

NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 – “Semantic-based knowledge and content systems”

D6.2.1 Specification of NeOn reference architecture and NeOn APIs

Deliverable Co-ordinator: Walter Waterfeld

Deliverable Co-ordinating Institution: Software AG (SAG)

Other Authors: Moritz Weiten (ontoprise)
 Peter Haase (University Karlsruhe)
Other Contributors: Hamish Cunningham (University Sheffield)
 Martin Dzbor (Open University)
 Raul de Palma, Óscar Muñoz García (UPM)

Document Identifier: NEON/2007/D6.2.1/v1.0 Date due: February 28th, 2007
Class Deliverable: NEON EU-IST-2005-027595 Submission date: March 30th, 2007
Project start date: March 1, 2006 Version: v1.0
Project duration: 4 years State: Final
 Distribution: Public

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 2 of 101 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is part of a research project funded by the IST Programme of the Commission of
the European Communities, grant number IST-2005-027595. The following partners are involved in
the project:

Open University (OU) – Coordinator
Knowledge Media Institute – KMi
Berrill Building, Walton Hall
Milton Keynes, MK7 6AA
United Kingdom
Contact person: Martin Dzbor, Enrico Motta
E-mail address: {m.dzbor, e.motta} @open.ac.uk

Universität Karlsruhe – TH (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren – AIFB
Englerstrasse 28
D-76128 Karlsruhe, Germany
Contact person: Peter Haase
E-mail address: pha@aifb.uni-karlsruhe.de

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Pérez
E-mail address: asun@fi.upm.es

Software AG (SAG)
Uhlandstrasse 12
64297 Darmstadt
Germany
Contact person: Walter Waterfeld
E-mail address: walter.waterfeld@softwareag.com

Intelligent Software Components S.A. (ISOCO)
Calle de Pedro de Valdivia 10
28006 Madrid
Spain
Contact person: Richard Benjamins
E-mail address: rbenjamins@isoco.com

Institut ‘Jožef Stefan’ (JSI)
Jamova 39
SI-1000 Ljubljana
Slovenia
Contact person: Marko Grobelnik
E-mail address: marko.grobelnik@ijs.si

Institut National de Recherche en Informatique
et en Automatique (INRIA)
ZIRST – 655 avenue de l'Europe
Montbonnot Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: jerome.euzenat@inrialpes.fr

University of Sheffield (USFD)
Dept. of Computer Science
Regent Court
211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

Universität Koblenz-Landau (UKO-LD)
Universitätsstrasse 1
56070 Koblenz
Germany
Contact person: Steffen Staab
E-mail address: staab@uni-koblenz.de

Consiglio Nazionale delle Ricerche (CNR)
Institute of cognitive sciences and technologies
Via S. Martino della Battaglia,
44 - 00185 Roma-Lazio, Italy
Contact person: Aldo Gangemi
E-mail address: aldo.gangemi@istc.cnr.it

Ontoprise GmbH. (ONTO)
Amalienbadstr. 36
(Raumfabrik 29)
76227 Karlsruhe
Germany
Contact person: Jürgen Angele
E-mail address: angele@ontoprise.de

Asociación Española de Comercio Electrónico
(AECE)
C/Alcalde Barnils, Avenida Diagonal 437
08036 Barcelona
Spain
Contact person: Jose Luis Zimmerman
E-mail address: jlzimmerman@fecemd.org

Food and Agriculture Organization of the United
Nations (FAO)
Viale delle Terme di Caracalla 1
00100 Rome, Italy
Contact person: Marta Iglesias
E-mail address: marta.iglesias@fao.org

Atos Origin S.A. (ATOS)
Calle de Albarracín, 25
28037 Madrid
Spain
Contact person: Tomás Pariente Lobo
E-mail address: tomas.parientelobo@atosorigin.com

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 3 of 101

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed writing parts of this document:

Software AG

Ontoprise GmbH

Universität Karlsruhe – TH

University of Sheffield

Universidad Politécnica de Madrid

Open University

Executive Summary

This deliverable describes the NeOn reference architecture, which forms the basis for the software
deliverables of the NeOn project. For this architecture important APIs are specified.

In the state of the art section we do not aim for a complete description of engineering
infrastructures for ontologies. Instead we investigated several technologies, which have the
potential to serve as a foundation for the NeOn infrastructure aiming at large-scale, dynamic and
networked ontologies.

Based on these investigations and on the requirements gathered in the previous deliverable of this
NeOn infrastructure work package a reference architecture is developed. In order to serve as the
foundation for the software deliverables of the NeOn project emphasis is put on the extensibility
and plugability of the infrastructure. Nevertheless it is essential for the usability and scalability
goals of NeOn that the architecture has a clear focus in order to allow a good interaction of tools.

An example for the realisation of that approach is the adoption of the dual language reasoning by
supporting the description language OWL/DL and a rule language. This achieves on the one hand
a very good coverage of the almost all ontology language features. On the other hand it has a clear
focus on the two most relevant and sufficiently distinct ontology languages instead of trying to have
native support for an arbitrary number of ontology languages with minimal differences.

For the NeOn reference architecture the important APIs are described. It contains APIs defining
lower-level infrastructure functionality. These allow to have different realizations of those
components. Additionally it contains APIs which allow to plugin ontology functionality developed in
the technical work packages of the NeOn project. Thus a stepwise completion of the NeOn toolkit
as the reference implementation for the NeOn architecture is possible.

In order to illustrate the architecture finally example components and their assembly to example
configurations are given. The example components represents typically category of components as
well as typically ontology engineering functionality developed by the technical work packages of
the NeOn project.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 4 of 101 NeOn Integrated Project EU-IST-027595

Table of Contents

NeOn Consortium ... 2
Work package participants .. 3
Executive Summary.. 3
Table of Contents.. 4
List of figures .. 7
List of tables.. 8
1. Introduction and Motivation... 9

1.1 Functional Aspects of the NeOn Approach.. 9
1.2 Methodological Approach... 10
1.3 Overall structure of the NeOn platform .. 10
1.4 Starting Point and Goal .. 11

2. Definitions, Acronyms and Abbreviations ... 13
3. State of the Art .. 14

3.1 Supporting Technologies ... 14
3.1.1 Eclipse as IDE Technology...14

3.1.1.1 The Plugin Concept ...15
3.1.1.2 IDE Elements: Views, Perspectives, Editors..16
3.1.1.3 OSGI..17
3.1.1.4 Eclipse as a Base for IDE Tools ..19
3.1.1.5 Relevance for the NeOn Reference Architecture and the NeOn Toolkit20

3.1.2 Other supporting technologies..21
3.1.2.1 SOA infrastructure ...21
3.1.2.2 Service Data Objects (SDO)..21

3.1.3 Technologies for language processing ...22
3.1.3.1 GATE...23
3.1.3.2 UIMA..26
3.1.3.3 ISO TC37/4..29

3.2 Existing Infrastructures... 31
3.2.1 Components of existing Ontology Engineering Tools ...31

3.2.1.1 OntoStudio...33
3.2.1.2 Protégé 3.2 beta ..34
3.2.1.3 Altova SemanticWorks 2006..37
3.2.1.4 TopBraid Composer...38
3.2.1.5 SemTalk 2 ...40
3.2.1.6 Integrated Ontology Development Toolkit (IODT)..40
3.2.1.7 SWOOP v2.3 beta 3: ...42

3.2.2 Summary and Conclusions...44
4. General Architecture... 47

4.1 Core concepts .. 47

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 5 of 101

4.1.1 Layering of architectural components...47
4.1.1.1 Functionality vs. non-functional requirements..48

4.1.2 Service interfaces ...49
4.1.2.1 Service-oriented vs. Object-oriented..49
4.1.2.2 Transport layer...49

4.2 Development architecture .. 50
4.2.1 Use Cases ..51
4.2.2 Layer 3: GUI components...52
4.2.3 Layer 2: Engineering components ..52

4.2.3.1 Coupling of components ..54
4.3 Layer 1: Basic Infrastructure Services ... 57

4.3.1 NeOn Reasoning Service ...58
4.3.2 Ontology Repository ...58

4.3.2.1 Core Functionality of repository ...58
4.3.2.2 Optional repository functionality...59
4.3.2.3 Realisations ...60
4.3.2.4 File based ..60
4.3.2.5 RDBMS based Repository...60
4.3.2.6 RDF-based ..61
4.3.2.7 XML-DBMS based Repository ...61
4.3.2.8 Datastore ...61

4.3.3 Ontology Registry ...62
4.3.3.1 OMV specialized ebXML registry...63

5. Language API .. 67
5.1 Role of the API ... 68
5.2 API.. 69

6. Example Configurations of NeOn Architecture ... 77
6.1 Information Integrator development environment as example configuration 77

6.1.1 Ontology generation ...77
6.1.2 Mappings / Networking ...78
6.1.3 Query development ..79
6.1.4 Deployment ..80
6.1.5 Querying data sources..80

6.2 Example Engineering components .. 81
6.2.1 Tightly coupled component Term Translator (UPM) ...81
6.2.2 Interactive component Ontology Navigation (OU) ..86
6.2.3 GATE as loosely coupled component (USheffield)...87

6.2.3.1 GATEService (aka GaS)..87
6.2.3.1.1 GATE mode ..88
6.2.3.1.2 Remote DataStore..88

6.2.3.2 Web-Service interface ...89
6.2.4 NeOn OWL Editor Prototype as example for NeOn Ontology meta model based generation (UKarl)90
6.2.5 FOAM (UKarl)...90
6.2.6 ORAKEL (UKarl)...90

7. Mapping to Requirements.. 93

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 6 of 101 NeOn Integrated Project EU-IST-027595

7.1 Features ... 93
7.1.1 Networked Ontologies ..93
7.1.2 Registry ..94
7.1.3 Repository ..94
7.1.4 Language-Model...94
7.1.5 Inference Machine ..94
7.1.6 Runtime support ...95
7.1.7 Integrated Development Environment (IDE) ...95
7.1.8 Ontology Discovery and Analysis ...95
7.1.9 Usability ..95
7.1.10 Context and customization ...95
7.1.11 Lifecycle support and Collaboration..96
7.1.12 Heterogeneity ...96
7.1.13 Modularity/Extensibility ...96
7.1.14 Integration with the "Non-Semantic World"...96
7.1.15 Unstructured Information Management ..96
7.1.16 Multilinguality ..96
7.1.17 Security...97
7.1.18 Web Integration ..97
7.1.19 Multiplatform ...97
7.1.20 Open Source ..97
7.1.21 Documented ...97

8. Trademarks.. 98
9. References... 99

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 7 of 101

List of figures

Figure 1: “Pillars” of the NeOn approach .. 11

Figure 2: Eclipse Core Components ... 14

Figure 3: The Plugin concept of Eclipse ... 15

Figure 4: Elements of the Eclipse IDE – Java Editor as example... 16

Figure 5: OSGI Architecture.. 17

Figure 6: SDO components .. 22

Figure 7: Architecture of the Protégé OWL... 35

Figure 8: Protégé 3.2 Beta.. 37

Figure 9: Altova SemanticWorks™ ... 38

Figure 10: TopBraid Composer... 39

Figure 11: SemTalk... 40

Figure 12: Architecture of IODT [LiMa2006]... 41

Figure 13: IODT graphical editor... 42

Figure 14: Swoop Architecture.. 42

Figure 15: SWOOP GUI.. 44

Figure 16: NeOn Toolkit Architecture.. 47

Figure 17: Core Components.. 50

Figure 18: Ontology Engineering Use-Cases (Examples) .. 51

Figure 19: Extension Use-Cases (Examples) ... 52

Figure 20: Plugin-Categorization: Model-Access.. 53

Figure 21: Schema Editing Plugins... 53

Figure 22: Selection Context... 54

Figure 23: Loosely coupled engineering components .. 56

Figure 24: Repository functionality.. 62

Figure 25: OMV Model.. 64

Figure 26: API Use-Cases .. 67

Figure 27: Relation between generated Metamodel implementation and Language API 68

Figure 28: Current Status of Infrastructure ... 69

Figure 29: Ontology Management Classes... 70

Figure 30: Handling of Requests .. 71

Figure 31: Handling of Queries ... 71

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 8 of 101 NeOn Integrated Project EU-IST-027595

Figure 32: Interfaces of the first-order logic API (part) .. 72

Figure 33: Interfaces of the first-order logic API (part) .. 73

Figure 34: Axioms Interfaces .. 74

Figure 35: OWL Elements Interfaces.. 75

Figure 36: F-Logic Interfaces .. 76

Figure 37: Application landscape.. 77

Figure 38: Generating initial ontologies .. 78

Figure 39: Integrating ontologies .. 79

Figure 40: API structure [Gantner2004] .. 82

Figure 41: Architecture.. 83

Figure 42: Watson on the level of NeOn distributed components/services..................................... 84

Figure 43: Watson on the level of NeOn toolkit GUIs ... 86

Figure 44: Overview of the ORAKEL system.. 91

Figure 45: Pyramid [Leffingwell2003].. 93

List of tables

Table 1: OWL Editors: general information .. 45

Table 2: OWL Editors: Interoperability ... 45

Table 3: OWL Editors: Reasoning.. 46

Table 4: OWL Editors: OWL-DL KR primitives... 46

Table 5: Steps, sources and techniques used for localizing in LabelTranslator 81

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 9 of 101

1. Introduction and Motivation

In the past years semantic technologies have become increasingly popular as one of the important
answers to the challenges of information management. A number of approaches and concrete
implementations as well as first industrial applications are one consequence of this trend. This
includes research prototypes as well as production-stable technology. There is infrastructure on
the backend-side (repositories, reasoners, servers) as well as on the front-end side (editors,
annotation technology) that can be regarded as stable and mature.

At the same time semantic technologies face major challenges. In the current phase of knowledge
system development ontologies are produced in larger numbers and exhibit greater complexity.
Applications require a high degree of flexibility and openness of implementations – on the data
model level as well as on the technical level. Popular tools available today for ontology
development are limited with respect to (i) lifecycle support, (ii) collaborative development of
semantic applications, (iii) web integration, and (iv) the cost-effective integration of heterogeneous
components in large applications.

All those issues are addressed within the NeOn project and the design of the reference
architecture. We look at existing semantic technologies as well as supporting technologies to
integrate established approaches that have proven to be efficient and flexible. At the same time we
take up new approaches regarding the ontology engineering process, ontology-based applications
and related technologies.

A main goal of the NeOn architecture is to establish an infrastructure rather than just an editor. We
take into account the network aspect of ontologies, which we address by the integration of registry-
technology, a well-established approach for networked resources.

This document mainly covers architectural aspects, the role of pre-existing components and the
language API. The seed of the NeOn toolkit implementation is described in project deliverable
D6.3.1. The implementation of a sample reasoning service is covered in project deliverable D6.5.1.

1.1 Functional Aspects of the NeOn Approach

Lifecycle Support and Collaboration
Ontologies evolve dynamically rather than in a waterfall-like manner. They are developed, changed
and reused. Ontologies are merged or modularized. However, current Ontology Engineering
environments lack the required “lifecycle awareness” to support this accordingly.

Heterogeneity
Users looking for an infrastructure covering different paradigms as well as different aspects of
semantic applications however still face a heterogeneous set of editors, runtime environments, etc.
Whereas standards on the language and interface level lay the ground for interoperability, the
technologies have not at all reached their potential as they could be much more than the sum of all
parts.

Integrating with the “Non-Semantic World”
The obvious integration with the “non-semantic world” is the transformation of all kinds of meta-
data like interface signatures, data base structures and UML models into ontologies. This must be
possible in both directions and can be extended for certain use cases also to instance data.

Less obvious is the operational integration of semantic technologies with other technologies. This
means that realisations of semantic technology should interact smoothly with typical components
of a certain infrastructure. Examples are SOA components, Security infrastructures or Eclipse

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 10 of 101 NeOn Integrated Project EU-IST-027595

plugins. This often means that at least at the interface level not all data or its descriptions are
realized with ontologies.

Language-Model
NeOn incorporates the notion of networked ontologies. NeOn also has the goal to be compliant
with common semantic web paradigms and standards.

Rule Support
For some time now rules are considered an important modelling paradigm and representation
form. Standardization efforts and the discussion about the right approach are ongoing and show
first results [Ginsberg2006]. Implementations supporting rules (in line with existing languages or
proposals for extensions) are available. However, we believe rule-capabilities should not just be
“attached” to editing tools. Rule-support should be offered in an integrated way, including
debugging and profiling capabilities.

1.2 Methodological Approach
For the development of the NeOn architecture two main sources have been used. First the NeOn
architecture requirements and second an analysis of relevant architectural concepts in other
engineering platforms. Based on these different variants for all architectural issues have been
discussed within participants of the infrastructure work package. This document contains the
discussion of the most important issues. This resulted in a consistent NeOn architecture. For
verification the NeOn architecture has been applied to different configurations.

Software Architectures
This document describes an architecture for semantic web technology. While “architecture”
frequently appears in product- and project descriptions, it’s often used in different ways. The
ANSI/IEE definition of “architecture” is given below:

“Architecture is defined by the recommended practice as the fundamental
organization of a system, embodied in its components, their relationships to
each other and the environment, and the principles governing its design and
evolution." [IEEE2000]

According to this definition an architecture is a rather high-level concept. It does not directly imply
the usage of a certain platform (e.g. programming language, system) or framework (library, etc.).
Therefore architecture is not to be mistaken with application design. However, the definition given
above (as well as other definitions of the term) still gives much room for interpretations.

The generic nature of the term architecture and the divergence regarding common interpretations
makes it necessary to introduce our notion of architecture in the NeOn context.

On one hand we provide the general concepts of the NeOn architecture in line with the definition
given above. This is reflected by a layered approach and generic components. On the other hand
we take into account concrete ontology engineering functionality.

1.3 Overall structure of the NeOn platform
We describe here the general structure of the NeOn platform.

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 11 of 101

Runtime

• Ontology servers

• Runtime interfaces

• Runtime access to
resources (life
integration, wrappers)

• Runtime security

Ontology Engineering

• Lifecycle support

• Plugin/Extension
Model

• Editing support

• Views

• Automatization

• Collaboration
support

• […]

Plugin development
support

• Documentation
support

• Exploit Eclipse
platform

• Example: Wizard for
Export-Plugin
development

extend deploy

Focus

Figure 1: “Pillars” of the NeOn approach
As shown in figure 1, NeOn covers three different levels of a semantic web infrastructure. One is
the ontology engineering support comparable to existing ontology editors like Protégé or Swoop.
This is clearly a focus of the NeOn activities. As mentioned above we go beyond the “traditional”
notion of an editor as we integrate network- and lifecycle aspects.

Applications based on semantic technologies need runtime support. As illustrated by the right
column, this is supported by the NeOn approach through a basic runtime infrastructure as well as
deployment capabilities.

The infrastructure established by NeOn is meant to be open and extensible. Since NeOn builds on
a powerful and at the same time complex platform, development support is a crucial aspect. NeOn
will provide core ontology engineering functionality like editing, graphical visualisation and
collaboration support. It will also have powerful extensibility mechanisms to add specific
components to the toolkit.

1.4 Starting Point and Goal
The NeOn project starts with a number of existing technologies and tools. Those can be compared
to existing counterparts e.g. existing ontology engineering environments, reasoners, information
extraction tools, etc. The NeOn reference architecture and the NeOn toolkit as an implementation
will (i) extend the capabilities of the single tools or components (e.g. provide lifecycle support for
ontology engineering) and (ii) provide an infrastructure that goes beyond current environments.

The project portfolio includes (but is not limited to):

 A set of ontology engineering tools available as standalone tools or components (see
section 5.2).

 An ontology engineering environment with a focus on rules (OntoStudio, see section
2.3.1.);

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 12 of 101 NeOn Integrated Project EU-IST-027595

 Two mature and fast reasoners/ontology servers (see section 2.3.);

 Registry- as well as repository-technology (CentraSite, Oyster and Watson see section
3.3.2. and 5.2.2.);

 An extensive platform for natural language processing applications (GATE, see section
2.1.3.1.);

All technologies will be enhanced by themselves, e.g. by establishing OWL support for OntoStudio,
developing a ebXML-based interface for Oyster and Centrasite and creating a hybrid reasoning
platform. However, the main achievement will be the evolution of an infrastructure that

 provides life-cycle support through the coupling of ontology engineering technology and
backend infrastructure like repositories and registries;

 is based on a common metamodel and API for both OWL and (frame-based) rules;

 provides multilinguality;

 offers a wide range of engineering functionalities on different levels (graphical, textual,
form-based);

 covers ontology engineering, runtime systems and the development support for
extensions.

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 13 of 101

2. Definitions, Acronyms and Abbreviations

F-logic Frame Logic
http://portal.acm.org/citation.cfm?id=210335

FOL First Order Logic

OSGI Open Service Gateway Interface

An OSGi Service Platform provides a standardized, component-oriented
computing environment for cooperating networked services.

http://www.osgi.org/

OWL Web Ontology Language Recommendation by the W3C
http://www.w3.org/TR/owl-features/

OWL-
DLP

Web Ontology Language - Description Logic Programs, a.k. OWL Easy, Subset
of OWL, containing all OWL Syntax could be explained in Horn Logic
http://logic.aifb.uni-karlsruhe.de/

RDF(S) Resource Description Framework Schema
http://www.w3.org/RDF/ and http://www.w3.org/TR/rdf-schema/

RIF Rule Interchange Format (W3C working group)

http://www.w3.org/2005/rules/

SDO Service Data Objects

http://www.osoa.org/display/Main/Service+Data+Objects+Home

SPARQL Query Language for RDF
http://www.w3.org/TR/rdf-sparql-query/

SWRL Semantic Web Rule Language (W3C submission)
http://www.w3.org/Submission/SWRL/

WebDAV HTTP Extensions for Distributed Authoring

http://www.ietf.org/rfc/rfc2518.txt

2006–2007 © Copyright lies with the respective authors and their institutions.

http://portal.acm.org/citation.cfm?id=210335
http://www.w3.org/TR/owl-features/
http://logic.aifb.uni-karlsruhe.de/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-schema/

Page 14 of 101 NeOn Integrated Project EU-IST-027595

3. State of the Art

3.1 Supporting Technologies

3.1.1 Eclipse as IDE Technology

A complete discussion of the Eclipse platform as well as an in-depth comparison to comparable
frameworks (like Netbeans) is out of the scope of this document and covered by a number of
books and online articles [Clayberg2006]. We provide a basic introduction and highlight the
aspects that are especially relevant for the design of the NeOn reference architecture and the
NeOn toolkit.

