

NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

y: IST-2004-2.4.7 – “Semantic-based knowledge and content systems”

D 1.6.1 Predicting future structural changes in ontologies

Priorit

Deliverable Co-ordinator: Janez Brank

Deliverable Co-ordinating Institution: J. Stefan Institute
Other Authors: Marko Grobelnik, Dunja Mladenić

This d changes in an ontology. We
examine several different types of structural changes occurring in a large real-world ontology
(the Open Directory Project topic hierarchy) over the course of several years. We show how the
prediction of a particular type of structural changes, namely the addition of new subconcepts,
can be approached as a machine-learning problem. We also present an experimental

Docum

eliverable deals with the topic of prediction of structural

evaluation of our proposed approach.

ent Identifier: NEON/2007/D1.6.1/v1.0 Date due: August 31, 2007
Class De 95 Submission date: August 31, 2007 liverable: NEON EU-IST-2005-0275
Project start date: March 1, 2006 Version: V1.0
Project duration: 4 years State: Final
 Distribution: Report/Public

2007 © Copyright lies with the respective authors and their institutions.

Page 2 of 28 NeOn Integrated Project EU-IST-027595

NeOn Consortium

his document is a p of the NeOn research project e IST Pro e Commission of
the European Communities by the grant number IST-2005-027595. The following partners are involved in
the project:

Open University (OU) – Coordinator
Knowledge Media Institute – KMi
Berrill Building, Walton Hall
Milton Keynes, MK7 6AA
United Kingdom
Contact person: Martin Dzbor, Enrico Motta
E-mail address: {m.dzbor, e.motta} @open.ac.uk

Universität Karlsruhe – TH (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren – AIFB
Englerstrasse 28
D-76128 Karlsruhe, Germany
Contact person: Peter Haase
E-mail address: pha@aifb.uni-karlsruhe.de

T art funded by th gramme of th

Universidad Politécnica de Madrid (UPM)
Campus de Montegancedo
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Pérez
E-mail address: asun@fi.upm.es

Software AG (SAG)
Uhlandstrasse 12
64297 Darmstadt
Germany
Contact person: Walter Waterfeld
E-mail address: walter.waterfeld@softwareag.com

Intelligent Software Components S.A. (ISOCO)
Calle de Pedro de Valdivia 10
28006 Madrid
Spain
Contact person: Jesús Contreras
E-mail address: jcontreras@isoco.com

Institut ‘Jožef Stefan’ (JSI)
Jamova 39
SI-1000 Ljubljana
Slovenia
Contact person: Marko Grobelnik
E-mail address: marko.grobelnik@ijs.si

Institut National de Recherche en Informatique
et en Automatique (INRIA)
ZIRST – 655 avenue de l'Europe
Montbonnot Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: jerome.euzenat@inrialpes.fr

University of Sheffield (USFD)
Dept. of Computer Science
Regent Court
211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

Universität Koblenz-Landau (UKO-LD)
Universitätsstrasse 1
56070 Koblenz
Germany
Contact person: Steffen Staab
E-mail address: staab@uni-koblenz.de

Consiglio Nazionale delle Ricerche (CNR)
Institute of cognitive sciences and technologies
Via S. Martino della Battaglia,
44 - 00185 Roma-Lazio, Italy
Contact person: Aldo Gangemi
E-mail address: aldo.gangemi@istc.cnr.it

Ontoprise GmbH. (ONTO)
Amalienbadstr. 36
(Raumfabrik 29)
76227 Karlsruhe
Germany
Contact person: Jürgen Angele
E-mail address: angele@ontoprise.de

Food and Agriculture Organization
of the United Nations (FAO)
Viale delle Terme di Caracalla 1
00100 Rome
Italy
Contact person: Marta Iglesias
E-mail address: marta.iglesias@fao.org

Atos Origin S.A. (ATOS)
Calle de Albarracín, 25
28037 Madrid
Spain
Contact person: Tomás Pariente Lobo
E-mail address: tomas.parientelobo@atosorigin.com

Laboratorios KIN, S.A. (KIN)
C/Ciudad de Granada, 123
08018 Barcelona
Spain
Contact person: Antonio López
E-mail address: alopez@kin.es

D1.6.1 Predicting future structural changes in ontologies Page 3 of 28

2007 © Copyright lies with the respective authors and their institutions.

Work package participants

ken an active part in the work leading to the elaboration of this document, even if they
might not have directly contributed to the writing of this document or its parts:
The following partners have ta

Institut ‘Jožef Stefan’ (JSI)

Page 4 of 28 NeOn Integrated Project EU-IST-027595

Change Log

Version Date Amended by Changes

0.1 06/08/2007 Janez Brank Initial draft

0.2 03/09/2007 Janez Brank Adding experiment results

0.3 06/09/2007 Marko Grobelnik Overall revision

0.4 07/09/2007 Dunja Mladenić Overall revision

0.5 16/09/2007 Janez Brank Follow-up to reviewer’s comments

1.0 05/10/2007 Janez Brank Follow-up to QA comments

D1.6.1 Predicting future structural changes in ontologies Page 5 of 28

2007 © Copyright lies with the respective authors and their institutions.

mmary

This nt d es the prob cting the structural c an ontology. It
addresses onto contain in ddition to concepts. T s on an ontology
where the instances ar o roach prese is
general enough rk with ot nstances, as l re can be
defined r th

We examine th in the O roject ontology o several years
and analyze the most common type al change e. We
then present a for pred the more com changes,
namely add w conce es the subco t concept
and adopts a few instances of this existing parent concept.

We describe how this task can be formulated as a machine-learning problem and present an
experimental evaluation of this approach that shows promising results of the proposed approach.

Executive Su

 docume iscuss lem of predi hanges in
logies that stances in a he focus i

e textual d
 to also wo

cuments, but the app
her kinds of i

nted in this document
ong as a similarity measu

 ove em.

e changes pen Directory P ver a period of
s of structur s that took place during that tim

n approach
ition of a ne

icting one of
pt that becom

mon types of structural
ncept of an existing paren the

Page 6 of 28 NeOn Integrated Project EU-IST-027595

Table of Contents

NeOn Consortium ... 2

Work package participants .. 3

Change Log ... 4

Executive Summary.. 5

Table of Contents.. 6

1. Introduction ... 7
1.1 Connection to NeOn .. 7
1.2 Related work .. 7

2. Identifying structural changes by comparing two states of an ontology........................ 9
2.1 The Open Directory Project dataset... 9
2.2 Low-level structural changes ... 10
2.3 Heuristics for the identification of higher-level structural changes 11
2.4 Discussion: relationship to the ontology changes from D1.5.1 .. 14
2.5 Different types of category additions.. 14
2.6 Prediction of category additions as a learning problem ... 15

2.6.1 Representing documents with the bag-of-words model .. 16
2.6.2 Clustering... 17
2.6.3 From the clustering to a feature vector for the category.. 18
2.6.4 Training a classifier .. 18

. Experimental evaluation... 20
3.1 The dataset .. 20
3.2 Experimental setup .. 21
3.3 Evaluation measures ... 21
3.4 Results ... 22

3.4.1 Model selection criteria .. 23
3.4.2 Parameter tuning ... 24

. Conclusions and Future Work ... 26

. References... 28

ist of Figures
1. Frequency of various types of ontology changes.. 13
2. Frequency of various types of category additions... 15
3. Breakeven point and the area under ROC curve for various SVM classifiers............................. 24
4. Classification performance as a function of one parameter if the other two are tuned 25

List of Tables
1. Performance of models selected with various model selection criteria....................................... 23

3

4

5

L

D 1.6.1 Predicting future structural changes in ontologies Page 7 of 28

2007 © Copyright lies with the respective authors and their institutions.

it. Thus it is natural to ask whether such changes in an ontology can be predicted automatically as

of structural changes occurring in this ontology and analyze their frequency. Based on these

ad n
al k
O a

W n
as a
in
fr e
O p
instance
inst in
sev at
the ODP, th
used for the

W o
on y

F w
of ct

The work presented here is of interest to NeOn because it illustrates and quantifies the process of
(manual) ontology construction and evolution through time. The methodology we used to predict

uld be incorporated into the NeOn software toolkit as a helpful aid to human
, thus providing functionality that is not widely available in other ontology

1.2 Related work

are deduced from analyzing the ontology structure itself), usage-driven (changes are
recommended by observing the usage patterns over time) and data-driven (which is based on
changes in the underlying data that describes the domain of interest).

