
                                                  
    NeOn-project.org 

 

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 — “Semantic-based knowledge and content systems”

D1.2.1 Consistency Models for Networked Ontologies

Deliverable Co-ordinator: Guilin Qi, Peter Haase, Qiu Ji

Deliverable Co-ordinating Institution: University of Karlsruhe

An important aspect in the evolution of networked ontologies is to ensure the consistency of the ontologies. In this
deliverable we therefore address the question of how to define appropriate models for consistency in such evolving
networks of ontologies. We first provide a comparison of existing approaches to dealing with inconsistencies in
evolving ontologies. We then propose a novel general approach for resolving inconsistency and incoherence in
ontologies. Our approach differs from current approaches mainly in two aspects. First, when revising an ontology, our
approach deals with logical inconsistency and logical incoherence in an integrated way. Second, we classify logical
inconsistency into three categories and handle different kinds of inconsistency using different revision strategies. We
instantiate our approach by proposing concrete approaches to resolving incoherence and inconsistency. Finally, we
provide implementations of the proposed methods.

Document Identifier: NEON/2007/D1.2.1/v1.0 Date due: February 28, 2007
Class Deliverable: NEON EU-IST-2005-027595 Submission date: March 30, 2007
Project start date March 1, 2006 Version: v1.0
Project duration: 4 years State: Final

Distribution: Public

2006–2007 c© Copyright lies with the respective authors and their institutions.



Page 2 of 40 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is part of a research project funded by the IST Programme of the Commission of the European
Communities, grant number IST-2005-027595. The following partners are involved in the project:

Open University (OU) – Coordinator Universität Karlsruhe – TH (UKARL)
Knowledge Media Institute – KMi Institut für Angewandte Informatik und Formale
Berrill Building, Walton Hall Beschreibungsverfahren – AIFB
Milton Keynes, MK7 6AA D-76128 Karlsruhe
United Kingdom Germany
Contact person: Martin Dzbor, Enrico Motta Contact person: Peter Haase
E-mail address: {m.dzbor, e.motta}@open.ac.uk E-mail address: pha@aifb.uni-karlsruhe.de
Universidad Politécnica de Madrid (UPM) Software AG (SAG)
Campus de Montegancedo Uhlandstrasse 12
28660 Boadilla del Monte 64297 Darmstadt
Spain Germany
Contact person: Asunción Gómez Pérez Contact person: Walter Waterfeld
E-mail address: asun@fi.ump.es E-mail address: walter.waterfeld@softwareag.com
Intelligent Software Components S.A. (ISOCO) Institut ‘Jožef Stefan’ (JSI)
Calle de Pedro de Valdivia 10 Jamova 39
28006 Madrid SL–1000 Ljubljana
Spain Slovenia
Contact person: Richard Benjamins Contact person: Marko Grobelnik
E-mail adress: rbenjamins@isoco.com E-mail address: marko.grobelnik@ijs.si
Institut National de Recherche en Informatique University of Sheffield (USFD)
et en Automatique (INRIA) Dept. of Computer Science
ZIRST – 665 avenue de l’Europe Regent Court
Montbonnot Saint Martin 211 Portobello street
38334 Saint-Ismier S14DP Sheffield
France United Kingdom
Contact person: Jérôme Euzenat Contact person: Hamish Cunningham
Universität Kolenz-Landau (UKO-LD) Consiglio Nazionale delle Ricerche (CNR)
Universitätsstrasse 1 Institute of cognitive sciences and technologies
56070 Koblenz Via S. Marino della Battaglia
Germany 44 – 00185 Roma-Lazio Italy
Contact person: Steffen Staab Contact person: Aldo Gangemi
E-mail address: staab@uni-koblenz.de E-mail address: aldo.gangemi@istc.cnr.it
Ontoprise GmbH. (ONTO) Asociación Española de Comercio Electrónico
Amalienbadstr. 36 (AECE)
(Raumfabrik 29) C/lcalde Barnils, Avenida Diagonal 437
76227 Karlsruhe 08036 Barcelona
Germany Spain
Contact person: Jürgen Angele Contact person: Jose Luis Zimmerman
E-mail address: angele@ontoprise.de E-mail address: jlzimmerman@fecemd.org
Food and Agriculture Organization of the United Atos Origin S.A. (ATOS)
Nations (FAO) Calle de Albarracín, 25
Viale delle Terme di Caracalla 28037 Madrid
00100 Rome, Italy Spain
Contact person: Marta Iglesias Contact person: Tomás Pariente Lobo
E-mail address: marta.iglesias@fao.org E-mail address: tomas.parientelobo@atosorigin.com



D1.2.1 Consistency Models for Networked Ontologies Page 3 of 40

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this document, even
if they might not have directly contributed writing parts of this document:

• University of Karlsruhe

2006–2007 c© Copyright lies with the respective authors and their institutions.



Executive Summary

Next generation semantic applications will be characterized by a large number of ontologies, some of them
constantly evolving. This new generation of applications relies on ontologies embedded in a network of
already existing ontologies. An important aspect in the evolution of these networked ontologies is to ensure
the consistency of the ontologies. We argue that in this scenario it will be inadequate to maintain single,
globally consistent semantic model that serves the needs of application developers and fully integrates a
number of pre-existing ontologies. In this deliverable we therefore address the question of how to define
appropriate models for consistency in such evolving networks of ontologies.

We first provide a comparison of existing approaches to dealing with inconsistencies in evolving ontologies.
In the comparison, we evaluate how these approaches are applicable to networked scenarios.

We then propose a novel general approach for resolving inconsistency and incoherence in ontologies. Our
approach differs from current approaches mainly in two aspects. First, when revising an ontology, our ap-
proach deals with logical inconsistency and logical incoherence in an integrated way. Second, we classify
logical inconsistency into three categories and handle different kinds of inconsistency using different revision
strategies. Our general approach is independent of specific approaches to resolving with inconsistency or
incoherence. We instantiate our approach by proposing concrete approaches to resolving incoherence and
inconsistency.

Finally, we provide implementations of the proposed methods. The implementations are available in two
forms: (1) We have developed the RaDON system for Reasoning and Diagnosis in Ontology Networks,
which makes the proposed functionalities accessible on top of the KAON2 reasoner via extensions to the
DIG interface. (2) We have integrated the new functionalities into the KAON2 OWL Tools, which allow to
access the functionalities from the command line.
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Chapter 1

Introduction

1.1 The NeOn Big Picture

Next generation semantic applications will be characterized by a large number of ontologies, some of them
constantly evolving. As the complexity of semantic applications increases, more and more knowledge will be
embedded in applications, typically drawn from a wide variety of sources. This new generation of applications
will thus likely rely on ontologies embedded in a network of already existing ontologies. Ontologies and
metadata will have to be kept up to date when application environments and users’ needs change. We argue
that in this scenario it will become prohibitively expensive for people to directly adopt the current approach
to semantic integration, where the expectation is to produce a single, globally consistent semantic model
that serves the needs of application developers and fully integrates a number of pre-existing ontologies. In
contrast to the current model, future applications will very likely rely on networks of contextualized ontologies,
which are usually locally, but not globally consistent.

This report is part of the work performed in WP 1 on “Dynamics of Networked Ontologies”. The goal of this
work package is to develop an integrated approach for the evolution process of networked ontologies and
related metadata. As shown in Figure 1.1, WP1 belongs to the central part of the research and development
WPs in NeOn. The tasks of WP1 are heavily inter-related with other work packages. For the individual
phases of the process we will develop new methods that consider the complex relationships in a network of
ontologies. These include dependencies, mappings, different versions and also take possible inconsistencies
into account.

Specific goals in this workpackage include support for:

1. representing, managing and interpreting dependencies between multiple networked ontologies

2. evolution of networked ontologies in exploiting various models of change propagation, which have
different applicabilities depending on the model of coordination and control

3. maintaining partial/local consistency of a set of networked ontologies, which might not be globally
consistent

4. evolving metadata along with changing ontologies and predicting future structural changes in ontolo-
gies.

1.2 Motivation

Ontologies play a crucial role for the success of the Semantic Web [BLHL01]. There are many represen-
tation languages for ontologies, such as description logics (or DLs for short) and F-logic [SS04]. Recently,
the problem of inconsistency (or incoherence) handling in ontologies has attracted a lot of attention. Incon-
sistency can occur due to several reasons, such as modelling errors, migration or merging ontologies, and

2006–2007 c© Copyright lies with the respective authors and their institutions.
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Figure 1.1: Relationships between different workpackages in NeOn

ontology evolution. Current DL reasoners, such as RACER [HM01] and FaCT [Hor98], can detect logical in-
consistency. However, they only provide lists of unsatisfiable classes. The process of resolving inconsistency
is left to the user or ontology engineers. The need to improve DL reasoners to reason with inconsistency
is becoming urgent to make them more applicable. Many approaches were proposed to handle inconsis-
tency in ontologies based on existing techniques for inconsistency management in traditional logics, such as
propositional logic and nonmonotonic logics [PSK05, HvHH+05, Sch05, SC03, FPA05, HvHtT05].