As stated on the website of the eclipse foundation (www.eclipse.org, January 2007) eclipse is

“an open source community whose projects are focused on building an open
development platform comprised of extensible frameworks, tools and runtimes
for building, deploying and managing software across the lifecycle.”

 A major outcome of the Eclipse community is the eclipse platform and numerous extensions. The
eclipse platform serves as a generic Integrated Development Environment (IDE). The Eclipse
platform is highly modular. Very basic aspects are covered by the platform itself, such as the
management of modularized applications (plugins), a workbench model and the base for graphical
components.

Despite being open and extensible the Eclipse IDE predefines the design of applications
(specialized IDEs) that use it. However, since Eclipse version 3 applications that do not follow and
IDE paradigm (or one that is different from the Eclipse IDE) can use the non-IDE part of the Eclipse
core, named Rich Client Platform.

The Eclipse IDE specifies the structure of the main menus and windows.

Eclipse IDEEclipse IDE

Generic WorkbenchGeneric Workbench

JFaceJFace

SWTSWT OSGIOSGI

RuntimeRuntime

Figure 2: Eclipse Core Components

Figure 2 shows the basic components of the Eclipse platform. This includes libraries for graphical
components (SWT/JFace), the platform runtime and a generic workbench. The platform runtime is
based on an implementation of the OSGI specification, which we’ll discuss in section 3.1.1.3.

http://www.eclipse.org/

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 15 of 101

3.1.1.1 The Plugin Concept

RuntimeRuntime

PluginPlugin

PluginPlugin

PluginPlugin

= extension point

= extension

Figure 3: The Plugin concept of Eclipse

Figure 3 shows the plugin concept of Eclipse. Plugins are not limited to certain aspects of the IDE
but cover all kinds of functionalities. Eclipse has become popular as a Java-development
environment. However, the Java-development support is not provided by the Eclipse platform but
by a set of plugins. Even functionalities users would consider to be basic (such as the abstraction
and management of resources like files or a help system) are realized through plugins. This
stresses the modular character of Eclipse, which follows the philosophy that “everything is a
plugin”.

A plugin itself can be extended by other plugins in an organized manner. As shown in figure 3
plugins define extension points that specify the functionality which can be implemented to extend
the plugin in a certain way. An extending plugin implements a predefined interface and registers
itself via a simple XML-file. In the XML file the kind of extension as well as additional properties
(such as menu entries) are declared.

This concept is supported through an extension registry and the (possible) dynamic loading of
extending classes. The registry stores the metadata of implementations fitting into a certain
extension point. At a certain point the extension point provider triggers the registry to load the
extensions that have been registered. This can be done in very dynamic manner, loading the
implanting classes just when they are about to be used.

In addition to the extension-mechanism plugins can be connected directly on the API-level (sharing
the code). The access to plugin-code can be controlled beyond the level of the Java-language.
Packages can be made visible to extending plugins. The base for this is the OSGI implementation
of Eclipse.

The Plugin-concept of Eclipse supports flexible architectures based on a common paradigm for the
user interface. The existing plugins cover a wide range of functionalities to support typical
development tasks and organize resources.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 16 of 101 NeOn Integrated Project EU-IST-027595

3.1.1.2 IDE Elements: Views, Perspectives, Editors

Tool Bar

Perspective
and
Fast View
Bar

Resource
Navigator
View

Stacked
Views

Properties
View

Tasks
View

Outline
View

Bookmarks
View

Menu Bar

Editor
Status
area

Text
EditorTool Bar

Perspective
and
Fast View
Bar

Resource
Navigator
View

Stacked
Views

Properties
View

Tasks
View

Outline
View

Bookmarks
View

Menu Bar

Editor
Status
area

Text
Editor

Figure 4: Elements of the Eclipse IDE – Java Editor as example

The main elements of the Eclipse IDE are shown in figure 4 above, using the Java Editor (as part
of the JDT plugins) as an example. The basic structure is predefined in a typical IDE design. A
main menu bar and a tool bar are the top-level entry points for tasks on the project- or workbench-
level, such as the import of resources (files, projects, …).

Views and editors are elements users mainly interact with when performing design- or
development tasks. Editors include (but are not limited to) textual editors, such as in the example in
figure 4. They implement the open-edit-save-lifecycle for a resource. Views are containers for GUI
components such as tree controls and tables. They might just display non-editable information
such as the metadata of a file or provide editing or managing functionalities. Views are
standardized components. They can be extended in certain ways, e.g. by additional menu items.

A perspective is the definition of the arrangement of views and editors. This includes default
settings regarding the size and the position of views as well as restrictions. Perspectives can be
adapted by the user. They are often used in a certain context. The same resource might be
accessed in different contexts (like a text-file, a repository or a certain element of a datamodel,
such as a rule). The context could for example be “editing” or “debugging” (of rules, models,
programs, …). Certain editors or views might be useful in both contexts, while others are only used
in one specific context. The concept of perspectives helps to organize this in a very flexible
manner.

A view for problems or “To-dos” might be present in different contexts. A view showing temporary
values of variables (in a rule) as the result of a debug-run would only make sense in the context of
debugging.

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 17 of 101

3.1.1.3 OSGI
OSGI (Open Service Gateway Initiative)1 was originally developed for embedded systems. OSGI
specifies an open, java-based platform for services [OSGI2003]. It goes back to the OSGI alliance,
which was founded in 1999. The OSGI alliance provides the following definition:

The OSGi™ specifications define a standardized, component oriented,
computing environment for networked services that is the foundation of an
enhanced service oriented architecture.

 [OSGI2005]

OSGI defines a lifecycle model and a registry for services. Services are specified by Java™-
interfaces. It supports server-based administration and provides a number of standard services.
Those cover administrative tasks, security, protocols and I/O (and more).

Operating System

Java Runtime

OSGI Framework

Fr
am

ew
or

k
Se

rv
ic

es
[b

as
ic

 b
un

dl
e

m
an

ag
em

en
t]

S
ys

te
m

 S
er

vi
ce

s
[lo

gg
in

g,
 u

se
r m

gt
.,

I/O
,

ev
en

t m
gt

.,
…

]

P
ro

to
co

l S
er

vi
ce

s
[h

ttp
, P

nP
, m

ob
ile

 d
ev

ic
e

m
gt

.]

M
is

c.
 S

er
vi

ce
s

[p
ar

si
ng

, …
]

Fr
am

ew
or

k
Se

rv
ic

es
[b

as
ic

 b
un

dl
e

m
an

ag
em

en
t]

S
ys

te
m

 S
er

vi
ce

s
[lo

gg
in

g,
 u

se
r m

gt
.,

I/O
,

ev
en

t m
gt

.,
…

]

P
ro

to
co

l S
er

vi
ce

s
[h

ttp
, P

nP
, m

ob
ile

 d
ev

ic
e

m
gt

.]

M
is

c.
 S

er
vi

ce
s

[p
ar

si
ng

, …
]

Modules

se
cu

rit
y

Lifecycle Registry

Bundle 2 Bundle nBundle 1

Applications and Bundles

Figure 5: OSGI Architecture

Figure 5 shows the OSGI architecture. The basic building blocks are the OSGI framework and a
set of standard services. The framework itself provides modularization of applications or bundles2
(using class-loading policies), lifecycle management (e.g. starting and stopping applications) and a
service registry, that allows the dynamic interaction of services (sharing of objects). Security
features are provided orthogonal to those functions (“ubiquitous security”). It uses security

1 Not to be mistaken for OGSI, the Open Grid Services Infrastructure
2 Usually modularized applications are referred to as “bundles” in the OSGI context

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 18 of 101 NeOn Integrated Project EU-IST-027595

mechanisms of the Java platform (VM security features, language features) and adds security
mechanisms for bundles on top of this.

Being designed for embedded devices, OSGI is designed for remote management. OSGI itself
does not enforce a protocol. It allows the encapsulation of protocols by API calls, and provides this
API through the management system.

OSGI supports the sharing of code as well as services. Code sharing is useful if different
(dynamically managed) applications use the same library. OSGI provides means of dealing with
dependencies on the same library but in a different version.
Services allow to share objects, which are specified by interfaces. This is supported by a registry,
which enables bundles to register objects with the registry, search the Service Registry for
matching objects and receive notifications when services become registered or unregistered.

The dynamic support for the modularization of applications is one the characteristics that has made
OSGI attractive outside the context of embedded devices. OSGI implementations (see below)
cover a range of applications proving this fact.

OSGI Implementations

There are a number of OSGI implementations, including (but not limited to):

 Knopferfish OSGI (see http://www.knopflerfish.org/)

 Apache Felix (see http://cwiki.apache.org/FELIX/index.html)

 Eclipse Equinox (see http://eclipse.org/equinox/)

The last one has gained some popularity due to the fact that it’s part of the eclipse platform since
release 3.2. It supports OSGI R4, including declarative services. The latter are a certain form of
dependency injection, which allows the configuration of dependencies and the declaration of
services based on XML-files. This includes an “intelligent” class loading strategy, resolving
dependencies dynamically (“lazy loading”). However, eclipse 3.2 does not yet support declarative
services in such a way that tool support is available in a similar way as for the “traditional” eclipse
extension mechanism.

Relation to the Eclipse Plugin Concept
There is a strong relation between the Eclipse Plugin concept and the Eclipse OSGI
implementation. This is however not a 1:1 mapping. The OSGI runtime wasn’t the base for Eclipse
bundles until version 3.0 was released. Since then the plugin-support is based on the OSGI
implementation. However, there is a functional overlap between the principle capabilities of OSGI
and the realization of the plugin concept on top of the OSGI implementation. The Eclipse plugin
concept does currently not exploit the service-based capabilities of OSGI. The latter includes so
called Declarative Services (since OSGI R4). Declarative services support the management of
service dependencies in a dynamic environment. The extension mechanism of Eclipse was
originally developed as a static concept. The dynamic management of extensions (adding and
removing them at runtime) was introduced on top of the existing framework introducing some
additional complexity. OSGI-services have a dynamic character per se. However, the management
of service dependencies can imply difficulties for applications using those services. This is the case
if the registration process is not centralized but bundles containing services are responsible for the
registration. Declarative services use a special component that handles the registration on behalf
of them. That component provides proxy objects to service consumers and loads the
corresponding bundle when the service is actually invoked.

Despite the fact that the Eclipse OSGI implementation supports declarative services there is
currently no similar tool support for extensions. And for desktop applications running on a single

http://www.knopflerfish.org/
http://cwiki.apache.org/FELIX/index.html
http://eclipse.org/equinox/

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 19 of 101

machine (the common IDE scenario) extensions have proven to be sufficient. However, for server-
side applications the concept of declarative services has some significant advantages.

OSGI for Server-Side Applications
Recently there have been several approaches to combine OSGI implementations with server-
based technology. This is seen as a possibility to combine the advantages of OSGI
(modularization, dynamic management of modules, versioning of modules) with the capabilities of
application server technology. This can be achieved by either embedding OSGI on an application
server (leaving start-up control to that server) or embedding web-server technology in the OSGI
runtime. The latter option just means to create a specific web-server bundle and integrate it.

3.1.1.4 Eclipse as a Base for IDE Tools

As we have seen in the previous sections, Eclipse offers a complete framework for IDE
applications. Some main advantages and disadvantages regarding Eclipse as the base for IDE
applications are summarized below:

☺ Eclipse provides an extensible and modular platform.

☺ Eclipse provides a common UI paradigm well-known to a large community.

☺ Eclipse provides a large set of plugins covering a wide range of functionalities including
frameworks for editors.

☺ There are Eclipse plugins providing extensive capabilities for meta-model (or model-
driven) approaches.

☺ Eclipse runs on different platforms.

☺ Eclipse is based on an OSGI implementation that can operate in “headless mode”
(without GUI) offering options for modularized, dynamic and remotely managed server
applications.

☺ Eclipse offers a system-specific Look and Feel.

☹ The Eclipse platform is rather complex.

☹ The default Update-Manager of the IDE is not as comfortable as it could be (commercial
alternatives are available).

☹ SWT/JFace is outside of the Java-Specification.

Plugin concept and functionalities of existing plugins provide a very efficient base for IDE
applications. However the complexity of the platform can be a challenge for users as well as
developers. This is addressed by the Eclipse community and plugin-providers through an extensive
online help, the concept of “cheat sheets” (interactive tutorials) and numerous articles, tutorials,
etc.

For Eclipse-based applications targeting a community of users and developers offering this kind of
support is an important aspect. Later in this document we describe how this is addressed within the
NeOn toolkit by (i) a categorization of plugins that is defined in one abstraction layer above the
Eclipse plugin concept and (ii) the creation of supporting tools. Another important aspect when
using not only the Eclipse platform but also existing plugins are the underlying paradigms and how
they relate to an IDE for semantic technologies.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 20 of 101 NeOn Integrated Project EU-IST-027595

Paradigms
The overall paradigm of Eclipse is that of an Integrated Development Environment (IDE). While
there is no precise definition for an IDE and the attributes associated with that term, it’s usually
associated with programming languages and the concepts that are common to the most wide-
spread IDEs. However, those are designed for common programming languages such as C++ and
Java. Some of the principles regarding the development process supported by an IDE are rather
generic while others can’t be directly applied to semantic technologies. Here are some examples:

✓ A development environment needs to provide editing capabilities for defined formats. This
typically includes textual editors (e.g. for Java source files) but might also include graphical
editors (e.g. in form of UML support).

✓ A development environment needs to provide a framework that has a notion of languages
with a defined syntax (influencing the principles of editors, such as error handling).

✓ A development environment has to offer a concept to organize the visualization and the
manipulation of a certain datamodel (e.g. by form-based components, wizards, etc.).

✓ A development environment needs different perspectives on resources.

✗ In contrast to the semantic of ontology languages most well-known programming languages
are procedural languages. On a more fine-grained level this influences the concepts of an
IDE. The debugging concept is an example: Eclipse provides a framework for debuggers in
form of a set of plugins. It is a language independent framework supporting the
development of specific debuggers. However, certain characteristics such as the intended
workflow are related to a procedural paradigm. Rules in the context of semantic
technologies on the other hand have a declarative semantics. This can imply problems
regarding the use of the provided framework.

✗ Most common programming languages are consequently (text-)file-based. This means that
the development support is largely based on file-handling techniques and typically assumes
a permanent synchronization between the text-file and an in-memory representation of the
datamodel. The “backend” of the IDE usually is a file-repository and many of the supporting
technologies (team support, etc.) assume the existence of files that do not extend beyond a
certain size. Ontology languages are not as tightly bound to a file-paradigma. Current
editors like Protégé or OntoStudio have an internal repository that does not need files as
“backend”.

3.1.1.5 Relevance for the NeOn Reference Architecture and the NeOn Toolkit
The aspects listed in the previous section are just some examples showing that the choice of a
platform like Eclipse can reduce the amount of work to establish a basic IDE infrastructure
significantly and offer additional possibilities through frameworks for certain tasks.

The last two aspects show that (i) complexity has to be targeted explicitly and (ii) concepts of the
platform and plugins need to be checked against their applicability in the NeOn context. However,
despite this overhead we believe that the choice of Eclipse as a base platform, which is one of the
NeOn requirements, is a strategic decision.

There are a number of eclipse-based frameworks that are candidates to support the NeOn
infrastructure. This includes:

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 21 of 101

 Eclipse Equinox (www.eclipse.org/equinox/)

Equinox is an implementation of the OSGI R4 core framework.

 Eclipse Communication Framework (ECF – see www.eclipse.org/ecf)

ECF is a platform for message-oriented systems offering collaboration features.

 Corona (www.eclipse.org/corona)

Corona is a framework for service-oriented eclipse-based environments. It supports
collaboration features as well as webservice-based plugins.

3.1.2 Other supporting technologies

3.1.2.1 SOA infrastructure

Service oriented Architectures (SOA) are about to become more widespread and accepted. So
let's start with a proper definition of this concept:

“A service-oriented architecture can be defined as a way of designing and
implementing enterprise applications that deals with the intercommunication of
loosely coupled, coarse grained (business level), reusable artifacts (services).
Determining how to invoke these services should be through a platform
independent service interface.” [Wil04]

From a common point of software development this definition is self-evident. However it isn't
clearly stated how “reusable artifacts” or services should look like in detail. According to common
knowledge services should be according to possibility independent from each other and provide
additional specialised functionality [Bie05]. Nothing new so far. Therefore one of the important
characteristics of services is their technology independence nature, the key for interoperability
between different implementations on heterogeneous platforms.

Along with the architectural style SOA there are often Web Services (WS) mentioned and
sometimes they are even equated. However SOA is an abstract conceptualisation and Web
Services are just one possible grounding using a concrete technology, which in turn imposes
technical constraints. Namely Web services are based on Internet protocols and mostly their
exchanged messages are in XML. Therefore Web services use a SOA communication style while
depending on concrete technology.

3.1.2.2 Service Data Objects (SDO)
SDO covers the data aspects within applications. It aims at a simplified, unified and consistent
handling of such data independent of their source and format. In the end application programmers
shall uniformly access and modify data from distinct and heterogeneous data sources.

SDO supports different kind of data sources like RDBMS, XML and web services. It decouples the
data source and the application by offering access to the data objects disconnected from the
connection of the data source. Manipulations on the disconnected data objects are however also
supported. All gathered manipulations are propagated to the data source. Details of the changes
are available in the form of change summaries.

It defines both a dynamic and static API to access and manipulate a graph of data objects. The
static API is generated for a specific schema of data like XML schema or relational schema. Both

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 22 of 101 NeOn Integrated Project EU-IST-027595

APIs allows to traverse the graph of data objects. Additionally simple queries in the form of XPath
expression are possible for more complex traversal of objects.

The dynamic API has a rather complete support for accessing the meta model, which goes beyond
Java reflection.

Figure 6: SDO components

Due to its disconnected mode and complete support of XML it is especially suited to access web
services in a very comfortable way in Java and other programming languages. It is especially
possible to handle wild card XML content with elements and attributes not specified in the XML
schema.

The realisation is based on a Data Mediator Service, which is responsible for synchronizing the
disconnected DataGraph of DataObjects used by the client with the data in the external data
source.

3.1.3 Technologies for language processing

This section looks at architectures relevant to the networked collaborative annotation task,
specifically:

 GATE, a General Architecture for Text Engineering

 UIMA, an Unstructured Information Management Architecture

 ISO TC37/SC4 and the LIRICS standardisation project

Of these GATE is most relevant to NeOn and in section 5 we will define a GATE-based distributed
collaborative annotation service for the project. GATE is tracking the ISO standards and is a
reference implementation for several of their components, and GATE is interoperable with UIMA.
Therefore we choose GATE as the foundation of NeOn networked semantic metadata services.

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 23 of 101

3.1.3.1 GATE
GATE is one of the oldest and most widely used architectures for language engineering. This
section sketches GATE and recent developments in a semantic technology context.

GATE, a General Architecture for Text Engineering, was first released in 1996, then completely re-
designed, re-written, and re-released in 2002. The system is now one of the most widely-used
systems of its type and is a relatively comprehensive infrastructure for language processing
software development. The new UIMA architecture from IBM/Apache (see next section) has taken
inspiration from GATE and IBM have paid USFD to develop an interoperability layer between the
two systems. Key features of GATE are:

 Component-based development reduces the systems integration overhead in
collaborative research.

 Open source, documented and supported software enhances the repeatability of
experiments.

 Automatic performance measurement of Language Engineering (LE) components
promotes quantitative comparative evaluation.

 Distinction between low-level tasks such as data storage, data visualisation, discovery
and loading of components and the high-level language processing tasks.

 Clean separation between data structures and algorithms that process human language.

 Consistent use of standard mechanisms for components to communicate data about
language, and use of open standards such as Unicode and XML.

 Insulation from idiosyncratic data formats (GATE performs automatic format conversion
and enables uniform access to linguistic data).

 Provision of a baseline set of LE components that can be extended and/or replaced by
users as required.

GATE is an architecture, a framework and a development environment for LE (Language
Engineering) applications. As an architecture, it defines the organisation of an LE system and the
assignment of responsibilities to different components. As a framework, it provides reusable
implementations for LE components and a set of prefabricated software building blocks that
language engineers can use, extend and customise for their specific needs. As a development
environment, it helps its users minimise the time they spend building new LE systems or modifying
existing ones, by aiding overall development and providing a debugging mechanism for new
modules. Because GATE has a component-based model, this allows for easy coupling and
decoupling of the processors, thereby facilitating comparison of alternative configurations of the
system or different implementations of the same module (e.g., different parsers). The availability of
tools for easy visualisation of data at each point during the development process aids immediate
interpretation of the results.

Applications developed within GATE can be deployed outside its Graphical User Interface (GUI),
using programmatic access via the GATE Application Programming Interface (API). In addition, the
reusable modules, the document and annotation model, and the visualisation components can all
be used independently of the development environment.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 24 of 101 NeOn Integrated Project EU-IST-027595

GATE is engineered to a high standard and supports efficient and robust text processing. It is
tested extensively, including regression testing, and frequent performance optimization. GATE has
proved capable of processing gigabytes of text and thousands of documents. The system is
supported by extensive documentation, online tutorials and an established mailing list.

In the rest of this section, we provide an overview of the GATE architecture, discuss the annotation
graph based data representation, and introduce important core elements, such as multilingual
support, distributed resources, execution strategies, and the JAPE finite-state processing engine.

An Overview of the architecture

The GATE architecture distinguishes between data, algorithms, and their visualisation. GATE
components are one of three types (each implemented as a special type of Java Bean):

 Language Resources (LRs) represent entities such as lexicons (e.g. WordNet), corpora
or ontologies.

 Processing Resources (PRs) represent entities that are primarily algorithmic, such as
parsers, generators or n-gram modellers.

 Visual Resources (VRs) represent visualisation and editing components that participate
in GUIs.

These resources can be local to the user's machine or remote (available over the Internet), and all
can be extended by users without modification to GATE itself. One of the main advantages of
separating the algorithms from the data they require is that the two can be developed
independently by language engineers with different types of expertise, e.g. programming and
linguistics. Similarly, separating data from its visualisation allows users to develop alternative visual
resources, while still using a language resource provided by GATE.

Collectively, all resources are known as CREOLE (a Collection of REusable Objects for Language
Engineering), and are described in XML configuration files, which declare their name,
implementing class, parameters, icons, etc. This component metadata is used by the framework to
discover and load available resources. GATE offers comprehensive multilingual support using
Unicode as its default text encoding. It also provides a means of entering text in various languages,
using virtual keyboards where the language is not supported by the underlying operating platform
(McEnery2000; Tablan2002).