1. Introduction
Many ontologies are not static objects. If an ontology is a shared conceptualization of a domain, it
is not surprising that it may have to change in response to changes in either the domain itself, or in
our understanding of it, or in the purposes with which we are building a shared conceptualization of

an aid to the people maintaining the ontology.

In this document we begin by discussing an example of a large real-world ontology whose
evolution over the course of several years can be readily observed, namely the topic hierarchy of
the Open Directory Project (ODP; see http://www.dmoz.org/). We identify the most common types

observations, we decide to focus on trying to predict one specific type of structural changes: the
ditio of a new subconcept as a child of an existing parent concept, from which the new concept

so ta es a few instances. This is one of the more common types of structural changes in the
DP, nd it is also the kind of operation that appears amenable to an automatic prediction

approach.

e the discuss how the problem of predicting this kind of subconcept additions can be formulated
 a m chine learning task. The main challenge here is to describe a concept by a set of features

 such a way that a predictive model (obtained through machine learning) will be able to predict,
om th se features, whether a new subconcept should be added below the given concept or not.
ur ap roach is based on the assumption that the ontology contains not only concepts but also

s
ance the parent concept. We cluster the instances of the parent concept and compute

, and a new subconcept should be added if there exists a subgroup of closely related
s

eral st istical properties of the resulting partition of the instances into clusters. In the case of
e instances are textual documents, so that techniques from information retrieval can be
needs of cluster analysis.

e als present an experimental evaluation of the proposed approach. Experiments on the ODP
tolog show that this is feasible approach for predicting this type of ontology changes.

inally e will discuss a few ideas for future work, especially with a view to predicting other types
 stru ural changes that are not addressed by the approach presented in this report.

1.1 Connection to NeOn

structural change co
editors of ontologies
editing software. The approach presented in this deliverable could be applied on many lightweight
ontologies, especially those involving textual documents as instances. As such, it can be of interest
for the FAO case study.

[12] and [10] defined three types of change discovery: structure-driven (where suggested changes

Page 8� of 28� NeOn Integrated Project EU-IST-027595

An example of work
incorporation of data-driven change discovery into

focusing on usage-driven change discovery is [9]. [8] discussed the
 a framework for learning an ontology from a

has been discussed in the deliverable D1.6.1,

corpus of textual documents.

For a recent overview of the area of ontology change, and its relationship with ontology evolution,
merging, and integration, see the survey by Flouris et al. [13].

Within the NeOn project, ontology change
“Dynamics of Metadata” [14], which defines a number of ontology change operations. The
operations defined there are relatively low-level, whereas the changes which we attempt to predict
in the work reported in the present deliverable are somewhat higher-level, and can be seen as
aggregations of several low-level operations in the sense of D1.6.1. A more detailed discussion of
this relationship will be presented in Section 2.4.

D 1.6.1 Predicting future structural changes in ontologies Page 9 of 28

2007 © Copyright lies with the respective authors and their institutions.

ontology, the concepts are actually topical categories; they are organized into a tree via
e parent-child relationship. In addition there also exists another type of relationships, the

“symbolic links”, which point from a category to another category that is not a child of the first but
deals with a related topic. Each category has a name and a short description (this description is not
usually shown to the user while browsing the ODP web pages; however, it is available in the
downloadable XML files containing a dump of the entire ODP ontology). In practice, different
categories may have the same name, and to obtain a unique name for a category, one must
concatenate the names of all the categories on the path from the root of the hierarchy to the
category in question.

In addition the ODP ontology contains instances; these are actually links to external web pages.
Besides the URL of the external web page, each instance also contains a title and a short textual
description of the page, usually one or two sentences long. Thus we will regard each instance as a
short textual document, and techniques from the area of text mining will be used in dealing with the
data.

Note that our approach for predicting structural changes is crucially dependent on the fact that the
ontology is well populated with instances. It is not, however, dependent on the fact that the
instances are textual documents. As we will see later, the proposed approach only assumes that
the instances can be clustered; for that, the only thing one really needs is a measure of similarity
(or distance) between the instances.

The ODP ontology is interesting for our purposes because snapshots of the ontology at different
points in time are available. The ODP makes available approximately one snapshot per month,
usually near the beginning of the month and reflecting the state of the ontology on a particular day.
Almost 50 such snapshots are available, one for each month from July 2003 onwards, as well as
for a few earlier months (going back all the way to January 2001). These snapshots can be
downloaded from http://rdf.dmoz.org/rdf/archive/.

One problem with the ODP dataset, from the point of view of predicting structural changes, is that
any two consequent snapshots are approximately a month apart and a number of structural
changes can take place during that time period. Sometimes several of these structural changes
affect the same part of the ontology, and it isn’t possible to uniquely determine the exact sequence
of structural changes that took place. We developed a set of heuristics to compare two snapshots
of the ontology and output a set of operations that could change the earlier snapshot into the later
one. Of course, there is no guarantee that this is exactly the same sequence of operations that was
actually performed by the human editors of the ODP ontology, as the same changes in the
ontology can be effected through several different sequences of operations. In addition, the
sequence of operations will depend on what set of elementary transformations one is willing to
employ.

2. Identifying structural changes by comparing two states of an
ontology

2.1 The Open Directory Project dataset

To investigate the issue of structural changes in an ontology, it is helpful to consider a real-world
ontology for which it is possible to observe the changes through a period of time. Additionally, the
ontology should be reasonably large, so as to provide a sufficient amount of data for the training of
predictive models. We decided to use the topic ontology of the Open Directory Project (ODP,
available from http://www.dmoz.org/).

In the ODP
th

Page 10� of 28� NeOn Integrated Project EU-IST-027595

2.2 Low-level structural changes

Changes in the ontology may be roughly divided into those that affect the categories (i.e. concepts)
and those that affect the documents (i.e. instances). The latter group consists of the inclusion of

al web pages) into the ontology, removal of old
of existing documents within the ontology. We will

DP web site. It could only be recovered if the past state of

e previous month’s snapshot, it is easy to see which categories are missing

p/Computers/Open_Source/Software/Games/FPS

are/Games/Shooter

Similarly, the deletions and additions related to LDAP show us that the whole LDAP subtree, which
had previously been a subtree of .../Internet/Servers/Directory, has been moved under
.../Internet/Protocols instead. Additionally, the Products subtree has been renamed into Software
and rearranged somewhat, while the Standards_and_Organization subtree has remained
unchanged.

new documents (e.g. newly discovered extern
documents (e.g. dead links), or rearrangement
not attempt to predict these document-level operations because, first of all, most of them cannot
really be understood as causing structural changes in the ontology, and secondly, because they it
would be difficult to predict them without additional (and often unavailable) external data. For
example, a document may have been removed from the ontology because the external web page
to which it pointed had changed or had gone offline; but this kind of information is not available
within the ontology snapshots on the O
the external web pages in question was available, e.g. through the internet archive
(http://www.archive.org/). Similarly, predicting the inclusion of new documents would require
information about which web pages were available at a certain point in the past, so that they could
have been discovered by the ODP editors and considered for inclusion in the ontology. However,
we consider such questions to be outside the scope of this deliverable.
Thus we will focus on changes involving categories instead. In principle, one snapshot of the
ontology can always be transformed into another one by a sequence of two elementary operations:
addition and deletion of categories. By comparing the set of categories in one snapshot with the
set of categories in th
and which are new. For example, the following list shows a subset of the changes that we may
notice within the Top/Computers subtree of the ontology between April 3 and May 1, 2007. “DEL”
indicates that a category was deleted (i.e. it was present on April 3 but not on May 1) and “ADD”
indicates that it was added (i.e. it was present on May 1 but not on April 3):
DEL To
DEL Top/Computers/Software/Internet/Servers/Directory/LDAP
DEL Top/Computers/Software/Internet/Servers/Directory/LDAP/Products
DEL Top/Computers/Software/Internet/Servers/Directory/LDAP/Standards_and_Organizations
DEL Top/Computers/Software/Internet/Servers/Directory/LDAP/Products/Related_Middleware
DEL Top/Computers/Software/Internet/Servers/Directory/LDAP/Products/Related_Client_Apps
ADD Top/Computers/Open_Source/Softw
ADD Top/Computers/Programming/Languages/Smalltalk/Squeak/Croquet
ADD Top/Computers/Programming/Languages/Smalltalk/Squeak/Croquet/News_and_Media
ADD Top/Computers/Internet/Protocols/LDAP
ADD Top/Computers/Internet/Protocols/LDAP/Standards_and_Organizations
ADD Top/Computers/Internet/Protocols/LDAP/Software/Client
ADD Top/Computers/Internet/Protocols/LDAP/Software/Server
ADD Top/Computers/Internet/Protocols/LDAP/Software

As we can see from this list, it is unsatisfactory to describe the transformation of one snapshot to
another solely through these two types of low-level operations. Although one can in principle
transform the April snapshot to the May snapshot by deleting the first six categories and then
adding the next eight ones, it is clear that the human editors working on the ontology must have
really conceptualized their work as a sequence of more abstract, higher-level operations, each of
which may then be manifested in one or more low-level additions and deletions of the type seen in
our list above.