There are mainly two ways to deal with inconsistent ontologies [HvHtT05]. One way is to simply avoid the
inconsistency and to apply a non-standard reasoning method to obtain meaningful answers. A general frame-
work for reasoning with inconsistent ontologies based on concept relevance was proposed in [HvHtT05]. The
idea is to select from an inconsistent ontology some consistent sub-theories based on a selection function,
which is defined on the syntactic or semantic relevance. Then standard reasoning on the selected sub-
theories is applied to find meaningful answers. The second way to deal with logical contradictions is to
resolve logical modeling errors whenever a logical problem is encountered. In [MLB05], the authors pro-
posed an algorithm for inconsistency handling by transforming every GCI in a DL knowledge base into a
cardinality restriction, and a cardinality restriction responsible for a conflict is weakened by relaxing the re-
strictions on the number of elements it may have. In [QLB06b], a revision-based algorithm for handling
inconsistency in description logics is proposed which generalizes the approach in [MLB05]. Several meth-
ods have been proposed to debug erroneous terminologies and have them repaired when inconsistencies
are detected [SC03, Sch05, PSK05, FS05]. In this deliverable, we consider the second way of resolving
inconsistency.
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1.3 Overview of the Deliverable

This deliverable is structured as follows. In Chapter 2, we provide some basic notions which will be used to
define approaches in Chapter 3. In Chapter 3, we first define criteria for the comparison of these approaches
and then give an overview of existing approaches. In Chapter 4, we propose some a new general approach
for resolving inconsistency and incoherence. We then instantiate our general approach in 5. Further, we
discuss implementations of our approaches in Chapter 6. We conclude with a summary and a roadmap for
future work in Chapter 7.

2006–2007 c© Copyright lies with the respective authors and their institutions.



Page 12 of 40 NeOn Integrated Project EU-IST-027595

Chapter 2

Preliminaries

We assume that the reader is familiar with Description Logics (DLs) and refer to Chapter 2 of the DL handbook
[BCM+03] for an excellent introduction. A DL knowledge base (or local ontology) O consists of a TBox T
and an ABox A. A TBox contains intensional knowledge such as concept definitions of the form CvD,
where C and D are concepts. An ABox contains extensional knowledge and is used to describe individuals.
Throughout the deliverable, let T = {Ax1, ..., Axn} be a set of (terminological) axioms, where Axi is of the
form CivDi for each 1≤i≤n and arbitrary concepts Ci and Di. A TBox is called unfoldable if the left-hand
sides of the axioms (the defined concepts) are atomic, and if the right-hand sides (the definitions) contain no
direct or indirect reference to the defined concept [Neb90].

We introduce the notion of incoherence in DLs defined in [FHP+06].

Definition 1 (Unsatisfiable Concept) A concept name C in a terminology T , is unsatisfiable iff, for each
model I of T , CI = ∅.

That would lead us to consider the kinds of terminologies and ontologies with unsatisfiable concepts.

Definition 2 (Incoherent Terminology) A TBox T is incoherent iff there exists an unsatisfiable concept
name in T .

Definition 3 (Incoherent Ontology) An ontology O is incoherent iff its TBox is incoherent.

According to the above definitions, we know that the incoherence can occur only in the terminology level.
Namely, an ontology O = 〈T ,A〉 is incoherent iff its terminology TBox is incoherent. Therefore, when we
talked about an ontology, we only mean its TBox. Incoherence does not provide the classical sense of the
inconsistency because there might exist a model for an incoherent ontology.

Definition 4 (Inconsistent Ontology) An ontology O is inconsistent iff it has no model.

However, incoherence and inconsistency related with each other. According to the discussion in [FHP+06],
incoherence is potential for the cause of inconsistency. That is, suppose C is an unsatisfiable concept in T ,
if a concept assertion C(a) exists in the ABox A, then the ontology O = 〈T ,A〉 is inconsistent.

Current DL reasoners, such as RACER, can detect logical incoherence and return unsatisfiable concepts in
OWL ontologies. However, they do not support the diagnosis and incoherence resolution at all. To explain
logical incoherence, it is important to debug relevant axioms which are responsible for the contradiction.

Definition 5 [SC03] Let A be a named concept which is unsatisfiable in a TBox T . A set T ′⊆T is a minimal
unsatisfiability-preserving sub-TBox (MUPS) of T if A is unsatisfiable in T ′, and A is satisfiable in every
sub-TBox T ′′ ⊂ T ′. The set of all MUPS of T w.r.t A is denoted as MUA(T )
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A MUPS of T w.r.t A is the minimal sub-TBox of T in which A is unsatisfiable. We will abbreviate the set of
MUPS of T w.r.t a concept name A by mups(T , A). Let us consider an example from [SC03]. Suppose T
contains the following axioms:

ax1 : A1v¬AuA2uA3 ax2 : A2vAuA4

ax3 : A3vA4uA5 ax4 : A4v∀s.BuC

ax5 : A5v∃s.¬B ax6 : A6vA1t∃r.(A3u¬C uA4)
ax7 : A7vA4u∃s.¬B

where A, B and C are atomic concept names and Ai (i = 1, ..., 7) are defined concept names, and r and s
are atomic roles. In this example, the unsatisfiable concept names are A1, A3, A6, A7 and MUPS of T w.r.t
Ai (i = 1, 3, 6, 7) are:

mups(T , A1) : {{ax1, ax2}, {ax1, ax3, ax4, ax5}}
mups(T , A3) : {ax3, ax4, ax5}
mups(T , A6) : {{ax1, ax2, ax4, ax6}, {ax1, ax3, ax4, ax5, ax6}}
mups(T , A7) : {ax4, ax7}
MUPS are useful for relating sets of axioms to the unsatisfiability of specific concepts, but they can also be
used to calculate a minimal incoherence preserving sub-TBox, which relates sets of axioms to the incoher-
ence of a TBox in general and is defined as follows.

Definition 6 [SC03] Let T be an incoherent TBox. A TBox T ′⊆T is a minimal incoherence-preserving sub-
TBox (MIPS) of T if T ′ is incoherent, and every sub-TBox T ′′⊂T ′ is coherent. The set of all MIPSs of T is
denoted as MI(T ).

A MIPS of T is the minimal sub-TBox of T which is incoherent. The set of MIPS for a TBox T is abbreviated
with mips(T ). For T in the above example, we get 3 MIPS:

mips(T ) = {{ax1, ax2}, {ax3, ax4, ax5}, {ax4, ax7}}

2006–2007 c© Copyright lies with the respective authors and their institutions.
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Chapter 3

An Overview of Existing Approaches

In this chapter we provide an overview of existing approaches to resolving inconsistency and incoherence in
ontologies. We start with a set of criteria used for the comparison of the approaches.

3.1 Criteria

• Applications: Resolving inconsistencies is an important issue to address for a number of different
tasks in ontology management. While some approaches are general and may be applied for different
tasks, other approaches are developed to support particular applications such as Repair of inconsistent
ontologies, Evolution of ontologies, or Merging of potentially mutually inconsistent ontologies.

• Granularity: Dealing with and resolving inconsistencies can be performed on different levels of granu-
larity. For example, a typical approach is to repair inconsistencies by removing complete axioms. Other
approaches are more fine granular in the sense that they allow weaken axioms by changes on to the
substructure of the axioms.

• Preservation of Structure: Often the algorithms for diagnosing and repairing inconsistencies require
some transformation of the knowledge base to some normal form (e.g. negation normal form.) While
the thus obtained knowledge bases are logically equivalent, they may be un-intuitive to the user. It is
therefore desirable to preserve the structure of the original axioms wherever possible.

• Inconsistency vs. Incoherence: Inconsistency is often used as a term to refer to a number of different
types of conflicts in a knowledge base. On the level of the TBox, typically the notions of unsatisfiability
and incoherence are relevant. A concept is unsatisfiable w.r.t. a terminology if, and only if its interpre-
tation is empty in every model of the terminology. A TBox is incoherent if it contains an unsatisfiable
concept. On the other hand, inconsistency of an ontology means that there exists no model at all for
the ontology. Inconsistency may occur both in the TBox and the ABox.

• Support for ABox, TBox: In Description Logics, the problem of diagnosis has classically focused on
dealing with coherence on the terminological level. In many applications it is however important to deal
with various forms of inconsistencies and incoherence in ABoxes and TBoxes in an integrated way.

• Complexity: Reasoning with expressive Description Logics typically is already intractable for standard
reasoning tasks. Often the approaches for dealing with inconsistencies introduce an additional level of
complexity. In order to assure practicability, these complexity issues need to be taken into account.

