address: aldo.gangemi@istc.cnr.it

Ontoprise GmbH. (ONTO)
Amalienbadstr. 36
(Raumfabrik 29)
76227 Karlsruhe
Germany
Contact person: Jürgen Angele
E-mail address: angele@ontoprise.de

Asociación Española de Comercio Electrónico (AECE)
C/Alcalde Barnils, Avenida Diagonal 437
08036 Barcelona
Spain
Contact person: Jose Luis Zimmerman
E-mail address: jlzimmerman@fecemd.org

Food and Agriculture Organization of the United Nations
(FAO)
Viale delle Terme di Caracalla 1
00100 Rome, Italy
Contact person: Marta Iglesias
E-mail address: marta.iglesias@fao.org

Atos Origin S.A. (ATOS)
Calle de Albarracín, 25
28037 Madrid
Spain
Contact person: Tomás Pariente Lobo
E-mail address: tomas.parientelobo@atosorigin.com

Page 2 of 27 NeOn Integrated Project EU-IST-027595

Task participants

• Software AG

• ontoprise GmbH

Change Log

Version Date Amended by Changes

0.1 20.2. Moritz Weiten Initial Draft

0.2 16.3. Michael Erdmann New structure

0.3 26.3. Michael Erdmann Description of components

1.0 26.3. Michael Erdmann Reasoning component

1.1 30.3 Michael Erdmann Integrate reviewer comments

Executive Summary

This deliverable describes the initial set of components available for the NeOn toolkit. It is closely
related with the architecture deliverable D6.2.1 “Specification of NeOn reference architecture and
NeOn APIs”, which forms the basis for the software infrastructure of the NeOn project. It is also
related to D6.5.1 “Realisation & early evaluation of a sample reasoning service” which describes
one important component for the NeOn toolkit, namely the reasoner.

After presenting an overview of the architecture of the NeOn toolkit we present some details about
the underlying platform Eclipse and its advantages as an extensible IDE framework. Afterwards we
present OntoStudio as the starting point for the development of the toolkit. Existing components of
OntoStudio are listed in section 3. They demonstrate immediately availably functionality for the
NeOn toolkit and also serve as sample implementations for future NeOn extensions to the toolkit.
The current status focuses on the use of Frame-Logic for modelling ontologies and rules, whereas
in the future the NeOn toolkit development will be extended to supporting native OWL (DL)
modelling.

D6.3.1 First Implementation of critical Infrastructure Components Page 3 of 27

2007 © Copyright lies with the respective authors and their institutions.

Table of Contents

1 Introduction and Motivation ... 5
1.1 The NeOn Infrastructure... 5
1.2 Scope of this Deliverable.. 6

2 The Seed Implementation of the NeOn Toolkit.. 7
2.1 The Eclipse IDE Platform ... 7

2.1.1 The Plug-in Concept·· 8
2.1.2 IDE Elements: Views, Perspectives, Editors··· 9
2.1.3 Eclipse as a Base for IDE Tools··· 11

2.2 OntoStudio ... 11
2.2.1 OntoStudio characteristics ··· 12
2.2.2 Extension Points·· 12

2.3 Relation between OntoStudio and the NeOn Toolkit... 13

3 Infrastructure Components .. 14
3.1 Ontologies.. 14
3.2 Ontology Visualizer .. 15
3.3 Rule Formulation.. 16
3.4 Explanations... 18
3.5 Import and Export Facilities.. 18
3.6 Mapping ... 19
3.7 Reasoning Support... 20

3.7.1 Queries Against the Knowledge Base ·· 21
3.7.2 Reasoning for the NeOn Toolkit ··· 22

4 Conclusions... 24

5 References... 25

6 Glossary... 26

Page 4 of 27 NeOn Integrated Project EU-IST-027595

Table of Figures

Fig. 1: Eclipse Core Components.. 8

Fig. 2: The Plug-in concept of Eclipse ... 9

Fig. 3: Elements of the Eclipse IDE – Java Editor as example .. 10

Fig. 4: The ontology perspective of OntoStudio... 14

Fig. 5: Ontology Graph Visualizer.. 15

Fig. 6: “Graph View”.. 16

Fig. 7: Graphical representation of an F-Logic rule.. 17

Fig. 8: Explanation text for a graphical rule. .. 18

Fig. 9: Resulting Ontology from a Database Schema Import. .. 20

Fig. 10: The “Mapping View” of OntoStudio... 20

Fig. 11: “Entity Properties View” of a Query .. 21

Fig. 12: Result view for the search for “author name”, “ISBN” and “title” of books 22

D6.3.1 First Implementation of critical Infrastructure Components Page 5 of 27

2007 © Copyright lies with the respective authors and their institutions.

