

 NeOn-project.org

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 — “Semantic-based knowledge and content systems”

D1.4.1 Prototypes for Managing Networked Ontologies

Deliverable Co-ordinator: Yimin Wang, Peter Haase

Deliverable Co-ordinating Institution: Universität Karlsruhe – TH (UKARL)

Other Authors: Raúl Palma (Universidad Politécnica di Madrid – UPM)

The goal of this deliverable is to provide applications to support the NeOn networked ontol-
ogy model to be able to manage networked ontologies in an effective and efficient manner in
a distributed networking environment. To achieve this, we provide an integrated architecture
for prototypes which consists of Oyster, KAONp2p and KAONWeb systems. The evaluation in-
dicates the prototypes reported in this deliverable are well applicable for managing networked
ontologies.

Document Identifier: NEON/2007/D1.4.1/v1.0 Date due: February 28, 2007
Class Deliverable: NEON EU-IST-2005-027595 Submission date: March 30, 2007
Project start date March 1, 2006 Version: v1.0
Project duration: 4 years State: Final

Distribution: Public

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 2 of 58 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European
Communities, grant number IST-2005-027595. The following partners are involved in the project:

Open University (OU) – Coordinator Universität Karlsruhe – TH (UKARL)
Knowledge Media Institute – KMi Institut für Angewandte Informatik und Formale
Berrill Building, Walton Hall Beschreibungsverfahren – AIFB
Milton Keynes, MK7 6AA D-76128 Karlsruhe
United Kingdom Germany
Contact person: Martin Dzbor, Enrico Motta Contact person: Peter Haase
E-mail address: {m.dzbor, e.motta}@open.ac.uk E-mail address: pha@aifb.uni-karlsruhe.de
Universidad Politécnica de Madrid (UPM) Software AG (SAG)
Campus de Montegancedo Uhlandstrasse 12
28660 Boadilla del Monte 64297 Darmstadt
Spain Germany
Contact person: Asunción Gómez Pérez Contact person: Walter Waterfeld
E-mail address: asun@fi.ump.es E-mail address: walter.waterfeld@softwareag.com
Intelligent Software Components S.A. (ISOCO) Institut ‘Jožef Stefan’ (JSI)
Calle de Pedro de Valdivia 10 Jamova 39
28006 Madrid SL–1000 Ljubljana
Spain Slovenia
Contact person: Richard Benjamins Contact person: Marko Grobelnik
E-mail adress: rbenjamins@isoco.com E-mail address: marko.grobelnik@ijs.si
Institut National de Recherche en Informatique University of Sheffield (USFD)
et en Automatique (INRIA) Dept. of Computer Science
ZIRST – 665 avenue de l’Europe Regent Court
Montbonnot Saint Martin 211 Portobello street
38334 Saint-Ismier S14DP Sheffield
France United Kingdom
Contact person: Jérôme Euzenat Contact person: Hamish Cunningham
Universität Kolenz-Landau (UKO-LD) Consiglio Nazionale delle Ricerche (CNR)
Universitätsstrasse 1 Institute of cognitive sciences and technologies
56070 Koblenz Via S. Marino della Battaglia
Germany 44 – 00185 Roma-Lazio Italy
Contact person: Steffen Staab Contact person: Aldo Gangemi
E-mail address: staab@uni-koblenz.de E-mail address: aldo.gangemi@istc.cnr.it
Ontoprise GmbH. (ONTO) Asociación Española de Comercio Electrónico
Amalienbadstr. 36 (AECE)
(Raumfabrik 29) C/lcalde Barnils, Avenida Diagonal 437
76227 Karlsruhe 08036 Barcelona
Germany Spain
Contact person: Jürgen Angele Contact person: Jose Luis Zimmerman
E-mail address: angele@ontoprise.de E-mail address: jlzimmerman@fecemd.org
Food and Agriculture Organization of the United Atos Origin S.A. (ATOS)
Nations (FAO) Calle de Albarracín, 25
Viale delle Terme di Caracalla 28037 Madrid
00100 Rome, Italy Spain
Contact person: Marta Iglesias Contact person: Tomás Pariente Lobo
E-mail address: marta.iglesias@fao.org E-mail address: tomas.parientelobo@atosorigin.com

D1.4.1 Prototypes for Managing Networked Ontologies Page 3 of 58

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this document, even
if they might not have directly contributed writing parts of this document:

• Universität Karlsruhe – TH (UKARL)

• Universidad Politécnica di Madrid (UPM)

Change Log

Version Date Amended by Changes
0.1 15-08-2006 Yimin Wang Creation
0.2 15-10-2006 Yimin Wang Overview
0.3 10-11-2006 Yimin Wang KAONp2p
0.4 28-11-2006 Raul Palma Oyster
0.5 06-12-2006 Yimin Wang Revising with Peter’s comments
0.6 18-12-2006 Yimin Wang KAONWeb
0.7 29-01-2007 Yimin Wang Revising and adding conclusions
0.8 06-02-2007 Raul Palma Updating Oyster instructions
0.9 08-02-2007 Yimin Wang Version for pre-review

0.95 05-03-2007 Yimin Wang Addressing the comments from reviewer
1.0 20-03-2007 Peter Haase QA

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 4 of 58 NeOn Integrated Project EU-IST-027595

Executive Summary

In this deliverable, we present software prototypes for managing networked ontologies that are defined in
NeOn Project Deliverable 1.1.1 [HRW+06]. The networked ontology model calls for a new architecture for
ontology-based systems, therefore it is necessary to summarize the existing work on distributed applications
and make a proposals for new prototypes.

The prototypes for networked ontology management is motivated by the requirements of handling networked
ontologies in the distributed networking environment. The requirements are collected from the case study
workpackages in NeOn project, i.e., workpackage 7 and 8. Based on the NeOn architecture defined in
Workpackages 6, several systems have already been successfully developed by NeOn project partners:

• Oyster system

• KAONp2p system

• KAONWeb system

We first introduce some foundations to support Oyster, KAONp2p and KAONWeb. The detailed technical
description describes the features and particular roles of these systems in the overall integrated architecture
for networked ontology management. We perform some experimental evaluations to show that our prototypes
are applicable in handling the networked ontologies in efficient way. We also conclude our work and discuss
the roadmap to indicate the future directions in T1.4 in Workpackage 1. To facilitate the usage of the systems
introduced in this deliverable, we provide the software instructions as appendix in the end.

In a nutshell, this deliverable reports the first step to provide comprehensive software prototypes in the NeOn
project. We aim to continue our work in T1.4 by following the existing achievements and explore future
advances in managing networked ontologies.

D1.4.1 Prototypes for Managing Networked Ontologies Page 5 of 58

Contents

1 Introduction 9

1.1 Scope . 9

1.2 Motivation . 10

1.3 State-of-the-art . 11

1.4 Overview of the Deliverable . 12

2 Overview of Integrated Architecture for Managing Networked Ontologies 13

2.1 Distributed System Scenario . 13

2.2 The Integrated Architecture . 14

3 Foundations for Networked Ontology Management 16

3.1 Preliminaries . 16

3.1.1 The Description Logic SHIN (D) . 16

3.1.2 Conjunctive Queries . 18

3.2 Metadata for Distributed Ontologies . 18

3.2.1 Ontology Metadata Vocabulary - OMV . 19

3.2.2 OMV Extension - Peer Metadata . 20

3.2.3 Discovery and Selection of Resources . 21

4 Components of Integrated Architecture 22

4.1 Oyster – A Distributed Ontology Metadata Registry . 22

4.1.1 Oyster Design . 23

4.1.2 Overview Of Oyster . 24

4.1.3 Experience . 27

4.1.4 Conclusions and Future Work . 28

4.2 KOANp2p – A Decentralized Ontology Query Answering System 28

4.2.1 Overview of KAONp2p . 28

4.2.2 Mappings in KAONp2p . 30

4.2.3 Query Answering in KAONp2p . 31

4.2.4 Evaluation . 32

4.2.5 Conclusions and Future Work . 33

4.3 KAONWeb – An Infrastructure for Optimizing Distributed Query Answering over Networked
ontologies . 34

4.3.1 Query Answering in KAONWeb . 34

4.3.2 Implementation of KAONWeb . 39

4.3.3 Evaluation . 40

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 6 of 58 NeOn Integrated Project EU-IST-027595

4.3.4 Conclusions and Future Work . 42

5 Conclusion 44
5.1 Summary . 44

5.2 Future Roadmap . 45

A Appendix: Software User Instructions 46
A.1 Oyster User Instructions . 46

A.1.1 Download and Setup . 46

A.1.2 Usage . 47

A.2 KOANp2p User Instructions . 49

A.2.1 Download and Setup . 49

A.2.2 Usage . 49

A.3 KAONWeb User Instructions . 52

A.3.1 Download and Setup . 52

A.3.2 Usage . 52

Bibliography 56

D1.4.1 Prototypes for Managing Networked Ontologies Page 7 of 58

List of Tables

3.1 Translation of SHIN (D) into FOL . 17

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 8 of 58 NeOn Integrated Project EU-IST-027595

List of Figures

1.1 The NeOn Big Picture . 10

2.1 Decentralized Structure for human, ontology and human- ontology interactions. This three
nodes presentation is a typical abstract subset of the human-system network. 14

2.2 The Integrated Architecture . 15

3.1 General OMV overview . 19

3.2 Overview of the P-OMV Ontology . 20

4.1 Overview of Oyster Architecture . 23

4.2 Oyster GUI . 26

4.3 Overview of KAONp2p Architecture . 29

4.4 Evaluation Results for LUBM 1..8 . 33

4.5 Cost of Mappings between Heterogeneous Ontologies . 34

4.6 Scenario of hybrid query answering. The user sends the query to the distributed query answer-
ing system on node 1 that processes the query, splitting the IS, queries over corresponding
ontologies, collects the results and sends them back to the user. 36

4.7 Web Service structure in KAONWeb . 40

4.8 Distributed query answering performance increase against centralized query answering. 41

4.9 The performance increase with respect to the degree of coupling. 42

A.1 Personalizing columns . 48

A.2 Oyster import result . 49

A.3 KAONp2p runtime snapshot. 50

A.4 Searching and integration for shared resources. 51

A.5 Ontology mappings between different domain ontologies. 52

A.6 Combination of ontologies to extract the relevant resources. 53

A.7 Publishing and reuse component use case example. 54

A.8 Query answering use case example. 55

D1.4.1 Prototypes for Managing Networked Ontologies Page 9 of 58

Chapter 1

Introduction

In this chapter, we discuss the scope of this deliverable, the motivation of our work, the state-of-the-art
research topics that are related to this deliverable, and how this deliverable is organized.

1.1 Scope

One goal of the NeOn project is to provide application support for the next generation of the Semantic
Web. In the first several years of the Semantic Web research, the applications usually acted as localized
systems rather than distributed systems in a networked scenario. In recent years, people began to develop
applications by taking into account the requirements of internet-oriented information systems. Server-based
applications and their corresponding clients, Peer-to-Peer applications, and other web-based applications
have been widely developed or are actively being developed for the semantic systems.

This deliverable is part of the work in Workpackage 1 “Dynamics of Networked Ontologies” of the NeOn
project. The goal of this work package is to develop an integrated approach for the evolution process of
networked ontologies and related metadata. For this individual part of Workpackage 1, we will develop new
prototypes for networked ontology management that supports handling the ontological data with consider-
ation of the complex relationships in the ontology network, such as dependencies, mappings, versions and
(in) consistency aspects. Therefore, introducing the prototype for networked ontology management should
take all those aspects thoroughly into account.

The networked ontology model has many different features that makes the networked ontology-based ap-
plications different from the traditional ontology-based applications. The features of applications that use
networked ontologies include:

• Dynamics and interconnectivity. On the one hand, the dynamics of data determine that the data are
tautological from time to time. On the other hand, because the data sets are interconnected with each
other, when one data set is changed, the other data sets that are interconnected with this data set are
also required to be changed accordingly. To implement this, mechanisms like monitors and triggers
will be taken into consideration.

• Distributed working scenario. The data in the networked ontology-based applications is usually dis-
tributed rather than centralized, which means, all the distributed nodes may own certain amount of
data.

• Multilingual aspects. As one important use case for NeOn, applications serving large international
organizations, such as FAO, usually work with data from many places around the world that is naturally
encoded in many languages.

As we see from Figure 1.1, Workpackage 1 plays the central part of the research and development work-
packages in the NeOn project. The tasks of Workpackage 1 are intensively related to other workpackages.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 10 of 58 NeOn Integrated Project EU-IST-027595

As the central application part of Workpackage 1, Task 1.4 aims to provide the prototypes for networked
ontology management to other work package partners, in particular, to Workpackage 6 regarding the NeOn
infrastructure and to the case study in Workpackage 7 about constructing and over-fishing alert system and
fishery ontology life-cycle management system.

Figure 1.1: The NeOn Big Picture

1.2 Motivation

The realization of real-life applications in the Semantic Web requires the ability to deal with heterogeneous
ontologies fragmented and distributed over multiple autonomous nodes. In recent years much progress
has been made in providing efficient and scalable reasoning support over expressive ontologies: We now
have a number of reasoners such as FaCT++ [TH04], RacerPro (http://www.racer-systems.com/), Pel-
let [SP04], KAON2 (http://kaon2.semanticweb.org/) and OntoBroker (http://www.ontoprise.de/) that
allow to handle ontologies with reasonable size and complexity. However, these reasoners typically assume
centralized and closed settings, where a number of known ontologies are integrated in one local node. More-
over, ontology re-use is rather difficult within a centralized setting. It is difficult to find and share ontologies
available among the community, because standard metadata information for documenting and annotating
ontologies is not widely being used. This leads to the problem of having many isolated ontologies created
by many different parties that causes duplicated efforts. Besides the costs of the duplicated efforts, this also
hampers interoperability between ontology-based applications. Also, in a centralized setting, it is often more
difficult to optimize the overall performance of the system than decentralized setting, which is also one of the

D1.4.1 Prototypes for Managing Networked Ontologies Page 11 of 58

arising challenges in the Semantic Web research.

The decentralized approach provides an ideal solution for users that require a registry to which they have
full access and can perform any operation (e.g. reasoning, register, update or delete metadata) without any
consequences to other users, similar to managing their personal favorite song list. For example, users from
academia or industry might use a personal registry for a task dependant investigation or ontology engineers,
might use it during their ontology development process to query over different ontologies and capture in-
formation about different ontology versions. Therefore, we argue that the decentralized infrastructure better
reflects the spirit of the open Semantic Web, where ontologies are distributed over a number of autonomous
nodes. This decentralized infrastructure also features that in each decentralized peer, there is a server that
serves remote peers with their particular functionalities. This feature provides a potential opportunity to
optimize the overall performance of the decentralized system by appropriately distributing the tasks in the
network.