• Support for Multiple/networked Ontologies: Many approaches to dealing with inconsistencies have
been developed for dealing with single, isolated ontologies. Few approaches have been developed
specifically for dealing with multiple ontologies that are networked or distributed in a certain way. We
evaluate what kind of networking relationships are supported or how the approach can be extended to
operate with multiple ontologies.
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• Exploitation of context or background knowledge: Typical approaches for dealing with inconsistencies
only consider the content of the knowledge base itself as input for diagnosis and repair. However,
often it is useful to consider additional information about the relevance and importance of particular
parts of the knowledge base as background knowledge. Such context information may be captured
as provenance (e.g., indicating the trustworthiness of the source), in the form arguments (e.g., why
certain axioms have been introduced), etc.

• Interactivity, user involvement: Many approaches to dealing with inconsistencies aim at a completely
automated procedure. Others rely on the user to decide how to deal with particular situations. For
example, it may be possible that the diagnosis of the problem is performed automatically, but the
decision about how to fix a problem may be left to the user.

• Availability of implementations: Finally we discuss whether the approach is implemented and available
for use or whether it would be feasible and desirable to implement it.

3.2 Overview of Approaches

In this section, we give an overview of the approaches for resolving inconsistency. When resolving incon-
sistency, we can either delete some erroneous axioms or weaken them. In any case, we often expect that
minimal information is dropped to restore inconsistency. To achieve this requirement of minimal change, we
often need a technique called debugging, which we will introduce in the following. There are mainly two
important groups working on debugging and inconsistency (or incoherence) handling. The first group comes
from Vrije Universiteit Amsterdam and the second group is the MidSwap group at University of Maryland.
There are other work on resolving inconsistency which discuss specific scenario such as ontology revision
and ontology integration. In the following, we first introduce the approaches for debugging and diagnosis. Af-
ter that, we give a brief review of the application of AGM’s belief revision theory to DLs. Finally, we introduce
the approaches for knowledge integration in DLs.

3.2.1 Debugging and Diagnosis in DL-based Ontologies

We introduce two approaches given in [SHC06] which are proposed to debug an ontology, i.e. to calculate
MUPS and MIPS: a top-down approach and an informed bottom-up approach.

A top-down approach to explanation: The first approach is originally proposed in [SC03]. Their debugging
approach is restricted to unfoldable ALC TBoxes. Suppose T is an incoherent unfoldable TBox and A is an
unsatisfiable in it. To calculate a MUPS of T w.r.t A, we can construct a tableau from a branch B initially
containing only labelled formula (a : A)∅ (for a new individual name a) by applying the tableau rules as long
as possible. The rules are standard ALC-tableau rules with lazy unfolding, and have to be read as follows:
assume that there is a tableau T = {B,B1, ..., Bn} with n + 1 branches. After applying one of the rules on
B, we get a tableau T ′ = {B′, B1, ..., Bn} or T ′′ = {B′, B′′, B1, ..., Bn}.

Once no more rules can be applied, we know which atoms are needed to close a saturated branch and can
construct a minimisation function for A and T according to the tableau rules. A propositional formula φ is
called a minimisation function for A and T if A is unsatisfiable in every subset of T containing the axioms
which are true in an assignment making φ true. Here axioms are used as propositional variable in φ. As
we can identify unsatisfiability of A w.r.t a set S of axioms with a closed tableau using only the axioms in
S for unfolding, branching on a disjunctive rule implies that we need to join the functions of the appropriate
sub-branches conjunctively. If an existential rule has been applied, the new branch B′ might not necessarily
be closed on formulas for both individuals. Assume that B′ closes on the individual a but not on b. In this
case min_function(a,B, T ) = ⊥, which means that the related disjunct does not influence the calculation
of the minimal incoherent TBox.

Based on the minimisation function min_function(a, {(a : A)∅}, T ), denoted φ, which is calculated using
some rules, we then can calculate the MUPS of T w.r.t A.

2006–2007 c© Copyright lies with the respective authors and their institutions.
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From MUPS we can easily calculate MIPS based on an additional operation on sets of TBoxes, called subset-
reduction. Let M = {T1, ..., Tm} be a set of TBoxes. The subset-reduction of M is the smallest subset
sr(M)⊆M such that for all T ∈M there is a set T ′∈sr(M) such that T ′⊆T .

Let T be an incoherent TBox with unsatisfiable concepts ∆T . The set of all MIPSs of T , denoted mips(T ),
is obtained by the following equation: mips(T ) = sr(

⋃
A∈∆T mups(T , A)), where mups(T , A)) is the set

of all MUPSs of T w.r.t A.

A bottom-up approach to explanation: The top-down approach is based on modifying the internals of
a DL reasoner. This approach is computationally very hard in the worst-case. In [SHC06], a bottom-up
approach is proposed to calculate MUPS with the support of an external DL reasoner. The main advantage
of this approach is that it can deal with any DL-based ontology supported by an external reasoner. Unlike the
top-down approach, they support various DL-based ontology languages, including OWL-DL.

Given an unsatisfiable concept A and a terminology T , MUPS can be systematically calculated by checking
whether A is unsatisfiable in subsets T ′ of T of increasing size. Such a procedure is complete and easy to
implement, but infeasible in practice because the number of the subsets of T is exponential to the number
of axioms in T . To solve this problem, a selection function is introduced to control the subsets of T that
are checked for satisfiability of A. Such a selection function selects increasingly large subsets which are
heuristically chosen to be relevant additions to the currently selected subset. Although this approach is not
guaranteed to give us the complete solution set of MUPS, it provides an efficient approach for debugging
inconsistent terminologies.

Calculating terminological diagnoses: Terminological diagnosis, as defined in [Sch05], is an instance
Reiter’s diagnosis from first principles. Therefore, we can use Reiter’s algorithms to calculate terminological
diagnoses. An important notion in diagnosis is called a conflict set, which is an incoherent subset of a TBox.
Given a TBox T , a subset T ′ of T is a diagnosis for an incoherent T if T ′ is a minimal set such that T \ T ′

is not a conflict set for T .

Reiter introduced a hitting set tree algorithm to calculate diagnoses from conflict sets [Rei87]. Given a
collection of sets C, a hitting set for C is a set H⊆ ∪S∈C S such that H∩S 6=∅ for each S∈C. A hitting set H
for C is minimal if and only if the following conditions hold: (1) H is a hitting set; (2) for any H ′∈C, if H⊂H ′,
then H ′ is a hitting set for C. It has been shown in [SHC06] that a subset T ′ of T is a diagnosis for an
incoherent TBox T if and only if T ′ is a minimal hitting set for the collection of conflict sets of T .

To calculate minimal hitting sets, we can adapt Reiter’s hitting set tree (HS-tree) algorithm. Given a collection
C of sets, a HS-tree T is the smallest edge-labeled and node-labeled tree, such that the root is labeled by X
if C is empty. Otherwise it is labeled with any set in C. For each node n in T , let H(n) be the set of edge
labels on the path in T from the root to n. The label for n is any set S ∈ C such that S uH(n) = ∅, if such
a set exists. If n is labeled by a set S, then for each σ ∈ S, n has a successor, nσ joined to n by an edge
labeled by σ. For any node labeled by X, H(n), i.e. the labels of its path from the root, is a hitting set for C.

Figure 3.1 shows a HS-tree T for the collection C = {{1, 2, 3, 4, 5, 6}, {3, 4, 5}, {1, 2, 4, 6}, {1, 2}, {4, 7}}
of sets. T is created breadth first, starting with root node n0 labeled with {1, 2, 3, 4, 5, 6}. For diagnostic
problems the sets in the collection are conflict sets which are created on demand. In our case, conflict
sets for a terminological diagnosis problem can be calculated by a standard DL engine (by definition each
incoherent subset of T is a conflict set).

3.2.2 Debugging and Repairing OWL Ontologies in SWOOP

In [PSK05, KPGS06], two orthogonal debugging approaches are proposed to detect the clash/sets of support
axioms responsible for an unsatisfiable classes, and to identify root/derived unsatisfiable classes. The first
one is a glass box approach which is based on description logic tableaux reasoner-Pellet. This approach
is closely related to the top-down approach to explanation in [SHC06]. However, the approach proposed in
[PSK05] is not limited to DL ALC and is designed for OWL DL. The second one is a black box approach
[KPGS06] which is better suitable to identify dependencies in a large number of unsatisfiable classes. The
approach is reasoner-independent, in the sense that the DL reasoner is solely used as an oracle to determine
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Figure 3.1: HS-Tree with small conflict sets

concept satisfiability with respect to a TBox. It consists of two main steps. In the first step, it computes a
single MUPS of the concept and then it utilizes the Hitting Set algorithm to retrieve the remaining ones. This
approach is closely related to the bottom up approach to explanation. Based on the debugging approach,
in [KPSG06], the authors give a tool to repair unsatisfiable concepts in OWL ontologies. The basic idea is
to rank erroneous axioms and then to generate a plan to resolve the errors in a given set of unsatisfiable
concepts by taking into account the axiom ranks.