1 Introduction and Motivation1
In the past years semantic technologies have become increasingly popular as one of the important
answers to the challenges of information management. A number of approaches and concrete
implementations as well as first industrial applications are one consequence of this trend. This
includes research prototypes as well as production-stable technology. There is infrastructure on
the backend-side (repositories, reasoners, servers) as well as on the front-end side (editors,
annotation technology) that can be regarded as stable and mature.

At the same time semantic technologies face major challenges: Currently, the process of
knowledge system development produces larger ontologies, higher quantities of ontologies that
also exhibit greater complexity. At the same time: tools available today for ontology development
are limited with respect to (i) lifecycle support, (ii) collaborative development of semantic
applications, (iii) web integration, and (iv) the cost-effective integration of heterogeneous
components in large applications.

All those issues are addressed by the NeOn project and the design of the reference architecture.
The project investigates existing semantic technologies as well as supporting technologies to
integrate established approaches that have proven to be efficient and flexible. At the same time we
take up new approaches regarding the ontology engineering process, ontology-based applications
and related technologies.

1.1 The NeOn Infrastructure
In NeOn, the architecture of networked ontologies will be layered and based on a component
structure:

• On the first layer we find a distributed repository for networked ontologies and metadata:
A family of semantic web standards will be used as formal representation – according to the
needs a proper flavour of OWL and other relevant standards will be chosen.

• On a second layer different distributed components offer a variety of services. This layer
provides means to integrate highly reusable components for knowledge systems, such as
reasoning, automatic knowledge acquisition, metadata annotation components and other
components stemming from data and text mining, or natural language technology. The
services are available via a standards-bases Web Services or, more directly, via direct
access with an associated API (for the NeOn toolkit).

• On the third level, the NeOn toolkit: provides plug-and-play integration and easy access of
the NeOn tools developed in the technical WPs. A proven platform like the Eclipse
framework is used for the realisation of such an extensible toolkit.

The full extent of the NeOn infrastructure, thus, consists of the repository, and the NeOn toolkit and
will be gradually enhanced and extended by lots of components, which are either remotely

1 The description of the first implementation of critical infrastructure components is closely related to the NeOn

architecture and available APIs. Thus, this document will repeat the motivational aspects as given in the corresponding
deliverable D6.2.1 “Specification of NeOn reference architecture and NeOn APIs” in order to keep this deliverable self-
contained.

Page 6 of 27 NeOn Integrated Project EU-IST-027595

accessed via web services or which are plugged into the NeOn toolkit as extensions to the basic
NeOn platform.

1.2 Scope of this Deliverable
This deliverable describes the initial set of components available for the NeOn toolkit. This
deliverable is closely related to the architecture deliverable D6.2.1 “Specification of NeOn
reference architecture and NeOn APIs”, which forms the basis for the software deliverables of the
NeOn project.

From a bird’s eye view the critical infrastructure components for NeOn are twofold:

1) Repository and registry for ontologies and metadata: Here all modelling activities of the
NeOn users are interconnected. The repository allows storing and retrieving ontologies for
reuse.

This aspect of the NeOn infrastructure is partially discussed in D6.2.1 “Specification of
NeOn reference architecture and NeOn APIs” and will be fully presented in later
deliverables, cf. D6.4.1 “Realisation & early evaluation of NeOn service-oriented
repository”.

2) The NeOn toolkit represents the client side application, which provides basic ontology
modelling functionality and also offers an extensible platform for adding new components
that realise a variety of additional functionalities. In this document we present the basic set
of features of the NeOn toolkit:

• ontology editor for concepts, relations, attributes, and instances

• rule editor for modelling complex relationships

• means for import and export of ontologies in various formats

• reasoning support for ontologies and rules

• This document focuses mainly on the implemented functionality as can be
experienced by the user, while D6.2.1 will present the more technical means for
integrating with the NeOn toolkit on the API level:

D6.3.1 First Implementation of critical Infrastructure Components Page 7 of 27

2007 © Copyright lies with the respective authors and their institutions.

2 The Seed Implementation of the NeOn Toolkit2
The NeOn toolkit is based on the Eclipse platform for developing IDEs (integrated development
environments). After a brief discussion of Eclipse we present the current implementation of
OntoStudio which represents the core of the NeOn toolkit.

2.1 The Eclipse IDE Platform
As stated on the website of the eclipse foundation (www.eclipse.org, January 2007) eclipse is

“an open source community whose projects are focused on building an open
development platform comprised of extensible frameworks, tools and runtimes
for building, deploying and managing software across the lifecycle.”

A major outcome of the Eclipse community is the eclipse platform and numerous extensions. The
eclipse platform serves as a generic Integrated Development Environment (IDE). The Eclipse
platform is highly modular. Very basic aspects are covered by the platform itself, such as the
management of modularized applications (plug-ins), a workbench model and the base for graphical
components.

Despite being open and extensible the Eclipse IDE predefines the design of applications (i.e.
specialized IDEs) that use it. The Eclipse IDE specifies the structure of the main menus and
windows.

