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The work presented here is of interest to NeOn because it illustrates and quantifies the process of 
(manual) ontology construction and evolution through time. The methodology we used to predict 

uld be incorporated into the NeOn software toolkit as a helpful aid to human 
, thus providing functionality that is not widely available in other ontology 

1.2 Related work 

are deduced from analyzing the ontology structure itself), usage-driven (changes are 
recommended by observing the usage patterns over time) and data-driven (which is based on 
changes in the underlying data that describes the domain of interest). 

1. Introduction 
Many ontologies are not static objects. If an ontology is a shared conceptualization of a domain, it 
is not surprising that it may have to change in response to changes in either the domain itself, or in 
our understanding of it, or in the purposes with which we are building a shared conceptualization of 

an aid to the people maintaining the ontology. 

In this document we begin by discussing an example of a large real-world ontology whose 
evolution over the course of several years can be readily observed, namely the topic hierarchy of 
the Open Directory Project (ODP; see http://www.dmoz.org/). We identify the most common types 

observations, we decide to focus on trying to predict one specific type of structural changes: the 
ditio  of a new subconcept as a child of an existing parent concept, from which the new concept 

so ta es a few instances. This is one of the more common types of structural changes in the 
DP, nd it is also the kind of operation that appears amenable to an automatic prediction 

approach. 

e the  discuss how the problem of predicting this kind of subconcept additions can be formulated 
 a m chine learning task. The main challenge here is to describe a concept by a set of features 

 such a way that a predictive model (obtained through machine learning) will be able to predict, 
om th se features, whether a new subconcept should be added below the given concept or not. 
ur ap roach is based on the assumption that the ontology contains not only concepts but also 

s  
ance  the parent concept. We cluster the instances of the parent concept and compute

, and a new subconcept should be added if there exists a subgroup of closely related
s  

eral st istical properties of the resulting partition of the instances into clusters. In the case of 
e instances are textual documents, so that techniques from information retrieval can be 
needs of cluster analysis. 

e als  present an experimental evaluation of the proposed approach. Experiments on the ODP 
tolog  show that this is feasible approach for predicting this type of ontology changes. 

inally e will discuss a few ideas for future work, especially with a view to predicting other types 
 stru ural changes that are not addressed by the approach presented in this report. 

1.1 Connection to NeOn 

structural change co
editors of ontologies
editing software. The approach presented in this deliverable could be applied on many lightweight 
ontologies, especially those involving textual documents as instances. As such, it can be of interest 
for the FAO case study. 

[12] and [10] defined three types of change discovery: structure-driven (where suggested changes 
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An example of work 
incorporation of data-driven change discovery into

focusing on usage-driven change discovery is [9]. [8] discussed the 
 a framework for learning an ontology from a 

has been discussed in the deliverable D1.6.1, 

corpus of textual documents.   

For a recent overview of the area of ontology change, and its relationship with ontology evolution, 
merging, and integration, see the survey by Flouris et al. [13]. 

Within the NeOn project, ontology change 
“Dynamics of Metadata” [14], which defines a number of ontology change operations. The 
operations defined there are relatively low-level, whereas the changes which we attempt to predict 
in the work reported in the present deliverable are somewhat higher-level, and can be seen as 
aggregations of several low-level operations in the sense of D1.6.1. A more detailed discussion of 
this relationship will be presented in Section 2.4. 
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ontology, the concepts are actually topical categories; they are organized into a tree via 
e parent-child relationship. In addition there also exists another type of relationships, the 

“symbolic links”, which point from a category to another category that is not a child of the first but 
deals with a related topic. Each category has a name and a short description (this description is not 
usually shown to the user while browsing the ODP web pages; however, it is available in the 
downloadable XML files containing a dump of the entire ODP ontology). In practice, different 
categories may have the same name, and to obtain a unique name for a category, one must 
concatenate the names of all the categories on the path from the root of the hierarchy to the 
category in question. 

In addition the ODP ontology contains instances; these are actually links to external web pages. 
Besides the URL of the external web page, each instance also contains a title and a short textual 
description of the page, usually one or two sentences long. Thus we will regard each instance as a 
short textual document, and techniques from the area of text mining will be used in dealing with the 
data. 

Note that our approach for predicting structural changes is crucially dependent on the fact that the 
ontology is well populated with instances. It is not, however, dependent on the fact that the 
instances are textual documents. As we will see later, the proposed approach only assumes that 
the instances can be clustered; for that, the only thing one really needs is a measure of similarity 
(or distance) between the instances. 

The ODP ontology is interesting for our purposes because snapshots of the ontology at different 
points in time are available. The ODP makes available approximately one snapshot per month, 
usually near the beginning of the month and reflecting the state of the ontology on a particular day. 
Almost 50 such snapshots are available, one for each month from July 2003 onwards, as well as 
for a few earlier months (going back all the way to January 2001). These snapshots can be 
downloaded from http://rdf.dmoz.org/rdf/archive/. 

One problem with the ODP dataset, from the point of view of predicting structural changes, is that 
any two consequent snapshots are approximately a month apart and a number of structural 
changes can take place during that time period. Sometimes several of these structural changes 
affect the same part of the ontology, and it isn’t possible to uniquely determine the exact sequence 
of structural changes that took place. We developed a set of heuristics to compare two snapshots 
of the ontology and output a set of operations that could change the earlier snapshot into the later 
one. Of course, there is no guarantee that this is exactly the same sequence of operations that was 
actually performed by the human editors of the ODP ontology, as the same changes in the 
ontology can be effected through several different sequences of operations. In addition, the 
sequence of operations will depend on what set of elementary transformations one is willing to 
employ. 

2. Identifying structural changes by comparing two states of an 
ontology 

2.1 The Open Directory Project dataset 

To investigate the issue of structural changes in an ontology, it is helpful to consider a real-world 
ontology for which it is possible to observe the changes through a period of time. Additionally, the 
ontology should be reasonably large, so as to provide a sufficient amount of data for the training of 
predictive models. We decided to use the topic ontology of the Open Directory Project (ODP, 
available from http://www.dmoz.org/). 