3.2.3 AGM and Description Logics

AGM’s theory of belief change [Gar88] has been widely used to deal with logical inconsistency resulting
from revising a knowledge base by newly received information. There are three types of belief change,
i.e. expansion, contraction and revision. Expansion is simply to add a sentence to a knowledge base;
contraction requires to consistently remove a sentence from a knowledge base and revision is the problem of
accommodating a new sentence to a knowledge base consistently. Alchourrón, Gardenfors and Markinson
proposed a set of postulates to characterize each belief change operator. The application of AGM’ theory to
description logics is not trivial because it is based on the assumptions that generally fail for DLs [FPA04]. For
example, a DL is not necessarily closed under the usual operators such as ¬ and ∧. In [FPA05, FPA06], the
basic AGM postulates for contraction were generalized to DLs and the feasibility of applying the generalized
AGM theory of contraction to DLs and OWL was studied. There work is based on the coherence model. That
is, the knowledge base is closed under consequence operation, i.e., K = Cn(K), where K is a knowledge
base and Cn is the consequence operation of the underlying language. They showed that in many important
DLs, such as SHOIN (D) and SHIQ, it is impossible to define a contraction operator that satisfies the
generalized AGM postulates. However, they didn’t apply AGM’s postulates for a revision operator and explicit
construction of a revision operator was not considered in their paper.

The original AGM theory of belief revision is based on the coherence model. However, this causes problems
in practice [Fuh91] and the foundational model was then proposed. Under this model, there is a clear distinc-
tion between information in the knowledge base and information which can be inferred from the knowledge
base. In [FPA06] and [QLB06a], the problem of applying AGM theory of belief revision to DLs under foun-
dational model is discussed. In [FPA06], the authors introduced the concept of negation to DLs and then
generalized AGM postulates for contraction and revision. However, the authors do not consider the construc-
tion of a revision operator in their paper. In contrast, the work in [QLB06a] generalized the revised postulates
for belief revision in [KM92] and proposed two revision operators which satisfy the generalized postulates.
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One operator is the weakening-based revision operator which is defined by weakening of statements in a
DL knowledge base. The weakening-based revision operator may result in counterintuitive results in some
cases, so another operator was proposed to refine it. It was shown that both operators capture some notions
of minimal change.

3.2.4 Knowledge integration for description logics

In [MLB05], an algorithm, called refined conjunctive maxi-adjustment (RCMA for short) was proposed to
weaken conflicting information in a stratified DL knowledge base and some consistent DL knowledge bases
were obtained. To weaken a terminological axiom, they introduced a DL expression, called cardinality restric-
tions on concepts. However, to weaken an assertional axiom, they simply delete it. In [QLB06b], the authors
first define two revision operators in description logics, one is called a weakening-based revision operator
and the other is its refinement. The revision operators are defined by introducing a DL constructor called
nominals. The idea is that when a terminology axiom or a value restriction is in conflict, they simply add
explicit exceptions to weaken it and assume that the number of exceptions is minimal. Based on the revision
operators, they then propose an algorithm to handle inconsistency in a stratified description logic knowledge
base. It was shown that when the weakening-based revision operator is chosen, the resulting knowledge
base of their algorithm is semantically equivalent to that of the RCMA algorithm. However, their syntactical
forms are different.

3.3 Discussion

We have introduced some existing approaches for resolving inconsistency and incoherence in DLs. In this
section, we compare these approaches with respect to the evaluation criteria proposed in Section 3.1. The
results of comparison are compactly summarized in Table 3.1. According to Table 3.1, MUPSter and SWOOP
are mainly applied to debug and repair incoherence, whilst AGM-based approaches and knowledge integra-
tion approaches are applied to deal with inconsistency. When resolving incoherence, MUPSter will delete
axioms in TBox and SWOOP deletes either axioms or concepts in TBox. To resolve inconsistency, the AGM-
based approaches and knowledge integration approaches either delete axioms in a DL knowledge base
or remove some instances which are responsible for inconsistency. Before dealing with incoherence, both
MUPster and SWOOP may split the axioms into smaller axioms, so the structure will be lost. One of the
AGM-based approach given in [QLB06a] also requires to split axioms, so it does not preserve the structure
of the axioms. The knowledge integration approach proposed in [MLB05] needs to transform all terminology
axioms into the cardinality restrictions on concepts. So the structure of the axiom is lost. It has been shown
that debugging in DL ALC is PSPACE-complete in [SC03] because it is based on tableux algorithm. The
glass box approach is also based on tableau algorithm, so it is at least PSPACE-hard. Other approaches
are at least PSPACE-hard because they need to checking inconsistency, which is PSPACE-hard. Among all
the approaches, only MUPSter and SWOOP are implemented and only SWOOP has user interface. The
MUPSter and AGM-based approach do not explore context information to deal with incoherence or incon-
sistency. Whilst SWOOP and knowledge integration approaches explore the ranking information to resolve
incoherence or inconsistency.
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Table 3.1: Evaluation results
Criteria MUPSter SWOOP AGM-based knowledge

approaches integration in DLs
Application debugging, repair debuging, repair revision merging
Granularity axiom axiom or concept axiom or instance axiom or instance

Preservation of structure partially partially partially partially
Support for ABox, TBox TBox TBox TBox and ABox TBox and ABox

Inconsistency vs. Incoherence incoherence incoherence inconsistency inconsistency
Complexity PSPACE-complete PSPACE-hard PSPACE-hard PSPACE-hard

User involvement no yes no no
Availability of implementation yes yes no no

Support for networked ontologies no no no yes
Exploitation of context no partially no yes

2006–2007 c© Copyright lies with the respective authors and their institutions.
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Chapter 4

Resolving Inconsistency and Incoherence

4.1 Inconsistency and Incoherence

The relationship between incoherence and inconsistency is not simple. Firstly, the fact that an ontology is in-
consistent does not necessarily imply that it is incoherent, and vice versa. There exist different combinations
of inconsistency and incoherence, as illustrated in Figure 4.1 and discussed in the following.

Figure 4.1 (1) is an example of a consistent but incoherent ontology, in which the two disjoint concepts C1
and C2 share a sub-concept C3. Figure 4.1 (2)-(4) show examples of inconsistent ontologies. Figure 4.1 (2)
is an example of an inconsistent and incoherent ontology, in which the two disjoint concepts C1 and C2
share a sub-concept which is a nominal {a}. Figure 4.1 (3) is an example of an inconsistent ontology in
which an instance a instantiates a concept C1 and its complement ¬C1. Figure4.1 (4) is an example of
an inconsistent but coherent ontology, in which the two disjoint concepts C1 and C2 share an instance a.
Finally, Figure 4.1 (5) shows an example of an ontology that is both incoherent and inconsistent.

From the definitions of incoherence above, we know that incoherence can occur in the terminology level only.
When dealing with inconsistency, we can differentiate terminology axioms and assertional axioms. We have
the following categorization of different kinds of reason for inconsistent ontologies.

• Inconsistency due to terminology axioms: In this case, we only consider inconsistency in TBoxes. Fig-
ure 4.1 (2) is an example of such an inconsistency. Following our definitions, this kind of inconsistency
will make the TBox incoherent.

• Inconsistency due to assertional axioms: This kind of inconsistency only occurs in ABoxes. It is not
related to incoherence. A source of assertional inconsistency is that there are conflicting assertions
about one individual, e.g., an individual is asserted to belongs to a class and its complement class, as
in Figure 4.1 (2).

• Inconsistency due to terminology and assertional axioms: In this case, each conflicting set of axioms
must contain both terminology axioms and assertional axioms. This kind of inconsistency is sometimes
dependent on incoherence. Such an example is shown in Figure 4.1 (5). It is easy to see that C3 is an
unsatisfiable concept and that O is inconsistent. The reason for the inconsistency is that the individual
a instantiates C3 which is unsatisfiable. Therefore, if we repair the unsatisfiable concept C3, then the
inconsistency will disappear as well. On the other hand, the inconsistency in example in Figure 4.1 (4)
is not caused by an incoherence.

The first kind of inconsistency is only related to terminology axioms. In this case, the unit of change is a
concept (either atomic or complex). Therefore, some revision approaches which take the individual names
as the unit of change, such as the one proposed in [QLB06a], cannot be applied to deal with this kind of
inconsistency. By contrast, the other two kinds of inconsistency are related to assertional axioms. So the
unit of change can be either a concept or an individual name.
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Figure 4.1: Examples of variants of inconsistency and incoherence.
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From this discussion we observe that the causes for incoherence and inconsistency are manifold and their
interdependencies are complex. Incoherence is always caused by conflicts in the terminology. It may or may
not affect the consistency of the overall ontology. Inconsistency may arise due to conflicts in the ABox, in
the TBox, or a combination of both ABox and TBox. In the following section we propose a revision approach
resolving conflicts in evolving ontologies that takes these interdependencies into account.