Figure 1 shows the basic components of the Eclipse platform. This includes libraries for graphical
components (SWT/JFace), the platform runtime and a generic workbench.

2 The description of the first implementation of critical infrastructure components is closely related to the NeOn

architecture, thus, this document will repeat some framework-oriented arguments from deliverable D6.2.1
“Specification of NeOn reference architecture and NeOn APIs” in order to keep this deliverable self-contained.

Page 8 of 27 NeOn Integrated Project EU-IST-027595

Eclipse IDEEclipse IDE

Generic WorkbenchGeneric Workbench

JFaceJFace

SWTSWT OSGIOSGI

RuntimeRuntime

Fig. 1: Eclipse Core Components

2.1.1 The Plug-in Concept

Figure 2 shows the plug-in concept of Eclipse. Plug-ins are not limited to certain aspects of the IDE
but cover all kinds of functionalities. Eclipse has become popular as a Java-development
environment. However, the Java-development support is not provided by the Eclipse platform but
by a set of plug-ins. Even functionalities users would consider to be basic (such as the abstraction
and management of resources like files or a help system) are realized through plug-ins. This
stresses the modular character of Eclipse, which follows the philosophy that “everything is a plug-
in”.

A plug-in itself can be extended by other plug-ins in an organized manner. As shown in figure 2
plug-ins define extension points that specify the functionality which can be implemented to extend
the plug-in in a certain way. An extending plug-in implements a predefined interface. It is
configured with a simple XML-file that defines the kind of extension as well as additional properties
(such as menu entries) are declared. The presence of the XML-file eliminates compile-time
dependencies and enables flexible plug-in development and deployment.

D6.3.1 First Implementation of critical Infrastructure Components Page 9 of 27

2007 © Copyright lies with the respective authors and their institutions.

RuntimeRuntime

PluginPlugin

PluginPlugin

PluginPlugin

= extension point

= extension

Fig. 2: The Plug-in concept of Eclipse

2.1.2 IDE Elements: Views, Perspectives, Editors

The main elements of the Eclipse IDE are shown in figure 3, using the Java Editor (as part of the
JDT plug-ins) as an example. The basic structure is predefined in a typical IDE design. A main
menu bar and a tool bar are the top-level entry points for tasks on the project- or workbench-level,
such as the import of resources (files, projects, etc.).

Users mainly interact with views and editors3 when performing design- or development tasks.
Editors include (but are not limited to) textual editors, such as in the example in figure 3. Views are
containers for GUI components such as tree controls and tables. They might just display non-
editable information such as the metadata of a file or provide editing or managing functionalities.
Views are standardized components. They can be extended in certain ways, e.g. by additional
menu items.

A perspective is the definition of the arrangement of views and editors on the screen, which
together support a certain task. This includes default settings regarding the size and the position of
views as well as restrictions. Perspectives can be adapted by the user. They are often used in a
certain context. The same resource might be accessed in different contexts (like a text-file, a
repository or a certain element of a data-model, such as a rule). The context could for example be
“editing” or “debugging” (of rules, models, programs, etc.). Certain editors or views might be useful
in both contexts, while others are only used in one specific context. The concept of perspectives
helps to organize this in a very flexible manner.

A view for problems or “to-dos” might be present in different contexts. A view showing temporary
values of variables (in a rule) as the result of a debug-run would only make sense in the context of
debugging.

3 An editor is usually used for textual or graphical information, while views typically are form or table-based.

Page 10 of 27 NeOn Integrated Project EU-IST-027595

Tool Bar

Perspective
and
Fast View
Bar

Resource
Navigator
View

Stacked
Views

Properties
View

Tasks
View

Outline
View

Bookmarks
View

Menu Bar

Editor
Status
area

Text
EditorTool Bar

Perspective
and
Fast View
Bar

Resource
Navigator
View

Stacked
Views

Properties
View

Tasks
View

Outline
View

Bookmarks
View

Menu Bar

Editor
Status
area

Text
Editor

Fig. 3: Elements of the Eclipse IDE – Java Editor as example

D6.3.1 First Implementation of critical Infrastructure Components Page 11 of 27

2007 © Copyright lies with the respective authors and their institutions.

2.1.3 Eclipse as a Base for IDE Tools

As we have seen in the previous sections, Eclipse offers a complete framework for IDE
applications. Some main advantages and disadvantages regarding Eclipse as the base for IDE
applications are summarized below:

Pros Cons

• Eclipse provides an extensible and modular
platform.

• Eclipse provides a common UI paradigm
well-known to a large community.

• Eclipse provides a large set of plug-ins
covering a wide range of functionalities
including.

• There are Eclipse plug-ins providing
extensive capabilities for meta-model (or
model-driven) approaches.

• Eclipse runs on different platforms.

• Eclipse is based on an OSGI implementation
that can operate in “headless mode” (without
GUI) offering options for modularized,
dynamic and remotely managed server
applications.

• Eclipse offers a system-specific Look and
Feel.

