

 NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 — “Semantic-based knowledge and content systems”

D4.4.1 The role of access rights in ontology
customization

Deliverable Co-ordinator: Martin Dzbor

Deliverable Co-ordinating Institution: The Open University (OU)

Other Authors: Alexander Kubias (UKO-LD); Laurian Gridinoc (OU); Angel
Lopez-Cima (UPM); Carlos Buil Aranda (ISOCO)

The main purpose and objective of this deliverable is to consider the role of access rights and
access control mechanism with respect to ontologies. The purpose of our discussion of the
subject in the subsequent chapters is threefold: (i) to introduce and clarify terminology that is
typically used in connection with managing and controlling access; (ii) to consider the possibilities
and implications of controlling access in ontologies that are shared in a certain setting; and (iii)
to provide an initial groundwork and act as a potential foundation for a further, more formal
development of access rights as a part of NeOn model and/or ontology metadata vocabulary.

Document Identifier: NEON/2007/D4.4.1/v1.0 Date due: March 31, 2007
Class Deliverable: NEON EU-IST-2005-027595 Submission date: April 06, 2007
Project start date March 1, 2006 Version: v1.0
Project duration: 4 years State: Final

Distribution: Public

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 2 of 70 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European
Communities, grant number IST-2005-027595. The following partners are involved in the project:

Open University (OU) – Coordinator Universität Karlsruhe – TH (UKARL)
Knowledge Media Institute – KMi Institut für Angewandte Informatik und Formale
Berrill Building, Walton Hall Beschreibungsverfahren – AIFB
Milton Keynes, MK7 6AA D-76128 Karlsruhe
United Kingdom Germany
Contact person: Martin Dzbor, Enrico Motta Contact person: Peter Haase
E-mail address: {m.dzbor, e.motta}@open.ac.uk E-mail address: pha@aifb.uni-karlsruhe.de
Universidad Politécnica de Madrid (UPM) Software AG (SAG)
Campus de Montegancedo Uhlandstrasse 12
28660 Boadilla del Monte 64297 Darmstadt
Spain Germany
Contact person: Asunción Gómez Pérez Contact person: Walter Waterfeld
E-mail address: asun@fi.ump.es E-mail address: walter.waterfeld@softwareag.com
Intelligent Software Components S.A. (ISOCO) Institut ‘Jožef Stefan’ (JSI)
Calle de Pedro de Valdivia 10 Jamova 39
28006 Madrid SL–1000 Ljubljana
Spain Slovenia
Contact person: Richard Benjamins Contact person: Marko Grobelnik
E-mail adress: rbenjamins@isoco.com E-mail address: marko.grobelnik@ijs.si
Institut National de Recherche en Informatique University of Sheffield (USFD)
et en Automatique (INRIA) Dept. of Computer Science
ZIRST – 665 avenue de l’Europe Regent Court
Montbonnot Saint Martin 211 Portobello street
38334 Saint-Ismier S14DP Sheffield
France United Kingdom
Contact person: Jérôme Euzenat Contact person: Hamish Cunningham
E-mail adress: jerome.euzenat@inrialpes.fr E-mail address: hamish@dcs.shef.ac.uk
Universität Kolenz-Landau (UKO-LD) Consiglio Nazionale delle Ricerche (CNR)
Universitätsstrasse 1 Institute of cognitive sciences and technologies
56070 Koblenz Via S. Marino della Battaglia
Germany 44 – 00185 Roma-Lazio Italy
Contact person: Steffen Staab Contact person: Aldo Gangemi
E-mail address: staab@uni-koblenz.de E-mail address: aldo.gangemi@istc.cnr.it
Ontoprise GmbH. (ONTO) Asociación Española de Comercio Electrónico
Amalienbadstr. 36 (AECE)
(Raumfabrik 29) C/lcalde Barnils, Avenida Diagonal 437
76227 Karlsruhe 08036 Barcelona
Germany Spain
Contact person: Jürgen Angele Contact person: Jose Luis Zimmerman
E-mail address: angele@ontoprise.de E-mail address: jlzimmerman@fecemd.org
Food and Agriculture Organization of the United Atos Origin S.A. (ATOS)
Nations (FAO) Calle de Albarracín, 25
Viale delle Terme di Caracalla 28037 Madrid
00100 Rome, Italy Spain
Contact person: Marta Iglesias Contact person: Tomás Pariente Lobo
E-mail address: marta.iglesias@fao.org E-mail address: tomas.parientelobo@atosorigin.com

D4.4.1 The role of access rights in ontology customization Page 3 of 70

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this document, even
if they might not have directly contributed writing parts of this document:

• The Open University (OU)

• University of Koblenz-Landau (UKO-LD)

• Universidad Politecnica de Madrid (UPM)

• iSOCO, S.A. (ISOCO)

Change Log

Version Date Amended by Changes
0.1 20-01-2007 Martin Dzbor, Laurian Gridinoc Outline and initial sections
0.2 02-02-2007 Martin Dzbor Proposals added
0.3 07-02-2007 Alexander Kubias Access technologies added
0.4 07-02-2007 Martin Dzbor Intro, motivation, relations to NeOn
0.5 22-02-2007 Carlos Buil Aranda Scenario invoicing, example access
0.6 08-03-2007 Martin Dzbor Inclusion/extension of ODESeW
0.7 16-03-2007 Martin Dzbor Wiki scenario, exec. summary
0.8 05-04-2007 Jose Manuel Gomez QA review
1.0 06-04-2007 Martin Dzbor Addressing reviewer’s comments

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 4 of 70 NeOn Integrated Project EU-IST-027595

Executive Summary

The main purpose and objective of this deliverable is to consider the role of access rights and access control
mechanism with respect to ontologies. The purpose of our discussion of the subject in the subsequent
chapters is threefold: (i) to introduce and clarify terminology that is typically used in connection with managing
and controlling access; (ii) to consider the possibilities and implications of controlling access in ontologies
that are shared in a certain setting; and (iii) to provide an initial groundwork and act as a potential foundation
for a further, more formal development of access rights as a part of NeOn model and/or ontology metadata
vocabulary.

We start with introducing the subject and providing some motivation for this research. Next, we include a
brief terminology chapter containing key terms and phrases one can meet when tackling access control.
This generic glossary is followed by a chapter briefly describing various generic approaches to managing
access to resources, and by a chapter where we review several existing technologies dealing with security
and access control. Next, we look at some specifics of dealing with access and authority in the context
of ontologies in general, and of networked ontologies in particular. Namely, we consider how features like
distributed and collaborative nature of ontologies can be reflected in the access control models, and how
these considerations affect accountability, transparency and legacy dependencies. Finally, we offer a few
worked scenarios showing possible ways of operationalizing the theoretical consideration and we conclude.

The authors are grateful to all partners who contributed to this deliverable. In particular, Jose Manuel Gomez
from ISOCO reviewed an earlier draft and offered valuable suggestions. Also, Marta Iglesias and Yves
Jaques from FAO were very helpful in mapping the proposals made in this deliverable to the scenarios and
applications they have in mind in the context of their use case.

D4.4.1 The role of access rights in ontology customization Page 5 of 70

Contents

1 Introduction 10

1.1 Motivation for access control . 10

1.2 Relationships with other work in NeOn . 13

2 Terminology 16

3 Access Control Models: Overview 20

3.1 ACL-based Models . 21

3.1.1 DAC: Discretionary Access Control . 22

3.1.2 MAC: Mandatory Access Control . 22

3.1.3 RBAC: Role Based Access Control . 23

3.2 Authorization-based Models . 24

3.2.1 Introduction into capabilities . 24

3.2.2 Formal differences between ACL and capabilities . 25

4 Access Control Technologies and Approaches 28

4.1 MPEG-21 . 28

4.2 User rights in ODESeW . 29

4.2.1 Data Model . 30

4.2.2 Security Component . 31

4.2.3 An implementation of the Security Model . 31

4.3 Differentiation of trust issues from access rights . 32

4.4 Differentiation of profiling and preferences from access rights 33

4.5 XACML: language for access control markup . 34

4.6 SAML: language for security markup . 35

5 Considerations for Treating Access Rights in NeOn 37

5.1 Distribution issues: designating ontologies and authorities . 38

5.2 Refinement of the authorization model . 40

5.3 Collaboration issues: groups, granularity, inheritance . 41

5.3.1 Granularity of access control for ontologies . 41

5.3.2 Groups, tasks and roles vs. collaborative aspects of ontologies 44

5.3.3 Inheritance of access rights . 46

5.3.4 Delegating and revoking access rights for ontologies 47

5.4 Accountability issues: relationship to provenance, trust . 50

5.5 Legacy issues: tool, protocol alterations . 51

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 6 of 70 NeOn Integrated Project EU-IST-027595

5.6 Elements of a vocabulary of authorities/invocations . 52

6 Worked Scenarios and Examples 53
6.1 Invoicing Case Study . 53

6.1.1 Scenarios . 53

6.1.2 Users in the Invoicing Case Study . 54

6.1.3 Application of the user roles to the invoicing scenarios 55

6.2 Ontology authoring in a wiki factory style . 57

6.2.1 Initial state of the system . 58

6.2.2 Collaboration on a shared module . 59

6.2.3 Collaboration with delegation . 59

6.2.4 Introducing a third party into collaboration . 60

6.2.5 Finishing collaboration . 61

7 Conclusions 65

Bibliography 68

D4.4.1 The role of access rights in ontology customization Page 7 of 70

List of Tables

3.1 An example situation showing access rights in Lampson’s matrix form. 26

4.1 Restrictions applied to different levels distinguished in ODESeW. 31

4.2 Restrictions implemented in ODESeW. 31

5.1 Three situations showing a generic ontology identifier, ontology identifier accompanies by a
capability URI, and pure capability URI. 40

5.2 An example of access rights in a matrix form. 43

5.3 An example of access capabilities corresponding to the matrix in Table 5.2. 43

5.4 An example of invocation nesting grammar allowing decomposable authorities that may apply
e.g. during the act of delegating capabilities between subjects. 48

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 8 of 70 NeOn Integrated Project EU-IST-027595

List of Figures

3.1 Basic access control terminology applied to an example situation of subject ‘Alice’ having
authority ‘to drive’ a ‘car object’. 20

3.2 An example situation showing the principle of capability-based access control: Alice pointing
out her car to Bob (thin arrows) and passing a token (thick arrow). 25

3.3 Translation and visual depiction of the access control matrix in Table 3.1: arrows pointing to
the left for ACL-s and to the right for capability lists. 26

4.1 ODESeW architecture and basic blocks. 29

4.2 Diagram of the terms in the ODESeW Data Model and their mutual relationship reflecting the
granularity of ontological entities. 30

5.1 Illustration of the notion of confining authority propagation only to known subjects/collaborators.
Alice has access authority to (contact) Bob but no authority to (contact) Don. 45

5.2 Illustration of the notion of confining authority propagation only to the subjects/collaborators
within a particular workflow/business process. Two separate workflows with different partici-
pants and objects are shown in the figure using shaded areas and labelled as WF1 and WF2. . 45

5.3 Illustration of the principle of recurrent delegation of the acquired authority to another subject.
For the purpose of clarity we visually distinguished the delegated authority using thick dotted
arrows linked to the actual acts of delegation (i.e. block and thick full arrows). 48

5.4 Decomposition of authority into a composite authority object (CO) that contains a ‘private’ part
(R) actually facilitating the access and a ‘shareable’ part (F) that may be delegated to third
parties. 49

5.5 Revocation of delegated authority by removal or deactivation of the ‘private’ part (R) of an
appropriate composite authority object (CO). Symbol � corresponds to a deactivated, ‘null’
content of the authority object. 50

6.1 Delegation of editing authority to an expert. 56

6.2 Delegation of edition authority to an expert. 57

6.3 Delegation of edition authority to an expert. 57

6.4 Example of Alice’s initial access-control screen showing her keys (authorities) to read and write
into modules M1 and M2. 58

6.5 Example of Bob’s initial access-control screen showing his keys (authorities) to read and write
into module M1, but not allowing him to work with M2. 59

6.6 Example of Carol’s initial access-control screen showing her key (authority) to read only mod-
ule M1, and not allowing her any other activity with this module or module M2. 59

6.7 Example of the result of attempting to access and read/view the content of module M1, seen
by all users. 60

D4.4.1 The role of access rights in ontology customization Page 9 of 70

6.8 Example of user Alice collaboratively editing the content of module M1, seen from Alice’s
perspective prior to committing her amendments. 60

6.9 Example of user Bob collaboratively editing the content of module M1, seen from Bob’s per-
spective prior to committing his amendments. 61

6.10 Example of the outcome of collaborative editing of the content of module M1, seen from the
perspective of any authorized user after committing the amendments. 61

6.11 Example of how Alice may facilitate collaboration in a scenario when her collaborator does not
have appropriate authority: delegation of an authority to edit the content of module M2 passed
onto Bob, seen from the perspective of user Alice. 62

6.12 Example of Bob’s initial access-control keys being extended to include authorities to also read
and write module M2. 62

6.13 Example of user Bob preparing ground for collaborative editing the content of module M2,
seen from Bob’s perspective prior to committing his amendments. 63

6.14 Example of how Bob may facilitate collaboration in a scenario when his intended collaborator
does not have appropriate authority: delegation of an authority to read the content of module
M2 chain-passed onto Carol, seen from the perspective of user Bob. 63

6.15 Example of Carol’s initial access-control keys being extended to include authorities to also
read module M2, which was passed from Bob. 63

6.16 Example of Alice revoking her previously given authority delegation to Bob for the purposes of
accessing module M2. 63

6.17 Authority revocation seen from Bob’s perspective – resulting into an error when attempting to
access module M2. 64

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 10 of 70 NeOn Integrated Project EU-IST-027595

Chapter 1

Introduction

In this deliverable we consider the role of access rights and access control mechanism with respect to
ontologies. By ontologies in this deliverable we mean a schema defining concepts, properties, restrictions,
etc., which might be (optionally) populated with instances. The purpose of our discussion in the subsequent
chapters is threefold:

• to introduce and clarify terminology that is typically used in connection with managing and controlling
access – our objective here is to differentiate between issues like ‘access control’, ‘trust’, ‘preference’,
‘role’, ‘group’, etc.

• to consider the possibilities and implications of controlling access in ontologies that are shared in
certain setting – our object from this angle is to highlight advantages and shortcomings of different
access control models and propose the ways to transfer different models to the world of networked
ontologies.

• to serve as a potential foundation for a further, more formal development of access rights as a part
of NeOn model and/or ontology metadata vocabulary – our objective here is to point to implications
access control may have on such aspects of networked ontologies as working with modules, collabora-
tion workflows and processes, trust and provenance, and possibly others, which all need to be further
investigated in collaboration with other work packages.

The document is structured in the following way: We start with introducing the subject and providing some
motivation for this work in this section. Next, we include a brief terminology in chapter 2 containing key terms
and phrases one can meet when tackling access control. This generic glossary is followed by chapter 3 where
we briefly describe various generic approaches to managing access to resources, and by chapter 4 where
we present several existing technologies dealing with security and access control. Next, in chapter 5 we look
at some specifics of ontologies in general, and of networked ontologies in particular. Namely, we consider
how features like the distributed and collaborative nature of ontologies can be reflected in the access control
models, and how these considerations affect accountability, transparency and legacy dependencies. Finally,
we offer a few worked scenarios showing possible ways of operationalizing the theoretical consideration and
we conclude then.

Before we continue, let us start with some motivation. Since ontologies are (by definition) conceptualization
that are supposed to be shared, the question of why should we then think of restricting this shareability is
more than appropriate.

1.1 Motivation for access control

We start the deliverable report with a sample of motivations and situations where access control may play
some role. The purpose of this short section is neither to define, nor to restrict the scope of access control.

D4.4.1 The role of access rights in ontology customization Page 11 of 70

On the contrary, our objective in formulating these short scenarios is to show that there is more in access
and authority control than what most readers are familiar with from their desktops and corporate Intranets.

Motivation 1: content sensitivity
A classic situation that has originally led to investigating access rights and authorities comes from the re-
quirement of individuals or organizations to preserve certain confidentiality due to sensitivity of data content.
In a single-user, isolated environment, any concern for confidentiality is somewhat paranoid – one usually
does not need to prevent him- or herself from accessing what they created. However, such single-user, fully
isolated environments are become increasingly hypothetical. In reality, many of us share resources with
others and/or operate within a networked, connected environment, which enables physical access to both,
known and unknown subjects.

Content sensitivity issue relates not only to such extreme cases as preventing any internal communication
from leaking outside of corporate Intranet. In fact, it is usually far more important to limit access inside
Intranets, often as much as toward the outside world. In today’s business we can easily picture a situation
where several stakeholders contribute e.g. to different facets of an Enterprise Information Management
System with databases and possibly knowledge bases specialized in financial reporting, procuring, customer
management, planning, production management, design, etc.

Often, individual employees from different units in an organization need to access the same shared dataset
(e.g. a budget or a strategic plan). However, one should only acquire as much information, data, resources
as they truly need to carry out their duties. Thus, chassis production line supervisor needs to be aware of only
that part of budget that relates to his or her area of responsibility. Thus, with the exception of budgeting for
chassis production, s/he should not even be aware of how other budget chapters are organized, distributed,
and obviously instantiated with real numbers.

Such a situation can be transposed onto ontologies and their content. Organizational information systems,
such as those discussed in [GDM+06a] in the context of managing the flow of financial and invoicing infor-
mation, are often modular. Modularity is achieved by introducing blocks responsible for different parts of the
business process. Now, we can imagine these different business processes use different languages, con-
cepts, and relationships, and as such could be, in principle, conceptualized as a series of ontologies and/or
knowledge bases (KB) of varying size and complexity. As is common with business processes, certain in-
formation is restricted to selected individuals. Even if several people access the same information, they may
see different versions of it, different level of detail, sensitivity, and similarly. Hence, it makes sense to replicate
this situation and to create a number of partitions on the ontological model describing such an organizational
information system. This can be achieved by expressing access authorities to the individual ‘modules’. One
advantage of not just denying access at the request stage but rather removing certain modules from the large
system/ontology/KB is in the content confinement. The difference between the two is as follows:

denying access at the request : If our line supervisor requests the system to show him/her next year’s
budget, the system may come back with a list of chapters and sections (folders, files,. . .). Then upon
attempting to access a given node, the system would ask for authentication and possibly deny the
access. However, our line supervisor had already learned a lot about the way the budget is structured;
s/he saw at least a partial schema, which is not what s/he really needs to do his/her job. Hence, we
have got here an information and security leak.

removing content module(s) : In the same situation of requesting next year’s budget, our line supervisor
would obtain only those parts of the budget that s/he has access rights to see or work with. In other
words, in this case ‘next year’s budget ’ is equivalent to the ‘part of the next year’s budget accessible to
me’.

As the two strategies above show, it is rather difficult to prevent subjects from requesting an entity they believe
has to be in the system. Although they only truly see what they are entitled to, there is much more information

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 12 of 70 NeOn Integrated Project EU-IST-027595

provided to them than necessary. In the latter case the request for the whole budget still took place, but our
subject did not obtain any more information from the system than what s/he was entitled to.

A similar line of thought might be elaborated for ontologies and instances of the concepts within ontologies.
On the level of company, there may exist one large organizational ontology (or perhaps a network of smaller
organizationally-focused ontologies), whose purpose is to conceptualize the domain. However, on the level
of individual subjects the conceptualizations and conceptual views are contingent on their authority, on data
sensitivity, on the confidentiality requirement, on the organizational policies, etc.

Hence, subject called (say) Researcher would be entitled to see in the conceptualization of the organization
KMi its projects, its staff members, its publications, and the relationships among these entities (e.g. person
X leading project Y). However, this subject may not be permitted to see what vocabulary and structures are
used in KMi to manage salaries and contracts. On the other hand, subject (say) Administrator would be
entitled to see but not edit the research aspects, and in his or her conceptualization there would be additional
modules to express statements about people’s salaries, contracts, etc.

Motivation 2: collaborative ontology (re-)engineering
In contrast with the first motivational example, where we had top-down imposed restrictions on resource due
to their sensitivity, this motivation considers another fairly common pattern of organizational life. Imagine
a situation where an organization manages an ontology (or a network of ontologies) on a particular aspect
related to the organization’s interest (say fisheries or medical drugs) – let us label this ontology as Oshared.
Due to latest developments in the field, subject Alice starts conceptualizing a new chunk of knowledge that
leads her to introducing and/or amending certain entities in that existing ontology. Let us denote this chunk
as Malice.

Obviously, Alice may want to see her changes as if they were already part of the official ontology; e.g. to
do some tests. She wants to work with the Oshared, however. What she may thus do is committing her
amendments in Malice into the official Oshared ontology. Now there are two things that can happen:

versioning strategy : Alice spins off a branch of the official Oshared, which only she can see, and commit
her new module Malice to that branch. Other colleagues continue working with the main branch of
Oshared.

access control strategy : Alice does her amendments directly in the official Oshared because she is nor-
mally permitted to do such changes, but she is not yet happy with the current state of her module
Malice. Hence, she defines ontology Oshared as including module Malice, but she would simultane-
ously restrict the access to Malice to herself.