When an application is developed within GATE's graphical environment, the user chooses which
processing resources go into it (e.g. tokeniser, POS tagger), in what order they will be executed,
and on which data (e.g. document or corpus). The application results can be viewed in the
document viewer/editor. Applications can be saved, reloaded, and embedded in other systems.

Data Representation and Handling
GATE supports a variety of formats including plain text, HTML, XML, RTF, and SGML in order to
enable the processing of a wide range of documents and improve interoperability with other LE
infrastructures. In all cases, when a document is opened in GATE, the format is analysed and
converted into a single unified model of annotation. The annotation format is a modified form of the
TIPSTER format [Grishman97], which has been made largely compatible with the Atlas format
[Bird200a], and is isomorphic with stand-off markup as widely adopted by the SGML/XML
community (Ide2000). Interoperability with UIMA is managed via translation between the
annotation graphs in GATE and the Common Analysis Structure in UIMA; these two structures are
very similar (the main difference being the mandatory type system present in UIMA): see next
section.

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 25 of 101

The annotations associated with each document are a structure central to GATE, because they
encode the data read and produced by all processing modules, as well as the formatting
information originally present in the documents.

Annotations are organised in annotation graphs, where the vertices are anchored in the document
content. Annotations are the arcs in the graph; they have a start node and an end node, an
identifier, a type and a set of features. Nodes have pointers into the content, e.g. character offsets
for text, milliseconds for audio-visual content. There can be more than one annotation graph
associated with each document. The support for separate annotation graphs (called families in
IBM's TEXTRACT architecture, the predecessor of UIMA (Neff2004)) is needed to allow separation
of information into different categories.

GATE has a single model for encoding information that describes documents, collections of
documents (corpora), and annotations on documents, based on attribute name/attribute value
pairs, called features. At present GATE uses features only as a representation formalism and does
not provide operations like unification.

In order to facilitate the interpretation and validation of features associated with each annotation
type, GATE provides annotation schemas, which are encoded in the XML Schema language
supported by W3C, and define all attributes and the type of their value (e.g., orgType for
Organization annotations). If the value needs to be one of a predefined set of values (e.g., a part-
of-speech tagset), then this set of values is also given in the annotation schema. GATE's
annotation schemas were inspired by TIPSTER's annotation type declarations (Grishman 97),
however GATE also uses them to facilitate and validate users' input during manual annotation.
GATE schemas are optional, unlike UIMA's type system which is mandatory (see below).

JAPE: Finite State Processing Over Annotations
GATE has facilities for finite state processing over annotations based on regular expressions.
JAPE, a Java Annotation Patterns Engine, is similar to the finite state pattern matching transducer
part of the TEXTRACT architecture (Neff et al.; unfortunately this software is not part of UIMA). A
JAPE grammar consists of a set of phases, each of which consists of a set of pattern/action rules.
The phases run sequentially and constitute a cascade of finite state transducers over annotations.
This cascade is similar to the finite state cascade used for parsing by (Abney1996) in that rules in
the current phase can refer to annotations created in earlier phases and there is no recursion.

The left-hand-side (LHS) of the rules consist of an annotation pattern (or a macro describing such
a pattern), that may contain Kleene regular expression operators (e.g. *, ?, +). The right-hand-side
(RHS) consists of annotation manipulation statements (in JAPE or Java). Annotations matched on
the LHS of a rule may be referred to on the RHS by means of labels that are attached to pattern
elements. At the beginning of each grammar, several options can be set:

 Control: this defines the method of rule matching: brill, appelt, or first. The brill style
means that when more than one rule matches the same region of the document, they are
all fired. With the appelt style, only one rule can be fired for the same region of text (the
choice depends on the length of the matching region and rule priority). With the first style,
a rule fires for the first match that is found and no other matching attempts are made for
that region of the document.

 Input annotation types: restrict the input to the grammars in order to improve execution
speed and control the range for matching in the document. The example below shows a
JAPE rule with pattern and corresponding action. (On the LHS, each such pattern is
enclosed in a set of round brackets and has a unique label; on the RHS, each label is
associated with an action.) In this example, the Lookup annotation is labelled jobtitle and

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 26 of 101 NeOn Integrated Project EU-IST-027595

is given the new annotation JobTitle; the TempPerson annotation is labelled person and
is given the new annotation Person.

Rule: PersonJobTitle
 Priority: 20
(

):jobtitle
(

):person
-->
 :jobtitle.JobTitle =,
 :person.Person =

A large proportion of the processing resources bundled with GATE use JAPE.

Execution strategies

Execution strategies in GATE determine how the algorithms (i.e. processing resources) are
combined to form a complete application and how that application is executed on the provided
input (i.e. language resources such as corpora). These execution strategies are implemented as
controllers and the user chooses the one most suitable for their application.

The two main execution strategies commonly found in LE applications are pipeline (i.e. sequential)
and parallel. For example, GATE's pipeline controller executes the PRs in the specified order and
with the given parameters (e.g. a document). A variation of this controller is the corpus pipeline,
which executes the PRs sequentially over a given corpus, taking care of loading the documents
from the disk (if necessary), processing each of them, and saving the results.

At present GATE does not provide a controller which supports parallel execution of PRs, although
it is planned for future work. However, it does support execution of applications on different
machines over data shared on the server, which enables simultaneous processing of documents.

Other types of execution strategies are conditional (equivalent to an if statement in programming
languages) and iterative (equivalent to loop statements). The conditional controller was introduced
in order to allow flexible processing of heterogeneous data (e.g., a corpus consisting of documents
from several domains, styles, and genres). The controller allows the user to specify for each PR
the conditions when it can be executed: always; never; or conditionally - only if a particular feature
with a given value is present on the document.

For example, a categorisation module that always fires can assign different genres to each
document as features (e.g., sport, political, business). Then the application can contain PRs
trained specifically for the given type of documents and at execution time, based on the document
type, the controller will determine which PRs are executed. For example, a text about sport would
use a different named entity recogniser from the one about politics (England is a team in the first
case and a location in the second) or a text in all uppercase would use a different POS tagger
(amongst other things) from a text in mixed case. However, the application will list all alternative
PRs (e.g. two POS taggers and 3 entity recognisers) but only those appropriate for the current
document will be executed on it, whereas a different set of PRs might be executed on the next one.

3.1.3.2 UIMA
UIMA, the Unstructured Information Management Architecture, provides a subset of GATE's
features and also implements Enterprise Applications Integration routes for middleware technology

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 27 of 101

such as WebSphere. This section introduces UIMA and describes the GATE/UIMA interoperation
layer. (It is adapted from documents of the OASIS/Open UIMA standardisation committee, of which
the University of Sheffield is a founder member.)

UIMA is a platform for language processing developed by IBM. It has many similarities to the
GATE architecture – it represents documents as text plus annotations, and allows users to define
pipelines of analysis engines that manipulate the document (or Common Analysis Structure in
UIMA terminology) in much the same way as processing resources do in GATE. IBM has donated
an implementation of the UIMA architecture called the UIMA SDK to the Apache Software
Foundation. This provides support for building analysis components in Java and C++ and running
them either locally on one machine, or deploying them as services that can be accessed remotely.
The SDK is available for download from Apache.

UIMA builds on the work of prior IBM researchers and projects dedicated to advancing the state of
the art in frameworks for text and multimodal analytics including TAF, TALENT (TAL1) and
WebFountain (WF1, WF2). It has been inspired and influenced by other projects outside of IBM
including TIPSTER (TIP1), Mallet (MAL1), GATE (GATE1, GATE2), OpenNLP (ONLP1), Atlas
(Laprun1) and Catalyst (CAT1).

UIMA formally began at IBM in 2001 as a project dedicated to enabling interoperability of analytics
across research projects underway in different geographies across the globe by scores of
researchers and to facilitate their integration and deployment into a variety of IBM Information
Management products. The technical goals were to provide a common software framework that
would facilitate the creation, discovery, integration and deployment of component text and
multimodal analytics.

The immediate problem motivating the project was that numerous efforts throughout IBM Research
and IBM Software Group were focused on creating independent unstructured information analytics
based on different technologies, interfaces, implementations and data representations. These
independently developed analytics included for example: tokenization, language identification,
document structure parsing, grammatical parsing, named-entity detection, chemical name and
relationship detection, summarization, document classification, topic detection and tracking,
speaker identification, speech transcription, natural language translation, image analysis, video
object detection and tracking etc. Complete solutions or end-user applications often required a
combination of numerous highly specialized capabilities. The technical hurdles involved in reusing,
combining and deploying these independently developed analytics across research projects and
product platforms were often prohibitive. The results were inefficiencies and/or sub-optimal analytic
performance.

In late 2004 IBM released the UIMA Software Developers Kit (SDK) on IBM alphaWorks
(http://www.ibm.com/alphaworks/tech/uima). The SDK is freely available and provides the tools
and run-time necessary for creating, composing and deploying component analytics. These
analytics may be implemented by the developer to analyze and assign semantics to multi-modal
data including, for example, combinations of text, audio or video. The SDK includes a semantic
search engine based on the XMLFragment query language (XMLFrags1) for users to experiment
with a search facility designed to exploit the semantic elements produced by a workflow of
analytics.

Since 2004 industrial, academic and government research & development projects inside and
outside of IBM have applied the UIMA SDK as a foundation for building and/or enhancing
applications that process unstructured information. Feedback from users has helped inform the
ideas presented in this report.

In early 2006 IBM contributed an implementation of the UIMA Framework to the open-source
community through source forge (UIMASrc1). The source includes everything in the SDK except
the XMLFragment search engine. In 4Q 2006, the open-source framework was accepted as an
Apache incubation project, where IBM and non-IBM committers will participate in its collaborative

2006–2007 © Copyright lies with the respective authors and their institutions.

http://www.ibm.com/alphaworks/tech/uima).

Page 28 of 101 NeOn Integrated Project EU-IST-027595

development. (ApacheUIMA1). Throughout this report we use the term Apache UIMA to refer to
this implementation.

The Apache UIMA implementation requires application and programming commitments at the Java
API level to provide a rich set of functions and to facilitate high-degrees of component-level
interoperability. Any given framework implementation, however, may not satisfy the requirements
of all UIMA applications. Some, for example, may require very lightweight browser-based analytics
or a very different programming model, while others may require heavyweight, carefully managed,
highly scalable solutions and yet others may depend on legacy infrastructure or middleware.

This diverse variety of potential implementations suggests that there should be a more general
specification for interoperability that may allow for different framework implementations and
different levels of compliance facilitating interoperability for a broader range of application and
programming requirements.

To help define a broader, platform independent standard that can guide the open-source
collaborative development of Apache UIMA and other related frameworks, applications and tools
while maintaining broad interoperability, IBM has convened a Technical Committee to develop a
standard specification under the auspices of OASIS (www.oasis-open.org) a Standards
Development Organization. The intent is that such a standard would allow different frameworks to
emerge, while also allowing applications built on different platforms and programming models to
have a standard means to share analysis data and analytic services. Such a standard would lower
the barrier for getting analytics to interoperate, allowing a broader community to discover, reuse
and compose independently-developed text and multi-modal analytics in UIMA applications. USFD
is a founder and proposing member of this committee, and will make its results available within
NeOn.

There are eight elements of UIMA that will be covered by the standardisation activity. They are
listed in brief below.

1. Common Analysis Structure (CAS) Specification. Provides a simple and extensible model for
representing analysis data as a standard object model that may be easily instantiated and
manipulated in object oriented programming systems. This element of the specification is provided
as a UML (UML1) model. We propose adopting the XML Metadata Interchange (XMI) specification
(XMI1, XMI2) to provide a standard means for representing analysis data as an XML document.

2. Type-System Language Specification. Provides a standard means for associating object model
semantics with artifact metadata that complies with object modeling standards. The proposal is to
use Ecore as the type system language. Ecore is the modeling language used in the Eclipse
Modeling Framework (EMF1) and is tightly aligned with the OMG’s EMOF standard1.

3. Type-System Base Model. Provides a standard and extensible set of domain-independent types
generally useful for analyzing unstructured information. For example we define a type Annotation
to represent objects that have regional references (e.g., offsets) into the value of an attribute of
another object. It is intended that annotations describe or “annotate” the unstructured content in
these values.

4. The behavioral Metadata Specification. Provides a standard declarative means for describing
the capabilities of analysis operations in terms of what types of CASs they can process, what
elements in a CAS they can analyze, and what sorts of effects they would have on CAS contents
as a result. While we do not provide a complete and formal specification for behavioral Metadata,
we provide a discussion of requirements and a rough proposal appealing to the OCL standard
(OCL1).

5. Processing Element Metadata Specification. Provides a standard declarative means for
describing identification, configuration and behavioral information about Processing Elements
(analytics and flow controllers). This specification is represented as a UML Model, and we use the
XMI standard to represent the processing element metadata as XML. This section of the

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 29 of 101

specification refers to the behavioral Metadata Specification to represent a processing element’s
behavioral information.

6. Abstract Interfaces. Abstractly describes the interfaces to the two different types of Processing
Elements, namely, Analytics and Flow Controllers. These abstract interfaces are specified with a
UML model.

7. WSDL Service Descriptions. Provides a standard means for describing Processing Elements as
web services using WSDL (WSDL1). We also define a standard SOAP binding.

8. Aggregate Analytic Descriptor Specification. Provides a standard declarative means for an
aggregate analytic to

 refer to its constituent analytics

 identify a flow controller which determines the order in which the constituent analytics of
the aggregate are invoked on a CAS.

 define mappings to facilitate the composition of independently-developed analytics.

3.1.3.3 ISO TC37/4
We can distinguish two types of standardisation: de facto and de jure. This section covers the
current de jure process active at ISO (in Technical Committee 37, Sub-Committee 4), but it should
first be noted that the field is more strongly influenced by de facto standardisation and that the
practical implementations represented by GATE and UIMA (see above) are more probably more
promising starting points for the NeOn collaborative annotation architecture.

The objective of ISO/TC 37/SC 4 is to prepare various standards by specifying principles and
methods for creating, coding, processing and managing language resources, such as written
corpora, lexical corpora, speech corpora, dictionary compiling and classification schemes. These
standards will also cover the information produced by natural language processing components in
these various domains. Standards produced by ISO/TC 37/SC 4 should particularly address the
needs of industry and international trade as well as the global economy regarding multi-lingual
information retrieval, across cultural technical communication and information management.

The goal of ISO/TC 37/SC 4 is also to ensure that new developments in language engineering,
knowledge management and information engineering satisfy the norms of international
standardization for:

 development standards and related documents to maximize the applicability of language
resources,

 relating the language resources of different kinds to their applications, and

 enhancing the application of recognized methods and tools in language resources.

USFD is a participant in ISO TC37/SC$ both directly and via the LIRICS project. LIRICS addresses
the needs of today's information and communication society where globalisation and localization
necessitate multilingual communication creating an increasing need for new standardization as
well as urgent recognition of existing de facto standards and their transformation into 'de jure'
International Standards. LIRICS thus aims to:

 Provide ISO ratified standards for language technology to enable the exchange and
reuse of multilingual language resources;

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 30 of 101 NeOn Integrated Project EU-IST-027595

 Facilitate the implementation of these standards for end-users by providing an open-
source implementation platform, related web services and test suites building on legacy
formats, tools and data;

 Gain full industry support and input to the standards development via the Industry
Advisory group and demonstration workshops

 Provide a pay-per-use business model for use by Industry and in particular SMEs
validated during the project for the benefit of all actors in the content and language
industries

The LIRICS open source reference implementation for the new ISO standards uses GATE for
annotation services.

The LIRICS Consortium brings together leading experts in the field of NLP and related standards
development via participation in ISO committee and National Standardisation committees. The
Consortium has strong Industry support and involvement through the 21 members of the LIRICS
Industry Advisory Group.

The standards development work in LIRICS starts from an analysis of existing and emerging
formats for the standards in the project scope. From this analysis the partners have defined
metamodels and data categories for lexica, morpho-syntactic annotation, syntactic annotation and
semantic content following closely the procedures established by ISO, as well as an on-line
environment for accessing and maintaining data categories.

The deliverables are direct inputs to the ISO committee ballots. A quality assurance procedure
within the project by partners on the ISO committee ensures acceptance of the proposed
standards at ISO level.

The implementation platform and the web services offered will be the basis for the LIRICS
exploitation plan enabling a new pay-per-use business model for language technology actors. All
these activities will be supported via a strong dissemination activity targeting end-users of LIRICS
standards at demonstration workshops and a specific training session on NLP standards for
partners of eContent projects.

LIRICS is delivering a portfolio of standards for ratification by ISO including:

 a metamodel for lexical representation;

 metamodels and data categories for morpho-syntactic and syntactic annotation;

 reference data categories for semantic annotation;

 test suites in nine European languages;

 an open-source implementation platform, compatible with major legacy systems and
tools.

LIRICS will increase awareness of language engineering standards and promote their take-up on a
European scale.

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 31 of 101

3.2 Existing Infrastructures

3.2.1 Components of existing Ontology Engineering Tools

In this section we provide an overview of state-of-the-art reasoners and repositories. We restrict
the overview to systems that provide support for ontology languages relevant to the NeOn
networked ontology model, i.e. in particular OWL, but also rule languages.

The line between reasoners and repositories for ontologies is not a strict one to draw. Often,
ontology management systems provide support for both in some integrated form. Still, a distinction
is useful, as reasoners and repositories aim at different goals:

While repositories aim at being able to efficiently store and retrieve large collections of data (i.e.
managing explicit facts), reasoner focus on deduction procedures to derive implicit knowledge.

Ontology repositories often provide database-like functionalities, sometimes provide (typically
limited) inferencing /reasoning support, but often allow to integrate with other, external reasoners.
In turn, many reasoners either also exhibit repository functionality or provide means to access
repositories (e.g. in a file system or relational database).

In the following, we start with an overview of existing reasoners, where we discuss the supported
ontology languages, their reasoning approach, availability and interfaces. The overview is partially
based on the Description Logic Reasoner site of Ulrike Sattler.
(http://www.cs.man.ac.uk/~sattler/reasoners.html)

 Cerebra Engine is a commercial C++-based reasoner. It implements a tableau-based
decision procedure for general TBoxes (subsumption, satisfiability, classification) and
ABoxes (retrieval, tree-conjunctive query answering using a XQuery-like syntax). It
supports the OWL-API and comes with numerous other features.

 FaCT++ is a free open-source C++-based reasoner for SHOIQ with simple datatypes
(i.e., for OWL-DL with qualifying cardinality restrictions). It implements a tableau-based
decision procedure for general TBoxes (subsumption, satisfiability, classification) and
incomplete support of ABoxes (retrieval). It supports the lisp-API and the DIG-API.

 KAON2 is a free (free for non-commercial usage) Java reasoner for SHIQ extended with
the DL-safe fragment of SWRL. It implements a resolution-based decision procedure for
general TBoxes (subsumption, satisfiability, classification) and ABoxes (retrieval,
conjunctive query answering). It comes with its own, Java-based interface, and supports
the DIG-API.

 OntoBroker is a commercial Java based main-memory deductive database engine and
query interface. It processes F-Logic ontologies and provides a number of additional
features such integration of relational databases and various built-ins. The new version of
OntoBroker operates on the KAON2 API.

 Pellet is a free open-source Java-based reasoner for SROIQ with simple datatypes (i.e.,
for OWL 1.1). It implements a tableau-based decision procedure for general TBoxes
(subsumption, satisfiability, classification) and ABoxes (retrieval, conjunctive query
answering). It supports the OWL-API, the DIG-API, and Jena interface and comes with
numerous other features.

2006–2007 © Copyright lies with the respective authors and their institutions.

http://www.cerebra.com/
http://owl.man.ac.uk/factplusplus
http://kaon2.semanticweb.org/
http://pellet.owldl.com/

Page 32 of 101 NeOn Integrated Project EU-IST-027595

 RacerPro is a commercial (free trials and research licenses are available) lisp-based
reasoner for SHIQ with simple datatypes (i.e., for OWL-DL with qualified number
restrictions, but without nominals). It implements a tableau-based decision procedure for
general TBoxes (subsumption, satisfiability, classification) and ABoxes (retrieval, nRQL
query answering). It supports the OWL-API and the DIG-API and comes with numerous
other features.

 OWLIM is semantic repository and reasoner, packaged as a Storage and Inference Layer
(SAIL) for the Sesame RDF database. OWLIM uses the TRREE engine to perform
RDFS, and OWL DLP reasoning. It performs forward-chaining of entailment rules on top
of RDF graphs and employs a reasoning strategy, which can be described as total
materialization. OWLIM offers configurable reasoning support and performance. In the
"standard" version of OWLIM (referred to as SwiftOWLIM) reasoning and query
evaluation are performed in-memory, while a reliable persistence strategy assures data
preservation, consistency and integrity.

 Cerebra FACT++ KAON2 Pellet RacerPro OntoBroker OWLIM

Interfaces
OWL
API

DIG

KAON2
API

(OWL
part)

OWL API,
DIG, Jena

API

OWL
API, DIG

KAON2
API (F-

Logic part)

Sesame
API

Reasoning
Approch

tableaux Tableaux resolution tableaux tableaux Prolog
Forward
chaining

rules

Supported
Logic

Close to
OWL
DL

SHOIQ
SHIQ +
DL-safe

rules

SROIQ +
DL-safe

rules
SHIQ F-Logic

OWL
DLP

Based on C++ C++ Java Java Lisp Java Java

In the following we additionally discuss two implementations of ontology repositories: Jena and
Sesame are the two most popular implementations of RDF stores. They play a separate role, as
their primary data model is that of RDF. However, they deserve discussion, as they offer some
OWL functionalities and limited reasoning support.

 Sesame (http://openrdf.org) is an open source repository for storing and querying RDF
and RDFS information. OWL ontologies are simply treated on the level of RDF graphs.
Sesame enables the connection to DBMS (currently MySQL, PostgreSQL and Oracle)
through the SAIL(the Storage And Inference Layer) module, and also offers a very
efficient direct to disk Sail called Native Sail. Sesame provides RDFS inferencing and
allows querying through SeRQL, RQL, RDQL and SPARQL. Via the SAIL it is also
possible to extend the inferencing capabilities of the system. (In fact, this is how the

http://www.racer-systems.com/
http://www.ontotext.com/inference/semantic_repository.html
http://www.openrdf.org/
http://www.ontotext.com/trree/index.html
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/
http://logic.aifb.uni-karlsruhe.de/
http://www.ontotext.com/inference/reasoning_strategies.html#chaining
http://www.w3.org/TR/rdf-concepts/#section-data-model
http://www.ontotext.com/inference/reasoning_strategies.html#materialization
http://www.ontotext.com/inference/reasoning_strategies.html#materialization
http://jena.sourceforge.net/
http://www.openrdf.org/

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 33 of 101

OWLIM reasoner is realized.) The main ways to communicate with the Sesame modules
are through the Sesame API or through the Sesame Server, running within a Java
Servlet Container.