• The Eclipse platform is rather complex.

• The default Update-Manager of the IDE is
not as comfortable as it could be
(commercial alternatives are available).

• SWT/JFace is outside of the Java-
standard library.

2.2 OntoStudio
The starting point for the NeOn toolkit is the ontology engineering platform of ontoprise,
OntoStudio®. OntoStudio is a the front-end counterpart to OntoBroker®, a very fast datalog based
FLogic inference machine. Consequently a focus of the OntoStudio development has been on the
support of various tasks around the application of rules. This includes the direct creation of rules
(via a graphical rule editor) but also the application of rules for the dynamic integration of
datasources (using a database schema import and a mapping tool). The upcoming version of
OntoStudio will have additional support for rule creation and management such as a rule debugger
and a textual rule editor for F-Logic including features like auto-completion and syntax-checking
(based on an incremental parsing). All features will be available for the NeOn toolkit (either as
open-source or closed-source commercial extensions).

OntoStudio is available with a main memory- or database-based model. It is therefore scaleable
and suitable for modelling even large ontologies. Based on Eclipse OntoStudio provides an open
framework for plug-in developers. It already provides a number of plugins such as a query plugin, a
visualizer and a reporting plugin. In line with the Eclipse philosophy “everything is a plugin”

Page 12 of 27 NeOn Integrated Project EU-IST-027595

OntoStudio is highly modular. A central datamodel plugin is the entry point (and a minimal
requirement) for every plugin.

2.2.1 OntoStudio characteristics

• OntoStudio’s knowledge model is tightly coupled to F-Logic; import and export to
OWL/RFD is restricted mainly to concepts which can be expressed in F-Logic. Despite
some minor syntactical details the Ontoprise F-Logic dialect conforms semantically to the
F-Logic definition [Kifer et.al 1995]. Ontoprise is one of the main contributors to the F-Logic
Forum that standardizes future versions of F-Logic

• Supported languages: currently native F-Logic support and subsets of OWL and RDF(S)
via import/export; in future native OWL (DL) support will be provided also as part of the
NeOn toolkit developments

• Supported reasoners: currently OntoBroker; in future also KAON2

• Platforms: Windows and Linux supported

• Performance and connectivity: designed for high scalability; connectors for several
RDBMSs like Oracle, MS-SQL, DB2; works also with large ontologies

• License: free for non-commercial users; the editor platform (without reasoner and a
number of commercial plug-ins) will be made available under GPL

• Target users: domain experts with a basic understanding of ontologies and rules;
OntoStudio replaces syntactical details of the underlying language with simpler GUI
elements, like forms and menus.

• Team support [workflow; collaboration; documentation; versioning]: currently not
supported, but planned as part of the NeOn toolkit

• GUI / visualization: concept taxonomy; textual and graphical rule editor; instance view,
graphical ontology visualizer, query tabs etc:

A more comprehensive description of some OntoStudio features follows in Section 3.

2.2.2 Extension Points

Some aspects of OntoStudio are implemented in an open, extensible manner, i.e. can be modified
by external extensions. The provision of extension-points allows adding new functionalities to the
core components of OntoStudio.

The Ontology Navigator is a completely modifiable and extensible view on (not necessarily)
ontology elements. The developer can show additional elements (almost everywhere) in the tree,
can define specific drag and drop operations and gets support for the definition of additional
context menu entries.

Another main component in OntoStudio is the Entity Properties View which shows property pages
for the elements in the user interface. Additional property pages can be integrated in this view by
the use of the corresponding extension point.

D6.3.1 First Implementation of critical Infrastructure Components Page 13 of 27

2007 © Copyright lies with the respective authors and their institutions.

2.3 Relation between OntoStudio and the NeOn Toolkit
Many of the OntoStudio capabilities are in-line with the NeOn approach and fulfil the corresponding
requirements. At the same time some very basic aspects of the NeOn toolkit are missing. The
following list is a high-level summary of the most important points rather than a detailed mapping to
requirements.

Pros Cons

• OntoStudio is a modular and extensible
platform.

• OntoStudio has extensive rule support.

• OntoStudio has integration capabilities for
“non semantic” technology.

• OntoStudio does not offer native OWL(DL)
support.

• OntoStudio does not provide lifecycle
support.

• OntoStudio does not have collaboration
capabilities.

The NeOn Toolkit will be based on the current implementation of OntoStudio and immediately
utilizing provided functionality.

The OntoStudio API for handling ontological metadata will be used to store and access ontologies
and their components from within the toolkit. OntoStudio supports, frame-like modelling combined
with logical rules via the F-Logic language. Thus, the NeOn Toolkit will use the OntoStudio code
base for the core functionality of modelling ontologies and rules, and for reasoning about them.

The conceptual framework provided by OntoStudio for managing ontologies, for communicating
between ontology aware components, and for supporting reasoning services within the toolkit will
be further extended in the NeOn project to fully support the W3C ontology language OWL (DL), i.e.
native OWL modelling and also DL reasoning.

