
2006 © Copyright lies with the respective authors and their institutions.

NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 – “Semantic-based knowledge and content systems”

D 6.1.1 Requirements on NeOn Architecture

Deliverable Co-ordinator: Jose Manuel Gómez (iSOCO)

Deliverable Co-ordinating Institution: Intelligent Software Components
(iSOCO)

Other Authors: Carlos Buil Aranda (iSOCO)

Oscar Muñoz García (UPM)

Walter Waterfeld (Software AG)

Document Identifier: NEON/2006/D6.1.1/v1.0 Date due: August 31, 2006

Class Deliverable: NEON EU-IST-2005-027595 Submission date: 31 August 2006
Project start date: March 1, 2006 Version: V1.0

Project duration: 4 years State: Final

 Distribution: Report/Public

NeOn-project.org

Page 2 of 50 NeOn Integrated Project EU-IST-027595

NeOn Consortium
This document is part of a research project funded by the IST Programme of the Commission of the European
Communities, grant number IST-2005-027595. The following partners are involved in the project:

Open University (OU) – Coordinator
Knowledge Media Institute – KMi
Berrill Building, Walton Hall
Milton Keynes, MK7 6AA
United Kingdom
Contact person: Martin Dzbor, Enrico Motta
E-mail address: {m.dzbor, e.motta} @open.ac.uk

Universität Karlsruhe – TH (UKARL)
Institut für Angewandte Informatik und Formale
Beschreibungsverfahren – AIFB
Englerstrasse 28
D-76128 Karlsruhe, Germany
Contact person: Rudi Studer
E-mail address: studer@aifb.uni-karlsruhe.de

Universidad Politécnica di Madrid (UPM)
Campus de Montegancedo
28660 Boadilla del Monte
Spain
Contact person: Asunción Gómez Pérez
E-mail address: asun@fi.upm.es

Software AG (SAG)
Uhlandstrasse 12
64297 Darmstadt
Germany
Contact person: Walter Waterfeld
E-mail address: walter.waterfeld@softwareag.com

Intelligent Software Components S.A. (ISOCO)
Calle de Pedro de Valdivia 10
28006 Madrid
Spain
Contact person: Richard Benjamins
E-mail address: rbenjamins@isoco.com

Institut ‘Jožef Stefan’ (JSI)
Jamova 39
SI-1000 Ljubljana
Slovenia
Contact person: Marko Grobelnik
E-mail address: marko.grobelnik@ijs.si

Institut National de Recherche en Informatique et
en Automatique (INRIA)
ZIRST – 655 avenue de l'Europe
Montbonnot Saint Martin
38334 Saint-Ismier
France
Contact person: Jérôme Euzenat
E-mail address: jerome.euzenat@inrialpes.fr

University of Sheffield (USFD)
Dept. of Computer Science
Regent Court
211 Portobello street
S14DP Sheffield
United Kingdom
Contact person: Hamish Cunningham
E-mail address: hamish@dcs.shef.ac.uk

Universität Koblenz-Landau (UKO-LD)
Universitätsstrasse 1
56070 Koblenz
Germany
Contact person: Steffen Staab
E-mail address: staab@uni-koblenz.de

Consiglio Nazionale delle Ricerche (CNR)
Institute of cognitive sciences and technologies
Via S. Martino della Battaglia,
44 - 00185 Roma-Lazio, Italy
Contact person: Aldo Gangemi
E-mail address: aldo.gangemi@istc.cnr.it

Ontoprise GmbH. (ONTO)
Amalienbadstr. 36
(Raumfabrik 29)
76227 Karlsruhe
Germany
Contact person: Jürgen Angele
E-mail address: angele@ontoprise.de

Asociación Española de Comercio Electrónico
(AECE)
C/Alcalde Barnils, Avenida Diagonal 437
08036 Barcelona
Spain
Contact person: Gloria Tort
E-mail address: gtort@fecemd.org

Food and Agriculture Organization of the UN (FAO)
Viale delle Terme di Caracalla 1
00100 Rome
Italy
Contact person: Johannes Keizer
E-mail address: johannes.keizer@fao.org

Atos Origin S.A. (ATOS)
Calle de Albarracín, 25
28037 Madrid
Spain
Contact person: Tomás Pariente
E-mail address: tomas.parientelobo@atosorigin.com

D 6.1.1 Requirements on NeOn Architecture Page 3 of 50

2006 © Copyright lies with the respective authors and their institutions.