In the ODP 
th
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2.2 Low-level structural changes 

Changes in the ontology may be roughly divided into those that affect the categories (i.e. concepts) 
and those that affect the documents (i.e. instances). The latter group consists of the inclusion of 

al web pages) into the ontology, removal of old 
of existing documents within the ontology. We will 

DP web site. It could only be recovered if the past state of 

e previous month’s snapshot, it is easy to see which categories are missing 

p/Computers/Open_Source/Software/Games/FPS 

are/Games/Shooter 

 

Similarly, the deletions and additions related to LDAP show us that the whole LDAP subtree, which 
had previously been a subtree of .../Internet/Servers/Directory, has been moved under 
.../Internet/Protocols instead. Additionally, the Products subtree has been renamed into Software 
and rearranged somewhat, while the Standards_and_Organization subtree has remained 
unchanged. 

new documents (e.g. newly discovered extern
documents (e.g. dead links), or rearrangement 
not attempt to predict these document-level operations because, first of all, most of them cannot 
really be understood as causing structural changes in the ontology, and secondly, because they it 
would be difficult to predict them without additional (and often unavailable) external data. For 
example, a document may have been removed from the ontology because the external web page 
to which it pointed had changed or had gone offline; but this kind of information is not available 
within the ontology snapshots on the O
the external web pages in question was available, e.g. through the internet archive 
(http://www.archive.org/). Similarly, predicting the inclusion of new documents would require 
information about which web pages were available at a certain point in the past, so that they could 
have been discovered by the ODP editors and considered for inclusion in the ontology. However, 
we consider such questions to be outside the scope of this deliverable. 
Thus we will focus on changes involving categories instead. In principle, one snapshot of the 
ontology can always be transformed into another one by a sequence of two elementary operations: 
addition and deletion of categories. By comparing the set of categories in one snapshot with the 
set of categories in th
and which are new. For example, the following list shows a subset of the changes that we may 
notice within the Top/Computers subtree of the ontology between April 3 and May 1, 2007. “DEL” 
indicates that a category was deleted (i.e. it was present on April 3 but not on May 1) and “ADD” 
indicates that it was added (i.e. it was present on May 1 but not on April 3): 
DEL To
DEL Top/Computers/Software/Internet/Servers/Directory/LDAP 
DEL Top/Computers/Software/Internet/Servers/Directory/LDAP/Products 
DEL Top/Computers/Software/Internet/Servers/Directory/LDAP/Standards_and_Organizations 
DEL Top/Computers/Software/Internet/Servers/Directory/LDAP/Products/Related_Middleware 
DEL Top/Computers/Software/Internet/Servers/Directory/LDAP/Products/Related_Client_Apps 
ADD Top/Computers/Open_Source/Softw
ADD Top/Computers/Programming/Languages/Smalltalk/Squeak/Croquet 
ADD Top/Computers/Programming/Languages/Smalltalk/Squeak/Croquet/News_and_Media 
ADD Top/Computers/Internet/Protocols/LDAP 
ADD Top/Computers/Internet/Protocols/LDAP/Standards_and_Organizations 
ADD Top/Computers/Internet/Protocols/LDAP/Software/Client 
ADD Top/Computers/Internet/Protocols/LDAP/Software/Server 
ADD Top/Computers/Internet/Protocols/LDAP/Software

As we can see from this list, it is unsatisfactory to describe the transformation of one snapshot to 
another solely through these two types of low-level operations. Although one can in principle 
transform the April snapshot to the May snapshot by deleting the first six categories and then 
adding the next eight ones, it is clear that the human editors working on the ontology must have 
really conceptualized their work as a sequence of more abstract, higher-level operations, each of 
which may then be manifested in one or more low-level additions and deletions of the type seen in 
our list above. 

In our example, we can see that the removal of .../FPS and the addition of .../Shooter are really two 
related operations: in other words. “FPS” has simply been renamed “Shooter” (note that FPS is 
itself nothing but an acronym for “first-person shooter”, a genre of computer games).  
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News_and_Media child, is a genuinely new subtree, in 
which not only the categories themselves are new in the May 1 snapshot, but they also (as it turns 

e of these subcategories, 

ty ODP categories may 
import some part of the existing hierarchy of 

rchy. We consider such changes to be 
abstract decisions by a human 

hanges will 
 previously 
estion was 

a, and it may therefore be predicted 
or decides that a category has 

subcategories 
n divided among these 

n two snapshots, and where several such operations affect the same part of the 

lthough this is a common operation, these are not really structural changes and so 

Finally, the .../Squeak/Croquet, with its 

out) contain documents that did not exist at all in the April 3 snapshot. This means that evidently an 
entirely new set of external web pages came to the attention of the ODP editors, dealing with a 
topic that has previously not been represented in the ontology. Thus not only the documents were 
added but a new category was created for them. 

There also exist other types of structural changes not illustrated by the above example. One typical 
ODP phenomenon, which accounts for many additions of new categories, is the creation of new 
subcategories in advance, i.e. without at the moment having any documents to populate them with. 
The human editors of the ODP create such additions in the understanding that documents for them 
are likely to eventually appear but the structure of the subtree is clear and predictable enough that 
the subcategories may be created right away and will then be used to guide the inclusion of new 
documents in the tree. For example, by comparing the snapshots for April 1 and May 4, 2004, we 
see that  36 new children were added below the category Top/Computers/Programming/Internet/-
ASP/ASP.NET/Web_Hosting. The names of these children are simply the letters A through Z and 
the digits 0 to 9. Clearly the intention was to divide an existing list of internet hosting providers into 
smaller subcategories based on the first character of their name. Som
e.g. J and Q, were initially empty (i.e. no hosting providers had names beginning in J or Q), but 
they were created anyway for the sake of consistency. 

Similar sets of subcategories (many of which are initially empty) are sometimes created 
corresponding to other interesting sets of concepts from the real world, e.g. names of geographical 
entities. A typical example is to have 51 new children suddenly created for a given category, 
corresponding to the U.S. states and the District of Columbia. In other areas of the ODP ontology, 
parts of the ontology may correspond to existing ontologies such as the hierarchy of taxonomic 
units used in zoology and botany. Suddenly a whole subtree of mostly-emp
spring into existence when an editor has decided to 
zoological orders, families, genera etc. into the ODP hiera
too strongly dependent on background knowledge and high-level 
editor to be predictable by a computer. Therefore, our efforts to predict structural c
focus on situations when a new category has been added and some documents from
existing categories transferred into it; this suggests that the structural change in qu
genuinely an editor’s response to the available dat
automatically given the same data. An example may be that an edit
too many documents and is too diverse, and it may therefore be split into several 
corresponding to narrower subtopics, with the documents the
subcategories. 

2.3 Heuristics for the identification of higher-level structural changes 

As we have seen in the previous section, low-level additions and deletions of categories can be 
easily observed by comparing two snapshots of the ontology, but the really interesting operations 
are more abstract and each such operation can give rise to several low-level additions and 
deletions. In addition, many such operations can take place in the period of time (e.g. a whole 
month) betwee
ontology, it can be difficult to identify the abstract operations given the set of low-level additions 
and deletions that can be discerned from the data. Thus, it is helpful to develop reasonably robust 
heuristics that can identify at least some of these higher-level operations, with the understanding 
that we cannot expect them to correctly identify them in all situations. 