 Jena is a Java framework for building Semantic Web applications (http://jena.sf.net). It
offers the Jena/db module which is the implementation of the Jena model interface along
with the use of a database for storing/retrieving RDF data. Jena uses existing relational
databases for persistent storage of RDF data; Jena supports MySQL, Oracle and
PostgreSQL. The query languages offered are RDQL and SPARQL. Just as in Sesame,
the OWL support is realized by treating OWL ontologies as RDF graphs. However, in
addition Jena also provides a separate OWL API and allows to integrate with external
reasoners, such as Pellet.

3.2.1.1 OntoStudio
The starting point for the NeOn toolkit is the ontology engineering platform of ontoprise,
OntoStudio. OntoStudio is a the front-end counterpart to OntoBroker, a very fast datalog based
FLogic inference machine. Consequently a focus of the OntoStudio development has been on the
support of various tasks around the application of rules. This includes the direct creation of rules
(via a graphical rule editor) but also the application of rules for the dynamic integration of
datasources (using a database schema import and a mapping tool). The coming version of
OntoStudio will have additional support for rule creation and management such as a rule debugger
and a textual rule editor for F-Logic including features like auto-completion and syntax-check
(based on an incremental parsing). All features will be available for the NeOn toolkit (either as
open-source or closed-source commercial extensions).

OntoStudio is available with a main memory- or database-based model, is therefore scaleable and
is thus suitable for modelling even large ontologies. Based on Eclipse OntoStudio provides an
open framework for plugin developers. It already provides a number of plugins such as a query
plugin, a visualizer and a reporting plugin supporting the Business Intigelligence Reporting Tool
(BIRT). Along with the Eclipse philosophy “everything is a plugin” OntoStudio is highly modular. A
central datamodel plugin is the entry point (and a minimal requirement) for every plugin.

OntoStudio and OntoBroker are produced and distributed by Ontoprise GmbH (Germany). It is the
successor of OntoEdit, which was distributed about 5000 installations. OntoStudio, a core product
of Ontoprise, plays a central role in the product family. Professional support is available.

Some characteristics are given below:

 knowledge model as is: tightly coupled to F-Logic (resp. its proprietary XML
serialization OXML); import and export to OWL/RFD is restricted mainly to concepts
which can be expressed in F-Logic. Despite some minor syntactical details the Ontoprise
FLogic dialect conforms semantically to the F-Logic definition [Kifer1995]. Ontoprise is in
close contact with the F-Logic forum to work on future versions of F-Logic and further
standardization efforts.

 supported reasoners: currently OntoBroker; in future also KAON2 (see below);

 supported languages: currently native Frame-Logic support and subsets of OWL and
RDF(S) via import/export; in future native OWL (DL) support will be provided also as part
of the NeOn toolkit developments (see below);

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 34 of 101 NeOn Integrated Project EU-IST-027595

 platforms: Windows and Linux;

 performance and connectivity: designed for high scalability; connectors to Oracle,
MySql, DB2; works also with large ontologies;

 license: free for noncommercial users; the editor platform (without reasoner and a
number of commercial plugins) will be made available under GPL;

 addresses: domain experts with a basic understanding of ontologies and rules
(OntoStudio encapsulates language syntax apart from textual editor);

 team support [workflow; collaboration; documentation; versioning]: currently none, but
planned as part of the NeOn toolkit (see below);

 GUI / visualization: concept taxonomy; textual and graphical formula editor; instance
view, graphical ontology visualizer, query tabs etc.

Extension Points
Some of the additional extension-points are provided to modify the main component in OntoStudio,
the Ontology Navigator.

The Ontology Navigtor is a completely modifiable and extensible view on (not necessarily) ontology
elements. The developer can show additional elements (almost everywhere) in the tree, can define
specific drag and drop operations and gets support for the definition of additional context menu
entries.

Another main component in OntoStudio is the Entity Properties View which shows property pages
for the elements in the user interface. Additional property pages can be integrated in this view by
the use of the corresponding extension point.

The NeOn Approach
Many of the OntoStudio capabilities are in line with the NeOn approach and fulfil the corresponding
requirements. At the same time some very basic aspects of the NeOn toolkit are missing. The
following list is a high-level summary of the most important points rather than a detailed mapping to
requirements.

✓ OntoStudio is a modular and extensible platform.

✓ OntoStudio has extensive rule support.

✓ OntoStudio has integration capabilities for “non semantic” technology.

✗ OntoStudio does not offer native OWL/DL support.

✗ OntoStudio does not provide lifecycle support.

✗ OntoStudio does not have collaboration capabilities.

3.2.1.2 Protégé 3.2 beta
Protégé 3.2 beta is the latest version of the Protégé OWL editor, created by the Stanford Medical
Informatics group at Stanford University. Protégé 3.2 beta is a Java-based open source standalone
application to be installed and run in a local computer. It enables users to load and save OWL and

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 35 of 101

RDF ontologies, edit and visualize classes, properties and SWRL [SWRL2004] rules, define logical
class characteristics as OWL expressions, edit OWL individuals for Semantic Web markup.

Protégé as a hybrid tool
With respect to the supported languages Protégé is a hybrid tool. The internal storage format of
Protégé is frame-based. Therefore Protégé has native frame-support, based on CLIPS [REF]. The
support for OWL is provided by a special plugin that fits into the Protégé plugin architecture (see
below).

Plugin Architecture

OWL Support

Figure 7: Architecture of the Protégé OWL

The Protégé-OWL API is an open-source Java library for OWL and RDF(S). The API provides
classes and methods to load and save OWL files, to query and manipulate OWL data models, and
to perform reasoning based on Description Logic engines. The API is designed to be used in two
contexts: (1) development of components that are executed inside the Protégé UI, and (2)
development of stand-alone applications (e.g., Swing applications, Servlets or Eclipse plugins).

As depicted in the above figure, the OWL APIs implementation rely both on the frame-based
knowledge base for low level (file or DBMS based) triple storage, and both on the Jena3 APIs for
various services, such as OWL parsing and datatype handling.

3 Jena, developed by HP Labs, is one of the most widely used Java APIs for RDF and OWL
(http://jena.sourceforge.net/).

2006–2007 © Copyright lies with the respective authors and their institutions.

http://jena.sourceforge.net/

Page 36 of 101 NeOn Integrated Project EU-IST-027595

The Protégé-OWL API can be used to generate a Jena Model at any time in order to query the
OWL model, for example by means of the SPARQL RDF query language [SPARQL]. Reasoning
can be performed by means of an API which employs an external DIG4 compliant reasoner, such
as one of the following:

 RACER (http://www.sts.tu-harburg.de/%7Er.f.moeller/racer/)

 FaCT (http://www.cs.man.ac.uk/%7Ehorrocks/FaCT/)

 FaCT++ (http://owl.man.ac.uk/factplusplus/)

 Pellet (http://www.mindswap.org/2003/pellet/)

The OWL APIs allows only for accessing OWL models stored in files. There are however cases
where W3C conformant OWL files produced by other tools cannot be read.

By accessing the APIs of the RDF(s)-DB Backend Plugin5 it is be possible to store and load
models from a Sesame repository. However, the development of the RDF(s)-DB Backend Plugin is
currently discontinued.

The OWL APIs architecture doesn’t envisage itself any “built-in” extension facility; nonetheless, the
Protégé plug-in system could allow for some customization or extension of the APIs behaviour.
Protégé features a client/server multiuser architecture by means of an RMI server:
http://protege.cim3.net/cgi-bin/wiki.pl?MultiUserTutorial. Anyway, there isn’t any Web Services
(Soap, Rest or XML-RPC) interface.

The features of Protégé 3.2.

 Support for frames and OWL: Protégé was designed and developed as an editor for
frame-based knowledge-bases.

 Standardized components: The main components of Protégé 3.2 beta are Metadata,
OWL Classes, Properties, Individuals, Forms. The editor browses and edits the
ontology’s class taxonomy using a tree structure. It is very easy to check and change
every tab.

 Usability features: It provides common copy&paste and drag&drop functions, and also
different pop-up menus according to the type and features of the ontology component
being edited. Moreover there are some wizards to help user.

 Extensibility: Using the plug-ins more functions to the environment can be added, In
terms of Type the plug-ins of Applications, Backends, Import/Export, Project, Slot
Widgets and Tab Widgets can be attached.

4 The DIG Interface (http://dig.sourceforge.net/) is a standardised XML interface to Description Logics systems
developed by the DL Implementation Group (http://dl.kr.org/dig/).

5 Protégé RDF(s)-DB Backend Plugin: http://protege.stanford.edu/plugins/rdfs-db/.

http://www.sts.tu-harburg.de/%7Er.f.moeller/racer/
http://www.cs.man.ac.uk/%7Ehorrocks/FaCT/
http://owl.man.ac.uk/factplusplus/
http://www.mindswap.org/2003/pellet/
http://protege.cim3.net/cgi-bin/wiki.pl?MultiUserTutorial
http://dig.sourceforge.net/
http://dl.kr.org/dig/
http://protege.stanford.edu/plugins/rdfs-db/

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 37 of 101

 Readable by DL reasoner supporting DIG: such as RACER, FaCT. It is simple to check
consistency, classify taxonomy and compute inferred types.

Figure 8: Protégé 3.2 Beta

3.2.1.3 Altova SemanticWorks 2006
Altova SemanticWork 2006 is the latest version of the OWL ontologies editor, created by Altova
company. It is commercial software. It is visual based RDF/OWL editor that helps user visually
design Semantic Web instance documents, vocabularies, and ontologies, then export them in
either RDF/XML or N-Triples format. The following are its advantages.

 Visualization: In SemanticWorks, documents can be created and edited graphically in
SemanticWorks's RDF/OWL View

 Multiform Interface: SemanticWorks offers ontology editing capability in a graphical user
interface and in a text interface.

 Including Syntax checking and Semantics checking: Syntax checking can be carried out
for RDF Schema, OWL Lite, OWL DL, and OWL Full ontologies. Semantics checking can
be carried out on OWL Lite and OWL DL documents. These checking can be made while
editing, thus enabling user to easily maintain the validity of the ontology.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 38 of 101 NeOn Integrated Project EU-IST-027595

 Separate tabs: The components of SemanticWorks are Classes, Properties, Instances,
allDifferent and Ontologies. They can be viewed in separate tabs. The screenshot on the
following figure shows that.

 Import: Imports can be reloaded at the click of a button whenever required.

 Export: Ontologies can be saved as .rdf, .rdfs, or .owl files and can be exported in their
RDF/XML and N-Triples formats.

 Multiple windows: Multiple ontologies can be edited concurrently in multiple windows.

Figure 9: Altova SemanticWorks™

3.2.1.4 TopBraid Composer
TopBraid Composer is a modelling tool for the creation and maintenance of ontologies. It is a
complete editor for RDF(S) and OWL models, as well as a platform for other RDF-based
components and services. TopBraid Composer is built upon the Eclipse platform and uses Jena as
its underlying API. Following is the advantage of it.

 Consistency checking and debugging: TopBraid Composer uses OWL Description Logic
to run logical consistency checks and to classify classes and instances. The system has
the open-source DL reasoner Pellet built-in as its default inference engine, but other
classifiers can be accessed via the DIG interface.

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 39 of 101

 Rule: Beside its Description Logics support, TopBraid Composer can also handle
traditional rule bases. The system supports rules in either the Jena Rules format or
SWRL. Both types of rules are executed with the internal Jena Rules engine to infer
additional relationships among resources. Rules can be edited with support of auto-
completion and syntax checking.

 Visual Graphs: TopBraid Composer can visualize arbitrary relationships among
RDFS/OWL resources in a graphical format.

 Eclipse plugin: This means that Composer is built on a solid platform with a large user
base. Many other Eclipse plugins for editing other languages such as UML and XML
exist, and therefore users can use a single tooling environment for many different
modelling tasks.

 Simple to import and export: Just to choose the local file (for example file with ending
.owl) it will be opened in multiple windows. That is , user can compose several files at
the same time.

 Navigator: With it user can choose the file more easily.

 Namespace management: TopBraid Composer has specific mechanisms to manage
namespaces and imports in the ontology documents.

You can find the features clearly by screenshot of the figure below.

Figure 10: TopBraid Composer

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 40 of 101 NeOn Integrated Project EU-IST-027595

3.2.1.5 SemTalk 2
SemTalk 2 is an editor for Semantic Web ontologies and processes. Because Microsoft Visio is
embedded in SemTalk 2 it combines the graphical strength of Microsoft Visio and consistency of a
professional modelling tool. To work with OWL user should use the OWL Template. Following is
the advantage of it.

 Graphical: SemTalk allows user to model concept models in a structured way, based on
the graphical user interface of Microsoft Visio. Visio shapes help for a better
understanding of these models.

 Mircrosoft Visio is embedded: Supporting for and combination with ontology is the
development trend of many software. Such as: Acrobat comes up with support for RDF
Meta data. MS Word has an integrated XML editor which allows structuring documents
and saving the information separately.

Figure 11: SemTalk

3.2.1.6 Integrated Ontology Development Toolkit (IODT)
IODT is a toolkit for ontology-driven development, created by IBM. This toolkit includes EMF
Ontology Definition Metamodel (EODM), EODM workbench, and an OWL Ontology Repository
(named Minerva). EODM is derived from the OMG's Ontology Definition Metamodel (ODM) and
implemented in Eclipse Modeling Framework (EMF).In oder to facilitate software development and
execution, EODM includes RDFS/OWL parsing and serialization, reasoning, and transformation
between RDFS/OWL and other data-modeling languages. These functions can be invoked from
the EODM Workbench or Minerva. EODM Workbench is an Eclipse-based, integrated, ontology-
engineering environment that supports ontology building, management, and visualization.

Minerva is an OWL ontology storage, inference, and query system based on RDBMS (Relational
Database Management Systems). It supports DLP (Description Logic Program), a subset of OWL
DL. The system architecture of IODT is shown in the figure below.

EODM Workbench is an Eclipse-based editor for users to create, view and generate OWL
ontologies. It has UML-like graphic notions to represent OWL class,restriction and property etc.
EODM Workbench built by using EODM, EMF, Graphic Editing Framework (GEF), which provides
the foundation for the graphic view of OWL. It also provides two hierarchical views for both OWL
class/restriction and OWL object/datatype property.

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 41 of 101

Figure 12: Architecture of IODT [LiMa2006]
Following are some features of this editor.

 Eclipse-based Tool: EODM workbench is an Eclipse plugin that can integrate with any
other plugins.

 OWL Support: EODM workbench now can support OWL-DL constructs and generate
.owl files.

 UML-like Graphic Notion: In addition to traditional tree-based ontology visualization,
EODM workbench provides UML-like graphic notion. Class, DatatypeProperty and
ObjectProperty in OWL share the similar notion as Class, Attribute and Association in
UML. Detailed properties of OWL constructs are shown in the Property view.

 Multiple Views : In EODM workbench, one ontology can have multiple views to support
visualization of huge ontology. These views are independent, and users can decide to
delete something from ontology permanently, or from view only. Multiple views will be
synchronized automatically.

 Class/Property Hierarchy: EODM workbench keeps the tree-based editor for class and
property and provides some shortcut to create subClassOf and subPropertyOf in the
hierarchy. Users can drag class and property in the tree to the canvas in the view.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 42 of 101 NeOn Integrated Project EU-IST-027595

Figure 13: IODT graphical editor

3.2.1.7 SWOOP v2.3 beta 3:
SWOOP is a hypermedia-based featherweight OWL ontology editor, created by mindswap. Design
and usage of Web-browser make this editor be more effective (in terms of acceptance and use) for
the average web user by presenting a simpler, consistent and familiar framework for dealing with
entities on the Semantic Web. Following is some detailed advantage of this editor. The figure
below is the architecture model of SWOOP.

Figure 14: Swoop Architecture

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 43 of 101

 Web Browser like look & feel: An address bar where the URI of the ontology (or
class/property/individual) can be entered directly for loading; hyperlink based navigation
across ontological entities(address bar URL changes accordingly); history buttons for
traversal and bookmarks that can be saved for later reference. The figure below shows
the Web Browser like.

 Inline Editing: All ontology editing in SWOOP is done inline with the HTML renderer.
using different color codes and font styles to emphasize ontology changes. Undo/redo
options are provided with an ontology change log and a rollback option.

 Presentation syntax tabs: Concise format view; abstract syntax(from OWL API);
RDF/XML ; Turtle/N3; plug-in architecture for new tabs.

 Multiple Ontology Support: Browsing, Mapping, Comparison.

 Built-in reasoner and Debug mode: By exposing the internal workflow of a Description
Logic Tableaux reasoner (Pellet) in a meaningful and readable manner, explanations are
provided to help users understand the cause for (and remove) inconsistencies detected
in ontologies.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 44 of 101 NeOn Integrated Project EU-IST-027595

Figure 15: SWOOP GUI

3.2.2 Summary and Conclusions

By describing in detail about the features of the OWL editors mentioned above we can get some
useful ideas about how the future OWL editor would look like. The OWL-DL editor would be better
used when it contains the following features.

 Eclipse-based : easily integrate with many plugins

 Visualization: edited graphically. This is helpful feature used by the novice.

 Multiple View: views can be quickly changed.

 Reasoner built-in: easy and fast checking of consistency and debugging especially for
the beginner.

 Menus and wizards: can help user build the ontology easily.

Concerning OWL-Editors, some tables have been made to compare the editors mentioned above.
Hence the efficiency and usability of the OWL editors can be shown more clearly.

Table 1 shows some general information about the editors. For instance, how the editors look like,
if they support OWL DL files directly or not and which system they are based on.

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 45 of 101

Table 1: OWL Editors: general information

Protégé
3.2 Beta

Altova
SemanticWorks

2006
TopBraid SemTalk 2 IDOT

SWOOP
v2.2.1

View Form
Text

Form
Text
Graph

Form

Text

Graph(Mix)

Graph UML-like
Graph

Web Browser-
like

OWL DL
file
Support

Direct Direct Direct OWL.vst Direct Direct

Based on Java .Net

Eclipse

Jena

Pellet

Microsoft Visio

Microsoft.NET
Framswok

Eclipse

EODM

Minirva

Java

Table 2 shows the lists of import and export formats of each editor, which provide a good overview
of their interoperability choices.

Table 2: OWL Editors: Interoperability

 Protégé
3.2 Beta

Altova
SemanticWorks

2006
TopBraid SemTalk 2 IDOT SWOOP v2.2.1

Import
RDF(S)

OWL

XML

RDF(S)

OWL

XML

RDF(S)

OWL

HTML/XML

RDF(S)

OWL

XML

RDF(S)

OWL

RDF

OWL

DAML

Export

XML

RDF(S)

OWL

XML

RDF(S)

OWL

XML

RDF(S)

OWL

HTML/XML

RDF(S)

OWL

XML

RDF(S)

OWL

RDF

OWL

DAML

One of the important features of ontologies using OWL-DL is that they can be processed by a
reasoner. Table 3 shows the most relevant information about Reasoners. One of the main services
by a reasoner is the subsumption test, meaning whether or not one class is a subclass of another
class. A similar service is the automatic classification by determining for all instances its classes
and for all classes its super classes. Another standard service that is offered by reasoners is
“Consistency Checking”. Based on the description (conditions) of a class the reasoner can check
whether or not it is possible for the class to have any instances.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 46 of 101 NeOn Integrated Project EU-IST-027595

Table 3 also shows the list of inference engines that can be used with the editor. Some inference
engines are integrated in the editors. It makes the editor easily be used.

Table 3: OWL Editors: Reasoning

Protégé
3.2 Beta

Altova
SemanticW
orks 2006

TopBraid SemTalk 2 IODT
SWOOP
v2.2.1

Consistency
Checking

Yes Yes Yes Yes Yes Yes

Automatic
classification

Yes No Yes No No No

Inference
engine

Attached
via DIG

None
(simple
checks)

Pellet
(built-in)

RACER

FACT

(ect.)

Racer(built-in)

Pellet(built-in)

TBox(built-in)

Pellet(built
-in)

Not all OWL primitives can be used in OWL Lite, such as owl:disjointWith, owl:oneOf,
owl:unionOf, owl:complementOf, but they can be used in OWL DL. Consequently, it is

useful to make a table to know if the editors support OWL DL by trying the primitives mentioned
above in these editors. Table 4 shows the results.

Table 4: OWL Editors: OWL-DL KR primitives

Protégé
3.2 Beta

Altova
SemanticWorks

2006

TopBraid SemTalk
2

IDOT
SWOOP

v2.2.1

disjointWith Yes Yes Yes No No Yes

unionOf Yes Yes Yes Yes No Yes

complementOf Yes Yes Yes Yes No Yes

oneOf Yes Yes Yes Yes Yes Yes

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 47 of 101

4. General Architecture
The general architecture of NeOn is structured into three layers (see Figure below). The layering is
done according to increasing abstraction together with the data- and process flow between the
components. This results in the following layers:

 Infrastructure services: this layer contains the basic services required by most ontology
applications.

 Engineering components: this middle layer contains the main ontology engineering
functionality realized on the infrastructure services. They are differentiated between
tightly coupled components and loosely coupled services. Additionally interfaces for core
engineering components are defined, but it is also possible to realize engineering
components with new specific ontology functionality.

 GUI components: user front-ends are possible for the engineering components but also
directly for infrastructure services. There are also a predefined set of core GUI
components.

Tightly coupled components

Standard GUI
components

[class tree, …]

GUI
components

Engineering
components

Repository Service

Storage

Basic
Query

Loosely coupled services

Translation

Visualization
Algorithms

Collab.
Support

[…]Data
Annotation

Mapping
Editors

Property
Editors

[…]

Orthogonal Functionality

Security

Service Infrastructure

Text-based
Interface

Graph-based
Interface

Reasoner

OWL

Frames/
Rules

Infrastructure
services

Model API

OWL

Frames/
Rules

Registry Service

Query

Metadata

Orthogonal Functionality

Security

Versioning

Form-based
Interface

Figure 16: NeOn Toolkit Architecture

4.1 Core concepts

4.1.1 Layering of architectural components

We discuss in the following the chosen layering approach by distinguishing between:

 Complete abstraction layers

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 48 of 101 NeOn Integrated Project EU-IST-027595

A complete abstraction layer means that all components of higher level use only next lower
components.