Table of contents

NEON CONSORTIUM .. 2
TABLE OF CONTENTS.. 3
WORK PACKAGE PARTICIPANTS ...6
CHANGE LOG .. 6
EXECUTIVE SUMMARY ..6
1. INTRODUCTION .. 7
2. NEON ARCHITECTURE REQUIREMENTS: METHODOLOGY .. 7

2.1 Analysis of textual sources ... 8
2.2 Requirements sheet.. 8
2.3 IEEE methodology for software requirements specification (SRS)..................................... 9
2.4 Requirements lifecycle.. 10

3. NEON ARCHITECTURE REQUIREMENTS .. 10
3.1 Overall Description ... 10

3.1.1 NeOn architecture perspective ..11
3.1.1.1 System requirements ..11
3.1.1.2 User interface ..15
3.1.1.3 Hardware requirements...19
3.1.1.4 Software requirements ..19
3.1.1.5 Communication interfaces...20

3.1.2 Functions of the NeOn architecture ...20
3.1.3 Users characteristics..21
3.1.4 Constraints...22

3.2 Specific requirements ... 24
3.2.1 External interfaces ...25
3.2.2 Detailed functions of the NeOn architecture..27

3.2.2.1 Geographically-transparent access to distributed repository ..27
3.2.2.2 Support of heterogeneous knowledge ..28
3.2.2.3 Dual language approach ...28
3.2.2.4 Ontology modularization ...28
3.2.2.5 Multilinguality support..29
3.2.2.6 Mapping support..29
3.2.2.7 Support for contextualized ontologies ...29
3.2.2.8 Lifecycle support for ontology development..29
3.2.2.9 Reasoning and inference ..31
3.2.2.10 Query support..31
3.2.2.11 Question formulation ...31
3.2.2.12 Semantic annotation..31
3.2.2.13 Access management to information resources...31

Page 4 of 50 NeOn Integrated Project EU-IST-027595

3.2.2.14 User profiling ...32
3.2.2.15 Ontology summarization ...32
3.2.2.16 Provenance support ..32
3.2.2.17 System documentation and help...32
3.2.2.18 Support for different client types ...32
3.2.2.19 Service access to the NeOn backend...32

3.2.3 Performance requirements ..38
3.2.4 Logical database requirements..42
3.2.5 Standards compliance ...43
3.2.6 Software system attributes ..44

3.2.6.1 Reliability ...45
3.2.6.2 Security ...45
3.2.6.3 Maintainability..46
3.2.6.4 User documentation ..46

4. PRELIMINARY RISK ANALYSIS..48
5. CONCLUSION .. 48
6. ANNEX I: REQUIREMENTS SHEET TEMPLATES ... 49
REFERENCES ... 50

D 6.1.1 Requirements on NeOn Architecture Page 5 of 50

2006 © Copyright lies with the respective authors and their institutions.

LIST OF TABLES

Table 1: System requirements... 15

Table 2: User interface requirements .. 19

Table 3: Hardware requirements ... 19

Table 4: Software requirements .. 20

Table 5: Communication interfaces ... 20

Table 6: Development constraints ... 24

Table 7: External interfaces... 27

Table 8: Functions provided by the NeOn infrastructure... 38

Table 9: Performance requirements .. 41

Table 10: Logical database requirements ... 43

Table 11: Standards compliance ... 44

Table 12: Reliability requirements ... 45

Table 13: Security requirements.. 46

Table 14: Maintainability requirements.. 46

Table 15: Requirements on user documentation .. 47

LIST OF FIGURES

Figure 1: System requirements ... 11
Figure 2: Reference architecture as a set of extension points .. 12
Figure 3: NeOn services.. 13
Figure 4: W3C Semantic Web stack.. 14
Figure 5: User interfaces requirements ... 16
Figure 6: Constraints classification.. 22
Figure 7: Classification of external interfaces requirements.. 25
Figure 8: Transparent access to Distributed Repository ... 27
Figure 9: Support of heterogeneous knowledge ... 28
Figure 10: Requirements on mapping support .. 29
Figure 11: Functions for ontology development .. 30
Figure 12: Semantic annotation functionalities.. 31
Figure 13: Performance factors and application contexts ... 39

Page 6 of 50 NeOn Integrated Project EU-IST-027595

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this document, even if
they might not have directly contributed writing parts of this document:

iSOCO

UPM

Ontoprise

Software AG

FAO

UKARL

Change Log

Version Date Amended by Changes

0.1 31-07-2006 Carlos Buil-Aranda Description of changes

0.2 18-08-2006 Jose Manuel Gómez-Pérez Draft ready for Quality Assurance

0.3 25-09-2006 Carlos Buil-Aranda Incorporated feedback

1.0 01-10-2006 Walter Waterfeld Final version with enhanced risk analysis

Executive Summary

This document shows the requirements for the NeOn architecture and how these requirements have been
extracted. The document is divided in two main blocks. The first block describes the methodology that has been
used in order to gather the NeOn architecture requirements while the second one details the actual requirements
that have been extracted from the different sources.

The methodology followed has lied on two main information sources: the technical annex and the NeOn
Requirements and Vision [1] document. The third information source upon which the architectural requirements
specification has been built is direct feedback from the consortium. Our aim has been to build the NeOn
architecture requirements specification on top of both the expertise of system architecture core partners,
technology and methodology providers, and the actual needs of the case studies.

All this information was gathered by means of a requirements sheet circulated among partners as a template
in the successive requests for information. A large amount of information was collected whose effective
classification demanded a well-defined software requirements specification methodology. With the aim of
keeping as close to the standards as possible, we adopted the IEEE [3] approach.

The description of the requirements contained herein aim to analyze current practices in ontology
engineering and gather information from the frontline that can be used to delimit strengths and weaknesses
of current tools in order to develop a precise understanding of NeOn needs. These requirements aim to feed
the design of NeOn architecture and toolkit.