When dealing with such decentralized infrastructures in the distributed scenario, we need to consider a num-
ber of arising challenges that are currently not addressed in centralized systems. The first fundamental
challenge is the coordination of autonomous nodes, i.e. the ability to manage the organization of the interac-
tion between nodes. In the case of completely centralized architectures, one node has complete control over
all other nodes, whereas in completely decentralized architectures there is no central control and all nodes
act autonomously. A particularly important coordination task is that of discovering and selecting resources
relevant for answering queries as well as routing of requests: How do you find the right nodes that are able
to answer a given query in a decentralized system in a scalable manner without any centralized servers or
hierarchy? Related to the problem of autonomy is that of heterogeneity: To enable interoperability between
nodes in large distributed information systems based on heterogeneous ontologies, it is necessary to spec-
ify how the ontologies residing at a particular node correspond to ontologies residing at other nodes. It is
also necessary to formally define the notion of a mapping between ontologies. Finally, we need reasoning
algorithms that can efficiently deal with ontologies distributed over multiple nodes, taking into account the
semantics of the mappings between the individual ontologies. For efficiency reasons, it is important to devise
methods that do not require the integration of ontologies in a single node, but that only retrieve the information
relevant for the particular reasoning task.

1.3 State-of-the-art

There are several threads of research work that are related to this deliverable: (1) The use of semantics and
metadata and corresponding registries for the coordination and organization of distributed information sys-
tems, (2) representation of mappings for ontology integration, and (3) approaches to distributed reasoning.

The use of metadata for addressing coordination problems has a history in different communities. In the past,
there have been various proposals for modeling metadata of ontologies. Unfortunately, none of them has
been accepted as a standard, some proposals, such as Dublin Core, were too general, others were limited in
applicability. [MMS+03] has proposed an ontology meta-ontology (OMO) for a distributed ontology registry.
The focus of the registry is on locating, re-using and evolving existing ontologies rather than supporting
particular reasoning tasks. Semantic representation of resources have further been successfully applied to
organize distributed systems with semantic overlay networks. In these semantic overlay networks, links are
created according to semantic relationships between the nodes. The neighborhood thus mirrors semantic
relationships between the peers. For example, Gridvine [ACMHP04] uses the semantic overlay for managing
and mapping data and metadata schemas, on top of a physical layer consisting of a structured Peer-to-Peer
overlay network called P-Grid. A similar approach is taken in our infrastructure, where nodes maintain a
registry with metadata about acquainted nodes, which is used to select relevant nodes and ontologies for
answering a given query. Similarly, we can find several approaches for ontology registries. Many of these
systems (Knowledge Zone, DAML ontology library, SchemaWeb Directory, WebOnto, Ontolingua, SHOE)
provide ontology storage, searching and management features but in general they are either limited in scope
or difficult to use. Usually, they store a limited subset of ontology metadata in order to provide some basic

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 12 of 58 NeOn Integrated Project EU-IST-027595

searching capabilities, similar to the Semantic Web search engine SWOOGLE. Moreover, most of the existing
approaches are centralised systems or stand alone applications that are difficult to integrate within other
systems/applications. Our ontology metadata registry, Oyster, is a distributed system that implements a
complete vocabulary to describe ontologies allowing more advanced semantic queries, and that can be
easily integrated within another applications.

The task of ontology integration using mappings is very related to that of data integration in databases. In
[Len02] the author introduces a general framework for data integration and compares existing approaches
to data integration (GAV, LAV) along this framework. The work on data integration has been extended and
re-applied to ontology integration in [CDL01]. Here the authors follow the classical distinction between LAV
and GAV approaches and outline query answering algorithms for these specific settings. In contrast to this
work, query answering in our ontology integration system is not bound to these restricted forms of mappings.
Further, in data integration the languages to describe the sources and targets are typically very restricted
(e.g. express the schemas as plain relations).

With respect to query processing over distributed data, there is a large amount of related work in the area of
Peer-to-Peer databases, such as [TIM+03, FKLZ04]. However, most of the work in Peer-to-Peer databases
assumes that queries can be answered by simply forwarding the query to other nodes and aggregate the
answers afterwards. Such an approach is not sufficient for distributed ontologies. Consider the simple
example of two knowledge bases K1 = {Student v Person} and K2 = {Student(paul)}. Evaluating the
query Q(x) := Person(x) against either K1 or K2 will return no result; only the combination of the knowledge
of K1 and K2 will return the desired result. If we simply forward the query to the two KBs separately, then
apparently there will be not result returned. In description logics terminology, Peer-to-Peer databases only
allow to deal with distributed A-Boxes. On the other hand, reasoners for distributed description logics such
as Drago [ST05] currently provides no support for handling assertional knowledge at all.

In our approach, KAONp2p globally integrates the ontology schemata to guarantee the soundness and com-
pleteness of query answering over distributed ontologies. On the other hand, KAONWeb, an alternative query
answering engine for distributed ontologies, optimizes the query processing by identifying different charac-
teristics of ontologies to seek for possible optimizations. In other words, KAONWeb aims to find a balance
between the direct query distribution owned by classic Peer- to-Peer databases and the overall integration
of KAONp2p. The details of the similarities and differences of KAONp2p and KAONWeb can be found in
Chapter 3.

1.4 Overview of the Deliverable

In Chapter 2, we give an overview for the proposed integrated architecture that applies the networked on-
tology model and its general prototype by first providing a usage scenario for this prototype. We introduce
some foundations for managing networked ontologies in Chapter 3 and afterwards, in Chapter 4, we intro-
duce the components that constitute the prototypes for networked ontology management. The components
include metadata for distributed ontologies, Oyster distributed ontology registry, KAONp2p decentralized
query answering infrastructure and KAONWeb – optimization for distributed query answering over networked
ontologies as an alternative query answering approach with lightweight user interface. KAONp2p and KAON-
Web are targeted towards handling different types of distributed data: KAONp2p focuses on the data that are
distributively generated with higher autonomy, whereas KAONWeb mainly concerns data that are centrally
generated and controlled, but are processed in a distributed manner. Finally, in Chapter 5, we provide a
summary and an outlook to subsequent deliverables.

D1.4.1 Prototypes for Managing Networked Ontologies Page 13 of 58

Chapter 2

Overview of Integrated Architecture for
Managing Networked Ontologies

2.1 Distributed System Scenario

The distributed system scenario for networked ontology management consists of three kinds of interactions:
(1) Human interaction, (2) system interaction and (3) human-system interaction. The development of net-
worked ontology management infrastructure is particularly driven by the two latter aspects.

As shown in Figure 2.1, three kinds of interactions are presented topologically and described in detail as
follows:

1. Human interaction is one of the most common ways of knowledge exchange, including speaking,
writing and so on. It can be either direct (e.g. face-to-face) or indirect (e.g. e-mail), etc. However, this
is obviously not the concern of this deliverable – we will focus on the following two aspects, especially
the third one.

2. Human-system interaction is important to an effective networked ontology management. The user’s
activities include a series of tasks for managing the ontologies in graphical mode with an intuitive
and straightforward interface. The creation and usage of metadata for semantic queries construction
in discovering specific ontology is another important topic. Otherwise, the query input and output
interface is also a key issue here. This is the central concern of Workpackage 4.

3. System interaction is hidden from the user. Typical interactions between system and ontologies basi-
cally happen when managing of both local and remote ontologies, mappings between ontologies and
propagation of corresponding changing events, which keep ontologies updated together with other
ontologies in the network. The second category of system interaction is about ontology metadata
management, including also change propagation between metadata and its related ontologies. More-
over, query routing, distribution and answering is also a very important issue in system interaction,
especially in this networked scenario with multiple servers and clients.

In the networked scenarios, the aforementioned three scenarios are essential for the deployment of dis-
tributed systems. Although in this deliverable, our central concern is the third point as the background infras-
tructure for the prototypes, we also need to taking human-system interactions into account while developing
the prototypes for networked ontology management.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 14 of 58 NeOn Integrated Project EU-IST-027595H u m a n I n t e r a c t i o n S y s t e m I n t e r a c t i o n H u m a n � S y s t e m I n t e r a c t i o n

Figure 2.1: Decentralized Structure for human, ontology and human- ontology interactions. This three nodes
presentation is a typical abstract subset of the human-system network.

2.2 The Integrated Architecture

The integrated architecture of NeOn aims to provide a unified approach to manage networked ontologies
in the complex networking environment. There are three levels of components in this proposed integrated
architecture:

1. The integrated infrastructure for low level ontology management.

2. The integrated engineering components that can be tightly or loosely coupled.

3. The integrated GUI components that can be thin or rich.

Figure 2.2 depicts these three levels of components in this integrated architecture, which is depicted by
aligning to the NeOn architecture provided in the NeOn project Deliverable 6.2.1.

In this deliverable, the architecture is taken from Workpackage 6, whereas we develop new technologies for
managing networked ontologies in the distributed scenario and embed the new developed software to the
general NeOn architecture. To be specific, we can see from Figure 2.2:

• The low level ontology management infrastructure consists of three units: (1) Oyster ontology registry
services, (2) KAONp2p/KAONWeb distributed reasoner (i.e., KAONWeb is an alternative reasoner that
is particularly optimized for distributed computing with a web-based user interfrace.) (3) the Oyster
and KOANp2p/KAONWeb rely on the KAON2 ontology reasoner, whereas it is also possible to use
Ontobroker as the ontology reasoner and repository service as an alternative.

• The middle level are the integrated engineering components as the background control system for
ontology engineering, which can be shared both by the different GUIs. The loosely coupled services in
the networked scenario include the Oyster and KAONWeb distributed ontology management system,
as well as the collaborative aspect provided by KAONWeb. The tightly coupled services consist of the
browsing, mapping and versioning units that are constituted KAONp2p, FOAM and Oyster, respectively.
The coordination amongst different services in this level is established by using distributed ontology
metadata.

D1.4.1 Prototypes for Managing Networked Ontologies Page 15 of 58

Figure 2.2: The Integrated Architecture

• The upper level GUI components can be divided into two categories – the thin and rich GUI compo-
nents. In this integrated architecture, the instances of rich GUI components are FOAM, Oyster and
KAONp2p. On the other side, KAONWeb system provides thin GUI components based on web appli-
cation. These GUI components commonly share a common NeOn distributed control structure that is
established by a couple of APIs.

In Chapter 4, we introduce the individual components which are essential for this integrated infrastructure.
Mature application, such as FOAM, has been developed and can be used directly to this integrated archi-
tecture as a well modularized components that does not require complex integration. A detailed introduc-
tion of Ontostudio can be found in http://www.ontoprise.de/content/e1171/e1249/index_eng.html

and the NeOn Workpackage 6 documents. Further technical details of FOAM can be found via the link:
http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/ and [ES05].

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 16 of 58 NeOn Integrated Project EU-IST-027595

Chapter 3

Foundations for Networked Ontology
Management

In this chapter, we introduce some foundations for networked ontology management, namely, some prereq-
uisite knowledge to understanding the rest of the deliverable and the distributed ontology metadata as basis
for maintaining the relevant information about the networked ontologies.

3.1 Preliminaries

This chapter provides the prerequisite knowledge for understanding this deliverable. In our work, we
use the description logic SHIN (D), and this corresponds to OWL DL with only omission of enumer-
ation as a concept constructor. as our data model and a subset of SPARQL (http://www.w3.org/TR/
rdf-sparql-query/), namely conjunctive queries in order to query data.

3.1.1 The Description Logic SHIN (D)

Let NC be a set of concept names, NRa and NRc sets of abstract and concrete role names, respectively,
and NIa and NIc sets of abstract and concrete individuals, respectively. An abstract role is an abstract role
name or the inverse S− of an abstract role name S (concrete roles do not have inverses). Finally, let D be an
admissible concrete domain. An RBox KBR is a finite set of transitivity axioms Trans(R), and role inclusion
axioms of the form R v S and T v U , where R and S are abstract roles, and T and U are concrete
roles. The reflexive-transitive closure of the role inclusion relationship is denoted with v∗. A role not having
transitive subroles (w.r.t. v∗, for a full definition see [HPS99]) is called a simple role.

The set of SHIN (D) concepts is defined by the following syntactic rules, where A ∈ NC is an atomic
concept , R is an abstract role, S is an abstract simple role, T(i) are concrete roles, d is a concrete domain
predicate, ci are concrete individuals, respectively, and n is a non-negative integer:

C → A | ¬C | C1 u C2 | C1 t C2 | ∃R.C | ∀R.C |
≥ n S | ≤ n S | ≥ n T | ≤ n T |∃T1, . . . , Tn.D | ∀T1, . . . , Tn.D

D → d | {c1, . . . , cn}

A TBox KBT is a finite set of concept inclusion axioms C v D, for C and D concepts; an ABox KBA is
a finite set of concept and role assertions and individual (in)equalities C(a), R(a, b), a ≈ b and a 6≈ b, re-
spectively. A SHIN (D) knowledge base KB is a triple (KBT ,KBR,KBA). The semantics of SHIN (D)
KB can be defined in a direct model-theoretic way to [HPS04] or by a mapping π that translates KB into a
first-order formula as specified in Table 3.1.

D1.4.1 Prototypes for Managing Networked Ontologies Page 17 of 58

Table 3.1: Translation of SHIN (D) into FOL

Mapping Concepts to FOL
πy(>, X)=> πy(⊥, X)=⊥
πy(A,X)=A(X) πy(¬C,X)=¬πy(C,X)

πy(C uD,X)=πy(C,X) ∧ πy(D,X) πy(C tD,X)=πy(C,X) ∨ πy(D,X)
πy(∀R.C, X)=∀y : R(X, y)→ πx(C, y) πy(∃R.C, X)=∃y : R(X, y) ∧ πx(C, y)

πy(d, X1, . . . , Xm)= d(X1, . . . , Xm)
πy(≤ n R.C,X)= ∀y1, . . . , yn+1 :

∧
R(X, yi) ∧

∧
πx(C, yi)→

∨
yi ≈ yj

πy(≥ n R.C,X)= ∃y1, . . . , yn :
∧

R(X, yi) ∧
∧

πx(C, yi) ∧
∧

yi 6≈ yj

πy(∀T1, . . . , Tm.D, X)= ∀yc
1, . . . , y

c
m :

∧
Ti(X, yc

i)→ πx(D, yc
1, . . . , y

c
m)

πy(∃T1, . . . , Tm.D, X)= ∃yc
1, . . . , y

c
m :

∧
Ti(X, yc

i) ∧ πx(D, yc
1, . . . , y

c
m)

πy(≤ n T , X)= ∀yc
1, . . . , y

c
n+1 :

∧
T (X, yc

i)→
∨

yc
i ≈D yc

j

πy(≥ n T , X)= ∃yc
1, . . . , y

c
n :

∧
T (X, yc

i) ∧
∧

yc
i 6≈D yc

j

Mapping Axioms and KB to FOL
π(C v D)= ∀x : πy(C, x)→ πy(D,x)
π(R v S)= ∀x, y : R(x, y)→ S(x, y)

π(Trans(R))= ∀x, y, z : R(x, y) ∧R(y, z)→ R(x, z)
π(C(a))= πy(C, a)

π(R(a, b))= R(a, b)
π(a(c) ◦ b(c))=a ◦(D) b for ◦ ∈ {≈, 6≈}

π(KB)=
∧

R∈NR
∀x, y : R(x, y)↔ R−(y, x) ∧

∧
α∈KBR∪KBT ∪KBA

π(α)
X is a meta variable and is substituted with the actual variable. πx is obtained from πy

by simultaneously substituting all y(i) with x(i) and πy with πx, and vice versa.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 18 of 58 NeOn Integrated Project EU-IST-027595

3.1.2 Conjunctive Queries

A subset of SPARQL allows formulating conjunctive queries. We use this subset to query SHIN (D) knowl-
edge bases.

