

NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 – “Semantic-based knowledge and content systems”

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies

Deliverable Co-ordinator: Óscar Muñoz García

Deliverable Co-ordinating Institution: UPM

Other Authors: Carlos Buil Aranda (ISOCO),
Saartje Brockmans (UKARL), Carola Catenacci (CNR),
Miguel Esteban-Gutiérrez (UPM),
Raúl García-Castro (UPM),
Asunción Gómez-Pérez (UPM),
Peter Haase (UKARL), Jos Lehmann (CNR),
Holger Lewen (UKARL), Pilar López Atau (UPM),
Ángel López (UPM), Elena Montiel (UPM),
Raul Palma (UPM), Valentina Presutti (CNR)
Marta Sabou (OU),
Mari Carmen Suárez-Figueroa (UPM),
Walter Waterfeld (SAG), Moritz Weiten (ONTO),
Yimin Wang (UKARL)

Document Identifier: NEON/2007/D5.2.1/v2.3 Date due: February 28, 2007
Class Deliverable: NEON EU-IST-2005-027595 Submission date: March 30, 2007
Project start date: March 1, 2006 Version: V2.3
Project duration: 4 years State: Final
 Distribution: Public

2007 © Copyright lies with the respective authors and their institutions.

Page 2 of 102 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is part of a research project funded by the IST Programme of the Commission of
the European Communities, grant number IST-2005-027595. The following partners are involved in
the project:

Open University (OU) – Coordinator
Knowledge Media Institute – KMi
Berrill Building, Walton Hall
Milton Keynes, MK7 6AA
United Kingdom
Contact person: Martin Dzbor, Enrico Motta
E-mail address: {m.dzbor, e.motta} @open.ac.uk

Universität Karlsruhe – TH (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren – AIFB
Englerstrasse 28
D-76128 Karlsruhe, Germany
Contact person: Peter Haase
E-mail address: pha@aifb.uni-karlsruhe.de

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Pérez
E-mail address: asun@fi.upm.es

Software AG (SAG)
Uhlandstrasse 12
64297 Darmstadt
Germany
Contact person: Walter Waterfeld
E-mail address: walter.waterfeld@softwareag.com

Intelligent Software Components S.A. (ISOCO)
Calle de Pedro de Valdivia 10
28006 Madrid
Spain
Contact person: Richard Benjamins
E-mail address: rbenjamins@isoco.com

Institut ‘Jožef Stefan’ (JSI)
Jamova 39
SI-1000 Ljubljana
Slovenia
Contact person: Marko Grobelnik
E-mail address: marko.grobelnik@ijs.si

Institut National de Recherche en Informatique
et en Automatique (INRIA)
ZIRST – 655 avenue de l'Europe
Montbonnot Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: jerome.euzenat@inrialpes.fr

University of Sheffield (USFD)
Dept. of Computer Science
Regent Court
211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

Universität Koblenz-Landau (UKO-LD)
Universitätsstrasse 1
56070 Koblenz
Germany
Contact person: Steffen Staab
E-mail address: staab@uni-koblenz.de

Consiglio Nazionale delle Ricerche (CNR)
Institute of cognitive sciences and technologies
Via S. Martino della Battaglia,
44 - 00185 Roma-Lazio, Italy
Contact person: Aldo Gangemi
E-mail address: aldo.gangemi@istc.cnr.it

Ontoprise GmbH. (ONTO)
Amalienbadstr. 36
(Raumfabrik 29)
76227 Karlsruhe
Germany
Contact person: Jürgen Angele
E-mail address: angele@ontoprise.de

Asociación Española de Comercio Electrónico
(AECE)
C/Alcalde Barnils, Avenida Diagonal 437
08036 Barcelona
Spain
Contact person: Jose Luis Zimmerman
E-mail address: jlzimmerman@fecemd.org

Food and Agriculture Organization of the United
Nations (FAO)
Viale delle Terme di Caracalla 1
00100 Rome, Italy
Contact person: Marta Iglesias
E-mail address: marta.iglesias@fao.org

Atos Origin S.A. (ATOS)
Calle de Albarracín, 25
28037 Madrid
Spain
Contact person: Tomás Pariente Lobo
E-mail address: tomas.parientelobo@atosorigin.com

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 3 of 102

2007 © Copyright lies with the respective authors and their institutions.

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this
document, even if they might not have directly contributed writing parts of this document:

CNR

ISOCO

SAG

ONTO

OU

UPM

UKARL

Change Log

Version Date Amended by Changes

0.1 21-09-2006 Mari Carmen Suárez-Figueroa,
Asunción Gómez-Pérez

Initial Draft

0.2 2-10-2006 Mari Carmen Suárez-Figueroa,
Miguel Esteban-Gutiérrez

Included subsection about Grid Protocols

0.3 4-10-2006 Mari Carmen Suárez-Figueroa,
Elena Montiel

Included definitions of exchanging and
sharing

0.4 5-10-2006 Mari Carmen Suárez-Figueroa,
Holger Lewen

Included subsection about Agent Languages

0.5 6-10-2006 Mari Carmen Suárez-Figueroa,
Raul Palma

Included subsection about P2P Protocols

0.6 10-10-2006 Mari Carmen Suárez-Figueroa,
Raúl García-Castro

Included subsection about ICE Protocol

0.7 23-11-2006 Óscar Muñoz-García, Asunción
Gómez-Pérez

Included new organization and protocols

0.8 4-12-2006 Óscar Muñoz García, Pilar López
Atau

Included J2EE

0.9 14-12-2006 Óscar Muñoz García Note on Sources and Original Contributions

1 19-12-2006 Óscar Muñoz García, Holger
Lewen, Carlos Buil Aranda

POP3, IMAP, SMTP, CVS, SVN, RPC, RMI,
CORBA, IDL, JDBC, ODBC and Jabber

1.1 21-12-2006 Óscar Muñoz García, Marta
Sabou

Web Services, Semantic Web Services

1.2 22-12-2006 Óscar Muñoz García, Peter
Haase

Included DIG

1.3 13-2-2007 Óscar Muñoz García Document changes according to Bled
meeting

1.4 14-2-2007 Óscar Muñoz García, Walter
Waterfeld

WebDAV, UDDI, ebXML, Subversion, SOAP,
WSDL

1.5 19-2-2007 Óscar Muñoz García, Walter
Waterfeld, Yimin Wang

Included XQuery, XML-Schema, SPARQL

1.6 20-2-2007 Óscar Muñoz García, Walter
Waterfeld, Jos Lehmann, Carola

Catenacci

Included XQJ, Social protocols through the
literature on collaboration

Page 4 of 102 NeOn Integrated Project EU-IST-027595

1.7 21-2-2007 Óscar Muñoz García, Jos
Lehmann, Carola Catenacci,

Moritz Weiten

Conclussions on social protocols, OSGI

1.8 26-2-2007 Óscar Muñoz García, Walter
Waterfeld

SDO, SCA, SA-WSDL, WS-Policy, WS-
Security,

1.9 1-3-2007 Óscar Muñoz García Language corrections

2.0 16-3-2007 Asunción Gómez Pérez, Raúl
García Castro, Óscar Muñoz

García

Changes in Executive Summary, Introduction
and Conclusions

2.1 21-3-2007 Óscar Muñoz García, Saartje
Brockmans, Holger Lewen, Peter

Haase

Queries in F-Logic, Languages for working
with Agents, DIG

2.2 25-3-2007 Óscar Muñoz García, Carlos Buil
Aranda, Walter Waterfeld, Miguel

Esteban, Marta Sabou, Ángel
López

Changes in: RPC, IDL, CORBA, RMI, JDBC,
ODBC, WebDAV, XML Schema, Web

Services, WS-Security, WS-Policy, SA-
WSDL, SCA and SDO, WS-DAI, Web

services, JDO, Hibernate

2.3 30-3-2007 Óscar Muñoz García, Valentina
Pressuti

Requirements related to collaborative
aspects

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 5 of 102

2007 © Copyright lies with the respective authors and their institutions.

Executive Summary

Within the task T5.2 (in WP5), we intend to list protocols and techniques for exchanging and
sharing ontologies and related metadata. These protocols and techniques support collaborative
construction and dynamic evolution of networked ontologies. The networked ontologies are in
environments where geographically distributed teams carry out re-engineering, alignment,
merging, learning and evaluation activities. The identification of protocols and techniques for
exchanging and sharing information is crucial for this task.

The title “NeOn protocols for exchanging and sharing ontologies” could be seen a bit misleading
because it could seem that we are going to describe or define protocols to be used in the NeOn
project in this deliverable. It will be in WP6 where protocols and techniques that will be used in the
NeOn architecture will be defined. So, the aim of this deliverable is to enumerate and describe
some protocols, formats and standards that could serve as input to WP6. Some of them are
already chosen in WP6, others could be taken into account in a future for implementing new
features according to future needs.

The method used for deciding which type of protocols and techniques for exchanging and sharing
information in the literature are going to be included in this deliverable is to analyse the
requirements already established in D6.1.1 “Requirements on NeOn Architecture”. The analysis of
D6.1.1 allowed us to identify a list of potential NeOn needs related to protocols, formats and
standards for exchanging and sharing information (e.g., protocols for accessing remote services,
version management protocols, etc.). For each particular type of protocol and technique, we have
included widely used and/or standardized realizations as well as new ones that are being currently
proposed in other research projects. Out of the scope of this deliverable is to review and analyse
them in depth and to provide a recommendation to WP6.

Another important aspect is to analyse protocols from a social component of collaboration. Since in
WP2, deliverable D2.1.1, include a section on social protocols trough the literature on
collaboration, with the goal of doing the deliverable self-contained, we have also included a
summary of the content presented there. Again, it is out of the scope of this deliverable to decide
the collaboration process to be used in NeOn, which is the goal of WP2.

In summary, the role of this document is to analyse the state of the art of technical and social
protocols and techniques and related issues (such as formats and standards) for exchanging and
sharing information according to the needs identified in D6.1.1. To define the technical NeOn
protocols for exchanging and sharing ontologies and social protocols are out of the scope of this
deliverable, so, they will be defined in WP6 and WP2 respectively.

Note on Sources and Original Contributions

The NeOn consortium is an inter-disciplinary team, and they need to have deliverables self-
contained and comprehensible to all partners; therefore some deliverables thus necessarily include
state-of-the-art surveys and associated critical assessment. Where there is no advantage in
recreating such materials from first principles, the partners follow standard scientific practice and
occasionally make use of their own pre-existing intellectual property in such sections. In the
interests of transparency, we identified below the main sources of such pre-existing materials in
this deliverable:

• Sections 3.3.1.6 and 3.3.1.6.1 contain material adapted from (Sabou, 2006)

• Section 4 contain material summarized from NeOn Deliverable D2.1.1.

Page 6 of 102 NeOn Integrated Project EU-IST-027595

Table of Contents

NeOn Consortium ..2
Work package participants ...3
Change Log ..3
Executive Summary...5
Table of Contents...6
List of figures ...8
1. Introduction ..9
2. Sharing and exchanging needs..11

2.1 The concepts “share” and “exchange” ...11
2.2 Technical Requirements ..12

2.2.1 Requirements for accessing remote services...13
2.2.2 Requirements for accessing remote files ...14
2.2.3 Requirements for accessing relational databases..14
2.2.4 Requirements for accessing XML Sources ..14
2.2.5 Requirements for accessing ontological resources..14
2.2.6 Requirements for having a directory of resources and services ..15
2.2.7 Requirements for having version management capabilities...15
2.2.8 Requirements for having notification capabilities ...15
2.2.9 Requirements for having reasoning and querying capabilities...16
2.2.10 Requirements for having remote plug-in installation capabilities ...16

2.3 Requirements related to collaborative aspects ..17
3. Technical Protocols and Techniques for Exchanging and Sharing Information.................18

3.1 Data access protocols..19
3.1.1 Access remote files...19

3.1.1.1 GridFTP .. 19
3.1.1.2. ByteIO .. 20
3.1.1.3. WebDAV .. 20

3.1.2 Access relational databases ...22
3.1.2.1 WS-DAIR .. 22
3.1.2.2. JDBC (Java Database Connectivity) .. 24
3.1.2.3 ODBC (Open Database Connectivity) ... 25
3.1.2.4 JDO ... 25
3.1.2.5 Hibernate .. 27

3.1.3 Access XML Sources..29
3.1.3.1 WS-DAIX... 29
3.1.3.2 XML-Schema .. 30
3.1.3.3 XQuery .. 31
3.1.3.4 XQJ ... 33

3.1.4 Access Ontological Resources...33
3.1.4.1 WS-DAI-RDF(S).. 33
3.1.4.2 DIG.. 34

3.1.5 Query Languages ...35
3.1.5.1 SPARQL ... 35
3.1.5.2 Queries in F-Logic... 36

3.2 Version management protocols ...36
3.2.1 Concurrent Versions System (CVS) ...37
3.2.2 Subversion (SVN) ...37

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 7 of 102

2007 © Copyright lies with the respective authors and their institutions.

3.3 Service access protocols, formats and frameworks...38
3.3.1 Access remote services..38

3.3.1.1 RPC (Remote Procedure Call) .. 40
3.3.1.2 Interface Definition Language (IDL) .. 40
3.3.1.3 RMI (Remote Method Invocation) ... 41
3.3.1.4 CORBA (Common Object Request Broker) .. 41
3.3.1.5 J2EE ... 42
3.3.1.6 Web Services .. 43

3.3.1.6.1 Semantic Web Services ... 46
3.3.1.6.2 WS-DAI (Web Services Database Access and Integration) 52
3.3.1.6.3 WS-Security .. 53
3.3.1.6.4 WS-Policy ... 53
3.3.1.6.5 SCA and SDO ... 53

3.3.2 Access service directories and registries ...54
3.3.2.1 UDDI ... 54
3.3.2.2 ebXML registry .. 55

3.4 Notification and syndication protocols..56
3.4.1 Notification protocols ..56

3.4.1.1 Simple Mail Transfer Protocol (SMTP) .. 56
3.4.1.2 Post Office Protocol (POP) ... 56
3.4.1.3 Internet Message Access Protocol- Version 4rev1 (IMAP) ... 57
3.4.1.4 Jabber ... 58
3.4.1.5 INFOD ... 58

3.4.2 Syndication protocols and formats ...59
3.4.2.1 ICE .. 60
3.4.2.2 RSS... 63
3.4.2.3 Atom.. 67

3.5 Network communication protocols ...70
3.5.1 Languages for working with agents..70

3.5.1.1 Agent Communication Language (ACL).. 70
3.5.1.2 Knowledge Query and Manipulation Language (KQML) ... 72

3.5.2 P2P Protocols ...74
3.5.2.1 JXTA 2.0 ... 75
3.5.2.2 Gnutella 0.6... 77
3.5.2.3. Napster ... 78
3.5.2.4. Bittorrent .. 78
3.5.2.5 Kademlia ... 80
3.5.2.6 FastTrack .. 81
3.5.2.7 Chord .. 82

3.6 Remote plug-in installation protocols, standards and platforms...82
3.6.1 OSGI ...82

4. Social protocols through the literature on collaboration...85
4.1 Introduction ..85
4.2 Requirements for Collaboration ...87
4.3 Tools for Collaboration Support ...89
4.4 Matching requirements and tools ...92
4.5 C-ODO ...94

5. Conclusions ...96
References..98

Page 8 of 102 NeOn Integrated Project EU-IST-027595

List of figures

Figure 1: ByteIO interfaces, taken from (Berry, et al., 2006) .. 20
Figure 2: DeltaV – Overview ... 22
Figure 3: Simple WS-DAIR usage example, taken from (Antonioletti, et al., 2006) 23
Figure 4: WS-DAIR interfaces, taken from (Berry, et al., 2006)... 24
Figure 5: JDBC Architecture ... 24
Figure 6: ODBC Architecture .. 25
Figure 7: JDO Architecture ... 26
Figure 8: Hibernate architecture ... 28
Figure 9: WS-DAIX interfaces, taken from (Berry, et al., 2006) ... 30
Figure 10: WS-DAI-RDF(S) ontology access interfaces. .. 34
Figure 11: RPC call flow ... 40
Figure 12: Reference model architecture of CORBA (Schmidt's) ... 41
Figure 13: How CORBA works ... 42
Figure 14: Overview of Web Service Standards. .. 44
Figure 15: Workflow for binding the closest medical supplier ... 46
Figure 16: The OWL-S Service Ontology. (Note that the arrows in this picture are directed
according to the OWL-S model even if their direction might seam counterintuitive.)...................... 47
Figure 17: Profile to Process bridge.. 49
Figure 18: Web service domain ontology.. 51
Figure 19: Elements of the WS-DAI model, taken from (Atkinson, et al., 2006) 52
Figure 20: UDDI datamodel for services relationship diagram ... 55
Figure 21: INFOD subscription-based data access, taken from (Davey, et al., 2006).................... 59
Figure 22: INFOD Interfaces... 59
Figure 23: Basic ICE capabilities .. 61
Figure 24: Full ICE capabilities ... 61
Figure 25: RSS 1.0 Graph .. 65
Figure 26: OSGI Architecture.. 83

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 9 of 102

2007 © Copyright lies with the respective authors and their institutions.

1. Introduction

The goals of WP 5 are to provide two different methodologies, a methodology to support the
collaborative construction and dynamic evolution of contextualized networked ontologies in
distributed environments and a methodology for the development of large scale Semantic Web
applications.

These methodologies will be described in detail in deliverables D5.4.1 and D5.5.1, due for months
24 and 30 respectively, in the middle of the project duration. Nevertheless, work has already
started and guides have to be produced for other work packages. Therefore, the goal of WP5 is
also to provide some previous guidance that can help both in the ontology development tasks of
the use cases as in the development of the NeOn platform before having full-defined
methodologies.

The deliverables produced in month 6 include the requirements of the NeOn toolkit (D6.1.1) and
the requirements for the use cases (D7.1.1 and D8.1.1). These requirements clearly show a need
for exchanging ontologies and data both in the case of the NeOn toolkit and in the case of ontology
development in the use cases.

Although new protocols and techniques can be developed for exchanging these ontologies and
data, there are existing alternatives that can be reused to minimize effort and to increase
standardization in the NeOn products.

Therefore, this deliverable provides an enumeration of existing protocols and techniques for
exchanging ontologies and information so the participants in the other work packages can analyze
them either for reusing them or for learning from others experiences facing similar problems.

The enumeration of protocols and techniques presented in this deliverable do not pretend to be
exhaustive, only the most relevant protocols and techniques for each topic have been selected. We
also have selected from all the existing protocols and techniques those more relevant to the use
cases and the NeOn toolkit: data access protocols, version management protocols, collaboration
protocols, service access protocols, network communication protocols, notification protocols, and
syndication protocols.

In this stage of the development of the methodologies for developing NeOn ontologies and NeOn
toolkit, it is not possible to recommend from these protocols or techniques which ones to use in the
current NeOn scenarios. Therefore, it is out of the scope of this deliverable analyzing them in depth
and is in the hands of the implementers of the NeOn toolkit and of the use cases to choose or
adapt the ones that better suit their scenario.

Page 10 of 102 NeOn Integrated Project EU-IST-027595

The deliverable is organized as follows:

• Chapter 2 identifies those requirements in D6.1.1 that require exchanging or sharing of
information for being implemented inside the context of the NeOn Toolkit. The
classification is the following:

o Accessing remote services.

o Accessing remote files.

o Accessing relational databases.

o Accessing XML sources.

o Accessing ontological resources.

o Having a directory of resources and services.

o Having version management capabilities.

o Having notification capabilities.

o Having reasoning and querying capabilities.

o Having remote plug-in installation capabilities.

• Chapter 3 describes some technical protocols or techniques that could solve the
exchanging and sharing needs of the NeOn Toolkit.

• Chapter 4 presents a summary of social protocols through the literature on collaboration as
a state of the art in social protocols for exchanging and sharing information.

• Finally, we conclude the document.

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 11 of 102

2007 © Copyright lies with the respective authors and their institutions.

2. Sharing and exchanging needs

Starting from the requirements in D6.1.1 we will identify those that are related with the needs of
sharing and exchange data or information. We will also explain briefly why for solving the specific
requirement a protocol is needed. We start with the definition of sharing and exchange.

2.1 The concepts “share” and “exchange”

Since the role of this document is to analyse the state of the art (SoA) of protocols and techniques
for exchanging and sharing information, we first define a protocol as “a set of rules determining the
format and transmission of data”.

To support the sharing and reuse of formally represented knowledge among AI systems, it is
useful to define the common vocabulary in which shared knowledge is represented. A specification
of a representational vocabulary for a shared domain of discourse — definitions of classes,
relations, functions, and other objects — is called an ontology (Gruber, 1993). In this excerpt from
a Gruber’s research paper, we find the most repeated use of “share” in the Artificial Intelligence
literature, i.e., to “share knowledge”. To “share” is defined by the Merriam-Webster Online
Dictionary1 as “to have, to get or to use in common with another or others. Share usually implies
that one as the original holder grants to another the partial use, enjoyment, or possession of a
thing”. If we share a parcel of knowledge or a domain of discourse, that means that we have some
knowledge in common or that we pertain to the same domain as the others. To “share ontologies”
or “share protocols” are as well common collocations in the AI domain, which means that we have
or use the same, totally or partially, ontologies or protocols as the others. To put it in simple words:
a piece of information is there and an A user can use it for its own purposes, but others users (B,
C, etc.) can also take advantage of it for their own purposes. Or, as the second part of the
definition of “share” assumes, the A user permits B and C users the partial use or the possession
of that piece of information.

In the following cite by the same author, the term “share” is illustrated in a clear way: Collaboration
on the net is more than teleconferencing. Whenever we communicate or cooperate, we share
context and content. On the net, however, some of the shared context and content is represented
in the digital medium. As a consequence, the network infrastructure can give us more than a place
to create and share information. It can also tell us what others are doing in that space; help us
inform each other of relevant changes; track how information is found and used; and offer a
context for discussions about shared content and how it is used. We don't just share
information; we share the process of accessing it, searching it, evaluating it, and using it
(Gruber, 1995). This definition adds a new component, i.e., that every user (A, B, and C)
contributes with a piece of information and put it at the disposal of the rest, who can benefit from it.

The word “exchange” is very often combined with “information”, “data”, as in the following definition
of the XML/RDF languages: (…) XML/RDF were investigated as a part of the evaluation effort
because of the significance of the web and web-based applications. It is clear that the web is
rapidly becoming the primary method for the exchange of information and data, and that XML is
currently the leading candidate for a generic language for the exchange of semi-structured
objects (…)2.The term “exchange” is defined by the MWO as “to part with, give, or transfer in
consideration of something received as an equivalent” or “to have replaced by other merchandise”,
among other meanings. To the question of Why do we create ontologies? Gruber answers: (…) to
enable data exchange among programs. Then, if A, B and C want to exchange something (data,
for example), A gives data to B and receives data from B as consideration; and B gives data to C
and receives it from B, and so on. One can also infer from Gruber’s statement that we need a
common platform or space (or even specific requirements) so that the exchanging process can

1 Merriam-Webster Online: http://www.m-w.com/
2 An Evaluation of Ontology Exchange Languages for Bioinformatics: http://xml.coverpages.org/OntologyExchange.html

http://www.m-w.com/
http://xml.coverpages.org/OntologyExchange.html

Page 12 of 102 NeOn Integrated Project EU-IST-027595

take place successfully, what means that we need to “share” the same bases that enable the
“exchanging”.

Finally, we want to consider the next example, in which “share” and “exchange”, are both
combined with the word “knowledge”: Short for Knowledge Query and Manipulation Language.
KQML is a language and protocol for exchanging information and knowledge. (…) It is both a
message format and a message-handling protocol that supports run-time knowledge sharing
among agents. KQML can be used as a language for an application program to interact with an
intelligent system or for disparate intelligent systems to share knowledge in support of
cooperative problem solving. (…)3. In this sense, we can even understand a chronological relation
between both concepts, since we need to “exchange knowledge” in the first place, so that we have
“the same knowledge”, in order to “share it” afterwards.

As a conclusion, we could state that both concepts are very closely related. The clearest difference
between them is that “exchange” implies a transmission of something, going in one or the other
direction (A gives to B or B receives from A, or both), and “share” means that all partners move in
the same direction, making use of one thing or a set of things which have been placed in the
centre, to which all have access and can even use at the same time. We could represent both
concepts in the following schematic way:

2.2 Technical Requirements

In this section we present a table in which we have identified those requirements identified in
D6.1.1 that are related somehow with protocols and techniques for sharing and exchanging
information. We have made a classification according to different needs of exchanging and
sharing. Some requirements are related to more than one need because we can infer different
needs from them at the same time. The classification is the following:

• Accessing remote services.

• Accessing remote files.

• Accessing relational databases.

• Accessing XML sources.

• Accessing ontological resources.

• Having a directory of resources and services.

• Having version management capabilities.

• Having notification capabilities.

• Having reasoning and querying capabilities.

• Having remote plug-in installation capabilities.

3 Webopedia, the Online Encyclopaedia for Computer Technology: http://www.webopedia.com/TERM/K/KQML.html

http://www.webopedia.com/TERM/K/protocol.html
http://www.webopedia.com/TERM/K/runtime.html
http://www.webopedia.com/TERM/K/agent.html
http://www.webopedia.com/TERM/K/KQML.html##
http://www.webopedia.com/TERM/K/KQML.html

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 13 of 102

2007 © Copyright lies with the respective authors and their institutions.

To ease the reading of this section, we created for each of the above categories a table where:

o Column “Req#” presents the requirement number already identified in D6.1.1.

o Column “Title” gathers a short description of the requirement identified in D6.1.1.

o Column “Description” includes the full description of the requirement identified in D6.1.1.

o Column “Relation with protocols” explains why for solving the specific requirement a
protocol is needed.

2.2.1 Requirements for accessing remote services

Req # Title Description Relation with protocols
2.1.1.4 Inter-layer

communication
mechanism

The NeOn architecture layers shall be at the
same time service functionality clients and
producers for each other. Natural flow of
architecture service invocation goes from
the higher level layers to the lower level
layer. On the other hand, push services, e.g.
information refresh may be triggered
upwards by lower level layers, in this case,
the distributed repository layer.
The necessary infrastructure, e.g. a service
bus, shall be implemented to allow this kind
of service invocation

The services in every layer that are
accessible in the network must be
implemented to allow remote invocation.

2.1.1.6 Annotation
service

The second layer of the NeOn architecture
shall include annotation mechanisms and
associated services

The associated services must be available
in the network according to some protocol.

2.1.1.7 Text mining
service

The second layer of the NeOn architecture
shall include text mining services for human
language information retrieval

The text mining services must be available
in the network according to some protocol.

2.1.1.8 Summarization
service

The second layer of the NeOn architecture
shall include an informational service
briefing ontology information

The informational service must be available
in the network according to some protocol.

2.1.1.9 Context
service

The second layer of the NeOn architecture
shall include a service to gather and process
context information for later exploitation

The service for gather and process context
information must be available in the network
according to some protocol.

2.1.1.10 Reasoning
service

The second layer of the NeOn architecture
shall include reasoning mechanisms and
associated services.

The reasoning services must be available in
the network according to some protocol.

2.1.1.11 Query service The second layer of the NeOn architecture
shall include query mechanisms and
associated services.

The querying services must be available in
the network according to some protocol.

2.1.1.12 Question
formulation
Service

The NeOn toolkit shall provide a question
formulation service that eases query
formulation by allowing more natural ways of
expressing queries, e.g. natural language

The question formulation service must be
available in the network according to some
protocol.

2.1.1.13 Provenance
service

The NeOn middleware layer shall include a
service which keeps track of the precedence
of ontologies, i.e. how, when, and by whom
ontologies evolve across their lifecycle.

The provenance service must be available in
the network according to some protocol.

3.2.1.1 Distributed
Repository
access API

NeOn distributed repository API shall
provide access to knowledge contained in
the repository

The NeOn distributed repository API must
be accessible in the network by some kind
of service.

3.2.5 Middleware
layer
accessible by
an API

The middleware layer API shall provide
programmatic access to the NeOn
distributed components

The NeOn middleware layer API must be
accessible in the network by some kind of
service.

Page 14 of 102 NeOn Integrated Project EU-IST-027595

2.2.2 Requirements for accessing remote files

Req # Title Description Relation with protocols
2.1.1.5 Support for

integration of
heterogeneous
information
sources

The following types of distributed information
resources shall be integrated in the NeOn
knowledge model:

- Unstructured content, e.g. text.
- Structured knowledge with no clear

semantics, e.g. DBs, catalogues.
- Formal knowledge (ontologies and

data)
- Semantic annotations

Some information sources use to be
expressed in files (e.g. text), so files should
be accessible remotely.

2.1.1.15 Stand-alone
server

Ontologies and data shall be loaded in a
stand-alone server, based on OntoStudio
and OntoBroker, which implements the
backend for the reasoning service and the
ontology editor.

It should be possible to obtain the ontologies
and data in a file format from a remote
server.

2.2.3 Requirements for accessing relational databases

Req # Title Description Relation with protocols
2.1.1.5 Support for

integration of
heterogeneous
information
sources

The following types of distributed information
resources shall be integrated in the NeOn
knowledge model:

- Unstructured content, e.g. text.
- Structured knowledge with no clear

semantics, e.g. DBs, catalogues.
- Formal knowledge (ontologies and

data)
- Semantic annotations

The NeOn toolkit will access to relational
databases, so a protocol for accessing
relational databases must be used.