Currently OntoStudio is transferred from a proprietary, commercial product into an open source
project. The basic platform and a number of essential components will be made open source. This
set of components represents the basis on which the NeOn toolkit is implemented. This
implementation essentially boils down to developing additional Eclipse plug-ins, that access the
OntoStudio data-model, its UI components and extend its extension-points.

Page 14 of 27 NeOn Integrated Project EU-IST-027595

3 Infrastructure Components
In this section we present an overview of the infrastructure components for the NeOn toolkit, as
they are implemented in OntoStudio now.

Fig. 4: The ontology perspective of OntoStudio

3.1 Ontologies
The main role of OntoStudio as an Ontology Engineering Environment is the provision of means to
create, modify and navigate ontologies. We have executed user experiments; the feedback from
the OntoStudio users shows that the frame-based notion of ontology is well understood and the
expressiveness of F-Logic ontologies is appropriate for most modelling tasks. The figure below
illustrates the basic layout of the OntoStudio screen for modelling ontologies.

The following four views are the main components of the ontology perspective (cf. Figure 4):

1. The “Ontology Navigator” contains the hierarchical structure of the concepts of the
ontology, lists of all defined properties (attributes and relationships), and contains folders
for rules, queries and mappings. Multiple ontologies can be managed with this view that
resembles Windows Explorer.

2. The “Entity Properties View” presents the details of the entity that is currently selected in
the ontology navigator. This includes the defined properties for a concept, the domain,

D6.3.1 First Implementation of critical Infrastructure Components Page 15 of 27

2007 © Copyright lies with the respective authors and their institutions.

range, and cardinality constraints for properties. All entities can be annotated with
descriptive texts and labels in multiple languages.

3. The “Instance View” lists all instances of a concept that is selected in the ontology
navigator. Here new instances can be created or existing instances can be deleted.

4. The “Properties View” lists all properties of the instance selected in the instance view.
Property values can be added, removed or changed in a tabular representation.

3.2 Ontology Visualizer
The “Ontology Graph Visualizer” (cf. Figure 5) displays the ontology and all elements of the
hierarchy (concepts, relations, attributes) in a graph.

Red arrows in the graph represent the sub-concept relationship (super-concept are at the arrows’
points). Blue arrows represent relations and attributes and point from the domain concept to the
range concept (or data type in case of attributes). The “Ontology Graph Visualizer” supports
zooming, rotating and automatic graph layout

Fig. 5: Ontology Graph Visualizer

A second visualization plug-in provides for printing and exporting ontologies to a PDF file. By
clicking on a concept in the “Ontology Navigator”, you can open the “Generate Graph…” function.
Starting from the selected concept, all sub-concepts will be represented graphically (non-
taxonomic relations are ignored for this presentation). This plug-in supports printing, zooming, and

Page 16 of 27 NeOn Integrated Project EU-IST-027595

displaying synonyms for the concepts. It is also possible to search for concepts within the graphical
representation.

Fig. 6: “Graph View”

3.3 Rule Formulation
The ontology is a somehow static artefact, comparable to a UML class diagram. This artefact alone
is not sufficient to see whether the model is correct, complete, or even adequate. Only by testing
the ontological knowledge by applying rules the user can fully grasp their own models. Essentially
rules represent the main knowledge source in models created with OntoStudio. The graphical
representation and the support given by the system really help authoring rules.

An ontology without rules only describes simple relationships between concepts like parts building
up components, one part is connected to another part etc. More complex relationships have to be
described by rules and constraints. An example rule could be

For a given configuration of a car the devices connected to the battery must
match the amperage of the used battery.

These constraints could easily be modelled by users using OntoStudio. The Graphical Rule Editor
included in the product enables users to build complex rules using graphical means (cf. Figure 7).
OntoStudio automatically generates the logic syntax out of the rule diagrams and optimizes it. The
rule modelled graphically leads to the following textual representation in F-Logic:

D6.3.1 First Implementation of critical Infrastructure Components Page 17 of 27

2007 © Copyright lies with the respective authors and their institutions.

error(?X,?Y):error[notMatchingComponents->>{?X,?Y}] AND
?C[hasErrors->>error(?X,?Y)]
<-
?C:Configuration[hasComponents->>{?X,?Y}] AND
?X:battery[hasAmperage->>?Z1] AND
?Y:component[connectedTo->>?X;hasAmpacity->>?Z2] AND
NOT equal(?Z1,?Z2).

It is clear that writing rules textually rapidly becomes a hard task when the complexity of the rules
grows. Graphical editing helps avoiding simple errors such as typing or syntax errors. The
graphical rule editor is aware of the available concepts and properties of the ontology and thus can
automatically check for inconsistencies in the rule while the user formulates it.

Fig. 7: Graphical representation of an F-Logic rule.