Definition 1 (Conjunctive Queries) Let KB be a SHIN (D) knowledge base, and let NP be a set of
predicate symbols, such that all SHIN (D) concepts and all abstract and concrete roles are in NP . An
atom has the form P (s1, . . . , sn), often denoted as P (s), where P ∈ NP , and si are either variables or
individuals from KB . An atom is called a DL-atom if P is a SHIN (D) concept, or an abstract or a concrete
role; it is called non-DL-atom otherwise.

Let x1, . . . , xn and y1, . . . , ym be sets of distinguished and non-distinguished variables, denoted as x and
y, respectively. A conjunctive query over KB , written as Q(x,y), is a conjunction of atoms

∧
Pi(si), where

the variables in si are contained in either x or y. Following the semantics of SHIN (D), we extend the
operator π from [MSS04] to translate Q(x,y) into a first-order formula with free variables x as follows:

π(Q(x,y)) = ∃y :
∧

π(Pi(si))

For Q1(x,y1) and Q2(x,y2) conjunctive queries, a query containment axiom Q2(x, y2) v Q1(x,y1) has
the following semantics:

π(Q2(x,y2) v Q1(x,y1)) = ∀x : π(Q1(x,y1))← π(Q2(x,y2))

The main inference for conjunctive queries is query answering:

Definition 2 An answer of a conjunctive query Q(x,y) w.r.t. KB is an assignment θ of individuals to dis-
tinguished variables, such that π(KB) |= π(Q(xθ,y)). We use Ans(Q,KB) as a shorthand for the query
answer.

We use SPARQL as the query language for conjunctive query answering over networked ontologies in this
deliverable.

Example 1 The translation of the following SPARQL query

SELECT ?x ?y WHERE { ?x rdf:type lubm:AssistantProfessor .
?y rdf:type lubm:Publication . ?y lubm:publicationAuthor ?x}

to a conjunctive query is straightforward and results in

Q(x,y) = ∃x,y : AssistantProfessor(x) ∧ Publication(y) ∧ publicatonAuthor(x,y)

where NP = (AssistantProfessor,Publication, publicatonAuthor).

3.2 Metadata for Distributed Ontologies

In this section we present a brief overview of our ontology for the representation of metadata about nodes
in the network and the resources they provide, i.e. the ontologies. We also show how the task of resource
selection is realized using this metadata ontology. In this approach, the nodes advertise descriptions of their
resources and can thus establish acquaintances with other nodes. Acquainted nodes can then share data
and coordinate their interaction.

D1.4.1 Prototypes for Managing Networked Ontologies Page 19 of 58

Figure 3.1: General OMV overview

3.2.1 Ontology Metadata Vocabulary - OMV

For the description of ontology metadata we rely on OMV, the Ontology Metadata Vocabulary [HSH+05].
Based on [HRW+06]. let’s first briefly recall the structure of OMV and then focus on the properties relevant
for the problem of resource discovery and selection. For a complete reference and the complete ontology,
we refer the reader to http://omv.ontoware.org/. The main classes and properties of the OMV ontology
are illustrated in Figure 3.1. We model various types of metadata of ontologies, which we can classify as
Descriptive metadata, Provenance metadata about the creation process, Dependency metadata managing
relationships with other ontologies such as compatibility, and Statistical metadata, e.g. about the size of the
ontology in terms of ontology elements, axioms etc.

Descriptive metadata is the most important type of metadata for the discovery and selection of ontologies.
Descriptive metadata relates to the domain modeled in the ontology in form of keywords, topic classifi-
cations, textual descriptions of the ontology contents etc. It includes the name by which the ontology is
known, the language, its type (e.g. top-level, core, task, domain, and application ontology), and the
subject: The subject of an ontology provides a classification in terms of the domain. The subject is ex-
pressed as a classification against established topic hierarchies, such as the general purpose topic hierarchy
DMOZ (http://dmoz.org/) or the domain specific ACM topic hierarchy (http://www.acm.org/class/) for
the computer science domain.

The topics themselves may be organized in a topic ontology organized with relations such as subTopicOf.

Provenance metadata provides information about the entities contributing to the creation of the ontology,
as well as information about changes since its creation that are significant for its authenticity, integrity and
interpretation. It includes e.g. the properties creator, i.e. the entity primarily responsible for producing the
content of the ontology, the creationDate and modificationDate indicate when the ontology was
first created and modified.

Dependency metadata provides information to support managing relationships with other ontologies.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 20 of 58 NeOn Integrated Project EU-IST-027595

Figure 3.2: Overview of the P-OMV Ontology

These include in particular the imports, backwardCompatibleWith relation, incompatibleWith,
priorVersion, which identifies the specified ontology as a prior version of the containing ontology.

Statistical metadata relates to the size and type of the ontology. In particular we mention the number of
specific ontological primitives (number of classes, properties, individuals, axioms). The availability of such
metadata is important for assessing the quantity of information provided, as well as the type of information
(e.g. large ABoxes vs. TBoxes), which can for example serve as rough indicators of the costs of processing
the ontology.

3.2.2 OMV Extension - Peer Metadata

Besides the ontologies themselves, the second important resources to describe are the nodes managing
and providing these informational resources, which we call peers in our metadata ontology. The extensions
required to model metadata of peers are realized as an extension to the OMV ontology, called P-OMV. Figure
3.2 shows an overview of the P-OMV ontology. The metadata required to describe peers include descriptive
information about the peers themselves, their relationship with other peers, as well as information about the
resources they provide:

Each peer carries a unique ID (UID) to be identified. Depending on the underlying communication infras-
tructure of the network sublayer, different addressing schemes may be applied. In our implementation of
KAONp2p, we simply use IP addresses. In addition to the unique identifier, each peer carries a name for
identification, which is primarily used for human interpretation. The expertise is an abstract description
of the peer in terms of some topic ontology. Depending on the application scenario, the expertise of the peer
can be the subjects of the ontologies that the peer provides, or a more generic description of expertise.

The property acquaintedWith describes the acquaintances of a peer with other peers. The Peer-to-
Peer network then consists of local peers, each with a set of acquaintances, which define the Peer-to-Peer
network topology. The property providesOntology describes the relationship between the peer and the
ontologies provided by the peer. It is essential for locating relevant information resources in the network.

The property providesMapping is used to describe which mappings between ontologies a peer provides.
Mappings are used to describe the correspondences between different ontologies provided by the peers. The

D1.4.1 Prototypes for Managing Networked Ontologies Page 21 of 58

properties sourceOntology and targetOntology specify the ontologies that are being mapped. In
general, mappings need not be symmetric, a distinction between mapping source and target is therefore
required. The property mappingLanguage is used to indicate the language that is used to express the
mapping. In KAONp2p we rely on the formalism for ontology mappings presented in Section 4.2.2, which can
be expressed in SWRL. However, other languages may be used for the representation of ontology mappings.

3.2.3 Discovery and Selection of Resources

In our approach to resource discovery and selection we follow the successful approach of expertise-based
peer selection [HSvH04], which has already been applied in the Peer-to-Peer systems Bibster [HBE+04] and
Oyster [PH05a]. In this approach, peers advertise their resource descriptions according to the metadata
ontology in the network to form acquaintances, whereby the peers are fully autonomous in choosing their
acquaintances. Moreover, we assume there is no global control in the form of a global registry to manage
acquaintances. Acquaintances are managed in a decentralized manner, i.e. by the individual peer using its
metadata registry.

For the selection of resources we offer an automated selection of resources based on matching the subject
of a query and the expertise according to their semantic similarity, which serves as an indicator for relevance.
A subject is an abstraction of a given query expressed in a set of terms from the metadata ontology. The
subject can be seen as a complement to an expertise description, as it specifies the required expertise to
answer the query. We rely on the notion of a similarity function as defined in [EHSH05]. The similarity function
determines the semantic similarity between a subject and an expertise description. As such, an increasing
value indicates increasing similarity and relevance. The resource selection algorithm returns a ranked set
of resources, where the rank value is equal to the similarity value provided by the similarity function. For
example, to answer a query about the subject of Databases, the resource selection might identify a peer who
provides an ontologies about the subject of the ACM topic is Information Systems / Database Management
as relevant. For the details of the selection process, we refer the reader to [HSvH04].

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 22 of 58 NeOn Integrated Project EU-IST-027595

Chapter 4

Components of Integrated Architecture

There are three major components in our integrated architecture for managing networked ontologies:

• Oyster, a distributed ontology metadata registry, manages ontologies by using ontology metadata;

• KAONp2p, a decentralized query answering infrastructure, provides the central technical foundation
for query answering over distributed ontologies;

• KAONWeb, a web-based distributed query answering system, is an different approach for query dis-
tributed ontologies that is particularly optimized for the distributed scenario with a lightweight user
interface.

KAONp2p and KAONWeb are similar in that they provide query answering over distributed ontologies, while
they address different use cases. It is commonly known that Peer-to-Peer system aims to provide resource
sharing as the major scope, especially when resources are created in a decentralized networking environ-
ment – that’s exactly what KAONp2p is designed for. On the other hand, KAONWeb is developed to support
the distributed scenario where the data are created centrally at first and distributed afterwards, therefore the
central task for KAONWeb is to provide efficient infrastructure to facilitate distributed query answering.

These components work in an integrated manner have been depicted in Section 2.2 and in this chapter we
introduce them individually to discover their functionalities in handling networked ontologies in the distributed
environment.

4.1 Oyster – A Distributed Ontology Metadata Registry

Oyster is a Peer-to-Peer application that exploits semantic web techniques in order to provide a solution
for exchanging and re-using ontologies. To achieve this, Oyster implements the proposal for a metadata
standard, so called Ontology Metadata Vocabulary (OMV) as the way to describe ontologies.

Oyster offers a user driven approach where each peer has its own local registry of ontology metadata and
also has access to the information of others registries, thus creating a virtual decentralized ontology metadata
registry. The Oyster client on its own (e.g. disconnected from the P2P network) will already provide added
value to its users as it will give developers an overview and search facilities of his/her own ontology metadata
stored in its local registry. The goal is a decentralized knowledge sharing environment using Semantic Web
technologies that allows developers to easily share ontologies.

We argue that a decentralized system is the technique of choice, since it allows the maximum of individu-
ality while it still ensures exchange with other users. Furthermore, ontologies are geographically distributed
among the community, and developers are willing to share the information about the ontologies they created
provided they do not have to invest much work in doing so, while at the same time they are able to maintain
the ownership of their ontologies. A centralized approach allows reflecting long-term community processes in
which some ontologies become well accepted for a domain or community and others become less important.
However, both approaches could be combined to cover a variety of use cases.

D1.4.1 Prototypes for Managing Networked Ontologies Page 23 of 58

Figure 4.1: Overview of Oyster Architecture

4.1.1 Oyster Design

The Oyster system (Oyster system is freely available under http://ontoware.org/projects/oyster2/)
was designed using a service-oriented approach, and it provides a well defined API. Accessing the registry
functionalities can be done using directly the API within any application, invoking the web service provided
or using the included java-based GUI as a client for the distributed registry. As part of the design, Oyster
identifies an ontology metadata entry by the URI of the ontology it describes, therefore two ontology meta-
data entries are considered the same when the URI of both ontologies are the same. However, due to the
distributed nature and potentially large size of the Peer-to-Peer network, two ontology metadata entries might
refer to the same ontology but have different URI, in which case they are considered duplicates. The way
Oyster handles such duplicates is described in the next section.

In Oyster, ontologies are used extensively in order to provide its main functions (register metadata, formulat-
ing queries, routing queries and processing answers).

Oyster Architecture

The high-level design of the architecture of a single Oyster node in the Peer-to-Peer system is shown in
Figure 4.1.

In the following, we discuss the individual components of the system architecture.

The Local Repository of a node contains the metadata about ontologies that it provides to the network. It
supports query formulation and processing and provides the information for peer selection. In Oyster, the
Local Repository is based on KAON2 and it supports SPARQL as its query language. This component and
the same component in KAONp2p are parts of the Ontology Repository Service in Figure 2.2.

The Knowledge Integrator component is responsible for the extraction and integration of knowledge sources
(i.e. ontologies) into the Local Repository. Oyster supports automatic extraction of metadata for OWL,

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 24 of 58 NeOn Integrated Project EU-IST-027595

DAML+OIL, and RDF-S ontology languages. This component is also in charge of how duplicate query
results are detected and merged (see section 4.1.2).

The Query Manager is the component responsible for the coordination of the process of distributing queries.
It receives queries from the user interface, API or from other peers. Either way it tries to answer the query
or distribute it further according to the content of the query. The decision to which peers a query should be
sent is based on the scope of the query (i.e. a specific set of peers or entire network) and optionally on the
knowledge about the expertise of other peers. This query manager is also shared with KAONp2p introduced
next.

The Informer component is in charge of proactively advertise the available knowledge of a Peer in the Peer-
to-Peer network and to discover peers along with their expertise. This is realized by sending advertisements
about the expertise of a peer. In Oyster, these expertise descriptions contain a set of topics (i.e. ontology
domains) that the peer is an expert in. Peers may accept these advertisements, thus creating a semantic
link to the other peer. These semantic links form a semantic topology, which is the basis for intelligent query
routing (see section 3.2.3).

The Peer-to-Peer network sub-layer is the component responsible for the network communication between
peers. It provides communication services for the data exchange with remote nodes, i.e. to propagate
advertisement messages and to realize the access to remote repositories. In Oyster, we rely on an RMI-
based implementation, however, other communication protocols would be possible as well. This component
is also a component in KAONp2p distributed reasoner.

The API, WS and GUI components are discussed in the next section.

Oyster in NeOn architecture NeOn architecture consists of three main conceptual architectural layers:

1. Basic infrastructure services This layer contains all the services, which are required in for most
ontology engineering tasks.

2. Engineering components This layer contains the main functionality of the NeOn engineering tool-kit
like collaborative work support, population of ontologies from text sources.

3. GUI components that contain the user interfaces mainly for the engineering components e.g. editors,
browsers, ...).

The basic infrastructure layer consists of a set of core services (e.g. Repository services, Registry services,
etc). Oyster is an implementation of the registry services. As it is required, it is based on the OMV ontology
meta model. Further it provides an API and a Web Service interface to query, create, and manipulate
ontology metadata information according to the OMV model.

Additionally, as part of the future work (see section 4.1.4), Oyster will provide some engineering components
that will rely on the registry services (e.g. Versioning).

Finally, Oyster also provides a GUI component that implements a user interface to the registry services.

4.1.2 Overview Of Oyster

Oyster was originally developed within the EU IST thematic network of excellence Knowledge Web http://

knowledgeweb.semanticweb.org/. The original version http://oyster.ontoware.org/ was implemented
as an instance of the Swapster system architecture http://swap.semanticweb.org/.

For the current version, Oyster was re-engineered within the NeOn project as described below:

• The local node repository of Oyster is based on KAON2 instead of Sesame to fit with the general
requirement for application and case study support by NeOn architecture.