In our example, we can see that the removal of .../FPS and the addition of .../Shooter are really two
related operations: in other words. “FPS” has simply been renamed “Shooter” (note that FPS is
itself nothing but an acronym for “first-person shooter”, a genre of computer games).

D 1.6.1 Predicting future structural changes in ontologies Page 11 of 28

2007 © Copyright lies with the respective authors and their institutions.

News_and_Media child, is a genuinely new subtree, in
which not only the categories themselves are new in the May 1 snapshot, but they also (as it turns

e of these subcategories,

ty ODP categories may
import some part of the existing hierarchy of

rchy. We consider such changes to be
abstract decisions by a human

hanges will
 previously
estion was

a, and it may therefore be predicted
or decides that a category has

subcategories
n divided among these

n two snapshots, and where several such operations affect the same part of the

lthough this is a common operation, these are not really structural changes and so

Finally, the .../Squeak/Croquet, with its

out) contain documents that did not exist at all in the April 3 snapshot. This means that evidently an
entirely new set of external web pages came to the attention of the ODP editors, dealing with a
topic that has previously not been represented in the ontology. Thus not only the documents were
added but a new category was created for them.

There also exist other types of structural changes not illustrated by the above example. One typical
ODP phenomenon, which accounts for many additions of new categories, is the creation of new
subcategories in advance, i.e. without at the moment having any documents to populate them with.
The human editors of the ODP create such additions in the understanding that documents for them
are likely to eventually appear but the structure of the subtree is clear and predictable enough that
the subcategories may be created right away and will then be used to guide the inclusion of new
documents in the tree. For example, by comparing the snapshots for April 1 and May 4, 2004, we
see that 36 new children were added below the category Top/Computers/Programming/Internet/-
ASP/ASP.NET/Web_Hosting. The names of these children are simply the letters A through Z and
the digits 0 to 9. Clearly the intention was to divide an existing list of internet hosting providers into
smaller subcategories based on the first character of their name. Som
e.g. J and Q, were initially empty (i.e. no hosting providers had names beginning in J or Q), but
they were created anyway for the sake of consistency.

Similar sets of subcategories (many of which are initially empty) are sometimes created
corresponding to other interesting sets of concepts from the real world, e.g. names of geographical
entities. A typical example is to have 51 new children suddenly created for a given category,
corresponding to the U.S. states and the District of Columbia. In other areas of the ODP ontology,
parts of the ontology may correspond to existing ontologies such as the hierarchy of taxonomic
units used in zoology and botany. Suddenly a whole subtree of mostly-emp
spring into existence when an editor has decided to
zoological orders, families, genera etc. into the ODP hiera
too strongly dependent on background knowledge and high-level
editor to be predictable by a computer. Therefore, our efforts to predict structural c
focus on situations when a new category has been added and some documents from
existing categories transferred into it; this suggests that the structural change in qu
genuinely an editor’s response to the available dat
automatically given the same data. An example may be that an edit
too many documents and is too diverse, and it may therefore be split into several
corresponding to narrower subtopics, with the documents the
subcategories.

2.3 Heuristics for the identification of higher-level structural changes

As we have seen in the previous section, low-level additions and deletions of categories can be
easily observed by comparing two snapshots of the ontology, but the really interesting operations
are more abstract and each such operation can give rise to several low-level additions and
deletions. In addition, many such operations can take place in the period of time (e.g. a whole
month) betwee
ontology, it can be difficult to identify the abstract operations given the set of low-level additions
and deletions that can be discerned from the data. Thus, it is helpful to develop reasonably robust
heuristics that can identify at least some of these higher-level operations, with the understanding
that we cannot expect them to correctly identify them in all situations.

As it turns out, the largest group of low-level additions and deletions are actually due to the
renaming of categories (e.g. FPS to Shooter in the example in the previous section). If a category
with many descendants is renamed, this may manifest itself as a large number of low-level
additions and deletions (as if each descendant was deleted and then re-created under a new path
in the tree). A

Page 12� of 28� NeOn Integrated Project EU-IST-027595

we want to recognize them and exclude them from further consideration. For this purpose we use a
heuristic based on the notions of precision and recall from information retrieval. Given a category C
from the old snapshot that does not appear (under the exact same name) in the new snapshot, we
consider the set S of all documents from this category and its descendants (in the old snapshot).
For each category C' of the new snapshot, we can similarly form a set S' of all documents of this
category and its descendants. Then the recall of C' with respect to C can be defined as |S∩S'|/|S|,

cuments may have ended up in C'; these

Top/E/C'/D1' and Top/E/C’/D2’, then it is reasonable to refer to this as a
move operation on the entire subtree rooted in Top/A/B/C, rather than as a set of operations that
happened individually and separately to C, D1 and D2. In general, the subtree rooted in C may be

hildren), so the
heuristic we actually use is the following. We say that there is a strong match between the subtree

and the precision of C' with respect to C can be defined as |S∩S'|/|S'|. If C' is to be recognized as a
new incarnation of C (under a new name), it should ideally have high recall and high precision as
well. In information retrieval, precision and recall are traditionally combined into a value called the
F1-measure, which is simply the harmonic mean of precision and recall: F1 = (2 · precision · recall) /
(precision + recall). As the harmonic mean, F1 is high only if both precision and recall are high.
Insisting on a high recall is obviously desirable, but a good argument can be made for requiring
high precision as well. For example, C may have been renamed into C' but some of its documents
may have been moved into the parent of C'. Thus the parent will have higher recall than C', but
typically (since it contains many things that were never in either C or C') much lower precision;
thus, if we use F1 instead of just recall, we will successfully avoid matching C with the parent of C'
and will correctly match it with C' itself instead.

Note that it is possible that new documents were introduced into the ontology in the time between
the old and the new snapshot, and some of these do
would increase the size of S' but not of S∩S' (as they did not appear in the old snapshot), whereby
decreasing the precision. Thus, to prevent such new documents from unfairly affecting the match
between C and C', we take into S' only those documents that have already existed in the ontology
at the time of the old snapshot.

Thus, for each deleted category from the old snapshot, we find its best match (i.e. the one with
maximal F1) in the new snapshot. In principle, it is in possible that there is no really good match,
e.g. if the category and its documents were really deleted from the ontology, rather than simply
renamed. In our experience, such deletions are rare; however, since we often work with just a part
of the whole ontology for reasons of faster experimentation (e.g. just the subtree rooted in
Top/Computers, etc.), it can happen that a category is moved outside of the part of the ontology
that is under consideration, which is thus effectively the same as if it had been deleted entirely.