OntoBroker is seamlessly integrated with OntoStudio. This means that an ontology which has been
developed inside OntoStudio is directly executable on the OntoBroker server. OntoBroker is used
for evaluating and analyzing the ontology and, thus, provides early feedback about the quality of
the ontology. The testing and debugging facilities bring the knowledge base to life, which is great
feedback within any modelling environment to see the system’s behaviour before it is actually
deployed.

Page 18 of 27 NeOn Integrated Project EU-IST-027595

This preview-character is even more impressive, since OntoStudio can directly integrate life data
from real external data sources like relational databases (cf. Section 3.6).

3.4 Explanations
In OntoStudio the graphical definition of rules is accompanied with a feature for formulating
explanation texts (cf. Figure 8). Essentially, every rule can be paraphrased by a natural language
explanation. The rules and the ontology interact in a lot of ways which is not amenable for human
understanding, due to the complexity of the rule networks that are usually created. This is
unavoidable, because every rule is expressed in a declarative way and it only specifies the
preconditions and the inferences that can be drawn, when the preconditions hold true.

For the purpose of understanding, why a particular answer is generated to a query, or why some
tests of the rule base failed, OntoStudio provides a feature to paraphrase the reasoning process
executed by OntoBroker that leads to the query result. The problem of providing information about
provenance and traceability is solved in OntoStudio and OntoBroker by storing metadata during
the inferencing process. A second inferencing step makes use of this metadata to generate
readable explanations for the results.

The human authored explanation templates are translated into rules that are used in this second
reasoning step. They access the meta-data obtained in the actual reasoning and generate a
human-readable and especially human-understandable explanations.

For the explanation rules the same conditions hold, as for the normal rules. Writing them textually
is very error-prone. As shown in Figure 8 OntoStudio offers to simply write down the explanation
templates in a text editor just below the graphical rule. The explanation text reads:

The configuration is not correct, because the component ?aComponent needs
an amperage of ?attributeValue2 but the installed battery only provides an
amperage of ?attributeValue1.

The explanation template contains variables, like ?attributeValue1 that are replaced by actual
values when the rule is applied and the explanation text is generated.

Fig. 8: Explanation text for a graphical rule.

3.5 Import and Export Facilities
OntoStudio supports the import and export of different ontology languages. Its main serialization
formats are F-Logic and OXML. The W3C recommendations RDF(S) and OWL are also supported.

D6.3.1 First Implementation of critical Infrastructure Components Page 19 of 27

2007 © Copyright lies with the respective authors and their institutions.

OntoStudio can read the XML/RDF syntax of RDF(S) as well as N3 and NTriple. Since there is a
conceptual mismatch between the F-Logic and OWL semantics, only a subset of OWL statements
will be imported from an OWL file. OntoStudio mainly imports named classes with explicit
taxonomic relations, property definitions, and instance data. Complex class expressions which are
common in OWL modelling are not imported since they do not have an immediate corresponding
modelling construct in the OntoStudio knowledge model. This, of course means loss of information,
on the other hand the modified model can be extended with instance-level reasoning via rules.

3.6 Mapping
OntoStudio can import external relational database schemas from the RDBMSs Oracle, MS-SQL
and DB2. The import facility creates canonical ontologies based on the database schemas.
Connection rules directly access the database to populate these ontologies at query time. Figure 9
shows the result of importing the table structure from a relational database. The ontology navigator
shows a number of concepts which result from database tables and a number of relations which
are the result of interpreting foreign key columns of tables. Further, attributes represent value
columns of the database tables.

This schema import functionality is a necessary precondition to access external data, or for
integrating multiple information sources. By lifting the database schema information onto a
conceptual level and wrapping it into an ontology enables to formulate integration rules without
knowing the exact representation of the knowledge in the sources. The information integration task
is a prime-example for applying ontologies. The OntoStudio Plug-in OntoMap particularly targets
this use-case. With OntoMap users can translate from the conceptual model of one ontology to the
conceptual model of another ontology. It is also possible to combine knowledge pieces from
multiple sources into one target ontology. A number of mapping patterns (e.g. the interpretation of
attribute values as Skolem-identifiers, the formulation of filter conditions or of translation functions)
support the mapping task of users. [Weiten et al. 2006]

Figure 10 shows a sample mapping formulation between two ontologies. The source ontology (in
this case from a database schema import) is mapped to a target ontology. This target ontology
represents the vocabulary according to which the original source now is wrapped conceptually, i.e.
queries against the original information source can now be formulated in terms of the target
ontology. Additionally, the target ontology can be enriched by rules or can be connected to other
sources, which makes it even more useful.

Since the mapping functionality is agnostic to the underlying information source the same
mechanism can be applied to a multitude of sources, besides relational databases, e.g. Excel
spreadsheets, non-relational databases, or web-services

Page 20 of 27 NeOn Integrated Project EU-IST-027595

Fig. 9: Resulting Ontology from a Database Schema Import.