• The query language supported is SPARQL instead of SeRQL, as SPARQL is the major query language
in NeOn.

D1.4.1 Prototypes for Managing Networked Ontologies Page 25 of 58

• The communication between peers is based on RMI instead of JXTA, because RMI are better suitable
for cross-platform deployment and usage.

• In addition to provide a user interface (GUI component), the current version of Oyster provides a set of
APIs and a web service for exposing the registry services.

In the rest of this section we summarize the functionalities provided by Oyster and the alternatives it provides
to interact with the registry.

Oyster API overview

In this section we provide an overview of the Oyster API.

1. Register Metadata Ontology Metadata can be registered through Oyster API either by specifying the
property-value pairs of the ontology metadata or by importing ontology files in order to automatically
extract the ontology metadata available. For the automatic extraction, Oyster supports the OWL ,
DAML+OIL , and RDF-S ontology languages. The ontology metadata entries are aligned and formally
represented according to two ontologies: (1) the proposal for a metadata standard OMV that describes
the properties of the ontology, and (2) a topic hierarchy (i.e. DMOZ) that describes specific categories
of subjects to define the domain of the ontology.

2. Update Metadata Oyster API provides the means to update the ontology metadata stored locally. The
ontology metadata will be modified by specifying the new set of property-value pairs or by importing
again the ontology file with updated metadata information. Note that the ontology file is not a new
version of the ontology, i.e. the semantics of the ontology is the same, only the metadata has changed
(e.g. comments, title, etc.) or added (e.g. version information, authors, etc.).

3. Search Metadata The registry can be searched using the API by specifying the search criteria in
terms of the two ontologies (e.g. OMV and topic hierarchy). This means that the search can refer to
any property of OMV like URI, name, acronym, resourceLocator, etc. or they may refer to topic terms.
Additionally, the registry can be searched by time conditions (i.e. ontology that has changed since a
particular date).

Optionally, when searching the registry, it is possible to specify if the search is over a single specific
peer (e.g. their own computer, or a certain peer because this peer is known as a big provider of
information), or over a specific set of peers (e.g. all the members of a specific organization), or over
the entire network of peers (e.g. when the user has no idea where to search). In the latter case, queries
are routed automatically through the network depending on the expertise of the peers, describing which
topic of the topic hierarchy a peer is knowledgeable about. In order to achieve this expertise based
routing, a matching function determines how closely the semantic content of a query matches the
expertise of a peer (see section 3.2.3).

The search returns a list of one or many metadata entries, and if the results includes many entries
of the same metadata (i.e. metadata entries in different peers with the same URI), then a merged
representation that combines the knowledge from the individual and potentially incomplete items is
returned in the result.

4. Get Peers The Oyster API can be used to retrieve the set of all active Peers in the network. This set
of Peers then can be evaluated to restrict the search to a certain set of Peers as described above.

5. Get Peer Expertise This method of the API allows to retrieve the complete list of all ontologies regis-
tered in a specific Peer.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 26 of 58 NeOn Integrated Project EU-IST-027595

Figure 4.2: Oyster GUI

Oyster GUI overview

Oyster GUI provides a ready to use client interface to the distributed registry. It implements most of the
functionalities provided by the API and offers to the final user a way to interact with the registry.

1. Publishing and Importing Metadata Oyster GUI enables users to register metadata about ontologies
manually and also to import ontology files to extract the ontology metadata available (as described in
section 4.1.2) and let the user specify the missing values.

2. Formulating Queries As shown in the left pane of the figure 4.2, users can use the GUI to search
the registry for ontology metadata by means of simple keyword searches, or more advanced semantic
queries like SPARQL queries. Queries are formulated in terms of these two ontologies as described
in section 4.1.2. The GUI includes by default some of the most common properties used for searching
ontologies like name, acronym, ontology language, etc. Additionally, it also includes a way to search
ontologies by topic terms.

3. Routing Queries As shown in the upper left pane of the figure 4.2, the Oyster GUI provides the means
for the users to specify if they want to query a single specific peer, a specific set of peers, or the entire
network of peers (see section 4.1.2).

4. Processing results The results matching a query are presented in a result list (c.f. upper right pane
in figure 4.2). The answer of a query might be very large and may contain many duplicates due to the

D1.4.1 Prototypes for Managing Networked Ontologies Page 27 of 58

distributed nature and potentially large size of the Peer-to-Peer network. Such duplicates might not be
exact copies because of the semi structured nature of the metadata, so the ontologies are used again
to measure the semantic similarity between different answers and to detect apparent duplicates. For
Oyster, duplicates are ontology metadata entries which refer to the same ontology, but are modelled
as different resources (i.e. using different URIs). In order in recognize two entities as being duplicates,
Oyster applies specific similarity functions.

In detail, we compiled a set of specific ontology facts used to assess the similarity between two in-
stances (e.g. URL, name, version, type, domain, creationDate). For each of these facts we use
different individual similarity functions depending on the type of information it represents. Then, from
the results of each individual similarity function, we obtain an overall value with an aggregated simi-
larity function, using a weighted average over the individual functions. These weights were assigned
based on experiments with sample data. Using the overall value, we consider duplicates those pairs
of resources whose similarity is larger than a certain threshold.

Then, the result list provides all the possible duplicates as a group for the user to visualize them. The
details of particular results are shown in the lower right of the figure 4.2. Additionally users can save
the results of a query into their local repository for future use.

Oyster WS overview

Oyster WS encapsulates the Oyster API as a Web Service so it can be used within any service oriented
application. The functionality provided by the Web Service is basically the same as the functionality provided
by the API described above.

4.1.3 Experience

In this section we present the evaluation of the first version of Oyster regarding usage statistics in order to
show the usability of the system. For that experiment, the evaluated version of Oyster that can be downloaded
from http://oyster.ontoware.org requests the user permission when it is installed for sending usage
statistics (i.e. logs) to a central server. This information has been collected during a period time of 6 months,
in randomly chosen days of the months. We logged user behavior and actions in a time window of 15 minutes.
During this time period the peers issued 333 queries overall and received 29076 distinct results in terms of
RDF statements, which corresponds to about 3000 ontology metadata entries.

A total of 250 ontology metadata entries were shared, among 42 peers, with an average of 6 ontologies per
peer. However, the distribution had a high variance: While only three peers shared 85% of the total content,
a lot of peers provided only one or two entries or were f̈ree-riding.̈

The analysis of the type of query the users sent revealed that around 50% of the queries were using at least
one of the two ontologies used in Oyster. OMV properties (e.g. name, type) were used in more that the 27%
of the queries and in over 23% of the queries the users asked for topics of the DMOZ topic hierarchy. Based
on that analysis we could determine that the preferred properties for searching ontologies by the users are
the domain, the name and the ontology language. The other 50% of the queries were general searches (i.e.
get all the available ontologies).

Due to the limited size of the network and the lack of domain information on most of the ontology metadata
entries, the evaluation of the expertise based peer selection couldn’t be shown. However, in simulation
experiments with larger peer networks with thousands of peers, it has been shown improvements in order of
one magnitude in terms of recall of resources and relevant peers[HSvH04]. For evaluation of other Swapster
based system we refer the reader to [HBE+04].

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 28 of 58 NeOn Integrated Project EU-IST-027595

4.1.4 Conclusions and Future Work

As we summarized in this section, Oyster implements a distributed ontology metadata registry that exploits
semantic web technologies in order to provide a solution for sharing and re-using ontologies. Oyster tackles
the problems of the heterogeneity, distribution and diverse ownership of the ontologies as well as the lack of
sufficient metadata by implementing a proposed standard for metadata for describing ontologies.

Oyster allows a flexible interaction with the metadata registry by providing a set of APIs that can be used
within any java application, a Web Service component that can be used within any web application and a
ready to use GUI that can be used directly by the users to interact with the registry.

Finally, Oyster future work addresses many challenges. In particular, those related to NeOn includes version-
ing management support, handle modularization information, manage and support other network relations
between ontologies (i.e. Extension, specialization, etc.), manage ontology evaluation information, support
and exploit review and rating information.

Additionally, our future work includes coordinate the integration of Oyster with Watson infrastructure devel-
oped by the Open University. Watson provides a centralized scalable mechanism for discovering, selecting,
and accessing ontologies that are normally distributed over the Web. The proposal for the integration of Oys-
ter with Watson is as follows: Since Oyster is a distributed ontology metadata registry using a peer-to-peer
architecture to store and manage its content, the outcomes of Watson’s validating and analytic tools may act
as a dedicated ’Oyster peer’. This ’Oyster peer’ would then expose some (agreed upon) information about
crawled and discovered ontologies that Watson currently maintains in its "Ontology and Metadata DB".

The interaction between both systems will be in both directions. On the one hand, Watson will provide a
service in charge of wrap Watson information about discovered ontologies using Oyster’s registry format (i.e.
OMV) in addition to submit the outcomes of Watson crawling, analysis, and/or validation to Oyster registry.
On the other hand, at regular intervals, Watson will get new metadata from Oyster network.

Many of the challenges for the future work mentioned earlier will be coordinated with Watson. For example,
the management of ontology versions will require a good coordination between the versions of ontologies
stored in Watson and the ontology metadata stored in Oyster. Additionally, information about modularization
or other networked relations will need to be synchronized.

4.2 KOANp2p – A Decentralized Ontology Query Answering System

In this section we propose an infrastructure, in which we address these challenges in an integrated manner to
realize query answering over heterogeneous OWL DL ontologies distributed over multiple nodes. This infras-
tructure builds on, extends and integrates a number of prior techniques we have developed in the context of
distributed metadata management and reasoning. In order to deal with the coordination the nodes we rely on
metadata about nodes and their provided resources to support their interoperation and coordination. In our
approach, nodes advertise descriptions of their resources and can thus establish acquaintances with other
nodes. Each node maintains the metadata about available resources in its own local registry in a completely
decentralized manner. Acquainted nodes can then share data and coordinate their interaction. To be able
to integrate heterogeneous ontologies, we propose an expressive mapping formalism in which mappings are
expressed as correspondences between queries over source and target ontologies. An important aspect of
this mapping formalism is that it does not rely on the notion of a global ontology, as known in classical integra-
tion systems based on LAV or GAV (Local-As-View, Global-As-View). Instead, mappings can be formulated
in any direction between arbitrary nodes. We have implemented the reasoning infrastructure in KAONp2p,
extending the OWL reasoner KAON2.

4.2.1 Overview of KAONp2p

In this section, we present a brief overview of KAONp2p (The system is freely available for download at
http://kaonp2p.ontoware.org/.). The general architecture of a single KAONp2p node interacting with

D1.4.1 Prototypes for Managing Networked Ontologies Page 29 of 58

Query Manager

Local Repository

Oyster Metadata

Registry

Reasoning Engine:

KAON2

KAONp2p API / User Interface

AnswerQuery

Local Ontologies Ontology Mappings

Local Access

Advertisements

Registration

Resource Selection
Query,

Virtual Ontology
P2P

Network

P2P

Network
Remote Access

Peer

Peer

P
2
P

 N
e
tw

o
rk

S
u
b
la

y
e

r

Figure 4.3: Overview of KAONp2p Architecture

remote nodes is shown in Figure 4.3. In the following, we discuss the individual components of the system
architecture.

The Local Repository of a node contains the ontologies it provides to the network along with mappings that
relate heterogeneous ontologies available in the network. It is important to note that mappings are first-class
objects in the system that can be shared with other nodes.

The Oyster Metadata Registry One important concept to deal with the coordination of a distributed informa-
tion system is the concept of metadata. Metadata is explicitly managed data about the system elements to
support their interoperation and coordination. KAONp2p uses Oyster system [PH05a] as metadata registry.
We refer readers to Section 3.2 for detailed description of this metadata registry.

The Query Manager is the component responsible for answering queries against the available ontologies in
the network. As queries we consider conjunctive queries over OWL DL ontologies. The query process can
be divided into two steps:

1. Resource selection. The goal of the resource selection is to identify resources in the network that
are relevant to answer a particular user query. This process is governed by selection algorithm that
matches the subject of the query against resource descriptions stored in the Oyster Metadata Registry.
The Oyster Metadata Registry maintains metadata about resources available (i.e. peers, ontologies,
and mappings), which may be accessible either locally or remotely in the network. The resources are
described using the metadata ontology described in Section 3.2. The result of the selection process
is a “virtual ontology” that logically integrates relevant ontologies and mappings required to mediate
between the heterogeneous ontologies in the network, represented using the mapping formalism de-
scribed in Section 4.2.2. We offer three options for resource selection: (1) a manual selection, where
the user can choose the resources relevant to his query, (2) a trivial selection that includes all resources
known in the registry, and (3) automated selection that is introduced in detail in Section 3.2.3. In addi-
tion to the selected ontologies, available mappings are identified that relate the heterogeneous remote
ontologies to the target ontology against which the query is expressed. The relevant resources are
integrated in the virtual ontology, which will be used in the second step of query answering described

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 30 of 58 NeOn Integrated Project EU-IST-027595

in the following Section.

2. Query answering. In the second step, the query is evaluated against the virtual ontology within the
Reasoning Engine. In our implementation, we rely on KAON2 as a reasoner. The reasoning algorithms
of KAON2 do not require the integrated ontologies to be materialized locally, instead the distributed
ontologies still reside on the remote server, and only relevant parts need to be retrieved to the local
node. The details of this process will be explained in Section 4.2.2.

The Peer-to-Peer network sub-layer provides communication services for the data exchange with remote
nodes, i.e. to propagate advertisement messages and to realize the access to remote ontologies. In the
implementation of KAONp2p, we rely on an RMI-based implementation, however, other communication pro-
tocols would be possible as well.

By means of the KAONp2p user interface and API, users can pose queries, receive answers to queries and
control the configuration of the system. While in the user interface queries queries are formulated in a visual
manner, they are passed to the API as conjunctive queries in SPARQL.

4.2.2 Mappings in KAONp2p

To enable interoperability between nodes in large distributed information systems based on heterogeneous
ontologies, it is necessary to specify how the data residing at a particular node corresponds to data residing
at another node. This is formally done using the notion of a mapping. There are three lines of work con-
nected to the problem of mapping: (1) identifying correspondences between heterogeneous data sources,
(2) representing these correspondences in an appropriate mapping formalism, and (3) using the mappings
for a given integration task. We here focus on the latter two important problems once the correspondences
between data sources are known: those of representing the mappings using an appropriate formalism and
using them for the task of query answering over heterogeneous data sources.

We follow the general framework of [Len02] to formalize the notion of a mapping system for OWL DL on-
tologies, where mappings are expressed as correspondences between conjunctive queries (We denote a
conjunctive query as q(x,y), with x and y sets of distinguished and non-distinguished variables, respec-
tively.) over ontologies. The components of this mapping system are the source ontology, the target ontology,
and the mapping between them.

Definition 3 (Ontology Mapping System) An ontology mapping systemMS is a triple (S, T ,M), where

• S is the source ontology ontology,

• T is the target ontology ontology,

• M is the mapping between S and T , i.e. a set of assertions qS qT , where qS and qT are conjunctive
queries over S and T , respectively, with the same set of distinguished variables x, and ∈ {v,w,≡
}.