 Layer of service usage

The distinction between infrastructure services and engineering services is not a very strict
one. It is just based on the categorization into infrastructure and lower level data-oriented
services.

Thus the layers indicate control- and data flow in addition to abstraction. A single operation on
a higher level can result in several “low level operation”. If a user for example triggers a delete
operation using a particular control (such as a tree control for class hierarchies), this might
result in several operations on the language model layer (and even more operations on the
FOL layer). Subordinate functionalities such as session management or security support might
also be realized on several layers, using different levels of abstraction.

A complete abstraction layer is too inflexible for the different characteristics of the services in an
ontology engineering environment. A layer of service usage is however useful as it allows to
distinguish between fix basic infrastructure services and pluggable engineering components.

4.1.1.1 Functionality vs. non-functional requirements
First of all there is the „natural“ functionality of a layer, such as storing and managing first order
logic statements or language-bound statements. However, looking at layers independently can
lead to typical bottlenecks. A component to edit models (using a text control or a form) might
require a function to support automatic completion proposals for typed statements. The
computation of completion proposals might not be seen as a “natural” function of the language
layer responsible for the language primitives (which form the base for the completion). But realizing
this functionality on a higher level can cause serious performance issues. The same holds for
certain refactoring functions. If the top level component depending on this functionality requires a
particular performance to guarantee some degree of interactivity, then there are basically two
options: 1) bridging the layers (see below) and accessing the low-level storage directly at any level
that is appropriate to realize the functionality or 2) designing the layers and interfaces in such a
way that the core functionality is realized at the suitable layer and then encapsulated through
several layers. The first option is difficult to realize and makes some basic advantages of the
layered approach obsolete. Other options (such as caching large amounts of data lower levels are
responsible for) are also in conflict with the layers.

Another example where the question of where to realize certain features comes up is the security
issue. Basically security features could be realized on one of the higher levels such as the control
level. However, this implies that lower levels are completely encapsulated and security
mechanisms can not be bypassed bridging the layers. This is not realistic for data sources that
play a role outside of the core layers.

• Layer Bridging

As described above, layer bridging is closely related to the question of functionalities and other
requirements. For each layer it has to be decided, if layer-bridging is possible and from where it is
possible.

• Data Source Abstraction

The abstraction of data sources is a core aspect of the architecture, as the layered design on top of
a repository layer indicates. However, data source abstraction can also occur at particular points of
the architecture, such as model import functions or database schema import. There are different
approaches of data source abstraction based on different goals. The eclipse project targets data
source abstraction from an engineering perspective, emphasizing the convenient management of

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 49 of 101

metadata. Application servers or containers provide data source abstraction (often focusing on
relational databases based on OR-mapping) for runtime use. The OGSA-DAI framework
emphasizes the distribution of data sources and provides a (stateful) service layer with security
mechanisms, etc. It’s still to be evaluated, which approach might be relevant for NeOn
requirements regarding data source abstraction.

4.1.2 Service interfaces

4.1.2.1 Service-oriented vs. Object-oriented
The service-oriented approach is one major driving paradigm of the NeOn architecture. This holds
especially for the communication of components across the different layers. The object-oriented
approach plays a role on a more fine-grained level, e.g. regarding internal control structures of
pluggable components.

However, service oriented does not imply the actual kind of service (e.g. web service). It basically
allows for a loose coupling of components and additionally provides a base for distributed
environments.

The following code snippets illustrate invocation aspect of both approaches

Object-oriented:

Rule.getHead()

Service-oriented:

getHead(String ruleID)

A major difference is however also the granularity of the functionality. Object-oriented methods
provides usually very fine grain functionality like the one above. Opposite to this services provide
very coarse-grain functionality

At the core layer of (distributed) components for knowledge- and ontology engineering tasks such
as alignment service-oriented coupling occurs at the following points:

• integration of distributed components based on the service interface they expose;

• deploy-function for pluggable components.

4.1.2.2 Transport layer
Not only due to networked ontologies a lot of distributed components occur in the NeOn
architecture. Therefore the question of the appropriate protocols in the transport layer arises.

• Configurable transport layer

As mentioned before, the service-oriented approach as such does not imply the actual
transport mechanism. Frameworks such as Spring support a configurable transport
layer. This enables users to specify the transport layer implementation (RMI, JAX-
RPC,…) via configuration file.

• Transport layer according to SOAP protocol

The standards for web services offer also quite a large independence of the transport layer
e.g.: http and soap binding. As they are increasingly accepted this independence offers
enough flexibility.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 50 of 101 NeOn Integrated Project EU-IST-027595

Additionally by agreeing on SOAP as the common service protocol it is also possible to add
orthogonal functionality in a consistent way. An important example is security support via
the WS-Security standard.

Thus the NeOn architecture will use the SOAP protocol as the preferred transport protocol for all
remote components.

4.2 Development architecture

Rule/ Query
Management

Concepts Properties

Instances

F-Logic

Manage Debug

Explain

Rules/Mappings

Manage Tests

Optimize

Queries

Rule/ Query
Management

Classes Properties

Individuals Axioms

OWL

RDF(S)

RDBMS

Import Components

[..]

Onto-Serv.

Schema Management

Metadata + Schemas

Models

Engineering/
Core

Schema

Mappings

Property Eds.

Textual
Editors

Tree Editors
F-Logic

OWL a.S.

Graphical
Editors
Mappings

Rules

Import Wizards

Schema-Level

Query-
based
Reports

GUI

Visualization UML-Supp.

Import

Ecore Metamodel-Impl.

Check-In/Check-Out Interface

Figure 17: Core Components

The focus of Neon as an Ontology engineering platform is on the development architecture. This is
shown in form of the core components in above figure, where the engineering core layer as well as
the GUI-layer is illustrated.

Typical core components support management of ontology resources and access to reasoning
services (e.g. for query testing). Resources might be created or imported and then edited. The
editing of resources might be supported based on different editing paradigms, such as textual
editing or graph-based editing. This is handled on the GUI-layer.

The usual form of implementation for a GUI component is based on the eclipse framework, using
JFace/SWT.

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 51 of 101

 The core layer provides access to the ontology-data model. Plugin developers will interact with
ontology-objects such as OWLEntity, OWLClass, OWLAxiom, etc. (see section 4). It will in addition
to the API provide control structures that support typical editor features. This includes for example
the graphical editing based on the metamodel implementation (UML-support) or textual editors.
The problem with this kind of editing support is the synchronization with the core data model. To
support this we introduce a thin layer above the language API that controls “bulk” editing. Plugins
might check out an ontology and check it in again without intermediate synchronization.

The core layer will be reflected by a datamodel-plugin similar to the current plugin of OntoStudio.
However, there will be a better “visibility” of the underlying API, which means that plugin
developers will have access to elements like OWLClass (see section 4.). It will also provide
additional control structures for typical editing functionalities (see subsequent sections).

4.2.1 Use Cases

System

Ontology Engineering "Basic Level"

Ontology Engineer

User with a general perception of Ontologies

OWL Expert
Frame-Logic/Rule Expert

Managing Properties

Managing OWL Axioms

UML-like Axiom Modelling Apply OWL Abstract Syntax

Managing Rules

Graphical Rule Modelling Apply F-Logic Syntax

Managing Mappings

Managing Classes

Figure 18: Ontology Engineering Use-Cases (Examples)

There are different use cases for the engineering layer and GUI components. The above figure
shows an example for use-cases on the end-user level. Ontology engineers with different skills are
expected to access different kinds of engineering functionalities.

The figure below shows a use-case where a user extends the toolkit itself. While much of this use-
case is determined by the eclipse framework (see section 3.1), the toolkit provides additional
mechanisms for extensions, such as plugin-development wizards. In figure below this is illustrated
for the case of an import-plugin. Developing import-plugins allows to support additional formats
(but not their formal semantics!). An import-plugin-wizard would generate the “skeleton” for the
plugin implementation. It would be the task of the user to implement the logical mapping from the
supported format onto either F-Logic or OWL and implement the user-interface for import-specific

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 52 of 101 NeOn Integrated Project EU-IST-027595

metadata. The workflow as well as the integration into an existing import menu would be
determined by extension points. The code generated by the wizard implements the functionality for
those extension points. Developers then would not have to care about questions like how to plug
into a certain menu (such as the choice of import formats).

System

Extend Toolkit

Extend Eclipse Platform

"Simple Read Case"

Create Export Plugin

"Simple Write Case"

Create Import Plugin

Apply Extension Wizard

Import/Export Ext. Wizard [..]

Configure I/E Wizard

Ontology Engineer

Figure 19: Extension Use-Cases (Examples)

4.2.2 Layer 3: GUI components

The usual implementation of a GUI component would be a separate eclipse-plugin that is the
counterpart to another plugin containing the engineering functions. Basic GUI components will be
part of a minimal configuration of the toolkit. This includes typical property editors for the
management of language elements like classes, properties, axioms.

4.2.3 Layer 2: Engineering components

The engineering components are the main source of functionalities that end-users typically make
use of. An engineering component consists of one or more plugins. The basic engineering
operations (managing elements of the ontology language) are supported through a core plugin.
Other plugins would typically fall into certain categories.

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 53 of 101

Categorization of Plugins
The following categories help to understand in which way the engineering level of the toolkit might
be extended. The differentiation between instance level and schema level is based on the
observation that there are fundamental differences in how the respective elements are handled
and what roles they play.

Figure 20 shows a categorization of plugins along the way the available ontologies are accessed.
An export plugin for example would require access to the complete model in order to serialize it. A
plugin for a textual editor (supporting a certain syntax) would require “bulk read” as well as “bulk
write” access, except if the editor is applied to certain elements (single axioms, F-Logic rules,
SWRL-rules, …).

Model-Access
Schema-Level

Instance-Level

Read

Write

“Bulk Read”

“Selective Read”

“Bulk Write” (Import)

Specific Write

[..]

Figure 20: Plugin-Categorization: Model-Access

Editing plugins requiring synchronization can be categorized as illustrated in figure below. The
toolkit will support the “large model at once” option through editors that are in line with a repository
paradigm. This includes for example tree views, that fetch elements in a very economic way.
Single entities such as classes or properties can be manipulated with typical property editors.

The medium level is likely to be supported only in an unsynchronized way as described in section
3.2..

Edit
Schema-Level

Instance-Level

“Large Model at once”

“Small/Medium Model at once”

“Entity at once”

Figure 21: Schema Editing Plugins

The Figure below shows the context that a certain plugin might require. A context is a state in
which a certain element or several elements are selected. The toolkit will support several contexts
for different elements (like ontologies or single classes) through the respective extension points.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 54 of 101 NeOn Integrated Project EU-IST-027595

Edit Require Standard Context

Ontology Selection

Ontology Element Selection

Other

Ontology Element Selection

Single

Multi
Generic/Heterogeneous

Homogeneous

Figure 22: Selection Context

Export/Import Plugins
For export/import plugins the following cases are supported:

 Import to: OWL(DL)

 Export from OWL(DL)

 Import to F-Logic

 Export from F-Logic

 Menu entries and Wizards

Edit-Controls
Edit-controls include the property-editors mentioned above, tree-control based editors for class
hierarchies and refactoring features. Graph-based editors and textual editors will be an alternative
environment for complete models and for single elements (rules, axioms).

Visualizing/Browsing

 Visualize OWL-ontology

o Provide layout-algorithm

o Provide

 Visualize Rule-Graph

 Visualize Frame-ontology

4.2.3.1 Coupling of components
Concerning the coupling to the toolkit we distinguish between two main categories:

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 55 of 101

Tightly coupled component

The characteristics of tightly coupled interfaces are

 Highly interactive components

 Fine grain component

 Locally used components

 Using NeOn repository for persistence states

Tightly coupled components are realized as conventional Eclipse plugins. Examples are Mapping
editors or Ontology browsers. The NeOn toolkit will use specialized Eclipse features as the
realization mechanism for tightly coupled components. This has been explained along the example
of an import plugin in the previous sections.

A typical example of a tightly coupled component would be a plugin with a rich graphical interface
where frequent user actions invoke process on the infrastructure layer. A tightly coupled
component directly interacts with the infrastructure layer without any transport layer in between.
Tightly coupled components would include for example:

 property editors;

 textual editors;

 graph-based editors.

Loosely coupled components

The characteristics of loosely coupled interfaces are

 Non interactive components

 large grain components

 remotely used components

 eventually having their own (additional) repositories

Thus the loosely coupling allows to use functionality in the toolkit, which was independently
developed or cannot be easily deployed into the toolkit environment. Examples are specialized
reasoning services or ontology annotation tools for text, which require a specialized infrastructure.

Loosely coupled components as web services
In the NeOn toolkit the loosely coupled components have to be available as web services. This
requires the realisation of a usually thin web service layer on top of the component. If not already
available the web service layer should be realized in the hosting environment of the component in
order to avoid too many protocol indirections.

For many standard infrastructures tools are available to generate such a web service layer e.g.

For Java components: Axis , …

For .NET components: .NET framework, …

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 56 of 101 NeOn Integrated Project EU-IST-027595

cmp looselyComponentDia

NeOn GUI component
2

engineering component
2

loosely coupled
component 1

loosely coupled
component facade

1

web serv ice layer 1

cmp NeOn Basic Infrastructure

NeOn Model API NeOn Reasoner NeOn Repository NeOn Registry

external infrastructure package

SDO4component1
WSInv ocation

ModelMapping

Figure 23: Loosely coupled engineering components

Interfaces for loosely components
Loosely coupled NeOn components should also be easily integrated with the other components of
the NeOn toolkit. Therefore they should use the NeOn Ontology model in their interfaces. For web
services this means an XML representation of the models. For the currently four parts of the NeOn
Ontology model they are defined in the following, which are the same representations in the web
service versions of the NeOn APIs:

• NeOn OWL model: direct XML representation of OWL1.1 standard [Grau2006] (see
also XML schema http://www.w3.org/Submission/owl11-xml_syntax/schema/owl1.1.xsd
).

• NeOn rule model: XML representation of W3C RIF group [Ginsberg2006]. As this is in
development the OXML format of Ontoprise is currently used.

• NeOn mapping model (adoption of the XML representation of the NeOn rule model)

• NeOn modular ontologies (adoption of the XML representation of the NeOn rule model)

Loosely coupled components as web services
The NeOn toolkit will use specialized web services as the realization mechanism for loosely
coupled components.

http://www.w3.org/Submission/owl11-xml_syntax/schema/owl1.1.xsd

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 57 of 101

Integration of loosely coupled components into the NeOn toolkit
For a loosely coupled component mechanisms are needed to make the functionality of a web
service available as an engineering component. This requires components for:

• Invocation of the remote web service in Eclipse development environment

• Transformation of web service XML data to java objects

• Mapping of the ontology model of the foreign web service to the NeOn ontology model

• Presentation of the functionality as an Eclipse plugin-based engineering component

SDO is a suitable mechanism to transform the web service XML data to java objects. It allows both
a static binding for the fixed data of the web service to be invoked. But it is extensible via a
dynamic binding which is required for the handling of open content like annotations.

Most of the components needed for this loose coupling can be supported by generating templates
for such a plugin based on the WSDL description of the remote web service.

Usage scenarios of loosely coupled components
• Existing web services

o Interface adoption to NeOn model only during invocation into NeOn toolkit

o Preferable usage of SDO to realize necessary adapters in NeOn toolkit

• Existing remote components

o Interface adoption to NeOn model in web service layer on top of existing remote
component

• Newly developed loosely coupled components

o Component can directly use NeOn model in interfaces

4.3 Layer 1: Basic Infrastructure Services
There are the following approaches to define the functionality of the basic infrastructure services:

 Repository related functionality

The basic infrastructure layer contains all repository related functionality, which is needed
by the engineering components like storing and basic query mechanism.

 All functionality needed by engineering components

A more flexible approach is to add to the basic infrastructure layer all the functionality
which is usually needed to realize engineering components. It should be organized in
always required functionality like repository and NeOn ontology model support and
optional functionality.
These basic infrastructure components are not the same as predefined engineering
components, which are needed for an ontology engineering platform (like an ontology
editor). However they are not needed to realize another ontology engineering
component.

The NeOn architecture follows the last approach to include all basic functionality needed by
engineering component as infrastructure services. Our analysis has shown that the following
components are the most critical:

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 58 of 101 NeOn Integrated Project EU-IST-027595

• NeOn Model API

• Reasoner

• Ontology Repository

• Ontology Registry

The interfaces of those components will be available as web services and as Java interfaces. Thus
they can be used also in loosely coupled components. Via the web services also orthogonal
functionality like security can be added in a generic way.

4.3.1 NeOn Reasoning Service
The NeOn reasoning service(s) are a core component of the toolkit on the infrastructure level.
Reasoning support will be given as an internal service of the toolkit. This includes the reasoning
capabilities of the KAON2 reasoner as well as the capabilities of the OntoBroker reasoner. They
are described in the project deliverable D6.3.1.

4.3.2 Ontology Repository
The term repository often subsumes a wide variety of functionality. For the NeOn development
architecture the functionality of a development repository for ontologies is essential. Another
important aspect is the suitability of the repository for reasoning.

There are use cases where a simple repository functionality is sufficient. However for the overall
NeOn goal of supporting large scale ontologies more sophisticated repository functionality is
needed. In order to support a distributed environment adequately a good integration with the
registry functionality is necessary. Reasoning on large ontologies additionally requires specific
repository functionality for fast access to selected parts of many ontologies. Thus a common
repository API has to be defined, which allows different implementations supporting the different
characteristics of the specific requirements.

Besides different implementations of common functionality a lot of requirements also mean
different functionality. Therefore we define in the NeOn architecture a repository API with a core
functionality and certain optional functional components. Implementations can choose the
appropriate functional level, which is adequate for their specific requirement characteristics.

4.3.2.1 Core Functionality of repository
The repository manages ontologies identified by a unique name given as an URI in a persistent
store. They are organized in a hierarchical, directory-like structure of collections. The functionality
is based on the WebDAV protocol.

The ontology repository manages directly all the artefacts needed for an ontology-based
application. This consists of the following kind of data:

• Ontologies according to the NeOn ontology model. This includes the OWL and the rule
model but also the mapping and module model extensions

• Other data in the following formats, where the differentiation is based on the mime-type.

o XML

o text

o Binary

Important interfaces for the basic functionality are

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 59 of 101

• Connection

• Collection

• Ontology

• Other resources

Basic Retrieval
The basic functionality is to access complete ontologies in a persistent store. It requires to identify
the repository container itself. This is done by an URL. There are two basic mechanisms to access
the ontology:

• Direct access

• Navigation

The direct access allows to directly access the ontology by an URL, which specifies its location in
the repository. Thus it is usually different to its unique name URI.

With the navigation it is possible to traverse the hierarchical structure of collections, where the
ontologies are located. This includes navigation to parent, children, successor and predecessor.

Manipulation operations
The basic manipulation operations are:

 Creating ontology in a specified collection

 Updating ontology given by location

 Deleting ontology given by location

4.3.2.2 Optional repository functionality

Query and reasoning capabilities of repository service
For the tradeoff of easy realisation and powerful functionality the degree of query and reasoning
capabilities for the repository service is essential. We distinguish between three main levels

1. Basic Retrieval
The minimum query support for a repository service consists of the described direct
access via ontology name and navigational operations. Additional simple retrieval
based on a fixed set of properties for ontologies according to the OMV model like
ontology name, author, creation-date are available via the ontology registry.

2. querying without inferencing
A query language on the ontology objects allows arbitrary comparison predicates,
Boolean expressions. The functionality is equivalent to query languages on other
data models like SQL and XQuery. A candidate for a query language is SPARQL.
The simpler functionality without inferencing can be realized by a mapping to a
query language like XQuery. This query functionality does not only allow the
selection of complete ontologies based on arbitrary qualifications on their content
but allows also to extract arbitrary parts of ontologies.

3. reasoning in repository service

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 60 of 101 NeOn Integrated Project EU-IST-027595

The most advanced functionality is to incorporate reasoning into the ontology
repository service. That means queries on the ontologies will be evaluated also on
derived knowledge. For the realisation a reasoner is required.

Versioning
Versioning is an optional functionality. We provide basic versioning support for ontologies, which
will be extended by more advanced collaboration facilities in specific engineering components. The
basic versioning support is based on DeltaV versioning, which is offered via the subversion
protocol. The granularity is an ontology document. It includes checkin and checkout facilities.

The rationale for subversion compared to CVS is mainly

 subversion is based on general internet protocol http compared to specific protocol of
CVS, which cannot be used across fire walls

 extensions of CVS functionality with versioning of collections

 the functionality of subversion is a superset of the CVS functionality

Security
Another optional functionality is the security support. As ontology are used to model all kind of data
it is in many cases critical that the access to the ontologies can be controlled completely. This is
especially true in open environments like the semantic web.

As the repository functionality is based on the WebDAV functionality the use of the access control
protocol [Clemm2004] is a consequent choice. It is a separate component for the WebDAV
protocol. It defines a quite powerful access protocol. The actors are user and groups. They can
have privileges defined for all operations on any resource. These access control elements are
grouped to access control list for each resource.

Transactions and multi-user capabilities
Multi-user capabilities are part of the versioning support. Transactions are not available at the
interface level as the versioning support offers sufficient mechanisms for isolating the changes of
concurrent users. An optional functionality is that the repository operations are atomic in the sense
that their effect is either completely visible or not all. This is typically realised by transactions of
DBMS. Nevertheless a simple file based realisation is also possible, which does has not that
guarantee.

4.3.2.3 Realisations
The core and optional repository functionality is expected to be realized by different realisations.
Examples are

4.3.2.4 File based
The simplicity of the core functionality allows a relatively easy realisation on files.

4.3.2.5 RDBMS based Repository
An RDBMS based realisation of the core functionality is also quite simple. In addition an RDBMS
can support the non-inferencing queries without too much effort and efficiently. Also the atomicity
of the repository operations can be guaranteed internally by transactions. It can also offer security.