4.2 Resolving Inconsistency and Incoherence

The problem of ontology revision is described as follows. Suppose we have two ontologies O = 〈T ,A〉 and
O′ = 〈T ′,A′〉 where O is the original ontology and O′ is the newly received ontology which contains a set
of axioms to be added to O. Even if both O and O′ are individually consistent and coherent, putting them
together may cause inconsistency or incoherence. Therefore, we need to delete or weaken some axioms in
O to restore consistency and coherence. Usually, the result of revision is a set of ontologies rather than a
unique ontology [QLB06a]. More formally, we have the following definition of ontology revision. We denote
all the possible ontologies with O.

We first introduce the notion of a disjunctive ontology from [MLB05]. A disjunctive ontology, denoted as O, is
a set of ontologies. The semantics of the disjunctive ontology is defined as follows [MLB05]:

Definition 7 A disjunctive ontology O is satisfied by an interpretation I (or I is a model of O) iff ∃O∈O
such that I |= O. O entails φ, denoted O |= φ, iff every model of O is a model of φ.

Definition 8 An ontology revision operator (or revision operator for short) in DLs is a function ◦ : O×O →
P(O) which satisfies the following conditions: 1) suppose thatP(O) denotes all the subsets ofO, O◦O′ |= φ
for all φ ∈ O′; 2) for each Oi∈O◦O′, Oi is consistent.

That is, an ontology revision operator is a function which maps a pair of ontologies to a disjunctive ontology
which can consistently infer the newly received ontology. In practice, we may only need one ontology after
revision. In this case, we can obtain such an ontology by ranking the ontologies obtained by the revision
operator and then selecting the one with highest rank. Ranking of ontologies can either be given by the
users or be computed by some algorithms.

The current work on ontology revision suffers from some problems, to name a few, we have the following
ones:

• There is much work on the analysis of applicability of AGM postulates for belief change to DLs [FPA05,
FHP+06]. However, few of them discuss the concrete construction of a revision approach.

• Current revision approaches often focus on dealing with logical inconsistency. Another problem which
is as important as inconsistency handling is incoherence handling, where an ontology is incoherent if
and only if there is an unsatisfiable named concept in its terminology. As analyzed in [FHP+06], logical
incoherence and logical inconsistency are not independent of each other. A revision approach which
resolves both logical incoherence and inconsistency is missing.

We now propose our general approach which resolves incoherence and inconsistency in an integrated way.
The approach consists of the process steps shown in Figure 4.2. In this process, problems that are related
only with either the TBox or the ABox are dealt with independently in two separate threads (c.f. left and
right thread of Figure 4.2, respectively). For the TBox, inconsistency resolution is done before incoherence
resolution because incoherence is a consequence of inconsistency in the TBox. We first check if T ∪ T ′

is consistent. If it is not, then we resolve inconsistency. This can be done by either deleting the erroneous
terminology axioms or weakening them. In a next step, we resolve incoherence. There are several ways
to resolve incoherence. The commonly used technique is to remove some (usually minimal numbers) of
erroneous terminology axioms which are responsible for the incoherence. Alternatively, we can take the
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maximal coherent sub-ontologies of T w.r.t T ′ as the result of revision [MLBP06, LPSV06]. For the ABox,
we resolve inconsistencies that occur only due to assertional axioms. This can be done by either deleting
the assertional axioms which are responsible for the inconsistency or weakening them. The weakening of
assertional axioms may be different from that of terminology axioms. Finally, we deal with the inconsistency
due to both terminology and assertional axioms. In each of the revision steps, the result may be a disjunctive
ontology, since there may exist several alternative way to resolve the incoherence or inconsistency. However,
in each step a decision is made, which single ontology should be selected as input for the subsequent step.
This decision can be made either by the user or an automated procedure based on a ranking of the results
as discussed above.

Our general approach does not yet specify how to deal with inconsistency or incoherence. Moreover, for
different kinds of inconsistency, we can use different strategies to resolve them. For example, when resolving
inconsistency due to terminology axioms, we can take the maximal consistent subsets of the original TBox
w.r.t the new TBox as the result of revision. Whilst when resolving inconsistency related to assertional ax-
ioms, we can apply the revision approach in [QLB06a], which removes minimal number of individual resulting
in the conflict. In the next section, we instantiate our approach by proposing a concrete approach to resolving
incoherence and some concrete approaches to resolving inconsistency.
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Figure 4.2: Approach to resolving inconsistency and incoherence
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Chapter 5

Instantiation of the General Approach

When resolving incoherence or inconsistency, we need to delete or weaken some axioms in the original
ontology. In this case, we want to keep as much information in the original ontology as possible. There
are several ways to achieve this. For example, to resolve incoherence, we may require to delete a minimal
number of axioms to get a coherent ontology or we take a maximal consistent sub-ontology as the result
of revision. In the following, we propose some concrete approaches to resolving incoherence and resolving
inconsistency which capture some kinds of minimal change. When resolving incoherence or inconsistency
in a TBox, the unit of change can be either an axiom or a concept. However, if there are axioms in ABox
which are responsible for inconsistency, the unit of change can be either an individual, a concept, or an
axiom. In the following, we propose an approach for resolving incoherence by removing a minimal number
of terminology axioms and two approaches for resolving inconsistency by weakening a concept.

5.1 Resolving incoherence

In this section, we propose an approach to resolving incoherence in ontology evolution. Resolving incoher-
ence is a problem which is often overlooked during ontology evolution. This problem is easy to be confused
with resolving inconsistency. Many debugging approaches have been proposed to pinpoint the unsatisfiable
concepts or terminology axioms which are responsible for incoherence. There are mainly two ways to resolve
the logical incoherence. The first way is to remove some (usually minimal numbers) of erroneous terminol-
ogy axioms which are responsible for the incoherence to restore coherence. Alternatively, we can take the
maximal coherent sub-ontologies of O w.r.t O′ as the result of revision [MLBP06]. Our approach to resolve
incoherence belongs to the first class, i.e. we delete some terminology axioms to restore coherence.

We first generalize the concept of minimal incoherence-preserving sub-TBox (MIPS) defined in [SC03].

Definition 9 Let T and T0 be two TBoxes, where T is an old TBox and T0 is a newly received TBox. A
minimal incoherence-preserving sub-TBoxes (MIPS) T ′ of T w.r.t T0 is a sub-Tbox of T which satisfies
(1) T ′∪T0 is incoherent; (2) ∀T ′′⊂T ′, T ′′∪T0 is coherent. We denote the set of all MIPS of T w.r.t T0 by
MIPST0(T ).

A MIPS of a TBox T w.r.t TBox T0 is the minimal sub-TBox of T that is incoherent with T0. It is similar
to the kernel defined in [Han94]. In classical logic, given a knowledge base A which is a set of classical
formulas and a formula φ, a φ-kernel of A is the minimal subbase of A that implies φ [Han94]. To define a
contraction function called kernel contraction, Hansson defines an incision function which selects formulas
to be discarded in each φ-kernel of A. We adapt the incision function to define our revision operator.

Definition 10 Let T be a TBox. An incision function for T , denoted as σ, is a function such that for each
TBox T0

(i) σ(MIPST0(T ))⊆
⋃
Ti∈MIPST0

(T ) Ti;
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(ii) if T ′∈MIPST0(T ) and T ′ 6= ∅, then T ′∩σ(MIPST0(T )) 6= ∅.

That is, an incision function for a TBox T is a function such that for each TBox T0, it selects formulas from
every MIPS of T w.r.t T0 if this MIPS is not empty. The incision function plays a similar role as concept
pinpointing in [SC03].

An important incision function is the one which is called minimal incision function [FFKI06]. We redefine it as
follows.

Definition 11 Let T be a TBox. An incision function σ for T is minimal if there is no other incision function
σ′ such that there is a TBox T0, σ′(MIPST0(T ))⊂σ(MIPST0(T )).

We give a definition which refines the minimal incision function.

Definition 12 Let T be a TBox. An incision function σ for T is cardinality-minimal if there is no other incision
function σ′ such that there is a TBox T0, |σ′(MIPST0(T ))|< |σ(MIPST0(T ))|.

A cardinality-minimal incision function is always a minimal incision function.

Proposition 1 Let T be a TBox. Suppose σ is a cardinality-minimal incision function for T , then it is a
minimal incision function.

The proof of Proposition 1 is clear by considering Definition 11 and Definition 12.

From each incision function, we can define a revision operator.

Definition 13 Let T be a TBox, and σ be an incision function for T . The kernel revision operator ◦σ for T is
defined as follows: for each TBox T0,

T ◦σ T0 = {(T \ σ(MIPST0(T ))) ∪ T0}.

The resulting TBox of the kernal revision operator only contains one TBox. For simplicity, we write T ◦σ T0 =
(T \ σ(MIPST0(T )))∪T0 later. According to the definition of an incision function, the resulting TBox of the
kernel revision operator is always a coherent TBox.

The kernel revision operator is defined via an incision function. There are many ways to give an incision
function. For example, we can apply Reiter’s hitting set algorithm [Rei87] to compute the cardinality-minimal
incision function.