Since this is a work in progress and perhaps a minor conceptual amendment (e.g. translation of term), Alice
feels she may work on the official branch/version of Oshared. She only needs that ‘lock’ on her new additions
temporarily – imagine she only wants to consult with Don whether a particular translation is correct or not.

What we are getting here, is a situation where there is a shared ontology Oshared, which is used by Alice and
many of her co-workers for very specific purposes and tasks. For sake of this example, assume that Bob
is among those co-workers who use Oshared and Don is among those who cannot access the ontology in
question. We now have one ontology (which includes Alice’s new module Malice among other aspects), but
our three users see three different things:

Alice sees Oshared ≡ Oshared : Malice ∈ Oshared;

Bob sees Oshared ≈ Oshared : Malice /∈ Oshared;

Don sees Oshared ≈ � (i.e. empty set)

D4.4.1 The role of access rights in ontology customization Page 13 of 70

Now Alice needs Don’s advice on some issues in her module. In a physical collaborative setting, Alice would
simply visit Don in his office and ask for his opinion. In the virtual setting, this can be emulated by Alice
granting Don a temporary authority to access her module Malice (or possibly Msmaller ⊂ Malice or even
Mlarger: Malice ⊂ Mlarger ⊂ Oshared). As a result, Don will be able to access a particular module (say,
Mlarger), but not the whole ontology – so there is no major breach of confidentiality here. Alice may even
restrict Don’s actions to commenting and annotating the content in Mlarger but not add or delete anything.

In the meantime, nothing whatsoever changed for Bob (and any other co-worker) – they still interact with
the original, sanitized Oshared which hides any of Alice’s changes and Don’s annotations. At some point
Alice and Don reach agreement, and Alice feels confident that now she may make an official proposal for the
extension of Oshared. She simply ‘cuts’ Don’s temporary authorities, and enables her co-workers to obtain
authorities appropriate to a specific extension protocol, workflow, or business process. Only at this stage
would Bob and other become aware of a change; however, this would already be presented as an officially
different ontology – say, Oextensionproposal

shared ≡ Oshared ⊕Malice.

How we can realize such a scenario is shown later, in section 6.2 using an example of wiki as a factory for
collaborative engineering of ontologies. The examples include screenshots that would make the abstract
notation used in this section easier to understand.

1.2 Relationships with other work in NeOn

Work package 1: networked ontologies
As will be presented later in the deliverable, we base our proposition of considering access rights on the
capacity to identify within an ontology a sub-set of ontological entities that need to be treated (for whatever
reason) differently than other parts of the ontology. In work package 1, the capacity to identify a sub-set
within a larger ontology is investigated in the scope of modularization. An ontology module is seen as a
tuple of imported ontologies or partial ontology partitions, certain import and export interfaces, and a set of
mappings. While the actual research into defining and describing modules is carried out in WP1, there is an
interaction with this work package.

The first possible interaction is that the level of access or authority may serve as a criterion for partitioning a
larger ontology into smaller chunks. For example, in one of the motivational examples we suggested hiding
certain aspects of a (populated) ontology from certain users. In order to achieve this, there is a need to
partition or to modularize the ontology so that the individual blocks are clearly identifiable for the purposes of
asserting something about the access rights.

Another possible interaction, which however, needs to be considered in a broader context, is the implication
of giving subjects access to some modules of a larger ontology but not to others. Assume a situation where
ontology comprises among other content three modules, M1 through M3. By ‘other content’ we may mean
concepts or restrictions that relate entities from two different modules, so do not belong in either of them.
These entities may form yet another module, ‘the rest’ of the ontology and we have the ontology fully covered.

If we now remove (say) module M1 due to access limitations but retain M2 and M3, what will happen
to ‘the rest’? Intuitively, some parts of ‘the rest’ should be included in the access controlled ontology –
those that depend on M2 and M3, but not on M1. However, these were not necessarily defined by whoever
partitioned the ontology earlier. Moreover, there may be several different ‘rests’ dependent on which modules
are permitted for a particular user. How to treat these dynamic consequences of certain modules being
inaccessible is subject for further discussions with work package 1 and also NeOn use case partners.

Work package 2: collaborative aspects of ontology engineering
Access control rarely applies to the environments with a single user who creates, edits, publishes and con-
sumes the outcomes of his or her engineering process. However in the open environment comprising both,
public Web and private corporate Intranets, there will be many users engaged in using, but often also en-

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 14 of 70 NeOn Integrated Project EU-IST-027595

gineering ontologies. Indeed the notion of networked ontologies assumes several ontologies that may be
developed by different stakeholders, sometimes independently, sometimes in a collaborative manner.

As the engineering of networked ontologies becomes more widespread it would be more principled. Hence,
there would emerge subjects who would inherently have different access needs. For instance, a proposer
may suggest a rough schema for a new problem; whereas an engineer may elaborate on it in terms of
adding sub-concepts, editing it, etc. Then a domain expert may only need to annotate the propositions and
assertions made by others in terms of their scientific plausibility. Furthermore, a librarian skilled in validating
schemas may carry out ontology validation and approval, which may imply access in terms of retaining or
deleting entities but not otherwise amending them.

All these aspects are to some extent investigated in work package 2; in particular in its models of collaborative
engineering and workflows. Wokflows and business processes are especially interesting because (i) they
are widespread in the organizational context, and (ii) they are used to control which subject carries out
which action(s) on a shared artifact, and where does s/he pass the outcomes of that action. Intuitively, the
notion of workflows and business processes lends itself almost seamlessly to the need for controlling access.
Workflows and the subject assignment to its component stages imply certain authorities and these, in turn,
imply certain levels and types of access.

Whilst workflow management is primarily the theme for WP2, our work on access rights intends to contribute
to those developments in terms of safeguarding the content of the collaboratively developed ontologies in
terms of existing processes and workflows. On the other hand, the access control must not be so stringent
as to prevent any collaboration among subjects. In all organizations there are formal, process-driven collab-
orating teams, and there are more informal, ad-hoc, bottom-up emerging communities of collaborators that
work together to address an unforeseen problem. The tension between more prescriptive role- and workflow-
driven access on one hand side, and more liberal authority and access delegation is one of the themes that is
sketched in this deliverable. However, it is also the theme that requires further investigation and collaboration
with WP2 to better understand its principles and consequences.

Nevertheless, the collaborative aspects of engineering and networking ontologies are subject to a dedicated
discussion (see content of sections 5.3) from such angles as access granularity, inheritance and delegation
of authorities, revocation of authorities, relationship to groups and organizational roles, etc.

Work package 3: contextual aspects of networked ontologies
With respect to work package 3 and its focus on contextual aspects and context awareness, the role of access
rights and access control is less obvious. Nonetheless, taking a broader perception of what a context might
comprise of, it is possible to argue that access rights are one of many context-determinants. In other words,
access rights define not only what a particular subject is permitted to do with a given ontology, but also what
s/he is permitted to see from that ontology. Obviously, this argument is subject to willing and intending to
deny the authority to read a specific module of a larger ontology to some subjects.

Assuming there are such needs, then the resulting ontology would obviously miss some of the building blocks
that were originally included in it – as it was already mentioned earlier in connection with our positioning to
work package 1, above. While module algebra may easily deal with this issue on the syntactic level, what
are the contextual implications of omitting module M1 from a larger ontology O and only presenting O as
comprising of M2, M3, and ‘the applicable rest’? Are we still talking about the same ontology, only adapted
to the context of a particular subject’s authority? Or is this an entirely new conceptualization of the reality,
which must not be, under any circumstances presented under the same label as the original O?

These issues are not cleared formally yet; nevertheless, they suggest an interesting challenge that has
many parallels with our daily experiences. Take a simple example of using software products: we all get
access to the executables of MS Word (for sake of argument), so the content of folder ../Microsoft
Office/Word/* is what we know as “Microsoft Word” bundle. Make a hypothetical journey to Redmond,
Washington (HQ of Microsoft Corporation and its main development center), and the same bundle includes
sources and content of numerous pictorial add-ons. So, two different groups of subjects see the same bundle

D4.4.1 The role of access rights in ontology customization Page 15 of 70

in two entirely different constellations, each affording certain actions and disallowing others.

Move the same parallel to other software, e.g. operating systems, and we get “Redhat Linux X.y” with
add-ons such as . . . Enterprise edition, . . . Fedora, or . . . Home user. These are essentially access-limited
constellations of the same (in principle) underlying design, codebase and modules. Different users would
get different modules but there are sufficient similarities or mappings for them to perceive the differences as
editions of the same system (in our case, we make a parallel by replacing ‘system’ with ‘ontology’).

Work packages 7 and 8: use case
Having studied use case requirements and participating in numerous design discussions with the use case
partners, there is a certain amount of need for a capacity to manage access to networked ontologies – at
least within the organizations. However, most of these requirements are not well defined, so in places, access
control is seen as an integral part of workflow definition and enforcement. In other places, access control is
seen more as an equivalent of organizational roles being enforced in a collaborative environment.

Moreover, access control in the use case requirements is implicitly confined to restricting editing and publish-
ing authorities. Hence, one of the objectives of this deliverable is to offer use case partners a slightly broader
view on the issue of access management, so that it is possible for them to choose and/or refine which partic-
ular models of access control are indeed most suitable for their particular setting, their application and their
users. Without this additional information, the use case partners make decisions about their requirements
based on incomplete knowledge. And this knowledge, understandably, comprises what they are currently
experiencing with respect to file-based access control. We will argue later that the view “ontology as a file” is
not very useful, especially so with networked and modular ontologies.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 16 of 70 NeOn Integrated Project EU-IST-027595

Chapter 2

Terminology

In this section we start by presenting common and established definitions of several terms that are used
in connection with security management in general and access control in particular. The purpose of this
simplified glossary is twofold: (i) to introduce terminology that is going to be used in the subsequent sections
of this report, and (ii) to differentiate between terms that are often used interchangeably by lay persons.
Where appropriate we also include the source of a compiled definition to establish provenance tracking for
each term.

ABAC Authorization-based access control or sometimes called Capability-based access control is an al-
ternative access control model based on the notion of capabilities. It is discussed in more detail in
section 3.

Access Access is a generic term denoting an agent’s capability to exercise a specific right (invocation) on
a particular resource. Typical access ‘actions’ include reading, writing, modifying, etc. The following
phrases are used in this report with the following intended meanings:

• preventing access ... making sure that an agent cannot access unauthorized resources

• granting access ... for the purposes of collaboration this means allowing other agents full or
selective access to a particular (shared) resource; different access control models use different
approaches to executing the ‘grant’ operation

• limiting access ... ensuring that an agent does not access more that is required for a particular
purpose it was granted access (also known as ‘principle of the least privilege’)

• revoking access ... taking back a previously granted access

Access Control Access control limits the use of some resource. Access may be allowed to specific people,
programs or devices, and these are often explicitly permitted to access or otherwise use a particular
resource. Hence, access control typically includes the specification of a particular access type (e.g.
an agent may be permitted to read a file but not to amend it).

Access control may be physical (e.g. a lock or a hardware key), or most often it may be software-
based (e.g. a common password in the computer systems). Often it is a combination of both. (source:
http://www.rsasecurity.com/glossary)

Access Control List Often used in its abbreviated form – ACL is a table telling the access control system
(e.g. the computer’s operating system), which particular access rights each particular user has on
the individual resources. Each resource has a security attribute that identifies its ACL, which in turn
specifies how different access control entities may access a particular resource (e.g. to read, to write,
or to modify). (source: http://searchsecurity.techtarget.com)

D4.4.1 The role of access rights in ontology customization Page 17 of 70

Access Management In an organization that is concerned (for whatever reasons) with controlling access to
its resources, access management is the total of all the practices, policies, procedures and technical
access control mechanisms that are (or may be) used to appropriately control access to the resources
(or a subset of such resources). (source: http://www.rsasecurity.com/glossary)

Access Right An access right is a permission to access a resource and to amend this resource. An access
right can be the right to read, write, modify or delete a resource. In the subsequent section, access
rights are distinguished from reuse rights.

Authentication Authentication is a process where a person, program, device or any other agent proves
their identity to access a particular resource. The identity may be a simple assertion, usually in a
form of user name, login ID or similarly. Authentication is based upon the notion of proof – i.e. to
authenticate itself an agent usually provides a proof, which is generally known to the system (such as
e.g. a password or a unique token).

Authentication and the provision of the proof are tightly connected with encryption. Encryption is
particularly common in the open and networked environment where the system and the agent are at
different sides of the network. In this case, encryption ensures that the unique proof remains secret
and known only to the agent. (source: http://www.rsasecurity.com/glossary)

Authority Ability of an agent to use or otherwise access a particular resource.

Authorization Authorization is the actual act of granting (or permitting) an agent, program or device to make
use of resources in a secured environment. The act of authorization is often tightly linked to the act of
authentication – an agent usually has to authenticate itself first, and this assigns it a particular (often
pre-determined) access right. The assigned rights represent the authority to take a specific action or
do something with the resource.

The authorization or access permissions are often determined by one of the following ways: policies,
agent’s identity, agent’s roles in the organization, organizational capabilities, or any combinations of
these. (source: http://www.rsasecurity.com/glossary)

Capability In the context of access control, a capability is a communicable and un-forge-able token or key
of a particular authority. In principle it is a reference to the controlled resource, and the reference itself
points to the resources alongside the associated set of access rights. More on this access control
model is in section 3.

Credentials Credentials is a set of information that the agent presents in order to establish its identity to the
access control system. This is a general term, and in practice is used for a wide range of credentials.
(source: http://www.rsasecurity.com/glossary)

DAC Discretionary access control is one of the access control models and it appears in more detail in
section 3.

Digital Rights Management This term occurs most frequently in connection with disseminating information,
multimedia, and/or entertainment in digital form, whereby authors or owners of the information wish to
maintain ownership over their work. The incentive in introducing DRM is e.g. to prevent other agents
from illegally copying, using, or editing a particular multimedia content.

Although the notion of DRM is tightly bound to the entertainment industry (music and movies in par-
ticular), it is the intention of this report to consider the modified use of this notion in the context of
networked ontologies.

Hijacking The term hijacking is used to describe attacks in the access control environment whereby the at-
tacker takes control of a successfully authenticated session between the end point and the system (e.g.
a web browser and the server). Hijacking is often mentioned under specific disguises, such as phish-
ing or spying, where the purpose of the attacker is to collect the information on identification and/or

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 18 of 70 NeOn Integrated Project EU-IST-027595

authentication, which would in turn allow the attacker to carry out authorized activities or transactions
under the victim’s identity. (source: http://www.rsasecurity.com/glossary)

Identity Sometimes also digital identity comprises an identity assertion and the characteristics (called at-
tributes) that can be collected and observed in the access control system. Probably the most typical
kind of identity is the combination of user name (login) and password. Nonetheless, many other types
may be in use (see also authentication). (source: http://www.rsasecurity.com/glossary)

MAC In the context of access control MAC stands for mandatory access control, and it is one of the access
control models. More details on this model are in section 3.

MPEG-21 MPEG-21 is the latest standard of the Moving Pictures Expert Group and provides a general
framework for the electronic production, release and trade of multimedia data. More details on MPEG-
21 are in section 4.1.

Password Also used in its variants pass code, PIN, or pass phrase is one of the simplest forms of authen-
tication. Usually it is coupled with an identifier (user name or login), and in this pair it fulfills the role a
shared secret enabling the authentication of an agent’s identity to the access control system. (source:
http://www.rsasecurity.com/glossary)

PKI PKI or public key infrastructure is a commonly used access control technique relying on so-called asym-
metric cryptography. Its principle is based on matching the private and public keys of any given indi-
vidual agent. The keys themselves are often issued by certification authorities that are trusted by the
parties involved in the transaction.

Profile A user profile describes the properties, preferences, interests or characteristics of a user. More
details on user profiles and its differentiation from access rights are described in section 4.4.

RBAC Role-based access control is one of several access control models. More on this term is included in
section 3.

Reuse Right A reuse right is a permission for a user to deploy a resource for his own aims and in his own
applications. In the subsequent sections, reuse rights are distinguished from access rights.

SAML Security assertion markup language has been developed by the OASIS’ Security Services Technical
Committee. More on this access control approach appears in section 4.6.

SSL SSL or secure sockets layer is a protocol designed specifically for the Web to securely access web-
based applications. Probably the most useful characteristic of this protocol is its tight integration with
HTTP – the basic resource access protocol on the WWW, which means that usually no additional
software is required to be added to the client in order to rely on SSL. Since SSL uses the same
style URI-s as the traditional Web, it is obviously relevant to securing access control in the context of
ontologies, which make use of URI-s to identify their concepts, entitites, etc.

Token A token is an object that facilitates the access control to a particular resource. Traditionally, the term
has been used in connection with hardware authenticators whose role was to create one-off, unique
pass code. Recently, the term has been expanded to include software authenticators as well. In
this case, a token may be a certificate associating an identity to a public key, for example. (source:
http://www.rsasecurity.com/glossary)

In this report we are using this term in its latter meaning – i.e. as a software authenticator.

Trust Trust is usually defined as a relationship between a trustor and a trustee. The trustor is the subject
that trusts the target entity, whereas the trustee is the entity which is trusted. More details on trust and
its differentiation from access rights are described in section 4.3.

D4.4.1 The role of access rights in ontology customization Page 19 of 70

User Lifecycle Management This term covers the process of identity management in an organization over
time. In principle, the purpose of this process is to decide such issues as e.g. what access an agent
needs; how easy should it be for an agent to change or reset its authentication credentials; what levels
of authentication are needed for different resources; etc. These are typically policy issues, and the
chosen technical architecture and tools should typically support these policies and be consistent with
them.

Web Access Management While not being particularly unique, we include this term in our glossary primar-
ily to address the point that ontologies are in fact web-accessible resources. Web access management
is thus a sub-set of access control activities that enables organizations to manage access rights to its
web-based (usually URI-accessible) resource on the intranets, extranets, portals, etc.

This sub-set of access control is particularly relevant to networked environments where more and more
resources are available online, and organizations need to ensure only the qualified users can access
those resources they are entitled (or permitted) to.

XACML XACML stands for eXtensible Access Control Markup Language and is a general-purpose access
control policy language. XACML is described in more detail in section 4.5.

XML Extensible Markup Language is a generic technology established for the purpose of data exchange. As
such it is not an access control technology in its own right, but its features make it a favourite candidate
for expressing access control information if a way, which is readily comprehensible by the machines.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 20 of 70 NeOn Integrated Project EU-IST-027595

Chapter 3

Access Control Models: Overview

In the context of securing access to computer systems, access control is governed by one or several access
control models. Different access control models rely (to a different extent) on such operations as authentica-
tion or authorization to manage user access to the resources that would otherwise be accessible to potentially
unauthorized users. In principle, as shown in figure 3.1, in any access control model there are two primary
access control entities (or just entities):

• subject entities ... subjects are the entities permitted to perform a particular action in the access
control system (usually, known as ‘users’);

• object entities ... objects are those entities that represent resources to which access may be needed
and may need to be controlled

In general, both subjects and objects are seen as generic entities (rather than specifically human users). In
other words, they may include other software entities such as programs, digital resources, but also hardware
devices, etc. In some access control models, the roles of subjects vs. objects are clearly separated; in
others, a software entity may potentially act as both subject and object – we will return to this point later in
the context of discussing capabilities.

Figure 3.1: Basic access control terminology applied to an example situation of subject ‘Alice’ having author-
ity ‘to drive’ a ‘car object’.

As illustrated in Figure 3.1, the access control relies at the very least on a triple comprising elements from
three sets: Σ – a set of subjects (those entities who want to gain access); Ω – a set of objects (those entities
that may be accessed, also known as resources); and I – a set of access actions or invocations. A triple
α = (s, o, i) ∈ Σ × Ω × I represents an access right or authority of subject s to access object o using
action i. One of the common representation of the authority triples is so-called Lampson’s matrix [Lam71]
that is often constructed with elements s forming the matrix rows, elements o forming the matrix columns,
and elements i being expressed as values of particular cells. An example of such a matrix is given later (see
Table 3.1 in section 3.2.2).

D4.4.1 The role of access rights in ontology customization Page 21 of 70

Access control models fall, in principle, into one of two main categories: (i) models based on access control
lists (ACL-s), and (ii) models based on capabilities. Briefly, the key difference between the two categories is
in the way access rights are represented. In the ACL approaches, an access right is expressed by adding
an identity of a particular subject to the list or table associated with the controlled resource (object). Hence,
ACL approaches rely on authentication and identity verification for each individual agent. On the contrary,
capability-based approaches rely on mere references to the controlled resources (objects). In this case, the
emphasis is on authorization and the capability acts as a sufficient token of authority, which may but does
not have to be associated with a specific identity.