As it turns out, the largest group of low-level additions and deletions are actually due to the 
renaming of categories (e.g. FPS to Shooter in the example in the previous section). If a category 
with many descendants is renamed, this may manifest itself as a large number of low-level 
additions and deletions (as if each descendant was deleted and then re-created under a new path 
in the tree). A
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we want to recognize them and exclude them from further consideration. For this purpose we use a 
heuristic based on the notions of precision and recall from information retrieval. Given a category C 
from the old snapshot that does not appear (under the exact same name) in the new snapshot, we 
consider the set S of all documents from this category and its descendants (in the old snapshot). 
For each category C' of the new snapshot, we can similarly form a set S' of all documents of this 
category and its descendants. Then the recall of C' with respect to C can be defined as |S∩S'|/|S|, 

cuments may have ended up in C'; these 

Top/E/C'/D1' and Top/E/C’/D2’, then it is reasonable to refer to this as a 
move operation on the entire subtree rooted in Top/A/B/C, rather than as a set of operations that 
happened individually and separately to C, D1 and D2. In general, the subtree rooted in C may be 

hildren), so the 
heuristic we actually use is the following. We say that there is a strong match between the subtree 

and the precision of C' with respect to C can be defined as |S∩S'|/|S'|. If C' is to be recognized as a 
new incarnation of C (under a new name), it should ideally have high recall and high precision as 
well. In information retrieval, precision and recall are traditionally combined into a value called the 
F1-measure, which is simply the harmonic mean of precision and recall: F1 = (2 · precision · recall) / 
(precision + recall). As the harmonic mean, F1 is high only if both precision and recall are high. 
Insisting on a high recall is obviously desirable, but a good argument can be made for requiring 
high precision as well. For example, C may have been renamed into C' but some of its documents 
may have been moved into the parent of C'. Thus the parent will have higher recall than C', but 
typically (since it contains many things that were never in either C or C') much lower precision; 
thus, if we use F1 instead of just recall, we will successfully avoid matching C with the parent of C' 
and will correctly match it with C' itself instead. 

Note that it is possible that new documents were introduced into the ontology in the time between 
the old and the new snapshot, and some of these do
would increase the size of S' but not of S∩S' (as they did not appear in the old snapshot), whereby 
decreasing the precision. Thus, to prevent such new documents from unfairly affecting the match 
between C and C', we take into S' only those documents that have already existed in the ontology 
at the time of the old snapshot. 

Thus, for each deleted category from the old snapshot, we find its best match (i.e. the one with 
maximal F1) in the new snapshot. In principle, it is in possible that there is no really good match, 
e.g. if the category and its documents were really deleted from the ontology, rather than simply 
renamed. In our experience, such deletions are rare; however, since we often work with just a part 
of the whole ontology for reasons of faster experimentation (e.g. just the subtree rooted in 
Top/Computers, etc.), it can happen that a category is moved outside of the part of the ontology 
that is under consideration, which is thus effectively the same as if it had been deleted entirely. 

For the purposes of detecting the renaming and moving of categories, we consider only matches 
with a recall of at least 90%. We will refer to these as “strong matches”. The next step is to 
combine the matches on the level of categories into matches on the level of entire subtrees. For 
example, if a deleted category Top/A/B/C, with children Top/A/B/C/D1 and Top/A/B/C/D2, is found 
to match strongly with a new category Top/E/C', and furthermore its two children match strongly 
with two new categories 

deeper (i.e. there may be grandchildren and other descendants in addition to just c

rooted by C (in the old snapshot) and the one rooted by C' (in the new snapshot) if the following 
two conditions are met: (1) For each descendant D of C (in the old snapshot), there must exist an 
strong match sm(D) (in the subtree rooted by C' in the new snapshot); and (2) furthermore,  for 
each such D we require that parent(sm(D)) = sm(parent(D)). In other words, we consider a strong 
match between subtrees to exist in cases when a strong match exists for each category in the 
subtree and the matches preserve the parent-child relationships. At the same time, our definition is 
robust in the sense that the addition of new categories into the subtree rooted by C', or the merging 
of several old categories into a new one, does not prevent us from recognizing the strong match 
between the subtrees. 

The strong matches between entire subtrees, once they have been identified, are a good first step 
towards the identification of several types of higher-level structural changes: 

• If the subtree of C (in the old snapshot) strongly matches the subtree of C' (in the new 
snapshot), and C' did not exist in the old snapshot, and C and C' have the same parent, 
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ges, merges into parent and merges into other 

hange, and since moves are already fairly rare relative to the 

and no other subtree of the old snapshot strongly matches that of C', then we say that C 
has been renamed into C'. 

• If the same conditions are true except that C and C' do not share the same parent, we say 
that C has been moved to become C'. 

• If, on the other hand, C' has already existed in the old snapshot or it is new but some other 
subtree besides that of C has strongly matched the subtree of C', then we say that C has 
merged into C'. Sometimes a category may merge into its parent, for example if the editor 
has decided that the previous subdivision was excessively fine-grained and the topics 
represented by the categories were too narrow. On the other hand, sometimes a category 
merges into some more distant relative rather than a parent. It can also happen that several 
categories merge into one. 

As an example, the chart in Figure 1 shows the frequency of these various types of higher-level 
ontology changes within the Top/Computers subtree of the ODP ontology, over the last three 
years. As has been described above, all the category deletions that have been observed as low-
level structural changes have now been explained as either renames, moves, or merges, with 
merges further divided into many-to-one mer
(nonparent) categories. What remains are the additions of genuinely new categories, rather than 
categories which appear new but are included in a strong subtree match with some formerly 
existing category (meaning that they are really the result of a rename, move or merge). It can be 
seen that additions are by far the most frequent structural changes, followed by renames and 
moves. Merges are comparatively rare. Since it is debatable to what extent a rename can be 
considered a truly structural c
additions, we decided to concentrate on additions from now on as the most important and most 
frequently occurring type of structural change in the ODP ontology. 
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Figure 1: Frequency of various types of ontology changes. 
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2.4 D

The e
and e
differ from those of D1.5.1 in two main ways. Firstly, they are not as fine-grained; our operation of 
cat
discuss
catego
catego
ontolog
have s
(URL, t ss of which category they belong to.  