Example 1 We consider a small TBox T = {Employee v Person, Student v Person, PhDStudent v
Student, Student v ¬Employee, Article v Publication, Article v ∀author.Person}. Now consider a
TBox T0 = {PhDStudents v Employee} that is to be added to the T . The union T ∪ T0 is incoherent.
The TBox T ′ = {PhDStudent v Student, Student v ¬Employee} is a (the only) minimal incoherence
sub-TBox of T w.r.t. to T0. As there exists only one MIPS w.r.t. T0, a cardinality-minimal incision function
would select either one of the axioms in T ′ to be removed for resolving the incoherence.

5.2 Resolving inconsistency

5.2.1 Inconsistency due to terminology axioms

Many approaches for resolving inconsistency in classical logic are based on some maximal consistent
subsets, e.g. the cardinality-maximizing revision approach in [Gin86]. The idea is that we select all the
cardinality-maximizing subsets of the original knowledge base that are consistent with the new knowledge
base. In this subsection, we apply the cardinality-maximizing revision approaches to dealing with termino-
logical inconsistency.
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Definition 14 Let T and T ′ be two TBoxes. A subset Ti of T is said to be cardinality-maximizing consistent
w.r.t T ′ if and only if it satisfies the following conditions:

(m1) Ti ∪ T ′ 6|= ⊥ and

(m2) ∀Tj⊆T , if |Ti|<|Tj | then Tj∪T ′ |= ⊥, where |Ti| is the cardinality of the set Ti.

The set of all cardinality-maximal consistent sub-ontologies of T w.r.t T ′ is denoted by CMAXCON(T )T ′ .

Condition m1 says that Ti is consistent with T ′ and Condition m2 states that any sub-ontology of T that
contains more elements than Ti is in inconsistent with T ′.

We define a revision operator based on cardinality-maximizing consistent sub-TBoxes.

Definition 15 Let T and T ′ be two TBoxes. Then the cardinality-maximizing consistent sub-TBoxes based
revision operator, denoted as ◦CM , is defined as follows:

T ◦CMT ′ = {Ti∪T ′ : Ti∈CMAXCON(T )T ′}.

Example 2 We consider a small TBox T = {Employee v Person, Student v Person, PhDStudent v
Student, Student v ¬Employee, {paul} v PhDStudent. Now consider a new TBox T ′ = {{paul} v
Employee} that is to be added to T . The resulting terminology T ∪ T ′ is coherent, but inconsistent. There
exist a number of cardinality-maximizing consistent sub-TBoxes of T w.r.t. T0 that can be obtained be
removing either one of the following axioms from T : PhDStudent v Student, Student v ¬Employee,
{paul} v PhDStudent.

5.2.2 Inconsistency due to assertional axioms

There are two ways to resolve inconsistency due to assertional axioms: removing some axioms or weakening
them. The cardinality-maximizing consistent sub-ontologies based revision approaches belongs to the first
category. In the following, we consider how to weaken an assertional axiom.

Definition 16 Let φ be an assertional axiom. A weakened assertion φweak of φ is an assertion which
satisfies φ |= φweak.

More specifically, we have the following definitions for a weakened assertional axiom.

Definition 17 Let O = 〈T ,A〉 be an ontology and φ = R(a, b) be a role assertion in A. A weakened
relation assertion φweak of φ can have the following forms:

(R1) φweak = ∅, where φweak = ∅ means φ is deleted, or

(R2) φweak = S(a, b), where T |= RvS.

Let φ = a ≈ b (or a 6≈ b) be an equality axiom (or an inequality axiom). Then φweak = ∅.

That is, to weaken a role assertion, we can either delete it or replace R with a super-role. The weakening
approaches are borrowed from [PT06].

Next, we give a new approach to weakening a concept assertion.

Definition 18 Let O = 〈T ,A〉 be an ontology and φ = C(a) be a concept assertion in A. Then φweak =
Cweak(a), where Cweak is recursively defined as follows:

1) if C = A or ¬A for a concept name A, then

(C1) Cweak = >, or

(C2) Cweak = B, where T |= CvB and B 6=>;
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2) if C = C1uC2, then Cweak = (C1)weaku(C2)weak;

3) if C = C1tC2, then φweak = (C1)weakt(C2)weak;

4) if C = ∃R.D, then

(C3) Cweak = >, or

(C4) Cweak = ∃R.D t {b1, ..., bn}, where bi 6≈bj for i6=j;

5) if C = ∀R.D, then

(C5) Cweak = >, or

(C6) Cweak = ∀R.D t {b1, ..., bn}, where bi 6≈bj for i6=j;

6) if C = {b}, where b is an individual name, then

(C7) Cweak = >;

7) if C = ≥ nS, where S is a simple role, then

(C8) Cweak = >, or

(C9) Cweak = ≥ mS, where m < n;

8) if C = ≤ nS, where S is a simple role, then

(C10) Cweak = >, or

(C11) Cweak = ≤ mS, where m > n;

In Definition 18, to weaken an concept assertional axiom C(a), we can simply weaken the concept C. If C is
a concept name, we either replace it by the top concept> or one of its upper concepts. If C is the conjunction
(or disjunction) of two concepts C1 and C2, then the weakening of C is the conjunction (or disjunction) of the
weakening of C1 and that of C2. If C is of the form ∃R.D (or ∀R.D), then we can weaken D by adding some
individuals to it. If C is a nominal, then we simply replace it by >. If C is of the form ≥ nU (or ≤ nU ), where
U is where U is either an abstract simple role or a concrete role, then we either replace it by > or lower (or
raise) n.

The cardinality-maximizing consistent sub-TBoxes based revision operator capture the notion of minimal
change by deleting minimal number of axioms. To define our weakening-based revision operator, we need to
define the degree of a weakened assertion which can be used to measure the information loss of the revised
ABox.

Definition 19 Let O = 〈T ,A〉 be an ontology and φ = R(a, b) be a role assertion in A. The degree of a
weakened relation assertion φweak of φ can be defined as follows:

(1) if φweak = ∅, then d(φweak) = 2;

(2) if φweak = S(a, b), where T |= RvS, then d(φweak) = 1.

Let φ = a ≈ b (or a 6≈ b) be an equality axiom (or an inequality axiom). Then d(φweak) = 1.

In Definition 19, if a role assertion is deleted, then the degree of weakening is 2. However, if the role is
replaced by a super-role, then the degree of weakening is 1. Therefore, suppose we want to weaken a role
assertion, if we can find a super-role for R, then we replace R by it because deleting a role assertion results
in higher degree of weakening. Note that if T is empty, then we can only delete a role assertion if we want to
weaken it.

Definition 20 Let O = 〈T ,A〉 be an ontology and φ = C(a) be a concept assertion in A. The degree of
weakening of Cweak, denoted as d(Cweak), is recursively defined as follows:

1) suppose C = A or ¬A for a concept name A,

if Cweak = > then d(Cweak) = 2,

if Cweak = B, where T |= CvB and B 6=>, then d(Cweak) = 1,

2) if C = C1uC2, then d(Cweak) = d((C1)weak) + d((C2)weak);
3) if C = C1tC2, then d(Cweak) = max(d(C1)weak, d(C2)weak);
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4) suppose C = ∃R.D

if Cweak = > then d(Cweak) = l, where l is the number of individuals in A,

if Cweak = ∃R.D t {b1, ..., bn} then d(Cweak) = n;

5) suppose C = ∀R.D, then

if Cweak = > then d(Cweak) = l, where l is the number of individuals in A,

if Cweak = ∀R.D t {b1, ..., bn} then d(Cweak) = n;

6) suppose C = {b}, where b is an individual name, then d(Cweak) = 1;

7) suppose C = ≥ nS, where S is a simple role,

if Cweak = > then d(Cweak) = n,

if Cweak = ≥ mU , where m < n, then d(Cweak) = n−m;

8) suppose C = ≤ nS, where S a simple role,

if Cweak = > then d(Cweak) = l, where l is the number of individuals in A,

if Cweak = ≤ mS, where m > n, then d(Cweak) = m− n.

The degree of weakening of φ is d(φweak) = d(Cweak).

In Definition 20, suppose C is a concept name or the negation of a concept name. If Cweak = >, then the
degree of weakening is 2. If Cweak is the super-concept of C, then the degree of weakening is 1. Therefore,
if we cannot find a super-concept (which is not >) of C, we then replace C by its super-concept and do not
weaken it to >. The degree of a conjunction is the sum of the degrees of its conjunct. A concept which is a
disjunction, we use max (instead of sum) to determine its degree of weakening. This definition agrees with
the semantic interpretations of disjunction in many logics such as fuzzy logic and possibilistic logic. Suppose
C has the form ∃R.D (or ∀R.D). If Cweak = >, then we define that d(φweak) is the number of individuals in
A. If Cweak = ∃R.D t {b1, ..., bn} (or Cweak = ∀R.D t {b1, ..., bn}) then the degree of weakening of φ is
n. If C is a nominal then the degree of weakening is 1. Suppose C has the form ≥ nS. If Cweak = >, then
it is equivalent to say that the number n is lowered to 0, so the degree of weakening is n. If Cweak =≥ mS,
where m < n, then the degree of weakening is n−m. Suppose C has the form ≤ nS. If Cweak = >, then
it is equivalent to say that n is raised to the number of individuals in A, so the degree of weakening is l. If
Cweak =≤ mS where m > n, then the degree of weakening is m− n.