Why access control models are important? Naively speaking, organizations want to control who access what
and under which circumstances – this may be for a variety of reasons: information sensitivity, fault reduction
and fault tolerance management, protection of intellectual assets, and many more. More formally, access
control models exist to maintain so-called principle of minimal authority (or minimal privilege). This principle
came into formal existence in 1970-s in the works of Peter J. Denning [Den76], and in principle, it demands
that in any computing environment any software entity (agent) must be able to access only such information
and/or resources that are absolutely necessary to its legitimate purposes. An alternative wording of this
important principle was offered by Saltzer and Schroeder [SS75]:

Every program and every user of the system should operate using the least set of privileges
necessary to complete the job.

While this principle is so instrumental in the state-of-the-art access control models, it has been often criticized
on the grounds of implementing security by means of obscurity. As the quote above suggests, the principle
tries to use secrecy (i.e. keeping certain information hidden to ensure its security. It is not the purpose of this
report to re-explore the controversy of this principle; nevertheless, the approach to control access by actually
hiding certain (chunks of) information is so dominant that it is likely to shape our views on controlling access
to ontological resources, too.

3.1 ACL-based Models

As we have already defined in section 2, the access control list represents a large class of access control
models that rely on a list or a table of authorities (subjects) permitted to access a particular resource being
attached directly to that resource (object). In other words, an ACL is a list of permissions applicable to an
individual object that needs access control. Each item in such a list specifies who or what is permitted to
access the object in question, and what particular operations (or access levels) are allowed to be executed
on that object. At its broadest, each item in the ACL specifies a pair consisting of a subject (or its iden-
tity) and an access operation. A simple example of such an entry may be associated with object called
‘top-ontology.owl’ and read ‘[Alice read, write, delete]’ to tell that the user with identity
‘Alice’ may read, write and delete the respective OWL file.

By the nature of the ACL systems, whenever a user (subject) requests access to perform a particular opera-
tion on the resource (object), the access control system needs to first look into the respective ACL whether
or not it contains an appropriate entry for the subject. In other words, an access operation in the ACL-based
models has to be split into at least two rather independent steps: (i) authenticating the subject, followed by (ii)
executing the requested operation on a given object. While such a two-tier access control is not uncommon,
it may require dedicated methods for handling the authentication separately from accessing the resource
objects.

For example, URI-based protocols such as HTTP support separate authentication via HTTP AUTH extension
or via HTTPS and certificates. The former approach is a standard challenge/response interaction between
the server and client involving exchanging tokens of identity (usually, a user name and respective password).
In the latter case, a secured user’s certificate is presented instead of name and password. However, in
both cases, the issue of authentication implying authority boils down to the inherently state-less nature of

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 22 of 70 NeOn Integrated Project EU-IST-027595

HTTP. Due to HTTP not maintaining any knowledge of a state, the subject needs to re-authenticate at every
request. On the Web, the state-fullness is partially restored by means of cookies and sessions, whereby
a cookie (an object residing on a client side and containing necessary authentication details) is capable of
emulating ‘state-aware’ behaviour. Unfortunately, cookie management is (i) not the most secure affair, and
(ii) not very easy either.

Therefore, if authentication is required by the access control model relying on HTTP (e.g. using HTTP AUTH
and/or SSL certificates), it needs to be taken care of by specialized client and server plug-ins or extensions,
and hence, it often requires additional software engineering and development effort to implement. It often
triggers an interesting domino effect, when solving one issue (in this case, authentication), we introduce
more degrees of freedom in terms of cookie management, cookie expiration, session expiration fallbacks,
etc. Nonetheless, we should return to this shortcoming later after we introduce alternatives to ACL.

Next, we provide a brief overview of the most common ACL-based access control models. Namely, we
consider DAC (Discretionary Access Control model) and MAC (Mandatory Access Control model).

3.1.1 DAC: Discretionary Access Control

An access control system is seen to follow the DAC model if the creator or an owner of the resource object
has full access rights to that object, which includes its right to modify the object’s ACL. In this particular case,
the modification of the object’s ACL is equivalent to granting or revoking access rights to any other subject.

A formal definition of DAC model defines this approach as a means of restricting access to objects based on
the identity of subjects and/or groups to which they belong [Cen85]. The discretionary nature of this model
comes from the fact that a subject with certain access rights is capable of passing that permission onto any
other subject. DAC-based models are usually defined in a clear opposition to other models, in particular
MAC-based ones. The primary factor differentiating these two models and putting them in opposition to each
other is the notion of ‘granting access’. DAC, at least in principle, permits an agent to entirely determine the
access to the resource objects they own or are authors of. This may be sometimes dangerous, as it means
that such an all-powerful agent may (through accident or malice) give access to another agent that would
normally be considered unauthorized. In other words, DAC-based models are probably most open to policy
violations and are most likely to suffer from anarchic, ad-hoc access control.

3.1.2 MAC: Mandatory Access Control

An access control system is said to follow the MAC model if it is capable of enforcing system-wide restrictions
that may override the permissions listed in any particular ACL. Unlike DAC, MAC-based models have a notion
of ‘central authority’ (usually a system administrator) – usually the only subject capable of modifying the ACL-
s for the objects. For these reasons, MAC-based models are sometimes known as non-discretionary access
control approaches. As suggested in section 3.1.1, the most important feature of this model involves denying
agents full control over the access to the resource objects they may create.

Formally, NCSC defines MAC-based model as a means of restricting access to objects based on the sensitiv-
ity of the information contained in the objects (as represented by some label) and on the formal authorization
of all subjects (users, agents) to access that information [Cen85]. Unlike in DAC-based model where the only
access control measure used was subject authentication, MAC introduces the need for a formal authorization
– in this context assignment of access rights by some central authority.

As the individual subjects are denied full control, the access rights are controlled by a system security policy
(set by a system administrator, as we mentioned earlier). A part of the central administrative policy may be
also a right for a specific subject to grant access rights to others. We can see this style of managing access
rights e.g. in the SQL databases, where the system maintains a set of several central tables that are (by
definition) not modifiable by any common user of the database system. As in the database systems, any
subject may only pass on the rights as specified by the system administrator; the subject has not discretion
whatsoever in terms of deciding what shall be passed onto other users of the system.

D4.4.1 The role of access rights in ontology customization Page 23 of 70

The access control procedure relies this time on three rather separate actions: (i) authentication of the
subject in order to establish its identity; (ii) verification of the subject’s level of authorization by matching the
data object properties with the authority (clearance) of the subject; and finally (iii) executing the requested
operation or denying the execution.

3.1.3 RBAC: Role Based Access Control

One of the most common critiques of both DAC- and MAC-based models is that they deal with individual
subjects and their identities. Although these identity-driven models are intuitive and fairly fine-grained, it was
observed in the 1990-s that they are not entirely compatible with what is going on in a typical organization.
Hence, a new, alternative model known as RBAC [SCFY96] was introduced to complement the two existing
approaches briefly reviewed in sections 3.1.1 and 3.1.2.

The main principle of the RBAC model is its origin in the organizational management. Within (supposedly
any) organization, roles are created to carry out various jobs and functions. The permissions to execute a
particular operation or to access a particular resource object are usually bound to these organizational roles
rather than to the specific individuals. In RBAC models, each subject is assigned a particular role (or several
roles, if applicable), and through this role assignment acquires certain access rights and permissions to do
particular actions with particular resource objects [SCFY96].

The main advantage emphasized by the supporters of this model is in the access control management.
Since individual subjects are no longer given permissions directly and can only acquire them through their
roles, the management of individual access rights gets much simpler. In most cases it is as simple as
matching the subject’s identity with an appropriate role, which can be done totally independently from the
actual resource ACL-s. For instance, the file ‘top-ontology.owl’ from an earlier example would contain
the following, generic ACL: ‘[Fishery Experts read, write, add, delete; Validators
read, delete]’. Now, if our user Alice is in a role of a fishery expert and Bob in a role of ontology
validator, Alice would obviously acquire different rights than Bob. However, if Bob is later promoted to a
fishery expert, no changes are needed on the level of the file’s ACL. One merely needs to manage a simple
table [Role: User,...].

RBAC thus differs from the other ACL-based approaches by actually giving authorities to entities that have
meaning in a particular, specific context of the organization. This can be contrasted with the traditional ACL
lists that were often based on the low-level operations with the controlled objects (e.g. read, write, etc.) In
other words, traditional ACL-s allow specifying whether a subject may or may not amend a resource, but they
would be unable to distinguish different purposes or motives for that amendment – as in our example, the file
may be amended by both experts and validators; however, this would be done in a different manner, with a
different purpose, and possibly different tools.

Due to the organic organizational roots, RBAC modes are currently considered as a widely accepted best
practice for managing access rights in organizations. Most of the traditional operating (e.g. Linux, MS Active
Directory, databases (Oracle, PostgreSQL) and ERM (SAP R/3) systems actually implement some form of
RBAC. The RBAC models get away with the need for one (vulnerable) super-user who would maintain the
mandatory access rights and policies, and they also minimize the anarchy of the discretionary models.

Probably the main criticism of RBAC models is that they are often executed on the level of entire organizations
rather than specific applications or at least organizational departments. As the quote from the VP of Gartner
suggests [Sho05], organizations trying to establish roles on the scale of the whole enterprise often end up
with as many roles (if not more) as there are individual employees. This obviously beats the initial argument
of having a more nimble, organizationally meaningful and easy-to-maintain access control model.

Another issue with RBAC models (and to some extent also MAC) concerns the desirability of passing on ac-
cess rights from one subject to another. So far we considered this issue from the organizational perspective,
where it was clearly not desirable to allow any subject decide their own rules for passing on access rights. In
the bureaucratic organization this need to prescribe who can do what and to whom they may pass it, is still
visible. However, there is a growing organizational trend employing more flexible organizational forms that

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 24 of 70 NeOn Integrated Project EU-IST-027595

at the very least reduce the importance of organizational roles, and in the worst case completely bypass the
established role system.

Hence, RBAC may be organizationally sound and very well supported by such organizational practices as
workflow or business process modelling, but it does not lend itself to supporting bottom-up teams of collabo-
rating subjects, where authorities often arise from particular tasks, momentary issues and needs, rather than
from a formal assignment of an individual subject to a particular role.

3.2 Authorization-based Models

An alternative access control model attempts to move completely away from binding an authority to perform
action with subject’s identity (and hence authentication). A frequently used analogy explaining the difference
of authorization- or capability-based model from the ACL-based models runs as follows:

Let us assume a situation Alice owning a car and wanting Bob to clean up the car, both inside
and outside.

ACL-based model : In ACL we would need to attach to Alice’s car a list of designated people
who can manipulate the car, and make sure this list contains a subject called ‘Bob’. However,
this is not sufficient. In addition to including Bob in the car’s ACL, there is a need for ‘a warden’
who would be expecting a person showing an identification (e.g. a driver’s license) associating
‘Bob’ as a name with an individual ‘Bob’. The warden would then need to authenticate Bob by
relying on information printed in his driver’s license, which may be incomplete, may be forged,
may unfamiliar, etc. Finally, having satisfied him- or herself, the warden would unlock the car and
let Bob do his cleaning job.

Capability-based model : In ABAC we don’t need to attach anything to the car. It is fully sufficient
for Alice to point Bob toward her car and give him a token, a key. In this particular case, it is
literally the key to ‘open her car’. In this situation we can imagine that Alice gives Bob a key
to open but not to start and drive her car. Hence, the pointer and the respective token are
sufficiently defining the access situation; no extra authentication is required.

3.2.1 Introduction into capabilities

The origins of the capability-based models are in the works of sociologist Mark Granovetter who tried to
express changes in interpersonal relationships among individuals [Gra73]. In the context of the above il-
lustration with Alice’s car, Granovetter’s introduction starts with Alice sending Bob a message (thick arrow)
whose purpose is to point out her car to Bob. Dashed arrow in figure 3.2 represents the fact that Alice has
access to her own car; the full thin arrows represent the actual ‘references’ (or pointers).

Formally, the term capability was introduced into the security domain by Dennis and Van Horn in 1960-s. In
their paper [DH83]1, they introduced an idea of an access control system where in order to access an object
the subject would need a special token (rather than identity). Included in their definition was the assumption
of the token actually designating an object and simultaneously giving the subject an authority to perform a
specific set of actions on that object. They called the token as ‘capability’.

An important formal difference from the other access control models is that a capability is merely a reference
to the object that needs some access control. In our earlier example, Alice’s maintenance key only represents
the capability to ‘open her car’, e.g. for the purpose of valeting. There may well exist another capability
(another reference and another key) that would represent the rights to ‘open and start up her car’. In other
words, the same object (Alice’s car) has been given two references, each with a different set of access rights.

As with Alice’s keys, capabilities may be delegated and/or copied. For example, Alice may give Bob her
original maintenance key and that would represent the situation where she handed over (or delegated) her

1The paper was published in CACM as a part of special 25th anniversary issue; hence different publication date.

D4.4.1 The role of access rights in ontology customization Page 25 of 70

Figure 3.2: An example situation showing the principle of capability-based access control: Alice pointing out
her car to Bob (thin arrows) and passing a token (thick arrow).

capability to another subject. Alternatively, Alice may have had a new set of keys made precisely for the
purpose of cleaning and valeting her car, and that obviously represents the situation where the capability
was copied to another subject. If we now simply assume that the copied key is an electronic fob, it is trivial
for Alice to revoke her capability handover, or to reprogram her car so that it does not accept Bob’s copy
anymore.

Capabilities are often considered to improve overall system security; primarily because they replace so-called
forgeable references. A forgeable reference (such as a path name in a file system or URI on the Web) only
identifies an object, but does not say anything about which access rights apply to that object and which
agents (subjects) hold those access rights. Hence, any attempt to access the referenced object needs to be
validated (e.g. by a file system or a web server). On the contrary, in the capability-based model, the fact that
a subject possesses a particular capability entitles gives it the rights to use the referenced object in line with
the access privileges specified by the capability. In other words, a capability-based model gives the entities
only those capabilities they may ever need.

3.2.2 Formal differences between ACL and capabilities

At a first glance, the ACL and capability-based seem to look similar, and intuitively seem to represent the
same situation. This is known as the equivalence myth and is largely due to one particular representation
formalism, in which access rights can be expressed – namely, Lampson’s access control matrix [Lam71].
This matrix essentially juxtaposes subjects (e.g. rows) against various objects (e.g. columns); the cells of
the matrix then contain specific access attributes that specify the access action for each subject with respect
to each object.

Hence, ACL models seem to be equivalent to the columns of Lampson’s matrix (access control is applied to
each object); whereas the capability models seem to be equivalent to the rows of the same matrix (access
control applied to subjects). A simple example of an access control matrix applied to our car example is
shown in Table 3.1. As pointed out by [MYS03] the access control matrix is a static and generic depiction of
a situation that requires access control, and as such it is capable of accommodating both ACL and capability-
based models.

As can be seen from the visual depiction (Figure 3.3) of the access control matrix (Table 3.1), with the explicit
representation of references a difference previously hidden in the matrix becomes obvious: referential arrows
point in the opposite directions [MYS03]. According to [MYS03], the minor difference in the arrow direction
has deep conceptual meaning. In particular, any access control system needs designation of its resources.
In ACL, this designation system must be clearly separate from what is depicted in Figure 3.3, since the

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 26 of 70 NeOn Integrated Project EU-IST-027595

Table 3.1: An example situation showing access rights in Lampson’s matrix form.
Objects

Subject Car doors Car engine Car

Alice open start drive
Bob open

Carol start drive

Figure 3.3: Translation and visual depiction of the access control matrix in Table 3.1: arrows pointing to the
left for ACL-s and to the right for capability lists.

authority arrows are point away from the actual resources. So, in ACL models there are separate designators
for resources and authorities, and the subject must (in some way) be able to map one onto another.

In a capability model, the arrows referencing authority point in the right direction; i.e. toward the resources.
Hence, these references (i.e. capabilities) may act in a dual purpose role: to designate a resource and
to provide the access authority. Hence, our subjects need only one designation system, the relationships
between authorities and resources is not dependent on any mapping or redundancy.

Furthermore, the capability model allows for finer-grained designation of the subjects, too. Whereas in ACL
(left half of Figure 3.3) we can only refer to ‘Carol’ or ‘Alice’, the capability model (right half of Figure 3.3)
allows differentiating between ‘Carol – an engine starter’ and ‘Carol – a driver’. Hence subjects are no longer
bound to specific physical entities and identities; to some extent they are capable of expressing a capacity or
a role as a subject.

Two additional conceptual issues and differences between the ACL-based and capability-based models relate
to the notion of access confinement and the closely related notion of access revocation [MYS03]. The former
issue argues that capability models are unable of limiting the propagation (delegation, copying) of authority.
The latter argument puts forward that capability models being able to pass on authorities are unable to revoke
(cancel, remove) access authority.

According to [MYS03], the confinement issue can be resolved by acknowledging that if subject (‘Alice’) wants
to delegate some of its capabilities related to a resource called ‘Carol’ to another subject called ‘Bob’, Alice
herself must have access to both Carol and Bob. In other words, Alice is introducing Bob to something she
already had, she cannot invent a brand new capability to an unknown resource or an unknown subject. To
generalize, authors in [MYS03] argue that no capability transfer (delegation or copying) can introduce a new
connection between any two objects that were not already connected by some (possibly not directed) path in
the relationship graph.

With respect to revoking capabilities, the opponents of capability models argue that only the capability holder
may give it up, but it cannot be taken away from it. While it is true that any subject may maintain all the
capabilities it was ever given, we need to acknowledge that capabilities are merely references. Hence, they
need to be resolved to get hold of the actual object resource. This offers an obvious opportunity for revocation

D4.4.1 The role of access rights in ontology customization Page 27 of 70

– although the subject keeps a capability, this can be easily canceled by the original owner at the resolution
stage. In other words, our subject has a reference, but this is pointing into NULL – ‘nowhere’, so to say. Thus
effectively, the subject’s authority to do anything with the underlying object has been taken away, revoked.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 28 of 70 NeOn Integrated Project EU-IST-027595

Chapter 4

Access Control Technologies and
Approaches

4.1 MPEG-21

As mentioned in [VdWB05], MPEG-21 is quite different from the MPEG standards that preceded it. Whereas
MPEG-1, MPEG-2 and MPEG-4 are audio and video compression standards and MPEG-7 is a framework for
multimedia description, MPEG-21 should fill the gaps in the multimedia delivery chain [VdWB05]. Nowadays,
there exist plenty of producers, salespersons and consumers of multimedia content.

In order to cope with the increasing amount of multimedia data and persons who interact with this data,
the MPEG-21 standard was defined. MPEG-21 provides a general framework for the electronic production,
release and trade of multimedia data [VdWB05]. The framework comprises all actions that can occur from
the producer of the multimedia content to the consumer of this content.

The MPEG-21 standard contains two basic elements, namely the digital item and the user. The digital item
is a well structured digital object, that consists of a certain resource and associated meta data. Each digital
item must have a unique identification. A user is someone, who interacts with the MPEG-21 framework in
a certain way. Multimedia data, i.e. a digital item, can be used by a user in many different ways. He can
create a digital item, change a digital item, sell a digital item, consume a digital item or search for a digital
item. Furthermore, the digital item can be automatically adapted according to the preferences of the user,
the mobile device and the network.

The architecture of the MPEG-21 standard can be split into seven parts, which are listed below:

1. Digital Item Declaration (DID): A digital item is declared using the Digital Item Declaration Language
(DIDL) that offers a consistent and flexible way for defining digital items.

2. Digital Item Identification (DII): The DII provides a mechanism for uniquely identifying digital items and
their components. The identification uses a Uniform Resource Identifier (URI). Thus, any abstract or
physical resource can be identified.

3. Intellectual Property Management and Protection (IPMP): IPMP is deployed for rights management.
User can define which other user is allowed to use which digital item and under which conditions. For
managing these rights, the Rights Expression Language (REL) is used.

4. Rights Expression Language (REL): REL is a language for describing schemes of rights. Rights are
expressed by the REL Data Model. The REL Data Model consists of a principal, to whom the right is
issued, a resource, which is associated with the right, and a condition, under which the right exist. The
declaration of rights must be consistent according to the Rights Data Dictionary (RDD).

5. Rights Data Dictionary (RDD): RDD is a vocabulary of rights that can be used within the REL. The
expression of rights is defined and described in this part. There exist several standard rights which

D4.4.1 The role of access rights in ontology customization Page 29 of 70

allow a user e.g. to read, to play or to sell a digital item. These standard rights can be amended by
more complex rights if needed.

6. Digital Item Adaptation (DIA): This part of the MPEG-21 standard describes the adaptation of the digital
item according to the user preferences, mobile device or network.

7. Reference Software (RS) and File Format (FF): In this part the reference software and the file format
or MPEG-21 is described.