For the purposes of detecting the renaming and moving of categories, we consider only matches
with a recall of at least 90%. We will refer to these as “strong matches”. The next step is to
combine the matches on the level of categories into matches on the level of entire subtrees. For
example, if a deleted category Top/A/B/C, with children Top/A/B/C/D1 and Top/A/B/C/D2, is found
to match strongly with a new category Top/E/C', and furthermore its two children match strongly
with two new categories

deeper (i.e. there may be grandchildren and other descendants in addition to just c

rooted by C (in the old snapshot) and the one rooted by C' (in the new snapshot) if the following
two conditions are met: (1) For each descendant D of C (in the old snapshot), there must exist an
strong match sm(D) (in the subtree rooted by C' in the new snapshot); and (2) furthermore, for
each such D we require that parent(sm(D)) = sm(parent(D)). In other words, we consider a strong
match between subtrees to exist in cases when a strong match exists for each category in the
subtree and the matches preserve the parent-child relationships. At the same time, our definition is
robust in the sense that the addition of new categories into the subtree rooted by C', or the merging
of several old categories into a new one, does not prevent us from recognizing the strong match
between the subtrees.

The strong matches between entire subtrees, once they have been identified, are a good first step
towards the identification of several types of higher-level structural changes:

• If the subtree of C (in the old snapshot) strongly matches the subtree of C' (in the new
snapshot), and C' did not exist in the old snapshot, and C and C' have the same parent,

D 1.6.1 Predicting future structural changes in ontologies Page 13 of 28

2007 © Copyright lies with the respective authors and their institutions.

ges, merges into parent and merges into other

hange, and since moves are already fairly rare relative to the

and no other subtree of the old snapshot strongly matches that of C', then we say that C
has been renamed into C'.

• If the same conditions are true except that C and C' do not share the same parent, we say
that C has been moved to become C'.

• If, on the other hand, C' has already existed in the old snapshot or it is new but some other
subtree besides that of C has strongly matched the subtree of C', then we say that C has
merged into C'. Sometimes a category may merge into its parent, for example if the editor
has decided that the previous subdivision was excessively fine-grained and the topics
represented by the categories were too narrow. On the other hand, sometimes a category
merges into some more distant relative rather than a parent. It can also happen that several
categories merge into one.

As an example, the chart in Figure 1 shows the frequency of these various types of higher-level
ontology changes within the Top/Computers subtree of the ODP ontology, over the last three
years. As has been described above, all the category deletions that have been observed as low-
level structural changes have now been explained as either renames, moves, or merges, with
merges further divided into many-to-one mer
(nonparent) categories. What remains are the additions of genuinely new categories, rather than
categories which appear new but are included in a strong subtree match with some formerly
existing category (meaning that they are really the result of a rename, move or merge). It can be
seen that additions are by far the most frequent structural changes, followed by renames and
moves. Merges are comparatively rare. Since it is debatable to what extent a rename can be
considered a truly structural c
additions, we decided to concentrate on additions from now on as the most important and most
frequently occurring type of structural change in the ODP ontology.

180

200

e-
m

on
th

0

20

40

60

80

100

120

140

160

5.
1.

20
04

5.
3.

20
04

5.
5.

20
04

5.
7.

20
04

5.
9.

20
04

5.
11

.2
00

4

5.
1.

20
05

5.
3.

20
05

5.
5.

20
05

5.
7.

20
05

5.
9.

20
05

5.
11

.2
00

5

5.
1.

20
06

5.
3.

20
06

5.
5.

20
06

5.
7.

20
06

5.
9.

20
06

5.
11

.2
00

6

5.
1.

20
07

5.
3.

20
07

Nu
m

be
r

of
 o

nt
ol

og
y

ch
an

ge
s

of
 e

ac
h

ty
pe

 in
 th

e
on

pe
ri

od
 s

ta
rt

in
g

w
ith

 th
e

gi
ve

n
da

te

Rename
Add-new-category
Merge (many-to-one)
Move
Merge-into-existing-nonparent
Merge-into-parent

Date

Figure 1: Frequency of various types of ontology changes.

Page 14� of 28� NeOn Integrated Project EU-IST-027595

2.4 D

The e
and e
differ from those of D1.5.1 in two main ways. Firstly, they are not as fine-grained; our operation of
cat
discuss
catego
catego
ontolog
have s
(URL, t ss of which category they belong to.

2.5 Different types of category additions

As we saw on Figure 1, the addition of new categories is the most common type of structural
change, even after we exclude the categories that seem to be new but are really just old categories
that have been renamed, moved or merged. In this section we will look at the additions of new
categories in more detail. If we take the total over the entire three-year period covered by Figure 1,
we find that there were 1115 category additions within the Top/Computers subtree during this
period. Figure 2 shows how these additions can be divided into several kinds.

First of all, sometimes what is added is not just a simple leaf node of the tree but a whole subtree,
consisting of a category and one or more children and possibly other descendants as well. Thus it
turns out that approx. 20% of the newly added categories had a parent that was also newly added
at the same time (or at least within the same month – remember that the snapshots of the ontology
that we worked with are approximately one month apart from each other). We will not attempt to
predict the addition of such categories, as it is challenging enough to predict the addition of an
individual category, much less of a whole subtree. Thus the remaining groups of additions
discussed in this subsection consist of new categories added to a previously existing parent.

Approximately 10% of the new categories were empty, i.e. they contained no documents at all. As
has been discussed in the previous section, these are mostly caused by systematic additions of
large groups of sibling categories, e.g. corresponding to U.S. states or to letters of the alphabet.

Approximately 20% of the new categories are not empty, but they contain only documents that did
not exist in the ontology at the previous point in time for which a snapshot is available. This
suggests that the category has been added on the basis of external web pages that were newly
discovered and in 2.2), or that the
category has bee f the entire ODP
ontology.

iscussion: relationship to the ontology changes from D1.5.1

 N On deliverable D1.5.1, “Dynamics of Metadata” [14], has already presented a very thorough
 d tailed typology of ontology change operations. The operations that we focus on in this report

egory addition, for example, corresponds to a whole sequence of the kind of operations
ed in D1.5.1 (creation of a new category; creation of a parent-child link between the new

ry and its parent; and the transfer of some of the instances of the parent into the new child
ry). Secondly, some of the D1.5.1 operations do not apply to the relatively simple ODP-like
ies with which we deal here. For example, in ODP the categories and instances do not

tructured attributes (with slots, etc.), and furthermore all instances have the same attributes
itle, and description) regardle

Our choice of the set of operations has been informed primarily by the following considerations:

• We wish to conceptualize the ontology editing process on roughly the same level where the
human editors of the ODP operate. For example, an editor probably thinks “I will move the
category C1 to make it a parent of category C2”, rather than “I will remove the parent-child
link between C3 and C1 and then add a parent-child link between C2 and C1”. Since we
would like to model the expertise of these editors, we would like to think in terms of the
same operations that they probably use.

• Additionally, we require operations of the kind that can be observed in the available ODP
data, and that can furthermore be modeled and predicted via a machine learning approach.
For example, since in the ODP a new category is never added without also being clearly
defined as the child of some other category, we cannot really model a “concept creation”
operation separately from a “creation of a parent-class link” operation.

cluded in the ontology (e.g. the Croquet example from Section
n moved into the Top/Computers subtree from a different part o

D 1.6.1 Predicting future structural changes in ontologies Page 15 of 28

2007 © Copyright lies with the respective authors and their institutions.

 been obtained by
splitting a previously existing parent category. This group of additions was defined as follows: the

ixture of old documents

half of the
doc
P. The
include
docum

Approximately 44% of the new categories could reasonably be said to have

new category (e.g. C) must be the child of a previously existing parent (e.g. P); it must contain at
least one document from the old snapshot of the ontology (although it may also contain zero or
more new documents), and of these documents from the old snapshot, the majority must come
from P or one of its descendants, rather than from some other part of the ontology that does not lie
below P. In other words, to consider an addition to be a split of an existing category, we require
that the new child adopts more documents from the parent than from other parts of the old
ontology. This is the type of additions that our prediction efforts will chiefly focus on. Unfortunately
it turns out that most of the categories added in this way are fairly small; only approx. a third of
them (16% of all additions) contain at least five documents from P.

Finally, the remaining additions result in categories that contain some m
from P, old documents from other parts of the ontology, and entirely new documents. In approx.

se (4% of all additions), the new documents predominate; in the others most of the
uments are from the old ontology, but with those from P outnumbered by those from outside of

se new categories are thus obtained by a combination of new data (web pages newly
d in the ODP directory) and of rearranging and moving of existing data (previously existing
ents), and it is not clear that they can be characterized in any unified way.