An assertion qS v qT is called a sound mapping, requiring that qS is contained by qT w.r.t. S ∪ T ; an
assertion qS w qT is called a complete mapping, requiring that qT is contained by qS w.r.t. S ∪ T ; and an
assertion qS ≡ qT is called an exact mapping, requiring it to be sound and complete.

Let us discuss the expressiveness in terms of the ontology language, the query language and the asser-
tions. The expressiveness of conjunctive queries corresponds to that of the well-known select-project-join
queries in relational databases. Two typical approaches to specify mappings are the global-as-view (GAV)
approach, where elements of the target are described in terms of queries over source, and the local-as-view
(LAV) approach, where elements of the source are described in terms of queries over target. Our mapping

D1.4.1 Prototypes for Managing Networked Ontologies Page 31 of 58

system subsumes the approaches of GAV, LAV. In fact, it corresponds to the GLAV approach, which is more
expressive than GAV and LAV combined.

In [HM05] the semantics of the mapping system has been defined by translation into first-order logic. We
here only discuss the intuitions behind the semantics of the main inference task for MS, i.e. computing
answers for a conjunctive query Q(x,y) w.r.t.MS.

As query answering within such a mapping system is undecidable in this generality, we have identified classes
of mappings that introduce restrictions required to attain decidability. These restricted, but still very expres-
sive mappings, can be expressed either directly in OWL DL, or in OWL DL extended with the so-called
DL-safe subset of the Semantic Web Rule Language (SWRL) [MSS04].

The first class of mappings captures the mappings that can be directly expressed in OWL DL. This is the case
if qs and qt are of the form Ps(x) and Pt(x), where Ps and Pt are DL predicates: If qs and qt are of the form
Ps(x) and Pt(x) and Ps, Pt are DL concepts, the mapping corresponds to the equivalent concept inclusion
axiom. If qs and qt are of the form Ps(x1, x2) and Pt(x1, x2), with Ps and Pt are abstract or concrete roles,
the mapping corresponds to the equivalent role inclusion axiom.

The second class of mappings captures the so-called DL-safe Mappings. Let us consider a sound mapping
qS v qT (For a complete mapping qS w qT , the situation is analogous, with the roles of qS and qT reversed.)
with the assertion ∀x : qT (x,yT) ← qS(x,yS). In our restriction, we disallow the use of non-distinguished
variables in the query qT , i.e. restrict the assertions to the form ∀x : qT (x) ← qS(x,yS) (Please note
that these assertions correspond to SWRL rules) and require the query qS to be DL-safe, thus limiting the
applicability of the rules to known individuals. Thus obtained mappings correspond to (one or more) DL-safe
rules, for which efficient algorithms for query answering are known [MSS04].

4.2.3 Query Answering in KAONp2p

We now show how to use an ontology mapping system for query answering in an ontology integration system,
whose main task is to provide integrated access to a set of distributed source ontologies. The integration is
realized via a mediated target ontology through which we can query the local ontologies.

Definition 4 For a set of local source ontologies S1, . . . ,Sn, a target ontology T and corresponding mapping
systemsMS1, . . . ,MSn withMSi = (Si, T ,Mi), an ontology integration system IS is again a mapping
system (S, T ,M) with S =

⋃
i∈{1...n} Si and M =

⋃
i∈{1...n}Mi. The main inference task for IS is to

compute answers of Q(x,y) w.r.t. S ∪ T ∪M, for Q(x,y) a conjunctive query over T .

Please note that because of the absence of a global ontology, this form of ontology integration system can
be directly applied to decentralized integration: For our set of autonomous nodes, each relying on some
local ontology, and a set of mappings that relate the local ontology to those of other nodes, an ontology
integration system IS = (S, T ,M) can easily be constructed for each individual node, where S consists
of the ontologies of the remote node to be integrated, T is the ontology of the local node, andM consists
of the individual mappings systems describing the correspondences between the local ontology with remote
ontologies. This construction is performed during the resource selection process described in Section 3.2.3,
which selects the relevant source ontologies S and the required mappingsM.

We now discuss how to compute answers to a conjunctive query Q(x,y) in an ontology integration system
IS. The algorithm is based on the correspondence between description logics and disjunctive datalog from
[HMS04]. Given an OWL DL knowledge base KB (without nominals) extended with DL-safe rules, a positive
disjunctive datalog program DD(KB) is produced, which entails exactly the same set of ground facts as KB ,
i.e. KB |= A if and only if DD(KB) |= A, for A a ground fact. Thus, query answering in KB is reduced
to query answering in DD(KB), which can be performed efficiently using the techniques of (disjunctive)
deductive databases.

Query answering can be performed in time exponential in the size of KB . Furthermore, as shown in [HMS05],
the data complexity of these algorithms (i.e. the complexity assuming the size of the schema is fixed) is NP-
complete, or even P-complete if disjunctions are not used.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 32 of 58 NeOn Integrated Project EU-IST-027595

Based on these results, we are able to perform query answering in the ontology integration system by con-
verting it into a disjunctive datalog program. The source ontology, target ontology and the mappings are
converted into a disjunctive datalog program, and the original query is answered in the obtained program
DD(S ∪T ∪M). By the results from [HMS04, MSS04], it is easy to see that the algorithm exactly computes
the answer of Q(x,y) in IS.

From the above definition, one might get the impression that our algorithm requires that all source and target
ontologies must be physically integrated into one mapping system in order to answer queries. This is, of
course, not the case. More concretely, to compute DD(S ∪ T ∪M), it is necessary to physically integrate
the TBox part of S, T andM. Since the TBox are typically much smaller than the data, this does not pose
practical problems. Accessing actual data sources (i.e. the ABoxes) is then governed by the chosen strategy
for evaluating the datalog program. In practice, we only need to access the extensions of those predicates
from remote nodes that are actually relevant for the datalog program.

4.2.4 Evaluation

In this section we present experimental results for the evaluation of the KAONp2p infrastructure. In this
evaluation we focus on the second part of the query processing, i.e. the actual query answering against a
set of relevant resources. Please note that for this second part, the number of nodes will be typically much
smaller than the number of nodes under consideration for the resource selection. For evaluation regarding
the first step of resource selection (with several thousands of nodes), we refer to evaluations reported in
[HBE+04] and [HSvH04].

In our first experiment we have used the Lehigh University Benchmark (LUBM) [GPH05] to evaluate the
performance and scalability in terms of the distribution. We deployed eight physically distributed KAONp2p
nodes, each of which holding a different automatically generated data set according to the LUBM ontology
(http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl) describing instance data of one university,
approximately 8MB of OWL/RDF data.

We used queries selected from the LUBM benchmark based on different complexities for the experiments
and format them in SPARQL query language. The first query “Q1” was to seek all the graduate student;
the “Q2” aimed to search the publications with their corresponding authors who were assistant professors;
the last query “Q3” wanted to find out all the graduate students, universities and departments in such a
relationship – the graduate students were members of the departments that were sub-organizations of the
universities where the graduate students got their undergraduate degree.

Q1: SELECT ?x WHERE { ?x rdf:type lubm:GraduateStudent }

Q2: SELECT ?x ?y WHERE { ?x rdf:type lubm:AssistantProfessor .
?y rdf:type lubm:Publication . ?y lubm:publicationAuthor ?x}

Q3: SELECT ?x ?y ?z WHERE { ?x rdf:type lubm:GraduateStudent .
?y rdf:type lubm:University . ?z rdf:type lubm:Department .
?x lubm:memberOf ?z . ?z lubm:subOrganizationOf ?y .
?x lubm:undergraduateDegreeFrom ?y }

We then used an additional node to perform the queries against the knowledge bases of 1..8 manually
selected nodes. Figure 4.4 shows the results of the execution times for the query answering. The main
observation is that in this particular scenario, the time for answering queries increases approximately linearly
with the number of nodes and thus the size of the data set. The additional degree of distribution does not
incur a performance penalty.

In a second experiment we evaluated the additional costs introduced by the heterogeneity between the
nodes. In this experiment, we deployed two nodes, one with an automatically generated LUBM data set,
another one with an SWRC (http://ontoware.org/projects/swrc/) data set, containing real life data
from the University of Karlsruhe (http://www.aifb.uni-karlsruhe.de/viewAIFB_OWL.owl). Further, we
defined mappings according to our mapping formalism to relate the LUBM ontology with the SWRC ontology
in both directions. We then used an additional node to perform queries against the node providing the

D1.4.1 Prototypes for Managing Networked Ontologies Page 33 of 58

0

5

10

15

20

25

1 2 3 4 5 6 7 8

Number of Peers

E
x

e
c
u

ti
o

n
 T

im
e

 (
S

e
c
o

n
d

s
)

Query1 Query2 Query3

Figure 4.4: Evaluation Results for LUBM 1..8

SWRC data set as source ontology, where in a first case the query is expressed in terms of the same target
ontology in a homogeneous setting (SWRC - SWRC) (For SWRC as target ontology we rephrased the three
queries above in terms of SWRC.) and in a second case the query is expressed against a different target
ontology (LUBM - SWRC) in a heterogeneous setting. We repeated the experiment queries against the node
providing the LUBM data set as source ontology, which we again queried with LUBM as target ontology
(LUBM - LUBM) and SWRC as target ontology (SWRC - LUBM). Figure 4.5 shows the results for the query
execution times. We observe that the time needed for query answering increases only slightly for the case
where the source and target ontologies differ and thus mappings are required. The reason lies in the fact that
the mappings are only used in the computation of the datalog program, which is neglectable compared to
the evaluation of the program. This makes our approach especially applicable for scenarios where mappings
between heterogeneous ontologies are required.

Summarizing, the evaluation results show that in approach the performance of query answering is essentially
dominated by the size of the data, and only slightly affected by the degree of distribution and heterogeneity.
In fact, it shows a performance comparable to a setting where data resides on a single, homogeneous node.

4.2.5 Conclusions and Future Work

In this section we have introduced KAONp2p, a Peer-to-Peer system for query answering over distributed on-
tologies in decentralized networks. This infrastructure addresses (i) the coordination of multiple nodes using
metadata about the provided resources managed in a decentralized registry, (ii) the mediation between het-
erogeneous ontologies via an expressive mapping formalism as well as corresponding reasoning algorithms
for query answering.

The query processing follows a two-step process consisting of: (1) the selection of relevant resources based
on metadata managed in a metadata registry, (2) query answering against relevant resources, which are
integrated using a virtual ontology, which logically imports relevant ontologies and mappings. This virtual

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 34 of 58 NeOn Integrated Project EU-IST-027595

Figure 4.5: Cost of Mappings between Heterogeneous Ontologies

integration provides global model semantics as if all ontologies were integrated locally. Practically, the dis-
tributed ontologies still reside on the remote nodes, and only the parts relevant for answering the query need
to be retrieved to the local node. Our evaluation results show that the approach is very promising as perfor-
mance of query answering is essentially dominated by the size of the data, and only slightly affected by the
degree of distribution and heterogeneity. In fact, the performance is comparable to settings where the data
resides on a single, homogeneous node.

4.3 KAONWeb – An Infrastructure for Optimizing Distributed Query Answer-
ing over Networked ontologies

In this section, we present a query answering infrastructure for networked ontologies with a novel adapt-
able and hybrid algorithm that is particularly optimized for a distributed scenario where multiple ontologies
are used and mappings are present. An actual implementation of the algorithms in the KAONWeb system
is evaluated and proves to be favorable to prior algorithms not taking the optimization. We also describe
important aspects of the KAONWeb system (The experimental KAONWeb system can be downloaded at:
http://www.aifb.uni-karlsruhe.de/WBS/ywa/kaonweb/KAONWeb.zip) which provides a distributed sys-
tem for ontology query answering. Different from KAONp2p, KAONWeb is developed to support the dis-
tributed scenario where the data are distributed with central control and coordination, therefore the major
task for KAONWeb is to provide very efficient distributed query answering.

4.3.1 Query Answering in KAONWeb

Queries such as Example 1 are answered using distributed query answering algorithms. The algorithms are
used in the context of a distributed ontology integration system, which provides the structure used in the
algorithms, such as mappings between ontologies.

D1.4.1 Prototypes for Managing Networked Ontologies Page 35 of 58

Distributed Ontology Integration System

Mappings between ontologies are core elements of ontology integration systems. We follow the general
framework of [Len02] to define mappings for SHIN (D) ontologies, where mappings are expressed as
correspondences between conjunctive queries1 over ontologies. This mapping system is composed of a
source ontology, a target ontology, and a mapping between them.

Given the mapping system in Definition 3, in [HM05] the semantics of the mapping system has been defined
by translation into first-order logic. We here only discuss the intuitions behind the semantics of the main
inference task forMS, i.e., computing answers for a conjunctive query Q(x,y) w.r.t.MS. To understand
the intuition of computing answers, we briefly recall the semantics of query answering as defined in [Len02]:
An answer of a conjunctive query Q(x,y) w.r.t. a knowledge base KB is an assignment θ of individuals to
distinguished variables, such that KB |= Q(xθ,y). Thus, the intuitive reading of this semantics is that an
answer of a query needs to be entailed by the source ontology S, the target ontology T and the mappings
M. This semantics is equivalent to the usual model theoretic semantics (e.g., in [CDL01]) based on local
and global models, where a query answer must be an answer in every global model. The decidability of
query answering within such a mapping system is discussed in [HM05].

We have realized that it is possible to refine the performance of query answering over networked ontologies in
distributed environment by distributing the query tasks to the distributed nodes. We herein define the notion
of distributed ontology integration system in such a distributed scenario:

Definition 5 (Distributed Ontology Integration System) Given a set of local source ontologies
S1, . . . ,Sn, a target ontology T and corresponding mapping systems MS1, . . . ,MSn with
MSi = (Si, T ,Mi), a distributed ontology integration system IS is a mapping system (S, T ,M)
where S = {S1, . . . ,Sn} is a set of source ontologies and M = {M1, . . . ,Mn} is a set of mappings that
relate S to T , and T 6∈ S. The main inference task for IS is to compute answers of Q w.r.t. S ∪ T ∪M, for
Q a conjunctive query over T . In IS, given a set of distributed nodes N where the elements of IS reside, a
location function has the signature Loc : (S ∪ T ∪M)→ N and establishes N = Loc(S).

Because of the absence of a global ontology, this form of ontology integration system can be directly applied
to decentralized integration: Assume we have a set of autonomous nodes, each relying on a local ontology,
and a set of mapping systems that relate the local ontology to those of other nodes. An ontology integration
system IS = (S, T ,M) can easily be constructed for each individual node, where S consists of the ontolo-
gies of the remote node to be integrated, T is the ontology of local node, and M consists of the individual
mappings describing the correspondences between the local ontology with remote ontologies.

Nevertheless, integrating and query all the ontologies to cover all the dependencies between ontologies is not
going to scale over a large set of distributed nodes, we need to develop an appropriate approach to distribute
the query answering tasks and optimize the performance for the distributed scenario. The distributed query
answering can be achieved by splitting the IS into several fragments and perform query answering over
these fragments, which we denote components of IS here for the fragments. We first present an example
setup to explain how these components can be queried in a distributed manner.