2.2.4 Requirements for accessing XML Sources

Req # Title Description Relation with protocols
2.1.1.5 Support for

integration of
heterogeneous
information
sources

The following types of distributed information
resources shall be integrated in the NeOn
knowledge model:

- Unstructured content, e.g. text.
- Structured knowledge with no clear

semantics, e.g. DBs, catalogues.
- Formal knowledge (ontologies and

data)
- Semantic annotations

The NeOn toolkit will access to XML sources,
so a protocol for accessing XML sources
must be used.

2.2.5 Requirements for accessing ontological resources

Req # Title Description Relation with protocols
2.1.1.5 Support for

integration of
heterogeneous
information
sources

The following types of distributed information
resources shall be integrated in the NeOn
knowledge model:

- Unstructured content, e.g. text.
- Structured knowledge with no clear

semantics, e.g. DBs, catalogues.
- Formal knowledge (ontologies and

data)
- Semantic annotations

For accessing ontological resources some
protocol is needed.

2.1.1.15 Stand-alone
server

Ontologies and data shall be loaded in a
stand-alone server, based on OntoStudio
and OntoBroker, which implements the
backend for the reasoning service and the
ontology editor.

This stand-alone server based on
OntoStudio and OntoBroker must be
covered with services that implement some
protocols for accessing the ontological
resources contained in it.

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 15 of 102

2007 © Copyright lies with the respective authors and their institutions.

2.2.6 Requirements for having a directory of resources and services

Req # Title Description Relation with protocols
2.1.1.1 Distributed

repository
layer

Information resources will be potentially
stored in a distributed repository managed by
this architecture layer. NeOn shall access
these resources transparently to their location

The distributed repository must have a
directory that describes the resources in it.
This directory must be accessible in the
network, according to some protocol.

2.1.1.2 Middleware
layer

This middleware layer between the NeOn
toolkit and the distributed repository shall
implement a number of services which allow
users to exploit the information stored in the
distributed repository

For exploit the information stored in the
distributed repository first an identification of
the resources in it must be done. So the
middleware layer must connect with a
directory according to some protocol.

3.2.1 Transparent
access to
information
resources

NeOn shall allow access to ontological and
non ontological information pieces
transparently from their location

A federation of registries or repositories can
give us the mechanisms needed to abstract
the resources independently of their location.
There are protocols that cover this
functionality.

3.2.1.2 Resource
transparent
storage

NeOn shall provide transparent access to
resource storage. The NeOn Distributed
Repository shall internally manage the
physical location where the resource is
actually stored.

Directories internally manage the physical
location where a resource is actually stored
itself.

3.2.1.3 Resource
transparent
load

NeOn shall provide a virtual file system which
abstracts away the actual resource location,
offering a virtual unique storage space

A directory can be view as a virtual file
system.

3.2.2 Access to the
different
kinds of
knowledge

NeOn shall provide access to the main four
different kinds of information i.e. unstructured
content, structure knowledge without a clear
semantics, formal knowledge (ontologies and
data), and semantic annotations

The directory must have descriptions of
resources that belong to this main four
different kind of information.

2.2.7 Requirements for having version management capabilities

Req # Title Description Relation with protocols
3.2.11.1.7 Ontology

collaborative
development

NeOn shall allow collaborative ontology
development

Protocols that support collaborative
development are needed.

3.2.11.1.7.1 Adoption of
CVS
development
model

NeOn shall adopt the CVS metaphor for
collaborative work on shared ontological
resources

Protocols that have at least the same
behaviour as CVS with respect to
collaborative work are needed.

3.2.11.1.7.1.1 Synchronization
of ontology
concurrent
updates

NeOn shall allow synchronization of
ontologies edited by multiple users

Protocols that allow synchronization of
resources edited by multiple users are
needed.

3.2.11.1.7.1.3 Ontology
versioning

NeOn shall provide support for ontology
versioning based on the CVS metaphor

Protocols that have at least the same
behaviour as CVS with respect to
versioning are needed.

3.2.11.1.7.1.3.1 Global
awareness of
local ontology
versioning

NeOn shall ease the adoption of new
versions of an ontology in an already
existing network of ontologies

Protocols that support versioning are
needed.

2.2.8 Requirements for having notification capabilities

Req # Title Description Relation with protocols
3.2.11.1.7 Ontology

collaborative
development

NeOn shall allow collaborative ontology
development

When a change is made there should be
capabilities for notify the changes made to
all the stakeholders. There are a lot of
protocols for notifying.

Page 16 of 102 NeOn Integrated Project EU-IST-027595

2.2.9 Requirements for having reasoning and querying capabilities

Req # Title Description Relation with protocols
2.1.1.15 Stand-alone

server
Ontologies and data shall be loaded in a
stand-alone server, based on OntoStudio
and OntoBroker, which implements the
backend for the reasoning service and the
ontology editor.

Protocols and languages for making
queries to the reasoners are needed.

3.2.12 Reasoning
with
networked
ontologies

The NeOn backend shall support
reasoning capabilities using the
aggregated knowledge contained in a set
of networked ontologies

The queries must be done at the same
time to a set of ontologies.

2.2.10 Requirements for having remote plug-in installation capabilities

Req # Title Description Relation with protocols
2.1.5.1 Service

oriented
architecture

NeOn shall offer a service oriented
interface in order to ease the inclusion of
new components into any of the three
architecture layers

The NeOn toolkit must implement
protocols that allow the remote installation
of new features.

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 17 of 102

2007 © Copyright lies with the respective authors and their institutions.

2.3 Requirements related to collaborative aspects

Req # Title Description Relation with protocols
2.1.1.1 Distributed

Repository
Layer

Information resources will be potentially
stored in a distributed repository managed
by this architecture layer.
NeOn shall access these resources
transparently to their
Location.

This layer should manage multiple and
concurrent access to the repository

2.1.1.2 Middleware
layer

This middleware layer between the NeOn
toolkit and the distributed repository shall
implement a number of services which allow
users to exploit the information
stored in the distributed repository.

Concurrency should be supported by
this layer.

2.1.1.3

NeOn toolkit
layer

User frontends and high level services shall
be supported by this layer.

This layer should support social
protocols associated with services for
collaborative workflows.

2.1.1.4

Inter-layer
communicatio
n mechanism

The NeOn architecture layers shall be at the
same time service functionality clients and
producers for each other. Natural flow of
architecture service invocation goes from the
higher level layers to the lower level layer.
On the other hand, push services, e.g.
information refresh may be
triggered upwards by lower level layers, in
this case, the distributed repository layer.
The necessary infrastructure, e.g. a service
bus, shall be implemented to allow this kind
of service invocation.

Protocols for supporting concurrency
should be implemented.

2.1.2.1

NeOn Editor

The NeOn toolkit layer shall provide an
ontology editor based on OntoStudio.

NeOn editor should support
collaborative editing.

2.1.2.2

NeOn
Browser

NeOn shall allow ontology browsing. Might
be integrated with the NeOn editor.

NeOn Browser should support multiple
users browsing the same ontology.

2.1.2.3

NeOn GUI

NeOn shall offer a user-friendly GUI to
functionalities and services

NeOn GUI should provide users with
easy access to collaborative
environments.

2.1.4.1

Compatibility
with several
platforms

The NeOn toolkit shall be compatible with
several platforms.

Protocols which support configurations
of users collaborating from different
platforms should be implemented.

2.4.1.4

Testing

Unit and functional tests shall be used to
check the software.

Unit and functional tests should include
collaborative aspects.

2.4.1.4.1

Stress testing

Stress testing using large, real-world
ontologies

Also include large, real-world teams.

3.2.1

Access to
Distributed
repository

Transparent access to information
resources.

Protocols for concurrent access has to
be considered.

3.2.4

Semantic
annotation

NeOn shall allow to Annotate information
sources

Support for collaborative annotation
should be implemented.

3.2.8

User profiling

NeOn shall accumulate information about
user profiles during system interaction
and provide a customized set of
functionalities according to that
profile.

Information about collaboration
between users should be used for user
profiling.

3.2.11

Lifecycle
support for
ontology
development

NeOn shall support knowledge acquisition
and ontology development.

NeOn ontology development is meant
to be collaborative. Hence, support for
coordination, cooperation, and in
generl collaborative protocols should
be provided.

Page 18 of 102 NeOn Integrated Project EU-IST-027595

3. Technical Protocols and Techniques for Exchanging and Sharing
Information

In this chapter we include for each need identified a set of protocols, languages, formats and
standards that aid to give a solution to the concrete need. The following table makes a relation of
each need with the correspondent set of protocols.

Need Set of protocols and techniques

Accessing remote services Access remote services

Accessing remote files Access remote files

Accessing relational databases Access relational databases

Accessing XML sources Access XML sources

Accessing ontological resources Access ontological resources

Having a directory of resources and
services

Access service directories and registries

Having version management capabilities Version management protocols

Having notification capabilities Notification and syndication protocols

Having reasoning and querying capabilities Query languages

Agent communication languages

Having remote plug-in installation
capabilities

Remote plug-in installation protocols, standards
and platforms

Also, for this deliverable we considered relevant P2P protocols since the applications and
technologies developed within NeOn for the management of Networked Ontologies and Metadata
(e.g. Oyster, KaonP2P) are distributed systems that rely on some P2P technology/protocol. The
last section talks about P2P protocols. In this chapter we make a selection of technologies that
have or had achieve success inside the software development community or those new
technologies that provide new value added function with respect to the previous.

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 19 of 102

2007 © Copyright lies with the respective authors and their institutions.

3.1 Data access protocols

3.1.1 Access remote files

In this section we include a list of protocols that allow for accessing remote files. These protocols
are potentially relevant for NeOn. There are a lot of protocols that let networked applications
access remote files. In this deliverable we make a selection of historical and well know
technologies commonly used in the Internet and several new technologies such as WebDAV or
grid protocols.

3.1.1.1 GridFTP
GridFTP is a protocol extension of the file transfer protocol (Postel, et al., 1985) for grid
environments (Bester, et al., 2003). GridFTP is a grid-enabled implementation of the FTP protocol
that provides high-performance, secure and reliable data transfer functionalities based also in
standards (Horowitz, et al., 1997) (Hethmon, et al., 1998), which is optimized for high-bandwidth
wide-area networks. The current GridFTP protocol specification is now a "proposed
recommendation" document in the Open Grid Forum.

GridFTP uses basic Grid security on both control (command) and data channels. Other features
include multiple data channels for parallel transfers, partial file transfers, third-party (direct server-
to-server) transfers, reusable data channels, and command pipelining.

This grid-based file transfer protocol is used for moving massive amounts of data between remote
entities, that provides an added value to this transfers leveraging on the grid infrastructure, and
could be of interest for the NeOn project.

FTP Extensions
The GridFTP specification extends the traditional FTP protocol defined in (Postel, et al., 1985)
providing two new ways of interaction between servers and clients:

The parallel data transfer method allows several data transfers between different entities to happen
simultaneously, i.e. to transfer two different files at the same time.

The striped data transfer method allows several data transfers of the same data source to happen
simultaneously, i.e. to transfer different parts of the same file at the same time.

In order to realize these new transfer methods, the specification defines new commands, options,
features and a new data transfer mode.

New options and features are provided for fine tuning these commands, and for enabling the
parallel and striped data transfer methods.

In order to realize the striped and parallel data transfer methods a new data transfer mode is
defined: the extended transfer mode. This transfer mode supports out-of-sequence data delivery,
and partial data transmission per data connection. The extended block mode extends the
predefined FTP block mode header to provide support for these, as well as large blocks and end-
of-data synchronization.

Page 20 of 102 NeOn Integrated Project EU-IST-027595

3.1.1.2. ByteIO
The ByteIO specification (Morgan, et al., 1995) describes a set of interfaces that provide users with
a concise, standard way of representing data resources as POSIX-like files. This provides a level
of access transparency which is important in a distributed system. Clients can leverage these
interfaces to provide users with a convenient way of interacting with data in a way which does not
require them to adapt to a new model of data access or, in some cases, does not even require
them to realise that their data resources are indeed on the Grid.

Figure 1: ByteIO interfaces, taken from (Berry, et al., 2006)

NeOn I/O components could leverage these interfaces to seamlessly accessing remote files in a
fine-grained way without explicitly having to deal with communication details such as establishing a
connection, keeping it alive and closing it when finished.

3.1.1.3. WebDAV
In the context of NeOn ontological resources might be spread around different locations. Because
the development of these resources cannot be controlled in a central place or in a central
controlling component it is important to have systems that maintain information about the history
and current state of a resource. WebDAV is a protocol that provides such means and thus it is
important in the context of

• Requirements for accessing remote files,

• Requirements for accessing ontological resources,

• Requirements for having a directory of resources and services,

• Requirements for having version management capabilities.

WebDAV (Web-based Distributed Authoring and Versioning) is a general-purpose protocol for
accessing documents on a remote server. As a standard for collaborative web authoring, WebDAV
is based on HTTP. Common procedures such as the creation, retrieval and deletion, as well as the
organization of documents are supported. Users can edit web resources with the same ease as
they can edit resources in a local directory. Example application areas are Instant Web publishing,
Workgroups, Content Management, and Strategic File Management.

As it is considered as an extension HTTP the WebDAV standard is owned by the Internet
Engineering Taskforce (IETF). It consists of the following parts:

• HTTP Extensions for Distributed Authoring – WebDAV4.

• Versioning Extensions to WebDAV: DeltaV protocol5.

• Web Distributed Authoring and Versioning (WebDAV) Access Control Protocol6.

4 RFC 2518: HTTP Extensions for Distributed Authoring - WebDAV
5 RFC 3453: Versioning Extensions to WebDAV: DeltaV protocol
6 RFC 3744: Web Distributed Authoring and Versioning (WebDAV) Access Control Protocol

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 21 of 102

2007 © Copyright lies with the respective authors and their institutions.

• WebDAV SEARCH.

The WebDAV protocol has the following important functionality:

• Collections. In contrast to HTTP's URL resource access of a single file, WebDAV offers the concept
of organizing any number of individual resources into WebDAV collections. A collection can be
compared to a file system directory, providing efficient means for accessing and structuring
resources. Managing collections and resources of remote repositories opens a vast field of new
possibilities for authoring documents and tools in network environments.

• Locking. WebDAV offers various concepts for collaboration on resources which may be accessed
by any number of users simultaneously.

• Properties. To help to make resources more valuable, WebDAV allows properties, or "metadata", to
be assigned to any type of data. This is where XML's inherent extensibility is particularly suited. Here
again, the possibilities exceed the scope of helpful retrieval mechanisms, or references, by far, and
leave adequate room for further developments.

• Security (ACL). "In distributed authoring scenarios resources may be accessible by multiple
principals. To control how these principals can access and alter a resource, access controls are
needed. These controls define what actions a particular principals is allowed to exercise on a
particular resource."7
The ACL standard defines privileges on a resource basis. Each resource can be individually
secured by different access rights.

• Versioning and Configuration Management (DeltaV). The DeltaV protocol is an extension to the
WebDAV protocol offering remote versioning and configuration management of documents stored in
a web server. It offers a quite comprehensive set of versioning features.

o explicit versioning

o automatic versioning for versioning-unaware clients

o version history management

o workspace management

o baseline management

o activity management

o URL namespace versioning

As shown in Figure 2 it defines four implementation levels, implementing 11 features. There
is a core package which implements base functionality for version control of resources and
reporting resource changes. Basic functionality for labelling, updating, checking in and out
resources and maintaining their version history are provided in intermediate layers. More
enhanced functionality like merging different versions of resources are labelled as
advanced features in a top layer software component.

7 WebDAV Access Control Goals: http://www.webdav.org/acl/goals/draft-ietf-webdav-acl-reqts-00.txt

http://www.webdav.org/acl/goals/draft-ietf-webdav-acl-reqts-00.txt

Page 22 of 102 NeOn Integrated Project EU-IST-027595

Figure 2: DeltaV – Overview

Interestingly the popular advanced version control system subversion (SVN) uses a subset of the
DeltaV protocol.

• WebDAV SEARCH. The WebDAV SEARCH standard defines a WebDAV method and a query
language to search with a WebDAV namespace for resources based on Boolean expressions on
properties and content.

3.1.2 Access relational databases

In this section we include a list of standards that allow for accessing relational databases. ODBC is
historically the first standard for giving a uniform access to databases management systems and it
is well established inside the Microsoft oriented programmers community. JDBC is the analog
standard inside the Java community.

3.1.2.1 WS-DAIR
The “Web Services Data Access and Integration – The Relational Realization (WS-DAIR)
Specification, Version 1.0” (Antonioletti, et al., 2006) is a realization of the WS-DAI base
specification aimed to providing data access to relational data resources, that is, the realization
defines a web service based mechanism for accessing relational databases. The specification is
being standardized in the Grid community, specifically in the Open Grid Forum.

Organization

The WS-DAIR specification provides the means for querying remote relational databases using
SQL and exploiting the results in the client side. The specification defines a set of interfaces for
dealing with the results of such queries with different granularity, as it is shown in Figure 3.

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 23 of 102

 Relational
Data Service Consumer

Reference to SQLResponseAccess

SQLAccessDescription
 ……, etc

SQLAccessFactory
Relational
Database

SQLResponse
Data Service

SQLResponseDescription
 ……, etc

SQLResponseFactory

SQLRowsetFactory(
DataResourceAbstractName,
portTypeQName,
ConfigurationDocument,
Position, Count)

Reference to SQLRowSetAccess

Mechanism for
generating a RowSet

SQLRowSet
Data Service

SQLRowSetDescription
 ……, etc

SQLRowSetAccess

GetTuples (
 DataResourceAbstractName,
 Position,
 Count)

SQLRowSet data

Figure 3: Simple WS-DAIR usage example, taken from (Antonioletti, et al., 2006)

The specification provides three access alternatives for accessing the results of an SQL query that
has been pushed to remote relational databases. The first alternative relies in the SQLAccess
interface, which provides direct data access functionalities for accessing relational databases by
means of SQL queries, that is, the results sets obtained from the query are directly returned to the
client embedded in the response.

The second alternative consists in providing direct data access to rowsets of a result set obtained
from a query, that is, instead of returning the complete result set to the client (as in the previous
alternative), the client browses the result set as needed, having the rowset as the data transfer
unit. In order to do so, the client has to use the indirect data access capabilities offered by the
SQLAccessFactory interface, which provides the means for making available the result set through
services which implement the SQLResponseAccess interface. This latter interface provides direct
data access functionalities to the result set.

The last alternative follows the same scheme of the second one, but this time at rowset level:
instead of direcly accessing to a rowset, providing direct data access to the different columns of a
rowset. The client would use the SQLResponseFactory interface for providing indirect data access
to a rowset, making it available through a service which implements the SQLRowsetAccess
interface, an interface that provides direct data access functionalities to the columns of a rowset.

Figure 4 shows the interfaces defined in the WS-DAIR realization, and the messages and
properties provided by each one of them.

2007 © Copyright lies with the respective authors and their institutions.

Page 24 of 102 NeOn Integrated Project EU-IST-027595

Figure 4: WS-DAIR interfaces, taken from (Berry, et al., 2006)

3.1.2.2. JDBC (Java Database Connectivity)
JDBC is an API that allows the users to perform operations to databases using the Java
programming language. JDBC allows the users to do these operations independently from the
language in which the users have to access the database management system. The JDBC API
offers an API for application writers and a lower level API for driver writers. Figure 5 shows how the
applications can access the databases via the JDBC API using pure Java JDBC drivers. The left
side of Figure 5 shows how a driver converts directly the JDBC calls into the network protocol used
by the DBMS. The right side of the figure converts the calls into a middleware protocol which is
translated to a DBMS protocol by this middleware. Applications can also connect to databases
using ODBC drivers and other existing database drivers via JDBC.

Figure 5: JDBC Architecture

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 25 of 102

3.1.2.3 ODBC (Open Database Connectivity)8

Open Database Connectivity provides an API method for using database management systems.
The goal of ODBC is to provide access to those database management systems independently of
the programming languages, operating systems and database systems. A user is able to write a
program that access to databases without knowing the particularities of the DBMS or the system in
which is running the server. An implementation of ODBC contains the applications that will access
to the database, a core library that acts as interpreter between the applications and the database
management system and one or more database drivers that allow the bridges to access the
databases. ODBC also allows accessing other types of data sources rather than databases, e.g.
Excel files. Figure 6 depicts the ODBC architecture. In this figure an application can access
through the ODBC driver to different DBMS. The ODBC driver connects to several controllers that
will access to the databases.

Figure 6: ODBC Architecture

3.1.2.4 JDO

Introduction
In object-oriented programming, when utilizing Java, data is transient, meaning that it usually only
resides in memory and will be destroyed when the application ends. In developing many
applications, this is a problem because a requirement or goal is for the data to remain persistent,
meaning continuing to exist outside of the (single) application instance. Traditional data stores
such as databases, files systems, and so forth are generally used for persisting data. In relational
databases, data is stored in tables containing columns. In Java, an object-oriented language, data
is manipulated as objects. Clearly defined relationships between Java objects and database
structures do not exist. As a result, programmers must create relationships between objects being
utilized in their applications and the data stores the data actually resides in.

Java Data Objects (JDO) is a specification developed to enable transparent persistence of Plain
Old Java Objects (POJO9). It is a high-level API that allows applications to store Java objects in a
transactional data store by following defined standards. This API can be used to access data on
platforms such as desktops, servers, and embedded systems. JDO provides a means for treating

8 Available from: http://www.uv.es/jac/guia/gestion/gestion3.htm
9 A term coined by Martin Fowler, Rebecca Parsons, and Josh MacKenzie in September 2000

2007 © Copyright lies with the respective authors and their institutions.

http://www.uv.es/jac/guia/gestion/gestion3.htm

Page 26 of 102 NeOn Integrated Project EU-IST-027595

data stored in a relational database as Java objects and provides a standard means to define
transactional semantics associated with these objects.

JDO is being developed as a Java Specification Request in the Java Community Process. The
original JDO 1.0 is JSR-1210 and the current JDO 2.0 is JSR-243 11

Architecture
The high-level JDO API is designed to provide a transparent interface for developers to store data,
without having to learn a new data access language (such as SQL) for each type of persistent data
storage. JDO can be implemented using a low-level API (such as JDBC) to store data. It enables
developers to write Java code that transparently accesses the underlying data store, without using
database-specific code.

The two main objectives of the JDO architecture, which is shown in Figure 7, are to provide Java
application developers a transparent Java technology-centric view of persistent information and to
enable pluggable implementations of data stores into application servers.

Figure 7: JDO Architecture

Interfaces are defined for the user's view of persistence:

 PersistenceManager: the component responsible for the life cycle of persistent instances,
Query factory, and Transaction access

 Query: the component responsible for querying the data store and returning persistent
instances or values

 Transaction: the component responsible for initiating and completing transactions

It is important to note that JDO does not define the type of data store: You can use the same
interface to persist your Java technology objects to a relational database, an object database,
XML, or any data store.

10 http://www.jcp.org/en/jsr/detail?id=12
11 http://www.jcp.org/en/jsr/detail?id=243

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 27 of 102

2007 © Copyright lies with the respective authors and their institutions.

The benefits of using JDO are the following:

 Portability. Applications written using the JDO API can be run on multiple implementations
available from different vendors without changing a single line of code or even recompiling.

 Transparent database access. Application developers write code to access the underlying data
store without any database-specific code.

 Ease of use. The JDO API allows application developers to focus on their domain object model
(DOM) and leave the details of the persistence to the JDO implementation.

 High performance. Java application developers do not need to worry about performance
optimization for data access because this task is delegated to JDO implementations that can
improve data access patterns for best performance.

 Integration with EJB. Applications can take advantage of EJB features such as remote
message processing, automatic distributed transaction coordination, and security using the
same DOMs throughout the enterprise.

3.1.2.5 Hibernate

Introduction
Hibernate12 is an object-relational mapping (ORM) solution for the Java language: it provides an
easy to use framework for mapping an object-oriented domain model to a traditional relational
database. Its purpose is to relieve the developer from a significant amount of common data
persistence-related programming tasks.

It also provides the data query and retrieval facilities that significantly reduce the development
time.

Features
1. Hibernate provides three full-featured query facilities: Hibernate Query Language (HQL),

the newly enhanced Hibernate Criteria Query API, and enhanced support for queries
expressed in the native SQL dialect of the database.

2. Filters for working with temporal (historical), regional or permissioned data.
3. Enhanced Criteria query API: with full support for projection/aggregation and subselects.
4. Runtime performance monitoring: via JMX or local Java API, including a second-level

cache browser.
5. Hibernate is Scalable: Hibernate is very performant and due to its dual-layer architecture

can be used in the clustered environments.
6. Less Development Time: Hibernate reduces the development timings as it supports

inheritance, polymorphism, composition and the Java Collection framework.
7. Hibernate XML binding enables data to be represented as XML and POJOs

interchangeably.
8. Hibernate is Free under LGPL: Hibernate can be used to develop/package and distribute

the applications for free.

Architecture
The Figure 8 shows that Hibernate is using the database and configuration data to provide
persistence services (and persistent objects) to the application.

12 http://www.hibernate.org/

Page 28 of 102 NeOn Integrated Project EU-IST-027595

Figure 8: Hibernate architecture

To use Hibernate, it is required to create Java classes that represents the table in the database
and then map the instance variable in the class with the columns in the database. Then Hibernate
can be used to perform operations on the database like select, insert, update and delete the
records in the table. Hibernate automatically creates the query to perform these operations.

Hibernate architecture has three main components:

 Hibernate Connection management service provides efficient management of the database
connections. Database connection is the most expensive part of interacting with the database
as it requires a lot of resources of open and close the database connection.

 Transaction management service provides the ability to the user to execute more than one
database statements at a time.

 Object relational mapping is technique of mapping the data representation from an object
model to a relational data model. This part of hibernate is used to select, insert, update and
delete the records form the underlying table.

Hibernate is very good tool as far as object relational mapping is concern, but in terms of
connection management and transaction management, it is lacking in performance and
capabilities. So usually hibernate is being used with other connection management and transaction
management tools. For example apache DBCP is used for connection pooling with the Hibernate.

Hibernate provides a lot of flexibility in use. It is called "Lite" architecture when we only use the
object relational mapping component. While in "Full Cream" architecture the entire three
components (Object Relational mapping, Connection Management and Transaction Management)
are used.

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 29 of 102

2007 © Copyright lies with the respective authors and their institutions.

3.1.3 Access XML Sources

XML is a markup language for documents containing structured information. Structured information
contains both content (words, pictures, etc.) and some indication of what role that content plays
(for example, content in a section heading has a different meaning from content in a footnote,
which means something different than content in a figure caption or content in a database table,
etc.). Almost all documents have some structure. A markup language is a mechanism to identify
structures in a document. The XML specification defines a standard way to add markup to
documents13.

Several technologies for accessing and managing the XML content are described in this section.

3.1.3.1 WS-DAIX
The “Web Services Data Access and Integration – The XML Realization (WS-DAIX) Specification,
Version 1.0” (Hastings, et al., 2006) is a realization of the WS-DAI base specification focused at
providing data access to XML data resources using standard XML query languages.

Organization
The specification provides two sets of functionalities:

• Collection management: provides mechanisms for managing collections of XML
documents (schemas and instance documents). It is possible to organize these collections
hierarchically.

These collections of documents can be used as sources in the functionalities provided by
the query-based access area.

• Query-based access: WS-DAIX defines a set of interfaces that provide functionalities
which support the evaluation of XPath, XQuery and XUpdate queries across an XML
resource or a collection of resources.

On the one hand, the XUpdateAccess, XQueryAccess and XPathAccess interfaces provide
direct data access to collections of XML documents, by means of XUpdate, XQuery and
XPath queries respectively. On the other hand, the realization also provides indirect data
access to the very XML resources: the XUpdateFactory, XQueryFactory and XPathFactory
make available the results of XUpdate, XQuery and XPath queries by means of the
services which implement the XMLSequenceAccess interface. This latter interface provides
finer-grainer direct data access to those results.

Figure 9 shows the interfaces defined in the WS-DAIX extension, and the messages and
properties provided by each one of them.

13 O’Reilly XML from the inside out: http://www.xml.com/pub/a/98/10/guide0.html?page=2#AEN58

Page 30 of 102 NeOn Integrated Project EU-IST-027595

Figure 9: WS-DAIX interfaces, taken from (Berry, et al., 2006)

3.1.3.2 XML-Schema
In the context of NeOn where loosely coupled services interact as web services the definition of
these services plays an important role. One part of these definitions is the structure of the
exchanged content. As the content is typically passed as XML, the corresponding definition
language XML Schema is important.

Also for many ontology languages there is a serialization, i.e. storage format, for ontologies in
XML. To exchange ontologies that are stored in such a format, it is essential to understand the
format. Again, XML schema is used to describe the format.

Thus, XML schema is a core technology for the exchange of ontologies as well as for the
exchange of message in a SOA implemented by web services.