2.5 Different types of category additions 

As we saw on Figure 1, the addition of new categories is the most common type of structural 
change, even after we exclude the categories that seem to be new but are really just old categories 
that have been renamed, moved or merged. In this section we will look at the additions of new 
categories in more detail. If we take the total over the entire three-year period covered by Figure 1, 
we find that there were 1115 category additions within the Top/Computers subtree during this 
period. Figure 2 shows how these additions can be divided into several kinds. 

First of all, sometimes what is added is not just a simple leaf node of the tree but a whole subtree, 
consisting of a category and one or more children and possibly other descendants as well. Thus it 
turns out that approx. 20% of the newly added categories had a parent that was also newly added 
at the same time (or at least within the same month – remember that the snapshots of the ontology 
that we worked with are approximately one month apart from each other). We will not attempt to 
predict the addition of such categories, as it is challenging enough to predict the addition of an 
individual category, much less of a whole subtree. Thus the remaining groups of additions 
discussed in this subsection consist of new categories added to a previously existing parent. 

Approximately 10% of the new categories were empty, i.e. they contained no documents at all. As 
has been discussed in the previous section, these are mostly caused by systematic additions of 
large groups of sibling categories, e.g. corresponding to U.S. states or to letters of the alphabet. 

Approximately 20% of the new categories are not empty, but they contain only documents that did 
not exist in the ontology at the previous point in time for which a snapshot is available. This 
suggests that the category has been added on the basis of external web pages that were newly
discovered and in  2.2), or that the 
category has bee f the entire ODP 
ontology. 

iscussion: relationship to the ontology changes from D1.5.1 

 N On deliverable D1.5.1, “Dynamics of Metadata” [14], has already presented a very thorough 
 d tailed typology of ontology change operations. The operations that we focus on in this report 

egory addition, for example, corresponds to a whole sequence of the kind of operations 
ed in D1.5.1 (creation of a new category; creation of a parent-child link between the new 

ry and its parent; and the transfer of some of the instances of the parent into the new child 
ry). Secondly, some of the D1.5.1 operations do not apply to the relatively simple ODP-like 
ies with which we deal here. For example, in ODP the categories and instances do not 

tructured attributes (with slots, etc.), and furthermore all instances have the same attributes 
itle, and description) regardle

Our choice of the set of operations has been informed primarily by the following considerations: 

• We wish to conceptualize the ontology editing process on roughly the same level where the 
human editors of the ODP operate. For example, an editor probably thinks “I will move the 
category C1 to make it a parent of category C2”, rather than “I will remove the parent-child 
link between C3 and C1 and then add a parent-child link between C2 and C1”. Since we 
would like to model the expertise of these editors, we would like to think in terms of the 
same operations that they probably use. 

• Additionally, we require operations of the kind that can be observed in the available ODP 
data, and that can furthermore be modeled and predicted via a machine learning approach. 
For example, since in the ODP a new category is never added without also being clearly 
defined as the child of some other category, we cannot really model a “concept creation” 
operation separately from a “creation of a parent-class link” operation. 

 
cluded in the ontology (e.g. the Croquet example from Section
n moved into the Top/Computers subtree from a different part o
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 been obtained by 
splitting a previously existing parent category. This group of additions was defined as follows: the 

ixture of old documents 
 

half of the
doc
P. The
include
docum

Approximately 44% of the new categories could reasonably be said to have

new category (e.g. C) must be the child of a previously existing parent (e.g. P); it must contain at 
least one document from the old snapshot of the ontology (although it may also contain zero or 
more new documents), and of these documents from the old snapshot, the majority must come 
from P or one of its descendants, rather than from some other part of the ontology that does not lie 
below P. In other words, to consider an addition to be a split of an existing category, we require 
that the new child adopts more documents from the parent than from other parts of the old 
ontology. This is the type of additions that our prediction efforts will chiefly focus on. Unfortunately 
it turns out that most of the categories added in this way are fairly small; only approx. a third of 
them (16% of all additions) contain at least five documents from P. 

Finally, the remaining additions result in categories that contain some m
from P, old documents from other parts of the ontology, and entirely new documents. In approx.

se (4% of all additions), the new documents predominate; in the others most of the 
uments are from the old ontology, but with those from P outnumbered by those from outside of 

se new categories are thus obtained by a combination of new data (web pages newly 
d in the ODP directory) and of rearranging and moving of existing data (previously existing 
ents), and it is not clear that they can be characterized in any unified way. 

New category whose 
parent is also new

19%

Added by splitting the 
parent
44%

Empty new catego
Mostly new documents

Others
4%

ry
10%

All documents are new
19%

4%

 

Figure 2: Frequency of various types of category additions. 

2.6 Prediction of category additions as a learning problem 

One can treat the problem of predicting category additions as a machine learning problem. Each 
example of the learning problem consists of a category and a point in time; the question to be 
answered is whether a new subcategory should be created below the given category at the given 
point in time. Thus, this is a binary (two-class) classification problem, with the positive class 
consisting of those examples where the addition of a child category is necessary, and the negative 
class consisting of those where it isn’t. 
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The main open question at this point is how to describe each example by a set of features (or 
attributes) such that the resulting representation will be suitable as an input for a machine learning 
algorithm. The features should contain information that is relevant for making a decision whether a 
subcategory is needed or not. As discussed in Section 2.4, we ignore those additions of 
subcategories that are clearly based on background knowledge external to the ontology itself; the 
remaining additions must therefore be based at least partly on the actual contents of the ontology, 
i.e. the documents in the category below which a new subcategory is going to be added. Our 
approach is based on the idea that the human editors of the ODP probably suggest the addition of 
a new subcategory when they notice, within an existing category C, a few documents dealing with 
a reasonably well-defined narrower subtopic of the general topic of C. In this case a new 
subcategory would be added as a child of C, and the documents dealing with the subtopic thus 

to clustering as a 
technique that will help us assess whether such subsets of tightly related documents actually exist. 

2.6.1 Representing documents with the bag-of-words model 

We begin by representing each document by a vector using the vector space model (also known 
as “bag of words”), which is an established approach in information retrieval. The vector x 
representing a document d contains as many components as there are different words in our 
dataset. (This means that the number of components is very large, but fortunately the vector is 
very sparse: for any particular document d, most of the words don’t appear in it, and thus most of 
the components of its corresponding vector are 0.) For a word w, the vector x that represents a 
document d contains a component 

 xw = TF(w, d) · IDF(w). 