MPEG-21 is a large standard that was especially intended for multimedia content. The MPEG-21 standard
is not well suited for declaring access rights for ontologies because of its large complexity. Some parts
of MPEG-21 like licenses are not needed for ontologies. Thus, it would be more reasonable to develop a
special rights management that is appropriate for ontologies. However, in this new approach several ideas of
MPEG-21 could be exploited.

4.2 User rights in ODESeW

The purpose of reviewing one of the applications developed by the partner(s) in the NeOn consortium at this
point is twofold. First, we want to present it as a technology that actively manages access using one of the
traditional access control models. What is more interesting and our primary motivation for including this short
section in the report, is that the work on ODESeW [CGPLC+03, GPLCdCSFC06] has already devoted some
effort to analyzing the granularity levels at which access control may be exercised in a collaborative environ-
ment. Hence, these operations and the granularity levels may serve as a useful initial input to illustrating the
access treatment in NeOn, generally.

ODESeW is a semantic web framework used for developing semantic web applications. By saying that
ODESeW is a framework, its authors mean that ODESeW sets an architecture, identifies different compo-
nents of the architecture and defines and implements the workflow of the information and the interaction
between components, giving by default an implementation of each component. A developer can implement
these components or extend the previous ones. The architecture framework of ODESeW is based on the
Model/View/Controller (MVC) design paradigm that can be seen in Figure 4.1.

Figure 4.1: ODESeW architecture and basic blocks.

The View component represents the set of different visualizations of the information inside the semantic
web application. The information displayed in these visualizations can be retrieved from the Data Model

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 30 of 70 NeOn Integrated Project EU-IST-027595

component. The Controller component is in charge of receiving all the actions from an application user and
executing them. The type of actions to execute are: navigation actions that lead a user from a visualization to
another and application logic actions that execute specific application actions which are chained to another
navigation action. The Data Model stores and manages all the data inside a web application. It is composed
of the Domain Model of the semantic web application, which uses ontologies as a schema of the information
and the User Profile model that stores and manages the different kinds of users in the application and that is
modelled as an ontology.

All the requests and responses from/to the controller and the visualizations are filtered by a security com-
ponent that restricts the access to specific information of the Data Model. In addition, ODESeW includes a
component that feeds the internal information in the Data Model with information from an external resource
through the External Information Gateway (EIG). The EIG sets a connexion to an external resource by means
of the Communicators, which deal and negotiate with the resource; it annotates the external information ac-
cording to the ontologies in the Data Model through the Mappers; and it manages this annotated information
according to the request received from the Data Model when a user requests information.

4.2.1 Data Model

To understand the security component, it is necessary to know all the different terms in the Data Model used
to represent an ontology and the instances of an ontology. Figure 4.2 shows all the terms of the Data Model
and the relationships between them.

Figure 4.2: Diagram of the terms in the ODESeW Data Model and their mutual relationship reflecting the
granularity of ontological entities.

The terms that represent the schema of the ontology are: Ontology, Concept, Attribute (with two different
types, Instance Attributes and Relation) and Type (with two different types, Concept Type and Basic Type).
And the terms that represent the instances of the ontologies are: Instance Set, Instance and Value (with two
different type, Instance and Literal).

D4.4.1 The role of access rights in ontology customization Page 31 of 70

4.2.2 Security Component

The security component is focused on restricting the access to the ontology instances in the Data Model. It
has been considered that the schema of the ontologies are public; thus, the information that can be restricted
is the instances. Hence, the security component restricts the access to the instance by acceding any of the
terms in the Data Model and restricts the access to a value in an instance by restricting the ternary relation
between Instance, Attribute and Value. The restricted actions of a term or the values in an instance can be:

read : this action allows/denies the access to an instance or to a value of an instance;

write : this action allows/denies the user to modify or create instances;

delete : this action allows/denies the user to delete an instance.

Table 4.1 shows which actions can be applied to a term in the Data Model; it also describes which are the
restriction applied to the instances associated to that term.

Table 4.1: Restrictions applied to different levels distinguished in ODESeW.
Level read write delete Description

ontology x x x read/write/delete any instance in the ontology
concept x x x read/write/delete any direct instance in the concept
attribute x x read/write any value of any instance that has a value of

this attribute
instance x x x read/write/delete the instance

instance set x x x read/write/delete any instance in a set of instances that
describe a specific domain

value x x read/write a value of an instance of a specific attribute

In table 4.1 we describe the objects to which restrictions can be applied and the different actions already
identified (read, write, delete). The restrictions are applied to a characteristic of the user that is obtained
after executing a request on the User profile ontology. Thus, if the ontology contains groups of users or
roles, these can be specified as a description of a user from which a restriction in the Security Model can be
defined.

4.2.3 An implementation of the Security Model

As ODESeW is a framework, it provides a default implementation of the Security Model. This implementation
is a subset of the functionalities of the Security Component that covers the restrictions as listed in Table 4.2.
This table shows that the write/delete actions are assigned to concepts of the ontology while the read/write
actions are assigned to instances and instance attributes. The default characteristic of a user for restricting
the user rights is the user name, though any other user characteristic of the User Ontology can be employed.

Table 4.2: Restrictions implemented in ODESeW.
Level read write delete Description

concept x x read/write/delete any direct instance in the concept
instance x x read/write/delete the instance

value x x read/write a value of an instance of a specific attribute

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 32 of 70 NeOn Integrated Project EU-IST-027595

4.3 Differentiation of trust issues from access rights

According to [GS00], trust is usually defined as a relationship between a trustor and a trustee. The trustor
is the subject that trusts the target entity, whereas the trustee is the entity which is trusted. Trust can be an
important factor for decision making and trust also forms the basis for allowing a trustee to use resources or
services that are owned by the trustor [GS00]. Furthermore, trust has an inverse relationship to risk because
if we trust someone to a high extend, it is very unlikely that we will be betrayed by this person.

Although many research scientists are investigating trust issues, there exist no consensus in the literature
what trust is. Every research group seems to have its own definition for trust. In [GS00] trust is specified
as the firm belief in the competence of an entity to act dependably, securely and reliably within a specified
context. In contrast to that, distrust is regarded as a means of revoking previously agreed trust. Thus, distrust
is necessary to identify entities which are not trusted.

In [GS00] several properties of trust relationships are described. In most cases, trust relationships are not
true in every context. Instead, according to a trust relationship a trustee is only allowed to perform a specific
action or to provide a service within a certain context. Thus, trust is often called context-specific. A trust
relationship is mostly between two entities, i.e. a one-to-one relationship, but there may be one-to-many or
many-to-many trust relationships. Furthermore, a trust relationship does not have to be symmetric, so that
a trustor trusts the trustee, but not vice versa. There has been a large discussion in the literature if trust
relationships are transitive or not. Because of that, some systems exploit the transitivity of trust and some
systems do not use this property. Another important property of a trust relationship is the level of trust that
is associated with it. If one trusts a certain entity more than other entities, a higher trust value is assigned
to this certain entity. Some systems use binary or discrete values, while other systems provide a continuous
range of values for their trust relationships.

In [AG06] trust systems are coarsely classified into two main categories: Credential-based trust systems
and reputation-based trust systems. In credential-based trust systems entities use credentials in order to
establish trust. Therefor, each entity owns information about itself and exchanges this information. The
recursive problem of trusting the credentials is often solved by using a trusted third party. This third party
verifies the exchanged credentials.

Reputation-based trust systems use the reputation of an entity or the history of former transactions in order
to establish trust. Mostly, trust is computed over social networks or across paths of trust, where two entities
may not have direct trust information about each other.

In [ZY04] a conceptual framework for reputation-based trust is defined. The framework is based on the idea
that in a decentralized environment several entities interact with other entities via transactions: A transaction
can be a transfer of money, a download of a website or a ftp-upload. A transaction must be uni-directional,
i.e. there is a service-provider (server) and a service-consumer (client).

In this framework the terms trustworthiness, feedback, opinion and source and destination of trust evaluation
are defined:

• Trustworthiness: An entity’s trustworthiness is an indicator of the quality of the entity’s services. In
most trust models, the domain of trustworthiness is assumed to be [0, 1].

• Feedback: A feedback is a client’s statement about the quality of a service that was provided by a
server in a single transaction. A feedback may be multi-dimensional in general, but in [ZY04] feedback
is assumed to be one-dimensional and it has also the domain [0, 1].

• Opinion: An opinion is a user’s general impression about a server. It is derived from its feedback on all
the transactions that are conducted with the server. The opinion is assumed to be one-dimenional and
from the domain [0, 1]. It is important to distinguish between opinions and trustworthiness.

• Source and destination of trust evaluation: If an entity A is interested in knowing the trustworthiness of
another entity B, then A is the source and B is the destination of a trust evaluation.

D4.4.1 The role of access rights in ontology customization Page 33 of 70

Based on the framework in [ZY04], a classification scheme for reputation-based trust functions is presented
in [ZY04]. The classification scheme has four dimensions:

• Subjective Trust vs. Objective Trust

• Transaction-Based Trust vs. Opinion-Based Trust

• Complete Information vs. Localized Information (= Global Trust vs. Local Trust)

• Rank-Based Trust vs. Threshold-Based Trust

The first dimension distinguishes between subjective trust and objective trust. A entity’s trustworthiness is
often related to the quality of services that it provides to clients. If the quality can be objectively measured,
then an entity’s trustworthiness is called objective trust. Otherwise an entity’s trustworthiness is called sub-
jective trust. If a objective trust function is used, an entity’s trustworthiness is independent of the source of
the trust evaluation. By using a subjective trust function, an entity’s trust may vary greatly depending on the
source of the trust evaluation. In contrast to [ZY04], the current dimension of classification is called global
and local in [ZL04].

The second dimension of the classification scheme differentiates between transaction-based trust and
opinion-based trust. Some trust models rely on the information of individual transactions in order to infer
an entity’s trustworthiness, whereas other trust models only rely on opinions. Unlike opinion-based trust
functions, transaction-based trust functions require more information to infer an entity’s trustworthiness.
Opinion-based trust functions give each entity more freedom to form their own opinions, which causes that
opinion-based trust functions may be easily influenced by malicious users.

Trust functions can also be classified according to the amount of information that is used for the trust eval-
uation. If every entity has access to all transactions or opinions, the trust function is called a global trust
function. The trust function owns the complete information. If the trust function is only applied to a subgraph
of the complete trust graph (maybe to its neighbors), the trust function is called a local or localized trust
function. The local trust function uses only localized information. For a local trust function, each entity has
access to different information. Because of that, a local trust function is also subjective [ZL04].

A last dimension of the classification scheme deals with the trust decision. For some trust functions, it is
appropriate to define a threshold of trustworthiness in order to make trust decisions. These functions are
called threshold-based. Other trust functions uses the relative ranking of an entity in order to make trust
decisions. Thereby, an entity’s calculated trustworthiness is compared to other entities. One receives a
relative ranking of an entity.

Although trust issues are somehow related to rights, they are not the same. The difference between trust
issues and rights can be clarified by the following example. For instance, even if I trust another person, I do
not have to give him the right to access my data. I would only give this person access to my data if he wants
to pay for this right. Nevertheless, trust can be a precondition for a certain right. For instance, I only give
someone access to my data if he is trusted by me and if he pays for this service. However, nowadays most
rights management systems are not influenced by trust issues.

4.4 Differentiation of profiling and preferences from access rights

In [DDG+06] a user profile is defined as a way to describe some user properties, preferences or character-
istics. By describing these user properties and characteristics, one defines a context of a user, in which he
acts. Such a context may be the role of a user, the domain of interest or the current task [DDG+06]. If a user
profile is created, the system, with which the user is working, can easily be adapted according to the needs
of the user. For instance, the GUI can be adjusted for the task of the user, so that some unnecessary buttons
disappear.

A user profile can be constructed by different methods. In [DDG+06] three classes of methods for profile
acquisition and construction are mentioned, namely manual, semi-automatic and automatic methods.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 34 of 70 NeOn Integrated Project EU-IST-027595

In contrast to the concrete profile of a single user, one can also define a profile of a stereotypical, abstract
user. An abstract user would correspond to any member of a user group in a particular situation. After
specifying the profile of abstract users, one is able to compute the similarity between a concrete user profile
and a profile of a stereotypical, abstract user. Nevertheless, one can also compute the similarity between
two concrete user profiles in order to investigate if two users may have similar properties or interests.

It is very important to distinguish user profiles from user rights because they have a totally different meaning.
Nevertheless, sometimes they seem to be very similar, but they are not. A user profile represents the
properties, preferences, interests and characteristics of a user. In many cases, the user profile is created
by the user himself, e.g. by filling a questionnaire. Furthermore, the user often has the ability to change
his user profile, if, for instance, his interests or tasks have totally changed. In contrast to user profiles, user
rights express which resource a user can access and what kind of action he is allowed to do on this resource.
Normally, user rights cannot be changed by the user himself. An administrator specifies the access rights for
each user and only he is allowed to change them. Additionally, user rights are stricter than user profiles. If a
user profile is not complete, the user is still able to access content that does not fit to his user profile. A user
profile provides only a weak restriction. Instead, user rights are strong restrictions. If a user rights does not
allow a user to access a resource, he cannot avoid this prohibition.

4.5 XACML: language for access control markup

XACML (eXtensible Access Control Markup Language) is a general-purpose access control policy language
that was published by OASIS (Organization for the Advancement Of Structured Information Standards)
[Maz04]. The policy language can be used in order to describe general access control requirements. In
addition to the policy language, XACML owns an access control decision request/response language, which
is also based on XML. The request/response language can form a query in order to ask whether a certain
action should be allowed or not. After the request message is received, a response message is created that
includes an answer if this action is allowed or not.

Before one can check if a client is allowed to access a resource, an authentication and an authoriza-
tion of the client must be performed. Therefor, one often deploys the SAML standard in combination with
XACML [Dem07]. SAML is detailed in section 4.6. If an incoming request is received by a server, the server
first checks the authentication and the authorization of the client by using SAML. Afterwards, the access
rights of the resource are determined by evaluating the according XACML file.

The workflow of an XACML request can be explained by describing the components that are involved in the
evaluation of such a request. These components can be either contained in a single application or distributed
across several severs.

• Policy Administration Point (PAP): The PAP is the component that creates a policy or a policy set. This
must have been done as a first step.

• Policy Decision Point (PDP): This component makes the access decision based on the existing policies.

• Policy Enforcement Point (PEP): The PEP is the only component that is available from outside. It
receives the client’s request and allows or denies the access to the resource.

• Policy Information Point (PIP): This component delivers all attributes, which are necessary in order to
evaluate a client’s request.

The typical starting point is that a client wants to take some action on a resource. In the past an administrator
has executed the PAP in order to define the access rights for this resource. The client sends a request to the
PEP in order to ask if it can access a certain resource. The PEP itself sends a request to the PIP that will
collect information about the requester, the desired resource, the action and the request itself. Afterwards,
this information is sent back to the PEP, which forwards it to the PDP. The PDP analyzes the request and the

D4.4.1 The role of access rights in ontology customization Page 35 of 70

appropriate policies in order to make a decision. Thus, the PDP allows or denies that the client can perform
a certain action on the desired resource. The decision is forwarded to the PEP, which sends it as a response
message to the requester.

An XACML document contains one policy or a set of policies that are evaluated by the PDP. The policies
can be included in the XACML document or they can be references to policies which are stored in remote
locations. In some cases, several policies are available for one resource. Then, a combination algorithm must
be executed for the policies that merges the single decisions of each policy to final decision of all policies.
Each policy stands for a single access control policy and is expressed by a set of rules, which contain a
boolean function as their core. In order to combine different rules that are included in a policy, a combination
algorithm for rules must be deployed.

A further important question is how the PDP finds the appropriate policy or rule that must be evaluated.
Therefor, so-called targets are deployed. A target is a set of conditions for the requester, the desired resource
and the action that the requester wants to perform on the resource. Before the PDP can decide if a request
is allowed or not, it must search for the appropriate policy or rule. The PDP compares the properties of the
request with the targets of the policies and, thus, it knows which policies are appropriate. The appropriate
policies are evaluated by finding their appropriate rules and checking them.

Because of its platform independence and its flexibility, XAMCL can be used in very different applications.
However, XAMCL does not contain any possibilities in order to manage licenses. If licenses are needed,
one must use other languages like the eXtensible Rights Markup Language (XRML) or MPEG-21. Because
of its architecture, XACML is very appropriate for scenarios like the scenario of NeOn, in which the data is
distributed across a large network. The XACML policies do not have to be stored on a single place. They
can be distributed across several servers and can include policies that are only references to policies in a
remote location. Furthermore, the architecture of a XACML system can be widely distributed across many
different servers. Thus, it is possible that its components (PAP, PIP, PEP and PDP) are run by different service
providers.

4.6 SAML: language for security markup

SAML (Security Assertion Markup Language) is an XML-based standard for exchanging authentication and
authorization data between identity providers and service providers. This standard was also published by
OASIS [Maz04]. As more and more applications are becoming integrated systems that deploy distributed
web services, it is necessary to have such a standard for sharing security information.

SAML standardizes the full range of functions that are related to receiving, transmitting and sharing security
information. It provides both, the format for specifying user security information and the formats that can be
used to form requests and responses. Furthermore, it defines how these request and response message are
transmitted using protocols such as SOAP and how the user security information can be translated in other
widely used formats and technologies.

It is very important to mention that in every exchange of security information three different parties must be
included:

• Subject: The subject is the user whose the security information is provided.

• Relying party: The relying party makes use of the security information because depending on the
security information of the subject it decides whether a request is allowed or not. The relying party is
also called the service provider.

• Asserting party: The asserting party provides the security information for the service provider. The
asserting party is also called the identity provider.

Naturally, there exist several subjects and several service providers. However, it is also possible that multiple
identity providers exist and maybe even work together.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 36 of 70 NeOn Integrated Project EU-IST-027595

In SAML, a so-called assertion carries the information. The assertion contains header information, the name
of the subject and one or more so-called statements. The header contains the name of the identity provider
and other information such as the expiration date.

There are at least three important use cases for which SAML has especially been developed:

• Single Sign On (SSO)

• Distributed Transactions

• Authorization Services

Single Sign On (SSO) means that a user, who logged on a certain service provider, does not have to log on
another service provider because the security information is shared between the different service providers.
The login information which the first service provider received is forwarded to other service providers, so that
the same user does not have to log on again. In the scenario of Distributed Transactions, a certain task
cannot be fulfilled by a single service provider. Thus, other service providers are needed. For instance, in
order to handle an order in an e-commerce shop, a credit card company and a transport company must be
involved. These companies also need the user’s identity information and, thus, is can be easily shared by
using SAML. In the use case of Authorization Services, SAML can be deployed if the authorization process
is distributed across different servers.

D4.4.1 The role of access rights in ontology customization Page 37 of 70

Chapter 5

Considerations for Treating Access Rights
in NeOn

In sections 2 through 4 we introduced broader access control models and technological solutions currently
existing in practice. It can be noted that although most of the access control models use a generic terminology
and talk about objects or resources, in practice, the notion of resource tends to be generally synonymous
with a file (document, image, executable,...) or a data record (database table, view form,...) Furthermore, as
we mentioned earlier, many access models address the networked environment in the sense that multiple
subjects may wish to access the same object. However, they tend to simplify the matter of accessing for the
purpose of collaborating.

There is an obvious recognition in the community that access control is an integral part of any information
sharing and collaborative system [SD92]. However, a large part of the access control in the collaborative
setting is based on limiting editing facilities. Although, there are also several pointers arguing that in collab-
orative setting it becomes increasingly important to address the issue of object granularity. In other words,
granularity applies not only to distinguishing a variety of access operations (invocations) of a particular object
or a variety of subject roles, but also the object themselves may be perceived on different levels of detail.