Accordingly to the IEEE software requirement specification, an overall description of the requirements has
been produced first. This description provides a perspective on the NeOn architecture and introduces the
functions that shall be satisfied by it. Next, this information is analyzed in detail producing a complete
collection of specific requirements.

D 6.1.1 Requirements on NeOn Architecture Page 7 of 50

2006 © Copyright lies with the respective authors and their institutions.

1. Introduction

This document aims to analyze current practices in ontology engineering and gather information from the
frontline that can be used to delimit strengths and weaknesses of current tools in order to develop a precise
understanding of NeOn needs. These requirements aim to feed the design of NeOn architecture and toolkit.
The NeOn architecture shall be modular, service-oriented, and open, enabling case studies as well as
research and exploitation partners to accommodate NeOn technology, techniques and methods for ontology
development, reasoning and collaboration in networked environments.

This effort shall eventually result in intensive tool support for the mechanisms developed in the technical
work packages. Networked ontologies require these tools to be offered as an integrated NeOn infrastructure.
Additionally, the collaborative framework inherent to NeOn requires further infrastructure: the distributed
repository of networked ontologies and a set of distributing components working as a middleware between
the NeOn toolkit itself and the distributed repository.

The distributed repository shall be able to manage networked ontologies and legacy information resources
while distributed components shall be provided which offer the necessary functionalities to the application
layer, i.e. the NeOn toolkit, such as reasoning or annotation. This NeOn middleware shall be transparent with
respect to the particular formalism used for each particular networked, and possibly heterogeneous, ontology
managed by NeOn.

NeOn shall provide a service-oriented interface that allows legacy components to be included with the smallest
impact on the rest of the system, enforcing standard interface methods which provide polices for NeOn
compatibility and extension. However, components built from scratch under the NeOn specification shall rather use
more direct, higher performance methods for integration. In this direction, the NeOn architecture shall offer an API
accessible by means of several client interfaces.

Functionalities provided by the NeOn infrastructure shall include, but are not limited to, simultaneously
visualizing, browsing, and editing multiple ontologies, ontology alignment, and lifecycle support to
collaborative ontology development, ontology change propagation, consistency maintenance, and
versioning. On the other hand, non functional requirements on the NeOn infrastructure include robustness,
scalability, concurrency, and reuse of technology and information resources.

2. NeOn architecture requirements: Methodology

The method followed in order to extract the architectural requirements of NeOn has heavily lied on two main
sources: the technical annex and the NeOn Requirements and Vision document [1] . The technical annex contains
the main guidelines for the development of NeOn technology and methodology. On the other hand, [1] is the first
attempt of the NeOn consortium to define a series of functionalities that shall be satisfied. Additionally, this work
produced a series of assumptions in terms of which the former functionalities were specified. Namely, these
assumptions are ontology networking, dynamics, sharing, and context.

The third information source upon which the architectural requirements specification has been built is direct
feedback from the consortium. First, architecture partners from WP6 were triggered, taking advantage of their
specific knowledge on system architecture. Then, the request for information was extended to the rest of the
partners, especially the case studies. Our aim was to complete the vision provided by the system architecture core
partners with the specification of the requirements which eventually need to be satisfied in order to sustain the
architectural needs of the case studies.

All this information was gathered by means of a requirements sheet circulated among partners as a template in the
successive requests for information. A large amount of information was collected whose effective classification
demanded a well-defined software requirements specification methodology. With the aim of keeping as close to
the standards as possible, we adopted the IEEE approach [3] .

Next, we describe how we extracted information from our main textual sources i.e. [1] and the technical annex, for
requirements gathering. Then, the tools used during requirements gathering are described. Finally, the IEEE
software requirements specification methodology and its application to the actual NeOn architecture requirement
classification are described.

Page 8 of 50 NeOn Integrated Project EU-IST-027595

2.1 Analysis of textual sources

NeOn requirements and vision

[1] Contains a large amount of valuable information for the NeOn architecture requirements. This information is
mainly focused on the following three points:

- Data to be managed using the NeOn infrastructure, i.e. networked ontologies.

- Functionalities that need to be available throughout the entire lifecycle of networked ontologies.

- Users that need the NeOn infrastructure to develop networked ontologies.

The following key characteristics are assumed: ontologies will be networked, dynamic, shared and contextualized.
These assumptions shall also be present in the architecture requirements extracted from this source. The NeOn
architecture shall provide functionalities necessary to manage networked ontologies as well as their properties.

Another aspect to be reflected by the architecture requirements is the different types of ontology users. According
to [1] users can be classified under two main categories, namely ontology experts and ontology editors. Ontology
experts develop ontologies with the aim of modelling a given domain. However, not necessarily do they have deep
knowledge about particular domains. On the other hand, ontology editors have a large expertise on the concrete
domain to be modelled. Therefore, both have diverse needs which shall be reflected in the architecture
requirements specification.

NeOn Technical Annex

The NeOn description of work introduces a preliminary vision of the NeOn architecture and the functionalities it
aims to provide. We have used this specification as a wish list on top of which we have built an elaborated, domain
grounded, and exhaustive architecture requirements collection that shall allow to accurately design the NeOn
architecture.