Here, TF(w, d) is the term frequency of w in d, i.e. the number of occurrences of the word w in the 
document d. IDF(w) is the inverse document frequency of the word w, and is defined as 

 IDF(w) = log(DF(w) / N), 

where DF(w) is the document frequency of w, i.e. the number of documents that contain w, and N 
is the total number of all documents. (The purpose of IDF is to reduce the influence of words that 
appear in a large number of different documents, on the assumption that such words are not useful 
for distinguishing between documents.) Finally, the vector x is divided by its own length, so that
henceforth it has a Euclidean length of 1; this is useful because we want the feature vector x to
reflect the subjec

The bag of words representation provides a useful and convenient way of measuring how closely 
related two documents are: given the vectors x and y representing two documents, we can 

 cos(x, y) = xTy / (|x| · |y|), 

identified would be moved into the new subcategory (whereas they had previously resided in C or 
possibly in one of its descendants). Since these documents all deal with a relatively narrow 
subtopic, one would hope that they are closely related to one another, use similar terminology, etc. 
If we represent them as points in a multidimensional space, we would expect to find them relatively 
closely together, closer than the average distance over all documents from C (which, covering a 
somewhat wider topic, would be expected to be dispersed more widely in space). To express this 
using data mining terminology: we would expect the documents of the new subcategory to form a 
cluster within the set of all documents of the parent category C. Thus, we turn 

 
 

t of a document, rather than its length. 

compute the cosine of the angle between them: 

which is simply the same as the dot product xTy if the two vectors are normalized to unit length (|x| 
= |y| = 1). The more closely related the subject of the two documents is, the smaller the angle 
between their vectors x and y is likely to be, and the higher the cosine will be. 
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 var(A) = (1/|A|) Σ  [1 – cos(x, centroid(A))]. 

During clustering, we select, as the next cluster to be split, the one that has the greatest variance. 

2.6.2 Clustering 

Consider the set of all documents that have been assigned to a category C or any of its 
descendants. This is the set within which we would like to find any tightly coupled cluster; this 
would help us decide whether any new subcategories should be introduced below C. 

We will use the well-known k-means clustering algorithm to cluster our set of documents. The 
variant we use is known as hierarchical 2-means clustering (also known as bisecting k-means [7]): 
begin by treating the whole set of documents as a single cluster; then, at each step, select a 
cluster and split it into two. We use the following termination criteria: we stop the process when 
there are 10 clusters, we do not try to split clusters containing less than 5 documents, nor do we 
split a cluster if it turns out that one of its two resulting subclusters would contain just one 
document. 

For a cluster A, we define its centroid, which is simply the average of its elements, normalized to 
unit length: 

 centroid(A) = Σx ∈ A x / |Σx ∈ A x|, 

and the variance, which is simply the average distance between the documents in the cluster and 
its centroid. Since the cosine measures similarity, we define the distance as 1 – cosine: 

x ∈ A

To split a cluster A into two subclusters A1 and A2, the 2-means algorithm takes the following steps: 

 1. Perform an initial partition of A into two subclusters, A1 and A2. 
 2. Let c1 := centroid(A1) and c2 := centroid(A2). 
 3. Let B B1 := {x ∈ A : cos(x, c1) > cos(x, c2)} and B2B  := A – BB1. 
 4. Let A1 := B1B  and A2 := BB

until the termination criterion is met. 

ally defined to stop when a certain number of iterations has been 

2. 
 5. Repeat steps 2 through 4 

The termination criterion is usu
performed, or when the number of reassignments (i.e. |A1 ∩ BB2| + |A2 ∩ B1B

the 

x ∈ A

1 2 1

|, which is the number of 
documents that were moved from the first subcluster to the second one or vice versa) drops below 
a threshold. Our criterion was to stop after five iterations or if there were no reassignments in 
last iteration. 

Various ways have been proposed to define the initial partition of A into A1 and A2 (in Step 1) [6]. 
For example, one may partition the same way as in Step 3, but using two randomly selected 
documents as c1 and c2. However, a slightly more sophisticated approach that often works better is 
to use principal component analysis (PCA) to find the first principal component of A, i.e. the 
direction in which the cloud of points in A exhibits the maximum variance. Let p be a unit-length 
vector in this direction; then we see that 

 x = (xTp) p + y, for a certain y that is orthogonal to p: yTp = 0. 

Thus, xTp is the orthogonal projection of x onto p. We can then compute the average of the 
projections of all points from A: 

 μ = (1/|A|) Σ  xTp, 

and we can define an initial partition of A into two subclusters as 

 A  = {x ∈ A : xTp < μ} and A  = A – A . 
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It often turns out that this initial partition is already quite good and very few reassignments are 
performed in the subsequent iteration(s) of the 2-means algorithm. 

2.6.3 From the clustering to a feature vector for the category 

Let A be the initial set of all documents in the category C (and its descendants), and let P = {B B1, ..., 
BkB

|) ΣB ∈ P Σx ∈ P cos(x, centroid(B)). 

riance: 

• The size of this cluster. Instead of using |B| directly, we use log |B|, to prevent large clusters 

• 

ar(B) / var(A). 

et of documents that would be a suitable basis for creating a new subcategory. 

stop before ten clusters have been obtained, due to the 
peat the features of the final 

ll 90-dimensional form.) 

2.6.4 Training a classifier 

g algorithm to train classifiers for 
method that has been found to 

 with a considerable number of features and training 

} be the partition of A into k disjoint clusters obtained using the hierarchical 2-means algorithm. 
We will use the following features to describe this partition: 

(1) One feature is the average cosine between each document and the cluster to which it belongs: 

 (1/|A

This is a measure of how tight clusters we have obtained by partitioning the initial set A into k 
clusters. 

(2) We find the cluster with minimum va

 B = arg minB' ∈ P var(B'). 

We use, as features, the following properties of this cluster: 

from having an excessive influence on the range of this feature. 

• The relative size of this cluster, i.e. |B| / |A|. 

The variance of this cluster, var(B). 

• The variance of this cluster, relative to that of the whole set: v

(3) We find the cluster with the maximum average intra-cluster similarity: 

 B = arg maxB' ∈ P Σ x, y ∈ B'; x ≠ y cos(x, y) / (|B'|·(|B'| –1)). 