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 61 of 101

4.3.2.6 RDF-based
Specific RDF repositories allow additionally also the support of inferencing queries.

4.3.2.7 XML-DBMS based Repository
An XML-DBMS based repository allows complete support of most optional repository features
especially on the versioning functionality and the security functionality. It is also very suitable to
support non-ontological resources especially in the XML representations. However the query
capabilities will not support inferencing in order to allow a direct mapping to XQuery capabilities.
With that configuration inferencing queries will be directly supported by the reasoner on a set of
ontologies fetched from the repository.

For the NeOn toolkit such complete repository functionality will be realised based on the CentraSite
repository.

4.3.2.8 Datastore
For the realisation of the repository services a datastore is necessary. This can be

• RDBMS

• XML database

• File system

The utilisation of the repository service with a specific datastore is usually hidden in the repository
component. However it may be an advantage to exchange the data store. We distinguish the
following approaches:

• Exchangeable datastore via predefined NeOn datastore interface

• Exchangeable relational datastore via JDBC interface

• Datastore component only internal to repository service

Via the predefined repository service interface it is already possible to exchange the repository
layer including the datastore. An independent replacement of the datastore component for all
possible repository components is hardly necessary and would impose too many constraints on a
NeOn repository component. However for a certain category like RDBMS-based datastores the
standard interface JDBC should allow the replacement to a large degree.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 62 of 101 NeOn Integrated Project EU-IST-027595

cmp repositoryComponent

coreRepositoryFunctions

VersioningqueryNoInferencing

queryWithInferencing

security

Figure 24: Repository functionality

4.3.3 Ontology Registry

With the increasing number of ontologies and their increased fragmentation into networked
ontologies the need for an ontology registry is evident. This is not only true for the semantic web
environment but also for large scale semantic applications in an enterprise environment.

The basic functionality of an ontology registry is based on an ontology meta model. For NeOn it will
be based on the OMV ontology meta model. The ontology registry allows to register and query
information about ontologies according to OMV. As this includes the location of an ontology in form
of a directly accessible URL the ontology registry directly supports the management of many
ontologies.

Besides this functionality for certain scenarios other critical characteristics are needed.
Therefore we define a core registry API that allows several realisations with and without
additional characteristics. Important additional characteristics are:

 Integration with repository: For complete governance in enterprise environments the
registry has to be integrated with the repository.

 Integration with general purpose registry: Opposite to specialized ontology registry it is
necessary for many real world usages of ontologies that the same registry can handle
also other artefacts of the complete applications. Therefore the integration of the ontology
repository functionality into a general purpose registry is needed.

 Federation: Several registries can act as a federated registry. This means mechanisms to
synchronize the content of the federated registries. Another functionality are federated
registry queries. They will be distributed to all registries of the federation. The results are
sent back to the registry initiating the federation.

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 63 of 101

4.3.3.1 OMV specialized ebXML registry

For the basic infrastructure an API is needed to query, create and manipulate ontology meta
information according to the OMV model. This API is defined as an ebXML registry API specialized
for the OMV model. It exists in the form of a JAVA API and a web service interface.

Several OMV concepts are already quite well covered by the ebXML registry standard:

• General concepts: User, Organization

• General associations: uses, hasParent

• Version handling

• ID generation

The larger part of OMV is of course ontology specific. Thus a separate model in the ebXML registry
is needed with associations to the general concepts like user and organizations.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 64 of 101 NeOn Integrated Project EU-IST-027595

class CentraSite OMV

OMVInfoModel

ebXMLCoreInfoModel

Ontology

+ Acronym: char
+ CreationDate: char
+ Description: char
+ Documentation: char
+ Expiration: char
+ Id: char
+ Keywords: char
+ ModificationDate: char
+ Name: char
+ NaturalLanguage: char
+ UserVersion: char

Organization

+ Description: char
+ EmailAddress: char
+ Name: char
+ PostalAddress: char
+ TelephoneNumber: char

User

+ Description: char
+ EmailAddress: char
+ Name: char
+ PostalAddress: char
+ TelephoneNumber: char

FormalityLev el

+ Acronym: char
+ Description: char
+ Documentation: char
+ Name: char

OntologyTask

+ Acronym: char
+ Description: char
+ Documentation: char
+ Name: char

KnowledgeRepresentationParadigm

+ Acronym: char
+ Description: char
+ Documentation: char
+ Name: char

OntologyEngineeringTool

+ Acronym: char
+ Description: char
+ Documentation: char
+ Name: char

OntologyLanguage

+ Acronym: char
+ Description: char
+ Documentation: char
+ Name: char

OntologyEngineeringMethology

+ Acronym: char
+ Description: char
+ Documentation: char
+ Name: char

LicenseModel

+ Acronym: char
+ Description: char
+ Documentation: char
+ Name: char

OntologyType

+ Acronym: char
+ Description: char
+ Documentation: char
+ Name: char

OntologySyntax

+ Acronym: char
+ Description: char
+ Documentation: char
+ Name: char

IsOfType

Affi l iatedWith

Owner

Parent

PrimaryContact

DesignedForTask

HasContributor

SubmittingOrganization

DevelopedBy

SpecifiedBy

Uses

Figure 25: OMV Model
Based on this definition the standard ebXML APIs can be used. There are generic interfaces for
arbitrary registry classes (subinterface of RegistryObject) differentiated into:

 QueryManager

 LifeCycle Manager

For the builtin classes like User and Organization a specialized Java API is provided:

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 65 of 101

In the following this is exemplified for the class Organization. For the OMV classes we provide in
the same way specialized Query and Lifecycle operations.

That corresponds also to the Oyster Register API.

interface InfoModelLifecycleManager
public Organization createOrganization(InternationalString name)

public BulkResponse saveOrganizations(java.util.Collection
organizations)
public BulkResponse deprecateOrganizations(java.util.Collection
organizations)
public BulkResponse unDeprecateOrganizations(java.util.Collection
organizations)
public BulkResponse deleteOrganizations(java.util.Collection
organizationKeys)
…

interface Organization
public Key getKey()
public InternationalString getDescription()
public void setDescription(InternationalString description)
public InternationalString getName()
public void setName(InternationalString name)
public java.util.Collection getUsers()
public void addUser(User user)
public void removeUser(User user)
public java.util.Collection getChildOrganizations()
public void addChildOrganizations(java.util.Collection
organizations)
public void removeChildOrganizations(java.util.Collection
organizations)
…

interface InfoModelQueryManager
public RegistryObject getRegistryObject(java.lang.String id)
public BulkResponse
findOrganizations(java.util.Collection findQualifiers,

java.util.Collection namePatterns,

java.util.Collection classifications,

java.util.Collection specifications,
 java.util.Collection externalIdentifiers,
 java.util.Collection externalLinks)
…

interface BulkResponse
public java.util.Collection getCollection()

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 66 of 101 NeOn Integrated Project EU-IST-027595

public java.util.Collection getExceptions()

Additionally there will be a web service API for the same functionality. The ebXML registry services
provide currently only a generic web service API, which is the same for all registry classes. There
will be a specialized NeOn Ontology registry web service API, which operates on the OMV model.

Any registry interface where the OMV model is fixed will be similar to the specialized ebXML
registry. This has the additional advantage of compatibility with other registry data. If it is realized in
a general registry (like CentraSite) a lot of other registry functionality will be available on the
registered ontologies: like impact analysis or standard UDDI functionality. As it has no real
drawback compared to a proprietary API the NeOn registry API will be a specialized ebXML
registry for the OMV model.

Reasoning on the OMV model
For a basic Ontology registry reasoning is not required. However the OMV model can be
represented as an OWL/DL ontology. It is possible to export the content of the NeOn ontology
registry as OWL instances. If reasoning on the ontology metadata is required an ontology with
instances can be constructed with this functionality.

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 67 of 101

5. Language API

The NeOn language API is the core ontology interface of the NeOn infrastructure. It is the main
access point for the basic ontology-related operations such as reading, creating and manipulating
models (see figure below). The API is meant as a representation of the underlying languages
encapsulating the details of interpretation, persistence, etc.

The NeOn API represents the lowest layer of abstraction for language-related operations
applications or users should interact with.

This means that any of the use-cases displayed in figure below should be covered via the
language API or an encapsulating API, never through elements “behind” the API. This is to ensure
a clean layering and avoid problems with consistency, event-handling, etc.

Logic F-Logic OWL ReasonerOntology

add rule / add fact create/load/store
manage ontology

ask query
(reasoning)

ask request
(just database access)

Language API

Figure 26: API Use-Cases

The base of this API is the KAON-2 API [Motik2006a], which has been brought together with the
OntoBroker API.

Design
The API is meant to reflect the formal semantics of OWL and F-Logic based on a First-Order-Logic
(FOL) layer. It allows applications and users interoperate with elements of the language (such as
“OWLClass”). At the same time the API supports very flexible requests supporting efficient usage
scenarios. The API allows for example to avoid certain inefficient filtering operations above the
level of requests. This reduces the “degree of object-orientation” but supports scalable and efficient
request-based applications such as the ontology-level of the NeOn toolkit.

While the API is a hybrid API supporting two languages it does not and is not meant to resolve the
conceptual mismatch between different formal semantics of the languages. It is the base for hybrid
applications and allows to harmonize infrastructure components (such as the fact base, certain
inferencing components, the builtin-API, etc.). While the API as a common access layer is
available, the harmonization of the API-implementations is still in progress (see below).

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 68 of 101 NeOn Integrated Project EU-IST-027595

Implementations
As mentioned above, the API is implemented by two reasoners and ontology servers with different
capabilities and different fields of applications. While both support different language-subsets and
semantics, they both offer basic components with similar or identical roles, such as extensional
databases, parsers, rewriters, built-ins, etc.

On a long-term range the goal is harmonize the internal interfaces of the components and achieve
a modular implementation (see also section 4.1.).

Encapsulation
The API is a general ontology-API rather than a pure “editor API” though it supports functionalities
typically required by an editor such as renaming operations. In the current design of the toolkit we
plan a thin layer above the language API in form of a central datamodel plugin. The latter is the
single point of access for plugins creating or manipulating ontologies.

Relation to Metamodel

UML-Support

Concepts Properties

Instances

F-Logic

Classes Properties

Individuals Axioms

OWL

Schema Management

Schema Mappings

Ecore Metamodel-
Implementation

UML Support

Ontology

Check-InCheck-Out

Central Model + Control
(Data Access, Command-Stack, …)

Temporary Model + Control
(Data Access, Command-Stack, …)

Figure 27: Relation between generated Metamodel implementation and Language API
The API largely reflects the NeOn model with the exception of elements that are currently not
officially elements or attributes of the languages F-Logic and OWL (i.e. mappings). Work package
1 together with work package 6 will provide a generated 1:1 implementation of the NeOn-
Metamodels. The latter will be mapped onto the API described in this section (work in progress).
This does however will not happen in form of a layering but in form of a translation, supporting
data-exchange in a batch-mode.

5.1 Role of the API
The API supports the management of ontologies as well as reasoning on ontologies. It thus
supports engineering environments as well as runtime servers.

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 69 of 101

User-defined Rewriters
(applied to the program immediately before execution)

Internal Database
RAM, DB

U
ser-level

A
PIBuilt-Ins

- mathematical operations
- string operations

Connectors
- internet search engines
- external database

Inference Kernel
NeOn
toolkit

Extension points

Public APIs
Parser/Compiler

F-Logic OXML OWL RDF

Technically heterogeneous:
Not yet integrated/harmonized for OWL
and F-Logic (KAON2/OntoBroker)

Technically
homogeneous:
Common API

Figure 28: Current Status of Infrastructure
The figure above shows the role of the API as part of the NeOn infrastructure core. It encapsulates
and bundles management and reasoning functionalities of backend components. The backend
infrastructure itself is extensible. It provides the necessary degree of abstraction in order to avoid
low-level method calls that are inconvenient, potentially inefficient and might lead to
inconsistencies.

As mentioned above are the components implementing the API currently not harmonized with
respect to their interfaces and interoperability. the figure above therefore doesn’t show the existing
redundancies and the differences (such as the details of the inference kernel).

5.2 API
In this section we describe the main parts of the API from a user’s perspective. Most of the aspects
are described on a level where there are no or only minor differences between the OWL and the F-
Logic side. Later in this section we’ll briefly describe some of the more specific classes.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 70 of 101 NeOn Integrated Project EU-IST-027595

KAON2Connection Ontology Axiom

Request

addAxiom(Axiom)
createAxiomRequest()

createReasoner()

Reasoner

createQuery()

Query

createscreates returns axioms
of a module

creates

Figure 29: Ontology Management Classes

The Figure above shows the ontology management classes giving a top-level view onto the API.
On there is a clear separation between the requests for asserted statements and reasoning tasks.
This is important from a conceptual point of view. Reasoning tasks are potentially time- (and
resource-) consuming. Designers of applications need to distinguish the two different kinds of
actions, e.g. with respect to threading issues or GUI-design. Application designers can for example
decide to show inferred elements only on request to clearly indicate that those elements are
inferred and to avoid performance problems on the GUI-level (such as frequent mouse-clicks
triggering inferencing processes).

Below is a classification of the important interfaces in the API for the ontology management
level:

 NeOn common part

o Ontology

o Axiom

 NeOn OWL/DL model

o Class

o Property

 NeOn rule model

 NeOn mapping model

The NeOn model has additionally the parts mapping and modules. These are currently not directly
represented in model API. Instead there are fixed language constructs in OWL and rule to
represents the mappings and module functionality.

The starting-point for interactions with the system is the connection class. Via a connection object
users or applications get access to ontologies.

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 71 of 101

User-level API

Axiom Storage Fact Storage

p/1

ask for facts

1

2

return answer

All <Rule> objects

2

return answer

1

ask for rules

Figure 30: Handling of Requests

The Figure above shows the handling of requests via the API. Requests can be issued for schema-
level data such as rules and on the instance level.

The Figure below illustrates how queries are issued through the API. Users submit queries directly
on the API-level. The reasoner then controls the reasoning process, which involves rule-rewriters,
the fact-store and the axiom store. All this encapsulated by the API.

Reasoner

User-level API

Axiom
Storage

Fact
Storage

← p(X)

ask query

1

2

3

4

5

return answer

copy relevant rules

Rewriter
Cache

6

Figure 31: Handling of Queries

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 72 of 101 NeOn Integrated Project EU-IST-027595

Ontology Elements
In this section we present some of the interfaces users typically interact with without describing the
complete API. As mentioned above, users interact with ontologies via connections. Within a single
connection an ontology is a unique object. Using request users (or applications) interact with
objects that represent (OWL-)classes, axioms, properties etc.

The API layer containing the elements of the ontology language grounds on a logical layer, which
is shown next two figures below.

Some of the interfaces are reflected in subsequent sections.

Figure 32: Interfaces of the first-order logic API (part)

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 73 of 101

Figure 33: Interfaces of the first-order logic API (part)

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 74 of 101 NeOn Integrated Project EU-IST-027595

Figure 34: Axioms Interfaces

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 75 of 101

Figure 35: OWL Elements Interfaces

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 76 of 101 NeOn Integrated Project EU-IST-027595

Figure 36: F-Logic Interfaces

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 77 of 101

6. Example Configurations of NeOn Architecture

6.1 Information Integrator development environment as example
configuration

One of the current use cases of semantic technology is the integration of information coming from
disparate, heterogeneous data sources. As figure below indicates such sources like CRM or ERP
but also Sales Force Automation and Logistics have typically been developed as independent data
silos or “semantic islands” within companies it now becomes more and more evident for the
companies business and reporting structures to get a consolidated view on all these data.

Legacy CRM ERP LogisticsSFA

different
interfaces

different
formats

different
meanings

The pain of integration

Figure 37: Application landscape

To solve the syntactic and semantic inconsistencies between these systems or to make similarities
explicit semantic technology seems to be the right technology. Semantic technology connects the
islands and let users understand how all the data are related to each other. However, semantic
technology not only serves as a “translator” between island terminologies. In addition it can be
used describe relationships and dependencies that were neither existing nor visible within single
systems but which do exist across systems.

6.1.1 Ontology generation

In cases where ontologies do not already exist as such but some other means of data or
information modelling already exist (UML models, database schemas, XML schemas) it might
make sense to translate these models into ontologies or ontology language descriptions. These
generated ontologies can serve as a starting point for further ontological engineering. They are

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 78 of 101 NeOn Integrated Project EU-IST-027595

called data source ontologies. The APIs to be defined for this generation process shall allow for an
easy generation of such ontologies from various types of data sources.

The figure below sketches such a generation that shall be possible for any kind of regularly
structured data like SQL database but also for XML documents or Web Services.

data source ontologies

automatic mappings

data sources
<article>
 <articleid>a-
5634</articleid>

<category>printer</category>
 <name>hp81</name>
 <price
currency=‘USD’>500</price>

Figure 38: Generating initial ontologies

It is necessary to annotate such generated ontologies with information that is specific to the data
sources used. For instance, the information about a database where a schema originates from and
how to access it might be interesting for later usage of the data stored in that database. XML
schema provides flexible mechanisms to allow for user-/product-specific annotations. These
annotations shall somehow be considered during the transformation.

6.1.2 Mappings / Networking

In general the generated data source ontologies will not be modified as they represent the system
state and nothing more. Because the goal is not to translate existing terminology into ontology
terms but to connect the different systems we need additional means to express these
connections. This is done via mappings which then lead to networked ontologies.

Within the Information Integrator the approach is to define higher-level integration ontologies which
map to or are mapped from data source ontologies. Please note figure below shows only a single
integration ontology on top of the generated source ontologies. But in principle, there might exist
various levels of integration ontologies. For instance a first level might be mapped from a data
source ontology and add semantic information that does not directly result for the sources but does
exist therein. An example could be a mapped web service operation. While the operation itself and
thus also the generated data source ontology is merely syntax, a first integration level could attach
more information. Please keep in mind that it is a good policy to keep the generated data source
ontology untouched. Then this enriched ontology can be used for further integration steps with
other ontologies.

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 79 of 101

data source ontologies

integration ontology

manual mappings

automatic mappings

data sources
<article>
 <articleid>a-
5634</articleid>

<category>printer</category>
 <name>hp81</name>
 <price
currency=‘USD’>500</price>

Figure 39: Integrating ontologies

The networking of ontologies can result in a network of ontologies. There might be different ways
to navigate through such networks.

One possibility is to have a “normal” hierarchical ontology browser which first displays projects,
then the projects’ ontologies and finally the ontologies’ content. A separate view can be used to
look into an ontology and if the ontology references some other ontology or ontology item a double
click might forward you to the referenced item.

On the other hand, like a single ontology can have many references inside and you can visualize
this in a graph. You can also adopt this graph presentation to the ontology level showing ontologies
as nodes and references between these ontologies as links. Thus, instead of using the hierarchical
browser pattern you might feel more comfortable with a graph based presentation.

There are special use-cases where the same pattern for relationships between ontologies appears
again and again. This might be enforced by some application architectures. For example as shown
in figure above in the field of integrating disparate data sources you always have one layer to
represent the data sources themselves. On top of this layer you may have separate models which
describe the integrated model. And finally on top of the integrated model you may define views that
can be used more easily by applications. From an engineers point of view a graphical
representation of ontologies and other artefacts that reflects such a hierarchical structure is helpful.

In all cases where networked structures are to be represented it is essential, that the graphical
presentation not only shows those items that have explicitly been loaded into the tools but it should
also reflect those items that exist but might still be stored in some (remote) repository. This is a
useful precondition for easy detection of related ontologies.

6.1.3 Query development

Querying ontologies is a basic functionality. Creating a query language based tooling where users
can type in their queries and send these queries to reasoners is quite simple. However, the

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 80 of 101 NeOn Integrated Project EU-IST-027595

experience with for instance database query tools has shown that it is essential to have some GUI
based query generators (at least for beginners or occasional tool users who want to create some
simple queries). On the other hand experience with the same tools has shown that it is almost
impossible to create a GUI based tool that supports the entire query language without loosing the
simplicity for the usage. Thus there is always a trade-off between functionality offered in the GUI
and completeness. This trade-off implies that there might be different tools or at least different
parameterisations for more or less experienced users.

There might be different tools for different query languages. In all these cases it should be possible
to generate additional query tools. It should be possible to generate such tools from a query
language API (in contrast to having a separate query model API that then has to be mapped to the
query language API).

6.1.4 Deployment

Often data sources as mentioned above constitute business-critical systems. In industrial
application landscape it is common practice (self-protection) to have such critical business systems
run in a very controlled production environment. As a consequence applications need to be
developed in a separate development environment. Furthermore before bringing a developed
application into the real application landscape it is to be tested in a system that replicates the real
production landscape. During these early stages the new application cannot access the “real” data
sources but only systems that are specifically set up for test purposes.

That means there is a lifecycle for application systems. Within the lifecycle a system including the
ontologies described above has to be deployed into different environments. The deployment
process has to configure the application, i.e. has to define the concrete external data sources
which are to be used in the environment where the application has to be deployed to. For this style
of application development we need some lifecycle and deployment support.

6.1.5 Querying data sources

Once the application has been deployed into the final runtime environment, managers of the
application landscape often demand for predictable (hopefully short) query response times.
Typically these response times are estimations as measured during preceding test phases and
they are meant to be almost stable even under changes in the data source content. Administrators
get very nervous if requests for whatever reason require an unexpected amount of processing
resources or require extended execution times. Monitoring tools aid administrators on their job to
control these systems.

Consequences for the semantic query processing are twofold. First there is a strong demand in
production environments for reliable query processing techniques with some optimisation steps
before accessing the external data sources. In the field of data integration naïve processing
strategies typically read too much data from the external data sources and consequently fail to
meet the performance requirements, not only in terms of response times but also in terms of too
extensive resource utilization. Necessary optimisation techniques have been heavily explored in
the field of federated and distributed databases. Second, there need to be means to analyse and
control the system.

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 81 of 101

6.2 Example Engineering components

6.2.1 Tightly coupled component Term Translator (UPM)

Short description of the LabelTranslator approach
LabelTranslation is a strategy and a platform created for supporting the multilingual extension of
ontologies existing in just one natural language. This platform was developed within the European
Esperonto project (IST-2001-34373), concluded in 2005, by the Language Technology Lab of the
German Research Center for Artificial Intelligence (DFKI GmbH)6, in Saarbrücken, and the
Ontological Engineering Group at the Artificial Intelligence Laboratory of the Universidad
Politécnica de Madrid7 in Madrid, Spain. Part of this work has been partly continued within the
eContent LIRICS project8 (No. 22236), carried out at the IULATERM Group of the Universitat
Pompeu Fabra in Barcelona, Spain, from 2004 until 2006.