2.2 Requirements sheet

The requirements sheet template is the main tool used to gather a preliminary collection of architecture
requirements. It contains six main fields:

- Requirement id.

- Requirement name.

- Requirement description.

- Relevance of the requirement in the overall NeOn architecture. It can be either critical, average, or low.

- Main conceptual architecture layer where the requirement can be allocated. These layers are three:
Distributed Repository layer, Distributed Components, and NeOn toolkit.

- Type of the requirement extracted, either functional or non functional.

- Traceability information. This can be either internal or external. Internal traceability relates a given
requirement with other requirements it depends on, whereas external traceability collects information
regarding the exact information source where the requirement is detected.

A preliminary version of the template was filled in with information from the textual sources, then it was circulated
among partners and the collected data was merged.

This sheet allows classifying requirements hierarchically, from the more general to the more concrete, providing a
stratified vision of the requirement information. However, the sheer amount of data collected is too large and the
requirements sheet alone does not suffice in order to clearly display information contained within. In this direction,
requirement categories have been created, following the IEEE methodology for software requirements
specification, pursuing a more precise requirements description.

D 6.1.1 Requirements on NeOn Architecture Page 9 of 50

2006 © Copyright lies with the respective authors and their institutions.

2.3 IEEE methodology for software requirements specification (SRS)

This methodology details how to write a good specification of software requirements, including the following
information:

- Important characteristics of a requirements specification.

- Necessary sections to be included into the specification.

- Requirements hierarchy for each section. Each requirement fits into one section of the recommendation.
Additionally, each requirement is bound to the previous hierarchy of requirements.

SRS is both a standard and a recommendation proposed by IEEE. The structure proposed by this methodology is
comprehensible and classifies requirements in sections that relate requirements initially separated. As a standard,
SRS is easily interpreted by the specialized reader.

Once the requirements sheet was populated, we classified this information in the form of an SRS compliant
document. This document specifies the functionalities that a software product shall provide to the end user. The
following software aspects are considered:

- Functionality: what the software is expected to do.

- External interfaces: how the described software shall interact with other software, hardware, and users.

- Performance: speed, availability, response time, or recovery time.

- Attributes: considerations on portability, correctness, maintainability, or security.

- Design constraints imposed on the future design and implementation due to the adoption of particular
standards.

A good software requirements specification should also have the following properties:

- Correctness: every requirement stated therein must be met by the final product.

- Unambiguity: every requirement statement has only one possible interpretation

- Completeness: it includes all significant, functional and non functional requirements.

- Internally consistent: the document is aligned with other upper level documents, e.g. [1] and the neon
technical annex.

- Ranked for importance and/or stability: the relevance of each requirement is detailed.

- Verifiable: a requirement is verifiable if some finite, cost-effective process exists against which it can be
checked.

- Modifiable: its structure and style are such that any changes to the requirements can be made easily,
completely, and consistently while retaining the structure and style

- Traceable: the precedence of each requirement is clear and future referencing is possible.

This methodology proposes to divide the requirements specification document into three main sections which, on
the other hand are not mandatory. In fact, during this work we have modified it as necessary. Nevertheless, the
following outline has been included in the architecture requirements specification.

1. The overall description section describes the general factors that affect the software product and its
requirements.

 Product Perspective: puts the product into perspective with other related products. It details if
the product is part of other larger product. Relations with other software, system, user,
hardware, communications interfaces and memory constraints are specified.

 Product Functions: a description about the main functions that the software shall provide.

 User characteristics: software characteristics necessary to satisfy users.

 Developer constraints such as regulatory policies, hardware limitations, audit functions,
reliability requirements, etc.

 Assumptions and dependencies of the software product, e.g. specific operating systems.

2. The specific requirements section details all the requirements that the software product shall
eventually meet. Requirements contained therein include a short description. Every requirement shall
be perceived by users, operators or other external systems:

Page 10 of 50 NeOn Integrated Project EU-IST-027595

 External Interfaces

 Functions

 Performance Requirements

 Logical Database Requirements

 Design Constraints

 Software System Attributes

Additionally, specific requirements shall be readable, uniquely identifiable, and cross-referenced to
earlier documents.

2.4 Requirements lifecycle

Software requirements specification is not a sequential process with clear and well-defined beginning and end.
Quite on the contrary, this is a spiral model where requirements themselves have their own lifecycle.
Requirements are:

1. Detected,

2. Gathered and contextualized,

3. Decomposed into smaller requirements,

4. Evolved along with the software product,

5. Sometimes, no longer applicable and disappear from the system specification.

According to this life cycle, partners produced feedback on the different versions of the architecture requirements
in order to obtain a more complete and comprehensive list. Specific contributions from the case studies are crucial.
They help establishing actual relevance of architectural requirements in terms of their usefulness for application
development. In general, user interaction is critical for requirements gathering and evolution as they provide first-
hand insight.

This kind of iterations on the requirements list show how they are updated with new recommendations and how
new requirements appear. The relevance of the requirements identified will be naturally fitted as NeOn evolves.

3. NeOn architecture requirements

Next, the NeOn architecture requirements are classified according to the IEEE software requirements specification
methodology [3] . Please note that the document structure below may not exactly coincide with the one proposed
by this methodology. Quite on the contrary, it has been adjusted to better fit our aim to describe the NeOn
architecture requirements, object of this document.