For this cluster B, we use four features analogous to those described above in (2) for the minimum-
variance cluster. The idea here is that the average intra-cluster similarity is another measure of 
cluster compactness, and these features may therefore help the classifier identify categories with a 
compact subs

In this way we have described the partition P by nine features. Every time that our hierarchical 
clustering algorithm splits a cluster, the partition changes (one of its clusters gets replaced by two 
smaller ones), and we add, to the feature vector for the category under observation, the nine 
features describing the new partition. We let the clustering continue until there are ten clusters, 
which means that in the end the category is described by a 90-dimensional feature vector. (It is 
possible for the clustering algorithm to 
other termination criteria described in Section 2.6.2. In this case we re
partition as many times as necessary to bring the feature vector to the fu

We decided to use the support vector machine (SVM [4]) learnin
this learning problem. The SVM is a state-of-the-art learning 
perform well in many areas, including on tasks
examples. 
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 f(x) = b + Σ i=1..n αi yi K(xi, x), 

 g example (yi = +1 for positive 
, which must define before the 

ertain threshold (usually 0) as positive, 

e s e ation is relatively modest (90 features, as opposed to 
e case in text and image categorization settings), we 

x, xi) = exp[– γ ||x – xi||2] 

 select before starting the SVM training algorithm. 
unction of x while xi is held constant, this is a bell-shaped function 

that has a maximum of 1 at x = x , and elsewhere it decreases towards 0 as x moves further away 
 this bell-shaped function. The effect of 

this kernel 
weight 
with th st-neighbour classifier, but 
one  en carefully selected by the learning algorithm 
(via i , having a small number of features is not 
nec s  sufficient quantity of training examples. 

The scoring function trained by the SVM algorithm has the form 

where xi is the i-th training example, yi is the label of the i-th trainin
examples and –1 for negative ones), and K is the kernel function
training can begin; it can be any function that satisfies certain mathematical criteria. The values α1, 
..., αn and b are the output of the learning algorithm. The values of f(x) can be used to rank 
examples (the higher the f(x), the more likely x is to be positive); or, to obtain binary predictions, 
one would predict all examples x for which f(x) exceeds a c
and all other examples as negative. 

Since the featur pac used in our represent
e.g. thousands of features as is commonly th
decided to use the radial basis function (RBF) kernel: 

 K(

Here, γ > 0 is a constant parameter that we must
Note that, if we think of it as a f

i

from xi. The parameter γ influences the breadth of the bell of
in the formula for f(x) is that each training example xi votes for its own class (yi) with the 

αi, but its influence decreases as the distance of x from xi increases. Thus, the SVM model 
is type of kernel effectively becomes a softer version of a neare

 in which the influence of the neighbours has be
 the values of α ). With this class of models
es arily a problem as long as we have a
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3. Experimental evaluation 

3.1 The dataset 

In this section we describe our experimental evaluation of the proposed approach for the prediction 
of category additions. We used the Computers subtree of the Open Directory Project ontology. In 
the period under consideration, i.e. from January 2004 through October 2006 (there being no 
snapshots of the ODP from November and December 2006), the Computers subtree grew from 
7,732 categories to 8,309 categories, while the number of documents on average tended to 

198 category renames, 134 category moves, 
and 153 merges of various types. See Figure 1 for a chart showing the number of different 

oup of closely 
related documents that could have been detected in the old parent category (and then be used to 
predict an addition). Therefore, for the purposes of defining our classification problem, we limit 
ourselves to the additions of categories in which at least five documents were moved from the 
parent category into the new child category (in addition to that, some documents may also have 
been moved into the new child from the parent’s descendants or from entirely different parts of the 
ontology, and some documents completely new to the ontology may also have been added; but we 
do not set any additional constraints regarding the number of such documents). This leaves us with 
107 category additions as the basis for our prediction task. 

The question that our predictive model will attempt to answer is this: “given a category, should any 
new subcategories be added below it, as its children, during the next month?” Since there are two 
possible answers to this question, yes or no, this will be a binary (i.e. two-class) classification 
problem. A category at a given point in time is a positive example if some children (matching the 
criteria described above) have indeed been added to it between that point and the next point in 
time for which an ontology snapshot is available (i.e. approximately one month later). According to 
this definition, the above-mentioned 107 additions give rise to 98 positive examples (this is less 
than the number of additions because sometimes several children are added to the same parent in 
a certain month). 

But when is a category a negative example? For example, suppose that a comparison of the 
snapshots for March 2005 and April 2005 shows that no suitable children have been added to 
category C in the intervening period, but the comparison of the snapshots for April 2005 and May 
2005 shows one such addition. This suggests that the category C such as it was in April 2005 is a 
positive example for the purposes of our machine learning problem; but is it reasonable to say that 
C such as it was in March 2005 is a negative example, just because no additions were made to it 
between March and April? After all, the additions to the ODP ontology are handled by human 
editors, many of whom look after a number of different categories and may overlook something. 
The category C has not necessarily changed much from March to April; perhaps our editor would 
have already made the addition to C in March rather than in April, but he or she simply hadn’t 

decrease rather than increase, eventually shrinking from 143,760 documents in January 2004 to 
133,595 documents in October 2006. 

During this period, there were 964 category additions, 

operations in each month. 

Of the category additions, 482 were such that the new category is added as the child of a 
previously existing parent category and more documents have been moved into the new category 
from the parent (or its previously existing descendants) than from other parts of the hierarchy. This, 
as described in Section 2.4, is the type of additions that we will be trying to predict. However, it 
turns out that even in these cases, the number of documents moved from the parent to the new 
child category is often quite small. The hypothesis underlying our approach to the prediction of 
category addition is that the human editors of the ODP notice, in an existing category, a group of 
documents dealing with some narrower subtopic and then decide to create a new subcategory and 
move those documents into it. This hypothesis means that our approach can not be reasonably 
expected to perform well in situations where only e.g. one or two documents have been moved 
from the parent to the new child, since in this case there is effectively no subgr
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roup of documents that calls for the introduction of a new 
essively narrow definition of the negative set, we 

declare a category to be negative at a certain point in time only if no suitable children have been 
 or in the preceding or following three months. Despite this constraint, the 

ries are treated as negative examples at any particular point in time, since 
the category additions are rare relative to the total number of categories. In total, we could obtain 

d 72 negative examples. 

p 

 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 

noticed that there exists a compact subg
subcategory. Therefore, to avoid having an exc

added to it at that point
vast majority of catego

more than 168,000 negative examples from the Computers subtree in the period 2004–2006. To 
speed up the experiments and to prevent the positive examples from being completely 
overwhelmed by the negative ones during the training process, we randomly selected three times 
as many negative examples as there are positive examples. We then divided the resulting data into 
a training set (all examples from the years 2004 and 2005) and a test set (all examples from the 
year 2006). Thus, we end up with a training set containing 74 positive and 222 negative examples, 
and a test set containing 24 positive an

3.2 Experimental setu

As has been discussed in 2.6.4, we will be using the SVM algorithm to train classifiers. We use the 
SVMlight implementation of SVM by Thorsten Joachims [5]. The SVM finds a classifier by solving an 
optimization problem that maximizes a combination of two goals: the classifier should have a wide 
margin, and it should make as few mistakes on the training set as possible. These two goals are 
combined via an error cost parameter, traditionally denoted by C. The greater the C, the more 
effort the learner will place on avoiding errors on the training set; on the other hand, this leads to a 
greater risk of overfitting the training data. 