XML Schema is one of the core XML standards from W3C. It consists of 2 parts:

1. XML Schema Structures14, which describes the schema language to construct own
definitions.

2. XML Schema data types15, which describes the basic data types, which are used in XML
schema but also in other XML specifications like XQuery.

XML schema offers opposite to its predecessor DTD powerful modelling concepts. It contains a
powerful type system, the possibility to define local and global definitions and several subtyping
mechanisms.

This allows the usage of several modelling styles ranging from grammar-oriented DTD style to
programming language data structures.

14 XML Schema Structures: http://www.w3.org/TR/xmlschema-1/
15 XML Schema data types: http://www.w3.org/TR/xmlschema-2/

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 31 of 102

2007 © Copyright lies with the respective authors and their institutions.

XML itself with DTD was originally very much oriented towards document-oriented information,
which means very large instances, irregular structures, relatively small number of instances with
same schema and mostly textual data.

With XML schema it is now possible to additionally model data-oriented information. This means
small instances, regular structures, a large number of instances with same schema and typed data.

The consequence is a quite high complexity of the language, which allows several equivalent
formulations for the same validation capabilities.

The XML schema data types define a rather complete framework for the definition of basic data
types. It includes more than 40 data types, which can be parameterized via so called facettes.
Thus it is possible to represent nearly all occurring data values from most programming languages,
data bases and other infrastructures.

The XML schema for a concrete XML document is enforced by a so called validator, which checks
whether the document conforms to the schema.

Additionally XML schema contains features like assigning default values for not available elements
or attributes. Thus the validation extends the values of XML document and adds typing information
to the nodes of the XML document. Therefore the result of a validation process is a so called post-
schema-validation info set (PSVI).

XML schema has been broadly adopted. It is probably the most important part of the web service
description language (WSDL) and is also used in many other XML standards like XQuery, XSLT.

Most of the standard schemas in vertical areas are available in XML schema.

3.1.3.3 XQuery
As mentioned in the previous section about XML schema, NeOn needs to support the exchange of
messages and ontologies in a service oriented architecture. To achieve this, the messages and
ontologies will be transmitted as XML documents. Now, as one of the core standards XQuery is the
most important tool for querying and transforming XML documents. As such XQuery automatically
plays an important role within NeOn.

The main intention of XQuery is to be a query language for XML data sources. It can be
characterized as a functional language with almost no side effects. It has been recently published
as a W3C standard16.

It is based on a conceptual data model for XML – the XQuery data model. This is an extension of
the usual XML data model as the result of XQuery is usually set of nodes or values, which is not a
valid XML document.

Thus the notion of sequence as a list of nodes or values is the central concept of the XQuery data
model.

Additionally the data model contains nodes like elements, attributes, documents and text nodes.
Nodes have an identity, which distinguishes them from values. Values can be of any of the XML
schema primitive types like xs:string, xs:decimal or xs:float.

16 XQuery: http://www.w3.org/TR/xquery/

http://www.w3.org/TR/xquery/

Page 32 of 102 NeOn Integrated Project EU-IST-027595

One can distinguish up to four sub languages within XQuery:

• XML: the first language is XML itself as it is possible to construct arbitrary instances of the
XQuery data model, which are a subset of the XML model. This includes the construction of
nodes with identity, which has a side effect and thus represents a deviation from a pure
functional language.

• XPath: one of the origins of XQuery was XPath. XPath expressions allow traversing the
hierarchical paths of the XML data model. They resemble the directory notation of operating
systems. For the traversion XPath distinguishes between so called axis like:

o Child

o Parent

o Ancestor

o Predecessor

o Siblings

Additionally filters are possible during the traversal of the hierarchical nodes.

• FLWOR expressions: XPath expressions are not powerful enough for a query language –
e.g. they do not allow expressing joins. Therefore the so called FLWOR (For Let Where
Order Return) expressions have been introduced. They are an adoption of the SQL select-
from-where expressions.

for $b in collection(“bib”)/books

where $b/price lt 39.99

return
 <bookresult>

 <author>{$b/author/name}</author>

 <info> {$b/title, $b/price} </info>

 </bookresult>

In the above example a for-clause defines an immutable variable $b, which is bound to an
iterator on a sequence resulting from a XPath expression. The where-clause allows defining
filter on those variables. The return-clause allows defining the result of the whole
expression by delivering constructed nodes with the variables.

• Programming language constructs: The already mentioned functionality qualifies XQuery as
a query language for XML. Nevertheless XQuery has a lot of additional programming
language functionality like:

o Recursive functions

o Functional if then else

o Modules

These constructs beyond a query language gives XQuery the power of a programming
language. Thus it can be for example used for tasks, for which conventionally XSLT is
used.

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 33 of 102

2007 © Copyright lies with the respective authors and their institutions.

3.1.3.4 XQJ
XQJ is the acronym of XQuery for Java. For the moment the XQJ specification is in the status of
draft and it is expected to be finished after the XQuery Recommendation.

The main goals of XQJ are:

• To provide a Java interface for XQuery. Using this interface is possible to use XQuery as a
query language to XML databases, and also as a XML programming language.

• To be the JDBC for XML databases.

• To have a good integration with other Java XML infrastructures.

XQJ support directly XML objects in Java and with XQJ is possible to use compiled queries. The
XML models that XQJ use are DOM, SAX and StaX.

For more information read the XQJ specification (Michels, 2006).

3.1.4 Access Ontological Resources

The key concept of the NeOn project is “networked ontologies”. Since these “networked
ontologies” are distributed in the network, we need some mechanism for accessing and managing
them.

3.1.4.1 WS-DAI-RDF(S)
Recently, the DAIS WG has updated its charter in order to include the RDF(S) data access
initiative as part of its developments. This initiative is focused at developing a set of specifications
for providing specific RDF(S) data access mechanisms for the Grid building upon the WS-DAI
specification (Esteban Gutiérrez, et al., 2006) The work is being developed by the AIST and the
UPM (as part of the OntoGrid project17)

At the time being, there are two specifications under development:

• Query-based access: defines a set of porttypes and messages for dealing with RDF(S)
resources using the SPARQL query language.

• Ontology-based access: defines a set of porttypes that provide ontology access primitives
for dealing with the RDF(S) data model, including creation, retrieval, update and deletion of
data. Figure 10 shows a snapshot of the current interface organization. This work is based
on the WS-DAIOnt-RDF(S) (Gómez Pérez, et al., 2006) specification which is being
developed in the OntoGrid project.

17 http://www.ontogrid.eu

http://www.ontogrid.eu/

Page 34 of 102 NeOn Integrated Project EU-IST-027595

Figure 10: WS-DAI-RDF(S) ontology access interfaces.

3.1.4.2 DIG
The DIG interface18 provides uniform access to Description Logic Reasoners. The interface defines
a simple protocol (based on HTTP PUT/GET) along with an XML Schema that describes a concept
language and accompanying operations.

The interface is not intended as a heavyweight specification of a reasoning service. Rather, it
provides a minimal set of operations (e.g. satisfiability and subsumption checking and classification
reasoning) that have been shown to be useful in applications.

A number of reasoners including FaCT++, Pellet, RacerPro, and KAON2 provide support for DIG. A number
of ontology editors (including OilEd, Protege and SWOOP) can use the DIG interface to communicate with
such reasoners.

The DIG interface makes a number of assumptions.

• The specification is agnostic as to multiple client connections. Multi-threaded
implementations of a reasoner may be provided, but as DIG does not specify transaction
models including isolation levels etc., no guarantees are made as to the semantics when
clients attempt to simultaneously update and query.

• The connection to the reasoner is effectively stateless. Clients are not identified to the
reasoner, thus the reasoner will not distinguish between clients and maintain any kind of
consistency checking or record of which client is adding information or making requests.
Conversely, a client has no way of ensuring that the reasoner has not been given additional
information (such as additional axioms) since its last communication.

• There is no explicit classification request. The reasoner will decide when it is appropriate to,
for example, build a classification hierarchy of concepts. This may happen after each TELL
request, alternatively the reasoner may choose to defer the classification until absolutely
necessary, or even when there is a lull in traffic.

The current version of DIG - DIG 1.1 – has a number of drawbacks: For example, it is not sufficient to
capture general OWL-DL ontologies — in particular datatype support is lacking in DIG 1.1 and there is a poor
fit between DIG's notion of relations and OWL properties.

18 DIG Interface: http://dl.kr.org/dig/interface.html

http://dl.kr.org/dig/interface.html

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 35 of 102

2007 © Copyright lies with the respective authors and their institutions.

DIG is currently undergoing a major redesign. Version 2.0 will provide the following new features19:

• It will be compliant with OWL1.1 (specifically, it will rely on the same XML Schema for the
representation of ontologies.

• Well-defined mechanisms for extension to the basic interface: Non-standard Inferences are
increasingly recognised as a useful means to realise applications. For example, Least Common
Subsumer (LCS) provides a concept description that subsumes all input concepts and is the least
specific (w.r.t. subsumption) to do so. A DIG 2.0 extension provides a proposal for an extension
supporting NSIs.

3.1.5 Query Languages

In NeOn project, OWL and F-Logic are the two major languages for describing ontologies.
Therefore SPARQL as a query language for OWL ontologies and F-Logic’s query possibilities are
introduced here.

3.1.5.1 SPARQL

SPARQL is designed as a query language for RDF (Resource Description Framework) (Lassila, et
al., 1999) and now is widely used to query ontologies that are encoded based on RDF, for
example, OWL web ontology language (McGuinness, et al., 2003). Let’s firstly look at some brief
introduction of the relations between RDF and SPARQL.

An RDF graph is a set of triples and each triple consists of a subject, a predicate and an object.
RDF graphs are defined in RDF Concepts and Abstract Syntax20. These triples can come from a
variety of sources. For instance, they may come directly from an RDF document; they may be
inferred from other RDF triples; or they may be the RDF expression of data stored in other formats,
such as XML or relational databases. The RDF graph may be virtual, in that it is not fully
materialized, only doing the work needed for each query to execute. SPARQL is a query language
for getting information from such RDF graphs. It provides facilities to:

• extract information in the form of URIs, blank nodes and literals.

• extract RDF subgraphs.

• construct new RDF graphs based on information in the queried graphs.

As a data access language, it is suitable for both local and remote use. The companion SPARQL
Protocol for RDF document21 describes the remote access protocol.
The current technical document of SPARQL can be found at: http://www.w3.org/TR/rdf-sparql-
query/. The computational complexity of SPARQL is NP-Space, which is introduced in (Pérez, et
al., 2006) as well as the semantics.

OWL can be encoded based on the RDF language; therefore it is possible to query OWL
ontologies using an RDF query such as SPARQL due to the missing of a standardized OWL query
language. In the NeOn project, as one of the major ontology language, OWL is widely used in
many work packages, particular in case studies work packages as an essential modelling language
for knowledge bases in variety of information systems.

19 DIG 2.0: The DIG Description Logic Interface Overview. http://dig.cs.manchester.ac.uk/overview.html
20 http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
21 http://www.w3.org/TR/rdf-sparql-protocol/

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://dig.cs.manchester.ac.uk/overview.html
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

Page 36 of 102 NeOn Integrated Project EU-IST-027595

3.1.5.2 Queries in F-Logic
The language of F-Logic and its elements have been covered in D5.1.1 of NeOn. In this deliverable
we will focus on the possibilities to pose queries in F-Logic. Being a rule language, query
functionality is literally “built in”.

From the rules and facts in an F-Logic Program, a model is computed on which queries can be
asked. Queries consist of a rulebody with empty rulehead. The result of a query is a list of
substitutions for the query’s variables, that can be derived from the facts in the knowledge base.

For example, the following query:

FORALL X, Y, Z ← X: Person [nationality → spanish, isEmployed → Y] AND Y [isMember → Z]

Could get as a result: X = Filipe, Y = AECE, Z = Pharmainnova.

Note that not only instances and their values but also concept and attribute names can be provided
as answers via variable substitutions.

3.2 Version management protocols

The main task of a CVS22 system is to keep track of different versions of files and folders, typically
of software projects and allowing different users to collaborate. Important features thus are multi-
user access, merging (in case different users worked on the same file) and versioning including
diffs between files (all versions of a file are stored and differences between any version can be
presented to the user).

A main motivation for subversion is to have a more comprehensive version management than the
currently popular versioning cvs. In addition to cvs functionality subversion provides:

• Versioning of directories: it is possible to version not only simple files but also directories.
Thus whole directory trees can be versioned.

• Complete version history: subversion is capable of tracking all operations on files and
directories.

• Transaction support: the repository treats a set of modification as one transaction, which is
executed completely or not at all.

• Versioning of metadata: for each file or directory metadata in the form of key value pairs
can be associated. This metadata will be also versioned.

• Flexible usage of http based network protocols. It actually uses a subset of the webDAV
based DeltaV protocol.

22 http://www.nongnu.org/cvs is a good starting place for information about CVS

http://www.nongnu.org/cvs

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 37 of 102

2007 © Copyright lies with the respective authors and their institutions.

3.2.1 Concurrent Versions System (CVS)

CVS works by storing all data in a central repository that users can get access to (this can be
either on a server or on a local machine in case it is just used for local versioning). Users then
“check out” any given version of the project (in case there are multiple) and work with local copies.
On the client side, CVS stores the local copy along with metadata that enable the client to track
which version of a file was checked out. The client also monitors which of the files were changed
locally. During working on a project locally, users can get updates from the repository to get the
latest version of all files, or commit their work to the repository. In case there is a conflict (two users
worked on the same file), either versions are automatically merged (in case users worked on
different parts of a file) or have to be merged by hand. As another protection, changes can only be
committed to the latest possible version of a file. So users are forced to work on the latest possible
data. In case of a successful update, the name of the user is stored in along with a new version
number per changed file and optional comments. In order to save space, CVS uses delta
compression, thus only saving differences between versions and not the complete versions
themselves.

For many (open source) software projects it is also common to allow anonymous read-only access
to the repository, for example to allow interested users to always work with the latest builds.

While for a long time only command line tools existed, nowadays there are graphical clients
available for the most common operating systems. Listing all of the around 50 CVS commands
would be out of the scope of this deliverable, especially since the complexity is well hidden by the
graphical tools.

The interested reader should take a look at the official manual (Cederqvist, 2002).

3.2.2 Subversion (SVN)

Subversion (Nagel, 2005) was specifically designed to replace CVS as a versioning or revision
control application. It therefore offers essentially the same functionality as CVS but offers some
improvements. Because elaborating the technical details of the implementation and different
commands would be out of scope of this document, we will focus on the functionality and
especially on the advantages of SVN in comparison to CVS. Similar to CVS, a number of graphical
SVN interfaces exist, so users should not have to bother with learning the command line syntax if
they do not choose to do so.

As already mentioned, SVN provides most current CVS features and follows CVS interface except
when the developers think there is a compelling reason not to do so. In contrast to CVS, and
maybe one of the most requested features, directories, renames and file meta-data are versioned.
This means that Subversion does not only file contents and file existence, but also directories,
copies and renames as well as arbitrary metadata and file permissions. Commits are truly atomic,
meaning no part of a commit takes effect until the entire commit has succeeded. For the ease of
retrieving a specific state of the repository, revision numbers are assigned per-commit, not
individually per-file. Log messages are attached to the revision and not stored redundantly as in
CVS. This allows the retrieval of a specific state of the repository by just checking out the state
indicated by a single global revision number in contrast to different version numbers per file. By
supporting the HTTP-based WebDAV/DeltaV protocol and Apache web sever for repository-side
networked service, key features like authentication, wire compression and basic repository
browsing are automatically provided. Alternatively, Subversion can be run as a standalone server
using a custom protocol instead of Apache, which then can be run as inetd service or in daemon
mode as well as tunnelled over ssh.

Branching and tagging are cheap operations because they are both implemented in terms of an
underlying copy operation. The copy takes up a small, constant amount of space. Any copy is a tag
and if copies are committed on, this will be considered as a branch.

Page 38 of 102 NeOn Integrated Project EU-IST-027595

In contrast to CVS, it was natively designed to be client/server which avoids the maintenance
problems plaguing CVS. Also diffs are sent in both directions, not only server to client. This
enables efficient use of bandwidth. Binary files can also be efficiently transmitted and stored using
a binary diffing algorithm.

The time a commit takes is only proportional to the size of changes resulting from that operation,
not the absolute size of the project itself. Also, Subversion is not depending on a BerkeleyDB
database back-end. Any normal flat-file back-end using a custom format can be used for the
repository.

In contrast to CVS, symbolic links can be placed under the version control. They are recreated in
Unix working copies, but not in win32 copies. The command-line output is designed to be both
human readable and automatically parseable, to enable scriptability.

Based on local settings, Subversion can use localized messages. It also enables file locking for
unmergeable files—so called “reserved checkouts”– and has a file MIME support. Whether to use
SVN or CVS is up to the user and the kind of features needed. The user base of SVN is growing
steadily while CVS still has a bigger user base due to the long time it has been in use.

Parts of this section have been taken from the official SVN homepage23.

3.3 Service access protocols, formats and frameworks

3.3.1 Access remote services

In this section we include a list of protocols and techniques that allow accessing remote services
that are potentially relevant for NeOn. There are a lot of protocols and techniques that let
programmers to develop applications under the client-server paradigm.

The protocol RPC (Remote Procedure Call) was proposed initially by Sun Microsystems as a great
advance in comparison with the sockets used until the moment. According to the use of this
protocol the programmer did not have to take care on the communications, being them embedded
inside the RPC. The RPC is very used in the client-server paradigm. There are several
incompatible kinds of RPC but most of them use the Interface Description Language (IDL) that
defines the exported methods by the server.

CORBA (Common Object Request Broker Architecture) is a standard that establish a development
platform of distributed systems making easier the invocation of remote methods in the object
oriented programming paradigm. CORBA uses IDL too for specifying the interfaces with the
services that the objects will offer. CORBA was defined and is managed by the Object
Management Group (OMG) that defines the APIs, the communications protocol and the
mechanism needed for allow the interoperability between different applications written in different
languages and executed in different platforms, thing that is fundamental in distributed computing.
But CORBA is more than a multiplatform specification, because CORBA defines services usually
necessary like security and transactions.

Using RMI (Java Remote Method Invocation) a Java program can export an object. Then a client
can connect to this program and invoke methods. Java RMI is very friendly to the programmers
and can do things that cannot do other standards like SOAP or CORBA (passage by reference of
objects, distributed garbage collection and passage of arbitrary types).

The Java EE platform lets to do multi-tier applications with low development cost. The
implementation from Sun Microsystems can be downloaded for free, and there are a lot of open
source tools available to extend the platform or to simplify development.

23 http://subversion.tigris.org/ is a good place to find initial information about SVN

http://subversion.tigris.org/

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 39 of 102

2007 © Copyright lies with the respective authors and their institutions.

A Web service as a software system designed to support interoperable machine-to-machine
interaction over a network. This definition includes many different systems, but in common usage
the term refers to those services that use SOAP-formatted XML envelopes and have their
interfaces described by WSDL.

The name “SOAP” was originally an acronym for “Simple Object Access Protocol”, but the full
name was dropped because the focus shifted from object access to object inter-operability.

SOAP (Gudgin, 2003) is a protocol which sends XML-based messages. It is mostly bound to HTTP
as the transport layer, but other bindings are as well supported. SOAP supports synchronous and
asynchronous messaging patterns. The most common one is the synchronous one, which reflects
the roots of SOAP, when it began as an XML variant of an RPC call.

SOAP itself is an extensible protocol or more precisely a messaging framework. It has already
been extended in various ways, e.g. by WS Encryption or WS Security. Thus SOAP plays the role
of the foundation layer for the web service stack.

WSDL is the abbreviation for “Web Service Description Language” pronounced “wiz-del”. WSDL
(Chinnici, 2006), as its name says, describes the interface of a Web Service in an XML-based way.
It deals with the description of services and their messages. The format of the messages is
formulated using XML Schema, thus supporting rich and hierarchical data-types. But WSDL
supports as well the description of a binding to a specific transport protocol.

The key concept of the WSDL is that this interface definition is independent of the implementation;
in the WSDL there is only a reference to the service endpoint defined. In conjunction, the WSDL
provides an openness which allows building extensions into it like it's done for BPEL, or WS-Policy.

Web services related technologies

To support reliable, large-scale interconnectivity of Web services by software, computer
processible semantics are needed, which include the properties, capabilities, interfaces, and
effects of the service (Aalst, 2003). The semantic web services come to give us the solution.

The “Web Services Data Access and Integration – The Core (WS-DAI) Specification, Version 1.0”
(Atkinson, et al., 2006) defines a collection of generic data interfaces which can be extended in
order to provide access to specific types of data resources, i.e. databases, XML documents, etc.

Based on extensions to SOAP messages the Web Service Security specification24 aims at secure
transmission of such messages. The standard covers authentication, integrity and confidentiality
issues. It is applicable to various security models and encryption technologies.

While the Web Service Description Language (WSDL) describes functional properties of interacting
services, it does not say anything about non-functional properties. But in a world of non trivial Web
services communication is not that easy because often non-functional properties have to be
considered. The Web Service Policy Framework fills this gap in WSDL.

There are several competing approaches for the definition of such semantic web services. The
Semantic Annotations for WSDL and XML Schema standard25 is the first standardization activity in
this area. It does however cover only a relatively small part of the definition of semantic web
services. SA-WSDL defines how the important modeling parts of a WSDL can be annotated with
semantic definitions. The semantic definitions itself however are not part of the SA-WSDL
standard.

Service Data Objects (SDO) and Service Component Architecture (SCA) are projects of the so-
called “Open SOA Collaboration“26. They aim at powerful and flexible means to build applications
in a service-oriented architecture using a wide range of programming languages.

24 WS-Security Specification. http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
25 SA-WSDL. http://www.w3.org/TR/sawsdl/
26 Open SOA. http://www.osoa.org/

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.w3.org/TR/sawsdl/
http://www.osoa.org/

Page 40 of 102 NeOn Integrated Project EU-IST-027595

3.3.1.1 RPC (Remote Procedure Call)

Up until now RPC is the most used protocol that allow access to remote services and the first one
that appeared. RPC is a protocol that allows a program to invoke a service that is located in a
remote machine without the programmer explicitly coding the details for this interaction. RPC
spans the application layer and the transport layer in the OSI (Open System Interconnection)
model of network communication.

RPC uses the client-server model of distributed computing. The client must know what features
does the server provide which are indicated by the service definition, written in IDL (interface
description language). A RPC call is a synchronous operation that suspends the calling program
until the results of the call are returned. The RPC call flow is explained in the Figure 11. When an
RPC is compiled a stub is included in the compiled code that represents the remote service. When
the program runs it calls the stub tat knows where the operation is and how to reach the service.
The stub will send the message through the network to the server. The result of the procedure will
return to the client in the same way.

Figure 11: RPC call flow27

One of the problems of RPC is t hat RPC implementations use to be incompatible between them.
To use one of the possible implementations of RPC will result in a highly dependence of the RPC
development. This compatibility problem can have a very negative impact in the global system. A
system that implements one concrete RPC solution can have problems of flexibility, maintainability,
portability and interoperability.

3.3.1.2 Interface Definition Language (IDL)

The interface definition language is a language used to describe the services that are available
from a server. When a client wants to invoke a service in a remote server it needs to know what to
invoke and the parameters needed in that invocation. IDL defines how this operation can be called.
IDL is a component one of the key elements in the remote procedure call paradigm. As limitation of

27 Javvin. Network management and security. Available from: http://www.javvin.com/pics/rpc.jpg

http://www.javvin.com/pics/rpc.jpg

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 41 of 102

IDL it is necessary to mention that the IDL code has to be mapped to a concrete language. The
procedures specified in IDL will be implemented in this language and a mapping between the
language and the IDL is necessary. A high amount of work is required in order to map the IDL and
the language.

3.3.1.3 RMI (Remote Method Invocation)

RMI or Remote Method Invocation is a java application interface that performs the object
equivalent of Remote Procedure Calls (RPC). A program can run a remote service that is offered
by a service without knowing anything from the implementation. The client and the server need to
be running in a Java Virtual Machine and the communication is only possible from one JVM to
another. In order to a Java program running in a VM call code developed in other languages it exist
the Java Native Interface. The JNI is a solution implemented for those programs that cannot be
entirely developed in Java and need other programming languages.

One of the limitations of RMI is that it tied to platforms with Java support. Currently this is not a big
issue due to it exist JVM for most of the platforms but it is still an open issue. Security threads are
also an important limitation for RMI. There exist security threats with remote code execution, and
limitations on functionality enforced by security restrictions.

3.3.1.4 CORBA (Common Object Request Broker)

The Common Object Request Broker (CORBA) was developed in order to communicate between
clients and servers developed in different code languages.

The Common Object Request Broker Architecture (CORBA) is a standard defined by the Object
Management Group (OMG) that enables software components written in multiple computer
languages and running on multiple computers to interoperate. The OMG defines the API of
CORBA, the communication protocols and the mechanisms needed to allow communication
between clients requesting services and servers offering those services that have been developed
with different programming languages. CORBA provides the interoperability needed for these
applications, which is basic in distributed computing. The services that are available to the clients
are defined by the Interface Definition Language (IDL) which specifies the parameters of the
operations that are accessible from the server. Figure 12 depicts the reference model architecture
of CORBA defined by the OMG.

Figure 12: Reference model architecture of CORBA (Schmidt's)

2007 © Copyright lies with the respective authors and their institutions.

Page 42 of 102 NeOn Integrated Project EU-IST-027595

Figure 13 show the how CORBA works. First the client access to the object reference in order to
be able to invoke this object. The user also has to know what type of object and the operation to be
invoked. The user knows all these things by accessing the interface definition. The client does the
petition through an IDL stub. The CORBA ORB will find the implementation of the defined
operation through the IDL skeletons. These IDL skeletons are specific for each interface and are
in charge of sending the parameters and transfer the control to the implementation of the
procedure. Once the operation has been done the results are returned to the user through the
same channels used for the invocation.

Figure 13: How CORBA works

CORBA also has some limitations. The user has to learn the IDL specification in order to be able to
invoke the operations that are available in the server. To implement a service which uses IDL
definitions require a mapping between the IDL definition and the language. If the language does
not support writing a mapping between this IDL and the language requires a high amount of work.

3.3.1.5 J2EE

J2EE (Java 2 Enterprise Edition)28 is the enterprise edition of the Java platform created and
distributed by Sun Microsystems. It is a standard of development, building and deploying of
applications and contains a set of specification, functionalities oriented to the development of
corporative and distributed enterprise applications and web services.

Several essential requirements appear in the development of enterprise applications that they must
accomplish. For example:

• Reliability and scalability.

• Ease of maintenance.

• Security.

28 Java 2 Enterprise Edition. Available from: http://java.sun.com/javaee/

http://java.sun.com/javaee/

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 43 of 102

2007 © Copyright lies with the respective authors and their institutions.

• Performance and high availability.

• Extensibility

Also these kind of applications use to have a tier based architecture: one client tier or presentation
tier that provides a user interface, one or more intermediate tiers that provides the business logic
and a final tier that interacts with the applications and corporative databases.

The J2EE technology integrates a set of APIs, frameworks and design patterns that cover all of
these needs. The division on tiers that J2EE propose is:

• Client tier: includes the components that are executed in the client side. There are a lot of
client types (desktop applications, web navigators, portable devices, etc.).

• Presentation tier: is in charge of presenting the system to the user and receiving the
information that the user sends. It is a bridge between the client tier and the business tier.

• Business tier: this tier contains all the business objects and the service for processing the
business logic. It receives the user request and generates the user responses after the
execution of the needed processes.

• Integration tier: is in charge of the services that provides access to the external resources,
for example databases.

• Resources tier: contains the final information systems that will be accessed; for example
databases, non J2EE applications or other final data sources.

J2EE covers the presentation, business and integration tiers offering for example the following
solutions:

• Presentation tier: JSP pages, Servlets and mobile devices programming with J2ME29.

• Business tier: Enterprise Java Beans Components30.

• Integration tier: access to databases using JDBC31, connection to corporative applications
using connectors, JMS messages32 and CORBA interfaces33.

Finally, J2EE is a platform that sets solutions for development, effective use and multi-tier handling
in server centred applications.

3.3.1.6 Web Services

One of the major achievements that web services deliver to applications is that they can provide
implementations of almost arbitrary functionality with a location and transportation format
independency, i.e. the involved parties only need to know the interface definitions. As such, web
services are an ideal technology to implement functionally distributed systems like Neon. Therefore
we describe some of most important and not previously mentioned standards and implementation
technology around web service technology in more detail here.

Besides its spectacular growth, the Web becomes more dynamic with the advent of the Web
service technology. A Web service (WS) is a (self-contained) software component that allows
access to its functionality via a Web interface. WSs communicate by employing established
protocols for message transport and encoding. Indeed, the W3C Web Services Architecture
Working Group defines a Web service as:

29 Java 2 Micro Edition. Available from: http://java.sun.com/javame/index.jsp
30 Enterprise Java Beans Technology. Available from: http://java.sun.com/products/ejb/
31 JDBC Technology. Available from: http://java.sun.com/javase/technologies/database/index.jsp
32 Java Message Service. Available from: http://java.sun.com/javame/index.jsp
33 CORBA/IIOP Specification. Available from: http://www.omg.org/docs/formal/04-03-01.pdf

http://java.sun.com/javame/index.jsp
http://java.sun.com/products/ejb/
http://java.sun.com/javase/technologies/database/index.jsp
http://java.sun.com/javame/index.jsp
http://www.omg.org/docs/formal/04-03-01.pdf

Page 44 of 102 NeOn Integrated Project EU-IST-027595

“a software application identified by an URI, whose interfaces and bindings are capable of being
defined, described and discovered as XML artefacts. A Web service supports direct interactions
with other software agents using XML-based messages exchanged via Internet-based protocols.”
(W3C, 2002)

Figure 14: Overview of Web Service Standards.