New category whose
parent is also new

19%

Added by splitting the
parent
44%

Empty new catego
Mostly new documents

Others
4%

ry
10%

All documents are new
19%

4%

Figure 2: Frequency of various types of category additions.

2.6 Prediction of category additions as a learning problem

One can treat the problem of predicting category additions as a machine learning problem. Each
example of the learning problem consists of a category and a point in time; the question to be
answered is whether a new subcategory should be created below the given category at the given
point in time. Thus, this is a binary (two-class) classification problem, with the positive class
consisting of those examples where the addition of a child category is necessary, and the negative
class consisting of those where it isn’t.

Page 16� of 28� NeOn Integrated Project EU-IST-027595

The main open question at this point is how to describe each example by a set of features (or
attributes) such that the resulting representation will be suitable as an input for a machine learning
algorithm. The features should contain information that is relevant for making a decision whether a
subcategory is needed or not. As discussed in Section 2.4, we ignore those additions of
subcategories that are clearly based on background knowledge external to the ontology itself; the
remaining additions must therefore be based at least partly on the actual contents of the ontology,
i.e. the documents in the category below which a new subcategory is going to be added. Our
approach is based on the idea that the human editors of the ODP probably suggest the addition of
a new subcategory when they notice, within an existing category C, a few documents dealing with
a reasonably well-defined narrower subtopic of the general topic of C. In this case a new
subcategory would be added as a child of C, and the documents dealing with the subtopic thus

to clustering as a
technique that will help us assess whether such subsets of tightly related documents actually exist.

2.6.1 Representing documents with the bag-of-words model

We begin by representing each document by a vector using the vector space model (also known
as “bag of words”), which is an established approach in information retrieval. The vector x
representing a document d contains as many components as there are different words in our
dataset. (This means that the number of components is very large, but fortunately the vector is
very sparse: for any particular document d, most of the words don’t appear in it, and thus most of
the components of its corresponding vector are 0.) For a word w, the vector x that represents a
document d contains a component

 xw = TF(w, d) · IDF(w).

Here, TF(w, d) is the term frequency of w in d, i.e. the number of occurrences of the word w in the
document d. IDF(w) is the inverse document frequency of the word w, and is defined as

 IDF(w) = log(DF(w) / N),

where DF(w) is the document frequency of w, i.e. the number of documents that contain w, and N
is the total number of all documents. (The purpose of IDF is to reduce the influence of words that
appear in a large number of different documents, on the assumption that such words are not useful
for distinguishing between documents.) Finally, the vector x is divided by its own length, so that
henceforth it has a Euclidean length of 1; this is useful because we want the feature vector x to
reflect the subjec

The bag of words representation provides a useful and convenient way of measuring how closely
related two documents are: given the vectors x and y representing two documents, we can

 cos(x, y) = xTy / (|x| · |y|),

identified would be moved into the new subcategory (whereas they had previously resided in C or
possibly in one of its descendants). Since these documents all deal with a relatively narrow
subtopic, one would hope that they are closely related to one another, use similar terminology, etc.
If we represent them as points in a multidimensional space, we would expect to find them relatively
closely together, closer than the average distance over all documents from C (which, covering a
somewhat wider topic, would be expected to be dispersed more widely in space). To express this
using data mining terminology: we would expect the documents of the new subcategory to form a
cluster within the set of all documents of the parent category C. Thus, we turn

t of a document, rather than its length.

compute the cosine of the angle between them:

which is simply the same as the dot product xTy if the two vectors are normalized to unit length (|x|
= |y| = 1). The more closely related the subject of the two documents is, the smaller the angle
between their vectors x and y is likely to be, and the higher the cosine will be.

D 1.6.1 Predicting future structural changes in ontologies Page 17 of 28

2007 © Copyright lies with the respective authors and their institutions.

 var(A) = (1/|A|) Σ [1 – cos(x, centroid(A))].

During clustering, we select, as the next cluster to be split, the one that has the greatest variance.

2.6.2 Clustering

Consider the set of all documents that have been assigned to a category C or any of its
descendants. This is the set within which we would like to find any tightly coupled cluster; this
would help us decide whether any new subcategories should be introduced below C.

We will use the well-known k-means clustering algorithm to cluster our set of documents. The
variant we use is known as hierarchical 2-means clustering (also known as bisecting k-means [7]):
begin by treating the whole set of documents as a single cluster; then, at each step, select a
cluster and split it into two. We use the following termination criteria: we stop the process when
there are 10 clusters, we do not try to split clusters containing less than 5 documents, nor do we
split a cluster if it turns out that one of its two resulting subclusters would contain just one
document.

For a cluster A, we define its centroid, which is simply the average of its elements, normalized to
unit length:

 centroid(A) = Σx ∈ A x / |Σx ∈ A x|,

and the variance, which is simply the average distance between the documents in the cluster and
its centroid. Since the cosine measures similarity, we define the distance as 1 – cosine:

x ∈ A

To split a cluster A into two subclusters A1 and A2, the 2-means algorithm takes the following steps:

 1. Perform an initial partition of A into two subclusters, A1 and A2.
 2. Let c1 := centroid(A1) and c2 := centroid(A2).
 3. Let B B1 := {x ∈ A : cos(x, c1) > cos(x, c2)} and B2B := A – BB1.
 4. Let A1 := B1B and A2 := BB

until the termination criterion is met.

ally defined to stop when a certain number of iterations has been

2.
 5. Repeat steps 2 through 4

The termination criterion is usu
performed, or when the number of reassignments (i.e. |A1 ∩ BB2| + |A2 ∩ B1B

the

x ∈ A

1 2 1

|, which is the number of
documents that were moved from the first subcluster to the second one or vice versa) drops below
a threshold. Our criterion was to stop after five iterations or if there were no reassignments in
last iteration.

Various ways have been proposed to define the initial partition of A into A1 and A2 (in Step 1) [6].
For example, one may partition the same way as in Step 3, but using two randomly selected
documents as c1 and c2. However, a slightly more sophisticated approach that often works better is
to use principal component analysis (PCA) to find the first principal component of A, i.e. the
direction in which the cloud of points in A exhibits the maximum variance. Let p be a unit-length
vector in this direction; then we see that

 x = (xTp) p + y, for a certain y that is orthogonal to p: yTp = 0.

Thus, xTp is the orthogonal projection of x onto p. We can then compute the average of the
projections of all points from A:

 μ = (1/|A|) Σ xTp,

and we can define an initial partition of A into two subclusters as

 A = {x ∈ A : xTp < μ} and A = A – A .

Page 18� of 28� NeOn Integrated Project EU-IST-027595

It often turns out that this initial partition is already quite good and very few reassignments are
performed in the subsequent iteration(s) of the 2-means algorithm.

2.6.3 From the clustering to a feature vector for the category

Let A be the initial set of all documents in the category C (and its descendants), and let P = {B B1, ...,
BkB

|) ΣB ∈ P Σx ∈ P cos(x, centroid(B)).

riance:

• The size of this cluster. Instead of using |B| directly, we use log |B|, to prevent large clusters

•

ar(B) / var(A).

et of documents that would be a suitable basis for creating a new subcategory.

stop before ten clusters have been obtained, due to the
peat the features of the final

ll 90-dimensional form.)

2.6.4 Training a classifier

g algorithm to train classifiers for
method that has been found to

 with a considerable number of features and training

} be the partition of A into k disjoint clusters obtained using the hierarchical 2-means algorithm.
We will use the following features to describe this partition:

(1) One feature is the average cosine between each document and the cluster to which it belongs:

 (1/|A

This is a measure of how tight clusters we have obtained by partitioning the initial set A into k
clusters.

(2) We find the cluster with minimum va

 B = arg minB' ∈ P var(B').

We use, as features, the following properties of this cluster:

from having an excessive influence on the range of this feature.

• The relative size of this cluster, i.e. |B| / |A|.

The variance of this cluster, var(B).

• The variance of this cluster, relative to that of the whole set: v

(3) We find the cluster with the maximum average intra-cluster similarity:

 B = arg maxB' ∈ P Σ x, y ∈ B'; x ≠ y cos(x, y) / (|B'|·(|B'| –1)).