Example Setup

The Figure 4.6 depicts a typical scenario query answering in IS, which consists of three distributed nodes
with source ontologies S1, S2, S3 and S4, and the mapping M1, M2 and M3 located on the second
distributed node. Please note that any ontology in the networked scenario can be target, source ontology
or mapping. We denote T as target ontology and M as mapping in Figure 4.6 only for straightforward
presentation.

If we query T on node 1, S2 and S3 are source ontologies that are defined as coupled with each other
(presented as dashed line) and mapped to T viaM1 andM2 (presented as solid line), respectively. This

1We denote a conjunctive query as q(x,y), with x and y sets of distinguished and non-distinguished variables, respectively.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 36 of 58 NeOn Integrated Project EU-IST-027595

Figure 4.6: Scenario of hybrid query answering. The user sends the query to the distributed query answering
system on node 1 that processes the query, splitting the IS, queries over corresponding ontologies, collects
the results and sends them back to the user.

is a very typical component of IS and can be established as: ({S2,S3}, T , {M3,M1}). S4 is defined as a
self-contained ontology and mapped to T viaM3. This case contains a single-element of IS: (S4, T ,M2).
A special case also occurs when S1 is also defined as a self-contained ontology but S1 and T share a same
schema. This kind of component can be presented as: ({S1}, T , ∅). If we execute a conjunctive query,
the system automatically adapts to the corresponding approaches of distribution to handle different types
of component of in “Query Processing” unit in Figure 4.6. The procedure to compute the components for
different approaches of distribution is completed by processing the ontology metadata. The “Query Distri-
bution” unit on node 1 concurrently distributes the queries to the “Query Processing” units of node 2 and 3
for future processing. The system on Node 2 and 3 realize that no future distribution is required, therefore
they come to the query answering procedure. Afterwards, in “Query Answering” unit, on the one hand, the
system computes answers for coupled source ontologies S2 and S3 (i.e., the node 1 loads the TBoxes of the
ontologies in and integrates them locally to compute the answer, whereas the ABoxes of ontologies in still
reside on the remote nodes). On the other hand, the self- contained ontologies S1 and S4 are handled by an
absolutely distributed approach (i.e., the node 1 answers the queries for S1 and node 3 computes result for
S4). After collecting all the results, the system returns it to the user on node 1.

Hybrid Query Answering

The query answering in this infrastructure is an adaptable hybrid system that can automatically decide which
distribution approach to adopt. This infrastructure is hybrid because we have two types of distributed ap-
proaches for self-contained and coupled ontologies, respectively, which are integrated in the one query an-
swering system in an adaptable manner. Driven by the example scenario in Section 4.3.1, we need to define
the different components, but first of all, the basic units of IS are the partitions of IS.

Definition 6 (Partition of IS) Given IS = (S, T ,M), a partition ISi is defined as ISi = (Si, T ,Mi),
where Si ⊆ S, Mi ⊆ M, Si 6= ∅, andMi 6= ∅ such that

⋃
i∈{1,...,n} ISi = IS and ∀ Si : Si ∩ Sj = ∅,

D1.4.1 Prototypes for Managing Networked Ontologies Page 37 of 58

i, j ∈ {1, . . . , n}, i 6= j. Given the query answering function Ans(Q,KB). The query answering over a
partition ISi is defined as: Ans(Q,Si ∪ T ∪Mi), where KB = Si ∪ T ∪Mi.

Let’s first discover the cases where the whole set of distributed ontologies in IS can be split into several
fragments based on the existing partitions {IS1, . . . , ISn}. Further optimization can be achieved if it is
known to system from user-defined metadata that the query can be answered against particular components
of IS independently the two categories of ontologies, where the overall answer can be obtained as a simple
union of the individual query answers. We define such a particular partition as a valid component of IS.

Definition 7 (ISv: Valid Component of IS) Given IS, a component of IS: ISv = {IS1, . . . , ISn} with
a set of partitions ISi = {Si, T ,Mi} with Si = {S1, . . . ,Sm} and Mi = {M1, . . . ,Mm}, is called valid if

Ans(Q, IS) =
⋃

v∈{1,...,n}

Ans

Q,
⋃

i∈{1,...,m}

(Si ∪ T ∪Mi)

where Q is a conjunctive query.

Obviously, IS is the valid component of itself, when n = 1. Ideally, the query could be answered indepen-
dently for each source ontology (i.e., if the component only consist of a single element). This is the case, if
the individual source ontologies constitute disparate, unrelated data sets. A typical example would be the in-
tegration of student databases of multiple universities that do not overlap. We consider this kind of ontologies
are self- contained, otherwise, they are coupled.

Our assumption in managing distributed ontologies is that users often expect to avoid unintended correspon-
dences between ontologies and unexpected query answering result. We herein apply ontology metadata
[HSH+05], which includes the information about (1) whether it contains mapping and (2) the other ontolo-
gies that are defined to be related with a particular ontology by the users, to apply different distribution
approaches. In particular, for some large distributed ontology data sets, user are often aware of the corre-
spondences between the data sets and want to overall control the query answering by providing the definition
of self-contained ontology and coupled ontology.

Definition 8 (ISs: Single-element Component of IS) A component of IS : ISs = (Ss, T ,Ms) is a
single-element component if

Ans(Q, IS) =
⋃

s∈{1,...,n}

Ans (Q,Ss ∪ T ∪Ms)

where Ss is a self- contained ontology and Q is a conjunctive query.

Another special case of single-element component also occurs, if a source ontology does not require a
mapping with the target ontology. This is the case, if source and target ontology do not differ in their schema
(i.e., the TBox part of ontologies), this component of IS is a homogenous component.

Definition 9 (ISh: Homogenous Component of IS) Let KBTs and KBTt be the ontology Tboxes of Sh

and T , respectively. A component of IS : ISh is a homogenous component iff KBTs ≡ KBTt . We have:

Ans (Q,Sh ∪ T ∪Mh) = Ans (Q,Sh)

where Sh is a self-contained ontology and Q is a conjunctive query.

Please note the notion of self-contained ontology and coupled ontology does not satisfy when the implicit
mappings or other correspondences exist. In our work, we only concern explicit mappings defined in the on-
tology metadata, because the actual users often want to avoid unwanted results caused by implicit mappings
or other correspondences while managing data on hand.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 38 of 58 NeOn Integrated Project EU-IST-027595

Currently we apply two distribution approaches in our system: one is distributed execution, and the other one
is to answering queries using central integration. Concurrent execution is established for both approaches,
because not only the distributed tasks can be executed in parallel, the central integration may also consist
several valid components that can be queried individually. Apparently, accessing self-contained ontologies
in ISs and ISh could be fully distributed because it doesn’t need to access other source ontologies. We
establish a set of ISv to handle the ontologies that are coupled, and for each ISv, we query over it con-
currently in the local node. This hybrid query answering approach is able to be applied to any reasoner that
supports query answering over ontologies with mappings. This scenario is commonly used in managing dis-
tributed ontologies with large size instance data as users often want to control the overall distributed system
by avoiding unintended correspondences between ontologies and unexpected query answering result.

Algorithms

Given the definitions of three kinds of component of IS with partitions {IS1, . . . , ISn}, ISv, ISs and ISh,
the components of IS can be directly achieved offline by processing the metadata of ontologies and does
not affect the performance of query answering. Using IS with its partitions {IS1, . . . , ISn} as the input, the
components can be achieved by the prepossessing procedure (c.f. Algorithm 1) by identifying the categories
of the ontologies (i.e., self-contained or coupled ontology).

Algorithm 1 Preprocessing Segmentation
Require: distributed ontology integration system IS = (S, T , M), and partitions {IS1, . . . , ISn}, coupled

ontology set C, self-contained ontology set Ss and Sh for ISs and ISh, respectively
1: for all Si ∈ S do
2: if Si ∈ Ss then
3: get mappingMi, establish ISsi

4: else if Si ∈ Sh then
5: establish IShi

6: else
7: put Si and all ontologies that are coupled with Si to Ci

8: get related mappings of Ci and put them to Mi, establish ISvi

9: end if
10: end for
11: output all ISvi , ISsi , IShi

After getting all the components as the required input, herein we introduce the query answering functions for
the three types of component of IS and their distribution approaches. The query answering function in ISv,
ISs and ISh are

Ansv(Q, ISv), Anss(Q, ISs), and Ansh(Q, ISh)

respectively, where Q is a conjunctive query. The computation of Ansv is concurrently executed for each
valid component of IS in the local node. Apparently, the concurrent execution by creating local threads for
each ISv reduces potential overheads caused by the network imbalance in accessing remote ISv. The
answers to the queries is integrated after all the threads return the answers to the system. In the distribution
approach for ISs and ISh, the local node sends the queries to Ni = Loc(Si) in the distributed network in a
concurrent manner. To be specific, one thread sends the query to a remote node where the source ontology
resides in the distributed network, together with other threads in a concurrent way.

After getting the three different kinds of component and corresponding ontologies (i.e., coupled ontologies
in ISv, self-contained ontologies in ISs and self-contained ontologies in ISh), the system distributes the
queries in the network and compute the result.

The Algorithm 2 provides efficient query distribution and answering over networked ontologies in the dis-
tributed environment. In Algorithm 2, each component of IS is treated in different manners based on their

D1.4.1 Prototypes for Managing Networked Ontologies Page 39 of 58

Algorithm 2 Query Distribution and Answering Algorithm
Require: a conjunctive query Q, components ISvi , ISsi and IShi

1: for all ISvi do
2: compute Ansv(Q, ISvi) concurrently on local node
3: end for
4: for all ISsi do
5: get source ontology Si of ISsi

6: get remote node Ni = Loc(Si) in ISsi

7: compute Anss(Q, ISs) on node Ni concurrently in the distributed network
8: end for
9: for all IShi

do
10: get source ontology Si of IShi

11: get remote node Ni = Loc(Si) in IShi

12: compute Ansh(Q, ISh) on node Ni concurrently in the distributed network
13: end for
14: results collection and display

characters: The local node executes Ansv for each individual ISv concurrently to compute the result; for
ISs and ISh,query Q is distributed to node Nj by executing the functions Anss and Ansh in a concurrent
way. Finally the results are collected and returned to the user.

The complexity of Algorithm 2 is decided by the complexity of ABox reasoning [HMS05] that is NP-COMPLETE

in worse case. Furthermore, the complexity of query language is also a desiderata in actual applications, for
example, the complexity of SPARQL query language is NP-SPACE [PAG06].

4.3.2 Implementation of KAONWeb

Our distributed query answering infrastructure is implemented in a web-based networked ontology query
answering system called KAONWeb. KAONWeb has three major components: (1) publishing and reuse
component for users identifying and defining information about ontologies, (2) a metadata registry processing
ontology metadata, (3) distributed query answering for networked ontologies. The KAONWeb systems are
deployed on a set of distributed nodes that both publish their services and consume services of other nodes
(c.f., Figure 4.7). Nodes are autonomous and distributed, they work as both servers and clients to the other
nodes. In our approach, nodes discovery is achieved similar to the peer discovery mechanism introduced in
Oyster system [PH05b]. We introduce the structure of this system in detail below.

The first one is the Ontology Publishing Service that connects to the local ontology repository and the local
administrator can choose ontologies to be published. Published ontologies will be collected into a temporary
repository and ready to be sent. Remote users can then discover the accessible resources on this node and
invoke the service to access the ontologies. The relevant ontology information is recorded with the node’s IP
address as an entry in “Remote Ontology Info Repository” in Figure 4.7.

The second one is the Metadata Registry Service, which takes the responsibility of local ontology metadata
management, is a reengineering of metadata registry in KAONp2p system [HW07]. The ontology mapping
metadata are used to register those ontologies that hold mappings between two ontologies. Such information
is stored in the metadata registry. As described in Section 4.3.1, the metadata information is a key issue in
partitioning the IS in an appropriate way. If an ontology is published, its associated metadata are also
discoverable to the remote users. This procedure is depicted as the second item of “Web Service Consumer”
box in Figure 4.7. Moreover, a “Virtual Ontology” repository is automatically created with target ontology T
in IS.

The last but the most important one is the Query Answering Server. “Remote Ontology Info Registry” is a
structured information container with the remote nodes’ IP addresses and a list of their published ontologies’

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 40 of 58 NeOn Integrated Project EU-IST-027595

Figure 4.7: Web Service structure in KAONWeb

URIs. When a query is requested by a user, the system in this user’s node distributes the query to the
remote nodes where the ontologies are selected to be queried over, then the “Query Answering Server” on
these remote nodes execute the query and send back the results. According to the study in [MS06], KAON2
has comparatively better query answering performance over instance data than other reasoners, thus, we’ve
chosen KAON2 as the background query answering engine in the KAONWeb implementation. This implies
we are using SHIN (D) as the ontology representation formalism[MS06], whereas this infrastructure can be
generally implemented and deployed by support from any OWL-DL reasoner that provides server or service
for query answering over ontologies.

4.3.3 Evaluation

The evaluation of the novel query answering algorithm implemented in the KAONWeb system is introduced
in this section. First we elaborate the evaluation settings that include evaluation purpose, infrastructure, data
and criteria; then we introduce the two experiments in detail and finally discuss the result.

The assumption for our system is that this approach is able to scale over a large number of nodes regardless
the possible network overheads. We realized that our experiments have been done in a practical networking
environment that all the distributed computer are connected by internet. Therefore we expect the when the
number of distributed nodes scale up, there will a significant network overhead.

Settings

We evaluated the performance of the proposed algorithms against the centralized query answering perfor-
mance. There were two experiments for this evaluation: One was to test the performance when the ontology
network consisted of half self-contained ontologies and half coupled ontologies; the other one was to test
how different degrees of coupling affect the performance of the entire system.

We set up the evaluation environment in the following way: We had 8 computers, in which there were 2 work-
stations and 6 personal computers distributed in the internet, to simulate a practical distributed networking
scenario. Each computer played the role as a distributed node and held a data set with fixed size. The first
experiment aimed to compare the performance owned by distributed system against the centralized query
answering system. The second experiment measured the performance influenced by the degree of coupling,
where only a distributed scenario was required.

The data sets were Lehigh University Benchmark (LUBM) [GPH05] with LUBM automatically generated

D1.4.1 Prototypes for Managing Networked Ontologies Page 41 of 58

ontologies that includes instance data of information about university life, approximately 9MB of OWL/ RDF
data, and SWRC ontology. (http://ontoware.org/projects/swrc/) Each node held a LUBM data set and
either SWRC schema or LUBM schema. The performance affected by mappings was not the concern of this
evaluation because it had been studied in [HW07]. In this evaluation, the coupling between the data sets was
defined by the user. For example, if we aligned this data setting to Figure 4.6 as a three distributed nodes
case, T was an arbitrary defined university ontology with LUBM schema; S1 was a self-contained ontology
in ISh with LUBM schema and data set; S2 and S3, which are ontologies with SWRC schema, were defined
as coupled with each other in ISv (presented as dashed line) and they were mapped to T by viaM3 and
M1, respectively; S4, which is an ontology with SWRC schema and data set in ISs, could be mapped to T
viaM2;M1,M2 andM3 contained mappings between SWRC and LUBM schema with different contents.