Web service technology has introduced a new abstraction layer over and a radically new
architecture for software. Indeed, the innovative vision is that by employing a set of XML standards
to define and describe Web service functionalities, several tasks such as discovery and
composition of these services can be facilitated (or even automated) to some extent. Web service
technology also aims to facilitate the interaction between different Web services (i.e., software
programs) by enforcing the use of XML standards for data exchange. Note, that any kind of data
can be exchanged between Web services (e.g., semi-structured, textual, structured) as long as it is
embedded in an XML based messaging protocol.

Figure 14 (adapted from (Aalst, 2003)) shows the main Web service technology standards, all
based on XML. A Web service interface is described using the Web Service Description
Language1134 (WSDL). Web services exchange messages encoded in the SOAP35 (Simple Object
Access Protocol) messaging framework and transported over HTTP or other Internet protocols.
Several tasks can be performed with Web services. A typical Web service life-cycle envisions the
following scenario. A service provider publishes the WSDL description of his service in UDDI36, a
registry that permits Universal Description Discovery and Integration of Web services.
Subsequently, service requesters can inspect UDDI and locate/discover Web services that are of
interest. Using the information provided by the WSDL description they can directly invoke the
corresponding Web service. Further, several Web services can be composed to achieve a more
complex functionality. Such compositions of services can be specified using BPEL4WS37
(Business Process Execution Language for Web Services). By relying on these standards, Web
services hide any implementation details therefore increasing cross-language and cross-platform
interoperability.

34 http://www.w3.org/TR/wsdl
35 http://www.w3.org/TR/soap/
36 http://www.uddi.org/
37 ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap/
http://www.uddi.org/
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 45 of 102

2007 © Copyright lies with the respective authors and their institutions.

Example Scenario. Many Web services allow access to large databases permitting controlled
access to information that might not be explicitly stated on Web pages. Imagine, for example, a
scenario in which a user needs to find Medicare certified pharmacy which is in a mile range from a
location identified by zip code 19901. Using Web services, the process of finding such a pharmacy
could be repeated for any zip code (or for any health care provider) relying on the output of one or
more Web services and not on data provided by static Web pages. A good Web service to
generalize this task is the MedicareSupplier Web service which can retrieve details of Medicare
suppliers given a zip code, a city name or the types of supplies provided.

Service(

PortType:MedicareSupplierSoap (

op:GetSupplierByZipCode(

IMsg(zip), OMsg(SupplierDataLists))

op:GetSupplierByCity(

IMsg(City), OMsg(SupplierDataLists))

op:GetSupplierBySupplyType(

IMsg(description), OMsg(SupplierDataLists))

)

)

The example above shows a schematic representation of the WSDL file associated to the
MedicareSupplier service. WSDL has considerable support from industry and increasing tool-
support (WSDL generators, editors). As an XML-based language, it is machine processable, being
a structured and standardized way to describe web-interfaces of services. In WSDL a service is
seen as a collection of network endpoints which operate on messages. The example service
provides one port: MedicareSupplierSoap. This port groups together three operations that return
lists of Medicare suppliers and their details given a zip code (for GetSupplierByZipCode), a city
name (for GetSupplierByCity) or the description of the supplied material (for
GetSupplierBySupplyType). Each operation has an input (IMsg) and an output (OMsg) message. A
message has a name and a set of parts of certain type. Parts represent input/output parameters
depending if they are declared in the input or the output message. For brevity, the example above
does not state the name of the message only the name of its parts. The type of the parts can be
any XMLSchema data type or a previously defined complex type (the type of the parts is also
omitted by the schematic description). A WSDL document has two major parts. First, the abstract
interface of the service specifies the data types, messages and portTypes with the corresponding
operations (which refer to previously defined messages). Second, an implementation part binds
the abstract interface to concrete network protocols and message formats (SOAP, HTTP).

Limitations of the Web Service Technology. SOAP, WSDL, UDDI, and BPEL4WS are the
standard combination of technology to build a Web service application. However, they fail to
achieve the goals of automation and interoperability because they require humans in the loop
(Lassila, 2002). Indeed, WSDL specifies the functionality of the service only at a syntactic level.
While these descriptions can be automatically parsed and invoked by machines, the interpretation
of their meaning is left for a human programmer.

Page 46 of 102 NeOn Integrated Project EU-IST-027595

3.3.1.6.1 Semantic Web Services
SOAP, WSDL, UDDI, and BPEL4WS are the standard combination of technology to build a Web
service application. However, they fail to achieve the goals of automation and interoperability
because they require humans in the loop (Lassila, 2002). Indeed, WSDL specifies the functionality
of the service only at a syntactic level. While these descriptions can be automatically parsed and
invoked by machines, the interpretation of their meaning is left for a human programmer.

The Semantic Web community addressed the limitations of current Web service technology by
augmenting the service descriptions with a semantic layer in order to achieve their automatic
discovery, composition, monitoring and execution (McIlraith, et al., 2001) (Martin, et al., 2004)
(Stuckenschmidt, et al., 2004). The automation of these tasks is highly desirable and, as a result,
several research projects adopted semantic Web service technology in different application
domains (e.g., bioinformatics grid (Wroe, et al., 2004), Problem Solving Methods (Motta, et al.,
2003)). Semantic Web Service technologies could be useful in the development of the NeOn
toolkit; therefore we include them in our analysis.

Figure 15: Workflow for binding the closest medical supplier

Example scenario. The example task is a specialization of the more generic task of finding the
closest medical provider (or, of the even more generic task of finding a provider in any domain).
One of the strategies for performing this generic task is to 1) retrieve the details of all medical
providers (of a certain type) and then selecting the closest by 2) computing the distance between
the location of the provider and a reference location. This workflow can be schematically
represented as in Figure 15. For our example task it is enough if we populate this workflow with the
MedicareSupplier service and a Web service that calculates distance between zip codes.

Semantic Web service technology aims to automate performing such tasks based on the semantic
description of Web services. Using these descriptions the right services can be selected and
combined in a way that would solve the task at hand. There are two major approaches to Web
service composition (ten Teije, et al., 2004). First, given the specification of a start and final state,
pre/post condition reasoning is performed to select and combine the right services. Second, using
the parametric design paradigm, generic task workflows are formally specified and then populated
with the right Web services depending on the task at hand.

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 47 of 102

A common characteristic of all emerging frameworks for semantic Web service descriptions (OWL-
S (Martin, et al., 2003), WSMO38, IRS (Motta, et al., 2003) - see overview and comparison in
(Cabral, et al., 2004)) is that they combine two kinds of ontologies to obtain a service description.
First, a generic Web service ontology, such as OWL-S, specifies generic Web service concepts
(e.g., Input, Output) and prescribes the backbone of the semantic Web service description.
Second, a domain ontology specifies knowledge in the domain of the Web service, such as types
of service parameters (e.g., City) and functionalities (e.g., FindMedicalSupplier), that fills in this
generic framework. We discuss these two kinds of ontologies in the next two subsections.

Generic Web Service Ontologies
Two generic ontologies for Web service descriptions are under development. First, DAML-S is an
ontology that permits describing several aspects of a Web service. DAML-S was translated from
DAML to OWL and renamed to OWL-S. The second, more recent, initiative is WSMO (Web
Service Modelling Ontology) which, even if has overlaps with OWL-S, is based on different
principles and brings several additions to OWL-S (see (Lara, et al., 2005) for a detailed analysis of
these two ontologies). In this deliverable we only consider OWL-S because NeOn partners have
the most expertise in this language. Also, note that the goal of this deliverable is to give an
overview of existing techniques that could be possibly useful, but it does not aim at providing a
complete analysis. We believe that this section should be enough to demonstrate the idea of SWS
and if needed in the project, further in depth analysis can be performed for other related
techniques.

The OWL-S ontology is conceptually divided into four sub-ontologies for specifying what a service
does (Profile39), how the service works (Process40) and how the service is implemented
(Grounding2041). A fourth ontology (Service42) contains the Service concept which links together a
ServiceProfile, a ServiceModel and a ServiceGrounding concept (see Figure 16). The Service
presents a ServiceProfile, is described by a ServiceModel and supports a ServiceGrounding.
These three concepts are all further specialized in the Profile, Process and Grounding ontologies
respectively. In the rest of this subsection, we explain all the three parts of OWL-S by exemplifying
their use for describing our example service. We also introduce the schematic service
representations that will be used through this subsection.

Figure 16: The OWL-S Service Ontology. (Note that the arrows in this picture are directed
according to the OWL-S model even if their direction might seam counterintuitive.)

38 http://www.wsmo.org
39 http://www.daml.org/services/owl-s/1.0/Profile.owl
40 http://www.daml.org/services/owl-s/1.0/Process.owl
41 http://www.daml.org/services/owl-s/1.0/Grounding.owl
42 http://www.daml.org/services/owl-s/1.0/Service.owl

2007 © Copyright lies with the respective authors and their institutions.

http://www.wsmo.org/
http://www.daml.org/services/owl-s/1.0/Profile.owl
http://www.daml.org/services/owl-s/1.0/Process.owl
http://www.daml.org/services/owl-s/1.0/Grounding.owl
http://www.daml.org/services/owl-s/1.0/Service.owl

Page 48 of 102 NeOn Integrated Project EU-IST-027595

1. The Profile Ontology specifies the functionality offered by the service (e.g.,
GetMedicalSupplier), the semantic type of the inputs and outputs (e.g., City, Medicare-Supplier),
the details of the service provider and several service parameters, such as quality rating or
geographic radius. This description is used for discovering the service. The central concept of this
ontology, Profile, is a subclass of ServiceProfile.

In the schematic representation of semantic Web service descriptions used throughout this
subsection, for each Profile instance we depict the process it describes (indicated by the hasProc
relation) and its functional characteristics (Inputs, Outputs, Preconditions, Effects - from now
referred to as IOPE’s) together with their type. In the example below, the MedicareSupplier service
presents three profiles (i.e., it offers three distinct functionalities). Each Profile has a semantic type
described by one of the functionality concepts FindMedicareSupplierByZip,
FindMedicareSupplierByCity or FindMedicareSupplierBy-Supply. Each Profile describes a Process
(later specified in the Process Model - P1, P2, P3). Finally, all Profiles return an output which was
described with the SupplierDetails concept. The input type varies for each Profile: ZipCode, City or
SupplyType. Note that this description was constructed using concepts defined in the Web service
domain ontology presented bellow.

Service MedicareSupplier:

*Profile:FindMedicareSupplierByZip (hasProc P1)

(I(ZipCode), O(SupplierDetails))

*Profile:FindMedicareSupplierByCity (hasProc P2)

(I(City), O(SupplierDetails))

*Profile:FindMedicareSupplierBySupply (hasProc P3)

(I(SupplyType), O(SupplierDetails))

*ProcessModel: ...

*WSDLGrounding: ...

2. The Process ontology. Many complex services consist of smaller services executed in a
certain order. For example, buying a book at Amazon.com involves using a browsing service
(which selects the book) and a paying service. OWL-S allows describing such internal process
models. These are useful for several purposes. First, one can check that the business process of
the offering service is appropriate (e.g., product selection should always happen before payment).
Second, one can monitor the execution stage of a service. Third, these process models can be
used to automatically compose Web services. A ServiceModel concept describes the internal
working of the service and it is further specialized as a ProcessModel concept in the Process
ontology. A Process-Model has a single Process which can be atomic, simple or composite
(composed from atomic processes through various control constructs). Each Process has a set of
IOPE’s.

In our notation, for each service we represent its ProcessModel with its Process. For each Process
we depict its type, the involved control constructs, the IOPE’s and their types. The
MedicareSupplier service allows a choice from its three AtomicProcesses (corresponding to the
three Profiles), therefore its ProcessModel consists of a CompositeProcess modelled with the
Choice control construct.

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 49 of 102

Service MedicareSupplier:

*Profile:...

*ProcessModel:

CompositeProcess: MedicareProcess:Choice

{

AtomicProcess:P1 (I(ZipCode),O(SupplierDetails))

AtomicProcess:P2 (I(City),O(SupplierDetails))

AtomicProcess:P3 (I(SupplyType),O(SupplierDetails))

}

*WSDLGrounding: ...

Profile to Process Bridge. A Profile contains several links to the Process. Figure 17 shows these
links, where terms in bold-face belong to the Profile ontology and the rest to the Process ontology.
Firstly, a Profile states the Process it describes through the unique property has_process.
Secondly, the Input, Outputs, Preconditions and Effects (from now on IOPE) of the Profile
correspond (in some degree) to the IOPEs of the Process.

Understanding this correspondence is not so trivial given the fact that the IOPE’s play different
roles for the Profile and for the Process. In the Profile ontology they are treated equally as
parameters of the Profile (they are subproperties of the profile:parameter property). In the Process
ontology only Inputs and Outputs are regarded as subproperties of the process:parameter
property. The Preconditions and Effects are just simple properties of the Process. While technically
the IOPEs are properties both for Profile and Process, the fact that they are treated differently at a
conceptual level is misleading. The link between the IOPE’s in the Profile and Process part of the
DAML-S descriptions is created by the refersTo property which has as domain
ParameterDescription and ranges over the process:paramater.

Figure 17: Profile to Process bridge.

2007 © Copyright lies with the respective authors and their institutions.

Page 50 of 102 NeOn Integrated Project EU-IST-027595

3. The Grounding ontology provides the vocabulary to link the conceptual description of the
service, specified by the Profile and Process, to actual implementation details, such as message
exchange formats and network protocols. The grounding to a WSDL description is performed
according to three rules:

R1. Each AtomicProcess corresponds to one WSDL operation.

R2. As a consequence of the first rule, each input of an AtomicProcess is mapped to a
corresponding message-part in the input message of the WSDL operation. Similarly for
outputs, each output of an AtomicProcess is mapped to a corresponding message-part in
the output message of the WSDL operation.

R3. The type of each WSDL message part can be specified in terms of a OWL-S parameter
(i.e., an XML Schema data type or a OWL concept).

The Grounding ontology specializes the ServiceGrounding as a WSDLGrounding which contains a
set of WsdlAtomicProcessGrounding elements, each grounding one of the atomic processes
specified in the ProcessModel. In our abstract notation, we depict each atomic process grounding
by showing the link between the atomic process and the corresponding WSDL element. The
MedicareSupplier service has three atomic process groundings for each processes of the
ProcessModel.

Service MedicareSupplier:

*Profile:...

*ProcessModel:...

*WSDLGrounding:

WsdlAtomicProcessGrounding: Gr1 (P1->op:GetSupplierByZipCode)

WsdlAtomicProcessGrounding: Gr2 (P2->op:GetSupplierByCity)

WsdlAtomicProcessGrounding: Gr3 (P3->op:GetSupplierBySupplyType)

We finish this subsection by describing a set of design principles underlying OWL-S that we
identified during our use of this ontology.

1. Semantic vs. Syntactic descriptions. OWL-S differentiates between the semantic and
syntactic aspects of the described entity. The Profile and Process ontologies allow for a semantic
description of the Web service while the WSDL description encodes its syntactic aspects (such as
the names of the operations and their parameters). The Grounding ontology provides a mapping
between the semantic and the syntactic parts of a description facilitating flexible associations
between them. For example, a certain semantic description can be mapped to several syntactic
descriptions if the same semantic functionality is accessible in different ways. The other way
around, a certain syntactic description can be mapped to different conceptual interpretations
offering different views of the same service.

2. Generic vs. Domain knowledge. OWL-S offers a core set of primitives to specify any type of
Web service. These descriptions can be enriched with domain knowledge specified in a separate
domain ontology. This modelling choice allows using the core set of primitives across several
domains.

3. Modularity. Another feature of OWL-S is the partitioning of the description over several
concepts. The best demonstration for this is the way the different aspects of a description are
partitioned in three concepts. As a result a Service instance will relate to three instances each of

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 51 of 102

them containing a particular aspect of the service. There are several advantages of this modular
modelling. First, since the description is split up over several instances it is easy to reuse certain
parts. For example, one can reuse the Profile description of a certain service. Second, service
specification becomes flexible as it is possible to specify only the part that is relevant for the
service (e.g., if it has no implementation one does not need the ServiceModel and the
ServiceGrounding). Finally, any OWL-S description is easy to extend by specializing the OWL-S
concepts.

Web Service Domain Ontologies
Externally defined knowledge plays a major role in each OWL-S description. OWL-S offers a
generic framework to describe a service, but to make it truly useful, domain knowledge is required.
For example, domain knowledge is used to define the type of functionality the service offers as well
as the types of its parameters.

Figure 18: Web service domain ontology.

Figure 18 depicts the hierarchical structure of the domain ontology used to describe the example
Web service. Note that it specifies a DataStructure hierarchy and a Functionality hierarchy. The
Functionality hierarchy contains a classification of service capabilities. Two generic classes of
service capabilities are shown here, one for finding a medical supplier and the other for calculating
distances between two locations. Each of these generic categories has more specialized
capabilities either by restricting the type of the output parameters (e.g., find Medicare providers) or
the input parameters (e.g., ZipCode, City, SupplyType).

The complexity of the reasoning tasks that can be performed with semantic Web service
descriptions is conditioned by several factors. First, ideally, all Web services in a domain should
use concepts from the same (or a small number of coupled/networked) domain ontology in their
descriptions. Otherwise the issue of ontology mapping has to be solved which is a difficult problem
in itself. While NeOn will provide matching techniques to create ontology networks, the ideal case
is still when a single ontology can be used by all Web services. This requires that domain
ontologies should be broad enough to provide the needed concepts by any Web service in a
certain domain. Second, the richness of the available knowledge is crucial for performing complex
reasoning.

2007 © Copyright lies with the respective authors and their institutions.

Page 52 of 102 NeOn Integrated Project EU-IST-027595

Example scenario. By using the semanticWeb service descriptions presented above, the example
task can be generalized and automated. The right services needed to perform the task can be
selected automatically from a collection of services. Semantic metadata allows a flexible selection
that can retrieve services that partially match a request but are still potentially interesting. For
example, a service which finds details of medical suppliers will be considered a match for a request
for services that retrieve details of Medicare suppliers, if the used Web service domain ontology
specifies that a MedicareSupplier is a type of MedicalSupplier. Note that this matchmaking is
superior to the keyword based search offered by UDDI. The composition of several services in a
more complex service can also be automated. Finally, after being discovered and composed based
on their semantic descriptions, the services can be invoked to solve the task at hand.

3.3.1.6.2 WS-DAI (Web Services Database Access and Integration)
This base specification provides the basic means needed for defining systematically and in a
uniform way specific data access mechanisms. The means provided consist of a set of message
definition patterns and a predefined built-in core interfaces, messages and properties.

Even though, this specification does not mandate how the data access mechanisms for specific
data resources must be. These data access mechanisms are defined as WS-DAI “realizations”,
which are WS-DAI extensions that define how specific data resources and systems can be
described and manipulated.

The WS-DAI specification, and underlying realizations, can be used in traditional web services
environments or be included as part of a grid fabric.

Organization
The specification is organized around the notions of data access services and data resources. A
data access services is a web service that implements one or more WS-DAI interfaces to provide
access to data resources. A data resource is a software system that can act as a sink or source of
data. Figure 19 shows how these elements are related within the WS-DAI model.

WSRF Data Resource (optional)

WSRF Data Resource (optional)

Data Service Externally Managed
Data Resource

Service Managed Data
Resource

0-* 0-*
Consumer

0-* 1-*
1

0-*

0-*
External Data
Management System 0-*

0-*

This could be single management system or
something more complex such as a
federation. This complexity is hidden from
the consumer by the data resource

1-*

Data Resource List
(optional)

1

0-1

Figure 19: Elements of the WS-DAI model, taken from (Atkinson, et al., 2006)

WS-DAI distinguishes between two types of data resources: externally managed, which are those
which exist out the data service (i.e. a relational database); and service managed, those which are
part of the data service itself.

In the end, data access services offer to the consumer a set of interfaces which provide specific
data access to a concrete type of data resource. The term interface refers to the set of messages
or properties that a service offers. Properties are used to describe the characteristics of a data
resource as well as the data access service’s relationship with that data resource.

However WS-DAI do not mandate how interfaces are composed into data access services.

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 53 of 102

2007 © Copyright lies with the respective authors and their institutions.

Message Patterns
The WS-DAI specification defines two types of data access patterns:

Direct data access: a consumer receives a direct response, containing the requested data,
following a request made to a data access service. An operation that directly inserts, updates or
deletes data through a data access service is also involved in direct data access.

Indirect data access: a consumer does not receive the results in the response to a request made
to a data access service. The request to access data will be processed by the data access service
and data resource, with the results being made available to the consumer indirectly as a new data
resource, often through a different data access service that may support a different set of
interfaces.

3.3.1.6.3 WS-Security
One of the most important challenges in the development of distributed systems is to provide
security when accessing remote services. This applies not only for the services themselves but
also the reliable and unchangeable transport of message. WS-Security provides an extensible
general-purpose mechanism for associating security tokens of multiple security token formats with
messages. The extensibility allows applications to choose their favourite authentication and
authorization mechanisms. The WS-Security profile specification describes how to encode
Username Tokens, X.509 Tokens, SAML Tokens, REL Tokens and Kerberos Tokens and attach
them to SOAP messages. WS-Security is a flexible standard which allows applications to describe
the credentials that are included with a message. To address all the security requirements of
application WS-Security can be used together with other Web service protocols.

Usage of XML Signature and security tokens ensure that messages have originated from the
appropriate sender and were not modified (messages integrity). XML Encryption and security
tokens are used to keep portions of a SOAP message unreadable for externals (message
confidentiality).

3.3.1.6.4 WS-Policy
WS-Policy provides an extensible and flexible mechanism to describe requirements and properties
of entities in a Web Service based application landscape. Within this framework WS-Policy offers
syntax to describe primitive and composite requirements and properties. While service
documentation could describe these requirements and properties as well, WS Policy aims at
extensibility with other WS specifications. Further building blocks in this framework are WS-
PolicyAttachments and WS-PolicyAssertions. The former one describes general-purpose
mechanisms for associating policies with the subject to which they apply, the latter one defines
building blocks to accommodate a wide variety of policy exchange models.

3.3.1.6.5 SCA and SDO
Service Data Objects (SDO) and Service Component Architecture (SCA) are projects of the so-
called “Open SOA Collaboration“43. They aim at powerful and flexible means to build applications
in a service-oriented architecture using a wide range of programming languages. It is not yet clear
whether these technologies will reach the state of a standard or de-facto standards. However, due
to the fact that many important drivers of the service-oriented paradigm collaborate in these
projects they should at least be considered when defining an implementation architecture for a
service-oriented application landscape.

SCA covers the service components level using SOA principles. One could also say it covers the
“A” in SOA. It defines a programming model for service-based systems to construct, assembly and
deploy composite applications. It also models creation of new service components.

43 Open SOA. http://www.osoa.org/

http://www.osoa.org/

Page 54 of 102 NeOn Integrated Project EU-IST-027595

SDO covers the data aspects within applications. It aims at a simplified, unified and consistent
handling of such data independent of their source and format. In the end application programmers
shall uniformly access and modify data from distinct and heterogeneous data sources.

SDO supports different kind of data sources like RDBMS, XML and web services. It decouples the
data source and the application by offering access to the data objects disconnected from the
connection of the data source. Manipulations on the disconnected data objects are however also
supported. All gathered manipulations are propagated to the data source. Details of the changes
are available in the form of change summaries.

It defines both a dynamic and static API to access and manipulate a graph of data objects. The
static API is generated for a specific schema of data like XML schema or relational schema. Both
APIs allows traversing the graph of data objects. Additionally simple queries in the form of XPath
expression are possible for more complex traversal of objects.

The dynamic API has a rather complete support for accessing the meta model, which goes beyond
Java reflection.

Due to its disconnected mode and complete support of XML it is especially suited to access web
services in a very comfortable way in Java and other programming languages.

3.3.2 Access service directories and registries

A directory service is needed to publish and access to the resources (ontological and non-
ontological) that are spread among the Internet. We will need two directory services as the NeOn
architecture is defined. One directory is for the resources in the level of the distributed repository
and the other is needed for describing and accessing the services in the middle-ware layer of the
NeOn architecture.

3.3.2.1 UDDI

UDDI (Universal Description, Discovery and Integration) defines an interface of a service registry.
UDDI forms together with the SOAP protocol and the WSDL web service description the basic
functionality for a SOA.

The goal is to enable business over the Internet to publish and look up services and to describe,
how they interact. The functionality can be categorized by an analogy to white and yellow pages
according to the following aspects:

• White Pages, which provides address, contact and known identifiers

• Yellow Pages, which lists industrial categories based on standard taxonomies and

• Green Pages, containing technical information about services exposed by the business

It has a fixed data model for services consisting of:

• businessEntity, which usually describes a company or an organization

• businessService, the description of the service itself

• bindingTemplate, the mechanism how to invoke the service

• tModel, for the classification of services

• categoryBags

Their relationship is sketched by the following figure from the UDDI standard:

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 55 of 102

Figure 20: UDDI datamodel for services relationship diagram

The indirection of discovering a web service at runtime via an UDDI registry gives applications high
degree of flexibility. Thus applications are isolated from movement of services, from the availability
of a single service and can utilize information about the quality of the service.

UDDI is an OASIS standard. The current version is V344.

3.3.2.2 ebXML registry

An ebXML registry securely manages arbitrary artefacts of SOA applications together with its
associated metadata. The artefacts can have XML representations like XML schemas or web
service descriptions (WSDL) but also non-XML representations are possible.

Thus is extends an UDDI registry in two main aspects:

• Registry functionality for arbitrary artefacts not just services.

• Integration of repository functionality with the registry functionality.

The standard consists of two parts:

• ebXML registry information model. The information model has predefined classes and
associations but allows the user also to define its own one.

• ebXML registry services. The functionality is available as set of web services
differentiating mainly between query services and life cycle services

Additionally to the service interface the functionality is available via the java interface Java API for
XML Registries45.

From a functionality point of view it contains the UDDI functionality but offers additional features.

44 UDDI Specification: http://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm
45 JAXR: http://java.sun.com/webservices/jaxr

2007 © Copyright lies with the respective authors and their institutions.

http://www.oasis-open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm
http://java.sun.com/webservices/jaxr

Page 56 of 102 NeOn Integrated Project EU-IST-027595

3.4 Notification and syndication protocols

In the collaborative design process, a way to notify the people involved is needed. In this section
we include the protocols used in the communication via e-mail (SMTP, POP and IMAP), one
protocol for instant messaging (JABER) and a protocol that come from the Grid community used
for the purpose of notification (INFOD).

3.4.1 Notification protocols

3.4.1.1 Simple Mail Transfer Protocol (SMTP)

The Simple Mail Transfer Protocol (SMTP) is used for communication between a mail (SMTP-)
client and a mail (SMTP-) server. Its objective is to transfer mails in a reliable and efficient way. It is
a higher level protocol and is independent of specific network layer protocols (although, most of the
times, TCP/IP is used). Transporting mail across networks (SMTP mail relaying) is an important
feature since most of the times sender and recipient are not on the same server or subnet.

Because the basic SMTP protocol was considered to be not complete enough, service extensions
were proposed. Nowadays most of the SMTP servers support the extensions while being 100%
backward compatible to the original SMTP protocol. Timeouts are used for every SMTP command,
however, the duration can be determined by the SMTP server administrator. Recommendations
are given in the SMTP RFC.

Using SMTP commands, different functions and the mail transfer itself can be requested by the
user.

It should be noted that SMTP alone does not offer authentication or security. It is important to
realize that information like the sender’s email address can be easily forged and the message
content altered by any of the relaying servers. The only way to ensure security is to use encryption
or digital signatures (e.g. by using PGP) at the message level. To protect users against spammers
crawling for email addresses, the VRFY and EXPN command can also be disabled. For additional
information see RFC2821 (Klensin, 2001)

Information used in this section is taken directly from the SMTP specification—RFC2821 (Klensin,
2001).

3.4.1.2 Post Office Protocol (POP)

The Post Office Protocol (POP) is used to retrieve emails from a remote server given a standard
TCP/IP connection on port 110. The latest version –POP3– has made earlier versions obsolete.
The main advantage of POP is the possibility of just connecting to the server for mail fetching when
needed and not having to keep a connection established. Since emails are downloaded to the
client, they can easily be processed offline, as opposed to emails processed using the IMAP
protocol (in case the user has not enabled complete caching of the IMAP folders).

The communication between client and server can be distinguished into three different states:
AUTHORIZATION, TRANSACTION and UPDATE.