3.1 Overall Description 1

An overall description of the NeOn architecture requirements is first introduced. Then, specific, detailed
requirements will be provided.

1 This section corresponds to section 2 of the IEEE software requirements specification.

D 6.1.1 Requirements on NeOn Architecture Page 11 of 50

2006 © Copyright lies with the respective authors and their institutions.

3.1.1 NeOn architecture perspective

This section puts the NeOn architecture into perspective with respect to the expected use of networked ontologies.
System requirements are sketched within and all kind of interfaces describing the relation of the architecture with
users, hardware, software, and communication are introduced.

3.1.1.1 System requirements

 Table 1 shows the complete set of system requirements for the NeOn architecture. This table describes
the main assumptions upon which the NeOn architecture shall be built. The requirements contained herein, each
displayed with their own identifier, are divided in three main categories, as shown in Figure 1: NeOn architecture
layers, NeOn services, and NeOn compatibility and extension.

Figure 1: System requirements

NeOn architecture layers

The NeOn architecture will be structured in three main conceptual layers (see Figure 2: Reference architecture as
a set of extension points) where information repositories, components and services, and user interfaces will be
accommodated. These layers are the following, from lower to higher abstraction level:

- Distributed repository layer: Information resources will be potentially stored in a distributed repository
managed by this architecture layer. The distributed repository layer allows NeOn to access resources both
transparently both from their location and the nature of the knowledge being accessed.

- Distributed components layer: This middleware layer between the NeOn toolkit and the distributed
repository hosts a number of services which allow users to exploit the information stored in the distributed
repository.

- NeOn toolkit: User front-ends to the services provided by the second architecture layer as well as to the
information repositories managed by the lower level layer.

Page 12 of 50 NeOn Integrated Project EU-IST-027595

Figure 2: Reference architecture as a set of extension points

The different levels of the NeOn architecture need to work in a coordinated manner and a large amount of
communication and service invocation is expected to take place between them. The services and information
stores maintained by the NeOn architecture stack are at the same time service functionality clients and producers
for each other. In this scenario, natural flow of service invocation will take place from higher level to lower level
layers. On the other hand, push services can exist. For example, information refresh may be triggered upwards
from the distributed repository layer in order to update user-level information displayed in the NeOn toolkit. Hence,
it will be necessary to design and implement the necessary infrastructure which allows this kind of interaction. A
possible solution is to include a semantic enterprise service bus, like the one proposed in EU-project DIP2. Due to
performance constraints, special emphasis should be made on scalability in this regard.
The NeOn distributed repository layer is expected to deal with a large number of heterogeneous information
resources. This includes not only formal knowledge in the form of ontological resources expressed in a variety of
ontology languages, but also legacy resources containing information which is still valuable for the different
organizations. In this direction, the following types of distributed information resources shall be integrated in the
NeOn knowledge model:

- Unstructured content, like e.g. text.
- Structured knowledge with no clear semantics. This category would group e.g. legacy database systems

and catalogues.
- Formal knowledge: Ontological knowledge and data.

NeOn services

NeOn aims to become the next generation ontology development framework and, as such, it must provide a large
number of services which allow managing and supporting the entire ontology lifecycle, from design to exploitation.
Therefore, in addition to ontology editing functionalities, other basic services are required to satisfy collateral
needs of ontology developers. These services will be mainly localized in the second layer of the NeOn architecture
but their functionalities will be supported by the distributed repository layer and user interfaces will be provided by
the NeOn toolkit. NeOn services identified so far are the following (see also Figure 3):

- Annotation service: NeOn will provide the necessary infrastructure to semantically annotate information
sources, using data annotation [9] , specialized text mining [10] techniques or tools like Text-Garden3. The
annotation service will be eventually used to populate ontologies managed by the NeOn framework with

2 See http://dip.semanticweb.org
3 www.textmining.net

D 6.1.1 Requirements on NeOn Architecture Page 13 of 50

2006 © Copyright lies with the respective authors and their institutions.

already existing data stored in legacy repositories. This feature will allow to automatically ontologize legacy
information, i.e. to semantically describe it.

- Context service: This service will allow building user profiles and establishing behaviour patterns which
allow building customized, user-focused services.

- Reasoning service: Reasoning capabilities will be injected in the NeOn framework. This service will provide
the means to access these capabilities. Reasoning includes ontology consistency checking and inference.

- Query service: NeOn will allow users to formulate queries using common standard languages and execute
them against the knowledge contained within. This knowledge includes both ontology data and legacy data.

- Question formulation service: A higher-level query interface will also be supported that allows to express
queries more naturally, e.g. in free text. Questions formulated by means of this facility will be automatically
translated into ontological query standard languages and submitted to the NeOn query service.

- Summarization service: It is fundamental for ontology users to count on information about the ontologies
maintained by a system like NeOn. In this regard, the NeOn summarization service aims to build reports with
the most relevant ontology properties. These parameters are still to be defined.

- Provenance service: Associated to the summarization service, this service will log and provide information
about events occurred to particular ontologies throughout their lifecycle. This information will include
changes, the users who introduced them, and the different existing versions of the ontology.