We still used the same query in the KAONp2p evaluation (c.f. Section 4.2.4). An experiment unit was one
execution of one query over a certain distribution setting (i.e., the execution of Qi on n distributed nodes,
where i = 〈1, 2, 3〉, n = 〈2, 4, 6, 8〉). The three queries above were executed for 20 times for each experiment
unit and the average execution time Td was computed, recorded and compared with the execution time held
by centralized query answering over same size of data Tc. The performance increase/decrease of distributed
setting with respect to the centralized setting was computed by the equation: Tc−Td

Td
.

Experiments and Analyses

Performance and Scalability First of all we needed to compute the performance of centralized system. We
resided all the distributed data in a local node and used reasoner to query all the ontologies in a localized way
(e.g. If we query the ontologies on 8 distributed nodes with 1 data set on each of them, then we compare the
performance with the query answering performance owned by local reasoner with same 8 data sets). Then
we deployed 8 physically distributed nodes for this experiment to compute the performance of distributed
system. There were four self-contained nodes and four coupled nodes defined by the user, in which the
data sets on self-contained nodes can be directly queried in a complete distributed manner, whereas those
on coupled nodes needed to be processed in ontology integration system. We started the experiment by
executing the queries above on two distributed nodes, then four, six and ended up with eight nodes, in
which consisted always half self-contained ontology(ies) and half coupled ontology (ies). After setting up the
experiment environment, we executed the queries introduced in Section 4.3.3 distributively.

1 3 % 1 5 % 2 4 %1 5 % 2 3 % 2 6 %1 8 % 2 5 % 2 4 %2 2 %2 1 % 2 0 %

2 N o d e s 4 N o d e s 6 N o d e s 8 N o d e sP e rf o rmancei nc reasei n
pe rcent age

Q 1 Q 2 Q 3
Figure 4.8: Distributed query answering performance increase against centralized query answering.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 42 of 58 NeOn Integrated Project EU-IST-027595

Compared to the centralized query answering, the performance of distributed execution is considerably bet-
ter when the ontology network that consists of half self-contained ontologies and half coupled ontologies.
Moreover, it is not difficult to discover that when the number of distributed nodes scales up, the performance
increases are more stable, which indicates the good scalability of the algorithms. However, we also see a
remarkable network overheads that causes the performance overheads. For example, the 8 nodes situation
is not much better than 4 nodes.

Impact from Degrees of Coupling In the second experiment, we wanted to discover how the degrees of
ontologies coupling affect the overall performance, therefore we simply executed the queries on the four
distributed nodes with self- contained ontologies only and coupled ontologies only, respectively. We collect
and compared the result with those held by distributed execution on four nodes in the first experiment in
Figure 4.9.

4 8 % 2 7 %
8 7 %

4 1 % 6 4 % 8 4 %

Q u e r y 1 Q u e r y 2 Q u e r y 3P e rf o rmancei nc reasei n
pe rcent age

S e l f ! c o n t a i n e d ! C o m b i n a t i o n S e l f ! c o n t a i n e d ! C o u p l e d
Figure 4.9: The performance increase with respect to the degree of coupling.

The Figure 4.9 depicts the result of the second experiment. It indicates that the efficiency of our algorithms
is affected by the degree of ontologies coupling in the network – the less coupled ontologies exist in the
network, the better performance the system has. Further, in the worst case – the ontologies in the network
are all coupled with each other, the distributed query answering is still similar to the centralized one using
local reasoner.

Analyses In the ideal case, there is more performance increase when the number of nodes scales up. Base
on our algorithm, taking 8 nodes distribution for example, assume we query 8 sets of data locally in serial,
the query answering time is T . We also assume an ideal environment for the first experiment: There is
no network overheads, all the nodes have the same computing capacity, and the node where the query is
executed contains coupled ontology. We can easily get the ideal execution time: T

2 + T
8 = (5·T)

8 (The node
where the query is executed processes 4 sets of data in T

2 and each concurrent node processes 1 set of data
in T

8). We therefore have the performance increase of 37.5% in this ideal case. We conclude that the network
overheads and the imbalance of computing capacity of different distributed nodes leads to the performance
overheads in the practical experiments.

4.3.4 Conclusions and Future Work

In this section, we introduced an optimized distributed infrastructure for networked ontology query answering.
We deployed this infrastructure in our KAONWeb system that consists of query answering and distributed

D1.4.1 Prototypes for Managing Networked Ontologies Page 43 of 58

metadata registry components to handle distributed ontologies in a networked scenario. Novel algorithms
for distributed ontology query answering were implemented and evaluated. The evaluation showed that our
novel algorithms took advantage of the hybrid approach that consisted of both task distribution and central-
ized integration, and it had remarkably better performance compared to the centralized query answering.
Moreover, it scaled well within such a networked and distributed ontology scenario in an adaptable manner.
We argue this scenario is common in the today’s Semantic Web and expected to be more popular with the
progress of many related mainstream projects concerning query answering in semantic data integration (e.g.
NeOn project [DMS+05] and DartGrid Traditional Chinese Medicine project [CWW+06]).

There are two dimensions for future work. (1) The networked ontology consists not only the mapping informa-
tion, but modularity information is also important for distributed processing. With the future development of
networked ontology model in NeOn project, the system should be able to handle distributed modular ontolo-
gies. (2) The coupled distributed ontology TBoxes are able to be effectively handled in a complete distributed
manner by formalisms such as Distributed Description Logics [BS03]. We plan to optimize our algorithms if
both TBox and ABox are effectively supported by these formalisms in the future.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 44 of 58 NeOn Integrated Project EU-IST-027595

Chapter 5

Conclusion

5.1 Summary

Next generation semantic applications will be characterized by a large number of networked ontologies in
a distributed networking scenario. In this deliverable we addressed this challenge by proposing a novel
integrated architecture to support the development life-cycle of networked ontologies in the NeOn project.
We also considered the requirements from case studies Workpackage 7 and 8, and used the NeOn general
architecture provided by Workpackage 6.

Given the foundations for managing networked ontologies, we introduced the components in this integrated
architecture listed below:

• The Oyster distributed ontology metadata registry;

• the KAONp2p decentralized query answering infrastructure focusing on ontology sharing with high
autonomy;

• the KAONWeb, an distributed ontology query answering system with particular optimization for dis-
tributed networks.

Oyster aims to provide the metadata registry to help in managing distributed ontologies. The new devel-
opment of Oyster featured in providing a set of well-defined APIs and web services, as well as support of
SPARQL query language and KAON2 reasoner.

The major difference between the KAONp2p and KAONWeb was the application domain: As Peer-to-Peer
computing differed from classic distributed computing, we provided two solutions to query answering over
distributed ontologies.

KAONp2p was designed for sharing ontologies that were created in the decentralized setting, the central
contribution discovered in the evaluation of KAONp2p was that KAONp2p had similar performance with cen-
tralized query answering although the ontologies were distributed.

Because KAONp2p was not designed for querying ontologies that were centrally created at first and dis-
tributed afterwards, we implemented KAONWeb as an alternative system that was particularly optimized in
distributively processing query answering tasks over distributed ontologies.

We evaluated our query answering component and the evaluation results showed that our prototypes were
very applicable to handle the networked ontologies in a efficient way. However, there were certainly several
directions for further optimization and improvement.

To facilitate the usage of the systems introduced in this deliverable, we also provided the software instructions
as appendix in the end of this deliverable. The instructions taught readers how to download and setup
the software systems, and illustrated some comprehensive use cases to help in understanding the central
functionalities of the systems provided here.

D1.4.1 Prototypes for Managing Networked Ontologies Page 45 of 58

5.2 Future Roadmap

The specification of this integrated architecture is only an initial step of establishing a final reference archi-
tecture for networked ontology management in the complex networking scenario. This effort is going to be
tightly aligned to the NeOn architecture defined in the Workpackage 6. Therefore we discuss the future steps
in the following. The roadmap that we are going to follow as the future work include:

• A unified system for networked ontology management, including the APIs for managing networked
ontologies with different algorithms for distributed querying answering, is planned for the next step.

• Extensions and refinements of the current ontology metadata and their supporting platform to handle
other aspects of networked ontologies, such as an explicit representation of ontology modularity via
metadata and provide distributed reasoning functionality to support modular ontologies.

• Optimization for reasoning and query answering based on the analyzing the ontology metadata. For
example, if an ontology’s metadata state that this particular ontology is not going to be associated
with other ontologies, the query answering task then can be direct executed over this ontology without
considering integrating with other ontologies.

• Optimization of query answering over distributed ontologies considering different semantics in dis-
tributed networks. Advanced and efficient query answering techniques such as approximate query
answering is also an important issue to be addressed.

• Enhance the versatility of network ontology usages for management of other formats of semantic data,
such as relational data and XML data.

The extensions and refinements will be the focus of the work on the subsequent Deliverable D1.4.2 Proto-
types of Networked Ontology Management, Updated Version. In particular, we will develop the metadata for
ontology modularity to support the reasoning over modular ontologies. At the same time, we will consider the
optimizing for distributed ontologies with focus on the analysis of semantics of ontology mappings. Moreover,
supporting multiple formats of data described by networked ontologies is also one of our major concerns in
networked ontology management.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 46 of 58 NeOn Integrated Project EU-IST-027595

Appendix A

Appendix: Software User Instructions

In this appendix, we provide the detailed information for the components of integrated architecture for man-
aging networked ontologies, including the instructions for downloading, installing and using of these software
prototypes. All the prototypes are implemented in Java 1.5, so please download the latest JDK 5.0 (available
at: http://java.sun.com/j2se/1.5.0/download.jsp) for running the programs.

A.1 Oyster User Instructions

A.1.1 Download and Setup

Oyster is supported in two operating systems, i.e. Windows and linux. We are working on the Macintosh
release.

Windows version: Download the latest release for windows (oyster2-win32-installxxx.jar) from Oyster web
site (http://oyster.ontoware.org), execute the file and proceed as follow:

• Click next on the welcome window

• Select Autostart Oyster on system startup check box if you want to start Oyster automatically every
time you start windows

• select the installation path

• click next when the Overall installation progress bar completes

• Select a program group for the shortcuts and the name for the new program shortcut

• finish the process clicking on done

To uninstall Oyster, execute the file uninstaller.jar that was generated in the directory programfiles/Oyster
application/unistaller.

Linux version: Download the latest release for linux (Oyster2-xxx-linuxx.zip) from Oyster web site (http:
//oyster.ontoware.org), unzip the file within the directory you want to install Oyster and run the script
start.sh.

To uninstall Oyster, just delete the directory where Oyster is installed.

After the installation of Oyster, the first time the system is executed, a dialog window asks the user to enter
(or accept the default values) the following configuration parameters:

• File location of the Local Expertise Registry Ontology. This file keeps the local node repository, which
stores the peer knowledge (e.g. local ontology metadata, known peers along with their expertise, etc.).

D1.4.1 Prototypes for Managing Networked Ontologies Page 47 of 58

• File location of the Peer Description Ontology. This ontology is the OMV extension for the peer meta-
data.

• File location of the OMV Ontology.

• File location of the Topic Ontology. This ontology is the topic hierarchy that will be used as the range
for the OMV property domain (i.e. DMOZ, ACM, etc.).

• File location of the Oyster logo image. It has to be an image file (e.g. jpg, bmp, etc.).

• The root concept of the OMV Ontology (i.e. ontology).

• The root concept of the Topic Ontology.

• Ten search conditions (i.e. OMV properties). These properties allows to user to specify conditions
when querying the registry.

• Peer Name. The name of the Peer should be at least 4 characters long. The name is not necessary
to be unique in the network, since internally the system uses a GUID, however it is recommended that
the name reflects some useful information i.e. name of the user+organisation.

• Peer Type. The peer type can be either R if the peer is a Rendezvous Peer, or S if it is a Simple Peer.

• Bootstrap Peer Name and IP address. It is the name and IP address (respectively) of a Rendezvous
Peer that will be contacted by the local Peer when it starts to announce its presence and collect
information of other peers in the network.

All of these configuration parameters can be changed/updated later using the preferences menu (see next
section), except the peer name and type.

A.1.2 Usage

Querying
Scope: You can select the scope of your query:

• Local Peer: Restrict your query to your local peer.

• Automatic Search: Intelligent selection of peers.

• Selected Peers: Select a set of peers.

Search details: You can restrict your query to special attributes (e.g. search for ontologies in OWL), or for
ontologies about a specific subject (based on the classification ontology loaded, such as DMOZ), or you can
search for a string match in any attribute. Furthermore, you can search ontologies by their namespace (uri),
and the result will show all the ontologies that includes the words on the uri field on their namespace.

Save items
You can save items to your local node repository by simply selecting the item and pressing the "Save" button.

Adjusting the columns
By pressing the right mouse button inside the result view panel you can adjust your personal view (see figure
A.1).

Create and Edit items
New ontology metadata entries can be created from scratch, or existing ones can be modified. Oyster pro-
vides two templates for default to create a new metadata entry from scratch: OntologyFull which includes all
the attributes proposed in OMV, and OntologyRequired which includes only the attributes the OMV propose

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 48 of 58 NeOn Integrated Project EU-IST-027595

Figure A.1: Personalizing columns

as required. You can also create your own templates or you can create the metadata entry without using
templates and just adding the attributes you want to include. It is important to notice that the name and uri
properties are mandatory in order to create a new metadata entry.

Import functions
It is possible to import an ontology file document to extract the ontology metadata and then fill missing values
(see figure A.2). Oyster supports the OWL, DAML+OIL and RDF-S ontology languages. Also, a complete
repository (a RDF file) can be imported into the local repository.

Export repository
The repository can be exported to a HTML file (based on a configurable XSLT file) or to a RDF file. It is also
possible to export individual entries.

Preferences
Using this menu, the user can change the configuration parameters given the first time Oyster was executed.
For instance, the classification ontology loaded by default is based on DMOZ, but it is possible to load different
classification ontologies by changing which file to open in the preferences menu. You can also change the
location of the local repository, the templates, OMV ontology or the search conditions.

Duplicate detection
The duplicate detection function, group Ontologies detected as duplicates. Two ontologies are considered
duplicates if they have different uris but they realise the same conceptualisation (see section 4.1.2).

D1.4.1 Prototypes for Managing Networked Ontologies Page 49 of 58

Figure A.2: Oyster import result

A.2 KOANp2p User Instructions

A.2.1 Download and Setup

The initial setup is not straightforward because this system are being developed and tested under a specific
Java software developing environment Eclipse, in which developers are able to simply design software user
interface by generating GUI forms. Furthermore, many third-party Application Program Interfaces (APIs) are
loaded to minimise the programming task, thereby we also need to install those packages in local paths be-
fore compilation. There is a released package that supports Microsoft Windows operating system is available
to download: http://kaonp2p.ontoware.org/KAONp2p_install_win32_040.zip. After downloading and
unpacking the KAONp2p release file, we can find a property file of the system and an initial configuration is
required for the property file. In the property file, we list all the ontologies required to start the application.
The user must configure them according to his file directory and specify the domain ontologies he wants
to use for the application. For the detail configuration step, please refer to the readme file in the released
package.