After the TCP connection between client and mail-server is established and the server has issued
a on line greeting (e.g. +OK POP3 server at your service) the POP3 session is in the
AUTHORIZATION state. During that state, only the commands USER, PASS, QUIT and APOP (if
implemented) are valid46. After the user has identified himself through either a USER, PASS

46 For a complete list of commands and description of corresponding actions see list below

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 57 of 102

2007 © Copyright lies with the respective authors and their institutions.

combination or the APOP command, the specific maildrop is locked with an exclusive-access lock
to prevent modification or deletion of messages before the UPDATE state is entered. If this could
successfully be applied, the session enters the TRANSACTION state with no messages marked
as deleted, otherwise the user is presented an error message, a potential lock is released and the
connection potentially closed.

After a maildrop has been opened, every message is assigned a message-number and the size of
each message in octets is noted. During TRANSACTION state, STAT, LIST, RETR, DELE, NOOP,
RSET, QUIT, and TOP, UIDL (if implemented) are valid. Once the client issues the QUIT
command during TRANSACTION state the session switches into the UPDATE state (in case QUIT
is issued during AUTORIZATION state the session terminates without entering UPDATE state).
During UPDATE state all messages marked as deleted are removed from the maildrop.

Apart from the responses to STAT, LIST and UIDL commands, the server’s reply is significant only
to “+OK” and “-ERR”.

The following commands are used to communicate with the server:

• USER xxx Tells the server which account to access

• PASS xxx Sends the password to that account

• STAT Returns the status of the mailbox, this is for example number of messages and new

 messages

• LIST (n) Returns the number and size of emails (or, if the optional parameter n is also
submitted, of the nth email)

• RETR n Is used to retrieve the nth email from the server

• DELE n Deletes the nth email from the server

• NOOP No function, server responds with +OK (can be used to avoid time-out in case the
server has one)

• RSET resets all DELE commands

• QUIT quits the current POP3 session and executes all DELE commands

Optional commands (depending on the server used or commands implemented):

• APOP secure authorization

• TOP n x retrieves header and first x lines from the nth email

• UIDL n displays the unique ID of the nth email

Closing remarks: Since password and user information is transmitted in clear text when not using
the APOP command, one way to ensure privacy is encrypting the whole communication with the
server using SSL/TLS.

Information used in this section is taken directly from the POP3 specification—RFC1939 (Myers, et
al., 1996).

3.4.1.3 Internet Message Access Protocol- Version 4rev1 (IMAP)

The main idea of IMAP is that clients can manipulate and use mailboxes on servers as if they were
local. Caching strategies can be used to enable offline clients to process their email. The protocol
operates on port 143 TCP. All interactions between client and server are in the form of lines
(strings that end with a CRLF). There are different states of client server communication. After the
initial connection has been established and the server has sent a greeting, the communication is in
the not authenticated state (in case the connection had no pre-authentication). Once the client
has authenticated himself (or the connection has been established using pre-authentication), the

Page 58 of 102 NeOn Integrated Project EU-IST-027595

connection is in the authenticated state. After a successful SELECT or EXAMINE (see below)
command, the connection is in the selected state. From here, using the CLOSE command the
connection can go back to the authenticated or the logout state in case the LOGOUT command
is used.

There are also experimental commands. They are prefixed with an X and are not defined in the
RFC (Crispin, 2003).

For each of the commands, different server answers exist. They can be found in the official
specification (Crispin, 2003). Concluding it can be said that using IMAP to access emails is
beneficial for users who want to access a mailbox from different machines or want to share
mailboxes with other users. The administration possibilities for the mailboxes are far superior to
POP3. Different access rights can be given, a folder structure can be created on the server, and, if
needed, messages can be cached locally and changes synched once a connection has been re-
established. Also security is improved because encrypted authentication is supported natively.
Messages are not downloaded automatically, which keeps down the traffic and therefore is crucial
when the mailbox is accessed from mobile devices that have high bandwidth costs.

Downsides include a higher load on the mail server and the fact that the protocol is very
complicated to implement correctly. Also in most cases sent messages have to be transferred
twice, once to the SMTP server and once for the copy in the sent-items folder on the IMAP server.

Information used in this section is taken directly from the IMAP4 specification—RFC3501 (Crispin,
2003).

3.4.1.4 Jabber

Jabber is a set of streaming XML protocols and technologies that enable any two entities on the
Internet to exchange messages, presence, and other structured information in close to real time.
Jabber is built on the Extensible Messaging and Presence Protocol (XMPP) that is an open, XML-
based protocol for near-real-time, extensible instant messaging and presence information. The
jabber network is a decentralized server-based network in which users can not talk directly one to
another and there is no central login server like other instant messaging servers. To communicate
to other people in different Jabber servers the client sends the message to its server. This server
sends the message to the other client’s server (if it is not blocked) and the other side server sends
the message to the final client.

3.4.1.5 INFOD

The “Information Dissemination in the Grid Environment – Base Specifications” (Davey, et al.,
2006) provides mechanisms for subscription-based data access.

The specification defines the infrastructure needed to allow data sources to make data available to
consumers by a notification mechanism. Whenever data is changed in a data resource, an event is
generated and messages created and passed from the publishers to the consumers, using a
shared registry where publishers publish their messages, and consumers consume those
messages to which they have subscribed, see Figure 21.

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 59 of 102

Registry

Publisher

Subscriber Subscription

Consumer

Registration

Notification

Flow of Data

Figure 21: INFOD subscription-based data access, taken from (Davey, et al., 2006)

Figure 22 shows the interfaces defined by (Davey, et al., 2006).

+CreatePublisher()
+ReplacePublisher()
+DropPublisher()
+CreateSubscriber()
+ReplaceSubscriber()
+DropSubscriber()
+CreateConsumer()
+ReplaceConsumer()
+DropConsumer()
+CreateSubscription()
+ReplaceSubscription()
+DropSubscription()

infod::Registry

+Notify()

infod::Notify

+DisassociateVocabulary()
+AssociateVocabulary()
+UnregisterVocabulary()
+RegisterDataVocabulary()
+DropPropertyVocabularyInstance()
+CreatePropertyVocabularyInstance()
+RegisterPropertyVocabulary()

infod::Vocabulary

+GetMetaData()

infod::MetaData

Figure 22: INFOD Interfaces

3.4.2 Syndication protocols and formats

Web syndication is a form of syndication in which a section of a website is made available for other
sites to use. This could be simply by licensing the content so that other people can use it; however,
in general, web syndication refers to making Web feeds available from a site in order to provide
other people with a summary of the website's recently added content (for example, the latest news
or forum posts). ICE, RSS and Atom are protocols that allow web syndication.

2007 © Copyright lies with the respective authors and their institutions.

http://en.wikipedia.org/wiki/Syndication
http://en.wikipedia.org/wiki/Website
http://en.wikipedia.org/wiki/License
http://en.wikipedia.org/wiki/Web_feed
http://en.wikipedia.org/wiki/News
http://en.wikipedia.org/wiki/Internet_forum

Page 60 of 102 NeOn Integrated Project EU-IST-027595

3.4.2.1 ICE

This section presents an overview of the Information and Content Exchange (ICE) protocol in its
2.0 version, summarized from (Brodsky, et al., 2004).

ICE47 is a protocol developed by the International Digital Enterprise Alliance (IDEAlliance) to be
used by content producers (syndicators) and their consumers (subscribers).

The ICE protocol defines the roles and responsibilities of Syndicators and Subscribers, defines the
format and method of content exchange, and provides support for management and control of
syndication relationships.

The ICE specification presented in this chapter is last one that exists by the time of writing this
deliverable, ICE 2.0, and this chapter refers every time to this version where not stated explicitly.

ICE Overview
The ICE working scenario is the following. Two entities are involved in forming a business
relationship where ICE is used. The Syndicator produces content that is consumed by Subscribers.

An important point to understand is that ICE operations start after the two parties have already
agreed to have a relationship, and have already worked out the contractual, monetary, and
business implications of that relationship.

The ICE protocol covers three general types of operations:

• Messaging

• Delivery / Transport / Packaging

• Subscription

ICE uses a package concept as a container mechanism for generic data items. ICE defines a
sequenced package model allowing Syndicators to support both incremental and full update
models. ICE also defines push and pull data transfer models as well as out-of-band transfer.

Managing exceptional conditions and being able to diagnose problems is an important part of
syndication management; accordingly, ICE defines a mechanism by which faults can be
exchanged in a standardized manner between (consenting) Subscribers and Syndicators.

Finally, ICE provides a number of mechanisms for supporting miscellaneous operations, such as
the ability to query and ascertain the status of the subscription.

ICE conformance levels
ICE 2.0 defines two levels of conformance. These levels of conformance spell out the features of
ICE that must be supported for that level of conformance. The definition of levels of conformance
enables software vendors to develop ICE applications that are interoperable:

• Basic ICE software can be expected to interoperate with other software that supports Basic
ICE.

• Full ICE software can be expected to interoperate with other software that supports Full
ICE.

• Full ICE software can be expected to interoperate with other software that supports Basic
ICE.

47 http://www.icestandard.org/

http://www.icestandard.org/

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 61 of 102

Basic ICE
The Basic ICE level of conformance provides for very simple syndication functionality, as Figure 23
shows. In fact, all that Basic ICE enables is for the Syndicator to post messages to a URL where
the Subscriber can “get” them.

In Basic ICE, the Subscriber initiates all messages with HTTP GET to URLs on the Syndicator.
Basic ICE does not allow for subscription management capabilities. The Syndicator sends no
messages to the Subscriber in Basic ICE. Basic ICE has no requirement for either the Syndicator
or the Subscriber to establish a “listener” for push messages.

Figure 23: Basic ICE capabilities

Full ICE
A Full ICE implementation implements all the features of the ICE 2.0 specification (Figure 24). Full
ICE implementations must support SOAP (Mitra, 2003) transport bindings and adds messages to
support subscription management.

Figure 24: Full ICE capabilities

2007 © Copyright lies with the respective authors and their institutions.

Page 62 of 102 NeOn Integrated Project EU-IST-027595

Protocol overview
The ICE protocol is primarily a request/response protocol that allows for fully symmetric
implementations, where both the Syndicator and Subscriber can initiate requests. This fully
symmetric implementation is known as Full ICE. The ICE protocol also allows for a Basic ICE
implementation where only the Subscriber can initiate requests.

ICE uses message exchange as its fundamental protocol model, where a message is defined for
the purposes of this specification to be a SOAP payload.

ICE messages contain header information along with requests and responses. A request asks for
the performance of an operation.

Every logical operation in ICE is described by a request/response pair. All operations are forced to
fit this model; thus, a valid ICE protocol session always comprises an even number of messages
when it is in the idle state.

Bindings of ICE
Because one of the design goals of ICE 2.0 is to enable ICE as a Web service, the capability of
ICE to function over SOAP is critical. While ICE 2.0 will remain a transport independent protocol,
thus the ICE 2.0 Specification will explicitly discuss binding of the generic ICE protocol over the
SOAP transport mechanism and term that ICE/SOAP. In addition to the specification of ICE 2.0
with an explicit binding to SOAP, ease of implementation also dictates that ICE 2.0 also enable the
use of HTTP:GET ICE/HTTP as a transport mechanism:

• ICE/HTTP. In Basic ICE all messages are initiated with a SOAP Response Message
Pattern (HTTP:GET). The HTTP:GET retrieves whatever data is identified by a URL. The
body of the response will be an XML message with a SOAP envelope and ICE messages.

• ICE/SOAP. For Full ICE, an explicit binding to SOAP is provided. The ICE message header
was designed to be carried in the SOAP header and the ICE fault, delivery and subscription
mechanisms were designed to be enclosed in the SOAP body.

For either Full ICE or Basic ICE, content is encoded in an ICE/SOAP format. This is simply a XML
file where ICE messages are wrapped in a SOAP envelope.

Identifiers
ICE defines a number of identifiers that control the access to content and enable content
management throughout the syndication process.

• Subscriber and Syndicator Identifiers. ICE uses globally unique identifiers for identifying
Subscribers and Syndicators. The globally unique identifier for the Subscriber and
Syndicator should conform to the Universal Unique Identifier defined by the Open Group
(The Open Group, 1997).

• Other identifiers. As distinct from the Subscriber UUID and the Syndicator UUID as
outlined by the Open Group, ICE does not define the format of other identifiers it specifies
except for uniqueness constraints. All other identifiers function as being unique only within
a certain scope.

ICE syntax, datatypes and namespaces
ICE 2.0 uses XML as the format for all ICE messages. XML schemas are used to define simple
datatypes, the ICE message header and status codes and ICE delivery and subscription elements.

ICE simple datatypes are defined in a ICE simple datatypes schema, and all ICE-defined elements
are defined into one of three ICE namespaces to enable ICE to function as a Web service and
utilize SOAP messaging.

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 63 of 102

2007 © Copyright lies with the respective authors and their institutions.

The ICE 2.0 namespaces are:

• xmlns:icemes = “http://icestandard.org/ICE/Spec/V20/message”

• xmlns:icedel = “http://icestandard.org/ICE/V20/delivery”

• xmlns:icesub = “http://icestandard.org/ICE/V20/subscribe”

• xmlns:icesdt = “http://icestandard.org/ICE/V20/simpledatatypes”

ICE schemas
ICE defines three schemas for sending messages, for delivery of content, and for establishing and
cancelling subscriptions.

ICE Message schema
The ICE message schema is defined within ice-message.xsd as the icemes namespace. This
schema defines structures relating to the ICE message itself. This includes message header
information and ICE status codes. ICE uses the SOAP envelope and SOAP header. The ICE
message is carried within the SOAP header.

The ICE message uses the simple datatypes defined within the simple datatype module.

ICE Delivery schema
ICE delivery is defined in a schema module with the icedel namespace. This module defines the
elements that support the delivery of syndicated content and is carried within the SOAP body.

ICE delivery is most often made up of packages. Two kinds of ICE packages include those bearing
or point to content and those containing a catalog of subscription offers.

ICE Subscribe schema
The ICE subscription module is used to establish and cancel subscriptions for syndicated content.
It is defined within the icesub namespace. Each ICE subscription contains one offer that will be
subscribed to. Attributes on the offer identify it uniquely. Each ICE subscription offer must contain a
delivery policy. The delivery rule within the delivery policy defines how and when content will be
delivered.

In addition, the ICE subscription allows for the subscriber to cancel a subscription, for the
syndicator to verify cancellation and for the subscriber to get the status of a subscription.

3.4.2.2 RSS

RSS is a simple XML-based system that allows users to subscribe to a content source. Using RSS,
an organization can put its content into a standardised format.

A program known as a feed reader or aggregator can check a list of feeds on behalf of a user and
display any updated articles that it finds.

There are also search engines for content published via web feeds.

Page 64 of 102 NeOn Integrated Project EU-IST-027595

RSS Overview48

There are several different versions of RSS, falling into two major branches (RDF based versions
and non RDF based versions). 1.* versions are based on RDF and include the following versions:

• RSS 0.90 was the original Netscape RSS version. This RSS was called RDF Site
Summary, but was based on an early working draft of the RDF standard, and was not
compatible with the final RDF Recommendation.

• RSS 1.0 is an open format by the RSS-DEV Working Group, again standing for RDF Site
Summary. RSS 1.0 is an RDF format like RSS 0.90, but not fully compatible with it, since
1.0 is based on the final RDF 1.0 Recommendation.

• RSS 1.1 is also an open format and is intended to update and replace RSS 1.0. The
specification is an independent draft not supported or endorsed in any way by the RSS-
DEV Working Group or any other organization.

The RSS 2.* branch includes the following versions:

• RSS 0.91 is the simplified RSS version released by Netscape called Rich Site Summary.
This was no longer an RDF format, but was relatively easy to use. It remains the most
common RSS variant.

• RSS 0.92 through 0.94 are expansions of the RSS 0.91 format, which are mostly
compatible with each other and with RSS 0.91, but are not compatible with RSS 0.90.

• RSS 2.0.1 has the internal version number 2.0. RSS 2.0.1 was proclaimed to be “frozen”,
but still updated shortly after release without changing the version number. RSS now stood
for Really Simple Syndication. The major change in this version is an explicit extension
mechanism using XML Namespaces.

For the most part, later versions in each branch are backward-compatible with earlier versions
(aside from non-conformant RDF syntax in 0.90), and both versions include properly documented
extension mechanisms using XML Namespaces, either (in the 2.* branch) or through RDF (in the
1.* branch). Most syndication software support both branches.

Syntax and Semantics

RDF based format (1.0)
RSS 1.0 has an RDF Schema available. Dublin Core module is an official module of the RSS-DEV
working group. According to the RSS 1.0 Specifications49 a graph representing this schema is the
following:

48 From Apache Labs – RSS (file format): http://www.apachelabs.org/rssfileformat.htm
49 RSS 1.0 Specifications: http://web.resource.org/rss/1.0/

http://www.rssboard.org/rss-specification
http://www.apachelabs.org/rssfileformat.htm
http://web.resource.org/rss/1.0/

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 65 of 102

Figure 25: RSS 1.0 Graph

Description of the classes:

• image: an RSS image.
• channel: an RSS information channel.
• textinput: an RSS text input.
• item: an RSS item.

Description of the properties:

• items: points to a list of rss:item elements that are members of the subject channel.
• link: the URL to which an HTML rendering of the subject will link. It is a sub property of

http://purl.org/dc/elements/1.1/identifier.
• url: the URL of the image to used in the 'src' attribute of the channel's image tag when

rendered as HTML. It is a sub property of
http://purl.org/dc/elements/1.1/identifier.

• name: the text input field's (variable) name.
• title: a descriptive title for the channel. It is a sub property of

http://purl.org/dc/elements/1.1/title.
• description: a short text description of the subject. It is a sub property of

http://purl.org/dc/elements/1.1/description.

Non RDF based format (2.0)
According to the RSS 2.0 Specifications50 the required channel elements are:

• title: the name of the channel. It’s how people refer to the service.
• link: the URL of the HTML website corresponding to the channel.
• description: phrase or sentence describing the channel.

50 RSS 2.0 Specifications: http://www.rssboard.org/rss-specification

2007 © Copyright lies with the respective authors and their institutions.

http://www.rssboard.org/rss-specification
http://www.rssboard.org/rss-specification
http://www.rssboard.org/rss-specification

Page 66 of 102 NeOn Integrated Project EU-IST-027595

According to the RSS 2.0 Specifications the optional channel elements are:

• language: the language the channel is written in. copyright: copyright notice for the content
in the channel.

• managingEditor: email address for person responsible for editorial content.
• webMaster: email address for person responsible for technical issues relating to channel.
• pubDate: the publication date for the content in the channel.
• lastBuildDate: the last time the content of the channel changed.
• category: specify one or more categories that the channel belongs to.
• generator: a string indicating the program used to generate the channel.
• docs: a URL that points to the documentation for the format used in the RSS file.
• cloud: allows processed to register with a cloud to be notified of updates to the channel.
• ttl: number of minutes that indicates how long a channel can be cached before refresing

from the source.
• image: specifies a GIF, JPEG or PNG image that can be displayed with the channel.
• rating: the PICS rating for the channel.
• textInput: specifies a text input box that can be displayed with the channel.
• skipHours: a hint for aggregators telling them which hours they can skip.
• skipDays: a hint for aggregators telling them wich days they can skip.

The following is an example of an RSS 2.0 file:

<?xml version="1.0"?>
<rss version="2.0">
 <channel>
 <title>Liftoff News</title>
 <link>http://liftoff.msfc.nasa.gov/</link>
 <description>Liftoff to Space Exploration.</description>
 <language>en-us</language>
 <pubDate>Tue, 10 Jun 2003 04:00:00 GMT</pubDate>
 <lastBuildDate>Tue, 10 Jun 2003 09:41:01 GMT< lastBuildDate> /
 <docs ://blogs.law.harvard /rss</docs> >http .edu/tech
 <generator og Editor 2.0</generator>Webl >
 <managingEditor>editor@example.com managingEditor> </
 <webMaster>webmaster@example.com</webMaster>

 <item>
 <title>Star City</title>
 <link>http://liftoff.msfc.nasa.gov/news/2003/news-starcity.asp</link>
 <description>How do Americans get ready to work with Russians aboard the
 International Space Station? They take a crash course in culture, language
 and protocol at Russia's Star City.</description>
 <pubDate>Tue, 03 Jun 2003 09:39:21 GMT</pubDate>
 <guid>http://liftoff.msfc.nasa.gov/2003/06/03.html#item573</guid>
 </item>

 <item>
 <title>Space Exploration</title>
 <link /liftoff.msfc.nasa.gov/</link> >http:/
 <description>Sky watchers in Europe, Asia, and parts of Alaska and Canada
 will experience a partial eclipse of the Sun on Saturday, May 31st.</description>
 <pubDate>Fri, 30 May 2003 11:06:42 GMT</pubDate>
 <guid>http://liftoff.msfc.nasa.gov/2003/05/30.html#item572</guid>
 </item>

 </channel>
</rss>

http://www.rssboard.org/rss-specification

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 67 of 102

2007 © Copyright lies with the respective authors and their institutions.

3.4.2.3 Atom

The information in this document is partially extracted from RFC 4287 about the Atom Syndication
Format51.

Differences with RSS
The development of Atom was motivated by the existence of many incompatible versions of the
RSS syndication format and the poor interoperability of XML-RPC-based publishing protocols.

A brief description of the ways Atom 1.0 seeks to differentiate itself from RSS 2.0 follows
(Schollmeier, 2002):

• RSS 2.0 may contain either plain text or escaped HTML as a payload, with no way to
indicate which of the two is provided. Atom in contrast uses an explicitly labeled (i.e. typed)
"entry" (payload) container. It allows for a wider variety of payload types including plain text,
escaped HTML, XHTML, XML, Base64-encoded binary, and references to external content
such as documents, video and audio streams, as so forth.

• RSS 2.0 has a "description" element which can contain either a full entry or just a
description. Atom has separate “summary” and “content” elements. Atom thus allows the
inclusion of non-textual content that can be described by the summary.

• Atom standardizes autodiscovery in contrast to the many non-standard variants used with
RSS 2.0.

• Atom is defined within an XML namespace whereas RSS 2.0 is not.
• Atom specifies use of the XML's built-in xml:base for relative URIs. RSS 2.0 does not have

a means of differentiating between relative and non-relative URIs.
• Atom uses XML's built-in xml:lang attribute as opposed to RSS 2.0's use of its own

"language" element.
• In Atom, it is mandatory that each entry have a globally unique ID, which is important for

reliable updating of entries.
• Atom 1.0 allows standalone Atom Entry documents whereas with RSS 2.0 only full feed

documents are supported.
• Atom specifies that dates be in the format described in RFC 3339 (which is a subset of ISO

8601). The date format in RSS 2.0 was underspecified and has led to many different
formats being used.

• Atom 1.0 has IANA-registered MIME-type. RSS 2.0 feeds are often sent as
application/rss+xml, although it is not a registered MIME-type.

• Atom 1.0 includes an XML schema. RSS 2.0 does not.
• Atom is an open and evolvable standard developed through the IETF standardization

process. RSS 2.0 is not standardized by any standards body. Furthermore according to its
copyright it may not be modified.

• Atom 1.0 elements can be used as extensions to other XML vocabularies, including RSS
2.0 as illustrated in a weblog post by Tim Bray entitled "Atomic RSS".

• Atom 1.0 describes how feeds and entries may be digitally signed using the XML Digital
Signatures specification such that entries can be copied across multiple Feed Documents
without breaking the signature.

51 RFC 4287. The Atom Syndication Format: http://tools.ietf.org/html/rfc4287

http://en.wikipedia.org/wiki/Payload
http://en.wikipedia.org/wiki/Payload
http://en.wikipedia.org/wiki/XHTML
http://en.wikipedia.org/wiki/Base64
http://en.wikipedia.org/w/index.php?title=Autodiscovery&action=edit
http://en.wikipedia.org/wiki/XML_namespace
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier
http://en.wikipedia.org/wiki/RFC_3339
http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/XML_schema
http://en.wikipedia.org/wiki/IETF
http://en.wikipedia.org/wiki/Weblog
http://www.tbray.org/ongoing/When/200x/2005/07/27/Atomic-RSS
http://en.wikipedia.org/w/index.php?title=XML_Digital_Signatures&action=edit
http://en.wikipedia.org/w/index.php?title=XML_Digital_Signatures&action=edit
http://tools.ietf.org/html/rfc4287

Page 68 of 102 NeOn Integrated Project EU-IST-027595

Despite the emergence of Atom as an IETF Proposed Standard and the decision by major
companies such as Google to embrace Atom, use of the older and more widely known RSS 1.0
and RSS 2.0 formats has continued.

• Many sites choose to publish their feeds in only a single format. For example CNN, the
New York Times, and the BBC offer their web feeds only in RSS 2.0 format.

• News articles about web syndication feeds have increasingly used the term "RSS" to refer
generically to any of the several variants of the RSS format such as RSS 2.0 and RSS 1.0
as well as the Atom format. (For example, "There's a Popular New Code for Deals: RSS"
(NYT January 29, 2006)

• RSS 2.0 support for enclosures led directly to the development of podcasting. While many
podcasting applications, such as iTunes, support the use of Atom 1.0, RSS 2.0 remains the
preferred format.

• Each of the various web syndication feed formats has attracted large groups of supporters
who remain satisfied by the specification and capabilities of their respective formats.

Atom overview
Atom is an XML-based document format that describes lists of related information known as
“feeds”. Feeds are composed of a number of items, knows as “entries”, each with an extensible set
of attached metadata.

The primary use case that Atom addresses is the syndication of Web content such as weblogs and
news headlines to Web sites as well as directly to user agents.

Atom is an extendible format. There are two kinds of Atom Documents specified in terms of XML:

• Feed Documents: representation and metadata of a feed and some entries associated with
it.

• Entry Documents: represents one entry, outside the context of a feed.

Syntax and Semantics

Common Atom constructs
Many elements of Atom share a few common structures. When an element is identified as a
particular kind of construct, it inherits the corresponding requirements from the definition of that
construct. The common constructs are:

• Text Constructs: contains human-readable text in a Language-Sensitive context. Text
Constructs have a “type” attribute that can be “text” (default), “html”, or “xhtml”.

• Person Constructs: describes a person, corporation or similar entity. It could be a human-
readable name, an IRI associated with the person or the email of a person.

• Date Constructs: represents date and time.

Container elements

• feed: the document (i.e., top-level) element of an Atom Feed Document, acting as a
container for metadata and data associated with the feed. Its element children consist of
metadata elements followed by zero or more atom:entry child elements.

• entry: represents an individual entry, acting as a container for metadata and data
associated with the entry. This element can appear as a child of the atom:feed element, or
it can appear as the document (i.e., top-level) element of a stand-alone Atom Entry
Document.

• content element: either contains or links to the content of the entry. The content of
atom:content is Language-Sensitive. On the atom:content element, the value of the "type"

http://en.wikipedia.org/w/index.php?title=Proposed_Standard&action=edit
http://en.wikipedia.org/wiki/Google
http://en.wikipedia.org/wiki/CNN
http://en.wikipedia.org/wiki/New_York_Times
http://en.wikipedia.org/wiki/BBC
http://travel2.nytimes.com/2006/01/29/travel/29prac.html
http://travel2.nytimes.com/2006/01/29/travel/29prac.html
http://en.wikipedia.org/wiki/Podcasting
http://en.wikipedia.org/wiki/ITunes

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 69 of 102

2007 © Copyright lies with the respective authors and their institutions.

attribute may be one of "text", "html", or "xhtml". atom:content may have a "src" attribute,
whose value must be an IRI.

Metadata elements

• author: the author of the entry or feed.
• category: information about a category associated with an entry or feed. Its attributes are:

o term: identifies the category to which the entry or feed belongs.
o scheme: IRI that identifies a categorization scheme.
o label: human-readable label for display in end-user applications.

• contributor: Person Construct that indicates a person or other entity who contributed to the
entry or feed.

• generator: identifies the agent used to generate a feed.
• icon: an IRI that identifies an image that provides iconic visual identification for a feed.
• id: universally unique identifier for an entry or feed.
• link: defines a reference for an entry or feed to a Web resource.

o href: the link’s IRI.
o rel: indicates the link relation type with the values “alternate”, “related”, “self”,

“enclosure”, or “via”. A description of the semantics of this values is in RFC 4287.
o type: an advisory MIME media type.
o hreflang: the language of the resource pointed to by the href attribute. When used

together with the rel=”alternate”, it implies a translated version of the entry.
o title: human-readable information about the link.
o length: advisory length of the linked content in octets.

• logo: an image that provides visual identification for a feed.
• published: Date Construct indicating an in the life cycle of the entry.
• rights: Text Construct that conveys information about rights held in and over an entry or

feed.
• source: designed to allow the aggregation of entries from different feeds while retaining

information about an source feed of an entry.
• subtitle: Text Construct that conveys a human-readable description for a feed.
• summary: Text Construct that conveys a short abstract of an entry.
• title: text construct that conveys a human-readable title for an entry or feed.
• updated: Date Construct indicating the most recent instant when an entry or feed was

modified in a way the publisher considers significant.