-

Figure 3: NeOn services

NeOn compatibility and extension

Both, the NeOn layered architecture and services contained within it must support and be built in order to be
compliant with the following high-level policies. First of all, the NeOn architecture will be open in order to facilitate
the inclusion and extension of state-of-the-art ontological technology like in [11] , either already present in the
consortium, proceeding from alliances with other top projects like cBio[6] , or from contributions of other
organizations. Thus, the necessary infrastructure must be included in the core of the NeOn architecture that
allows loosely coupling of components and resources. This will require specifying a series of well-defined NeOn
system extensibility interfaces that standardize the addition of external components into the framework.

Page 14 of 50 NeOn Integrated Project EU-IST-027595

Figure 4: W3C Semantic Web stack4

Ontologies and data shall be loaded in a stand-alone server, based on OntoStudio and OntoBroker, which
implements the backend for the reasoning service and the ontology editor. On the other hand, given that both
OWL-like languages and Frame languages coexist in the Semantic Web stack (see Figure 4), the NeOn data
model will observe the dual language approach, i.e. both language types will be supported.

Req # Title Description Importance
External
traceability

2.1.1.1

Distributed
repository
layer

Information resources will be potentially stored in a
distributed repository managed by this architecture layer.
NeOn shall access these resources transparently to their
location Critical

NeOn TA5

2.1.1.2
Middleware
layer

This middleware layer between the NeOn toolkit and the
distributed repository shall implement a number of
services which allow users to exploit the information
stored in the distributed repository Critical

NeOn TA

2.1.1.3
NeOn toolkit
layer

User frontends and high level services shall be supported
by this layer Critical

NeOn TA

2.1.1.4

Inter-layer
communicatio
n mechanism

The NeOn architecture layers shall be at the same time
service functionality clients and producers for each other.
Natural flow of architecture service invocation goes from
the higher level layers to the lower level layer. On the
other hand, push services, e.g. information refresh may be
triggered upwards by lower level layers, in this case, the
distributed repository layer.
The necessary infrastructure, e.g. a service bus, shall be
implemented to allow this kind of service invocation Critical

NeOn TA

2.1.1.5

Support for
integration of
heterogeneous
information
sources

The following types of distributed information resources
shall be integrated in the NeOn knowledge model:

- Unstructured content, e.g. text.
- Structured knowledge with no clear semantics, e.g.

DBs, catalogues.
- Formal knowledge (ontologies and data)
- Semantic annotations Critical

NeOn TA

2.1.1.6
Annotation
service

The second layer of the NeOn architecture shall include
annotation mechanisms and associated services Critical

NeOn TA

4 Figure taken from [4]
5 Technical Annex

D 6.1.1 Requirements on NeOn Architecture Page 15 of 50

2006 © Copyright lies with the respective authors and their institutions.

2.1.1.7
Text mining
service

The second layer of the NeOn architecture shall include
text mining services for human language information
retrieval Average

NeOn TA

2.1.1.8
Summarization
service

The second layer of the NeOn architecture shall include
an informational service briefing ontology information Critical NeOn R&V

2.1.1.9
Context
service

The second layer of the NeOn architecture shall include a
service to gather and process context information for later
exploitation Critical NeOn R&V

2.1.1.10
Reasoning
service

The second layer of the NeOn architecture shall include
reasoning mechanisms and associated services. Critical

NeOn TA

2.1.1.11 Query service
The second layer of the NeOn architecture shall include
query mechanisms and associated services. Critical NeOn R&V

2.1.1.12

Question
formulation
Service

The NeOn toolkit shall provide a question formulation
service that eases query formulation by allowing more
natural ways of expressing queries, e.g. natural language Average NeOn R&V

2.1.1.13
Provenance
service

The NeOn middleware layer shall include a service which
keeps track of the precedence of ontologies, i.e. how,
when, and by whom ontologies evolve across their
lifecycle. Critical NeOn R&V

2.1.1.14

Re-use and
extension of
pre-existing
technology

The architecture shall be open enough and facilitate the
inclusion and extension of state-of-the-art ontology
platforms Average

NeOn TA

2.1.1.15
Stand-alone
server

Ontologies and data shall be loaded in a stand-alone
server, based on OntoStudio and OntoBroker, which
implements the backend for the reasoning service and the
ontology editor. Critical

NeOn TA

2.1.1.16
Dual language
approach

Description logic-based languages, e.g. OWL, and
Frame/Rule languages, e.g. FLogic, shall be supported Critical

NeOn architecture
partners

2.1.1.17

Integrated
NeOn
Infrastructure

The NeOn architecture shall integrate the technology
developed in the technical work packages Average

NeOn TA

2.1.1.18

Preconfigured
and
bundled
infrastructure

NeOn infrastructure shall be preconfigured and bundled
into sector-specific solutions, e.g. in the case studies Average

NeOn TA

2.1.1.19

Loosely
coupled
architecture

NeOn architecture will be mainly based on a loosely
couple concept Critical

NeOn TA

2.1.1.19.
1

Loosely
coupled
architecture

NeOn architecture shall allow loose coupling of
components Critical

NeOn TA

2.1.1.19.
2

Loosely
coupled
architecture

NeOn architecture shall allow loosely coupling of
resources Critical

NeOn TA

 Table 1: System requirements

3.1.1.2 User interface
Table 2 shows the logical characteristics of interfaces between NeOn and its potential users, including GUI
configuration issues and customization. Figure 5 shows a classification of user interface requirements with three
large categories: those associated to the NeOn editor, requirements for the NeOn browser, and requirements
bound to the NeOn GUI. The requirements described herein represent the counterparts of the system
functionalities described in section 0 in terms of GUI capabilities.