Fig. 10: The “Mapping View” of OntoStudio.

3.7 Reasoning Support
The reasoning facilities of OntoStudio are crucial for the correctness, completeness, and adequacy
of the knowledge base. The ontology is well suited for modelling structural relationships between
concepts. Rules are well suited for modelling complex relationships, that infer new knowledge
based on given preconditions. By actually applying the rules and letting all the modelled knowledge
pieces interact, the real meaning of the model as a whole becomes visible. This can only be
achieved by integrating a full-fledged reasoning engine into the modelling environment. In
OntoStudio, the F-Logic reasoner OntoBroker is embedded. Currently the coupling of OntoStudio

D6.3.1 First Implementation of critical Infrastructure Components Page 21 of 27

2007 © Copyright lies with the respective authors and their institutions.

and OntoBroker is quite tight. For the final NeOn toolkit, a more open architecture will be devised
to connect the modelling environment with one or more reasoning engines.

There are two modes in which OntoStudio can access OntoBroker:

1. OntoBroker as a private reasoner for OntoStudio: In this setting OntoBroker knows about
the model as imported or modelled within OntoStudio. The modelling plug-ins use
OntoBroker to retrieve facts from the KB or to answer complex queries against it. The
model is not accessible to outside applications. It is only visible for the modelling tool.

2. OntoStudio can access any OntoBroker server. This can be either started from within
OntoStudio or it could be already started as an external server. In this setting the
OntoBroker server can also be accessed by other applications, e.g. a web-based and
ontology-aware intranet search portal. OntoBroker, thus, immediately reflects the changes
to the model from within OntoStudio and makes them (and implied changes after applying
rules to the changed state) visible to the outside world, i.e. changes to the ontology or to
the mapping rules, would promptly be reflected in the search application.

3.7.1 Queries Against the Knowledge Base

Queries in OntoStudio are a direct way to verify the model and to see it come to life. Query results
represent either basic facts or knowledge derived by rules.

Fig. 11: “Entity Properties View” of a Query

OntoStudio’s query interface is based on the notion of stacked forms. Each form represents one
object, which can be linked via relations to other objects (also represented by a form). Figure 11
shows one such form. The object represented by a form belongs to a concept and can specify a
number of conditions for the query. Possible conditions use the relations and attributes defined in
the ontology and specify whether a value must exist, must be equal to, greater or less than a

Page 22 of 27 NeOn Integrated Project EU-IST-027595

specified value. Additional objects can be formulated by linking them with an existing object via
relations. In this way a tree-structured query can be built up.

Queries are entities and as such managed with the ontology navigator view. When a query is
executed its form-structure is translated into an F-Logic query which is sent to the reasoning
engine. The results of this query are displayed in the “Result View” in a tabular way. Each line of
the table represents one answer to the query

Fig. 12: Result view for the search for “author name”, “ISBN” and “title” of books

3.7.2 Reasoning for the NeOn Toolkit

The OntoBroker server as the reasoner deployed in OntoStudio could be a model for developing
reasoning support for the NeOn toolkit. Reasoning service(s) are one core component of the toolkit
on the infrastructure level. Reasoning support will be given as an internal service of the toolkit. This
includes the reasoning capabilities of the KAON24 reasoner for OWL as well as the capabilities of
the OntoBroker reasoner for F-Logic. First thoughts on how to integrate them in the toolkit and on
how to make them available to the set of all plug-ins are described in deliverable D6.2.1
“Specification of NeOn reference architecture and NeOn APIs”.

The functionality of both languages (OWL and F-Logic) is sufficiently different, such that slightly
different approaches to access the data-models and to initiate the reasoning will be realized.

For F-Logic a basic object-oriented (or frame-like) notion of named classes, relations and instances
suffices to cover a large range of use cases. F-Logic rules are more complex and might not have a
fine grained counterpart in the data model API5; a rule class carrying essentially F-Logic text might
be sufficient. Also, for initiating reasoning through queries there will be a dichotomy of (i) frame-like
queries which will cover most use-cases, with expressions similar in nature to OQL [Cattell, Barry
97], Lorel [Abiteboul et al. 97] or XPath-expressions [Clark, deRose 99], and (ii) complex first order
logic queries (including variables, quantifiers, and arbitrary operators) which are best represented
textually.

4 Cf. the KAON2 web site at: http://kaon2.semanticweb.org/
5 D6.2.1 “Specification of NeOn reference architecture and NeOn APIs” contains a Meta-model for F-Logic that contains

a fine-level representation of the different parts of rules and queries.

D6.3.1 First Implementation of critical Infrastructure Components Page 23 of 27

2007 © Copyright lies with the respective authors and their institutions.

For OWL the basic query use cases involving instance-level queries in an OO way will also be
possible (cf. SPARQL query language [Prud'hommeaux, Seaborne 2007]). The reasoning needed
to compute answers to this kind of queries, on the other hand, requires a different reasoning
mechanism that considers the very different modelling primitives of OWL (DL).