Example
Next, we have an example atom feed document:

<?xml version="1.0" encoding="utf-8"?>
 <feed xmlns="http://www.w3.org/2005/Atom">

 <title>Example Feed</title>
 <link href="http://example.org/"/>
 <updated>2003-12-13T18:30:02Z</updated>
 <author>
 <name>John Doe</name>
 </author>
 <id>urn:uuid:60a76c80-d399-11d9-b93C-0003939e0af6</id>

 <entry>
 <title>Atom-Powered Robots Run Amok</title>
 <link href="http://example.org/2003/12/13/atom03"/>
 <id>urn:uuid:1225c695-cfb8-4ebb-aaaa-80da344efa6a</id>
 <updated>2003-12-13T18:30:02Z</updated>
 <summary>Some text.</summary>
 </entry>

 </feed>

http://www.w3.org/2005/Atom
http://example.org/
http://example.org/2003/12/13/atom03

Page 70 of 102 NeOn Integrated Project EU-IST-027595

3.5 Network communication protocols

In computer science, an intelligent agent (IA) is a software agent that exhibits some form of
artificial intelligence that assists the user and will act on their behalf, in performing non-repetitive
computer-related tasks. While the working of software agents used for operator assistance or data
mining (sometimes referred to as bots) is often based on fixed pre-programmed rules, "intelligent"
here implies the ability to adapt and learn.

In this section we provide standards that can be use for communicating agents (ACL) and a
language and protocol for exchanging information and knowledge (KQML). As the reader will see
in the following description of these languages, they can be used to exchange ontological elements
or whole ontologies, thus being already existing protocols for exchanging and sharing ontologies.

3.5.1 Languages for working with agents

In computer science, an intelligent agent (IA) is a software agent that exhibits some form of
artificial intelligence that assists the user and will act on their behalf, in performing non-repetitive
computer-related tasks. While the working of software agents used for operator assistance or data
mining (sometimes referred to as bots) is often based on fixed pre-programmed rules, "intelligent"
here implies the ability to adapt and learn.

In this section we provide standards that can be use for communicating agents (ACL) and a
language and protocol for exchanging information and knowledge (KQML).

3.5.1.1 Agent Communication Language (ACL)

Introduction / Aims / Objectives
In order to communicate, agents, which might be implemented in different programming
languages, need a common language, i.e. common protocols. Apart from that they also have to be
able to locate each other autonomously.

The Foundation for Intelligent Physical Agents52 (FIPA) is an IEEE Computer Society standards
organization promoting standards in agent-based communication and agent-based technology in
general. They provide the basic models enabling agents to communicate also on a higher
abstraction layer, not only on the layer of procedural calls. One important aspect in that context is
the distinction between “belief” (statements that are assumed to be true) and “uncertainty”
(statements the agent does not know to be true but assumes to be true with high probability).
Within their possibility, agents perform different actions to reach their intentions. When different
agents interact, they communicate by exchanging messages.

Protocol Summary
The communication is partitioned into different sub-problems that can be solved using
standardized protocols, languages or mechanisms. On the lowest layer of communication a
message has to be exchanged using a transport-protocol for which it is embedded into a message
envelope (Message Transport Reference Model) (FIPA00067). The communication mechanism is
not standardized by FIPA, yet every FIPA compliant agent platform has to support the Internet Inter
ORB (IIOP) standard developed by OMG as communication protocol. The message itself
constitutes an action and therefore one of the 22 defined communicative acts (FIPA00037). The
statement the communicative act is about is called “message content”. It is a “tuple consisting of an
action expression denoting the action to be done and a proposition giving the conditions of the

52 http://www.fipa.org/

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Software_agent
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Intelligent
http://en.wikipedia.org/wiki/Adapt
http://en.wikipedia.org/wiki/Learn
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Software_agent
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Intelligent
http://en.wikipedia.org/wiki/Adapt
http://en.wikipedia.org/wiki/Learn
http://www.fipa.org/

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 71 of 102

2007 © Copyright lies with the respective authors and their institutions.

agreement.” (FIPA00037). An ontology (as domain knowledge) can be used so that the content
can be interpreted in a certain way

Summary of Messages, syntax and Format
On the level of the messages the ACL is defined by the Message Structure Specification
(FIPA00061) including syntax and grammatical structure of a message.

Components of a message are (FIPA00061):

• performative: type of communicative act (e.g. request, inform, agree etc.)53

• sender: denotes identity of sender

• receiver: denotes identity of intended recipients, specified by a number of agent-IDs

• reply-to: responses to the message should be send to this agent

• content: content of message; object of the action

• language: one of the content languages (e.g. FIPA-SL, CCL, etc)54

• encoding: specific encoding of the content language expression55

• ontology: denotes the ontology(s) used to give meaning to the symbols in the context
expression

• protocol: denotes interaction protocol the sending agent is employing with ACL message56

• conversation identifier: introduces an expression used to identify the ongoing sequence of
communicative acts that together form a conversation

• reply-with: introduces expression used by responding agent to identify this message

• in-reply-to: denotes expression reference an earlier action to which this message is a reply

• reply-by: ultimatum for answer

For each of the 22 communicative acts the FIPA Communicative Act Library Specification
(FIPA00037) defines a formal syntax and semantics. For example if agent i informs agent j that (it
is true that) it is raining today it could look like this:

 (inform
 :sender (agent-identifier :name i)

 :receiver (set (agent-identifier :name j))

 :content

 "weather (today, raining)"

 :language Prolog)

An interaction protocol models a typical “conversation” between agents for which possible
sequences of messages of certain types have been specified. Examples for interaction protocols
are auctions, brokering services or requests. To enable the creation of additional protocols, the
FIPA Interaction Protocol Library Specification (FIPA00025) defines how a protocol has to look like.
The specification of protocols is done using protocol diagrams, an extension of UML sequence
diagrams.

53 for reserved values see (FIPA00037)
54 for reserved values see (FIPA00007)
55 for reserved values see (FIPA00007)
56 for reserved values see (FIPA00025)

Page 72 of 102 NeOn Integrated Project EU-IST-027595

As mentioned above, the language used to formulate the content is specified in the attribute
“language” in the message. FIPA defined the properties of such a content language in the FIPA
Content Language Library Specification (FIPA00007). At the moment four languages have been
specified:

• FIPA Semantic Language (SL) (FIPA00008)

• Constraint Choice Language (CCL) (FIPA00009)

• Knowledge Interchange Format (KIF) (FIPA00010)

• Resource Description Framework (RDF) (FIPA00011)

An agent does not have to support a certain language. Therefore two agents have to find out
whether they share at least one common language before they first communicate.

For the transport of a message in a common language between agents FIPA provides several
specifications to provide standardization. In compliance with the standards an ACL-message is
embedded in a message envelope for transport, which itself contains all information necessary for
transport. Therefore the message content itself is not important for transportation and can be
encrypted. Information necessary for decryption is then provided in the message envelope.
(FIPA00067).

For transportation between different platforms a Message Transport Protocol (MTP) (FIPA00067)
has to be used. FIPA specifications describe the use of CORBA Internet Inter-ORB Protocol (IIOP)
(FIPA00075), the Hypertext Transfer Protocol (http) (FIPA00084) and the Wireless Application
Protocol (WAP) (FIPA00076). The representation of the message envelope is chosen according to
the MTP using CORBA Interface Definition Language (IDL) for IIOP, XML for http (SOAP) and bit-
efficient for WAP.

3.5.1.2 Knowledge Query and Manipulation Language (KQML)

The following document relies on the different KQML specifications and publications (Finin, et al.,
1994) (ARPA Knowledge Sharing Initiative, 1993) (Labrou, et al., 1997) (Fritson, et al., 1994).

Introduction / Aims / Objectives
For an interaction to take place between two agents, they have to agree on the following points:

• Transport: How are the messages interchanged?

• Language: What is the meaning of a message?

• Specification: How is the communication between agents structured?

• Architecture: How to connect systems within the realm of different protocols?

KQML provides a syntactic grounding for communication between software agents. Certain
transport assumptions are made for underlying network communication protocols (Labrou, et al.,
1997):

• agents are connected by a unidirectional connection carrying discrete messages

• connections might have delays

• when an agent receives a message, it knows from where it arrived

• when an agent sends a message, it can decide where to send it

• messages sent to a single recipient arrive in the order in which they were sent

• message transmission is reliable

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 73 of 102

2007 © Copyright lies with the respective authors and their institutions.

Protocol Summary
KQML is conceptually a layered language, consisting of the content layer, the message layer, and
the communication layer. Because the content (which is in the content layer) can carry any
representation language, including languages expressed as ASCII strings or binary notation,
KQML is independent of the representation language. Features of the message describing details
of lower level communication are encoded in the communication layer. The message layer
determines the kinds of interaction one can have with a KQML-speaking agent. It identifies the
protocol to be used to deliver the message and supplies a “speech act” or “performative” which the
sender attached to the content. Performatives tell the receiver whether the content is an assertion,
a query, a command, or any other of a set of known performatives. The message layer also
includes optional features to describe the content like its language or the ontology it assumes.

Summary of Messages, syntax and Format
Following the ASCII-representation of common lisp prefix notation, performatives are placed in
round brackets and consist of parameters divided by blanks. Parameters start with a colon followed
by the parameter keyword. The values of the parameters follow after a blank. The parameter value
can be of type word or expression, or can itself be a whole performative. Performatives that are
used frequently, like sender or content, are reserved in the specification of KQML. While some
parameters are mandatory for certain performatives, others are optional. Discussing all different
performatives would be out of scope for this document, detailed information can be found in the
KQML specifications (ARPA Knowledge Sharing Initiative, 1993) (Finin, et al., 1994).

Important are the following reserved performatives:

• discourse performatives which deal with queries to databases and manipulation of data
(ask-if, tell, deny, insert, subscribe, ...)

• intervention and mechanics performatives that take care of communication control like
error messages or status messages (error, sorry, standby, discard, ...)

• facilitation and networking performatives are used to find other agents to perform tasks
(register, forward, broadcast, transport-address, ...)

The content of a message can be described using the following optional arguments:

• :sender <word> and :receiver <word> denote the sender and receiver of a performative

• :reply-with <word> and :in-reply-to <word> are necessary for messages, that expect
responses, like queries. The sender of the first message provides an expression in the
“reply-with” parameter that the agent responding places in the “in-reply-to” parameter

• :content <expression> contains the actual content of the performative

• :language <word> defines the language of the content like PROLOG or KIF

• :ontology <word> provides the ontology used in the content field

An exemplary KQML-message (Fritson, et al., 1994) illustrates how language and ontology are
included in the message to ensure a common understanding of the message:

(tell

 :language KIF

:ontology motors

:in-reply-to s1

:content (= (val (torque motor1) (sim-time 5)) (scalar 12 kgf))

Page 74 of 102 NeOn Integrated Project EU-IST-027595

So concluding, KQML provides a flexible basic envelope for messages exchanged between agents
while it does not require a certain KR language in its content section.

3.5.2 P2P Protocols

Peer-to-peer (P2P) computing is not a new concept. One can argue that when two computers were
first connected, they formed a P2P network. The Internet as originally conceived in the late 1960s
was a peer-to-peer system. The goal of the original ARPANET was to share computing resources
around the U.S. The challenge for this effort was to integrate different kinds of existing networks as
well as future technologies with one common network architecture that would allow every host to
be an equal player (Anderson, 2001). As another example, Mail servers, network news servers
(NNTP), and domain name servers (DNS) operate in peer-to-peer networks (i.e. e-mail servers
interact directly with each other to send, route, and receive e-mail messages and can be
considered a P2P network) (Brookshier, et al., 2002).

Coming up with a concise definition of P2P, however, is not so simple. There are not only problems
with what makes up a P2P application, many competitive P2P protocols and implementations that
operate in very different ways (Brookshier, et al., 2002).

Among the literature we find many definitions:

A peer-to-peer (or P2P) computer network is a network that relies primarily on the computing
power and bandwidth of the participants in the network rather than concentrating it in a relatively
low number of servers. P2P networks are typically used for connecting nodes via largely ad hoc
connections. Such networks are useful for many purposes. Sharing content files containing audio,
video, data or anything in digital format is very common, and real-time data, such as telephony
traffic, is also passed using P2P technology. A pure peer-to-peer network does not have the
notion of clients or servers, but only equal peer nodes that simultaneously function as both "clients"
and "servers" to the other nodes on the network. This model of network arrangement differs from
the client-server model where communication is usually to and from a central server (i.e. FTP
server).

Another definition of P2P is by describing what it's not rather than trying to pin down what it is
(Brookshier, et al., 2002):

P2P is not about eliminating servers. It is not a single technology, application, or business model.
Perhaps most controversial is that it should be not characterized strictly by degree of centralization
versus decentralization.

Centralization in a P2P network can consist of a central catalog, such as Napster [see section
3.5.2.3]. Napster acted as a traditional client server when users were looking for music and it acted
as a P2P network when users transferred files. In a completely decentralized P2P network, such
as Gnutella [see section 3.5.2.2], no one peer is different than another except in the content that it
shares. Some other approaches mix centralization with decentralization, such as JXTA [see
section 3.5.2.3], looking for a happy medium.

In General, P2P is more a style of computing that makes the network interactions more
symmetrical

Classification of peer-to-peer networks:

One possible classification of P2P networks is according to their degree of centralization in order to
distinguish P2P networks with a central entity from those without any central entities. It is general
practice to split the Peer-to-Peer networking definition into two sub-definitions (Schollmeier, 2002):

Pure peer-to-peer:

• Peers act as equals, merging the roles of clients and server

• There is no central server managing the network

• There is no central router

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 75 of 102

2007 © Copyright lies with the respective authors and their institutions.

Hybrid peer-to-peer:

• Has a central server that keeps information on peers and responds to requests for that
information.

• Peers are responsible for hosting available resources (as the central server does not have
them), for letting the central server know what resources they want to share, and for making
its shareable resources available to peers that request it.

• Route terminals are used addresses, which are referenced by a set of indices to obtain an
absolute address.

Another possible classification is based on how the nodes in the overlay network57 are linked to
each other. According to this criterion we can classify P2P networks as structured and
unstructured:

An unstructured P2P network is formed when the overlay links are established arbitrarily. Such
networks can be easily constructed as a new peer that wants to join the network can copy existing
links of another node and then form its own links over time. In an unstructured P2P network, if a
peer wants to find a desired piece of data in the network, the query has to be flooded through the
network in order to find as many peers as possible that share the data. The main disadvantage
with such networks is that the queries may not always be resolved. A popular content is likely to be
available at several peers and any peer searching for it is likely to find the same, but, if a peer is
looking for a rare or not-so-popular data shared by only a few other peers, then it is highly unlikely
that search be successful. Since there is no correlation between a peer and the content managed
by it, there is no guarantee that flooding will find a peer that has the desired data. Flooding also
causes a high amount of signaling traffic in the network and hence such networks typically have
very poor search efficiency. Most of the popular P2P networks such as Napster, Gnutella and
KaZaA are unstructured.

Structured P2P networks overcome the limitations of unstructured networks by maintaining a
Distributed Hash Table (DHT) and by allowing each peer to be responsible for a specific part of the
content in the network. These networks use hash functions and assign values to every content and
every peer in the network and then follow a global protocol in determining which peer is
responsible for which content. This way, whenever a peer wants to search for some data, it uses
the global protocol to determine the peer(s) responsible for the data and then directs the search
towards the responsible peer(s). Some well known structured P2P networks are: Chord, Pastry,
Tapestry, CAN, Tulip.

3.5.2.1 JXTA 2.058

The JXTA Protocols comprise an open network computing platform designed for peer-to-peer
(P2P) computing. The set of generalized JXTA protocols enable all connected devices on the
network -- including cell phones, PDAs, PCs and servers -- to communicate and collaborate as
peers. The JXTA protocols enable developers to build and deploy interoperable services and
applications, further spring-boarding the peer-to-peer revolution on the Internet.

The JXTA protocols are a set of six protocols that have been specifically designed for ad hoc,
pervasive, and multi-hop peer-to-peer (P2P) network computing. Using the JXTA protocols, peers
can cooperate to form self-organized and self-configured peer groups independent of their
positions in the network (edges, firewalls, network address translators, public vs. private address
spaces), and without the need of a centralized management infrastructure.

The JXTA protocols are designed to have very low overhead, to make few assumptions about the
underlying network transport and impose few requirements on the peer environment, and yet are

57 An overlay network is a computer network which is built on top of another network. Nodes in the overlay can be

thought of as being connected by virtual or logical links, each of which corresponds to a path, perhaps through many
physical links, in the underlying network

58 JXTA v2.0 Protocols Specification http://spec.jxta.org/nonav/v1.0/docbook/JXTAProtocols.html

http://spec.jxta.org/nonav/v1.0/docbook/JXTAProtocols.html

Page 76 of 102 NeOn Integrated Project EU-IST-027595

able to be used to deploy a wide variety of P2P applications and services in a highly unreliable and
changing network environment.

Peers use the JXTA protocols to advertise their resources and to discover network resources
(services, pipes, etc.) available from other peers. Peers form and join peer groups to create special
relationships. Peers cooperate to route messages allowing for full peer connectivity. The JXTA
protocols allow peers to communicate without the need to understand or manage the potentially
complex and dynamic network topologies which are increasingly common.

The JXTA protocols allow peers to dynamically route messages across multiple network hops to
any destination in the network (potentially traversing firewalls). Each message carries with it either
a complete or partially ordered list of gateway peers through which the message might be routed.
Intermediate peers in the route may assist the routing by using routes they know of to shorten or
optimize the route a message is set to follow.

The JXTA protocols work together to allow the discovery, organization, monitoring and
communication between peers:

• Peer Resolver Protocol (PRP) is the mechanism by which a peer can send a query to one
or more peers, and receive a response (or multiple responses) to the query. The PRP
implements a query/response protocol. The response message is matched to the query via
a unique id included in the message body. Queries can be directed to the whole group or to
specific peers within the group.

• Peer Discovery Protocol (PDP) is the mechanism by which a peer can advertise its own
resources, and discover the resources from other peers (peer groups, services, pipes and
additional peers). Every peer resource is described and published using an advertisement.
Advertisements are programming language-neutral metadata structures that describe
network resources. Advertisements are represented as XML documents.

• Peer Information Protocol (PIP) is the mechanism by which a peer may obtain status
information about other peers. This can include state, uptime, traffic load, capabilities, and
other information.

• Pipe Binding Protocol (PBP) is the mechanism by which a peer can establish a virtual
communication channel or pipe between one or more peers. The PBP is used by a peer to
bind two or more ends of the connection (pipe endpoints). Pipes provide the foundation
communication mechanism between peers.

• Endpoint Routing Protocol (ERP) is the mechanism by which a peer can discover a route
(sequence of hops) used to send a message to another peer. If a peer “A” wants to send a
message to peer “C”, and there is no known direct route between “A” and “C”, then peer “A”
needs to find intermediary peer(s) who will route the message to “C”. ERP is used to
determine the route information. If the network topology changes and makes a previously
used route unavailable, peers can use ERP to find an alternate route.

• Rendezvous Protocol (RVP) is the mechanism by which peers can subscribe or be a
subscriber to a propagation service. Within a peer group, peers can be either rendezvous
peers or peers that are listening to rendezvous peers. The Rendezvous Protocol allows a
peer to send messages to all the listening instances of the service. The RVP is used by the
Peer Resolver Protocol and by the Pipe Binding Protocol in order to propagate messages.

All of these protocols are implemented using a common messaging layer. This messaging layer is
what binds the JXTA protocols to various network transports.

Each of the JXTA protocols is independent of the others. A peer is not required to implement all of
the JXTA protocols to be a JXTA peer. A peer only implements the protocols that it needs to use
(i.e. a device may have all the necessary advertisements it uses pre-stored in memory, and
therefore not need to implement the Peer Discovery Protocol).

Each peer must implement two protocols in order to be addressable as a peer: the Peer Resolver
Protocol and the Endpoint Routing Protocol. These two protocols and the advertisements, services

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 77 of 102

2007 © Copyright lies with the respective authors and their institutions.

and definitions they depend upon are known as the JXTA Core Specification. The JXTA Core
Specification establishes the base infrastructure used by other services and applications.

The remaining JXTA protocols, services and advertisements are optional. JXTA implementations
are not required to provide these services, but are strongly recommended to do so. Implementing
these services provides greater interoperability with other implementations and broader
functionality. These common JXTA services are known as the JXTA Standard Services

3.5.2.2 Gnutella 0.659
Gnutella is a decentralized peer-to-peer system. It allows the participants to share resources from
their system for others to see and get, and locate resources shared by others on the network.
Resources can be anything: mappings to other resources, cryptographic keys, files of any type,
meta-information on keyable resources, etc.

Each participant launches a Gnutella program, which will seek out other Gnutella nodes to connect
to. This set of connected nodes carries the Gnutella traffic, which is essentially made of queries,
replies to those queries, and also other control messages to facilitate the discovery of other nodes.

Users interact with the nodes by supplying them with the list of resources they wish to share on the
network, can enter searches for other's resources, will hopefully get results from those searches,
and can then select those resources amongst the results: if those resources are files, for instance,
they can download them. But one can imagine other types of resources that, once fetched, will
bring more than their content value.

Resource data exchanges between nodes are negotiated using the standard HTTP protocol. The
Gnutella network is only used to locate the nodes sharing those resources.

The Gnutella protocol defines the way in which servents 60communicate over the network. It
consists of a set of messages used for communicating data between servents and a set of rules
governing the inter-servent exchange of messages. Currently, the following messages are defined:

• Ping: Used to actively discover hosts on the network. A servent receiving a Ping message
is expected to respond with one or more Pong messages.

• Pong: The response to a Ping. Includes the address of a connected Gnutella servent, the
listening port of that servent, and information regarding the amount of data it is making
available to the network.

• Query: The primary mechanism for searching the distributed network. A servent receiving
a Query message will respond with a Query Hit if a match is found against its local data set.

• QueryHit: The response to a Query. This message provides the recipient with enough
information to acquire the data matching the corresponding Query.

• Push: A mechanism that allows a firewalled servent to contribute file-based data to the
network.

• Bye: An optional message used to inform the remote host that you are closing the
connection, and your reason for doing so.

59Gnutella Protocol Development http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html
60A program participating in the Gnutella network is called a servent. The words "peer", "node" and "host" have similar

meanings, but refers to a network participant rather than a program. When a servent has a clear client or server role
the words "client" or "server" may be used. The word "client" is sometimes used as a synonym for servent. This is a
contraction of "SERVer" and "cliENT"; some other documents use the word "servant" instead of servent.

http://rfc-gnutella.sourceforge.net/src/rfc-0_6-draft.html

Page 78 of 102 NeOn Integrated Project EU-IST-027595

3.5.2.3. Napster61 62

Napster is based on a client - server architecture. The role of the server is to hold a searchable
index that contains entries of mp3s that all the currently connected clients contain. The server is
actually multiple very hi-spec machines load balancing the requests from clients. This makes
scaling the service simply a matter of adding machines into the server pool and ensures
redundancy in the fact that servers can fail and be replaced without significant disruption to the
service they are providing. Redundancy needs to be implemented for the connection between
client and server as well so the servers are placed on multiple connections to different large ISPs.

The clients have the functionality of being able to index and associate meta-data with shared mp3s
on their own machine. This information is then sent to the Napster servers when connecting. At this
point the client may search all clients connected on Napster by sending search queries to the
Napster server. The server will search its internal indexes of currently shared files and return
results to match. The results contain the meta-data about the file, the location of the file and speed
of the clients that are sharing the files. If the client wishes to download one of the files contained in
the search results then it connects directly to the other client sharing the file and begins the
download. The file itself never passes through or is stored on the Napster server. This is the peer-
to-peer aspect of the protocol.

Client-Server protocol

Napster uses TCP for client to server communication. Each message to/from the server is in the
form of <length><type><data> where <length> and <type> are 2 bytes each. <length> specifies
the length in bytes of the <data> portion of the message. Be aware that <length> and <type>
appear to be in little-endian format (least significant byte goes first).

Client-Client Protocol

File transfer occur directly between clients without passing through the server. There are four
transfer modes, upload, download, firewalled upload, and firewalled download. The normal
method of transfer is that the client wishing to download a file makes a TCP connection to the
client holding the file on their data port. However, in the case where the client sharing the file is
behind a firewall, it is necessary for them to "push" the data by making a TCP connection to the
downloader's data port.

3.5.2.4. Bittorrent63
BitTorrent is the name of a peer-to-peer (P2P) file distribution protocol, and is the name of a free
software implementation of that protocol. The protocol identifies content by URL and is designed to
integrate seamlessly with the web. Its advantage over plain HTTP is that when multiple downloads
of the same file happens concurrently, the downloaders upload to each other, making it possible
for the file source to support very large numbers of downloaders with only a modest increase in its
load.

61 Peer-to-Peer Technologies and Protocols http://ntrg.cs.tcd.ie/undergrad/4ba2.02/p2p/index.html
62 Napster Messages http://opennap.sourceforge.net/napster.txt
63 BitTorrent.org for Developers: http://www.bittorrent.org/protocol.html

http://ntrg.cs.tcd.ie/undergrad/4ba2.02/p2p/index.html
http://opennap.sourceforge.net/napster.txt
http://www.bittorrent.org/protocol.html

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 79 of 102

2007 © Copyright lies with the respective authors and their institutions.

A BitTorrent file distribution consists of these entities:

• An ordinary web server

• A static 'metainfo' file

• A BitTorrent tracker

• An 'original' downloader

• The end user web browsers

• The end user downloaders

To start serving, a host goes through the following steps:

• Start running a tracker (or, more likely, have one running already).

• Start running an ordinary web server, such as apache, or have one already.

• Associate the extension .torrent with mimetype application/x-bittorrent on their web server
(or have done so already).

• Generate a metainfo (.torrent) file using the complete file to be served and the URL of the
tracker.

• Put the metainfo file on the web server.

• Link to the metainfo (.torrent) file from some other web page.

• Start a downloader which already has the complete file (the 'origin').

To start downloading, a user does the following:

• Install BitTorrent (or have done so already).

• Surf the web.

• Click on a link to a .torrent file.

• Select where to save the file locally, or select a partial download to resume.

• Wait for download to complete.

• Tell downloader to exit (it keeps uploading until this happens).

BitTorrent's peer protocol operates over TCP. It performs efficiently without setting any socket
options.

Peer connections are symmetrical. Messages sent in both directions look the same, and data can
flow in either direction.

The peer protocol refers to pieces of the file by index as described in the metainfo file, starting at
zero. When a peer finishes downloading a piece and checks that the hash matches, it announces
that it has that piece to all of its peers.

Connections contain two bits of state on either end: choked or not, and interested or not. Choking
is a notification that no data will be sent until unchoking happens.

Data transfer takes place whenever one side is interested and the other side is not choking.
Interest state must be kept up to date at all times - whenever a downloader doesn't have
something they currently would ask a peer for in unchoked, they must express lack of interest,
despite being choked. Implementing this properly is tricky, but makes it possible for downloaders to
know which peers will start downloading immediately if unchoked.

Connections start out choked and not interested.

When data is being transferred, downloaders should keep several piece requests queued up at
once in order to get good TCP performance (this is called 'pipelining'.) On the other side, requests
which can't be written out to the TCP buffer immediately should be queued up in memory rather

Page 80 of 102 NeOn Integrated Project EU-IST-027595

than kept in an application-level network buffer, so they can all be thrown out when a choke
happens.

The peer wire protocol consists of a handshake followed by a never-ending stream of length-
prefixed messages. The handshake starts with character nineteen (decimal) followed by the string
'BitTorrent protocol'. The leading character is a length prefix, put there in the hope that other new
protocols may do the same and thus be trivially distinguishable from each other.

After handshaking, next comes an alternating stream of length prefixes and messages. Messages
of length zero are keepalives, and ignored. Keepalives are generally sent once every two minutes,
but note that timeouts can be done much more quickly when data is expected.

Downloaders generally download pieces in random order, which does a reasonably good job of
keeping them from having a strict subset or superset of the pieces of any of their peers.

3.5.2.5 Kademlia
(From (Maymounkov, et al., 2002)).

Kademlia is a distributed hash table for decentralized peer to peer computer networks. It specifies
the structure of the network, regulates communication between nodes and how the exchange of
information has to take place. Kademlia nodes communicate among themselves using the
transport protocol UDP. Kademlia nodes store data by implementing a distributed hash table. Over
an existing LAN/WAN (like the Internet), a new virtual or overlay network is created in which each
node is identified by a number ("Node ID"). This number serves not only as its identification, but
the Kademlia algorithm uses it for further purposes.

A node that would like to join the net must first go through a bootstrap process. In this phase, the
node needs to know the IP address of another node (obtained from the user, or from a stored list)
that is already participating in the Kademlia network. If the bootstrapping node has not yet
participated in the network, it computes a random ID number that is not already assigned to any
other node. It uses this ID until leaving the network.

The Kademlia algorithm is based on the calculation of the "distance" between two nodes. This
distance is computed as the exclusive or of the two node IDs, taking the result as an integer
number.

This "distance" does not have anything to do with geographical conditions, but designates the
distance within the ID range. Thus it can and does happen that, for example, a node from Germany
and one from Australia are "neighbours".

Information within Kademlia is stored in so called "values", every value being attached to a "key".

When searching for some key, the algorithm explores the network in several steps, each step
approaching closer to the searched-for key, until the contacted node returns the value, or no more
closer nodes are found. The number of nodes contacted during the search is only marginally
dependent on the size of the network: If the number of participants in the net doubles in number,
then a user's node must query only one more node per search, not twice as many.