Page 16 of 50 NeOn Integrated Project EU-IST-027595

Figure 5: User interfaces requirements

NeOn Ontology Editor

These requirements appeal to the NeOn functionalities related to the editing of networked ontologies in the NeOn
framework. The NeOn Editor, based on OntoStudio, which will be appropriately extended for the networked case,
shall allow working on several networked ontologies simultaneously. The NeOn Editor shall allow selection and
reuse of complete ontologies as well as of their parts. This can be achieved by making the NeOn Editor aware of
the modules comprised by a particular ontology, including ontology module editing capabilities. The NeOn
Ontology Editor shall allow editing all kind of ontology entities, including ontology mappings.

A fundamental feature, shed by the NeOn pharmaceutical [8] and fishery [7] case studies, is support for
contextualized ontologies. The ontologies needed in these scenarios are contextualized, i.e. their properties
change according to the particular context of application, and only a subset of these properties is valid in a certain
context. For example, the invoice model, described by means of networked ontologies, of the pharmaceutical case
study has different contexts of applications depending on the stakeholders involved in the invoice exchange.
Although the invoice model is the same, the applicable information will change if the stakeholders involved are a
laboratory and a pharmacy or a laboratory and a wholesaler. Thus, the NeOn Editor shall also allow users to
define, select and edit ontology context.

NeOn Ontology Browser

NeOn shall allow visualizing the structure of networked ontologies, including ontology modularization, and the
properties of the ontological entities contained within. Additionally, NeOn shall provide means to graphically
represent changes in networked and shared ontologies, as well as ontology lifecycle provenance information, i.e.
who and how interacted with a given ontology or with a set of them.
NeOn shall also provide mapping visualization. In this case, effective graphical representation of mapping
information is expected to be especially helpful since NeOn will manage ontologies in a potentially complex
networked environment. In this direction, NeOn shall allow visualizing all kind of dependencies between networked
ontologies.
It is also certainly relevant that context information be accurately displayed. In this direction, NeOn shall provide
contextualized views of ontologies. All the different types of visualization described in Table 2 shall be
parameterized, and these parameters customizable.
With high probability, the NeOn architecture design will eventually integrate browsing capabilities with the NeOn
Ontology Editor.

D 6.1.1 Requirements on NeOn Architecture Page 17 of 50

2006 © Copyright lies with the respective authors and their institutions.

NeOn GUI

NeOn GUI requirements specify the rest of the properties that the NeOn user interface must comply with, in terms
of facilities for user interface configuration and user access to services. These requirements can be classified
under the following main categories:

- Plugin-based GUI

- Support for different types of clients

- GUI support for NeOn services

- Access management to information resources

As stated in the NeOn compatibility and extension requirements, in particular, requirement 2.1.1.19, NeOn
extensibility and flexibility is a really important point to be considered under the architecture perspective. This
issue is also reflected as part of the user interface requirements. Thus, NeOn shall allow easy configuration
of the functionalities available in the NeOn toolkit by means of a plugin-based system. NeOn shall also
provide users with reflective functionalities offering information about the plugins present in the interface at
any time.
This plugin-based system will be part of the infrastructure that supports the implementation of rich clients to
the NeOn functionalities. A rich client contains a large amount of logic within. On the other hand, thin clients,
i.e. clients with hardly any logic within, will be based on web technology, merely a dumb interface that
collects user requests, invokes the appropriate services, and shows results after execution. The main
advantage of this kind of clients is that they can be decoupled from the component actually providing the
functionality. Hence, they turn to be certainly useful in distributed systems like NeOn.
Part of the requirements on user interfaces correspond to front-ends of the NeOn services described in 0, i.e.
NeOn shall provide GUI support to every service. Additionally, though this requirement is weaker than those
described so far NeOn shall provide a user interface that enabled certain types of users with an administrator
role to manage access rights to information resources, including ontological and non-ontological knowledge.
On the other hand, information about resource accessibility shall be displayed to regular users.