We now take a list of typical requirements noted in connection with supporting collaborative work in an open,
networked environment, and discuss each with respect to how the existing access models might cope with
these requirements. Our motivation here is to introduce the notion of controlling access to ontologies as
objects exhibiting specific features and limitations on their users. In particular, we would like to touch the
following themes in more detail (partially based on analyses in [SD92, SCFY96]:

1. Access rights models in a role of collaboration enabler – the core of this issue is that a subject should
be able to grant a selective access to any particular object resource to other collaborating subjects;
then revoke this access and maintain it on an appropriate level of granularity;

2. Access control models in a potentially distributed environment – the rationale for this issue stems from
the fact that it is usually easier to manage access to a centralized repository of object resources; how-
ever, an access control model supporting ontologies shall be able to cope with distributed information
and not necessarily enforce a central control;

3. Access control models as accountability mechanisms – in addition to managing the actual access
to the shared object resources there are other issues the users of an information system may be
interested in. For instance in case of ontologies, two features that often have significant role in using
and reusing the ontological commitments include the provenance and trust in the shared resource. This
is particularly important problem to be addressed, because ontologies act as referential conceptual
frameworks, models that facilitate collaborative work. Hence, such issues as audit trails, logs and
traceability become more important (e.g. to ensure conceptual soundness of the resources, as well as
to detect or re-create access violations);

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 38 of 70 NeOn Integrated Project EU-IST-027595

4. Access rights control not disrupting the functionality of common tools – the core rationale for including
this issue into our discussion of access rights to ontologies relates to the nature of ontologies; they are
primarily referential frameworks that may be used in a wide range of tools – hence, it is desirable to
achieve managed access without necessarily demanding alterations to the existing tools

5.1 Distribution issues: designating ontologies and authorities

Although the above list of issues starts with the collaborative aspects, we want to touch first on other as-
pects, which have an impact on all other themes; including collaboration, accountability and legacy. There-
fore, before going more in depth with the collaborative aspects, we start by discussing the notion of des-
ignating ontologies in a distributed, Web-like environment. The issue of designation is somewhat complex
in the case of ontologies. Probably the key factor contributing to the designation issue emerging for on-
tologies on the Web is the use of the notion ‘URI’ and the close relationship of URI to URL. While URI
is a universal identifier of a resource, URL is supposed to be a universal identifier of the resource loca-
tion. In many cases (e.g. KMi’s home page), the URL and URI may be considered as equal (i.e. my
home page could be identified as http://kmi.open.ac.uk/index.cfm and its location is given by
http://kmi.open.ac.uk/index.cfm, too). This principle can be labelled as “location implies iden-
tification/designation”. However, thanks to web server capabilities, we can as well identify our web page
sufficiently as http://kmi.open.ac.uk, which is interpreted by our web server in terms of a specific
location.

A similar proposal has been made for OWL (Web Ontology Language, v1.0) [SWM04]. Accordingly, ontolo-
gies may be identified in several ways, where each presents some kind of fallback in case the more preferred
identification is not present. First, OWL provides an attribute to define the ontology as follows (we re-use a
simple example of wine ontology for this purpose2):

<rdf:RDF
xmlns = "http://w3.org/foo/wine#"
... >

<owl:Ontology rdf:about="http://w3.org/foo/wine">
...

</owl:Ontology>
</rdf:RDF> }

If the value of attribute rdf:about in the scope of <Ontology/> tag is non-empty, then it represents
ontological identifier for that particular ontology. In case the value of this attribute is missing or empty, the
guidelines suggest to use the declared base namespace instead; i.e. the value declared as follows:

<rdf:RDF
xmlns = "http://w3.org/foo/wine#"
xml:base = "http://w3.org/foo/wine#"
... >

<owl:Ontology rdf:about="">
...

</owl:Ontology>
</rdf:RDF> }

Third, if none of the above methods are provided (and there are ontologies that do not contain xml:base
or rdf:about), the fallback is to identify the ontology by its URL. In our case this would become

2This ontology can be found at the following URL: http://w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf

D4.4.1 The role of access rights in ontology customization Page 39 of 70

http://w3.org/TR/2004/REC-owl-guide-20040210/wine.rdf. This situation is fairly com-
mon when ontology authors omit the xml:base and only declare default namespace; i.e. xmlns =
"http://foo.org/onto". As a result of this fairly benevolent treatment we can often find on the Web
ontologies that deliberately or accidentally use the same namespace, but are physically different and reside
at physically different URL-s.

A similar reasoning with respect to designations can be made for ontology modules or partitions. With con-
cepts and instances, the situation is somewhat clearer as the rdf:about attribute becomes compulsory.
Nevertheless, we can generalize that in case of ontologies we work the other way round compared to com-
mon web pages – the concepts, instances, properties, ontologies are given identifiers (URI-s) first, whereas
access may apply to a particular location (URL) of these entities. Why does this matter? Consider different
situations one may make use of ontologies in the Web environment:

Situation 1: User Alice wants to annotate her document using a set of concepts she was given. For Alice’s
purposes each concept is sufficiently defined by its URI (e.g http://foo.org/onto#Manager),
and Alice merely needs to use this URI to annotate the occurrences and instances in her document.
In this situation Alice is clearly not concerned with any access rights issues concerning ontologies or
their modules.

Situation 2: At some point Alice becomes curious about the broader conceptual relationships of concept
http://foo.org/onto#Manager she is using, and wants to see the ontology or a module defin-
ing this entity. She faces an issue because the known URI does not uniquely imply which ontology or
module she should request. To resolve the issue she may want to instruct an ontology search engine
to find all applicable ontology containing entity http://foo.org/onto#Manager or a variant
thereof.

Here Alice becomes concerned with the access control, because what she gets from the search engine
are identifiers of only those ontologies that are accessible to her (or to the general public), and there
is no guarantee that any of these ‘accessible ontologies’ are actually the right ones. Furthermore,
we showed elsewhere [dSD+07] that there are fairly significant numbers of semantically duplicate
ontologies on the Web – i.e. ontologies with presumably the same URI but located at different URL-s.
This makes Alice’s choice that much harder, because she does not know from which location (URL)
she should get the ontology with a given URI.

Situation 3: Alternatively, we can imagine a different situation – one where Alice knows the URL location
of the ontology (or module) that she needs to access in order to appreciate the conceptualization of
concept http://foo.org/onto#Manager. She may be interested in learning about the identifier
(URI) of this ontology, but in principle, her knowledge of the physically accessible reference is enough
to access the ontology in question.

Hence, Alice will use her access reference expressed in a form of, say,
https://my.repository.org/onto-ab7-19er to sufficiently designate both, her au-
thority to access a particular ontology resource and the identification of that resource.

To generalize the situations hypothesized above, we should point to the need of distinguishing the onto-
logical identifiers (URI-s) of concepts, modules, ontologies, etc. on the one hand, and handlers facilitating
access to those concepts, modules, ontologies, etc. If we adopt the terminology of capabilities introduced
in section 3.2.1, then we can argue that ontological identifiers need to stay the same for every user in order
to facilitate one of the primary purposes of ontologies: sharing of conceptual meanings. This requirement
of shared meanings makes URI-s inappropriate to be expressed as unique capabilities denoting potentially
unique access authorities with respect to specific concepts, modules, or ontologies.

Hence, in a distributed environment, one seems to need a shared URI to facilitate shared meanings of
objects, as well as a unique capability, reference to facilitate controlled access to those objects. Thus, the
difference between situations 2 and 3 shown above occurs on the level of capability to share vs. capability to

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 40 of 70 NeOn Integrated Project EU-IST-027595

designate authority. By replacing the forgeable URL from situation 3 with a unique capability reference, Alice
is sufficiently designating which ontology she wants to work with and what she intends to do with it (e.g. to
reason with it or to edit it). In situation 2 she does not own any specific capability, so she needs to refer to
a third party (a search engine, for example), which may be able to use “default capability” to offer potentially
applicable concepts, modules, or ontologies.

We can re-phrase the issues also in terms of URI-s serving as sufficient conceptual identifiers of certain
ontological objects but entirely insufficient to designate authorities to access-controlled objects (resources).
The obvious problem is that URI-s and capability references may look very similarly, and indeed follow the
same underlying syntax. One potential way of differentiating between concept URI-s and capability URI-s is
to link the two using some form of ontology metadata facility [HSH+05], as illustrate in Table 5.1.

Table 5.1: Three situations showing a generic ontology identifier, ontology identifier accompanies by a capa-
bility URI, and pure capability URI.

Designation case Ontology URI Capability URI

sufficient ontology desig-
nation but insufficient ac-
cess designation

http://foo.org/ontology

sufficient access and on-
tology designation

http://foo.org/ontology https://repo.org/ab3-1xy

sufficient access and on-
tology designation

https://repo.org/ab3-1xy

5.2 Refinement of the authorization model

In this section we describe the approaches for the refinement of the authorization model, which were mainly
developed in the database community. Approaches like [KE01] introduce and distinguish different kinds of
access rights. In [KE01] three dimensions of access rights are identified. These dimensions can be used in
order to classify current rights management systems. However, they will also be (at least partially) appropriate
for our approach in which a rights management for ontologies and parts of ontologies should be developed:

• Explicit authorization vs. implicit authorization

• Positive authorization vs. negative authorization

• Weak authorization vs. strong authorization

In a very elementary authorization system only explicit authorization is deployed. Explicit authorization means
that a subject is only allowed to access an object (resource), if there is an explicit access right which allows
this subject to access the desired object. If only explicit authorization is used and there exist a lot of objects,
a large amount of access rights will emerge. Additionally, the maintenance of these access rules will be
exacerbated.

Because of that, explicit authorization should be combined with implicit authorization. Implicit authorization
requires that all subjects, objects or executable actions on these objects are ordered in some kind of hierar-
chy. There has to be a hierarchy of the subjects which, for instance, asserts that an administrator is on an
upper level in the hierarchy than a normal user and, thus, that an administrator has more rights. Similarly,
there has to be a hierarchy of the objects (e.g. the whole ontology is on an upper level than a single concept
or single instance) and of the actions (e.g. the action “write” is on an upper level than the action “read”).
After defining the hierarchy of subjects, objects and actions, access rights can be inherited according to the
hierarchy if implicit authorization is used. The inherited access rights are also called implicit rights. More
details about the inheritance of access rights can be found in sub-section 5.3.3.

D4.4.1 The role of access rights in ontology customization Page 41 of 70

Usually, positive authorization is used in rights management systems. While a positive access right asserts
that a subject is allowed to perform an action on a certain object, a negative access right states that a subject
must not perform an action on a certain object. Both types of authorization are reasonable and can be
combined. Certainly, positive and negative access rights can be either explicit or implicit and, thus, positive
and negative access rights may be inherited.

Finally, one can distinguish between weak and strong authorization. Weak authorization can be used for
specifying default access rights. For instance, as a default approach the whole group may be allowed to
edit or otherwise change a certain resource. Thus, a user’s membership in a group is seen as sufficient
for applying a particular authority; hence, the rights arising from this approach are defined as weak access
rights. If only one person in a given group is not allowed to change the resource in question, a strong access
right needs to be used to forbid that user to change the resource. In this case, a weak(er) access right can
be outvoted or overridden by a strong(er) access right.

In [KE01] an algorithm is presented, which proves the authorization for the refined authorization model. In
this algorithm an access right is expressed by the triple (s, o, a). Thereby, s stands for the subject, o for the
object and a for the desired action on the object o. Furthermore, round brackets as in (s, o, a) are used for
strong access rights and angled brackets as in [s, o, a] for weak access rights. A prohibition is expressed by
the symbol of negation in front of an action identifier (i.e. ¬a).

• If there exists an explicit or implicit strong access right (s, o, a), the action a related to the object o is
considered to be allowed for subject s;

• If an explicit or implicit strong negative access right (s, o,¬a) exists, the action a related to the object
o is considered to be forbidden for subject s;

• Else:

– If an explicit or implicit weak access right [s, o, a] exists, the action a related to the object o is
considered as allowed for subject s;

– If an explicit or implicit weak negative access right [s, o,¬a] exists, the action a on object o is
considered to be forbidden for subject s .

5.3 Collaboration issues: groups, granularity, inheritance

In this section we start with the most common aspects related to collaborative nature of ontologies. In
particular, we consider the granularity of access control to suit ontologies, and the inheritance between
entities on different levels of granularity. We also touch the relationship of group roles and tasks to access
models applicable to ontologies.

5.3.1 Granularity of access control for ontologies

The notion of access control granularity is not novel for ontologies. It has been observed in the past; mainly in
the context of collaborating on structured and object-oriented resources. For example, authors in [SD92] refer
to an example of a multi-author programming support, where several programmers may work on different
portions of the shared code. This is a useful analogy that can be taken on also for the purpose of ontologies.

Any software code can be considered at two levels: (i) serialization – essentially a text comprising vari-
ous symbols and blank spaces, and (ii) a set of objects – essentially a bundle of objects, structures and
classes encapsulating methods, functions, etc. On the level of serialization one recognizes modules on a
fairly coarse-grained level; typically a class with all its declarations, methods and variables would form one
serialization module. On the object level, one can distinguish a hierarchical structure comprising objects ⊃
methods ⊃ constructors, accessors, operators, etc., then property definitions may form a separate module
for the purpose of defining code granularity, and so on.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 42 of 70 NeOn Integrated Project EU-IST-027595

Strictly speaking objects in programming as mentioned in the above analogy are conceptually different from
ontologies and ontological objects in such points as e.g. ontologies allowing for inference and reasoning
(while object-oriented models do not possess this capability), or the different treatment of properties in on-
tologies and object-oriented programming. However, one can easily recognize an analogy between ontology
as a network of entity definitions and software code as an object structure also encapsulating various entity
definitions.

Hence, for the purpose of access control, a shared software code needs to be viewed on the object level.
In case of ontologies, the analogous view on ontologies would be based on their semantics and to some
extent also pragmatics [Sow00]. Within ontology semantics we may distinguish such entities as classes,
properties or instances based on some relationship of the formal entities to the world they model. Within
ontology pragmatics we may lump various formal entities together into clusters or modules of different sizes
and complexity, and this lumping would be based on how particular agents use the ontology, how they relate
entities one to another in different situations.

In other words, in case of ontologies it makes sense to move beyond tying access control to the ontology
serializations (i.e. files), as these have some serious shortcomings – e.g. some issues with respect to
distinguishing mere syntactic alterations from semantic alterations have been raised in the context of ontology
version management [VG06]. Hence, with ontologies it may be possible to attempt controlling access to
the fundamental semantic primitives (classes, properties or instances), which would correspond to sharing
software code on the level of methods, for instance.

In addition to controlling access to the individual semantic entities, one may also consider sets of this entities
– each identifiable as an ‘object’ for the purposes of access control. There are several approaches to parti-
tioning [MMAU03, SK04] or modularizing [NM04, dSM06] larger ontologies into smaller chunks, and the work
on manipulating ontology modules is also subject of research in NeOn as a part of WP1, for example. While
there are some issues still outstanding that have an impact on the possibility to control access – e.g. unique
designation of a module is a prerequisite for access control 3 – setting access control on the level of modules
seems to be highly desirable. The desirability is mainly in the pragmatic sense: ontology modules enable
more focused knowledge selection and subsequently re-use [dSM06] in a much wider range of real-world
situations (especially if compared to full-scale, large ontologies).

So, what are the implications in allowing setting access authorities on finer-grained objects than full ontolo-
gies? Consider an ontology with URI http://foo.org/onto that has been designed by Alice. Al-
ice designed the ontology as comprising two distinct modules, say http://foo.org/onto/mod1 and
http://foo.org/onto/mod24. Alice defined the ontology as basically importing the two modules:

<rdf:RDF
xmlns = "http://foo.org/onto#"
... >

<owl:Ontology rdf:about="http://foo.org/onto">
<owl:imports rdf:resource="http://foo.org/onto/mod1" />
<owl:imports rdf:resource="http://foo.org/onto/mod2" />

...
</owl:Ontology>
</rdf:RDF> }

Assume Alice works together with Bob, and the following access controls apply to the ontology and modules
in question:

In other words, Bob is not supposed to access module http://.../mod2, which in the strict sense
means that he is not even supposed to know about the existence of any such module. In standard ACL-based

3This has been discussed earlier in section 3.2.2, as well as in the section 5.1.
4For sake of brevity in the tables, we would shorten the URI-s into form http://. . . /mod2

D4.4.1 The role of access rights in ontology customization Page 43 of 70

Table 5.2: An example of access rights in a matrix form.
Objects

Subject http://.../onto http://.../mod1 http://.../mod2

Alice read read read
Bob read read

models, both users would invoke the above modules using a potentially forgeable and insecure location (e.g.
URL or a path in a file system). Since Bob knows the location or path for module 1, he can easily attempt to
guess where module 2 might reside.

In order to prevent this, we may rely on capabilities (as introduced in section 3.2). In a capability-based
access control model, both Alice and Bob are given capabilities (references) that would cover both resource
identification and their respective authority, for example, as follows:

Table 5.3: An example of access capabilities corresponding to the matrix in Table 5.2.
Objects

Subject http://.../onto http://.../mod1 http://.../mod2

Alice https://repo.org/ab1-7dt https://repo.org/bc3-5rt https://repo.org/bc3-7qs
Bob https://repo.org/ab1-4dj https://repo.org/bc3-2xw

First, notice that Bob does not possess any capability to access module 2. Thus, Bob is permitted to ac-
cess either module 1 (on its own) or the ontology known as http://.../onto. Taking advantage of the
modular nature of Alice’s ontology, if Bob uses his capability https://repo.org/bc3-2xw, he simply
obtains the module with all its appropriate concepts, properties, restrictions, etc., as defined using a particu-
lar modularization technique. If however, Bob decides to load the complete ontology, he would need to invoke
his another capability: https://repo.org/ab1-4dj. Since this capability instructs the ontology repos-
itory/registry to serialize the resource pointed at by this capability, a new serialization is made specifically for
Bob that may look as follows:

<rdf:RDF
xmlns = "http://foo.org/onto#"
... >

<owl:Ontology rdf:about="http://foo.org/onto">
<owl:imports rdf:resource="http://foo.org/onto/mod1" />

...
</owl:Ontology>
</rdf:RDF> }

In other words, already at the stage of loading (or retrieving) the ontology, Bob received only what he
was given access authority to. Bob thus sees ontology known under URI http://.../onto as con-
sisting of only those concepts, instances, etc. that could be lumped into an object known under URI
http://.../mod1.

The reasons for Alice denying Bob access to module 2 may be several. Assume that Alice was motivated
by the fact that module 2 is experimental, under construction, and she does not want to share it with Bob at
this early stage. Obviously, at some point in the future, Alice may want to engage Bob in a role of ontology
syntax checker, which means she would need to grant him some access to those parts of ontology that were
previously inaccessible to him.

In the capability-based model this can be handled by Alice instructing the repository to create a copy or alias
to her access authority with respect to http://.../mod2. In response Alice obtains capability reference

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 44 of 70 NeOn Integrated Project EU-IST-027595

https://repo.org/yc9-0cg pointing toward resource http://.../mod2, which enables the ref-
erence holder access module 2. Now Alice lets Bob know the new capability; the matrix from Table 5.3 gets
updated, and as a result, when Bob next time requests to load the ontology http://.../onto, he would
already obtain the same view as Alice.

5.3.2 Groups, tasks and roles vs. collaborative aspects of ontologies

The next issue we would like to address is the potential relationship between so-called authority confinement
and organizational aspects of access control management (e.g. workflows, business processes, tasks, roles,
and similarly). As we suggested earlier (for instance, in sections 3.1.1 and 3.1.3), there is quite some
following of the idea to tie access control to the broader organizational management, in particular to the
notion of teams, roles and/or tasks. We showed that, in principle, any of the access control models are
capable of catering for the need to manage access not only for the individual subjects but also for abstract
subjects like groups.

We also noted that there are some shortcomings in the manner the ACL models treat groups. For instance,
in the case of DAC (section 3.1.1) as implemented in standard Unix/Linux operating systems, one can ob-
viously distinguish between ‘an individual subject’ (a user) and ‘a group’; however, this is a fairly shallow
treatment that does not allow us to express more usual and complex situations, such as “grant to access to
all members of group Researchers, with the exception of John”. Essentially, the groups in this sense cannot
be nested or hierarchically arranged; there is usually only one-tier management of group entities, which is
often inadequate.

In the RBAC models (section 3.1.3) the notion of groups or roles is much better elaborated, but the systems
tend to be fairly complex to manage – especially, if one needs to go into fine-grained role distinctions or roles
that are conditioned by some factor (e.g. a phase in the workflow or business process). Nonetheless, the
ACL models (and in particular, MAC and RBAC) are very effective with respect to the confinement of the
authority. The issue of authority confinement relates to the requirement that authorities to access a particular
object are only referable to specific subjects [dCdVPS03]. This requirement is usually satisfied in MAC and
RBAC type of access control models by definition: individual subjects cannot obtain authorities from other
subjects unless they are permitted by a super-user or already possess those authorities as a part of their
role, for example.

However, a significant downside is the fact that such a rigorously enforced confinement may stifle a bottom-up
driven team collaboration. Hence, we should point to a revised version of the confinement requirement, and
argue that an access model needs to first, support and facilitate collaboration among individual subjects, and
only second, impose restrictions on scope and confinement. The rationale for this is simple: if subjects are
too confined they tend to find ways around to share the restricted objects anyway, and this only introduces
security holes into the system.

Hence, the approach championed by ABAC and capability-based models (section 3.2) seems to suit better
this revised requirement. However, a frequent criticism is that if we allow capability/authority sharing, we
may face the problem with confining it only to certain subjects. This uncontrolled propagation of authority is
often pointed out as the key weakness of capability-based models. The reality, in fact, is less problematic
due to a simple feature of ABAC models: Whereas ACL strictly distinguishes between subjects and objects,
ABAC is more flexible in this respect. In other words, in ACL models, subjects can only hold authorities
over objects, one cannot hold authority over another subject. In capability-based models, subject are in
some cases treated as objects – i.e. a subject may possess a capability to access (read, communicate or
approach) another subject. In our example with Alice’s car and Bob, the fact that Alice knows Bob and gives
him the key can be expressed as Alice holding a capability to access (= personally give her keys to) Bob.
Were Bob living on a different continent, Alice would not have the opportunity to exercise her capability to
hand over the key in person, so we may argue she would not possess a capability to access Bob.