The goal of the NeOn toolkit API for queries (and access to the data model in general) is to provide
a uniform access to the contained knowledge, independent of its actual representation, e.g. as an
OWL T-Box or as a set of F-Logic statements and rules. The API should shield the users (the client
plug-ins) from the complexity involved in the different knowledge representation languages and
reasoning mechanisms.

Page 24 of 27 NeOn Integrated Project EU-IST-027595

4 Conclusions
In this document we described the NeOn toolkit. The NeOn toolkit constitutes together with the
ontology repository and registry the NeOn infrastructure. The purpose of the toolkit is to allow
users to create ontologies in a networked way, i.e. with lifecycle support and means to enable
distributed and collaborative modelling. As a starting point for the NeOn toolkit we presented the
ontology development environment OntoStudio which is based on the Eclipse platform. Eclipse is a
very flexible and extensible framework and very well suited to host the multitude of features that
will be developed within the NeOn toolkit for networked ontologies.

Thus, the next steps for the NeOn toolkit will be to extend the basic modelling functionality (cf.
D6.6.1) which includes adding the networked character and making it ready for OWL (implement
modelling capabilities and reasoning support for OWL via the KAON2 API). On the way to the
NeOn toolkit we will also transfer the core functionality of OntoStudio into an open source project.

D6.3.1 First Implementation of critical Infrastructure Components Page 25 of 27

2007 © Copyright lies with the respective authors and their institutions.

5 References
[Abiteboul et al. 97] S. Abiteboul, D. Quass, J. McHugh, J. Widom, J. Wiener: The Lorel query

language for semi-structured data. in: Journal of Digital Libraries. Volume 1, No. 1, 1997. pp.
68-88.
http://link.springer.de/link/service/journals/00799/papers/7001001/70010068.pdf

[Becket 2004] Dave Beckett: RDF/XML Syntax Specification (Revised) W3C Recommendation 10
February 2004.
http://www.w3.org/TR/rdf-syntax-grammar/

[Brickley, Guha 2004] Dan Brickley, R.V. Guha: RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation 10 February 2004.
http://www.w3.org/TR/rdf-schema/

[Cattell, Barry 97] R.G.G Cattell, D. Barry (Eds.): The object database standard: ODMG 2.0.
Morgan Kaufmann Publishers, Inc. San Francisco 1997.

[Clark, deRose 99] J. Clark, S. DeRose (eds.): XML Path Language (XPath) 1.0. W3C
Recommendation, 16. November 1999.
http://www.w3.org/TR/xpath

[Kifer et al. 1995] M. Kifer, G. Lausen, and J.Wu. Logical foundations of object-oriented and
frame-based languages. Journal of the ACM, 42; (1995) 741–843

[McGuinness, van Harmelen 2004] Deborah L. McGuinness, Frank van Harmelen: OWL Web
Ontology Language. W3C Recommendation 10 February 2004.
http://www.w3.org/TR/owl-features/

[Ontoprise 2006a] OntoBroker Tutorial 4.3.
http://www.ontoprise.de/content/e799/e893/e938/e954/e956/UserGuide_OntoBroker_4.3_en
_eng.pdf

[Ontoprise 2006b] How to write F – Logic - Programs
http://www.ontoprise.de/content/e799/e893/e938/e954/e957/F-Logic_Tutorial_eng.pdf

[Ontoprise 2006c] OntoStudio User Manual 1.6.
http://www.ontoprise.de/content/e799/e893/e938/e954/e959/User_Manual_OntoStudio_1.6_
en_eng.pdf

[Prud'hommeaux, Seaborne 2007] Eric Prud'hommeaux, Andy Seaborne: SPARQL Query
Language for RDF. W3C Working Draft 26 March 2007.
http://www.w3.org/TR/rdf-sparql-query/

[Weiten et al. 2006] M. Weiten; M. Maier-Collin; J. Angele: D4.5.4 Prototype of the ontology
mediation software V2. SEKT Project Deliverable 2006

Page 26 of 27 NeOn Integrated Project EU-IST-027595

6 Glossary

F-Logic Frame Logic
http://portal.acm.org/citation.cfm?id=210335

FOL First Order Logic

IDE Integrated Development Environment

JDT Java Development Toolkit: the set of Eclipse plug-in that constitutes the Java
IDE

OWL Web Ontology Language Recommendation by the W3C
http://www.w3.org/TR/owl-features/

RDBMS Relational database management system

RDF(S) Resource Description Framework Schema
http://www.w3.org/RDF/ and http://www.w3.org/TR/rdf-schema/

SPARQL Query Language for RDF
http://www.w3.org/TR/rdf-sparql-query/

SWT Standard Widget Toolkit: an open source widget toolkit for Java designed to
provide efficient, portable access to the user-interface facilities of the operating
systems on which it is implemented. The Eclipse GUI uses SWT.