Aims and scopes. LabelTranslator was developed in order to support “the supervised translation
of ontology labels” (Declerck et al. 2006) and, at the same time, allowing for the semantic
annotation of multilingual web documents using the resulting multilingual labels of ontologies. By
“supervised translation” is meant, that this approach foresees the intervention of the domain expert
or translator in case no results outcome, or for validating them. Therefore, LabelTranslator offers a
semi-automatic strategy. LabelTranslator can be integrated into any ontology engineering platform
to enable its users to translate their ontologies inside the application.

Languages involved. LabelTranslator is available for Spanish, English and German.

Steps, sources and techniques used for localizing. For the development of LabelTranslator
already available multilingual semantic resources and basic natural language processing tools
were reused for providing a semi-automatic translation of labels in ontologies. In the current
version of the LabelTranslator platform three types of multilingual resources were included:

• EuroWordNet (EWN)9, a semantic lexical resource.

• Wikipedia10, the multilingual free encyclopaedia on the Web, based on knowledge of the
word.

• BabelFish11, an on-line translation service used as “fallback position” [Declerck2006].

The steps for the localizing approach are summarized in Table 5:

Table 5: Steps, sources and techniques used for localizing in LabelTranslator

Steps Sources and techniques

1. Upload of an ontology in the LabelTranslator platform

2. Selection of the ontology labels to be translated in one of the target languages (en, es, de)

3. The system accesses the EWN database for finding the selected term (or part of a term),

6 http://www.dfki.de/web/
7 http://www.oeg-upm.net
8 http://lirics.loria.fr/
9 See section 7.1 of the present document for a detailed description of the approach
10 http://es.wikipedia.org/wiki/Wikipedia
11 http://babelfish.altavista.com/

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 82 of 101 NeOn Integrated Project EU-IST-027595

and also checks in the WordNet database, only if the source language is English

4. Result(s) (synset and gloss) are displayed, if the matching is successful. Users can then
validate the suggestions, modify the translation and save it in the database.

5. If the matching in EWN is not successful, the system checks in Wikipedia, which also uses
a mechanism for relating entries in the various languages available

6. If steps 3. and 5.do not provide any results, the system turns to BabelFish

7. If still the translation is not satisfactory, the user can enter a translation, together with part-
of-speech information and a definition

If the same translation session is repeated in the future, the system will return the translation
already saved in the memory.

Developers of LabelTranslator give priority to the EWN resource because a “high quality in the
translation is expected since “EWN has been built following semantic considerations and validated
by language and/or domain experts” [Declerck2006].

Systems of representation of multilingual information . For the task of querying the data within
EWN, and the retrieval of translations from it, a Java API was created [Gantner2004]. The EWN
data is stored in distinct MySQL databases.. All of the databases have the same schema and can
be accessed by the same SQL statements, which are contained in the monolingual API. The
multilingual API consists of several objects of the monolingual API (one for each language i.e.,
currently English, German and Spanish), and a routine to get translations from and to any of the
mentioned languages.

Figure 40: API structure [Gantner2004]

Architecture.
The following figure shows the general architecture of the system:

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 83 of 101

Figure 41: Architecture

The JavaServer Page translateTerm.jsp acts as some sort of proxy for all incoming user
requests. Looking at the HTTP request parameters, it decides where to forward the request. If it is
a request for a translation, it is forwarded to display.jsp, a page which displays some translation
suggestions to the user. The user may ask for more alternatives, an action which calls again the
proxy page and the display page, or select a translation that suits him, which calls the proxy page
and then the page store.jsp. In order to assemble the suggestions, the SuggestionMaker
component looks up possible translations in EuroWordNet (EWN), a multilingual semantic lexicon
that connects identical and similar concepts in different languages. As only nouns, verbs,
adjectives and some adverbs are available in EWN, there is also a component for the translation of
particles, mostly prepositions. The system can also use translations that have been done before
the actual translation, which are stored in the translation memory. The stored memory consists of
both terms and EuroWordNet interlingual IDs, which represent semantic concepts (called synsets
in Princeton WordNet). In EuroWordNet, if a concept (synset) in one language corresponds to a
concept in another one, both have the same ID. store.jsp stores the translation result, and also
puts, in some cases, the translated term, or parts of it, into the translation memory.

Loosely coupled engineering component Ontology discovery (OU)

Watson in its own right provides a scalable mechanism for discovering, selecting, and accessing
ontologies that are normally distributed over the Web. While it is a standalone infrastructure, it may
offer, nevertheless, several important benefits also on the level of engineering components of the
NeOn reference architecture.

In particular we intend to expose two functionalities of the Watson suite: (i) the ontology discovery
and selection services, and (ii) the ‘tell me more about given ontology’ service. That will be
engineering components for the NeOn toolkit. In addition, we intend to collaborate and re-use
some parts of the Watson to contribute to some tightly integrated components, e.g. versioning
and/or modularization.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 84 of 101 NeOn Integrated Project EU-IST-027595

Ontology Registry Service

Oyster (distributed registry)

Ontology Repository Service

e.g. KAON2/OntoBroker (NeOn repository)

Distributed Reasoner and
any other NeOn

infrastructure modules

Ne
On

 In
fra

str
uc

tur
e

W
at

so
n

crawl

analyze

validate

index

query

Ne
On

 c
om

po
ne

nts

GU
I

Loose coupling Tight coupling

Rich client

GUI components
Thin client

GUI components

Common control structures

Ontology discovery
service/component

Ontology analysis service
(‘tell me more about’)

Versioning

Modularization

Figure 42: Watson on the level of NeOn distributed components/services

Ontology discovery / selection component
This component would enable the user of NeOn toolkit to access Watson information about
discovered ontologies and use it e.g. to select ontologies containing a particular keyword, set of
keyword, type of keywords, etc.

“Ontology discovery and selection” component would be a web service that opens up the keyword-
based part of the querying mechanism of the Watson. We expect the signature of the service to be
as follows:

Vector *O getOntologiesByKeyword (
Vector String *K,
String *M,
void *C)

• Vector String *K … a vector of keywords user expects to find in the selected
ontologies; may include wild cards, logical compositions, etc.

• String *M … a selection modifier parameter stipulating e.g. which parts of entity definition
shall be included in matching the keywords, or what shall be returned as an outcome of
selection (e.g. URI + keywords matched, URI + concepts matched, etc.)

• void *C … a function/web service enabling the user to define his or her dedicated
keyword comparison function; e.g. for the purpose of matching them precisely, fuzzily,
heuristically, as compounds, etc.

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 85 of 101

• Vector *O … a vector of ontology URIs satisfying given keywords, modifiers and
comparison criteria; each URI accompanied by a vector of actual keywords/concept URIs
occurring in a given ontology12

The functionality will be implemented as a loosely couple service. Depending on the experience
with different usage scenarios and the amount of integration with other NeOn engineering
components it may be later migrated to a tightly coupled component.

Ontology analysis
This component would enable the user of NeOn toolkit to access Watson information about
validated and analyzed ontologies and use it e.g. to learn more about the ontologies selected by
the previously described component. We expect this service being able to provide the user with
information such as ontology “quality level” for a given URI, other networked ontologies related to a
given URI (e.g. imports, versions, duplicates,…),

“Ontology analysis” component would be a web service that opens up the outcomes of the
ontology validation and analysis mechanism of the Watson. We expect the signature of its two
services to be as follows:

Vector *D getOntologyAnalysisByURI (
URI *O,
Vector String *R)

 URI *O … a valid URI of an ontology stored by Watson; if URI is invalid, error state shall
be returned

 Vector String *R … a vector of selection modifier parameters optionally stipulating
which particular networked relationships or metadata shall be retrieved from the Watson
DBs (e.g. ‘imports’, ‘duplicate’, ‘expressivity’, …)

 Vector *D … a vector of triples (?) associating the ontology URI from the input with
additional information retrieved from analyzed DBs (dependent on the modifier)

Vector *D getRelationsByConceptURI (
URI *O,
Vector URI *C,
Vector String *R)

 URI *O … a valid URI of the ‘working ontology’ in which the concepts are going to be
processed

 Vector URI *C … a vector of concept URIs in a given ontology for which the user
wants some additional information, definition, etc.

12 The reason for this setup that with multiple keywords it may be only possible to satisfy query partially, hence the need

to feed back the actual coverage.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 86 of 101 NeOn Integrated Project EU-IST-027595

 Vector String *R … a vector of selection modifier parameters optionally stipulating
which particular relationships or metadata shall be retrieved from the Watson DBs (e.g.
‘parents’, ‘children’, ‘synonyms’, …)

 Vector *D … a vector of triples (?) associating each the concept URIs from the input
with additional information retrieved from analyzed DBs (dependent on the modifier and
working ontology)

We expect both of these components being only loosely coupled to the NeOn architecture – as
they are mostly about accessing remote repository. As such they would need some form of GUI to
present their results anyway. Hence, the actual GUI component may then be tightly integrated with
the NeOn toolkit, and this GUI will use the loosely coupled component based on some remote
service(s).

6.2.2 Interactive component Ontology Navigation (OU)
In addition to the loosely coupled service-based components mentioned in the previous two
section, Watson team (and The Open University) is also intending to align its work with other NeOn
partners. At the moment, we see two primary areas where Watson and NeOn development may
benefit from alignment: (i) versioning and version management, and (ii) modularization and module
management. This work is, however, beyond the existing Watson functionality, so we do not
discuss it here.

As has been mentioned several times above, Watson in its own right provides a scalable and self-
sufficient mechanism for discovering, selecting, and accessing ontologies via a range of querying
options. While it is a standalone infrastructure, it may also offer several benefits on the level of GUI
components of the rich or thin NeOn clients.

Ontology Registry Service

Oyster (distributed registry)

Ontology Repository Service

e.g. KAON2/OntoBroker (NeOn repository)

Distributed Reasoner and
any other NeOn

infrastructure modules

Ne
On

 In
fra

str
uc

tur
e

W
at

so
n

crawl

analyze

validate

index

query

Ne
On

 c
om

po
ne

nts

GU
I

Loose coupling Tight coupling

Rich client

Browser
Thin client

other comp.

Common control structures

Ontology navigation

Content-driven ontology
visualization (w/WP3)

Versioning

Modularization

Figure 43: Watson on the level of NeOn toolkit GUIs

A similar mechanism for interacting between NeOn and Watson can be applied here as in the
previous level. In particular, there would be components developed more or less as standalone

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 87 of 101

and lightweight GUI modules enabling the user (i) to navigate through the (network of) selected
and retrieved ontologies, and (ii) to enable the user explore retrieved (network of) ontologies in a
visual manner. Both components are, nevertheless, subject to further improvement and
development within NeOn, so at this point, we do not provide more information about the intended
functionality – without consulting other partners (e.g. WP3).

In addition to these standalone GUI components, there is a possibility to adapt (some of) them so
that they can fit the rich NeOn toolkit. In particular, we see a component with a generic functionality
of an “ontology browser” as a potential candidate for such a tighter integration. Several
opportunities exist and need to be explored more in depth; potentially including:

 Contribution to the development of dedicated parts of the “ontology browser” that would
provide some user interface to the loose components mentioned in the previous section
(esp. specification of ontology selection conditions and presentation of analytic results)

 Adaptation of (some of) the loosely coupled GUI components to suit the rich GUI of the
NeOn toolkit (and/or other NeOn architecture compatible tools); these adapted
components might be used e.g. as alternative visualizations or ontology presentation
techniques to complement more standard ones typically existing in the tools (e.g.
hierarchies, tree views, etc.)

6.2.3 GATE as loosely coupled component (USheffield)

SAFE, the Semantic Annotation Factory Environment, addresses the NeOn context of dynamic,
distributed networked annotation services. This section previews the architecture of SAFE and its
integration point for NeOn. (Note that this system was previously called GLEAM, the GATE Layer
for Extraction, Annotation and Mining.)

The service provides annotation functions for documents, i.e. the client of the service (other
components, applications and users of the NeOn architecture) supplies text (and parameters such
as ontology network, language and so on) and the service responds with semantic annotation
relative to the ontology. For example a report on over-fishing and the depletion of fish stocks in
coastal waters might be annotated with location, stock volume and fish species data.

The service is SOAP-based and has been developed for NeOn using Apache Axis. It is deployed
server-side using Apache Tomcat and is compatible with other J2EE containers. It has been
successfully trialed in an OGSA environment and will be adapted where necessary to NeOn
services layer conventions.

The service hides both the parallelisation of the annotation across multiple servers and the
intervention of human annotation staff (where needed) from the service client.

6.2.3.1 GATEService (aka GaS)
A GATEService is defined here as a pipeline of GATE PR's which is available via a WebService. In
the SAFE architecture, it is called from an Executive. A GATEService can be a front-end to a set of
GATE engines running on different servers in order to gain in scalability. The configuration of the
GATEService will specify this behaviour. It is transparent to the external user of the GATEService
how many machines are actually used to produce an annotation.

A GaS can declare required and optional parameters whose values are provided by the caller. The
parameter values are mapped onto either feature values on the document being processed by the
embedded GATE PRs, or runtime parameter values of the various PRs that make up the

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 88 of 101 NeOn Integrated Project EU-IST-027595

application. The mapping is defined in a service definition, an XML file supplied by the GaS
creator:

<parameters>
 <param name="depth">
 <runtimeParameter prName="MyAnnotator" prParam="maxDepth" />
 </param>
 <param name="annotatorName">
 <documentFeature name="annotator" />
 </param>
</parameters>

Parameter values are all strings, but when mapping to PR parameters the usual GATE
Resource.setParameterValue() is used, which can convert strings into other types (e.g.
URL, Integer, etc.).

The service definition also specifies what annotation sets the service requires as input and
populates as output:

<annotationSets>
 <annotationSet name="Original markups" in="true" />
 <annotationSet name="" out="true" />
 <annotationSet name="Key" in="true" out="true" />
</annotationSets>

Note that a service can use the same set for both input and output, and can use the default
annotation set (the second example above).

The traditional GATE environment will have a plugin to connect to a GATEService as to a normal
GATE Application, in that case a GATEService should be able to take as input the content of a
document and not only a reference to it in a DocumentService. The GaS parameters would
translate to runtime parameters on the GATEServicePR.

Therefore we can distinguish 2 types of Gas :

6.2.3.1.1 GATE mode
In this mode the GaS behaves roughly like a current GATE application, i-e it takes a document and
a set of parameters as input and returns a modified document. This mode is required in order to
incorporate a GaS in a GATE application, like any other PR.

6.2.3.1.2 Remote DataStore
In this mode a GaS does not expect the document as input but only a task, i-e the location of a
document on a remote DocService, taskID, location of an executive service and a set of parameter
values. When the document is annotated (or processing fails), the GaS communicates directly to
the executive to tell it that the task is complete (or failed). This mode is required in SAFE.

A new functionality should be created in GATE in order to be able to generate a simple service
deployment (with everything running on a single server) with a couple of clicks. The result of this
operation will be a WAR file, ready to be unpacked in a web application server. If you need a more
advanced deployment, e.g. on a cluster, then more administrative intervention will be required.

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 89 of 101

6.2.3.2 Web-Service interface
A GATEService has the following query operations (returning string arrays):

 getRequiredParameterNames()

 getOptionalParameterNames()

 getInputAnnotationSetNames()

 getOutputAnnotationSetNames()

The main meat of the service is in the following two operations:

 processDocument (XMLcontent, parameters) returns : zero or more annotation

sets as XML

 processRemoteDocument (execLocation, taskID, dsLocation, docID, parameters,
asMappings) returns : none

processDocument provides the "GATE mode" described above:

XMLcontent : a GATE document in GATE XML format. This is expected to contain at least the
annotation sets required as input by the service.

parameters : an array of name/value pairs giving String values for the parameters expected by this
GaS. It is an error if the parameter list does not specify a value for each required parameter name,
though the value specified may be null.

It returns an array of name/value pairs where the name is an annotation set name and the value is
the XML representation of that annotation set (as per
DocumentStaxUtils.writeAnnotationSet), one entry per output annotation set name
(possibly zero if, for example, the service is training a classifier and doesn't need to return any
output). It is expected that the caller would replace the content of each annotation set on the
original document with the content returned from the service.

processRemoteDocument provides the "SAFE mode":

execLocation : a URL (xsd:anyURI) giving the location of the executive which should be informed
when the process completes (successfully or unsuccessfully)

taskID : task identifier that identifies this task to an Executive.

dsLocation : a URL giving the location of the document service in which the document to be
processed resides.

docID : the ID of the document in the doc service.

parameters : as above

asMappings : an array of name/value pairs mapping the annotation sets expected by the GaS to
annotation sets on the document in the doc service. A mapping is required for each input and
output annotation set name the service uses. It is permitted for the same doc-service annotation
set name to map to more than one GaS asName, but there is no guarantee as to the order in
which output sets are written back to the doc service, so don't map two output sets onto the same

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 90 of 101 NeOn Integrated Project EU-IST-027595

set in the doc service. The purpose of this mapping is to allow the same service to operate over
different annotation sets, for example the results of different human annotators.

processRemoteDocument does not return anything directly - the success or failure of the operation
is communicated out-of-band to the executive.

6.2.4 NeOn OWL Editor Prototype as example for NeOn Ontology meta model
based generation (UKarl)

The OWL Editor OntoModel is an Eclipse-based tool for model-driven development of rule-
extended ontologies and ontology mappings. It implements the MOF-based NeOn metamodel for
networked ontologies and provides appropriate UML-syntax for OWL, SWRL and OWL ontology
mappings (download at http://owlodm.ontoware.org/).

In order to facilitate ontology development, the following functionalities are provided:

 Ontology, rules and ontology mapping engineering utilizing a UML-like syntax, called
UML-profile;

 import and export of ontologies in OWL, rules in SWRL, and OWL ontology mappings as
DL-safe mappings.

The prototype that is currently being implemented is based on EMF and GMF. The OWL editor is
already realized as an Eclipse plugin. The integration into the NeOn toolkit will be performed by
adapting the plugin interfaces to those of the NeOn toolkit architecture.

6.2.5 FOAM (UKarl)
FOAM is a comonent for automated mapping discovery, aka ontology matching. The FOAM
system is based on a generic process for ontology matching as first described in [Ehrig2004].
FOAM takes as input the reference to two ontologies, optionally a set of parameters to configure
the alignment process and returns as output a set of mappings. In the current implementation, the
mappings are limited to equivalences between simple ontology elements. FOAM provides three
interface modes. It may be accessed through the command, via a Java API, and via an HTTP Web
Service. The integration into the NeOn tollkit will be realized as a tightly coupled engineering
component. The definition of the interface of the component will be aligned with the Alignment API
as currently used in the alignment server developed by INRIA.

6.2.6 ORAKEL (UKarl)
ORAKEL is natural language interface (NLI) accepting as input questions formulated in natural
language and returning answers from a given knowledge base. The input to ORAKEL are factoid
questions starting with so called wh-pronouns such as who, what, where, which etc., but also the
expressions ‘How many’ for counting and ‘How’ followed by an adjective to ask for specific values
of an attribute as in “How long is the Rhein?”. Factoid in this context means that ORAKEL only
provides ground facts as typically found in knowledge or data bases as answers, but no answers to
why- or how-questions asking for explanations, the manner in which something happens or causes
for some event.

In the ORAKEL system, we assume two underlying roles that users can play. On the one hand, we
have end users of the system which interact with the system in query mode. On the other hand,
domain experts or knowledge engineers which are familiar with the underlying knowledge base

http://owlodm.ontoware.org/

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 91 of 101

play the role of lexicon engineers which interact with the system in lexicon acquisition mode,
creating domain-specific lexicons to adapt the system to a specific domain.

Figure 44: Overview of the ORAKEL system

The end users ask questions which are semantically interpreted by the Query Interpreter (compare
figure above). The Query Interpreter takes the question of the user, parses it and constructs a
query in logical form (LF), formulated with respect to domain-specific predicates. This logical form
is essentially a first order logic (FOL) representation enriched with query, count and arithmetic
operators. The query in logical form is then translated by the Query Converter component into the
target knowledge representation language of the knowledge base, in particular to its corresponding
query language. The overall approach is thus independent from the specific target knowledge
language and can accommodate any reasonably expressive knowledge representation language
with a corresponding query language. So far, the system has been tested with F-Logic with its
query language as implemented by the Ontobroker system and OWL with the query language
SPARQL as implemented by the KAON2 inference engine.

The conversion from the logical form to the target knowledge language is described declaratively
by a Prolog program. The Query Converter component reads in this description and performs the
appropriate transformation to the target query language. So far, we have provided the two
implementations for FLogic as well as OWL/SPARQL. However, the system architecture would
indeed allow to port the system to any query language.

The answer generation component then evaluates the query with respect to the knowledge base
and presents the answer to the user. Answering the query is thus a deduction process, i.e. the
answer to a user’s question are the bindings of the variables in the resulting query. Currently, the
answer generation component only presents the extension of the query as returned by the
inference engine. However, more sophisticated techniques for presenting the answer to the user
by describing the answer intensionally or presenting the results graphically are possible.

A crucial question for natural language interfaces is how they can be adapted to a specific domain
in order to interpret the user’s question with respect to domain-specific predicates.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 92 of 101 NeOn Integrated Project EU-IST-027595

In the model underlying ORAKEL, the lexicon engineer is in charge of creating a domain-specific
lexicon thereby adapting ORAKEL to the domain in question. The lexicon engineer is essentially
responsible for specifying how certain natural language expressions map to predicates in the
knowledge base. For this purpose, we have designed an interface FrameMapper with access to
the knowledge base, which supports the user in specifying by graphical means the mapping from
language to relational predicates defined in the knowledge base. The result of the interaction of the
knowledge engineer is a domain lexicon specific for the application in question.

For the integration of ORAKEL into the NeOn toolkit, we will develop two tightly coupled plugins
that will support the two respective modes of the ORAKEL system: The query mode and the
lexicon acquisition mode.

Here, the component for the lexicon acquisition (corresponding to the current FrameMapper
system) will be mainly a GUI component. The component for the query mode – performing the
translation of the NL query into a structured logical query and the actual query answering – will be
a tightly coupled engineering component that may possibly be accompanied by a visualization
plugin.

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 93 of 101

7. Mapping to Requirements

The NeOn architecture will define the organisation of components to realize the NeOn toolkit. It will
contain a set of predefined components and a mechanism for the extension of ontology
engineering components.

The first version of the NeOn toolkit will contain most of the predefined components. Future
versions will contain more engineering components developed within the technical work packages.