Since the relationship between two potential subjects can be tied to a particular capability, we may argue that
somebody needs to give Alice the capability to access (communicate) with Bob. In the social situations, we

D4.4.1 The role of access rights in ontology customization Page 45 of 70

would say that somebody needs to introduce Bob to Alice in a particular context or situation (e.g. car clean-up
or valeting). This reliance on social introduction being a prerequisite to delegating a particular capability is
the potential solution to the issue of confinement. Simply said, subject Alice may only pass those capabilities
she already possess and only to those other subjects she has authority to approach.

How can the notion of ‘social introduction’ be realized in the organizational setting? It can be, for instance,
related to the subject’s role(s), current tasks or business processes s/he is involved in. Hence, the initial
source of Alice’s capabilities may be the task or role she has in a particular workflow or business process.
We could graphically depict the hypothetical situation as shown in Figure 5.1.

Figure 5.1: Illustration of the notion of confining authority propagation only to known subjects/collaborators.
Alice has access authority to (contact) Bob but no authority to (contact) Don.

As shown in Figure 5.1, we have got two subjects in our scenario with whom there is a possibility to interact.
However, Alice is only aware of Bob – see the full arrow between Alice and Bob in the left-hand side of the
picture. Since there is no corresponding arrow between Alice and Don, these two subjects were not mutually
introduced. Thus, Alice may delegate her authority to access her car (the dashed arrow in the left-hand
side of the picture) solely to Bob; we can say she is completely unaware of Don as a contactable subject.
So, we have actually confined Alice to pass over her capability to access her car to selected subjects in her
surrounding.

A slightly more complex situation is depicted in Figure 5.2. Here we show that Alice may possess capabilities
to access (i.e. communicate with) both, Bob and Don. However, she ‘knows’ Bob in the context of car mainte-
nance workflow or business process, and she ‘knows’ Don in the context of (say) earnings analysis workflow
or business process. The two distinct processes are depicted as shaded areas whose only intersection is
Alice herself – indicating she has a participatory role to play in both processes or workflows.

Figure 5.2: Illustration of the notion of confining authority propagation only to the subjects/collaborators within
a particular workflow/business process. Two separate workflows with different participants and objects are
shown in the figure using shaded areas and labelled as WF1 and WF2.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 46 of 70 NeOn Integrated Project EU-IST-027595

As a result of the hypothetical situation shown in Figure 5.2, Alice may now delegate her capability with
respect to her only to the subjects available to her in that particular workflow; i.e. to Bob but not to Don.
Similarly, she can delegate her capability to access earnings analysis to Don but not to Bob. Hence, the
system is still maintaining precisely the same levels of authority confinement as before: Alice can only pass
her authority further on to those subjects that she can actually interact with. The only difference from the
above situation is that we are no longer relying on the abstract ‘social introduction’ of Bob and Don, but
involve both of them as potential co-workers in two separate tasks, workflows or business processes that
Alice participates in.

Indeed, as the figure suggests, the subjects (Bob and Don) may be actually separated from each other in
terms of their workflow assignment. The consequence of this separation is that, for example, Bob after he
obtains the car keys from Alice, may not be able to pass them further to Don, as he has no access rights to
Don in the context of a particular task, workflow or process. In other words, we are capable of maintaining
the authority confinement in the entire delegation chain. . .

The key difference here from RBAC style models is that the workflows may be more flexible than the actual
roles. For instance, workflows may express the notion of some subjects being willing to help out with a
particular task, without officially assigning them the respective role. Consider a fairly simple situation from the
collaborative development of ontologies: Alice is developing an ontology that contains Spanish terminology.
Normally, subjects that act in a role of Validators include Frances and Hal. Unfortunately, neither of them
is sufficiently proficient in Spanish languages, so Alice has a temporary, ad-hoc need to consult a Spanish
speaking co-worker.

In RBAC model, Alice is stuck with whoever has been assigned into the role of Validators, which prevents her
from having her ontology fully and properly validated. In the ABAC style model, Alice may look into a broader
list of permitted participants in a particular task, workflow, business process, etc.; i.e. she can go beyond
mere roles. Assume that Don happens to be on the list of accessible (contactable) subjects in the context of
ontology development task, so Alice immediately acquires a capability to access his expertise, and ask him
to do Spanish validation for her. As we said earlier, Don’s usual role is not to validate any ontologies, but
he may still help out with this one-off situation. What we achieved here is very similar to a common social
situation of “doing a favour ” – without violating or bypassing any access control authorities. . .

5.3.3 Inheritance of access rights

As mentioned in section 5.2, access rights can be either explicit or implicit. If they are implicit, they are
inherited according to a hierarchy. Such approaches for the inheritance of access rights are well-known in
the database literature. Our approach is inspired by [KE01].

In our approach access rights can be inherited according to four different hierarchies:

• Subject-based or role-based hierarchy

• Action-based hierarchy

• Concept-based or type-based hierarchy

• Granularity-based hierarchy

As a first approach, access rights can be inherited according to a subject-based or role-based hierarchy. In
this scenario, each subject is assigned to one or more roles and these roles are ordered in a hierarchy. For
instance, such a hierarchy could contain three roles, namely administrator, normal user and anybody. The
administrator would be on a higher hierarchy level than the normal user and the normal user would be on a
higher hierarchy level than anybody.

According to this hierarchy, each explicit positive access right on a certain hierarchy level results in an im-
plicit positive access right on all higher hierarchy levels and each explicit negative access right on a certain

D4.4.1 The role of access rights in ontology customization Page 47 of 70

hierarchy level results in an implicit negative access right on all lower hierarchy levels. Thus, positive rights
are transmitted bottom-up, whereas negative rights are transmitted top-down. If the administrator (in our
example hierarchy) is not allowed to change some part of an ontology, it is also not allowed for the normal
user or anybody. If a normal user is allowed to delete a certain concept of the ontology, it is, certainly, also
allowed for the administrator.

As another approach, access rights could be inherited according to an action-based hierarchy. An action
can be to read, write, add, change or delete an object. These actions can also be ordered in a hierarchy.
For instance, the action "‘write"’ can be on a higher hierarchy level than the action "‘read"’. Then, an explicit
positive right is inherited top-down and, vice versa, an explicit negative right is inherited bottom-up. Thus,
a subject, who is, for instance, allowed to write an object, is also allowed to read it. Additionally, another
subject must not write an object, if the subject is not even allowed to read that object.

In some situations, even an inheritance according to a concept-based or typed-based hierarchy may be
appropriate. In such a hierarchy the concepts of the ontology are (as usually) ordered in super-concepts
and sub-concepts. Thus, explicit positive access rights could be inherited from sub-concepts to their super-
concepts, whereas explicit negative access rights are inherited from super-concepts to their sub-concepts.

Finally, access rights could be inherited according to a granularity-based hierarchy. This type of inheritance
should be very useful for the rights management system for ontologies because ontologies are often viewed
at different granularity levels (the whole ontology, some part of the whole ontology, the concepts, the in-
stances). It would be very helpful, if access rights, which were defined, for instance, on the whole ontology,
are inherited to all sub-parts of the ontology. Or if a subject is allowed to change a concept, it can also
change its instances and so on.

Maybe, some types of inheritance are not appropriate for our approach which aims at defining a rights man-
agement systems for ontologies. However, some of the listed ideas could be helpful if they are reasonably
combined. Probably, role-based hierarchies and granularity-based hierarchies could provide the greatest
benefit for our approach.

5.3.4 Delegating and revoking access rights for ontologies

Having briefly related the notions of roles, teams, business process, etc. to the issue of authority confinement
in section 5.3.2, we now turn our attention to the issue of inheritance of access authorities. The reason
we discuss inheritance at this point rather than immediately after granularity is that we can see authority
inheritance as occurring on two rather distinct levels:

• management of inheritance due to authority propagation (e.g. via delegation or aliasing), and

• authority inheritance due to modular and hierarchical structure of the underlying objects (ontologies)

Inheriting authorities via delegation

Let us start with the first interpretation of the notion inheritance. As we already mentioned several times in
various examples, authorities can be passed on in some of the access models (e.g. in ABAC). In section 5.3.2
we argued in favour of allowing authority delegation beyond prescribed and rather rigid roles and users
groups. Yet we also showed how the propagation of authority may be confined within certain boundaries.
The situation of access propagation is shown visually in Figure 5.3.

In Figure 5.3 we start with a situation where subject Alice has already delegated an authority to subject Bob,
whereby Bob acquired an access right to the object (car). This acquisition is formally depicted as a thin
dotted line linking the act of delegating (block arrow containing thick arrow as its message) with its outcome
(thick dotted arrow between Bob and car). We also see in the left-hand side of the figure that Bob has access
to Don (e.g. Don may be his friend, usual collaborator, etc.) Hence, Bob now may pass on his acquired
authority or create a dedicated alias for Don. This situation is now shown in the right-hand side of the picture.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 48 of 70 NeOn Integrated Project EU-IST-027595

Figure 5.3: Illustration of the principle of recurrent delegation of the acquired authority to another subject.
For the purpose of clarity we visually distinguished the delegated authority using thick dotted arrows linked
to the actual acts of delegation (i.e. block and thick full arrows).

Thus, by following the fundamental feature of capabilities, we allowed for a chain of authorities to be created
that started with Alice and currently ends with Don. In this chain, each subsequent subject inherits the rights
contained in the authorities he or she was delegated by someone else.

As we mentioned above, a subject may pass on either their own authority or a dedicated alias, copy. The
copying strategy seems to be more transparent and accountable, and also, it allows for better management
of the delegations. Thus, we may assume henceforth that when we talk about delegating we usually mean
passing on an alias to one’s existing authority to another party. Obviously, there may come a situation when
a subject (say Bob) decides to not only create an alias to his current capability, but he wants to alter it so that
he can pass a more restrictive capability further on.

We can see this hypothetical situation as an act of decomposing one composite into smaller but still mean-
ingful invocations. We emphasize the condition (“but meaningful”) in the above statement, by which we mean
that decomposition may only occur if permitted by the employed grammar. Thus, if the authority grammar
contains invocations such as illustrated in Table 5.4, one can decompose the ‘modify ’ invocation into several
conceptually different sub-invocations; e.g. ‘add ’, ‘remove’, ‘annotate’, etc. However, since authority to ‘read ’
is defined out of the ‘modify ’ branch, one cannot reduce his authority to ‘modify ’ into ‘read only ’. In this ex-
ample grammar, reading is a separate authority one needs to have obtained as a prerequisite to do anything
else with a particular object.

Table 5.4: An example of invocation nesting grammar allowing decomposable authorities that may apply e.g.
during the act of delegating capabilities between subjects.

Invocation authority Level Invocation authority Level

modify 1
add 2

annotate 2
remove 2

read 1
load 2

retrieve 2

As noted in [MYS03] whether or not a capability can be decomposed largely depends on the implementation
of the concept. Thus, if we treat capabilities as mere keys (links) we may not be able to easily express the
containment relationship between, say, the authority to ‘annotate’ (but not ‘add ’ or ‘remove’ the actual onto-
logical entities) and the authority to ‘modify ’. However, if we perceive capabilities as objects (in a tradition,
object-oriented modelling sense), then what is being passed among the subject are references (pointers) to
the objects. The actual objects may obviously and easily contain the filter on decomposition of a particular
higher level authority into its sub-authority.

Nonetheless, whether or not the authority grammar allows for decomposition is also a matter of contextual
dependency. Thus, the available invocations authorities need to be defined in a close collaboration with the

D4.4.1 The role of access rights in ontology customization Page 49 of 70

users of a potential access control system; in our case, together with the NeOn use case partners. We
discuss some considerations with respect to “authority vocabulary” later, in section 5.6.

Revoking authorities and inheritance

An issue that co-exists with allowing the delegation (whether confined or not) is the subsequent revocation
(cancellation) of a delegated authority. So far we argued that the capacity to deputize, delegate and share
authorities is one of the keys in a proper, fully-fledge collaborative environment. We will also relate this
capacity to the notion of trust, later in section 5.4. Here we look at some of the consequences of allowing
that deputization capacity in an access control system.

One consequence of a particular importance in this context, is the fact that thanks to the opportunity to pass
on capabilities and authorities among subjects, these become aggregated or accumulated at the different
subjects. This can be contrasted with standard ACL models, where authorities are accumulated on the
level of objects or resources (see also section 3.2.2 for illustration of this fact). An obvious advantage of
accumulating authorities with objects is that there exists one and only one place where we can readily see
who has access to that particular object. This is a very useful feature, because it enables a very simple
revocation of authorities, if necessary.

However, the feature gets lost in the capability-based models: as we mentioned above, here the authori-
ties are accumulated on the subject level. This is often referred to as subject-aggregated authority man-
agement [MYS03]. Hence, it becomes easy to find out what particular capabilities and authorities a given
individual subject has, but it is not so easy to see all the subjects potentially possessing access to any given
object.

The side effect is that it is now on each subject to maintain their delegation and alias lists. Only the subject
itself knows to whom they passed any particular authority, but not even the original subject can tell whether
his or her delegated authority continued to propagate or not. This seems to be a rather serious drawback. . .

In reality, the situation is less problematic. One may not know all the others who happen to possess a par-
ticular authority to the given object, but that does not prevent one from recalling the original delegation. And
this can be done in a similar manner as we mentioned in section 5.3.4 with respect to authority composi-
tion. Assume an authority being an object, which in this case comprises two factors: (i) shared (or forwarding
one [MYS03]) and (ii) private (or revoking one [MYS03]). To show this visually, we adapt any of the previously
used hypothetical scenarios using the notion of authorities as objects.

Figure 5.4: Decomposition of authority into a composite authority object (CO) that contains a ‘private’ part
(R) actually facilitating the access and a ‘shareable’ part (F) that may be delegated to third parties.

As can be seen in Figure 5.4, Alice as the original holder of the authority to access her car possess a
capability (reference) to access both, the car itself and the private, revoking part of the object (both shown
using dashed arrows in Figure 5.4). When Alice decides to delegate her authority to Bob, she creates or
activates the shareable, forwarding part of the object, and offers Bob authority to access that forwarding
reference. This is depicted using the obligatory thick arrow that represents the actual message/content of

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 50 of 70 NeOn Integrated Project EU-IST-027595

the delegation act (which in turn is depicted by thin full arrow from Alice to Bob).

What Bob has acquired in this moment, is an access to the ‘F’ part of the capability/authority object, which
internally takes care of actually doing the right thing – forwarding Bob’s requests to the private parts that
in turn resolve to the actual object (in our example, car). It is now obvious, that once Alice surrenders the
reference to ‘F’ part of the capability object (CO), she has no way of forcing Bob not to pass it on further or
indeed “to forget it”. The only thing she can do if she does not want Bob to make use of his acquired authority
is to cut the ‘R’ part – this is why this bit is called revocable factor in [MYS03]. The illustration of the fact is
shown in Figure 5.5.

Figure 5.5: Revocation of delegated authority by removal or deactivation of the ‘private’ part (R) of an appro-
priate composite authority object (CO). Symbol� corresponds to a deactivated, ‘null’ content of the authority
object.

As we see in Figure 5.5, in the left-hand side of the illustration Alice exercises her authority to remove either
the ‘R’ section of the authority object by re-pointing it to the null object or unlinks the ‘F’ section from the
‘R’ section of the authority object. In both cases, she essentially achieves the same objective: revoking
previously delegated authority to Bob. As shown in the right-hand side of the picture, Bob still keeps the
original authority he was given by Alice, but this is now rendered useless – Bob cannot access anything with
it.

Now what would happen if Bob passed on his authority further on? Well, he can only delegate his access
to the ‘F’ section of the original (Alice’s) authority object. Hence, if Alice cuts the ‘R’ section in her authority
object, it implies that whoever depended on that authority object (e.g. thanks to Bob passing his authority
further on), is now revoked the access together with Bob. In fact, Alice may not even care who else was
affected; her immediate dealings were with Bob and she does not wish him to access the object resource
(car) anymore.

5.4 Accountability issues: relationship to provenance, trust

As we showed in the example provided in section 5.3.1, the capability-based access control allows subjects
to share, delegate and/or copy their respective authorities. In a collaborative, team-based or task-based
environment, it seems natural for subjects to share their authorities. In this section we want to explore one
side effect of enabling authority propagation in an open environment; namely trust.

In the traditional ACL- but also role-based models the fact that two subjects are on the same ACL for a given
resource object does not carry much meaning enabling us to hypothesize the trust relationship between
the two subjects. They simply happen to co-occur for the purposes of accessing resource object o ∈ Ω.
MAC, RBAC and related systems simply do not allow their subjects to pass authorities on or to grant some
additional authorities to their peers.

In the capability-based model, the authority can be delegated either directly or via an alias/copy. The act of
passing an access capability onto another subject (e.g. from Alice to Bob) is, in principle, an act of expressing
a particular trust assertion involving Alice and Bob. We shall explain this by returning to the example with

D4.4.1 The role of access rights in ontology customization Page 51 of 70

the car keys we used earlier in section 3.2.1. We mentioned that there was no need to authenticate Bob as
a permitted user of Alice’s car, because Bob possessed a token of authority – Alice’s maintenance key. That
maintenance key only works on Alice’s car (and no other car in the car park), and it only opens that car (but
does not start its engine). Thus, the key was indeed a sufficient token granting Bob the authority to valet
Alice’s car.

The car cannot, in principle, recognize whether it was opened by Alice, Bob or by some third party. The car
belongs to Alice and Alice needs to maintain some track of her keys, copies, aliases, delegations, etc. The
reasoning behind this ‘ignorance’ in terms of authentications is simple: if Alice gives her key to Bob, for some
reason she has to trust Bob. She may trust that Bob will not vandalize the car, that he would not sell it under
hand, or that Bob would not pass the key onto someone else. The rule is simple, if Alice has doubts about
Bob, she should not hand over the key. . .

Obviously, in the real world, Bob may still break the implicit rules and create himself a copy of Alice’s key.
The truth is that Alice can hardly do anything to prevent Bob from doing so. In fact, she needs to carry out
occasional security audits on her capabilities (keys) and check how many were issued, copied, etc. Imagine
during one such audit she would find out Bob made a copy, and she wants to take a corrective action. It
would probably be futile to ask Bob to surrender his key, but Alice has a wide range of simpler measures
to choose from. For example, she may revoke Bob’s access by re-programming her car’s CPU. That would
make the key in Bob’s hands obsolete and useless to access anything.

Furthermore, since one capability spawning another can be recorded during the delegation act, revocation
of one link in the spawned chain (i.e. Bob’s key) would automatically render obsolete all capabilities that
were derived from Bob’s and passed onto some other parties. Where this leads is an establishment of a
trail facilitating a fairly transparent, explicit and auditable set of records related to such social acts as depu-
tization, delegation, appointment, transfer. Hence, the same framework (access control) would be in certain
circumstances capable of catering for and contributing to the realistic management of trust relationships.

5.5 Legacy issues: tool, protocol alterations

One relatively important shortcoming of many security and access control systems is an introduction of new,
often proprietary protocols in order to achieve the additional functionality. For instance, standard HTTP (Hy-
pertext Transfer Protocol) [FGM+99] is based on requests and responses. Requests are usually handled via
URI-s – string sequences that sufficiently define the web server being requested, path of the file requested,
and additional information that may form part of the query (usually provided after the ‘?’ separator in the
request).

Originally, URI-s were conceived as identifiers of network resources. However, with the arrival of ontologi-
cal modelling, URI-s were applied as identifiers of abstract entities such as concepts or properties in RDF
Schema [BG04], OWL [SWM04], etc. A potentially interesting side effect of this approach is that the URI-s
became less operational: whereas in the traditional sense, there is a web server acting upon a request and
potentially entering into negotiation with the client, in RDF schemas and ontologies URI-s do not necessarily
imply any server acting upon the ‘request’.

This, in turn, makes actions such as simple authentication rather difficult. Since URI of a concept does not
imply any server, it is hard to enter into a negotiation, e.g. about password validity. Similarly, including authen-
tication credentials as attributes of e.g. concept URI-s is (i) not very practical due to the fact that ontological
identifiers are shared among many agents, and also (ii) it is not solving the authentication challenge/response
mentioned earlier.