For relatively unbalanced datasets, i.e. those where the positive examples are heavily 
outnumbered by the negative ones, it is often beneficial to treat errors on positive training 
examples as more problematic than those on negative training examples. Thus, one effectively 
uses two different error costs: the baseline cost C on the negative examples and its multiple j·C on 
the positive examples. 

Thus, C and j are two tunable parameters which we will select via five-fold cross-validation on the 
training set. A third tunable parameter is γ, the width of the Gaussian functions in the RBF kernel 
(see Section 2.6.4). We tested the following parameter values: C ∈ {0.1, 1, 10, 100, 1000}; j ∈ {1, 
2, 3, 5, 10, 20, 50, 100}; and γ ∈ {0.0001, 0.0002, 0.0005,
0.1, 0.2, 0.5, 1, 2, 5}. For most combinations of these parameter settings, training a model cost 
less than a second, so that most of the time was actually spent on generating the features. 

3.3 Evaluation measures 

To evaluate the output of the classifiers, we use well-known evaluation measures from the area of 
information retrieval [2]: the breakeven point and the area under the ROC curve. 

A classifier, via its outputs f(x) as described in Section 2.6.4, effectively introduces a ranking of the 
examples from the test set (or whatever other set of examples it is used on). By selecting a 
threshold and predicting all the examples above the threshold as positive and all those below the 
threshold as negative, we can divide the examples into four groups: true positives, false positives, 
true negatives, and false negatives. These can be arranged in a contingency table: 
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Predicted class 
True class 

Positive Negative 

Positive TP (true positives) FN (false negatives) 

Negative FP (false positives) TN (true negatives) 

The following useful evaluation measures can be computed from the contingency table: 

 precision = TP / (TP + FP) 
 recall = TP / (TP + TN)  (also known as “the TP rate”) 
 FP  = FP / (FP + TN) 

 more examples get predicted as positive; TP and 
FP grow, while TN and FN decrease. As a result the recall increases, while the precision tends to 

into compromises as uncomfortable as a ranking with a 

ted to be positive) and ending at TPrate = FPrate = 1 (when everything is 

As a baseline, a model that ranked the examples in random order would achieve a breakeven point 
equal to the proportion of the positive examples relative to all examples (which is 0.25 for our 

OC curve would be 0.5. A perfect model would achieve a score 

ly important in 
cases when the overall proportion of positive documents is quite low, as it indeed is in our dataset.) 
As described in Section 3.2, we investigated 5 values of C, 8 values of j and 15 values of γ. This 
results in 600 combinations of parameter settings. We then select the combination that performed 
the best during cross-validation on the training set; using this combination of parameter settings, 
we train the final model on the entire training set, and this model would then be evaluated on the 
test set. The results are summarized in the following table: 

rate

If we slowly decrease the threshold, more and

decrease (although not necessarily in a monotonic way). The point where precision and recall are 
equal is known as the breakeven point (BEP), and is a useful evaluation measure [3]. It indicates 
what sort of tradeoffs between precision and recall are possible with the ranking produced by the 
given predictive model. To have a precision greater than the BEP, we will have to accept the fact 
that the recall will be less than the BEP; on the other hand, to have recall greater than the BEP, we 
will have to accept a precision that will be less than the BEP. Thus, the higher the BEP, the better 
our ranking is because it doesn’t force us 
low BEP. 

As an alternative to the precision and recall, one can use the TP rate and the FP rate. These are 
typically plotted on a graph, the FP rate on the horizontal axis and the TP rate on the vertical axis. 
As we decrease the threshold, both the TP rate and the FP rate grow, starting at TPrate = FPrate = 0 
(when nothing is predic
predicted to be positive). This produces a monotonically rising curve, known as the ROC curve 
(receiver operating characteristic) [1]. The area under the ROC curve is another succinct way to 
summarize the quality of the predictive model. This area turns out to be equal to the probability 
that, given a randomly chosen positive example and a randomly chosen negative example, the 
model would assign a higher score f(x) to the positive example than to the negative one. A model 
that always gets this right would achieve an area under ROC equal to 1. 

dataset), and the area under its R
of 1 according to both measures. 

3.4 Results 

We used stratified 5-fold cross-validation (CV) on the training set to investigate the influence of C, 
j, and γ parameters. (Stratified means that when dividing the documents into five folds, care has 
been taken to ensure that the proportion of positive documents in each fold is roughly the same as 
the proportion of positive documents in the dataset as a whole. This is particular
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able 1. Performance of models selected with various model selection criteria. 

Performance on the v
during 5-fold cross-

Performance on the test set 

T

alidation set 
validation Model descript

BEP  u. ROC A. u. ROC 

ion 

A. BEP 

Highest BEP during CV 0.51  0.8893 48 0.7796 0.7083 

Highest a.u.ROC during 0.5  0.8738  CV 021 0.7850 0.6667 

Highest BEP on the test set 0.4717 0.7436 0.7500 0.9011 

H  a.u.ROC on the test set ighest 0.4768 0.7495 0.7500 0.9155 

R  ranking 0.2500 0.5000 0.2500 0.5000 andom

The first row, “highest BEP during CV”, refers to the models having the greatest breakeven point 
during cross-validation. There were three models (i.e. three different combinations of parameter 
settings) with the maximum BEP here, so the other columns of the table show average 
performance over these three models. The same approach has been used in the other rows. 

The rows referring to the highest BEP/a.u.ROC on test set indicate what the best models among 
those tested here are capable of, with the caveat that we aren’t able to identify these models 
without peeking at the test data. Comparing these results with the results from the first two rows 
tells us how much room for improvement there is if we can select our models using some better 
criterion than cross-validation on the training set. We can see that the difference is not really very 
large here, and by selecting our models through cross-validation we obtain models that also 

reasonable that they perform better.) 

An interesting question at this point is whether it's better to use the maximum BEP or the maximum 
area under ROC as a criterion when selecting the parameter setting. The following figure shows a 

 600 models obtained by training an SVM under different parameter setting; the 
can see, the two measures 

perform quite well on the test set. 

For comparison, the last row of the table shows the performance of a hypothetical model that 
doesn’t learn anything and instead just outputs random scores for all the examples. The values in 
this row can be derived from the properties of the dataset and the formulas in Section 3.3. 