For this cluster B, we use four features analogous to those described above in (2) for the minimum-
variance cluster. The idea here is that the average intra-cluster similarity is another measure of
cluster compactness, and these features may therefore help the classifier identify categories with a
compact subs

In this way we have described the partition P by nine features. Every time that our hierarchical
clustering algorithm splits a cluster, the partition changes (one of its clusters gets replaced by two
smaller ones), and we add, to the feature vector for the category under observation, the nine
features describing the new partition. We let the clustering continue until there are ten clusters,
which means that in the end the category is described by a 90-dimensional feature vector. (It is
possible for the clustering algorithm to
other termination criteria described in Section 2.6.2. In this case we re
partition as many times as necessary to bring the feature vector to the fu

We decided to use the support vector machine (SVM [4]) learnin
this learning problem. The SVM is a state-of-the-art learning
perform well in many areas, including on tasks
examples.

D 1.6.1 Predicting future structural changes in ontologies Page 19 of 28

2007 © Copyright lies with the respective authors and their institutions.

 f(x) = b + Σ i=1..n αi yi K(xi, x),

 g example (yi = +1 for positive
, which must define before the

ertain threshold (usually 0) as positive,

e s e ation is relatively modest (90 features, as opposed to
e case in text and image categorization settings), we

x, xi) = exp[– γ ||x – xi||2]

 select before starting the SVM training algorithm.
unction of x while xi is held constant, this is a bell-shaped function

that has a maximum of 1 at x = x , and elsewhere it decreases towards 0 as x moves further away
 this bell-shaped function. The effect of

this kernel
weight
with th st-neighbour classifier, but
one en carefully selected by the learning algorithm
(via i , having a small number of features is not
nec s sufficient quantity of training examples.

The scoring function trained by the SVM algorithm has the form

where xi is the i-th training example, yi is the label of the i-th trainin
examples and –1 for negative ones), and K is the kernel function
training can begin; it can be any function that satisfies certain mathematical criteria. The values α1,
..., αn and b are the output of the learning algorithm. The values of f(x) can be used to rank
examples (the higher the f(x), the more likely x is to be positive); or, to obtain binary predictions,
one would predict all examples x for which f(x) exceeds a c
and all other examples as negative.

Since the featur pac used in our represent
e.g. thousands of features as is commonly th
decided to use the radial basis function (RBF) kernel:

 K(

Here, γ > 0 is a constant parameter that we must
Note that, if we think of it as a f

i

from xi. The parameter γ influences the breadth of the bell of
in the formula for f(x) is that each training example xi votes for its own class (yi) with the

αi, but its influence decreases as the distance of x from xi increases. Thus, the SVM model
is type of kernel effectively becomes a softer version of a neare

 in which the influence of the neighbours has be
 the values of α). With this class of models
es arily a problem as long as we have a

Page 20� of 28� NeOn Integrated Project EU-IST-027595

3. Experimental evaluation

3.1 The dataset

In this section we describe our experimental evaluation of the proposed approach for the prediction
of category additions. We used the Computers subtree of the Open Directory Project ontology. In
the period under consideration, i.e. from January 2004 through October 2006 (there being no
snapshots of the ODP from November and December 2006), the Computers subtree grew from
7,732 categories to 8,309 categories, while the number of documents on average tended to

198 category renames, 134 category moves,
and 153 merges of various types. See Figure 1 for a chart showing the number of different

oup of closely
related documents that could have been detected in the old parent category (and then be used to
predict an addition). Therefore, for the purposes of defining our classification problem, we limit
ourselves to the additions of categories in which at least five documents were moved from the
parent category into the new child category (in addition to that, some documents may also have
been moved into the new child from the parent’s descendants or from entirely different parts of the
ontology, and some documents completely new to the ontology may also have been added; but we
do not set any additional constraints regarding the number of such documents). This leaves us with
107 category additions as the basis for our prediction task.

The question that our predictive model will attempt to answer is this: “given a category, should any
new subcategories be added below it, as its children, during the next month?” Since there are two
possible answers to this question, yes or no, this will be a binary (i.e. two-class) classification
problem. A category at a given point in time is a positive example if some children (matching the
criteria described above) have indeed been added to it between that point and the next point in
time for which an ontology snapshot is available (i.e. approximately one month later). According to
this definition, the above-mentioned 107 additions give rise to 98 positive examples (this is less
than the number of additions because sometimes several children are added to the same parent in
a certain month).

But when is a category a negative example? For example, suppose that a comparison of the
snapshots for March 2005 and April 2005 shows that no suitable children have been added to
category C in the intervening period, but the comparison of the snapshots for April 2005 and May
2005 shows one such addition. This suggests that the category C such as it was in April 2005 is a
positive example for the purposes of our machine learning problem; but is it reasonable to say that
C such as it was in March 2005 is a negative example, just because no additions were made to it
between March and April? After all, the additions to the ODP ontology are handled by human
editors, many of whom look after a number of different categories and may overlook something.
The category C has not necessarily changed much from March to April; perhaps our editor would
have already made the addition to C in March rather than in April, but he or she simply hadn’t

decrease rather than increase, eventually shrinking from 143,760 documents in January 2004 to
133,595 documents in October 2006.

During this period, there were 964 category additions,

operations in each month.

Of the category additions, 482 were such that the new category is added as the child of a
previously existing parent category and more documents have been moved into the new category
from the parent (or its previously existing descendants) than from other parts of the hierarchy. This,
as described in Section 2.4, is the type of additions that we will be trying to predict. However, it
turns out that even in these cases, the number of documents moved from the parent to the new
child category is often quite small. The hypothesis underlying our approach to the prediction of
category addition is that the human editors of the ODP notice, in an existing category, a group of
documents dealing with some narrower subtopic and then decide to create a new subcategory and
move those documents into it. This hypothesis means that our approach can not be reasonably
expected to perform well in situations where only e.g. one or two documents have been moved
from the parent to the new child, since in this case there is effectively no subgr

D 1.6.1 Predicting future structural changes in ontologies Page 21 of 28

2007 © Copyright lies with the respective authors and their institutions.

roup of documents that calls for the introduction of a new
essively narrow definition of the negative set, we

declare a category to be negative at a certain point in time only if no suitable children have been
 or in the preceding or following three months. Despite this constraint, the

ries are treated as negative examples at any particular point in time, since
the category additions are rare relative to the total number of categories. In total, we could obtain

d 72 negative examples.

p

 0.001, 0.002, 0.005, 0.01, 0.02, 0.05,

noticed that there exists a compact subg
subcategory. Therefore, to avoid having an exc

added to it at that point
vast majority of catego

more than 168,000 negative examples from the Computers subtree in the period 2004–2006. To
speed up the experiments and to prevent the positive examples from being completely
overwhelmed by the negative ones during the training process, we randomly selected three times
as many negative examples as there are positive examples. We then divided the resulting data into
a training set (all examples from the years 2004 and 2005) and a test set (all examples from the
year 2006). Thus, we end up with a training set containing 74 positive and 222 negative examples,
and a test set containing 24 positive an

3.2 Experimental setu

As has been discussed in 2.6.4, we will be using the SVM algorithm to train classifiers. We use the
SVMlight implementation of SVM by Thorsten Joachims [5]. The SVM finds a classifier by solving an
optimization problem that maximizes a combination of two goals: the classifier should have a wide
margin, and it should make as few mistakes on the training set as possible. These two goals are
combined via an error cost parameter, traditionally denoted by C. The greater the C, the more
effort the learner will place on avoiding errors on the training set; on the other hand, this leads to a
greater risk of overfitting the training data.

For relatively unbalanced datasets, i.e. those where the positive examples are heavily
outnumbered by the negative ones, it is often beneficial to treat errors on positive training
examples as more problematic than those on negative training examples. Thus, one effectively
uses two different error costs: the baseline cost C on the negative examples and its multiple j·C on
the positive examples.

Thus, C and j are two tunable parameters which we will select via five-fold cross-validation on the
training set. A third tunable parameter is γ, the width of the Gaussian functions in the RBF kernel
(see Section 2.6.4). We tested the following parameter values: C ∈ {0.1, 1, 10, 100, 1000}; j ∈ {1,
2, 3, 5, 10, 20, 50, 100}; and γ ∈ {0.0001, 0.0002, 0.0005,
0.1, 0.2, 0.5, 1, 2, 5}. For most combinations of these parameter settings, training a model cost
less than a second, so that most of the time was actually spent on generating the features.