For the first time of start, if the local expertise registry is empty, a user is required to input a user name for
naming the local peer and needs to indicate the peer type, namely, simple peer or bootstrap peer. The user
needs also to indicate some bootstrap peers (at least one bootstrap peers) with known IP addresses such
that the new joining peer can perform the peer discovery process and join the P2P network.

A.2.2 Usage

In the release package of the software, we can find a kaon2.jar file. As we have introduced, KAONp2p
depends on the KAON2 ontology management system and uses KAON2 API for the management of ontology
resources. A KAON2 instance should also be started on each peer before starting the KAONp2p application.
The KAON2 instance and the application can be started by the following command:

java KaonP2P.Start ontologyDirectory

The “ontologyDirectory” is the path of the folder where you store your shared ontology documents. After
the software started, the user can import new ontology documents that he wants to share with other peers
from the ontologyDirectory and the metadata of the new ontology documents will be stored to the local
expertise registry. Like this, when the system performs periodical exchange process, other peers in the peer
community will be aware of the change about the available knowledge in the network and update their own
local expertise registry. Note that, the ontology URI and document name and other important properties (like
“imports”) of the imported ontology document will be automatically extracted by the system and the user must
specify the expertise domain of the ontology being shared such that it can be classified in the local expertise

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 50 of 58 NeOn Integrated Project EU-IST-027595

registry according to the classification of the topic ontology used in the system (e.g., ACM ontology). The
ontology URL and its expertise domain are mandatory for the classification. In the Figure A.3, we give an
idea about the “import” property editor.

Figure A.3: KAONp2p runtime snapshot.

In the following, we introduce three use cases to show how KAONp2p works as basic usage examples.

Searching and Integration for Shared Resources

In this case, all three peers use the same domain ontologies SWRC and ACMTopic ontology, therefore no
mapping is needed between the domain ontologies. We search for bibliographic data – all the Publication
data which have expertise topic: Hardware. The results can be illustrated in the figure below. As we can
see, all the resources satisfying the query requirement are found out and the metadata of the resources are
demonstrated in the detail viewer. If we add a restriction condition to filter out the books which are published
on 1999, the results are well filtered by using the restriction condition year: 1999. The relevant result is shown
in Figure A.4.

From the figure above, three bibliographical data instances are extracted from two different ontology doc-
uments (from the virtual ontology generated by the system, we can see which ontologies are imported to
achieve the searching process), the system integrates the data and returns them back. The data have re-
spectively the types: InProceedings and Book which are subclass of Publication.

Mapping between Different Domain Ontologies

In this test case, we will test the effect of mapping mechanism. The two peers located on local host use
Proton ontology as the domain ontology and the remote peer use SWRC ontology. All of them use ACMTopic
ontology as the topic hierarchy ontology. We assume a rule in the mapping ontology: the Publication in

D1.4.1 Prototypes for Managing Networked Ontologies Page 51 of 58

Figure A.4: Searching and integration for shared resources.

SWRC has the same meaning as the Document class in Proton. We issue a query from local host to search
for all the publication data. As we can see, the data instances of type Publication being stored on the remote
host are extracted as well. And from the illustration of the virtual ontology, we can find the mapping has been
imported in the virtual ontology. Additionally, we define another rule in the mapping ontology: The property
swrc:year in SWRC has a relevant mapping with the protons:hasDate property of Proton. If we query the
Document data which hasDate on 2004, the data instances of Publication which are published on 2004 are
also retrieved.

Combination of Ontologies to Extract Resources

We have mapping ontology that has been imported to across the different domain ontologies used by the
peer community, resources data could still not be retrieved from single ontology, at this time the combination
of ontologies is necessary. We will give a sample test case to illustrate the reasoning ability of KAONp2p
illustrated in Figure A.6. For example, in ontology A, it contains some data instances such as: Publication
“Consistent Evolution of OWL Ontologies” is publishedAt the conference ESWC. In ontology B, we defined
a restriction for the property publishedAt, its domain is limited as InProceedings and its range is Conference.
This restriction means that all the Publication data which are publishedAt a conference is a data instance of
InProceedings. If a user query for the bibliographical data instances of InProceedings, neither of the above
ontologies can answer the query. If we combine them together (import them into the virtual ontology) and with
the help of reasoning ability of KAONp2p, the system will consider “Consistent Evolution of OWL Ontologies”
as a data instance of InProceedings and return it back.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 52 of 58 NeOn Integrated Project EU-IST-027595

Figure A.5: Ontology mappings between different domain ontologies.

A.3 KAONWeb User Instructions

A.3.1 Download and Setup

The current version of KAONWeb can be downloaded from: http://www.aifb.uni-karlsruhe.de/WBS/

ywa/kaonweb/KAONWeb.zip. KAONWeb is a web application that can be easily accessed via popular web
browsers. There are three step of installation:

1. Before installing KAONWeb, users must first install the Apache Tomcat 5.x (You can find it at: http:
//tomcat.apache.org/) or higher version and make sure it works finely. The Port should be set as
“8080”.

2. Deploy the KAONWeb-ref .war package into “$TOMCAT_HOME$/webapps” and then turn on Tom-
cat.

3. Now it can be accessed under the address http://localhost:8080/KAONWeb-ref in the browser.

A.3.2 Usage

Here we provide the general user guide for the first run of KAONWeb:

1. Before using this application, users should put all local OWL files into the folder
“$TOMCAT_HOME$/webapps/KAONWeb-ref/ontologies/kaon2server_root”.

2. Under the “Catalogue” at the left side of page, there are two functional components named as “Pub-
lishing and Reuse” and “Query Answering”. We can use the first component for ontology and metadata
management, and the second component for query answering.

D1.4.1 Prototypes for Managing Networked Ontologies Page 53 of 58

Figure A.6: Combination of ontologies to extract the relevant resources.

3. Now, click the “Management” in “Catalogue” and go into management page. In the “KAON2 Server
Status” box, click the switch to turn on the KAON2 server. In the “Ontology Management”, all the local
ontologies have been initially listed, and users can also type in the remote peer IP with its web server
PORT, which likes the form of “127.0.0.1:8080”, and the list of ontologies will be shown in a new tab.
Users can also edit the metadata for each local ontology but not the remote.

4. User can choose an ontology for querying by clickung the button “Set This Ontology For Query”.

5. Click the “Query Answering” button, user can type in the SPARQL query language string. After clicking
the “Query” button, all results will be listed out at below.

We also outline two specific use cases in order to provide progressive understanding. In this chapter, there
will be a series of snapshot for our activities. These use cases are based upon the example ontologies
provided in the software package.

Publishing and Reuse

We first look at the “Publishing and Reusing” page and publish some local ontologies (two au-
tonomous ontologies ComputerHardwareOntology.owl and informationSystem.owl and one map-
ping swrc_proton.owl), which associates also the metadata information (here is mapping information).
Then we type the IP address of the host computer to make a remote access. Please note that this is the
same way the nodes can also achieve over the internet. The published ontologies and the mapping set just
now are shown on the remote side. The two processes have been shown in Figure A.7.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 54 of 58 NeOn Integrated Project EU-IST-027595

Figure A.7: Publishing and reuse component use case example.

Query Answering

We can perform a sample query upon a hybrid set involving an autonomous ontology (the
ComputerHardwareOntology.owl) and an integrated system (the mapping swrc_proton.owl , its source
ontology informationSystem.owl and its target ontology Languages.owl). The query is:

SELECT ?x WHERE
{ ?x rdf:type <http://swrc.ontoware.org/ontology# Publication> }

Results are outlined in Figure A.8, comprising entries from the autonomous ontology and entries from the
integrated system.

D1.4.1 Prototypes for Managing Networked Ontologies Page 55 of 58

Figure A.8: Query answering use case example.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 56 of 58 NeOn Integrated Project EU-IST-027595

Bibliography

[ACMHP04] K. Aberer, P. Cudré-Mauroux, M. Hauswirth, and T. Van Pelt. Gridvine: Building internet-scale
semantic overlay networks. In International Semantic Web Conference, pages 107–121, 2004.

[BS03] Alexander Borgida and Luciano Serafini. Distributed description logics: Assimilating information
from peer sources. J. Data Semantics, 1:153–184, 2003.

[CDL01] D. Calvanese, G. De Giacomo, and M. Lenzerini. A Framework for Ontology Integration. In
Proceedings of the Semantic Web Working Symposium, pages 303–316, Stanford, CA, 2001.

[CWW+06] Huajun Chen, Yimin Wang, Heng Wang, Yuxin Mao, Jinmin Tang, Cunyin Zhou, Ainin Yin, and
Zhaohui Wu. Towards a semantic web of relational databases: A practical semantic toolkit and
an in-use case from traditional chinese medicine. In International Semantic Web Conference,
pages 750–763, 2006.

[DMS+05] Martin Dzbor, Enrico Motta, Rudi Studer, York Sure, Peter Haase, Asunción Gómez-Pérez,
Richard Benjamins, and Walter Waterfeld. Neon - lifecycle support for networked ontologies. In
Proceedings of 2nd European Workshop on the Integration of Knowledge, Semantic and Digital
Media Technologies (EWIMT-2005), pages 451–452, London, UK, NOV 2005. IEE.

[EHSH05] M. Ehrig, P. Haase, N. Stojanovic, and M. Hefke. Similarity for ontologies - a comprehensive
framework. In 13th European Conference on Information Systems, MAY 2005.

[ES05] Marc Ehrig and York Sure. Foam - framework for ontology alignment and mapping; results of the
ontology alignment initiative. In Benjamin Ashpole, Marc Ehrig, Jerome Euzenat, and Heiner
Stuckenschmidt, editors, Proceedings of the Workshop on Integrating Ontologies, volume 156,
pages 72–76. CEUR-WS.org, OCT 2005.

[FKLZ04] E. Franconi, G. M. Kuper, A. Lopatenko, and I. Zaihrayeu. The coDB robust peer-to-peer
database system. In SEBD, pages 382–393, 2004.

[GPH05] Y. Guo, Z. Pan, and J. Heflin. Lubm: A benchmark for owl knowledge base systems. journal of
web semantics. Journal of Web Semantics, 3(2):158–182, 2005.

[HBE+04] P. Haase, J. Broekstra, M. Ehrig, M. Menken, P. Mika, M. Plechawski, P. Pyszlak, B. Schnizler,
R. Siebes, S. Staab, and C. Tempich. Bibster - a semantics-based bibliographic peer-to-peer
system. In Proceedings of the Third International Semantic Web Conference, Hiroshima, Japan,
2004, NOV 2004.

[HM05] Peter Haase and Boris Motik. A mapping system for the integration of owl-dl ontologies. In
Axel Hahn, Sven Abels, and Liane Haak, editors, IHIS 05: Proceedings of the first international
workshop on Interoperability of heterogeneous information systems, pages 9–16. ACM Press,
NOV 2005.

[HMS04] U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ− Description Logic to Disjunctive Datalog
Programs. In Proceedings of the 9th Conference on Knowledge Representation and Reasoning
(KR2004), pages 152–162. AAAI Press, June 2004.

D1.4.1 Prototypes for Managing Networked Ontologies Page 57 of 58

[HMS05] U. Hustadt, B. Motik, and U. Sattler. Data Complexity of Reasoning in Very Expressive Descrip-
tion Logics. In Proceedings IJCAI 2005, Edinburgh, UK, 2005. Morgan-Kaufmann.

[HPS99] Ian Horrocks and Peter F. Patel-Schneider. Optimizing description logic subsumption. Journal
of Logic and Computation, 9(3):267–293, 1999.

[HPS04] Ian Horrocks and Peter Patel-Schneider. Reducing OWL entailment to description logic satisfi-
ability. J. of Web Semantics, 1(4):345–357, 2004.

[HRW+06] Peter Haase, Sebastian Rudolph, Yimin Wang, Saartje Brockmans, Raul Palma, Jéróme Eu-
zenat, and Mathieu d’Aquin. D1.1.1 networked ontology model. Technical Report D1.1.1, Uni-
versität Karlsruhe, NOV 2006.

[HSH+05] Jens Hartmann, York Sure, Peter Haase, Raul Palma, and Mari del Carmen Suárez-Figueroa.
Omv – ontology metadata vocabulary. In Chris Welty, editor, ISWC 2005 - In Ontology Patterns
for the Semantic Web, NOV 2005.

[HSvH04] P. Haase, R. Siebes, and F. van Harmelen. Peer selection in peer-to-peer networks with se-
mantic topologies. In Proceedings of the First International IFIP Conference on Semantics of a
Networked World: ICSNW 2004, Paris, France, June 17-19, 2004., pages 108–125, 2004.

[HW07] Peter Haase and Yimin Wang. A decentralize infrastructure for query answering over distributed
ontologies. In The 22nd Annual ACM Symposium on Applied Computing (SAC’07), Seoul,
Korea, 2007. To appear.

[Len02] M. Lenzerini. Data integration: a theoretical perspective. In Proceedings of the twenty-first
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pages 233–
246. ACM Press, 2002.

[MMS+03] A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R. Volz. An infrastructure for searching,
reusing and evolving distributed ontologies. In Proceedings of the Twelfth International World
Wide Web Conference (WWW 2003), pages 439–448. ACM, 2003.

[MS06] Boris Motik and Ulrike Sattler. A comparison of reasoning techniques for querying large descrip-
tion logic aboxes. In Miki Hermann and Andrei Voronkov, editors, Proc. of the 13th Int. Conf. on
Logic for Programming Artificial Intelligence and Reasoning (LPAR 2006), LNCS, Phnom Penh,
Cambodia, 2006. Springer. To appear.

[MSS04] B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with Rules. In International
Semantic Web Conference, pages 549–563, 2004.

[PAG06] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of sparql. In
International Semantic Web Conference, pages 30–43, 2006.

[PH05a] R. Palma and P. Haase. Oyster - sharing and re-using ontologies in a peer-to-peer community.
In International Semantic Web Conference, pages 1059–1062, 2005.

[PH05b] Raúl Palma and Peter Haase. Oyster - sharing and re-using ontologies in a peer-to-peer com-
munity. In International Semantic Web Conference - Semantic Web Challenge, pages 1059–
1062, 2005.

[SP04] E. Sirin and B. Parsia. Pellet: An OWL DL reasoner. In Description Logics, 2004.

[ST05] L. Serafini and A. Tamilin. Drago: Distributed reasoning architecture for the semantic web.
In Proceedings of the Second European Semantic Web Conference, ESWC 2005, Heraklion,
Crete, Greece, May 29 - June 1, 2005, pages 361–376, 2005.

2006–2007 c© Copyright lies with the respective authors and their institutions.

Page 58 of 58 NeOn Integrated Project EU-IST-027595

[TH04] Dmitry Tsarkov and Ian Horrocks. Efficient reasoning with range and domain constraints. In
Description Logics Workshop, 2004. FaCT++.

[TIM+03] I. Tatarinov, Z. Ives, J. Madhavant, A. Halevy, D. Suciu, N. Dalvi, X. Dong, Y. Kadiyska, G. Miklau,
and P. Mork. The piazza peer data management project. SIGMOD Record, 32(3), 2003.