(The fact that the performance on the test set is better than the one during cross-validation is 
probably due to the fact that only 80% of the training set are used to train each model during cross-
validation – the remaining 20% are used as the held-out validation set. On the other hand, the 
models that were evaluated on the test set were trained on the entire training set, so it is 

3.4.1 Model selection criteria 

dot for each of the
BEP is the x-coordinate, and the a.u.ROC is the y-coordinate. As we 
are really fairly closely correlated, especially among the best models. In a situation with relatively 
few positive test examples, the BEP has a relatively small set of possible values and thus it is 
perhaps a less than ideal measure for evaluation of the performance on the test set.  
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Figure 3: Breakeven point and the area under ROC curve for 600 SVM classifiers obtained 
under different parameter settings. 

It is true that in the experiments presented in the table above, selecting the parameter settings that 
maximize the BEP during the cross-validation resulted in models that performed slightly better on 
the test set than if the parameter settings were selected by maximizing the a.u.ROC during cross-
validation. However, our impression is that it would be unreasonable to conclude that this should 
be generally the case in problems of this type; further experiments with more extensive data sets 

 the models obtained by varying the other two parameters? 
value of each parameter, we select the other two 

parameters so as to maximize the a.u.ROC measure during cross-validation. We then report this 
u.ROC achieved by the same combination of parameters on the 

would be required before this could be confirmed one way or another. 

3.4.2 Parameter tuning 

Until now we have been looking for the best combination of parameter settings by allowing all three 
parameters to vary – C, j, as well as γ. But what if we hold one of these parameters fixed at some 
specific value and then examine only
The following charts show the results. For each 

a.u.ROC value, as well as the a.
test set. 
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Figure 4: Classification performance as a function of one parameter (j, γ or C) if the other 
two parameters are tuned using fivefold cross-validation. 

e best results were achieved with j = 3, which is reasonable since this 
is exactly the ratio of the number of negative examples to the positive ones. Since there are three 

s, the domains of the features, and C is further influenced by the type of kernel and its 
parameters (e.g. γ in our case). In general, we can say that in both cases (C as well as γ) there is 
actually a fairly broad range of parameter values where good performance can be achieved. The 
results for C are somewhat surprising because there, cross-validation appears to mislead us: the 
larger values of C lead to poorer performance during cross-validation but actually better 
performance on the test set. 
 

Regarding the j parameter, th

times as many negative examples as there are positive ones, it makes intuitive sense to treat 
errors on the positive examples as three times more serious than the errors on negative examples. 
This intuition is borne out by the facts, and it turns out that the farther away j was from 3 (either 
greater or smaller), the worse the performance of the resulting models was. 

Observations regarding C and γ are less useful because, when training SVM models, the optimal 
values of these parameters depend considerably on the properties of the dataset, i.e. the number 
of feature

2007 © Copyright lies with the respective authors and their institutions. 
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4. Conclusions and Future Work 

In this deliverable we have described an approach for predicting a subset of structural changes in 
an ontology. Our approach aims to predict the addition of categories within a hierarchy of 
documents, under the assumption that the new category is a child of an existing parent category 
and that it contains at least a few documents that were formerly members of the parent category. 
We have described how this task can be formulated as a machine learning problem and presented 
experiments that show that the prediction of this type of changes is feasible.  

There are several directions along which this work could be extended. A possible next step is to try 
to devise more features with which to describe a category (in addition to the clustering-based 
features that we use currently). This could improve the performance of our current machine-
learning approach to the prediction of category additions. In particular, our current features are 
based in the idea of finding clusters of documents within the set of documents of an existing
category. However, some of these clusters may already correspond nicely to the existing 
descendants of this category, and so they should not be taken as evidence that yet another 
subcategory needs to be added. 

Another interesting extension would be to try predicting not just whether the addition of a new 
category is warranted, but also which documents it should include, and perhaps which keywords it 
should be described by. This would be in effect a second step, after the machine learning classifier 
has suggested an addition. At that point we could look for clusters in the existing set of documents 
of the parent category, find those that do not overlap well enough with any of the existing 
descendants of that parent category, and propose them as new children. 

In addition to this, it would be interesting to address other types of ontology changes. Currently, we 
have addressed the addition of categories, and even that only under certain conditions. Some of 
the additions that are not handled now include those where the new category contains few (if any) 
documents from the old ontology, but contains some entirely new documents instead. This 
sc  
one snapshot and nough into any of 
the existing categories; by clustering these documents, one could attempt to identify candidates for 

parent well enough or 
whether it should be moved somewhere else. 

siblings, and parent – the name of a category must be able to 
ifferentiate it from all these neighbours. This model could be used to evaluate all the terms with 
spect to their suitability as keywords in the name of a given category; then, if the terms that are 

actually used in the current name of the category receive a much lower score than some other 
terms, it would be a good moment to recommend that the ontology be renamed. However, a 
significant downside of this approach is that the name of a category, especially a higher-level 
category, may contain more abstract terms that are not necessarily very prominent in the actual 
documents contained within that category (and its descendants). It might be necessary to use 
WordNet or some other similar resource to find the connection between such abstract terms and 
the words that actually occur in the documents of the ontology. 

 

enario could be addressed by looking at the set of documents added to the ontology between
the next; one could take those documents that do not fit well e

new categories containing these new documents. 

Moving and merging of existing categories, which is the other major class of structural changes 
that we have observed in the ODP ontology, could be addressed by comparing each category to 
other categories, e.g. via the cosine between centroids or (more likely) via some more 
sophisticated measures. This would indicate whether it matches it current 

Finally, although this is not strictly speaking a structural operation, it would be interesting to also 
address the operation of category renaming, since this is also a fairly common operation in the 
ODP ontology. Here one possibility would be to employ a term-level approach: describe the role of 
each term within a certain category by a set of features and then build a predictive model that will 
tell if this term would be suitable as one of the keywords in the name of the category. The features 
would need to look at not just the occurrence of this term within the documents of that category, 
but also within its children, 
d
re
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ork would be to consider the problem of structural change 
Our present approach assumes a very simple 

e in more expressive 
ontologies. 

Another interesting direction for future w
prediction in semantically richer ontologies. 
ontology, consisting of a hierarchy of classes, with zero or more instances assigned to each class. 
But an ontology may also contain other types of relations, attributes, logical statements and axioms 
describing the instances and the classes, and so on. This simultaneously opens up a much wider 
space of possible structural changes and makes the problem of automatic prediction of such 
changes more difficult. It remains to be seen to what extent approaches along the lines of the work 
presented in this deliverable can be useful when dealing with structural chang
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