So, this leads to similar issues as we already mentioned in section 5.1: on one side we need shared on-
tological identifiers to designate concepts, instances, etc. but at the same time we need a mechanism to
designate unique, potentially individual access rights. Hence, in order to preserve the existing syntax and
semantics of URI-s in a role of ontological identifiers, we need to treat access control measures as a form of
metadata attached to an ontology or a module.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 52 of 70 NeOn Integrated Project EU-IST-027595

This strategy would allow us to continue referring to ontologies and/or modules using their URI-s (e.g. for the
purpose of document annotation or logical inference). Simultaneously, a metadata element comprising e.g.
appropriate capabilities would express the authority to access a particular ontology, its partition or ontological
module. So, the need to comply with standard definitions of URI usage in such languages as RDF Schema
or OWL implies a similar ‘dual designation’, as was already mentioned in section 5.1. Only in this case, we
cannot fully remove the legacy part, in spite of the fact that it is not very helpful in designating authorities. The
legacy part is necessary to preserve the backward compatibility of ontological representations with various
tools that make use of ontologies.

The proposal of treating access control mechanisms, e.g. capability references, as a part of ontology meta-
data description introduces an opportunity for the ontological infrastructures to apply access authorities when
retrieving, serializing ontologies, partitions or modules from some registry or repository. Also, the same in-
frastructures would need to apply access control at the stages of publishing or ‘uploading’ ontologies, par-
titions or modules back to the repositories. In other words, due to legacy constraints, it seems that the
access control is far less a functionality belonging to any specific ontology engineering tool, but much more
a functionality that needs to be handled on the level of infrastructure.

NeOn architecture has been designed in a way that lends itself quite easily to separate the user end and
engineering components from the infrastructures. Moreover, NeOn acknowledges the important role ontology
metadata may play in managing networks of ontologies. Hence, our proposal of including into the investigated
metadata framework also the notion of access control and access authorities is consistent with the broader
scope of research and development in the NeOn project.

5.6 Elements of a vocabulary of authorities/invocations

In section 4.2 we described how another application (in this case ODESeW platform for information portals)
defines different types of access. In the languages of this report, these types represent different means of
invoking a particular resource. Thus, as an initial proposal for the purposes of treating the access rights in
NeOn, it seems to be reasonable to re-use a similar vocabulary as shown in Table 4.1 in section 4.2. Thus,
we shall obviously be capable of coping with basic read, write, and delete invocations.

However, in reality, the access vocabulary is likely to be richer and slightly more structured than the three
flat actions mentioned above. In many cases, and NeOn use cases seems to support this observation, the
low-level invocation such write may take a shape of slightly different sub-types. The difference between
these sub-types is not necessarily on the technological level, but more on the conceptual, procedural, or
even organizational level. In other words, a fishery department of one of our case studies may distinguish
between “writing for the purpose of designing” and “writing for the purpose of validating”.

The reason why such distinctions may be relevant is that they may, in turn, drive the adaptation of the
user interfaces, the selection of appropriate user interaction components, the assignment of importance,
provenance, trust, etc. On the level of implementing the access control system, this granularity does not
impose any major additional cost. However, on the level human-computer interaction the differences are
quite significant.

Therefore, we believe it may be too early for us to formally specify such a vocabulary, and to do it in this
particular deliverable. Specification of invocation means it is a work that needs to be done in collaboration
with the case partners; however, prior to the acquisition of their preferences, we believe it is more valuable to
present them with a broader picture of what access control may actually comprise. And this is the purpose
of the current deliverable. Once the notion of access control and the need for access control are established
with the use case partners, it makes sense to invest into acquiring a proper, possibly ontologically grounded
vocabulary of invocations.

Subject to the general proposals of this deliverable being acceptable by the case partners, we intend to
design such an ‘invocation vocabulary’ as a part of prototyping and implementing the access management
system for a particular organization.

D4.4.1 The role of access rights in ontology customization Page 53 of 70

Chapter 6

Worked Scenarios and Examples

6.1 Invoicing Case Study

In the PharmaInnova use case there are several scenarios in which functionalities related to the need of
managing user access are presented. In this section we discuss a brief description of such scenarios (more
detailed in [GPALC07]), a description of the users that participate in these scenarios and, finally, how NeOn
provides access to the platform and data based on the technology described in the previous sections of this
deliverable.

6.1.1 Scenarios

In the following we look at each specific scenario identified in [GPALC07] from the viewpoint of access control.
The paragraphs below are intended as a refresher and a summary of what has been presented in greater
detail before.

Collaborative development of invoice ontologies

Collaborative development of invoice ontologies is one of the scenarios we present in [GPALC07]. In such
a scenario a group of experts and knowledge engineers collaborate in order to produce the ontology, which
represents the invoice models, including the emission and processing of invoices. There is another scenario
which represents the collaboration part of the ontology design process. In this scenario a new user that has
recently joined the PharmaInnova cluster may realize that in the invoice reference ontology some concepts
that are very important in their organization are not present. This user would have to update the invoice
reference ontology but this should not be done so easily.

For instance, since this is a reference model, all partners involved in the cluster should reach an agreement
about the definition of the common invoice reference ontology. Obviously, if every small amendment went
through the negotiation process, the reference model would quickly become unworkable. Hence, another
way around has been presented in this deliverable – certain sections of the reference ontology could only be
amendable by authorized individuals or groups, while the ontology in general may be viewable by all.

Another aspect discussed earlier in the context of preliminary changes to the shared ontology is also appli-
cable here. Our user wishing to amend the ontology may do so locally so that only s/he and some of the
immediate co-workers see the proposal. This altered or added part of the model may have a restricted access
to the local users – at least until the next round of the negotiation process takes place and the amendments
are approved/agreed.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 54 of 70 NeOn Integrated Project EU-IST-027595

Invoicing workflow

The second scenario assumes invoices that may be emitted and received. Three different users need to
access potential sensitive information about the company that may appear in the invoices. First, the users
that create the invoices need access to the invoice model to assert a new instance in the ontology. They
need to access the information contained in the internal databases of the company in order to write an
invoice according to the services or products provided by the company. This part of the access control is not
directly related to the ontologies, but the authorizations workers have with respect to the internal resources
might serve as authority prototypes to determine their access to the relevant parts (and instances) of the
ontology.

Once the invoice has been emitted it will be received by the partner organization. The receiver has to process
the new invoice and put it into a new processing state. Once the invoice has the correct state the users that
validate the incoming invoices want to ensure the invoice is correct and contains all the information needed.
They also have to check that the services have been provided or the products have been supplied. Access
to all this data has to be provided, and the ontology acts here as a mediator, a bridge.

In this particular case, access management of the relevant aspects of the ontology actually determines what
information the user may obtain about the invoices, how to access it, etc. As above, the actual request,
approval, etc. are operations typically carried out in the internal information management systems. The role
of ontologies here is to enable users to “translate” an invoice from a partner to the internally used style. Since
the access control on the level of ontologies may determine what concepts and instances are ‘visible’ to the
user, this mechanism also determines what the user is permitted to translate.

Organization Integration

The third main scenario shows a new organization joining the PharmaInnova cluster. A user of the organi-
zation that wants to enter the cluster has to provide a model to the system or a large set of invoices in order
to generate an initial invoice ontology for that partner. Once the new local ontology has been generated a
mapping between this local model and the invoice reference ontology needs to be established. This user
probably will have to modify both, the mapping and the ontology in order to ensure that everything has been
generated correctly.

As mentioned above, access control seems to be useful to manage which parts would be accessible and
amendable, when and by whom.

6.1.2 Users in the Invoicing Case Study

We identified three different types of users in the invoicing case study: invoicing administrators, users of the
invoicing system (emitters, receivers and decision makers), and invoicing developers (developers of invoicing
applications and invoice designers). A more detailed description of the users can be found in [GDM+06b].

Creators of invoice models and standards

The creators of invoice models and standards define the ontologies that will represent the company invoices.
These users create models in a collaborative way with representatives of the different organizations implied,
for instance, the laboratories of PharmaInnova. They also negotiate the information that must be contained in
such models. This type of users decides on (focusing on the case of PharmaInnova) data types contained in
the invoice models, main concepts of the invoice models (head, body and summary of the invoices), specific
fields in each concept, relations and constraints between the different fields of the invoice model. There is
also a group of users that deal directly with the ERP of the company and they develop applications for the
ERP to use the data generated by it.

D4.4.1 The role of access rights in ontology customization Page 55 of 70

Users of electronic invoicing applications

These are the users that emit, receive and approve or reject invoices. They are members of the financial
department of the company and (likely) they have limited knowledge about the invoicing tool or the ERP that
manages the invoice process. These users have three different roles. As emitters, they must fill in invoices
while, as invoice receivers, they must validate them, and as decision takers they must accept/reject invoices.
These decision takers are users with access to the ERP of the organization.

Invoicing administrators

The invoicing administrators are in charge of the invoicing process and the ERP system. They are responsible
for monitoring the appropriate behavior of other users during production and they need to have knowledge
about the whole invoicing process. They are aware of the invoicing process life cycle and need to have access
to tools that allow them to visualize and, if necessary, take part in some point of the invoicing workflow. They
can add, remove, edit, and consult business rules, add/remove users and manage information about the
organizations that emit or receive invoices. Due to their global knowledge about the invoicing process they
may be able to adopt emitter or receiver roles in the PharmaInnova system.

From the three different types of users we are going to create three different roles. These roles will correspond
to the three user groups:

• the administrators of the system,

• the developers of invoice systems, and

• the users of the invoice system

These roles allow the workers to perform the actions they are permitted and expected to do, and also to
delegate these actions in certain situations. For example, a user in the role of ‘Administrator’ is able to
access to different parts of the system, including invoice models, invoice data, rule definition etc.

6.1.3 Application of the user roles to the invoicing scenarios

In this section we apply the role access rights techniques to the scenarios proposed. First we defined the
scenarios, second we defined the type of users we have in the system, and finally we apply the technology
specified in the first chapters to our concrete scenarios.

Organization integration

In this scenario the roles of ‘Administrator’ and ‘Developer’ are the most important ones. The scenario
requires that a company registers into the system and this task can only be done by the administrator of the
company. But there is also another task to be performed when a user registers into the system. This task
is to create the initial ontology from the invoices the company has, and to map the new invoice against the
existing invoice reference ontology. In this scenario a user with the role ‘Developer’ will need access rights to
modify the whole ontology (schema and instances) while an ‘Administrator’, in this scenario, may not be able
to do any of the things that can be done by the user with the ‘Developer’ role.

A possible solution is that a user in the ‘Administrator’ role trusts a user with a ‘Developer’ role in order to
be able to register the company into the system, to create the ontology and to map it. Then the user in the
role ‘Developer’ will be given temporarily sufficient access rights to perform the subscription of the company
and to create the new ontology for representing the invoice model. The other way of trust propagation (i.e.
developer trusting administrator and giving him/her some additional authorization) is usually not feasible in
this scenario. This is mainly due to the fact that a user with the ‘Administrator’ role may not have enough

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 56 of 70 NeOn Integrated Project EU-IST-027595

knowledge about designing ontologies. Hence, giving him or her authorization is likely to result into potentially
flawed models.

Figure 6.1 shows the previous explained situation, how an administrator gives rights to a developer in order to
register a company into the system. In general though, the above mentioned “usual know-how and expertise
of different users” and their impact on determining someone’s role (and subsequently, access authority) in
the organization is a very interesting example of linking the notions of role-based access control with the trust
and resource-based access management. Thus, our scenario here, support the argument from the earlier
sections of this report that different access models are not necessarily contradictory – one may obtain initial
information from one model to establish an authority using a different one.

Figure 6.1: Delegation of editing authority to an expert.

Invoice workflow

In the invoice workflow scenario the workers typically participate in the role of ‘Users of the invoicing applica-
tion’. This role is divided in three different sub-roles: ‘Receiver’ of the invoices, ‘Emitter’ of the invoices, and
‘Decision taker’. In this scenario no member of any of these roles may have the access right to modify any
part of the ontology schema. On the other hand, workers with the role ‘Administrator’, ‘Emitter’ and ‘Decision
Taker’ shall be able to create and modify instances of the ontologies. Also, a worker in the role of ‘Receiver’
has no rights to modify any instance but reading rights.

In the invoicing workflow these different access authorities need to be appropriately combined. First, the
‘Emitter’ of invoices (or possibly an ‘Administrator’) creates an invoice. To transfer this role to another person
would usually not be advisable due to the very sensitive nature of information that any invoice contains. Only
a few people in the company are normally permitted to create and emit invoices. Moreover, in the case of
larger companies, emitters may be assigned to particular clients; hence emitter Alice can raise invoices for
(say) all pharmacies, but not for wholesale intermediaries and warehouses. This organizational policy may
be reflected in the access rights, whereby emitters are authorized to amend only branches of certain parts
of the ontology.

The reception of invoices can be performed by two types of users. First, a user in the ‘Decision taker’ role
usually has enough rights to receive and accept/reject an invoice. The user in the ‘Receiver’ role may also
have the capability to receive invoices, but (in some cases) such a user may not be permitted to accept/reject
them. This acceptance may be performed by users with the ‘Decision taker’ role (or possibly ‘Administrators’).
In the ontological language, different capabilities may be reflected by stating what particular operations are
assigned to specific authority keys.

In Figure 6.2 we show how the users with the role ‘Decision taker’ may be able to transfer their invoice
approval capability to other workers (i.e. receivers). Obviously, in some cases the authority delegation may
involve only a part of their acceptance rights, in order to satisfy the pronciple of minimal necessary authority.
In other words, the receivers may be permitted (by means of delegating appropriate keys) to receive and
automatically approve invoices, e.g. for a certain client, up to a certain monetary value, for a particular
product, etc. Also, an administrator of invoices may delegate some responsibility to other users for receiving
the invoices and perform the actions needed.

D4.4.1 The role of access rights in ontology customization Page 57 of 70

Figure 6.2: Delegation of edition authority to an expert.

Collaborative development

This scenario is based on the need of collaboration in order to produce an ontology that represents the
invoices created by a company. During the process of ontology design several experts from different depart-
ments of the company may participate in the process – each with different rights in accessing the system.

The main role participating in the design process is the ‘Developer’. Mainly the workers in this role would have
knowledge about computer engineering and/or knowledge modelling. Members of the company belonging to
other departments also participate in the design process. These members are experts in their own domain
(say, financial rights, sales, etc.), and they will be required in order to contribute to the model of their own
domain. The users with the role ‘Developer’ would typically have access authority to the whole ontology
that represents the invoice model for their company, but the other participants may have no (or very limited)
authority to modify any part of that ontology without prior consent.

Figure 6.3: Delegation of edition authority to an expert.

However, a user with role ‘Developer’ may be able to transfer or delegate their authority to certain other
experts during the ontology development process. Usually, this would happen with a very specific purpose
and task in mind – for example, checking and amending the appropriate use of legal terminology in certain
ontological concepts, instances and/or relationships. The developer may not have enough expertise to ap-
preciate whether a particular term is appropriate (or appropriately translated, for example). Hence, the task
of checking and perhaps labelling a particular sub-set of concepts may be passed onto the legal department
or another expert – temporarily and limited to a well-defined action. These other users would normally have
other roles (the ones that their department has assigned to them), and these ‘persistent’ roles would need to
co-exist alongside the new, temporary roles. The situation is visually depicted in Figure 6.3.

6.2 Ontology authoring in a wiki factory style

In this section we present similar situations and scenarios that have been used in the previous sections as
illustrations of access control principles. However, this time we embed these examples more into various on-
tological engineering task. To do that we use the idea of using wikis as “a Semantic Web content production
factory” – in fact, this metaphor facilitating collaborative authoring of ontologies is theoretically and concep-
tually elaborated in more depth in work package 2 (see e.g. [CGL+06]). Thus, this section draws upon the

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 58 of 70 NeOn Integrated Project EU-IST-027595

principle of using wikis as Semantic Web factories, and extends the idea with the notion of authorities and
access management.

6.2.1 Initial state of the system

Let us assume that our wiki factory contains an ontology, which can be split into two modules. How and why
this split occurs is not important – we have suggested some motivations for identifying modules earlier (e.g.
restricting collaboration to certain parts of the model or make tentative change proposals). We shall label the
two initial modules as M1 and M2. These two modules put together form ontology O; hence, O = M1∪M2.
Moreover, working with modules means that the user may either access the ontology O as a whole, or may
choose (be allowed to) only access one of its modules, which is exactly the scenario we start with.

We also assume three users working or wanting to work with this ontology. For sake of keeping the example
brief and transparent, we include only two core and most common authority invocations (i.e. actions) –
reading and writing ontological content. Let us denote our users as Alice, Bob and Carol, and assign them
the following base authorities: Alice is entitled to read and write both modules M1 and M2; Bob has authority
to only read M1 and has no authority over M2; and finally, Carol is allowed to read M1 and has no authority
over M2. By working with modules we mean the user knows the access key, the URI that retrieves or
generates an appropriate modules or ontology from the repository.

Hence, if our users now access a repository of ontologies, then Alice could be given the access keys (or
the capabilities) as shown in Figure 6.4. Note that we are currently using the ‘full notation’ for the keys; in
practice, they may be simplified or otherwise made more user-friendly.

Figure 6.4: Example of Alice’s initial access-control screen showing her keys (authorities) to read and write
into modules M1 and M2.

Subsequently, Figure 6.5 shows the same situation for user Bob; as can be expected, Bob’s screen lacks
access keys to M2, and furthermore, his keys for accessing M1 are distinct from Alice’s.

And finally, Figure 6.6 shows the situation described above for user Carol. This time the screen shows only
one access key – for reading module M1, as required.

Accessing a given module, say M1, for the purpose of reading means displaying its content – in this simple
scenario, we use a free text (e.g. coming from a <rdf:description/> tag) as shown in Figure 6.7. Note that
despite the fact that our three users use three distinct keys (URI-s), the actual content access via those
keys is exactly the same module. So, module M1 shown to Alice for reading is conceptually identical to M1

shown to Bob and/or Carol. Note that this does not mean that Bob and/or Carol would actually see the whole
ontology O identically as Alice! The reasons is that O = M1 ∪M2, and apart from Alice, other users have
no authority to access M2.

D4.4.1 The role of access rights in ontology customization Page 59 of 70

Figure 6.5: Example of Bob’s initial access-control screen showing his keys (authorities) to read and write
into module M1, but not allowing him to work with M2.

Figure 6.6: Example of Carol’s initial access-control screen showing her key (authority) to read only module
M1, and not allowing her any other activity with this module or module M2.

6.2.2 Collaboration on a shared module

Next, having established that our users read the same content for module M1, we illustrate the case when
Alice decides to collaborate with Bob. Collaboration is in this case seen as identical to the capability to write or
otherwise amend the content of an ontology or of a particular module. Let us assume Alice wants Bob to help
her with editing module M1. For both Alice and Bob, this scenario poses no difficulties – both already have
all the necessary authorities to access module M1 for the editing purposes. The actual process of editing
may be conducted (in a wiki-style manner) as shown in Figure 6.8, where Alice inputs some information into
module M1.

Then Bob uses his capability to access module M1 for writing purposes as shown in Figure 6.9. As can be
expected, Bob obviously sees whatever Alice or other user wrote into the module prior to him invoking his
authority on this module. Bob may then decide to add his amendments, additions, etc. Thus, Figure 6.9
shows the situation when Bob carries out the editing procedure (again in wiki-like manner), and the outcome
is shown in Figure 6.10. The content of the module is now different, and this change happened in a fully
collaborative, access-aware manner – compare the content of Figure 6.10 with Figure 6.7.

6.2.3 Collaboration with delegation

In the previous section we had a simple scenario where both collaborators actually had all the necessary
access keys (authorities) for editing the module prior to any activity. Let us now consider a more complex
scenario, when Alice wants Bob to help her out with module M2. Unlike the scenario shown earlier, only
Alice has an initial authority to work with this module. Bob is not even aware of it, because he has not got
any access key to it (neither for reading, nor for writing).

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 60 of 70 NeOn Integrated Project EU-IST-027595

Figure 6.7: Example of the result of attempting to access and read/view the content of module M1, seen by
all users.

Figure 6.8: Example of user Alice collaboratively editing the content of module M1, seen from Alice’s per-
spective prior to committing her amendments.

Thus, Alice needs to enable or authorize Bob to access module M2 before any meaningful collaboration
starts. This can be done by a built-in feature in our wiki-style factory allowing authorized users (Alice) to
deputize and delegate their authorities to third parties (in our case, to Bob). Figure 6.11 shows the part of
Alice’s wiki screen that enables her to re-define, revoke and/or deputize her authority to module M2. In this
part of the example, Alice chooses to apply button “deputize”, which leads to generating a new access key
from Alice’s existing capability.

This new, dependent access key is then passed onto Bob, whose access credentials change as shown in
Figure 6.12. As can be seen (and compared with the situation depicted in Figure 6.5), user Bob’s authorities
were extended and now also include appropriate keys to get hold of module M2. These new keys enable
Bob to engage in the collaborative editing as Alice intended.

6.2.4 Introducing a third party into collaboration

The outcome of the previous worked sections is that Bob and Alice can now fully collaborate on both available
modules M1 and M2. Now assume the situation that an issue arises during this collaboration which requires,
say, an expert opinion of user Carol – an example of such situation was the language-related translation
check we mentioned in the theoretical sections.