We define the degree of weakening of an ABox.

Definition 21 Let A be an ABox. Suppose Aweak is the ABox obtained by weakening axioms in A. Then
the degree of weakening of A′, denoted as d(Aweak), is defined as

d(Aweak) = Σφweak∈A′\Ad(φweak).

The degree of a weakened ABox is the sum of the degrees of all the weakened axioms.

A revision operator can be defined by weakening the axioms in the original ABox A w.r.t the newly received
ABox A′. Let WeakA′(A) = {Aweak : Aweak ∪ A′ is consistent}.

Definition 22 Let O = 〈T ,A〉 be an ontology and O′ = 〈T ′,A′〉 is a newly received ontology. The
weakening-based revision operator, denoted as ◦weak, is defined as follows:

A ◦weak A′ = {Aweak ∪ A′ : Aweak∈WeakA′(A) and 6 ∃Ai∈WeakA′(A),
d(Ai) < d(Aweak)}.

The result of revision ofAw.r.tA′ is the set of ABoxes which are the unions ofA′ and the weakened ABoxes
of A that are consistent with A′ and have the minimal degree of weakening. The weakening-based revision
operator cannot be applied to deal with inconsistency due to terminology axioms there is no individual in the
TBox.

2006–2007 c© Copyright lies with the respective authors and their institutions.
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Example 3 Let T = {∀teachesCourse.GraduateCourse(bob), teachesCourse(bob,
cs401), GraduateCourse(cs401), teachesCourse(bob, cs402)}. Suppose the newly received ontol-
ogy is A′ = {teachesCourse(bob, cs101),¬GraduateClass(cs101)}. It is clear that A∪A′ is inconsistent.
Since ∀teachesCourse.GraduateCourse(Bob) is the only assertion axiom in A involved in conflict with
A′, we only need to weaken it to restore consistency, that is,

A◦wA′ = {∀teachesCourse.(GraduateCourset{cs101})(Bob),
teachesCourse(bob, cs401), GraduateCourse(cs401), teachesCourse

(bob, cs402), teachesCourse(bob, cs101),¬GraduateClass(cs101)}.

5.2.3 Inconsistency due to terminology and assertional axioms

The inconsistency due to both terminology and assertional axioms is often caused by an unsatisfiable con-
cept in a TBox and an assertion in an ABox that an individual belongs to this concept. The inconsistency due
to an unsatisfiable concept and an assertion is related to incoherence and can be resolved after we deal with
incoherence in a TBox. There are other reasons for the inconsistency due to terminology and assertional ax-
ioms. For example, suppose we have an ontology O = {birdvflies, bird(Tweety)} and another ontology
O′ = {¬flies(Tweety)}. It is clear that O∪O′ is inconsistent. To deal with this kind of inconsistency, we can
either weaken the assertional axiom or terminology axioms (or both). We generalize the weakening-based
approach to dealing with TBox.

Definition 23 Let O = 〈T ,A〉 be an ontology. Suppose CvD∈T . A weakened GCI (CvD)weak of CvD
is defined as (CvD)weak = >v(¬CtD)weak, where (¬CtD)weak is defined by Definition 18.

In Definition 23, when we weaken a GCI CvD, we first transform it to >v¬CtD. Then we weaken the
concept on the right side. The degree of weakening of (CvD)weak, denoted as d((CvD)weak), is equal to
d((¬CtD)weak) (see Definition 20). The degree of weakening of a TBox is defined as follows.

Definition 24 Let O = 〈T ,A〉 be an ontology. Then the degree of weakening of T , denoted as d(Tweak), is
defined as

d(Tweak) = Σ(CvD)weak∈Tweak\T d((CvD)weak).

We generalize the weakening-based revision operator. Let Oweak = Tweak∪Aweak, d(Oweak) = d(Tweak)+
d(Aweak), and WeakO′(O) = {Oweak : Oweak ∪ T ′ ∪ A′ is consistent}.

Definition 25 Let O = 〈T ,A〉 be an ontology and O′ = 〈T ′,A′〉 be a newly received ontology. Suppose
T ∪T is consistent and coherent, andA∪A′ is consistent. The weakening-based revision operator, denoted
as ◦weak, is defined as follows:

O ◦weak O′ = {Oweak ∪ T ′ ∪ A′ : Oweak∈WeakO′(O) and 6 ∃Oi∈WeakO′(O),
d(Oi) < d(Oweak)}.

Example 4 We consider an ontology O = 〈T ,A〉 = 〈{Employee v Person, Student v Person,
PhDStudent v Student, Student v ¬Employee}, {PhDStudent(paul)}〉.
Now consider an axiom Employee(paul) that is to be added to the ABox. The resulting ontology will
be inconsistent. There are several alternatives to resolve the inconsistency be weakening either axioms
in the T or the A. For example, PhDStudent(paul) might be weakened to Person(Paul), the axiom
PhDStudent v Student might be weakened to > v ¬PhDStudent t Person which is equivalent to
PhDStudent v Person (both with a degree of weakening of 1) to restore consistency.
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5.3 Discussion

In this section, we provide a comparison of our approach with the existing approaches according to the
criteria proposed in Section 3.1.

• Applications: Our approach is proposed to deal with ontology revision. We consider not only debugging
and repairing erroneous axioms in the TBox but also resolving inconsistency in the ABox and the TBox.

• Granularity: To resolve incoherence, the unit of change of our approach is an axiom, whilst when
resolving inconsistency, the unit of change of our approach is either a concept or an individual.

• Preservation of Structure: We do not require to split the axioms. So our approach preserves the
structure of the ontology.

• Inconsistency vs. Incoherence: Our approach deals with both inconsistency and incoherence in an
ontology. Furthermore, we consider the interaction between inconsistency and incoherence.

• Support for ABox, TBox: We consider both incoherence in the TBox and inconsistency in the TBox and
the ABox (or both).

• Complexity: Since our approach needs to resolve both incoherence and inconsistency, it is at least
PSPACE-hard.

• Support for Multiple/networked Ontologies: Our approach can only deal with single, isolated ontologies.

• Exploitation of context or background knowledge: When resolving inconsistency in the TBox, our
cardinality-maximizing consistent sub-ontology based approach may result in several consistent sub-
ontologies, in this case, we need some context information to select an appropriate one. Therefore,
our approach is dependent on context knowledge.

• Interactivity, user involvement: In many cases, we may need the user to made decision. For example,
our approach for resolving inconsistency in the ABox needs to find out the axioms which are to be
weakened. We can adapt and apply the debugging techniques to pinpoint axioms which are responsi-
ble for inconsistency, then we can ask users to select some axioms to weaken.

• Availability of implementations: We have implemented the cardinality-maximizing consistent sub-
ontology based approach and debugging approach. The implementation will be reported in Chapter
6.

2006–2007 c© Copyright lies with the respective authors and their institutions.
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Chapter 6

Implementation

In this chapter, we describe the software implementation of our approach. We first give an overview of the
reasoning services we have implemented in Section 6.1. These functionalities are accessible in two different
ways in the RaDON system (Reasoning and Diagnosis in Ontology Networks) and the KAON2 OWL Tools:
While the implementation of RaDON is based on extensions to the DIG interface, the KAON2 OWL Tools
allow a command line based interface to the functionalities.

6.1 Implementation of Functionalities

The implemented functionalities basically support the individual steps of our approach to resolving inconsis-
tency and incoherence presented in Figure 4.2. In particular, the implementation supports the following tasks
of the process:

• Consistency checking of TBox and ABox Consistency checking is a standard reasoning task provided
by DL reasoners. We simply perform separate checks for the TBox, ABox, and their union.

• Checking the Coherence of TBox: By definition, we simply need to check the coherence of all concepts
of the ontology. This again is a standard reasoning task.

• Inconsistency processing for TBox and ABox: For the inconsistency processing, we have implemented
the approach to return all cardinality-maximal subontologies.

• Incoherence processing: For each unsatisfiable concept, its minimal unsatisfiability-preserving sub-
TBox (MUPs) will be given. In such case, we will point out all the minimal incoherence-preserving
sub-TBox (MIPs) where the incoherence occurs.

6.2 RaDON - Implementation

RaDON is a system that extends the capabilities of existing reasoners with functionalities to deal with incon-
sistencies. These additional functionalities are made accessible via extensions to the DIG interface. The
idea of extending the DIG interface 1 with non-standard reasoning services has been developed originally in
the SEKT project and has for example been applied in PION 2 and evOWLution 3.