Thus the requirements can be categorized in those directly realized by the NeOn architecture with
the predefined components and those which are realized by user defined engineering components
from other NeOn work packages.

This section describes the desirable features of the system. The philosophy of (Leffingwell &
Widrig) based on the pyramid NEEDS-FEATURES-REQUIREMENTS has been used. The needs
of the user are satisfied by a set of product features that are composed by a set of software
requirements. The requirements are contained in the deliverable D611 [Gomez2006] of the NeOn
infrastructure work package. They are here identified by their numbers in the deliverable D611.

(Those that are expressed in D6.1.1)

• Registry.
• Repository.
• Networked Ontologies.
• …

“To provide an open architecture which is implemented by
a reference Open Source implementation mediating
between technology development and solution
deployment” [T.A.]

Figure 45: Pyramid [Leffingwell2003]

7.1 Features

7.1.1 Networked Ontologies

Neon takes into account the network aspect of ontologies. The architecture must deal with
networked ontologies (establish mappings and relations between different ontologies). The
mapping between ontologies can be done in an automated way as well as manually.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 94 of 101 NeOn Integrated Project EU-IST-027595

Requirements: 2.1.1.1, 2.1.2.2.1, 2.1.2.2.5, 2.1.2.2.7, 3.2.9, 3.2.9.1, 3.2.9.2, 3.2.9.3, 3.2.10,
3.2.10.1, 3.2.10.2, 3.2.11, 3.2.11.1, 3.2.11.1.1, 3.2.11.1.4, 3.2.11.1.5, 3.2.11.6

7.1.2 Registry

The network aspect of ontologies will be addressed by the integration of registry-technology, a
well-established approach for networked resources. The registry will be integrated with the
repository and will be a general purpose registry (not only for ontologies). Several registries will act
as a federated registry. The functionality of the registry will be based on the OMV ontology meta-
model. For the basic infrastructure an API is needed to query, create and manipulate ontology
meta-information. This API is defined as an ebXML registry API in the form of a Java API and a
web service interface.
Requirements: 2.1.1.1, 3.2.1, 3.2.1.2, 3.2.1.3, 3.2.11.1.3, 3.4.1.1

7.1.3 Repository

The NeOn repository will support large scale ontologies. The functionalities that it will offer will be:
data storage, basic query mechanism, direct accesses to the ontologies and navigation through
them. The data store can be a RDBMS, an XML database or the file system. The repository
functionality must include session and transaction management and must deal with the multi-user
aspects of NeOn.
Requirements: 2.1.1.1, 3.1.2.6, 3.1.3, 3.1.3.2, 3.1.3.2.1, 3.1.3.2.2, 3.2.1.4, 3.2.1.4.1, 3.4.1,
3.4.1.2.1, 3.4.1.2.1.1

7.1.4 Language-Model

NeOn has the goal to be compliant with common semantic web paradigms and standards. It will
support F-Logic, OXML, OWL(DL), RDF, RDF(S) and CLIPS.
Requirements: 2.1.1.16, 3.5.1.5, 3.5.1.5.1, 3.5.1.5.2

7.1.5 Inference Machine

Neon will have deduction procedures to derive implicit knowledge.

 The architecture will have reasoning capabilities (automatic classification, consistency
checking, etc.). The queries on the ontologies will be evaluated also on derived
knowledge.

 SPARQL will be used as the query language. It requires the realization of a query
processor or a mapping to a query processor like XQuery in the case of an XML ontology
serialization.

 It will have a reporting tool supporting the Business Intelligence Reporting Tool (BIRT).

 OntoBroker and KAON2 will be used.

 The queries can be done using natural language using ORAKEL as the interface.

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 95 of 101

 NeOn will have rule-support in an integrated way, including debugging and profiling
capabilities. The rule mechanisms must cover either F-Logic and OWL(DL) paradigms.
The rule language will be SWRL. NeOn will make use of the Rule Interchange Format
(RIF) standard.
Requirements: 2.1.1.10, 2.1.1.11, 2.1.1.12, 2.1.2.3.3.3, 2.1.2.3.3.3.1, 2.1.2.3.3.3.2,
2.1.2.3.3.3.3, 3.1.2.2, 3.1.2.4, 3.2.11.1.1.1, 3.2.12, 3.2.12.1, 3.2.12.2, 3.2.13, 3.2.14,
3.2.14.1, 3.5.1.4, 3.5.1.4.1

7.1.6 Runtime support

Applications based on semantic technologies need runtime support. The infrastructure will be
accessible by web services. It will be dynamically and remotely managed. Applications developed
with the NeOn toolkit can be deployed outside its Graphical User Interface (GUI) using
programmatic access via the NeOn API and web services.
Requirements: 2.1.1.2, 2.1.1.4, 2.1.1.15, 2.1.1.5, 2.1.1.1, 3.2.5, 3.5.1.1, 3.5.1.2, 3.5.1.3, 3.5.1.3.1,
3.5.1.3.3

7.1.7 Integrated Development Environment (IDE)

The NeOn toolkit includes editors such textual and graphical editors. It also includes viewers or
GUI components for displaying non-editable information such the metadata of a file; as well as
debugging tools (for example for rules) and error handling capabilities. It also offers a concept to
organize the visualization and the manipulation of the data model. The textual editors must include
features like auto-completion and syntax and semantics checking. The viewers must visualize
concept taxonomy, instance view, graphical ontology viewer, query tabs, etc. It will make use of the
Ontology Navigator and the Entity Properties View.
Requirements: 2.1.1.3, 2.1.2.1, 2.1.2.2, 2.1.2.2.8, 2.1.2.3.3, 2.1.2.3.5, 3.2.11.1.2

7.1.8 Ontology Discovery and Analysis

To provide a mechanism for discovering, selecting, and accessing ontologies that are normally
distributed over the Web. Also to provide the user with information such as ontology "quality level"
for a given URI, other networked ontologies related to a give URI (e.g. imports, versions, duplicates
...). The ontology registry will provide that functionality.

Requirements: 2.1.1.8, 2.1.2.2.9, 2.1.2.2.9.1, 2.1.2.2.9.3, 2.1.2.3.3.4, 3.2.2.4, 3.2.2.5, 3.2.7

7.1.9 Usability

Ease of use for helping the user build the ontology easily using menus and wizards.
Requirements: 2.1.2.1.1, 2.1.2.1.3, 2.1.2.2.6, 2.1.2.3, 3.2.3, 3.2.3.1

7.1.10 Context and customization

Possibility to understand an ontology and its associated resources according to a given context. A
way of customization is to define of the arrangement on viewers and editors that can be adapted
by the user. Another one is to have the possibility to select different perspectives on resources.
The engineers can customize the environment for their specific needs.

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 96 of 101 NeOn Integrated Project EU-IST-027595

Requirements: 2.1.1.9, 2.1.2.1.2, 2.1.2.1.2.1, 2.1.2.2.2, 2.1.2.2.9.2, 2.1.2.3.1, 2.1.2.3.3.5, 3.2.8,
3.2.16, 3.2.16.1, 3.2.16.2

7.1.11 Lifecycle support and Collaboration

Ontologies evolve dynamically rather than in a waterfall-like manner. They are developed, changed
and reused. Ontologies are merged or modularized. The semantic applications can be developed
in a collaborative way. Team support is needed (workflow, collaboration, documentation,
versioning). Subversion functionality will be realized on top of WebDAV based locking facilities
DeltaV.
Requirements: 2.1.1.13, 2.2.2.2.3, 2.1.2.2.4, 2.1.2.3.3.6, 2.4.1.4.2.1, 3.2.1.4.1, 3.2.1.4.1.1, 3.2.6,
3.2.11.1.7, 3.2.11.1.7.1, 3.2.11.1.7.1.1, 3.2.11.1.7.1.2, 3.2.11.1.7.1.3, 3.2.11.1.7.1.3.1,
3.2.11.1.7.2, 3.2.11.1.7.2.1

7.1.12 Heterogeneity

It will be possible to integrate heterogeneous components in large applications. The infrastructure
must cover different paradigms as well as different aspects of semantic applications.
Requirements: 2.1.1.14, 2.1.1.17, 3.1.2, 3.4.1.2

7.1.13 Modularity/Extensibility

The architecture can be extended by its plug-in capabilities. The architecture of NeOn is Service
Oriented (SOA).
Requirements: 2.1.1.18, 2.1.1.19, 2.1.1.19.1, 2.1.1.19.2, 2.1.2.3.2, 2.1.2.3.2.1, 2.1.5.1, 3.1.1,
3.1.1.1, 3.1.1.2, 3.1.1.3, 3.6.4.1, 3.6.4.1.1, 3.6.4.1.2

7.1.14 Integration with the "Non-Semantic World"

NeOn will be integrated with RDBMS (e.g. Oracle, MySQL, DB2), XML, etc. Dynamic integration of
data sources, database schema imports; mapping and annotation tools are needed.
Requirements: 2.1.1.5, 2.1.2.2.10, 3.2.2, 3.2.2.1, 3.2.2.2, 3.2.2.2.1, 3.2.2.3, 3.2.4, 3.2.4.2,
3.4.1.2.2, 3.4.1.2.2.2, 3.4.1.2.2.2.1, 3.4.1.2.2.2.2

7.1.15 Unstructured Information Management

NeOn will have text engineering capabilities as well as an annotation service.
Requirements: 2.1.1.5, 2.1.1.6, 2.1.1.7, 2.1.2.2.10, 2.1.2.3.3.1, 2.1.2.3.3.2, 3.1.2.5, 3.2.2, 3.2.4,
3.2.4.1, 3.2.4.3, 3.4.1.2.2.1

7.1.16 Multilinguality

The architecture must deal with multingual ontologies as well as include translation services.
Requirements: 3.2.15

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 97 of 101

7.1.17 Security

The architecture will prevent malicious access to NeOn data or functionality from occurring in the
NeOn framework with the aim to avoid system malfunction and unexpected behavior.
Requirements: 2.1.2.3.4, 2.1.2.3.4, 2.1.2.3.4.2, 3.6.3.1, 3.6.3.1.1, 3.6.3.1.2

7.1.18 Web Integration

Integration with common web interfaces.
Requirements: 2.1.2.3.6, 3.5.1.3.1.1

7.1.19 Multiplatform

The NeOn toolkit will run on different platforms, at least on Windows, Linux and MacOS.
Requirements: 2.1.3.1, 2.1.3.2, 2.1.4.1, 2.1.4.1.1, 2.1.4.1.1.1, 2.1.4.1.1.2, 2.1.4.1.1.3, 2.1.4.1.2

7.1.20 Open Source

The essential functionality of the NeOn toolkit on the side of ontology engineering will be available
as an open source version. This does not include the inferencing core.
Requirements: 2.4.1.5.2.2, 2.4.2, 2.4.2.1

7.1.21 Documented

To make a special effort and incorporate high quality documentation and help that allows users to
fully grasp all the possibilities offered by the software.
Requirements: 3.7.1, 3.7.1.1, 3.7.1.2, 3.7.1.3, 3.7.2, 3.7.2.1, 3.7.2.2

2006–2007 © Copyright lies with the respective authors and their institutions.

Page 98 of 101 NeOn Integrated Project EU-IST-027595

8. Trademarks

CentraSite®

OntoBroker®

OntoStudio®

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 99 of 101

9. References

Abney1996 S. Abney, S. (1996), Partial Parsing via Finite State Cascades
Language Engineering, no. 4, vol. 2, pp.337-344

Bird2000a Bird, S, Day, D., Garofolo, J., Henderson, J., Laprun, C. & Liberman,
M. ATLAS: A Flexible and Extensible Architecture for Linguistic
Annotation. In Proceedings of the Second International Conference on
Language Resources and Evaluation, 1699-1706, 2000.

Clayberg2006 Clayberg, E., Rubel, D., Eclipse: Building Commercial-Quality Plug-ins,
2nd Edition, Addison Wesley Professional, 2006

Clemm2002 Clemm et al., Web Distributed Authoring and Versioning (WebDAV)
Versioning extensions, IETF Request for comments 3253,
http://www.ietf.org/rfc/rfc3253.txt

Clemm2004 Clemm et al., Web Distributed Authoring and Versioning (WebDAV)
Access Control Protocol, IETF Request for comments 3744,
http://www.ietf.org/rfc/rfc3744.txt

Declerck2005 Declerck, T. & O. Vela (2005). “LabelTranslator: Multilingualism in
Ontologies”. Proceedings of the 4th International Semantic Web
Conference. 2005.

Declerck2006 Declerck, T., A. Gómez-Pérez, O. Vela, Z. Gantner, D. Manzano-Macho
(2006). “Multilingual Lexical Semantic Resources for Ontology
Translation”. Proceedings of LREC 2006.

Ehrig2004 Marc Ehrig, York Sure: Ontology Mapping - An Integrated Approach.
ESWS 2004: 76-91, 2004

Gantner2004 Gantner, Z. (2004). TermTranslation – A Tool for the Semiautomatic
Translation of Ontologies. Technical report written at the Ontology
Engineering Group of the UPM, Spain [unpublished].

Ginsberg2006 Ginsberg A., Hirtle D., McCabe F., Patranjan P., RIF use cases and
requirements, Working Draft W3C 2006

http://www.w3.org/TR/rif-ucr/

Goland et al 1999 Goland et al., HTTP Extensions for Distributed Authoring – WebDAV,
IETF Request for comments 2518, http://www.ietf.org/rfc/rfc2518.txt

2006–2007 © Copyright lies with the respective authors and their institutions.

http://www.ietf.org/rfc/rfc3253.txt
http://www.ietf.org/rfc/rfc3744.txt
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/s/Sure:York.html
http://www.informatik.uni-trier.de/~ley/db/conf/esws/esws2004.html#EhrigS04
http://www.w3.org/TR/rif-ucr/
http://www.ietf.org/rfc/rfc2518.txt

Page 100 of 101 NeOn Integrated Project EU-IST-027595

Gomez1999 GOMEZ, A.; MORENO, A.; PAZOS, J.; SIERRA-ALONSO, A.: Knowledge
maps: An essential technique for conceptualisation. Data & Knowledge
Engineering, Vol. 33 (2000), pp 169-190

Gomez2006 Gómez-Pérez J.M, Buil C, Muñoz, O.Requirements on NeOn
architecture. NeOn Deliverable D6.1.1, 2006.

Grau2006 Grau B. C., Motik B., Patel-Schneider P., OWL 1.1 Web Ontology
Language, XML syntax, W3C Note 2006

http://www.w3.org/Submission/owl11-xml_syntax/

http://www.w3.org/Submission/owl11-xml_syntax/schema/owl1.1.xsd

Grishman97 Ralph Grishman: Information Extraction: Techniques and Challenges,
in International Summer School, SCIE-97, Frascati, Italy, 14-18, 1997.
Lecture Notes in Computer Science 1299 Springer 1997, ISBN 3-540-
63438-X

Ide2000 Ide, N. and Bonhomme, P. and Romary, L. (2000), XCES: An XML-
based Standard for Linguistic Corpora
Proceedings of the Second International Language Resources and
Evaluation Conference (LREC)}, Athens, Greece, pp. 825--830

IEEE2000 IEEE Standard 1471, Recommended Practice for Architectural
Description of Software-Intensive Systems, 2000

LiMa2006 Li Ma, GuoTong Xie, Yang Yang, Lei Zhang, IBM Integrated Ontology
Development Toolkit, IBM Alphaworks 2006,
http://www.alphaworks.ibm.com/tech/semanticstk

Kifer1995 Michael Kifer, Georg Lausen, James Wu: Logical Foundations of
Object-Oriented and Frame-Based Languages. Journal ACM 42(4):
741-843 (1995)

Leffingwell2003 Leffingwell, D., & Widrig, D. Managing Software Requirements – A Use
Case Approach. Addison-Wesley, 2003.

LiMa2006 Li Ma, GuoTong Xie, Yang Yang, Lei Zhang, IBM Integrated Ontology
Development Toolkit, IBM Alphaworks 2006,
http://www.alphaworks.ibm.com/tech/semanticstk

McEnery2000 A.M. McEnery, A.M. and Baker, P. and Gaizauskas, R. and
Cunningham, H. (2000), EMILLE: Building a Corpus of South Asian
Languages
Vivek, A Quarterly in Artificial Intelligence}, no.3, vol. 13, pp. 23-32

http://www.w3.org/Submission/owl11-xml_syntax/
http://www.w3.org/Submission/owl11-xml_syntax/schema/owl1.1.xsd

D6.2.1 Specification of NeOn reference architecture and NeOn APIs Page 101 of 101

Motik2006a Motik B., Sattler U., A Comparison of Reasoning Techniques for
Querying large Description Logic A-Boxes, in Proceedings of Logic for
Programming, Artificial Intelligence, and Reasoning, Springer, 2006

Motik2006b C., Motik B., Patel-Schneider P., Horrocks I., OWL 1.1 Web Ontology
Language, Structural Specification and Functional-style Syntax, W3C
Note 2006

http://www.w3.org/Submission/owl11-owl_specification/

Neff2004 Neff, M. S. and Byrd, R. J. and Boguraev, B. K. (2004),The Talent
System: TEXTRACT Architecture and Data Model,
Journal of Natural Language Engineering

OSGI2003 OSGi Service Platform, Release 3, IOS Press 2003, ISBN 1-58603-
311-5

OSGI2005 OSGi Alliance, About the OSGi Service Platform, Technical
Whitepaper 4.1, 2005

SWRL2004 Horrocks, I. et al., SWRL: A Semantic Web Rule Language -
Combining OWL and RuleML, W3C Member Submission, 2004

Tablan2002 Tablan, V. and Ursu, C. and Bontcheva, K. and Cunningham, H. and
Maynard, D. and Hamza, O. and McEnery, T. and Baker, P. and
Leisher (2002), M., A Unicode-based Environment for Creation and
Use of Language Resources
3rd Language Resources and Evaluation Conference, Las Palmas,
Canary Islands, Spain

Weiten2006 Weiten; Maier-Collin, M.; Angele, M.; J.: D4.5.4 Prototype of the
ontology mediation software V2. SEKT Project Deliverable 2006

Wund2004 WUNDERLICH, L.: Eclipse vs. Netbeans. JavaMagazin (2004) No. 5

2006–2007 © Copyright lies with the respective authors and their institutions.

http://www.w3.org/Submission/owl11-owl_specification/

	List of figures
	List of tables
	1. Introduction and Motivation
	1.1 Functional Aspects of the NeOn Approach
	1.2 Methodological Approach
	1.3 Overall structure of the NeOn platform
	1.4 Starting Point and Goal

	2. Definitions, Acronyms and Abbreviations
	3. State of the Art
	3.1 Supporting Technologies
	3.1.1 Eclipse as IDE Technology
	3.1.1.1 The Plugin Concept
	3.1.1.2 IDE Elements: Views, Perspectives, Editors
	3.1.1.3 OSGI
	3.1.1.4 Eclipse as a Base for IDE Tools
	3.1.1.5 Relevance for the NeOn Reference Architecture and the NeOn Toolkit

	3.1.2 Other supporting technologies
	3.1.2.1 SOA infrastructure
	3.1.2.2 Service Data Objects (SDO)

	3.1.3 Technologies for language processing
	3.1.3.1 GATE
	3.1.3.2 UIMA
	3.1.3.3 ISO TC37/4

	3.2 Existing Infrastructures
	3.2.1 Components of existing Ontology Engineering Tools
	3.2.1.1 OntoStudio
	3.2.1.2 Protégé 3.2 beta
	3.2.1.3 Altova SemanticWorks 2006
	3.2.1.4 TopBraid Composer
	3.2.1.5 SemTalk 2
	3.2.1.6 Integrated Ontology Development Toolkit (IODT)
	3.2.1.7 SWOOP v2.3 beta 3:

	3.2.2 Summary and Conclusions

	4. General Architecture
	4.1 Core concepts
	4.1.1 Layering of architectural components
	4.1.1.1 Functionality vs. non-functional requirements

	4.1.2 Service interfaces
	4.1.2.1 Service-oriented vs. Object-oriented
	4.1.2.2 Transport layer

	4.2 Development architecture
	4.2.1 Use Cases
	4.2.2 Layer 3: GUI components
	4.2.3 Layer 2: Engineering components
	4.2.3.1 Coupling of components

	4.3 Layer 1: Basic Infrastructure Services
	4.3.1 NeOn Reasoning Service
	4.3.2 Ontology Repository
	4.3.2.1 Core Functionality of repository
	4.3.2.2 Optional repository functionality
	4.3.2.3 Realisations
	4.3.2.4 File based
	4.3.2.5 RDBMS based Repository
	4.3.2.6 RDF-based
	4.3.2.7 XML-DBMS based Repository
	4.3.2.8 Datastore

	4.3.3 Ontology Registry
	4.3.3.1 OMV specialized ebXML registry

	5. Language API
	5.1 Role of the API
	5.2 API

	6. Example Configurations of NeOn Architecture
	6.1 Information Integrator development environment as example configuration
	6.1.1 Ontology generation
	6.1.2 Mappings / Networking
	6.1.3 Query development
	6.1.4 Deployment
	6.1.5 Querying data sources

	6.2 Example Engineering components
	6.2.1 Tightly coupled component Term Translator (UPM)
	6.2.2 Interactive component Ontology Navigation (OU)
	6.2.3 GATE as loosely coupled component (USheffield)
	6.2.3.1 GATEService (aka GaS)
	6.2.3.1.1 GATE mode
	6.2.3.1.2 Remote DataStore

	6.2.3.2 Web-Service interface

	6.2.4 NeOn OWL Editor Prototype as example for NeOn Ontology meta model based generation (UKarl)
	6.2.5 FOAM (UKarl)
	6.2.6 ORAKEL (UKarl)

	7. Mapping to Requirements
	7.1 Features
	7.1.1 Networked Ontologies
	7.1.2 Registry
	7.1.3 Repository
	7.1.4 Language-Model
	7.1.5 Inference Machine
	7.1.6 Runtime support
	7.1.7 Integrated Development Environment (IDE)
	7.1.8 Ontology Discovery and Analysis
	7.1.9 Usability
	7.1.10 Context and customization
	7.1.11 Lifecycle support and Collaboration
	7.1.12 Heterogeneity
	7.1.13 Modularity/Extensibility
	7.1.14 Integration with the "Non-Semantic World"
	7.1.15 Unstructured Information Management
	7.1.16 Multilinguality
	7.1.17 Security
	7.1.18 Web Integration
	7.1.19 Multiplatform
	7.1.20 Open Source
	7.1.21 Documented

	8. Trademarks
	9. References