Hence, Bob wants to temporarily introduce Carol into the loop. He has two options available to him. First, he
can ask Alice as the original ‘owner’ of module M2 to create and pass on an authority to Carol. This request
would need to be accompanies by some formal evidence, case, support, rationale, etc. Generally, such a
request is likely to create significant processing overheads for both, Bob and Alice. Second option available
to Bob is to take the responsibility in his hands, and delegate his acquired authority further onto Carol.

In this section we consider this latter option – Bob passing onto Carol his access authority to read module
M2. This can be done in a manner similar to what was described earlier. First, Bob enters some notes
for Carol to take into account (see Figure 6.13) and then uses the “deputize” button of the wiki factory to

D4.4.1 The role of access rights in ontology customization Page 61 of 70

Figure 6.9: Example of user Bob collaboratively editing the content of module M1, seen from Bob’s perspec-
tive prior to committing his amendments.

Figure 6.10: Example of the outcome of collaborative editing of the content of module M1, seen from the
perspective of any authorized user after committing the amendments.

create a new access key for Carol. The actual process of creation is shown in Figure 6.14. An outcome of
Bob’s decision and action is that Carol now possesses a capability that has not been in her initial set – see
Figure 6.15 for the list of access keys currently available to Carol, which now includes an added authority to
read module M2.

6.2.5 Finishing collaboration

Once the task that Alice set out to do collaboratively with Bob is done, she may decide to ‘lock’ the module
again. In the access management terminology we talk about revoking the authority to access module M2.
Alice can obviously do this, since she was the one who originally delegate the access to module M2 onto
Bob. Hence, Alice can as well remove that authority from Bob.

This procedure is done using another built-in function of our hypothetical wiki factory, as shown in Figure 6.16.
Since revocation has an immediate effect onto other users, Alice has to confirm her decision. Once con-
firmed, the changes take place, and when Bob attempts to use his keys on module M2, he soon finds that
they lead to an error. In other words, module M2 ‘disappeared’ as far as Bob is concerned. Bob still pos-
sesses an access key given to him earlier by Alice, but that access key is now useless – it does not lead to
any meaningful content.

Figure 6.17 shows one interesting side effect of using this transparent, capability-based access control model.
Namely, Bob’s screen yields an error message in the actual access, but using the “deputize” button Bob can
still delegate this (now dysfunctional) access key to other parties. This feature may be useful in scenarios
when some changes in policies are expected but not yet realized. The user may ‘pre-share’ their capabilities,

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 62 of 70 NeOn Integrated Project EU-IST-027595

Figure 6.11: Example of how Alice may facilitate collaboration in a scenario when her collaborator does not
have appropriate authority: delegation of an authority to edit the content of module M2 passed onto Bob,
seen from the perspective of user Alice.

Figure 6.12: Example of Bob’s initial access-control keys being extended to include authorities to also read
and write module M2.

and thus prepare for the actual situation in advance.

Moreover, also note that the content shown in Figure 6.17 is now going to also appear to Carol. This is
because Carol’s access authority stemmed from Bob; in other words, Carols’ authority depends on the validity
of Bob’s authority. When Bob was cut off from the module content, this means all other users dependent on
him lose their access.

D4.4.1 The role of access rights in ontology customization Page 63 of 70

Figure 6.13: Example of user Bob preparing ground for collaborative editing the content of module M2, seen
from Bob’s perspective prior to committing his amendments.

Figure 6.14: Example of how Bob may facilitate collaboration in a scenario when his intended collaborator
does not have appropriate authority: delegation of an authority to read the content of module M2 chain-
passed onto Carol, seen from the perspective of user Bob.

Figure 6.15: Example of Carol’s initial access-control keys being extended to include authorities to also read
module M2, which was passed from Bob.

Figure 6.16: Example of Alice revoking her previously given authority delegation to Bob for the purposes of
accessing module M2.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 64 of 70 NeOn Integrated Project EU-IST-027595

Figure 6.17: Authority revocation seen from Bob’s perspective – resulting into an error when attempting to
access module M2.

D4.4.1 The role of access rights in ontology customization Page 65 of 70

Chapter 7

Conclusions

The primary purpose of this initial report on the treatment of access rights and access management in the
context of networked ontologies was to introduce the topic and to present alternatives of different access
control models to NeOn use case partners. Hence, a significant portion of this deliverable has been devoted
to presenting the basic terminology and the basic access control models. The reason why such a relatively
extensive encyclopedic section on the terminology has been included comes from our discussions with the
partners during the report preparation. First, there were common mistakes in using terms like ‘provenance’,
‘access right’, ‘authentication’, and ‘password’. Partners often used them interchangeably, whereas in fact,
these terms have specific meanings and may partially replace some of the other ones in very specific situ-
ations. To address this lack of clarity we presented a simplified glossary, which we believe shall make the
subject of access control more accessible to a non-expert.

A similar reason is behind including an overview of access control models, such as DAC, MAC or RBAC. A
typical user from our partner organizations is aware of Windows- or Unix-style access control that requires
(i) a system of user names and passwords, and (ii) an assignment of names to resources for the purpose
of reading, writing and/or executing. We have no intention whatsoever to cast doubts on the successful
MAC-style access control implemented in most operating systems. On the contrary, we aimed to objectively
discuss advantages and shortcomings of different access control approaches in the context of different is-
sues. The key notion we intended to deliver in section 3.1 was that different access control models suit
different needs and requirements.

In other words, just because DAC/MAC are widely used to manage access to file-based resources does
not mean that the same model is also applicable in the environment where resources become much less
‘physical’. For instance, ontologies are often serialized into files, but a file is only a tool of convenience, a
familiar metaphor imposed on ontologies; ontologies may (and do) exist irrespective of the files they can be
serialized in. Hence, access control techniques in which the smallest controllable element is ‘a file’ do not
fit the needs of ontological engineering. We mentioned some of the reasons: ontologies could be split into
modules, and these modules could reflect many different views and constraints. Thus, if we assume the
simplest situation that a module could be serialized into a file, one ontology may, in principle, be serialized
into a large number of potential files.

Moreover, the modularization depends, at least to some extent, on the user – so, different users may see
ontology partitioned and modularized in completely different ways. The system that needs to be access
controlled is therefore much more dynamic and real-time than it is the case with the common files stored in a
file system (say, FAT32 or NTFS) of an operating system (e.g. Windows or Unix).

To address the specifics of dealing with ontologies we emphasized one of the access control models based
on authorities being seen as keys or tokens. The key difference between the more standard access control
models (DAC/MAC) and authorization-based ones is shown in Figure 3.3: The usual access control, the users
are familiar with from the operating systems, assumes each user can be uniquely identified and that each
resource carries with itself a list of authorized users. This can be as simple as the Unix model distinguishing
between file owner, his or her group, and others; or it can be made more complex as e.g. in Windows, where

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 66 of 70 NeOn Integrated Project EU-IST-027595

one can introduce numerous groups with positive and negative authorities.

On the contrary, the approach we emphasized here is user-driven – i.e. the access control credentials are
associated with the users. This is actually a very natural way of treating access rights, since it resembles a
keyring to which a user may add a new key (token) whenever s/he is granted access to a new resource. The
authorities are thus managed at the user end, rather than on the resource end.

In the discussion around Figure 3.3 we argue that the latter approach is more efficient because the same
identifier can be used for both expressing the authority and referencing the resource in question. Also,
because the authorities are aggregated at the user end, each user’s power within a particular organization
can be estimated from the access keys they hold. One can often associate access keys with certain roles, so
the possession of a key may directly imply the roles a user may engage in. This would not be possible in the
classic DAC/MAC systems: from one’s login/password combination it is impossible to infer anything about a
person’s role in the organization. In the RBAC (role-based) models, this is partially possible, but the roles are
often rather coarse grained (to be manageable).

Furthermore, we devote quite some space in this report to discussing and analyzing various aspects of ac-
cess control that have a very strong practical impact. In particular, we touch on the issues of coping with
a potentially massively distributed network of ontologies, strong and weak authorization, a range of collab-
orative interactions, accountability and traceability, and also the connectivity with the legacy systems. From
these issues, let us mention more explicitly at this point the collaborative aspects. These are fundamental in
the environment consisting of networked ontologies – one user may need to participate in a workflow or a
process with several other users, a need to access resources often arises on a short notice and temporarily,
authorities may need to be delegated, yet monitored for confinement and expiration.

These practical concerns are addressed in chapter 5. This chapter is the clearest ‘proposal’ for treating the
access rights in NeOn; however, it may seem unbalanced against the previous four sections. Nevertheless,
as we mentioned above, we believed it was more valuable to make a lighter introduction to the subject,
assess our proposals in collaboration with the use case partners, and then elaborate the proposal in the way
fitting the partners’ needs. In fact, this has been already started as we discussed the scenarios exemplified
in section 6.2 with partners from ISOCO and FAO.

Particularly encouraging was the outcome of these discussions that our proposal seems likely to facilitate
a thorough, yet sufficient, management of workflows and business processes. The principle of emulating
workflows using the system of access control follows the idea of delegating the access rights between the
nodes of the workflow – either thanks to a mandatory assignment of the activity order or thanks to an ad-hoc,
bottom-up delegation of access rights between the users.

What is probably even more interesting is the fact that the proposed treatment of access control may be
easily combined with the system of roles – for instance, editorial roles identified in the FAO use case [ICJ+06]
or business process roles presented in the ISOCO invoicing case [GDM+06a]. Namely, the existing roles
may act as implicit acts of delegations that take place once a user at a given stage submits his or her
modifications to the shared ontology portal. These implicit delegations may be predefined, and thus form
a part of the workflow definition. Importantly, they can be complemented by explicit delegations that are
triggered or requested by the individual users; e.g. to override the default workflow or to create a temporary,
ad-hoc collaboration with a colleague. However, both forms of delegations are implemented in precisely the
same way, which is obviously desirable to maintain the user experience as uniform as possible.

Unfortunately, we cannot make any further commitments to managing workflows, since at the time of writing,
the authors did not have the opportunity to consult the emerging ideas with the partners working on the
workflow formalization. This can be one of our objectives for the next period, and we believe the greatest
benefit from this collaboration would be in a more formal definition of the proposed access control strategy.

In a similar tune, we were not attempting to formally include the access control proposal into the formal
NeOn model of networked ontologies. Nevertheless, initial discussions took place and also the work on
generic modularization has already been included into the NeOn Model. All this forms a good groundwork
for further elaboration, formalization, and ultimately creation of an extension of the NeOn Model that would
handle all aspects related to access management. However, before going for formal models, it is important to

D4.4.1 The role of access rights in ontology customization Page 67 of 70

develop shared understanding, appreciate the options and select the appropriate level of complexity, so that
we avoid defining a theoretically sound but practically not very useful model. Once practicality is clarified with
the use case partners, we would like to move toward a more formal definition of the access control model.

Finally, in chapter 6 and in particular in section 6.2 we presented a few scenarios mentioned in the earlier
sections in a practical setting. Currently, all the scenarios are based on the concept of standard textual wiki.
While good as a ‘proof of concept’ we would like to replace these simple wiki texts with more ontological
expressivity and ontology engineering widgets. This should bring the idea of managing access even more
closely to the users from the NeOn use cases.

Conceptually, one frequent comment we received from the use case partners was regarding the operational
implementation of our proposals. While there might be some minor modifications needed to the user inter-
faces (e.g. the capability to hide and show certain widgets to reflect the authority to carry out a particular
action), the bulk of the access management is proposed with a NeOn ontology repository in mind. This is not
surprising as access control has its usual habitat in the shared rather than single user, desktop environments.
Currently, our proposals are kept at a level, which does not commit to any particular ontology repository and
registry. However, in principle, we see no reasons why the proposals could not be integrated with systems
like Oyster or Watson that are developed by the NeOn partners as a part of NeOn infrastructure.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 68 of 70 NeOn Integrated Project EU-IST-027595

Bibliography

[AG06] Donovan Artz and Yolanda Gil. A survey of trust in computer science and the semantic
web. 2006.

[BG04] Dan Brickley and Ramanathan V. Guha. Rdf vocabulary description language 1.0: Rdf
schema. W3c recommendation from 10 feb 2004, World Wide Web Consortium, 2004.

[Cen85] National Computer Security Center. Trusted computer system evaluation criteria. Rainbow
series standard 5200.28-std, US Department of Defense, 1985.

[CGL+06] Carola Catenacci, Aldo Gangemi, Jos Lehmann, Malvina Nissim, Valentina Presutti, and
Gerardo Steve. Design rationales for collaborative development of networked ontologies.
WP2 (Collaborative aspects of networked ontologies) Deliverable D2.1.1, NeOn Project,
2006.

[CGPLC+03] Óscar Corcho, Asunción Gómez-Pérez, Angel López-Cima, V. López-García, and María
del Carmen Suárez-Figueroa. Odesew: Automatic generation of knowledge portals for
intranets and extranets. In Proc. of the 3rd Intl. Semantic Web Conf., pages 802–817,
2003.

[dCdVPS03] Sabrina de Capitani di Vimercati, Stefano Paraboschi, and Pierangela Samarati. Access
control: principles and solutions. Software – Practice & Experience, 33(5):397–421, 2003.

[DDG+06] Klaas Dellschaft, Martin Dzbor, Jose Manuel Gomez, Carlos Buil Aranda, Dunja Mladenic,
and Alexander Kubias. Review of methods and models for customizing/personalizing on-
tologies. Deliverable D4.2.1, NeOn Project, 2006.

[Dem07] Using SAML and XACML for Complex Authorisation Scenarios in Dynamic Resource Pro-
visioning, volume 0, Vienna, April 2007.

[Den76] Peter J. Denning. Fault tolerant operating systems. ACM Computing Surveys, 8(4):359–
389, 1976.

[DH83] Jack B. Dennis and Earl C. Van Horn. Programming semantics for multiprogrammed
computations. Communications of the ACM, 26(1):29–35, 1983.

[dSD+07] Mathieu d’Aquin, R. Marta Sabou, Martin Dzbor, Claudio Baldassarre, Laurian Gridinoc,
Sofia Angeletou, and Enrico Motta. Watson: A gateway for the semantic web. In Proc. of
the 4th European Semantic Web Conf. (ESWC), page under review, 2007.

[dSM06] Mathieu d’Aquin, R. Marta Sabou, and Enrico Motta. Modularization: A key for the dy-
namic selection of relevant knowledge components. In Proc. of the Workshop on Modular
Ontologies, collocated with ISWC 2006, 2006.

[FGM+99] Roy T. Fielding, James Gettys, Jeffrey C. Mogul, Henrik F. Nielsen, Larry Masinter, Paul J.
Leach, and Tim Berners-Lee. Hypertext Transfer Protocol – HTTP/1.1. IETF Standard
RFC 2616, Internet Engineering Task Force, 1999.

D4.4.1 The role of access rights in ontology customization Page 69 of 70

[GDM+06a] Jose Manuel Gómez, Claire Daviaud, Berta Morera, Richard V. Benjamins, Tomás Pari-
ente Lobo, Germán Herrero Cárcel, and Gloria Tort. Analysis of the pharma domain and
requirements on the case studies. WP8 (Supporting collaboration in pharmaceutical in-
dustry) Deliverable D8.1.1, NeOn Project, 2006.

[GDM+06b] Jose Manuel Gómez, Claire Daviaud, Berta Morera, Richard V. Benjamins, Tomás Pari-
ente Lobo, Germán Herrero Cárcel, and Gloria Tort. Analysis of the pharma domain and
requirements on the case studies. WP8 (Supporting collaboration in pharmaceutical in-
dustry) Deliverable D8.1.1, NeOn Project, 2006.

[GPALC07] Jose Manuel Gómez-Pérez, Carlos Buil Aranda, Tomás Pariente Lobo, and Germán Her-
rero Cárcel. Software architecture for the neon pharmaceutical case studies. WP8 (Sup-
porting collaboration in pharmaceutical industry) Deliverable D8.2.1, NeOn Project, 2007.

[GPLCdCSFC06] Asunción Gómez-Pérez, Angel López-Cima, María del Carmen Suárez-Figueroa, and Ós-
car Corcho. The odesew platform as a tool for managing eu projects: The knowledge web
case study. In Intl. Conf. on Managing Knowledge (EKAW), pages 389–396, 2006.

[Gra73] Mark Granovetter. The strength of weak ties. American Journal of Sociology, 78:1360–
1380, 1973.

[GS00] Tyrone Grandison and Morris Sloman. A survey of trust in internet appli-
cations. IEEE Communications Surveys and Tutorials, 3(4), September 2000.
http://www.comsoc.org/livepubs/surveys/public/2000/dec/index.html.

[HSH+05] Jens Hartmann, York Sure, Peter Haase, Mari del Carmen Suarez-Figueroa, Rudi Studer,
Asuncion Gomez-Perez, and Raul Palma. Ontology metadata vocabulary and applica-
tions. In Proc. of the Workshop on Web Semantics, collocated with the Intl. Conf. on
Ontologies, Databases and Applications of Semantics, 2005.

[ICJ+06] Marta Iglesias, Caterina Caracciolo, Yves Jaques, Margherita Sini, Francesco Calderini,
Fynvola Le Hunte Ward, and Malvina Nissim. User requirements and specification of
different use cases. WP7 (Ontology-driven stock over-fishing alert system) Deliverable
D7.1.1, NeOn Project, 2006.

[KE01] A. Kemper and A. Eickler. Datenbanksysteme – Eine Einführung. R. Oldenbourg Verlag,
München, Wien, vierte, aktualisierte und erweiterte edition, 2001.

[Lam71] Butler W. Lampson. Protection. In Proc. of the 5th Annual Princeton Conf. on Information
Sciences and Systems, pages 437–443, 1971.

[Maz04] Paul J. Mazzuca. Access Control in a Distributed Decentralized Network: An XML Ap-
proach to Network Security using XACML and SAML. Technical Report TR2004-506,
Dartmouth College, Computer Science, Hanover, NH, 2004.

[MMAU03] Bill MacCartney, Sheila A. McIlraith, Eyal Amir, and Tomas E. Uribe. Practical partition-
based theorem proving for large knowledge bases. In Proc. of the 18th Intl. Conf. on
Artificial Intelligence (IJCAI), pages 89–98, 2003.

[MYS03] Mark S. Miller, Ka-Ping Yee, and Jonathan Shapiro. Capability myths demolished. Tech-
nical report srl2003-02, Systems Research Lab, Johns Hopkins University, 2003.

[NM04] Natasha F. Noy and Mark A. Musen. Specifying ontology views by traversal. In Proc. of
the 3rd Intl. Semantic Web Conf. (ISWC), pages 713–725, 2004.

[SCFY96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based
access control models. IEEE Computer, 29(2):38–47, 1996.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 70 of 70 NeOn Integrated Project EU-IST-027595

[SD92] HongHai Shen and Prasun Dewan. Access control for collaborative environments. In Proc.
of the ACM Conf. on Computer-Supported Collaborative Work, pages 51–58, 1992.

[Sho05] Idan Shoham. Beyond roles: A practical approach to enterprise user provisioning. White
paper (id-synch), M-Tech Technology, 2005. http://idsynch.com/docs/beyond-roles.html.

[SK04] Heiner Stuckenschmidt and Michel Klein. Structure-based partitioning of large concept
hierarchies. In Proc. of the 3rd Intl. Semantic Web Conf. (ISWC), pages 289–303, 2004.

[Sow00] John F. Sowa. Ontology, metadata, and semiotics. In B. Ganter and G.W. Mineau, ed-
itors, Conceptual Structures: Logical, linguistic and computational issues, pages 55–81.
Springer Verlag, 2000.

[SS75] Jerome H. Saltzer and Michael D. Schroeder. The protection of information in computer
systems. Proc. of the IEEE, 63(9):1278–1308, 1975.

[SWM04] Michael K. Smith, Chris Welty, and Deborah L. McGuinness. Owl web ontology language
guide. W3C Recommendation from 10 Feb 2004, World Wide Web Consortium, 2004.

[VdWB05] R. Van de Walle and Ian Burnett. The MPEG-21 Book. John Wiley & Sons, Chichester,
UK, 2005.

[VG06] Max Völkel and Tudor Groza. Semversion: An rdf-based ontology versioning system. In
Proc. of the IADIS Intl. Conf. on WWW and Internet, pages 195–202, 2006.

[ZL04] Cai-Nicolas Ziegler and Georg Lausen. Spreading activation models for trust propagation.
In Proceedings of the IEEE International Conference on e-Technology, e-Commerce, and
e-Service, Taipei, Taiwan, March 2004. IEEE Computer Society Press.

[ZY04] Qing Zhang and Ting Yu. A classification scheme for trust functions in reputation-based
trust management. In ISWC Workshop on Trust, Security, and Reputation on the Semantic
Web, 2004.