3.3 Evaluation measures

To evaluate the output of the classifiers, we use well-known evaluation measures from the area of
information retrieval [2]: the breakeven point and the area under the ROC curve.

A classifier, via its outputs f(x) as described in Section 2.6.4, effectively introduces a ranking of the
examples from the test set (or whatever other set of examples it is used on). By selecting a
threshold and predicting all the examples above the threshold as positive and all those below the
threshold as negative, we can divide the examples into four groups: true positives, false positives,
true negatives, and false negatives. These can be arranged in a contingency table:

Page 22� of 28� NeOn Integrated Project EU-IST-027595

Predicted class
True class

Positive Negative

Positive TP (true positives) FN (false negatives)

Negative FP (false positives) TN (true negatives)

The following useful evaluation measures can be computed from the contingency table:

 precision = TP / (TP + FP)
 recall = TP / (TP + TN) (also known as “the TP rate”)
 FP = FP / (FP + TN)

 more examples get predicted as positive; TP and
FP grow, while TN and FN decrease. As a result the recall increases, while the precision tends to

into compromises as uncomfortable as a ranking with a

ted to be positive) and ending at TPrate = FPrate = 1 (when everything is

As a baseline, a model that ranked the examples in random order would achieve a breakeven point
equal to the proportion of the positive examples relative to all examples (which is 0.25 for our

OC curve would be 0.5. A perfect model would achieve a score

ly important in
cases when the overall proportion of positive documents is quite low, as it indeed is in our dataset.)
As described in Section 3.2, we investigated 5 values of C, 8 values of j and 15 values of γ. This
results in 600 combinations of parameter settings. We then select the combination that performed
the best during cross-validation on the training set; using this combination of parameter settings,
we train the final model on the entire training set, and this model would then be evaluated on the
test set. The results are summarized in the following table:

rate

If we slowly decrease the threshold, more and

decrease (although not necessarily in a monotonic way). The point where precision and recall are
equal is known as the breakeven point (BEP), and is a useful evaluation measure [3]. It indicates
what sort of tradeoffs between precision and recall are possible with the ranking produced by the
given predictive model. To have a precision greater than the BEP, we will have to accept the fact
that the recall will be less than the BEP; on the other hand, to have recall greater than the BEP, we
will have to accept a precision that will be less than the BEP. Thus, the higher the BEP, the better
our ranking is because it doesn’t force us
low BEP.

As an alternative to the precision and recall, one can use the TP rate and the FP rate. These are
typically plotted on a graph, the FP rate on the horizontal axis and the TP rate on the vertical axis.
As we decrease the threshold, both the TP rate and the FP rate grow, starting at TPrate = FPrate = 0
(when nothing is predic
predicted to be positive). This produces a monotonically rising curve, known as the ROC curve
(receiver operating characteristic) [1]. The area under the ROC curve is another succinct way to
summarize the quality of the predictive model. This area turns out to be equal to the probability
that, given a randomly chosen positive example and a randomly chosen negative example, the
model would assign a higher score f(x) to the positive example than to the negative one. A model
that always gets this right would achieve an area under ROC equal to 1.

dataset), and the area under its R
of 1 according to both measures.

3.4 Results

We used stratified 5-fold cross-validation (CV) on the training set to investigate the influence of C,
j, and γ parameters. (Stratified means that when dividing the documents into five folds, care has
been taken to ensure that the proportion of positive documents in each fold is roughly the same as
the proportion of positive documents in the dataset as a whole. This is particular

D 1.6.1 Predicting future structural changes in ontologies Page 23 of 28

2007 © Copyright lies with the respective authors and their institutions.

able 1. Performance of models selected with various model selection criteria.

Performance on the v
during 5-fold cross-

Performance on the test set

T

alidation set
validation Model descript

BEP u. ROC A. u. ROC

ion

A. BEP

Highest BEP during CV 0.51 0.8893 48 0.7796 0.7083

Highest a.u.ROC during 0.5 0.8738 CV 021 0.7850 0.6667

Highest BEP on the test set 0.4717 0.7436 0.7500 0.9011

H a.u.ROC on the test set ighest 0.4768 0.7495 0.7500 0.9155

R ranking 0.2500 0.5000 0.2500 0.5000 andom

The first row, “highest BEP during CV”, refers to the models having the greatest breakeven point
during cross-validation. There were three models (i.e. three different combinations of parameter
settings) with the maximum BEP here, so the other columns of the table show average
performance over these three models. The same approach has been used in the other rows.

The rows referring to the highest BEP/a.u.ROC on test set indicate what the best models among
those tested here are capable of, with the caveat that we aren’t able to identify these models
without peeking at the test data. Comparing these results with the results from the first two rows
tells us how much room for improvement there is if we can select our models using some better
criterion than cross-validation on the training set. We can see that the difference is not really very
large here, and by selecting our models through cross-validation we obtain models that also

reasonable that they perform better.)

An interesting question at this point is whether it's better to use the maximum BEP or the maximum
area under ROC as a criterion when selecting the parameter setting. The following figure shows a

 600 models obtained by training an SVM under different parameter setting; the
can see, the two measures

perform quite well on the test set.

For comparison, the last row of the table shows the performance of a hypothetical model that
doesn’t learn anything and instead just outputs random scores for all the examples. The values in
this row can be derived from the properties of the dataset and the formulas in Section 3.3.

(The fact that the performance on the test set is better than the one during cross-validation is
probably due to the fact that only 80% of the training set are used to train each model during cross-
validation – the remaining 20% are used as the held-out validation set. On the other hand, the
models that were evaluated on the test set were trained on the entire training set, so it is

3.4.1 Model selection criteria

dot for each of the
BEP is the x-coordinate, and the a.u.ROC is the y-coordinate. As we
are really fairly closely correlated, especially among the best models. In a situation with relatively
few positive test examples, the BEP has a relatively small set of possible values and thus it is
perhaps a less than ideal measure for evaluation of the performance on the test set.

Page 24� of 28� NeOn Integrated Project EU-IST-027595

1

0.1

0.2

0.6

0.7

0.8

0.9

ar
e

 c
u

n
t

es
t s

et
he

 t
0.5rv

e
o

0.4

r R
O

C

0.3

ea
 u

nd

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

breakeven point on the test set

Figure 3: Breakeven point and the area under ROC curve for 600 SVM classifiers obtained
under different parameter settings.

It is true that in the experiments presented in the table above, selecting the parameter settings that
maximize the BEP during the cross-validation resulted in models that performed slightly better on
the test set than if the parameter settings were selected by maximizing the a.u.ROC during cross-
validation. However, our impression is that it would be unreasonable to conclude that this should
be generally the case in problems of this type; further experiments with more extensive data sets

 the models obtained by varying the other two parameters?
value of each parameter, we select the other two

parameters so as to maximize the a.u.ROC measure during cross-validation. We then report this
u.ROC achieved by the same combination of parameters on the

would be required before this could be confirmed one way or another.

3.4.2 Parameter tuning

Until now we have been looking for the best combination of parameter settings by allowing all three
parameters to vary – C, j, as well as γ. But what if we hold one of these parameters fixed at some
specific value and then examine only
The following charts show the results. For each

a.u.ROC value, as well as the a.
test set.

D 1.6.1 Predicting future structural changes in ontologies Page 25 of 28

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 10 100

value of the j parameter

ar
ea

 u
nd

er
 th

e
R

O
C

 c
ur

ve

best a.u.ROC during CV a.u.ROC of the same model on the test set

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.0001 0.001 0.01 0.1 1 10

value of the γ parameter

ar
ea

 u
nd

er
 th

e
R

O
C

 c
ur

ve

best a.u.ROC during CV a.u.ROC of the same model on the test set

0.7

0.8

0.85

0.9

0.95

1

er
 th

e
R

O
C

 c
ur

ve

0.75

ar
ea

 u
nd

0.6

0.65

0.01 0.1 1 10 100 1000 10000

value of the C parameter

best a.u.ROC during CV a.u.ROC of the same model on the test set

Figure 4: Classification performance as a function of one parameter (j, γ or C) if the other
two parameters are tuned using fivefold cross-validation.

e best results were achieved with j = 3, which is reasonable since this
is exactly the ratio of the number of negative examples to the positive ones. Since there are three

s, the domains of the features, and C is further influenced by the type of kernel and its
parameters (e.g. γ in our case). In general, we can say that in both cases (C as well as γ) there is
actually a fairly broad range of parameter values where good performance can be achieved. The
results for C are somewhat surprising because there, cross-validation appears to mislead us: the
larger values of C lead to poorer performance during cross-validation but actually better
performance on the test set.