The Kademlia protocol consists of four RPCs: PING, STORE, FIND NODE, and FIND VALUE. The
PING RPC probes a node to see if it is online. STORE instructs a node to store a <key; value> pair
for later retrieval. FIND NODE takes a 160-bit ID as an argument. The recipient of a RPC returns
<IP address; UDP port; Node ID> triples for the k-nodes it knows about closest to the target ID.
These triples can come from a single k-bucket, or they may come from multiple k-buckets if the
closest k-bucket is not full. In any case, the RPC recipient must return k items (unless there are
fewer than k nodes in all its k-buckets combined, in which case it returns every node it knows
about).

FIND VALUE behaves like FIND NODE—returning <IP address; UDP port; Node ID> triples—with
one exception. If the RPC recipient has received a STORE RPC for the key, it just returns the
stored value. The most important procedure a Kademlia participant must perform is to locate the k
closest nodes to some given node ID.

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 81 of 102

2007 © Copyright lies with the respective authors and their institutions.

The Kad Network (supported by eMule, MLDonkey and aMule) is a peer-to-peer network which
implements the Kademlia P2P overlay protocol

3.5.2.6 FastTrack64
FastTrack is another distributed file sharing protocol used by a number of clients. Unfortunately the
protocol is a well kept company secret and details are not available to the public. Some of the
applications using the FastTrack protocol are KaZaA, KaZaA Lite, Grokster, iMesh.

FastTrack uses a semi-distributed and hierarchical architecture to achieve performance greater
than that of Gnutella. Even though Gnutella introduced ultrapeers, FastTrack based clients perform
better on most occasions. Since the protocol is a company secret, where a license needs to be
obtained through the company Sherman Networks, only minor details have been available,
meaning that the architecture described could have been changed recently.

The FastTrack protocol classifies some nodes as super nodes. These nodes act as directory
servers for other clients and are elected without centralized control. It is certainly possible that
more roles exist. There is probably some kind of aggregation between the super nodes as well, but
this has not been proven. The supernode functionality is built into the client; if a powerful computer
with a fast network connection runs the client software, it will automatically become a supernode,
effectively acting as a temporary indexing server for other, slower clients.

In order to be able to initially connect to the network, a list of supernode IP numbers is stored in the
program. The client attempts to contact these, and as soon as it finds a working supernode, it
requests a list of currently active supernodes, to be used for future connection attempts. The client
picks one supernode as its "upstream" and uploads a list of files it intends to share to that
supernode. It also sends search requests to this supernode. The supernode communicates with
other supernodes in order to satisfy search requests. The client then connects directly to a peer to
download the file.

Some FastTrack clients also uses a reputation system which encourages users to share files and
allow uploads. For example, KaZaA Lite users’ reputation is reflected by their participation level,
which is a number that is well encapsulated by encryption. A user starts at participation level 10
and can get a participation level between 0 and 1000. A high participation level means that the
client has been connected for long periods of time and allowed many users to benefit from it. Users
with higher participation level are favored in queuing policies and should receive better quality of
service (QOS).

FastTrack runs on top of both UDP and TCP. Clients receive fewer packets per minute compared
to Gnutella clients. FastTrack does not maintain TCP connections for longer periods of time, unless
it is a download or upload. FastTrack uses a simplified version of HTTP to perform the actual
downloads. This makes it possible for users to bypass the regulations set by the client on the
maximum number of simultaneous downloads. Earlier versions of FastTrack clients even allowed a
user to download files from itself using a web browser and thereby fooling the reputation system to
believe that the client had contributed a lot to the network.

To allow downloading from multiple sources, FastTrack employs the UUHash hashing algorithm.
While UUHash allows very large files to be checksummed in a short time, even on slow computers,
it also allows for massive corruption of a file to go unnoticed. Many people, as well as the RIAA,
have exploited this vulnerability to spread corrupt and fake files on the network.

64 FastTrack: http://www.cs.umu.se/~bergner/thesis/html/node62.html

http://www.cs.umu.se/%7Ebergner/thesis/html/node62.html

Page 82 of 102 NeOn Integrated Project EU-IST-027595

3.5.2.7 Chord
(From (Stocia, et al., 2001)).

Chord is a distributed lookup protocol that addresses the problem of discovering efficiently the
location of a node that stores a particular data item in a peer-to-peer application. Chord adapts
efficiently as nodes join and leave the system, and can answer queries even if the system is
continuously changing.

The Chord protocol specifies how to find the locations of keys, w new nodes join the system, and
how to recover from the failure (or planned departure) of existing nodes.

At its heart, Chord provides fast distributed computation of a hash function mapping keys to nodes
responsible for them. It uses consistent hashing (Karger, et al., May 1997) (Lewin, 1998). With high
probability the hash function balances load (all nodes receive roughly the same number of keys).
Also with high probability, when an Nth node joins (or leaves) the network, only an O(1/N) fraction
of the keys are moved to a different location - this is clearly the minimum necessary to maintain a
balanced load.

Chord improves the scalability of consistent hashing by avoiding the requirement that every node
know about every other node. A Chord node needs only a small amount of “routing” information
about other nodes. Because this information is distributed, a node resolves the hash function by
communicating with a few other nodes. In an N-node network, each node maintains information
only about O(log N) other nodes, and a lookup requires O(log N) messages.

Chord must update the routing information when a node joins or leaves the network; a join or leave
requires O(log2 N) messages.

3.6 Remote plug-in installation protocols, standards and platforms

The NeOn toolkit will provide and architecture that will be extended using plug-ins. The technology
that will be behind for allowing this extension is OSGI.

3.6.1 OSGI

OSGI (Open Service Gateway Initiative)65 was originally developed for embedded systems. OSGI
specifies an open, java-based platform for services. It goes back to the OSGI alliance, which was
founded in 1999. The OSGI alliance provides the following definition:

The OSGi™ specifications define a standardized, component oriented,
computing environment for networked services that is the foundation of an
enhanced service oriented architecture66.

OSGI defines a lifecycle model and a registry for services. Services are specified by Java™-
interfaces. It supports server-based administration and provides a number of standard services.
Those cover administrative tasks, security, protocols and I/O (and more).

65 Not to be mistaken for OGSI, the Open Grid Services Infrastructure
66 OSGI Technical Whitepaper published by OSGI alliance: http://www.osgi.org

http://www.osgi.org/

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 83 of 102

Operating System

Java Runtime

OSGI Framework

Fr
am

ew
or

k
Se

rv
ic

es
[b

as
ic

 b
un

dl
e

m
an

ag
em

en
t]

S
ys

te
m

 S
er

vi
ce

s
[lo

gg
in

g,
 u

se
r m

gt
.,

I/O
,

ev
en

t m
gt

.,
…

]

P
ro

to
co

l S
er

vi
ce

s
[h

ttp
, P

nP
, m

ob
ile

 d
ev

ic
e

m
gt

.]

M
is

c.
 S

er
vi

ce
s

[p
ar

si
ng

, …
]

Fr
am

ew
or

k
Se

rv
ic

es
[b

as
ic

 b
un

dl
e

m
an

ag
em

en
t]

S
ys

te
m

 S
er

vi
ce

s
[lo

gg
in

g,
 u

se
r m

gt
.,

I/O
,

ev
en

t m
gt

.,
…

]

P
ro

to
co

l S
er

vi
ce

s
[h

ttp
, P

nP
, m

ob
ile

 d
ev

ic
e

m
gt

.]

M
is

c.
 S

er
vi

ce
s

[p
ar

si
ng

, …
]

Modules

se
cu

rit
y

Lifecycle Registry

Bundle 2 Bundle nBundle 1

Applications and Bundles

Figure 26: OSGI Architecture

Figure 26 shows the OSGI architecture. The basic building blocks are the OSGI framework and a
set of standard services. The framework itself provides modularization of applications or bundles67
(using class-loading policies), lifecycle management (e.g. starting and stopping applications) and a
service registry, that allows the dynamic interaction of services (sharing of objects). Security
features are provided orthogonal to those functions (“ubiquitous security”). It uses security
mechanisms of the Java platform (VM security features, language features) and adds security
mechanisms for bundles on top of this.

Being designed for embedded devices, OSGI is designed for remote management. OSGI itself
does not enforce a protocol but allows encapsulating it by API calls and providing this API through
the management system.

OSGI supports the sharing of code as well as services. Code sharing is useful if different
(dynamically managed) applications use the same library. OSGI provides means of dealing with
dependencies on the same library but in different version.

Services allow sharing objects, which are specified by interfaces. This is supported by a registry,
which enables bundles to register objects with the registry, search the Service Registry for
matching objects and receive notifications when services become registered or unregistered.

The dynamic support for the modularization of applications is one the characteristics that has made
OSGI attractive not only in the context of embedded devices. OSGI implementations (see below)
cover a range of applications proving this fact.

67 Usually modularized applications are referred to as “bundles” in the OSGI context

2007 © Copyright lies with the respective authors and their institutions.

Page 84 of 102 NeOn Integrated Project EU-IST-027595

OSGI Implementations
There are a number of OSGI implementations, including (but not limited to):

• Knopferfish OSGI68.

• Apache Felix69.

• Eclipse Equinox70.

The last one has gained some popularity due to the fact that it’s part of the eclipse platform since
release 3.2. It supports OSGI R4, including declarative services. The latter are a certain form of
dependency injection, which allows the configuration of dependencies and the declaration of
services based on XML-files. This includes an “intelligent” class loading strategy, resolving
dependencies dynamically (“lazy loading”). However, eclipse 3.2 does not yet support declarative
services in such a way that tool support is available in a similar way as for the “traditional” eclipse
extension mechanism.

OSGI for Server-Side Applications
Recently there have been several approaches to combine OSGI implementations with server-
based technology. This is seen as a possibility to combine the advantages of OSGI
(modularization, dynamic management of modules, versioning of modules) with the capabilities of
application server technology. This can be achieved by either embedding OSGI on an application
server (leaving start-up control to that server) or embedding web-server technology in the OSGI
runtime. The latter option just means to create a specific web-server bundle and integrate it.

68 Knopferfish OSGI http://www.knopflerfish.org/
69 Felix: http://cwiki.apache.org/FELIX/index.html
70 Eclipse Equinox: http://eclipse.org/equinox/

http://www.knopflerfish.org/
http://cwiki.apache.org/FELIX/index.html
http://eclipse.org/equinox/

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 85 of 102

2007 © Copyright lies with the respective authors and their institutions.

4. Social protocols through the literature on collaboration

4.1 Introduction

As shown in Section 2 of (Catenacci, et al.) social protocols, in terms of the literature on
collaboration in cooperative knowledge communities may be presented by focussing on
requirements, on tools or on their matching.

In general, the issues that an overview on such literature makes clear are two:

1. The notion of collaboration is not univocal. Moreover, despite having been widely treated in
the literature, none of the existing treatments provides a sufficiently general definition for it.
The tables below, 2.1 (Example of comparison between collaboration requirements) and
2.2 (Example of comparison between collaboration tools), provide a synthetic view on this
claim. As a matter of fact, each proposal (i.e. each column) defines specific requirements or
functionalities for given groups of users. But the proposals do not describe their intended
groups of users, of requirements or of functionalities in terms of a common
conceptualisation. In other words, the headings of each row in the two tables are by no
means an ontology, but simple abstractions. Furthermore even by sticking to such simple
abstractions, the comparison between the different proposals does not become necessarily
easier. This is a consequence of the fact that the each proposal evaluates the same row in
a different way or at a different level of detail. For instance, group definition in Table 2.1 is
achieved either by enabling mutual recognition, or by defining group boundaries, or by
promoting continuity; but it remains unclear how these three different ways of coping with
group definition relate to one another. Furthermore, again in Table 2.1, requirements on
information management and group management in DILIGENT are much more detailed
than, for instance, in the proposal of (Axelrod, 1984); and the consequence of this are the
gaps in the first and the second column. The situation just described makes it impossible to
adopt any of the existing proposals as a basis for the definition of a language to talk about
collaboration.

2. The lack of generality of existing proposals mainly is a consequence of the social-technical
gap between social requirements and technical feasibility: “the divide between what we
know we must support socially and what we can support technically” (Ackerman, 2001).
Most existing proposals approach this divide from the technical side. None of them
attempts at providing a conceptual framework of the collaborative use of existing or
forthcoming technology.

The situation described in 1 and 2 above is the reason behind the attempt made in (Catenacci, et
al.) at providing NeOn with a general enough understanding of the notion of collaboration (and of
collaborative ontology design) by means of a new proposal: the Collaborative Ontology Design
Ontology (C-ODO).

Section 2, 3, and 4 below present a summary of the literature on requirements, tools and their
matching. Section 5 gives a summary of C-ODO. For extended versions of all this material refer to
(Catenacci, et al.).

Page 86 of 102 NeOn Integrated Project EU-IST-027595

Collaboration
requirements

Evolution of Cooperation

(Axelrod, 1984)

Evolution of Institutions

(Ostrom, 1990)

How virtual communities
work

(Godwin, 1994)

DILIGENT

(Vrandecic, 2005),
(Tempich, 2006)

Group definition Enable mutual recognition Define group boundaries Promote continuity

Circulate information - Use good discussion
software

Communicate changes
in the ontology

- - Provide institutional
memory

Integrate control and
argumentation support

Information
management

- - - Graphic representations
of ontology

Arrange meetings Rule use of collective
goods

Users resolve their own
disputes

Use argumentation

- Monitor members Confront users with a
crisis

Use a clear methodology

Group management

 Sanction members Use clear decisions
processes

Table 2.1 Example of comparison between collaboration requirements

Collaboration
tools

OBOS

(Das, et al., 2001)

HACM (Compendium-based)

(Shum, et al., 2002)

Claimspotter

(Sereno, et al., 2004)

Ontologists Ontologist Scholars

Domain experts Scientists -

Types of users

Business analysts - -

Ontologies development Structure collaborative sense
making

Support annotation of
scholarly documents

Ontologies maintenance Aid group memory Create triples (source
destination, relation between
them (e.g. source ‘proves’,
destination)

Multiple access Dialog mapping -

Discussion rooms Direct formalization of conceptual
proposals

-

Functionalities

- Direct display of proposals on
screen

-

Table 2.2 Example of comparison between collaboration tools

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 87 of 102

2007 © Copyright lies with the respective authors and their institutions.

4.2 Requirements for Collaboration

This section presents schematic overviews of proposals of requirements for collaboration.

Requirements for the possibility of cooperation (Axelrod, 1984):

o Arrange that individuals will meet each other again.

o They must be able to recognize each other.

o They must have information about how the other has behaved until now.

Design principles of successful communities (Ostrom, 1990):

o Group boundaries are clearly defined.

o Rules governing the use of collective goods are well matched to local needs and
conditions.

o Most individuals affected by these rules can participate in modifying the rules.

o The right of community members to devise their own rules is respected by external
authorities.

o A system for monitoring members' behavior exists; this monitoring is undertaken by
the community members themselves.

o A graduated system of sanctions is used.

o Community members have access to low-cost conflict resolution mechanisms.

Principles for making virtual communities work (Godwin, 1994):

o Use software that promotes good discussion.

o Don't impose a length limitation on postings.

o Front-load your system with talkative, diverse people.

o Let the users resolve their own disputes.

o Provide institutional memory.

o Promote continuity.

o Be host to a particular interest group.

o Provide places for children.

o Confront the users with a crisis.

Requirements in DILIGENT (Vrandecic, 2005) (Tempich, 2006):

o Engineering tools should have support for communicating changes in the
collaboratively developed ontology.

o All other required tools like version control and argumentation support should be
strongly integrated into the engineering tool.

o It is important to have a graphical visualization of the ontology.

o Use a concrete methodology for the collaborative development process to clarify the
objectives and to have a list of things to do next. The methodology should cover the
whole ontology lifecycle including the maintenance phase and not only the initial
creation of the ontology. With this respect, it proved to be useful to have a well-
defined process for feeding back change requests and to document the
argumentation process which led to certain design decisions.

Page 88 of 102 NeOn Integrated Project EU-IST-027595

o Find good evaluation measures which show whether one reached the goals which
were originally set for the ontology.

o Use an argumentation framework. Discussions are often inefficient and time
consuming if a clear structure is missing. For example, it is useful to restrict the users
to certain argument types so that they didn't get lost in the discussion.

o Use a clear decision process has to be defined which of the proposed solutions
should be included into the ontology. Many of the requirements for ontology
engineering tools also apply for the argumentation tool.

o The user needs a possibility to monitor a discussion so that she/he is automatically
informed of changes to discussions of interest.

o The argumentation tool should be integrated with the ontology engineering tool so that
one can access the argumentation data from the engineering tool and vice versa.

Requirements for efficient version management and control system (Noy, et al., 2006):

o Use software that promotes good discussion.

o It is very important for the users that they can attach annotations to their changes
which explain the rationale and/or which refer to citations and documents on which
the change is based.

o Do not compute textual differences between e.g. two OWL ontologies but that instead
a list of changed ontology elements, including information about e.g. which concepts
were split or merged, an information typically not available if the changes were
computed based on textual differences.

o The description of changes is needed in such a granularity that it is possible to go
back to earlier versions of an ontology at any time.

o Having fine grained access rights. It is especially not sufficient to define the access on
the level of an ontology. Instead it should be possible to define it on the level of
ontology elements. This helps to avoid conflicts between the different versions of
editors. Nevertheless, before checking in a new version it is necessary to identify
direct and indirect conflicts between two versions. Indirect conflicts may e.g. occur in
subclasses that depend on one of the changed classes. In case that a conflict occurs,
a kind of negotiation process between editors is needed which helps to resolve the
conflict. In some collaborative scenarios, there exists a central authority or curator,
which decides which local changes of editors will be included in the shared version of
an ontology. In this case, the curator needs the possibility to accept a whole set of
changes. This set of changes may be identified structurally or based on who
performed the change and when. Otherwise, accepting each single change separately
would be very tedious. In this scenario, the automatic detection of conflicts as well as
the annotations made by the authors are very useful for the curator as they explain
why a change was necessary.

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 89 of 102

2007 © Copyright lies with the respective authors and their institutions.

4.3 Tools for Collaboration Support

This section presents overviews of tools for collaboration.

Ontology Builder and Ontology Server (OBOS) (Das, et al., 2001). An application suite
proposed in and developed for supporting the creation and maintenance of ontologies used
in e-commerce and B2B applications. There is not a precise definition of collaboration, the
issue is approached focusing mainly on tool functional requirements identification. OBOS
has been built with the aim of supporting a distributed and collaborative team of users
(ontologists, domain experts, and business analysts) developing and maintaining shared
ontologies. Basing on an informal evaluation of four existing tools (i.e., Ontolingua/Chimaera,
Protégé/PROMPT, OntoWeb/Tadzebao, Ontosaurus/Loom), a set of requirements is
identified. Among them the following are very important for collaborative ontology creation:
scalability, availability, reliability, performance, ease of use, distributed multi-user
collaboration support, security management, difference and merging support,
internationalization, and versioning. OBOS uses a frame-based representation based on
OKBC knowledge model and its implementation is based on J2EE. The tool provides a
collaborative environment for the development and maintenance of shared ontologies.
Multiple access is managed using a role-based policy, and users are provided with
discussion rooms where they can communicate about their work on the ontology/ies. OBOS
implements a pessimistic locking strategy for editing and changes to the ontologies are
immediatly notified so as the user can refresh the information. Multilinguality is supported by
means of so called locales, versioning is not supported. The tool resulted to be sufficiently
easy to use (as claimed by the authors), nevertheless the different types of users (ontologist,
domain expert, and business analyst) are not provided with specific interfaces and/or
methods.

Hypertext-Augmented Collaborative Modelling (HACM) (Shum, et al., 2002). An application
proposed in is based on a Compendium approach. Within the Advanced Knowledge
Technology (AKT) consortium the AKTive Portal was designed to be a next generation portal
infrastructure that supports the capture, indexing, dissemination and querying of information.
The first application of the portal was to the AKT project itself. Mifflin, a hypertext tool for
Compendium, was used to facilitate ontology-based scientific knowledge creation and
management in collaborative settings and, interestingly, the case-studies were AKT
meetings. Mifflin’s main functions in the project were to provide:

1. Structure to collaborative sense making;

2. The rationale for an ontology engineer when implementing the agreed specification;

3. A memory aid in and between meetings for both the group and for the group coordinator;

4. Multiple on screen visualizations of both the existing ontology structure and of the
ongoing discussion about it.

Mifflin succeeded in supporting the collaborative creation of an ontology of scientific
knowledge, mainly in terms of:

1. Dialog mapping,

2. Direct formalization of conceptual proposals,

3. Direct display of proposals on screen,

4. Compatibility with existing software tools.

The achievement of these four results was not cost-free, though. Mifflin imposed on (even
expert) users the development of some literacy and, at the beginning, some cognitive
overhead.

Page 90 of 102 NeOn Integrated Project EU-IST-027595

Claimspotter The application presented in (Sereno, et al., 2004) is an open architecture based on
the ScholOnto ontology. Claimspotter supports the semiformal (collaborative) annotation of
scholarly documents. It is based on a simple paradigm: triples. The text of a document is
represented by couples of concepts (source and destination concept) plus a relation
between them (for instance: ‘is an example of’, ‘is enabled by’, ‘proves’, ‘supports’, ‘is similar
to’, etc.). Such triples allow building a network of claims about the internal structure of the
document, or about its relations with other documents. The resulting network, or parts of it,
can be shared and incremented by different users over time. The final result is a
commentary to the original text, which is usually dialectic, as the network can host logically
contradictory claims about the contents of the document.

Claimspotter supports the creation of triples by means of suggestions given to the user. On
the one hand, suggestions have to do with the structure of the document and the scientific
rhetoric the keeps it together. Two main families of rhetorical roles are considered: what in
the document refers to the work being described (background, aim, textual structure) and
what refers to the the work of other researchers (contrast, basis). On the other hand,
suggestions have to do with so-called information bricks, i.e. parts of the document, which
may be used as concepts in the network (keywords, the instances of ScholOnto relations
found in the text - i.e. verbal expressions -, cited documents).

Claimspotter’s architecture as well as the presentation of the suggestions is highly modular.
A toolbar gathers all different suggestions on the following aspects: the concepts made by
the current annotator, the instances of ScholOnto relations found in the text, the documents
important sentences (where importance is defined in terms of keyword-matching with title,
headers, and abstract), the document’s rhetorically-consistent zones, the sentences
matching a particular user-defined query expressions.

A very limited user study has been done for evaluation of Claimspotter. This has revealed
two main points. On the hand, an annotation system should be very flexible with respect to
the quantity and the quality of suggestions provided to the user. Users want to be able to
switch back and forth from a very structured configuration (where to get support and
inspiration from what other annotators have done) to a lightweight configuration (where to
“think outside the box”). On the other, it has become clear that gaining expertise with the
system corresponds for annotators to move from a “concepts to relations approach” (which
tends to produce idiosyncratic networks) to a “relations to concepts approach” (which
facilitates standardization).

Ontology of the Academic Field presented in (Benn, et al., 2005) generalizes that approach (in
terms of an, rather than of scholarly comment only) and it makes one step towards
automation (in terms of a number of functionalities that allow to derive knowledge from a
model based on the ontology).

The Ontology of the Academic Field comprises three main components:

1. the Community of Practice (with concepts, attributes and relations like Publication, Title,
author-of, researcher-at, etc.);

2. the Lexicon (with concepts, attributes and relations like Lexical-Term, Gloss, broader-
term, etc.);

3. the Argumentative Discourse (with concepts, attributes and relations like Statement,
Question, Issue, Premise, Conclusion, Postulates, supports, coheres).

Services are provided for:

1. The usual bibliographic database functions provided by tools like CiteSeer or Google
Scholar;

2. Finding key statements made by an author on a particular issue;

3. Assisting navigation around a complex argumentation network, which renders an
ontology as an interactive map;

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 91 of 102

2007 © Copyright lies with the respective authors and their institutions.

4. Flexible visualization of the network;

5. Inferences on the network, by creating paths, like for instance, (in)coherence paths that
connect the opinions of a given author with a scholarly position that is typical of the
reference field.

ClaiMaker An application introduced in (Mancini, et al., 2006) designed to represent discourse in a
semiotic way within the scholarly domain. More generally, the paper discusses the
representational requirements for collaborative systems that support sensemaking and
argumentation over contested topics. Sensemaking is intended as expressing and contesting
explicit, possibly competing views of the world. Supporting sensemaking therefore means
supporting a way of annotating different interpretations of the same object or issue. This is
what ClaiMaker does, with a theoretical backbone consisting of semiotic (in a Saussurian
fashion) and coherence relations, as in Mann and Thompson’s Rhetorical Structure Theory
(RST) (Mann, et al., 1988).

ClaiMaker is a hypertext system that makes use of constrained base relational classes, but
imposing no constraints on how such classes are rendered, or on how nodes are
expressed/classified. ClaiMaker's ontology allows users to establish as many referential
relations between concepts (e.g. the summary message of a document) and sources (e.g. a
document) and also connective relations between sources. Claims of the first kind are called
“primary claims”, whereas those of the second type are called “secondary claims”.

1. Primary claim: users can associate documents with concepts: this consists in
establishing a referential relation between a concept and a referent. In other words: a
primary claim is the creation of a sign (=the concept) that refers to a particular
referent (=the document) in the virtual reality (=the ClaiMaker repository), in some
respect (=a context). From an ontological point of view, it is interesting to note that
concepts linked to sources can (optionally) be classified. The classification is not
rigid, however, so that the same concepts can be assigned different classes by two
different persons, or even by the same one in different contexts. Like in natural
language, in ClaiMaker meaning is continually negotiated by means of establishing
referential relations between referents and concepts, and by means of defining
concepts according to different classes (different from ontology-based systems).

2. Secondary claim: A secondary claim establishes a discourse connection between two
concepts. The authors borrow plenty of terminology and insights from linguistic
theories, such as RST and Sanders et al.’s theory of connectives (Sanders, et al.,
1993) to model what they term an "upper level discourse relations ontology".
Grounding on Sanders et al's approach, they treat coherence relations as
psychological constructs and take a small number of cognitively basic concepts. The
relational scheme is based on four parameters (Cognitive Coherence Relations
[CCR]): Basic operation [additive, causal], Source of Coherence [semantic,
pragmatic], Order [basic, non-basic], Polarity [positive, negative]

A relational hierarchy is then derived from these four parameters. By also incorporating
insights from Louwerse's (2001) description of coherence relations (Louwerse, 2001), the
authors obtain the final ClaiMaker’s relational ontology, which can be used for annotation of
secondary claims. Since it is based on cognitive primitives, it has the main advantage of
being applicable in different disciplines and domains.

Co-OPR project (Bunemann, et al., 2006) presents the integration of two existing tools (i.e.,
Compendium, and I-X) for the, the simulation of a personnel recovery mission. The
experiment presented deals with decision-making support for a team collaborating on the
same mission. In particular, Compendium has been used in order to support the
collaboration between members of the team who were geographically distributed; I-X has
been involved as a tool supporting a team whose members were physically in the same
place. The paper underlines the effectiveness and usability of the two tools when used
together by giving a very pragmatic evaluation. The focus is mainly on the usability and utility

Page 92 of 102 NeOn Integrated Project EU-IST-027595

of provided functionalities.

4.4 Matching requirements and tools

Tools that support collaboration are obviously developed on the basis of user requirements. Some
valuable insights come from comparing such requirements and available tools, as to identify not
only the technical gaps, but rather determine which gaps can be bridged by advancing technology
and which are instead unavoidable (i.e. which requirements are unsupportable).

An important contribution is Mark Ackerman’s work on the gap existing between social
requirements and technical feasibility (Ackerman, 2001). What Ackerman terms “the social-
technical gap” is “the divide between what we know we must support socially and what we can
support technically”, and is likely to be the highest challenge of Computer-Supported Cooperative
Work (CSCW). Within NeOn, it is not only relevant the description of social requirements (in
collective work), but also the attention to what kind of support is difficult to achieve technically, and
therefore a definition of an upper bound with respect to tool development for supporting
collaborative activities.

The following are some social aspects of communication that need to be considered when building
any tool that supports collaborative activities

o Nuances of social activity: social activities are fine-grained and flexible, thus making
systems technically difficult to build.

o Multiplicity and Diversity of Goals: members of a given organisation might have different
goals and different organisations may not have shared goals, knowledge, and meanings.
Conflict is as important as cooperation in issue resolution. Meanings must be negotiated,
for example (see also (Mancini, et al., 2006) about the importance of building tools that
support negotiation of “sense making”, such as ClaiMaker (Mancini, et al., 2006)).

o Exceptions in work processes are normal. And roles can often be informal and fluid
CSCW approaches to workflow should deal with exceptions and fluidity.

o Visibility of communication exchanges and information facilitates learning but might
inhibit for fear of criticism. Ways must be found to manage the trade-offs in sharing.

o Norms for using CSCW: they are set (negotiated) by the users and can change while
using the system. The system must therefore allow for renegotiation, changes and
flexibility (see again (Mancini, et al., 2006)).

o Critical Mass: with an insufficient number of users, people will not use a CSCW system.
o Adaptation: people adapt their systems to their needs, so not everything can be forseen

when developing a system; however, systems are often too rigid to allow for such
changes.

o Incentives: using a tool might be time consuming, also from a learning-to-use-it point of
view. So it must be rewarding, i.e. benefits must be evident.