6.2.1 Architecture

The architecture of RaDON is shown in Figure 6.1 and consists of the following components:
1http://dl.kr.org/dig/
2http://wasp.cs.vu.nl/sekt/pion/
3http://evowlution.ontoware.org/
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Figure 6.1: The Architecture of RaDON

• DIG Server: The XDIG server acts as RaDON’s DIG server, which deals with requests from other
ontology applications. It not only extends standard DIG request, like newKB request and tell request,
but also provides additional reasoning facilities. Specifically, we extend standard newKB request by
registering a default resolution function to detect the occurrence of logic inconsistency. The tell request
is extended by proving the reason for inconsistency or incoherence to user.

• Main Control Component: The main control component performs the main processing to the methods
for inconsistency processing and interact with the ontology repositories.

• Methods of Inconsistency / Incoherence Processing: This component provides various methods
to deal with inconsistency or incoherence in the ontology. The methods include finding one maxi-
mal consistent subontology, or localizing inconsistency to find one minimal inconsistent subontology.
Besides, some new methods are integrated into RaDON. For example, all of the cardinality-maximal
consistent subontologies can be obtained. Another method is to calculate MUPs and MIPs to deal with
incoherence.

• Ontology Repositories: The ontology repositories are used to store ontology statements which are
provided by external ontology applications.

• Reasoner Connector: The connector is to invoke the KAON2 reasoner for reasoning tasks.

2006–2007 c© Copyright lies with the respective authors and their institutions.
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6.2.2 Download and Usage

The binary code of RaDON based on XDIG interface can be downloaded from the RaDON website http:
//ontoware.org/projects/radon/.

Unzip the RaDON package “radon.zip" into a directory, which is called RaDON_ROOT by us. The followings
give a general introduction to the installation and usage with Windows System and jsdk1.5:

• XDIG Server: The XDIG server can be started by the following command under the directory of
RaDON_ROOT:

java -cp radon.jar;kaon2.jar
org.semanticweb.kaon2.server.XServerMain -ontologies
server_root -xdig -digport 8088

The parameters in the command line are necessary for XDIG server. -ontologies is used to estab-
lish a local directory as a repository to store knowledge bases or ontologies. The value server_root
for this parameter can be changed to any directory that you like. -xdig shows the XDIG server is
desired to be started. For the port of XDIG server, we assign port 8088 to -digport.

• Tomcat Server: Copy the file “tell" in the directory RaDON_ROOT/servlet into the direc-
tory of Tomcat server, and make sure that the servlet with package “tell" will be mapped to
/servlet/TellConnector by configuring web.xml file. So we can pass parameters and data
obtained from demo webpage to the XDIG server by invoking the servlet-uri http://localhost:
8080/servlet/TellConnector, which has been used in demo page. So if different servlet-uri is
used, the servlet-uri in demo pages such as “left.htm" and tellrequest.htm should be configured
as well.

• Web page: Open the index.html file in directory RaDON_ROOT/www, the demo menu can be
found. The user needs to get a URI for the knowledge base or ontology before adding axioms to this
knowledge base. In the demo page, user can simply use the button “create a new KB" on the left of
the page to get a URI. For the approaches to dealing with inconsistency or incoherence, a default one
to find a minimal inconsistent subontology is registered when a new knowledge base is created. The
user can also choose different approach on the left of the demo page. On the right of this page, tell
request serves to add axioms to a knowledge base.

6.2.3 Examples

Here is an example in DIG format, which describes a consistent ontology O1:

<impliesc>
<catom name="Employee"/>
<catom name="Person"/>

</impliesc>
<impliesc>

<catom name="Student"/>
<catom name="Person"/>

</impliesc>
<impliesc>

<catom name="PhdStudent"/>
<catom name="Student"/>

</impliesc>
<disjoint>
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<catom name="Student"/>
<catom name="Employee"/>

</disjoint>
<instanceof>

<individual name="John"/>
<catom name="PhdStudent"/>

</instanceof>

Now consider a new ontology O2 which includes one axiom:

<instanceof>
<individual name="John"/>
<catom name="Employee"/>

</instanceof>

The resulting ontology O1 tO2 is coherent, but inconsistent. There exist a number of cardinality-maximizing
consistent sub-ontologies that can be obtained by removing either one of the following axioms from O1:
PhDStudent v Student, Student v ¬Employee, john ∈ PhdStudent. Thus, the response when
adding O2 to O1 is shown as follows:

<response>
<error message="Inconsistent ontology"/>

The cardinality-maximal consistent subsets include:
<sub>

[subClassOf Employee Person]
[subClassOf Student Person]
[classMember Employee John]
[disjoint Student Employee]
[classMember PhdStudent John]

</sub>
<sub>

[subClassOf Employee Person]
[subClassOf Student Person]
[classMember Employee John]
[disjoint Student Employee]
[subClassOf PhdStudent Student]

</sub>
<sub>

[subClassOf Employee Person]
[subClassOf Student Person]
[classMember Employee John]
[classMember PhdStudent John]
[subClassOf PhdStudent Student]

</sub>
</error>

</response>

2006–2007 c© Copyright lies with the respective authors and their institutions.
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6.3 Extensions to the KAON2 OWL Tools

6.3.1 Architecture of KAON2 OWL Tools

The OWL tools 4 are a set of tools for working on OWL files, exposing the abilities of the KAON2 ontology
infrastructure to the command line. We integrate the functionalities in RaDON into OWL tools to facilitate the
task of the users who are used to using OWL tools or who prefer to use the command line for the test.

6.3.2 Download and Usage

The binary version (owltools-radon.jar) and source code of RaDON with OWL tools can be down-
loaded from the website of RaDON. We provide different parameters for the approaches to dealing with
inconsistency or incoherence. For example, the following command shows the method to get all cardinality-
maximal consistent subontologies to be returned if inconsistency occurs when adding one axiom in onto2.owl
to onto1.owl and onto1.owl is consistent.

java -cp kaon2.jar;owltools-radon.jar
edu.unika.aifb.owltools.OWLTools radon onto1.owl onto2.owl -cardi

For the parameters, such as -mip, -mup or -mupmip, only one ontology is needed. If there are still two
ontologies, we will check the incoherence by combining the two ontologies together. For each test, only one
approach to dealing with inconsistency or incoherence can be selected. And the first declared approach will
be selected if more than one approaches are declared.

6.3.3 Example

We test the example buggyPolicy.owl to show all the MUPs which are related to the unsatisfiable
concepts in the ontology and all the MIPs. This example can be downloaded from the website http:
//www.mindswap.org/2005/debugging/ontologies/. For the command line, we just input the
following command:

java -cp kaon2.jar;owltools-radon.jar
edu.unika.aifb.owltools.OWLTools radon buggyPolicy.owl -mupmip

The part of the results are shown in figure 6.2.

4http://owltools.ontoware.org/
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Figure 6.2: The results of RaDON with OWL tools

2006–2007 c© Copyright lies with the respective authors and their institutions.
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Chapter 7

Conclusion

7.1 Summary

In this deliverable we addressed the question of how to define appropriate models for consistency in evolving
networks of ontologies. We first proposed a set of evaluation criteria to facilitate the comparison of existing
approaches to dealing with inconsistencies in evolving ontologies. We then proposed a novel general ap-
proach for resolving inconsistency and incoherence in ontologies. We instantiated our approach by proposing
a concrete approach to resolving incoherence and some concrete approaches to resolving inconsistency. By
comparing our approach with existing approaches with respect to the criteria, we show that our approach is
powerful enough to be used to deal with inconsistency and incoherence in evolving ontologies. Finally, we
provided implementations of the proposed methods.

7.2 Roadmap

There are various dimensions of future work to be considered in the scope of the NeOn project.

In the subsequent deliverable, in D1.2.2 Consistency Models for Networked Ontologies - Evaluation we will
build on the work presented in this deliverable and evaluate our approaches using real life data. Ideally, this
data will be directly obtained from the NeOn case studies.

Further, we will continue the developments of our approaches for consistency models, both on the conceptual
and on the implementation level. On the conceptual level, we might consider other approaches to dealing
with inconsistencies, especially with respect to consistency models for networked ontologies. In alignment
with the work performed in WP3 on context, we will consider how we can exploit context information in order
to deal with inconsistencies.

On the implementation level, we will make our RaDON system compatible with new upcoming standards,
such as OWL 1.1 and DIG 2.0. While in the current implementation, the functionalities are accessible as
proprietary extensions to the DIG1.1 interface, the DIG2.0 interface will allow to define extensions – such as
the ones for our non-standard reasoning services – in a generic way.

Further we will work on the integration of our implementations into the NeOn architecture. This integration
can be performed both in terms of a plugin for the NeOn toolkit (e.g. as a diagnosis tool for networked
ontologies for the end user) as well as backend services within the NeOn infrastructure as extensions to the
NeOn reasoners.
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