Regarding the j parameter, th

times as many negative examples as there are positive ones, it makes intuitive sense to treat
errors on the positive examples as three times more serious than the errors on negative examples.
This intuition is borne out by the facts, and it turns out that the farther away j was from 3 (either
greater or smaller), the worse the performance of the resulting models was.

Observations regarding C and γ are less useful because, when training SVM models, the optimal
values of these parameters depend considerably on the properties of the dataset, i.e. the number
of feature

2007 © Copyright lies with the respective authors and their institutions.

Page 26� of 28� NeOn Integrated Project EU-IST-027595

4. Conclusions and Future Work

In this deliverable we have described an approach for predicting a subset of structural changes in
an ontology. Our approach aims to predict the addition of categories within a hierarchy of
documents, under the assumption that the new category is a child of an existing parent category
and that it contains at least a few documents that were formerly members of the parent category.
We have described how this task can be formulated as a machine learning problem and presented
experiments that show that the prediction of this type of changes is feasible.

There are several directions along which this work could be extended. A possible next step is to try
to devise more features with which to describe a category (in addition to the clustering-based
features that we use currently). This could improve the performance of our current machine-
learning approach to the prediction of category additions. In particular, our current features are
based in the idea of finding clusters of documents within the set of documents of an existing
category. However, some of these clusters may already correspond nicely to the existing
descendants of this category, and so they should not be taken as evidence that yet another
subcategory needs to be added.

Another interesting extension would be to try predicting not just whether the addition of a new
category is warranted, but also which documents it should include, and perhaps which keywords it
should be described by. This would be in effect a second step, after the machine learning classifier
has suggested an addition. At that point we could look for clusters in the existing set of documents
of the parent category, find those that do not overlap well enough with any of the existing
descendants of that parent category, and propose them as new children.

In addition to this, it would be interesting to address other types of ontology changes. Currently, we
have addressed the addition of categories, and even that only under certain conditions. Some of
the additions that are not handled now include those where the new category contains few (if any)
documents from the old ontology, but contains some entirely new documents instead. This
sc
one snapshot and nough into any of
the existing categories; by clustering these documents, one could attempt to identify candidates for

parent well enough or
whether it should be moved somewhere else.

siblings, and parent – the name of a category must be able to
ifferentiate it from all these neighbours. This model could be used to evaluate all the terms with
spect to their suitability as keywords in the name of a given category; then, if the terms that are

actually used in the current name of the category receive a much lower score than some other
terms, it would be a good moment to recommend that the ontology be renamed. However, a
significant downside of this approach is that the name of a category, especially a higher-level
category, may contain more abstract terms that are not necessarily very prominent in the actual
documents contained within that category (and its descendants). It might be necessary to use
WordNet or some other similar resource to find the connection between such abstract terms and
the words that actually occur in the documents of the ontology.

enario could be addressed by looking at the set of documents added to the ontology between
the next; one could take those documents that do not fit well e

new categories containing these new documents.

Moving and merging of existing categories, which is the other major class of structural changes
that we have observed in the ODP ontology, could be addressed by comparing each category to
other categories, e.g. via the cosine between centroids or (more likely) via some more
sophisticated measures. This would indicate whether it matches it current

Finally, although this is not strictly speaking a structural operation, it would be interesting to also
address the operation of category renaming, since this is also a fairly common operation in the
ODP ontology. Here one possibility would be to employ a term-level approach: describe the role of
each term within a certain category by a set of features and then build a predictive model that will
tell if this term would be suitable as one of the keywords in the name of the category. The features
would need to look at not just the occurrence of this term within the documents of that category,
but also within its children,
d
re

D 1.6.1 Predicting future structural changes in ontologies Page 27 of 28

2007 © Copyright lies with the respective authors and their institutions.

ork would be to consider the problem of structural change
Our present approach assumes a very simple

e in more expressive
ontologies.

Another interesting direction for future w
prediction in semantically richer ontologies.
ontology, consisting of a hierarchy of classes, with zero or more instances assigned to each class.
But an ontology may also contain other types of relations, attributes, logical statements and axioms
describing the instances and the classes, and so on. This simultaneously opens up a much wider
space of possible structural changes and makes the problem of automatic prediction of such
changes more difficult. It remains to be seen to what extent approaches along the lines of the work
presented in this deliverable can be useful when dealing with structural chang

Page 28� of 28� NeOn Integrated Project EU-IST-027595

5. References

[1] F. Provost, T. Fawcett. Robust classification for imprecise environments. Machine Learning,
42(3):203-231, March 2001.

[2] C. J. van Rijsbergen. Information Retrieval. Butterworth, 1979

[3] D. D. Lewis. Representation and Learning in Information Retrieval. Ph.D. Thesis, Univ. of
Massachusetts, Amherst, MA, USA, 1991.

] C. Cortes, V. Vapnik. Support-Vector Networks. Machine Learning 20(3):273-297,
September 1995.

] T. Joachims. Text categorization with support vector machines: Learning with many relevant
features. Proceedings of the 10th European Conference on Machine Learning (ECML-98),
Chemnitz, Germany, April 21-23, 1998, pp. 137-42.

[6] T. Su, J. G. Dy. In search of deterministic methods for initializing K-means and Gaussian
mixture clusterind. Intelligent Data Analysis 11(4):319-338, 2007.

[7] M. Steinbach, G. Karypis, V. Kumar. A comparison of document clustering techniques.
Proceedings of the 6th KDD Workshop on Text Mining, Boston, MA, USA, August 20-23,
2000.

[8] P. Cimiano, J. Völker. Text2onto - a framework for ontology learning and data-driven change
discovery. Proceedings of the 10th International Conference on Applications of Natural
Language to Information Systems (NLDB'2005).

[9] P. Haase, Y. Sure, J. Völker. Management of dynamic knowledge. Journal of Knowledge
Management, 9(5):97-107, 2005.

[10] L. Stojanović. Methods and Tools for Ontology Evolution. PhD thesis, University of Karlsruhe,
2004.

[11] J. Völker, Y. Sure. Data-driven change discovery. Deliverable 3.3.1, SEKT Project (EU IST-
2003-506826). July 22, 2005.

[12] A. Maedche, B. Motik, L. Stojanovic, R. Studer, R. Volz. Ontologies for Enterprise
Knowledge Management. IEEE Intelligent Systems, January/February 2003.

[13] G. Flouris, D. Plexousakis, G. Anto. A Classification of Ontology Change. Proceedings of
SWAP 2006, the 3rd Italian Semantic Web Workshop, Pisa, Italy, December 18-20, 2006.

[14] D. Maynard, W. Peters, M. d’Aquin, M. Sabou, N. Aswani. Dynamics of Metadata.
Deliverable 1.5.1, NeOn Project (EU IST-2005-027595). March 30, 2007.

[4

[5

	1. Introduction
	1.1 Connection to NeOn
	1.2 Related work

	2. Identifying structural changes by comparing two states of an ontology
	2.1 The Open Directory Project dataset
	2.2 Low-level structural changes
	2.3 Heuristics for the identification of higher-level structural changes
	2.4 Discussion: relationship to the ontology changes from D1.5.1
	2.5 Different types of category additions
	2.6 Prediction of category additions as a learning problem
	2.6.1 Representing documents with the bag-of-words model
	2.6.2 Clustering
	2.6.3 From the clustering to a feature vector for the category
	2.6.4 Training a classifier

	3. Experimental evaluation
	3.1 The dataset
	3.2 Experimental setup
	3.3 Evaluation measures
	3.4 Results
	3.4.1 Model selection criteria
	3.4.2 Parameter tuning

	4. Conclusions and Future Work