Additionally, (Porzel, et al., 2004) claim how one of the main failures of human-computer
interaction (HCI) is the treatment of turn taking. Experiments are presented that show that HCI
systems are not equipped with means for dealing with natural turn-taking issues, such as pauses,
overlaps, and similar behaviour. Although this applies to human-machine interaction, in the spoken
dialogue domain there might be similar problems in collaborative activities between humans
conducted over the Web, especially if done in a synchronous manner (see also (Chandler, 2001)).

In the specifics of collaboration towards ontology development, (Lu, 2003) is a source of interesting
points with respect to requirements and tool support. According to (Lu, 2003), since modern
ontologies are characterized by their huge size and high complexity, ontology engineering is to be
considered an inherently collaborative activity, involving the effort of many domain experts and
software developers which are often not co-located. This is especially prominent when not only the
initial design stage, but the whole ontology life cycle is considered. Throughout this work,
‘collaboration’ seems to be defined as a reiterated process, the output of which, at each of the

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 93 of 102

2007 © Copyright lies with the respective authors and their institutions.

involved stages, is the obtaining of a ‘convergence of views’.

Based on a survey of five authoring tools (Ontolingua Server, OntoEdit, APECKS, CO4, and
Protégé-2000), which were widely used at the time of the inquiry (updated in 2000), the conclusion
is reached that collaborative ontology development was – again, at that time – far from being well
supported by said tools.

The identified inefficiencies with respect to collaboration support were the following:

o Coordinated group work (e.g. collaborative editing, discussion or annotation) was not well
supported, mainly because the systems lack functions for keeping developers informed of
each other’s activities (compare, by contrast, with current wikis)

o Contextual communication support was not considered in these tools, i.e. no way was
provided for easily keeping track of a whole coherent discussion, which is e.g. scattered in
many people’s mailboxes (compare, by contrast, with Compendium, Claimspotter, and
ClaimMaker below)

Since collaborative work across distance in software engineering and ontology engineering share
many similar characteristics, three dimensions of collaborative ontology engineering are identified
based on documents and experiences in the first field:

o Distance and communication: Co-located team members communicate informally anytime
during the work day, while this cannot happen to geographically distributed team members
(A study at Carnegie Mellon University showed that the rate at which scientists collaborated
spontaneously with one another was a function of distance between offices). Informal and
unplanned communication has been proved to have a direct impact on development
processes, in particular on

o Coordination (“the act of integrating each task with each organizational unit, so each unit
contributes to the overall objective”), and

o Control (“the process of adhering to project goals, specifications, and standards”).

Coordination and control are necessary not only to manage interdependencies within the tasks, but
also for the development and maintenance of shared mental models (compare with (Fleck, 1986)
on thought-styles), which are considered to be the most effective support for explicit coordination in
team work. Communication affects shared mental models in two ways: a) during task execution, it
refines team members’ mental models with contextual cues; b) it keeps the models up-to-date,
especially in dynamic or novel situations. It has been proved that weak shared mental models in
asynchronous tasks can lead to productivity losses. Designing tools to support and enhance
informal communication is then a key step toward bridging the missing link in distributed
development work.

o Documentation and knowledge management:

Information and knowledge obtained during meetings, email correspondences, and instant
messaging need to be captured easily, stored and shared effectively. The distribution of resources
and developers in space and time combined with the dynamic evolution of knowledge make the
use of tools for knowledge management a necessity. Moreover, the documentation must be kept
up-to-date.

o Version control and change tracking:

Tools for version control and change history tracking are crucial when development resources are
not co-located, in order to make sure that two developers do not work on the same part of the
ontology and to avoid the complication of resolving conflicts.

Finally, a range of tools and groupware technologies in the Computer Supported Collaborative
Work (CSCW) domain are investigated, in order to determine how they can be used in the ontology
development domain.

o Experiences in the Global Software Development (GSD) field are examined in order to
understand the correlation between distance and collaboration:

Page 94 of 102 NeOn Integrated Project EU-IST-027595

1. instant messaging techniques (support spontaneous and informal communication)

2. web portals (support tasks in the area of group knowledge management)

3. Peer-to-Peer (P2P) network technologies (but poor reliability and security)

o Report of an experiment where the possibility of adding collaborative support to a
knowledge engineering tool based on a P2P network was evaluated

o Long term vision: to combine these two fields and create a collaborative ontology
engineering environment that provides collaboration support in multiple dimensions:

Finally, as far as coordination in collaborative environments is concerned, interesting suggestions
may be provided by the coordination models and workflow patterns presented respectively in
(Perry, et al., 1991) and (van der Aalst, et al., 2003).

4.5 C-ODO

C-ODO (Catenacci, et al.) provides a model of the collaboration in ontology design in terms of the
following classes:

o Network of ontologies: the semantics of the relations between ontologies. Please note that
because of the networked perspective we take here, design is not to be intended as
limited to creation time, i.e. to an initial phase of an ontology lifecycle, but as an aspect of
the entire ontology lifecycle.

o Ontology element: an (identified) element of an ontology, like a concept, a relation, an
instance, an axiom, etc.

o Knowledge resource: any piece of knowledge that is used while working on the design of
an ontology, including modules, workspaces, sources, libraries, networks, etc.

o Ontology design rationale: the reasons why an ontology is designed the way it is. Reasons
can be grounded on content, task, or sustainability data. The application of ontology
design rationales typically produces a choice space for a set of ontology elements.

o Ontology project: a project having the goal of influencing the lifecycle of a networked
ontology.

o Epistemic workflow: a generalization over the possible relations holding between two
ontology elements, as they are created, discussed, used or modified by ontology
designers.

o Collaborative workflow: a special case of epistemic workflow, which is characterized by
the ultimate goal of designing networked ontologies, and by specific relations between
designers, ontology elements, and collaborative tasks.

o Argumentation: a structure for discussing possible design solutions, based on rationales
and dialectic rules.

o Design solution: a state of an ontology or a part of it at time t.

o Design making: a situation in which ontology design rationales are implemented in order to
obtain certain design solutions. Design making is unfolded by executing design operations
that accomplish a functionality by following a method.

o Choice space: a space of design solutions allowed by an ontology design rationale on a
set of ontology elements.

o Design pattern: a configuration of ontology elements that is relevant from the logical,
architectural, or conceptual viewpoint.

o Functionality: a task to be accomplished by a design operation according to a method.

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 95 of 102

2007 © Copyright lies with the respective authors and their institutions.

Section 3.2.3 of (Catenacci, et al.) provides a number of examples of C-ODO-based modelling of
argumentation models like (Vrandecic, 2005) (Tempich, 2006) or frameworks like (van Eemeren, et
al., 2003), and of collaboration patterns like (Perry, et al., 1991) and workflows like (Busi, et al.,
2001).

Page 96 of 102 NeOn Integrated Project EU-IST-027595

5. Conclusions

As we stated in the introduction, the role of this document is to analyse the state of the art of
technical and social protocols and techniques and related issues (such as formats and standards)
for exchanging and sharing information according to the needs identified in D6.1.1.

At the time of writing this report, some candidate technologies were pre-selected from partners to
be part of the NeOn platform and new ones to be developed during the project life were also
identified. WP6 provided an initial list of protocols and techniques to be used in the project. The
list of technical protocols and techniques is:

Data access protocols

Access remote files WebDAV

Access relational databases JDBC

Access XML sources XML-Schema, XQuery, XQJ

Access ontological resources DIG

Query languages SPARQL

Version management protocols SVN

Service access protocols, formats and frameworks

Access remote services J2EE

Web services SOAP, WSDL

Access service directories and registries UDDI, ebXML

Notification and syndication protocols

Notification protocols Not defined yet

Syndication protocols and formats Not defined yet

Network communication protocols

Languages for working with agents Not defined yet

P2P protocols JXTA

Remote plug-in installation protocols, standards and
platforms

OSGI

It is a fact that the subset of standards referred before are well established in the industry (e.g.
J2EE) or they are in the way to be settled as industry standards.

As shown in Section 2 of (Catenacci, et al.) social protocols, in terms of the literature on
collaboration in cooperative knowledge communities may be presented by focussing on
requirements, tools or their matching. In general, two issues are clear after over viewing such
literature, and these are:

1. The notion of collaboration is not univocal. Moreover, although this notion has been widely
dealt with in the literature, none of the existing treatments provides a sufficiently general
definition for it.

2. The lack of generality of existing proposals is mainly a consequence of the social-technical
gap between social requirements and technical feasibility: “the divide between what we
know we must support socially and what we can support technically” (Ackerman, 2001).

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 97 of 102

2007 © Copyright lies with the respective authors and their institutions.

Most existing proposals approach this divide from the technical side. None of them
attempts at providing a conceptual framework of the collaborative use of existing or
forthcoming technology.

The situation described in 1 and 2 above is the reason behind the attempt made in (Catenacci, et
al.) at providing NeOn with a general enough understanding of the notion of collaboration (and of
collaborative ontology design) by means of a new proposal: the Collaborative Ontology Design
Ontology (C-ODO).

Defining C-ODO-based social protocols would mean modelling collaborative workflows to the
desired level of specificity so to constrain the design operations carried out by a knowledge
collective while working on an ontology project.

Page 98 of 102 NeOn Integrated Project EU-IST-027595

References

Aalst, W. V. 2003. Don't Go with the Flow: Web Services Composition Standards Exposed. s.l. :
IEEE Intelligent Systems, 2003, 18(1), pp. 72-76.

Ackerman, M.S. 2001. HCI in the New Millennium. [ed.] John Carroll. 2001.

Anderson, David. 2001. Peer to Peer. s.l. : O'Reilly, 2001.

Antonioletti, Mario, et al. 2006. Web Services Data Access and Integration - The Relational
Realization (WS-DAIR) Specification, Version 1.0. s.l. : OGF, DAIS-WG, 21 June 2006.

ARPA Knowledge Sharing Initiative. 1993. Specification of the KQML agent-communication
language. s.l. : External Interfaces Working Group working paper, July de 1993.

Atkinson, Malcom, et al. 2006. Web Services Data Acces and Integration - The Core (WSDAI)
Specification. Version 1.0. s.l. : OGF, DAIS-WG, 21 June 2006.

Axelrod, R. 1984. The Evolution of Cooperation. New York : Basic Books, 1984.

Benn, N., Shum, S.B. and Domingue, J. 2005. Integrating Scholarly Argumentation. Text and
Community: Towards and Ontology and Servicies. Proceedings of the 5th International Workshop
on Computational Models of Natural Argument (CMNA), IJCAI-05, also publicated as Technical
Report KMI-05-5. Edinburgh : s.n., 2005.

Berry, Dave, et al. 2006. OGSA(TM) Data Architecture Version 0.6.2. s.l. : OGF, OGSA DATA
WG, 29 June 2006.

Bester, J., et al. 2003. GridFTP: Protocol Extensions to FTP for the Grid. [ed.] W. Allcock. s.l. :
Open Grid Forum, GridFTP WG, April 2003.

Brodsky, J., et al. 2004. ICE: Information and Content Exchange Protocol. Primer: Introduction
and overview. Version 2.0. [Online] 2004. http://www.icestandard.org/Spec/SPEC-ICE-
2.0Primer.pdf.

Brookshier, Daniel, et al. 2002. JXTA: Java(TM) P2P Programming. s.l. : Sams, 2002.

Bunemann, P., et al. 2006. A Provenance Model for Manually Curated Data. Proceedings of the
International Provenance and Annotation Workshop. 2006.

Busi, Nadia, et al. 2001. Coordination Models: A Guided Tour. [ed.] Andrea Omicini, et al.
Coordination of Internet Agents: Models, Technologies and Applications. s.l. : Springer, 2001, pp.
6-25.

Cabral, L., et al. 2004. Approaches to Semantic Web Services: An Overview and Comparisons.
[ed.] C. Bussler, et al. Proceedings of the First European Semantic Web Symposium (ESWS2004).
Heraklion : Springer-Verlag, 2004, Vol. 3053 of LNCS, pp. 225-239.

Catenacci, C., et al. Design rationales for collaborative development of networked ontologies -
State of the art and the Collaborative Ontology Design Ontology. Deliverable D2.1.1 of the NeOn
Project.

Cederqvist, P. 2002. Version Management CVS. Bristol, U.K. : Network Theory Ltd., 2002.

Chandler, H.E. 2001. The complexity of online groups: a case study of asynchronous
collaboration. ACM Journal of Computer Documentation. 2001, Vol. 25(1), pp. 17-24.

Chinnici. 2006. Web Services Description Language (WSDL) Version 2.0. 2006, Part 1: Core
Language.

Crispin, M. 2003. Internet Message Access Protocol - Version 4rev1. March de 2003. RFC 3501.

Das, A., Wand, W. and McGuinness, D. L. 2001. Industrial Strength Ontology Management.
Proceedings ot the International Semantic Web Working Symposium. 2001.

Davey, Stephen, et al. 2006. Information Dissemination in the Grid Enviroment - Base
Specifications. s.l. : OGF, INFOD WG, 28 June 2006.

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 99 of 102

2007 © Copyright lies with the respective authors and their institutions.

Esteban Gutiérrez, Miguel, et al. 2006. DAIS RDF(S) Realization: Background and Motivational
Scenarios. [ed.] OGF. s.l. : DAIS WG, 28 July 2006.

Finin, T., et al. 1994. KQML as an agent communication language. Proceedings of the third
international conference on Information and knowledge mangement. New York : ACM Press, 1994,
pp. 456-453.
FIPA00001. FIPA Abstract Architecture Specification. Foundation for Intelligent Physical Agents,
2000. http://www.fipa.org/specs/fipa00001/

FIPA00007. FIPA Content Language Library Specification. Foundation for Intelligent Physical
Agents, 2000. http://www.fipa.org/specs/fipa00007/

FIPA00008. FIPA SL Content Language Specification. Foundation for Intelligent Physical Agents,
2000. http://www.fipa.org/specs/fipa00008/

FIPA00009. FIPA CCL Content Language Specification. Foundation for Intelligent Physical Agents,
2000. http://www.fipa.org/specs/fipa00009/

FIPA00010. FIPA KIF Content Language Specification. Foundation for Intelligent Physical Agents,
2000. http://www.fipa.org/specs/fipa00010/

FIPA00011. FIPA RDF Content Language Specification. Foundation for Intelligent Physical
Agents, 2000. http://www.fipa.org/specs/fipa00011/

FIPA00023. FIPA Agent Management Specification. Foundation for Intelligent Physical Agents,
2000. http://www.ipa.org/specs/fipa00023/

FIPA00025. FIPA Interaction Protocol Library Specification. Foundation for Intelligent Physical
Agents, 2000. http://www.fipa.org/specs/fipa00025/

FIPA00037. FIPA Communicative Act Library Specification. Foundation for Intelligent Physical
Agents, 2000. http://www.fipa.org/specs/fipa00037/

FIPA00061. FIPA ACL Message Structure Specification. Foundation for Intelligent Physical
Agents, 2000. http://www.fipa.org/specs/fipa00061/

FIPA00067. FIPA Agent Message Transport Service Specification. Foundation for Intelligent
Physical Agents, 2000. http://www.fipa.org/specs/fipa00067/

FIPA00075. FIPA Agent Message Transport Protocol for IIOP Specification. Foundation for
Intelligent Physical Agents, 2000. �http://www.fipa.org/specs/fipa00075/

FIPA00076. FIPA Agent Message Transport Protocol for WAP Specification. Foundation for
Intelligent Physical Agents, 2000. �http://www.fipa.org/specs/fipa00076/

FIPA00084. FIPA Agent Message Transport Protocol for HTTP Specification. Foundation for
Intelligent Physical Agents, 2000. http://www.fipa.org/specs/fipa00084/

Fleck, L. 1986. The problem of epistemology [1936]. [ed.] R.S. Cohen and T. Schnelle. Cognition
and Fact - Materials on Ludwik Fleck. Dordrecht : s.n., 1986, pp. 81-82.

Fritson, R. and Finin, T. 1994. KQML - A Language and Protocol for Knowledge and Information
Exchange. Proceedings of the 13th Intl. s.l. : Distributed Artificial Intelligence Workshop, 1994, pp.
127-136.

Godwin, M. 1994. Nine principles for making virtual communities work. s.l. : Wired, 1994, 2(6),
págs. 72-73.

Gómez Pérez, Asunción, et al. 2006. Ontology Access in Grids with WS-DAIOnt and the RDF(S)
Realization. 16, Athens : GGF, 3rd Semantic Grid Workshop, February 2006.

Gruber, T.R. 1995. Collaborating around Shared Content on the WWW. Cambridge, MA : W3C
Workshop on WWW and Collaboration, 11 Sep 1995.

Gruber, T.R. 1993. Knowledge Acquisition. A Translation Approach to Portable Ontology
Specifications. 1993, 5(2), pp. 199-200.

http://www.fipa.org/specs/fipa00001/
http://www.fipa.org/specs/fipa00007/
http://www.fipa.org/specs/fipa00008/
http://www.fipa.org/specs/fipa00009/
http://www.fipa.org/specs/fipa00010/
http://www.fipa.org/specs/fipa00011/
http://www.ipa.org/specs/fipa00023/
http://www.fipa.org/specs/fipa00025/
http://www.fipa.org/specs/fipa00037/
http://www.fipa.org/specs/fipa00061/
http://www.fipa.org/specs/fipa00067/
http://www.fipa.org/specs/fipa00084/

Page 100 of 102 NeOn Integrated Project EU-IST-027595

Gudgin. 2003. SOAP Version 1.2 Part1: Messaging Framework. s.l. : World Wide Web
Consortium, Conference Proceedings, June 2003. W3C Recommendation.

Hastings, Shannon, et al. 2006. Web Services Data Access and Integration - The XML
Realization (WS-DAIX) Specification, Version 1.0. s.l. : OGF, DAIS-WG, 21 June 2006.

Hethmon, P. and Elz, R. 1998. Feature negotiation mechanism for the File Transfer Protocol. s.l. :
IETF, Network Working Group, August 1998. RFC 2389.

Horowitz, M. and Lunt, S. 1997. FTP Security Extensions. [prod.] Network Working Group. s.l. :
IETF, October 1997. RFC 2228.

Karger, D., et al. May 1997. Consistent hashing and random trees: Distributed caching protocols
for relieving hot spots on the World Wide Web. Proceedings of the 29th Annual ACM Symposium
of Theory of Computing. El Paso : s.n., May 1997, pp. 654-663.

Klensin, J. 2001. Simple Mail Transfer Protocol. April 2001. RFC 2821.

Labrou, Y. and Finin, T. 1997. A Proposal for a new KQML Specification. Baltimore, MD 21250 :
University of Maryland, Baltimore County, Computer Science and Electrical Engineering
Department, February 1997. TR CS-97-03.

Lara, R., et al. 2005. A Caonceptual Comparison between WSMO and OWL-S. WSMO
Deliverable, D.4.1.v.0.1. 2005.

Lassila, O. and Swick, R. 1999. Resource Description Framewotk (RDF) Model and Syntax
Specification. [Online] 1999. http://www.w3.org/TR/REC-rdf-syntax. W3C Recommendation.

Lassila, O. 2002. The Semantic Web Kick-Off in Finland - Vision, Technologies, Research, and
Applications. [ed.] E. Hyvonen. University of Helsinki : HIIT Publications, 2002, Serendipitous
Interoperability.

Lewin, D. 1998. Consisteng hashing and random trees: Algorithms for caching in distributed
networks. Master's thesis. [Available at the MIT Library] s.l. : MIT, Department of EECS, 1998.

Louwerse, M. 2001. An analytic and cognitive parametrization of coherence relations. s.l. :
Cognitive Linguistics, 2001, Vol. 12(3), pp. 291-315.

Lu, Y. 2003. Roadmap for tool support for collaborative ontology engineering. Master the-sis.
[Online] 2003. http://www.cs.uvic.ca/_chisel/thesis/YilingLu.pdf.

Mancini, C. and Shum, S.B. 2006. Modelling discourse in contested domains: A semiotic and
cognitive framework. s.l. : Open University, Final version submitted to International Journal of
Human-Computer Studies, 2006. Technical report kmi-06-14.

Mann, W.C. and Thompson, S.A. 1988. Rhetorical structure theory: Toward a functional theory of
textorganisation. 1988, Vol. 8(3), pp. 243-281.

Martin, D., et al. 2004. Bringing Semantics to Web Services: The OWL-S Approach. San Diego,
California, USA : Proceedings ot the First International Workshop on Semantic Web and Web
Process Composition (SWSWPC 2004), 2004.

Martin, D., et al. 2003. OWL-S 1.0 white paper. [Online] 2003. http://www.daml.org/services/owl-
s/1.0/.

Maymounkov, Petar and Mazieres, David. 2002. Kademlia: A Peer-to-peer Information System
Based on the XOR Metric. Cambridge, MA, USA : MIT Faculty Club, Electronic Proceedings for the
1st International Workshop on Peer-to-Peer Systems (IPTPS '02), March 2002.

McGuinness, D. L. and van Harmelen, F. 2003. OWL Web Ontology Language Overview.
[Online] 18 August 2003. http://www.w3.org/TR/owl-features/. W3C Candidate Recommendation.

McIlraith, S., Son, S. and Zeng, H. 2001. Semantic Web Services. s.l. : IEEE Intelligent Systems,
2001, Special Issue on the Semantic Web, 16(2), pp. 46-53.

Michels, Jan-Eike. 2006. XQuery API for Java(TM) (XQJ) 1.0 Specification Version 0.5.0 (EDR)
(JSR 225 EG draft specification). s.l. : IBM, 3 de March de 2006.

D 5.2.1 NeOn Protocols for Exchanging and Sharing Ontologies Page 101 of 102

2007 © Copyright lies with the respective authors and their institutions.

Mitra, N. 2003. SOAP Version 1.2 Part 0:Primer. [Online] 24 June 2003.
http://www.w3.org/TR/soap12-part0.

Morgan, M. and Chue Hong, N. 1995. ByteIO Specification, Version 1.0. s.l. : OGSA-ByteIO-WG,
October 1995.

Motta, E., et al. 2003. IRSII: A Framework and Infrastructure for Semantic Web Services. [ed.] D.
Fensel, K. Sycara and J. Mylopoulos. The SemanticWeb - ISWC2003, Second International
Semantic Web Conference, Proceedings. Sanibel Island : Springer-Verlag, 2003, Vol. 2870 of
LNCS, pp. 306-318.

Myers, J. and Rose, M. 1996. Post Office Protocol - Version 3. May 1996. STD 53, RFC 1039.

Nagel, W. 2005. Subversion Version Control: Using the Subversion Version Control System in
Development Projects. NJ : Prentince Hall PTR Upper Saddle River, 2005.

Noy, N.F., et al. 2006. A Framework for Ontology Evolution in Collaborative Enviroments.
Proceedings of the Semantic Web - ISWC. s.l. : Springer-LNCS, 2006, Vol. 4273, pp. 544-55.

Ostrom, E. 1990. Governing the Commons: The Evolution of Institutions for Collective Action. New
York : Cambridge University Press, 1990.

Pérez, Jorge, Arenas, Marcelo and Gutiérrez, Claudio. 2006. Semantics and Complexity of
SPARQL. s.l. : International Semantic Web Conference , 2006, pp. 30-43.

Perry, D.E. and Kaiser, G.E. 1991. Models of softeware development enviroments. IEEE
Transactions On Software Enginering. 1991, 17(3), pp. 283-295.

Porzel, R. and Malaka, R. 2004. A Task-based Approach for Ontology Evaluation. Proceedings od
ECAI04. 2004.

Postel, J. and Reynolds, J. 1985. File Transfer Protocol (FTP). s.l. : IETF, Network Working
Group, October 1985. RFC 959.

Sabou, M. 2006. Building Web Service Ontologies - PhD Thesis. Amsterdam : Vrije Universiteit,
2006.

Sanders, T.J.M., Spooren, W.P.M. and Noordman, L.G.M. 1993. Coherence relations in a
cognitive theory of discourse representation. s.l. : Cognitive Linguistics, 1993, Vol. 4(2), pp. 93-
133.

Schmidt's, Douglas C. Distributed Object Computing with CORBA Middleware. [Online]
http://www.cs.wustl.edu/~schmidt/corba.html.

Schollmeier, Rüdiger. 2002. A Definition of Peer-to-Peer Networking for the Classification of
Peer-to-Peer Architectures and Applications. Proceedings of the First International Conference on
Peer-to-Peer Computing (P2P’01). s.l. : IEEE, 2002.

Sereno, B., Shum, S.B. and Motta, E. 2004. Clainspotter: An Enviroment to support Sesemaking
with Knowledge Triples. Proccedings of the Intelligent User Interfaces Conference, IUI205. San
Diego : s.n., 2004.

Shum, S.B., Motta, E. and Domingue, J. 2002. Augmenting Design Deliberation with
Compendium: The Case of Collaborative Ontology Design. Proceedings of the Workshop on
Facilitating Hypertext Collaborative Modelling in conjunction with ACM Hypertext Conference.
Maryland : s.n., 2002.

Stocia, Ian, et al. 2001. Chord. A Scalable Peer-to-peer Lookup Service for Internet Applications.
s.l. : Proceedings of the 2001 ACM IGCOMM Conference, 2001.

Stuckenschmidt, H., Sabou, M. and Klein, M. 2004. Semantic Web Technology - Bringing
Maning to Distributed Systems. s.l. : IEEE Distributed Systems Online, 2004.

Tempich, C. 2006. Ontology Engineering and Routing in Distributed Knowledge Management
Aplications. PhD thesis. s.l. : University of Karlsruhe, 2006.

Page 102 of 102 NeOn Integrated Project EU-IST-027595

ten Teije, A., van Harmelen, F. and Wielinga, B. 2004. Configuration of Web Services as
Parametric Design. [ed.] E. Motta, et al. Proceedings of the 14th International Conference on
Knowledge Engineering and Knowledge Management, (EKAW-2004). Whittleburry Hall : Springer-
Verlag, 2004, Vol. number 3257 in LNAI, pp. 321-336.

The Open Group. 1997. Universal Unique Identifier Format. DCE 1.1:Remote Procedure Call. [En
línea] 1997. http://www.opengroup.org/onlinepubs/9629399/apdxa.htm.

van der Aalst, W.M.P., et al. 2003. Workflow patterns. Distributed and Parallel Databases. 2003,
14, pp. 5-51.

van Eemeren, F.H. and Grootendorst, R. 2003. A Systematic Theory of Argumentation: The
Prahma-Dialectical Approach. Cambridge : Cambridge University Press, 2003.

Vrandecic, D. 2005. Explicit knowledge engineering patterns with macros. [ed.] C. Welty and A.
Gangemi. Proceedings of the Ontology Patterns for the Semantic Web Workshop at the ISWC
2005. Galway : s.n., 2005.

W3C. 2002. Web services architecture requirements. 2002. W3C Web Services Architecture
Working Draft.

Wroe, C., et al. 2004. Automating Experimens Using Semantic Data on a Bioinfrmatics Grid. s.l. :
IEEE Intelligent Systems, 2004, 19(1), pp. 48-55.

	3.1.1.1 GridFTP
	 3.1.1.2. ByteIO
	3.1.1.3. WebDAV
	3.1.2.1 WS-DAIR
	3.1.2.2. JDBC (Java Database Connectivity)
	 3.1.2.3 ODBC (Open Database Connectivity)
	3.1.2.4 JDO
	3.1.2.5 Hibernate
	3.1.3.1 WS-DAIX
	3.1.3.2 XML-Schema
	3.1.3.3 XQuery
	 3.1.3.4 XQJ
	3.1.4.1 WS-DAI-RDF(S)
	3.1.4.2 DIG
	3.1.5.1 SPARQL
	 3.1.5.2 Queries in F-Logic
	3.3.1.1 RPC (Remote Procedure Call)
	3.3.1.2 Interface Definition Language (IDL)
	3.3.1.3 RMI (Remote Method Invocation)
	3.3.1.4 CORBA (Common Object Request Broker)
	3.3.1.5 J2EE
	3.3.1.6 Web Services
	 3.3.1.6.1 Semantic Web Services
	3.3.1.6.2 WS-DAI (Web Services Database Access and Integration)
	3.3.1.6.3 WS-Security
	3.3.1.6.4 WS-Policy
	3.3.1.6.5 SCA and SDO

	3.3.2.1 UDDI
	3.3.2.2 ebXML registry
	3.4.1.1 Simple Mail Transfer Protocol (SMTP)
	3.4.1.2 Post Office Protocol (POP)
	3.4.1.3 Internet Message Access Protocol- Version 4rev1 (IMAP)
	3.4.1.4 Jabber
	3.4.1.5 INFOD
	 3.4.2.1 ICE
	3.4.2.2 RSS
	 3.4.2.3 Atom
	3.5.1.1 Agent Communication Language (ACL)
	3.5.1.2 Knowledge Query and Manipulation Language (KQML)
	3.5.2.1 JXTA 2.0
	3.5.2.2 Gnutella 0.6
	 3.5.2.3. Napster
	3.5.2.4. Bittorrent
	3.5.2.5 Kademlia
	3.5.2.6 FastTrack
	 3.5.2.7 Chord