Req # Title Description Importance
External
traceability

Internal
traceability

2.1.2.1 NeOn Editor
The NeOn toolkit layer shall provide an
ontology editor based on OntoStudio Critical

NeOn TA

NeOn case
studies 2.1.1.3

3.2.11

2.1.2.1.1 Multi-ontology editing
The NeOn editor shall allow to work with
several ontologies simultaneously Critical

NeOn TA

NeOn case
studies 2.1.1.3

3.2.11

2.1.2.1.2

Support for
contextualized
ontologies

NeOn ontologies shall be contextualized, i.e.
their properties depend on the current context Critical

NeOn R&V
NeOn case
studies

2.1.1.3
2.1.1.9

2.1.2.1.2.1
Ontology context
editing

The NeOn editor shall allow to select and edit
ontology context Critical

NeOn R&V
NeOn case
studies 3.2.16.2

2.1.2.1.3
Partial ontology
selection

Partial selection and reuse of ontologies shall
be available Average NeOn R&V

2.1.1.3
3.2.11.1.3

2.1.2.2 NeOn Browser
NeOn shall allow ontology browsing. Might be
integrated with the NeOn editor Critical

NeOn TA

NeOn case
studies 2.1.1.3

3.2.11.1.2

2.1.2.2.1

Networked
ontologies
Visualization

NeOn shall allow to browse and visualize
networks of ontologies Critical

NeOn TA

NeOn case
studies 2.1.1.3

3.2.11.1.2

2.1.2.2.2

Context-dependent
Ontology
visualization

NeOn shall provide contextualized views of
ontologies Critical

NeOn R&V
NeOn case
studies 3.2.16

2.1.2.2.3

Visualization of
changes
in networked
ontologies

NeOn shall provide graphical ways of displaying
changes in networked and shared ontologies Critical NeOn R&V

2.1.1.3
3.2.11.1.7.2

Page 18 of 50 NeOn Integrated Project EU-IST-027595

2.1.2.2.4
Cross-author change
tracking

NeOn shall provide means to represent
ontology lifecycle provenance information, who
and how interacted with a given ontology Average NeOn R&V

2.1.1.3,
2.1.1.13

2.1.2.2.5
Mappings
visualization

Mapping information shall be graphically
displayed Critical NeOn R&V

2.1.1.3
3.2.9

2.1.2.2.6
Briefing on ontology
entities

Information about ontology entities shall be
displayed in a comprehensible way Average

NeOn R&V
NeOn case
studies

2.1.1.3
3.2.11

2.1.2.2.7

Visualization of
dependencies
between networked
ontologies

NeOn shall allow to visualize dependencies, i.e.
connections and alignments between
networked ontologies Average NeOn R&V

2.1.1.3
3.2.11.1.2

2.1.2.2.8
Visualization of
Ontology modules

NeOn shall provide visualization of ontology
modules Average NeOn R&V

2.1.1.3
3.2.3

2.1.2.2.9
Ontology
summarization

NeOn shall display information about properties
of ontologies in a summarized way. Average NeOn R&V

2.1.1.3
2.1.1.8

2.1.2.2.9.1
Ontology
summarization

Summarization shall contain the main
characteristics of the ontologies. Average NeOn R&V

3.2.7
2.1.1.8

2.1.2.2.9.2
Customizable
summarization

NeOn shall allow to customize the parameters
to be summarized Average NeOn R&V

3.2.7
2.1.1.8

2.1.2.2.9.3
Customizable
summarization

Summarization parameters are to be defined,
yet Average NeOn R&V

3.2.7
2.1.1.8

2.1.2.2.10

Briefing on
non-ontological
resources

NeOn shall provide information about non-
ontological resources being used Average NeOn R&V

2.1.1.3
3.2.2.2

2.1.2.3 NeOn GUI
NeOn shall offer a user-friendly GUI to
functionalities and services Critical

NeOn TA

2.1.2.3.1
Customisation
facilities

NeOn shall allow to easily configure the
functionalities available in the NeOn toolkit Average NeOn R&V

2.1.1.3,
2.1.1.9,
3.2.8

2.1.2.3.2
Accessibility to
plugins

Plugin load features shall be accessible to the
user Average NeOn R&V 3.1.1

2.1.2.3.2.1
Plugin
acknowledgement

NeOn shall provide means to inform users of
the different plugins installed. Average NeOn R&V 3.1.1

2.1.2.3.3
GUI support for
NeOn services

NeOn shall provide user interfaces to every
NeOn service Critical NeOn R&V 2.1.1

2.1.2.3.3.1
GUI support for the
annotation service

NeOn shall provide a user interface to the
annotation service Average NeOn R&V 2.1.1.6

2.1.2.3.3.2

GUI support for
 the text mining
service

NeOn shall provide a user interface to the text
mining service Average NeOn R&V 2.1.1.7

2.1.2.3.3.3

GUI support for
reasoning
and inference

NeOn shall provide a user interface to the
reasoning and inference service Average NeOn R&V 2.1.1.10

2.1.2.3.3.3.1
GUI support for
query formulation

NeOn shall provide a user interface to formulate
queries in standard query languages Average NeOn R&V 2.1.1.11

2.1.2.3.3.3.2
GUI support for
question formulation

NeOn shall provide a user interface to formulate
questions Average NeOn R&V 2.1.1.12

2.1.2.3.3.3.3
GUI support for
answer explanation

NeOn shall sensibly explain question answers
in the terms of the formulated question Average NeOn R&V 2.1.1.12

2.1.2.3.3.4

GUI support for the
summarization
service

NeOn shall provide a user interface to the
summarization service Average NeOn R&V

3.2.7
2.1.1.8

D 6.1.1 Requirements on NeOn Architecture Page 19 of 50

2006 © Copyright lies with the respective authors and their institutions.

2.1.2.3.3.5
GUI support for the
context service

NeOn shall provide a user interface to the
context service Average NeOn R&V 2.1.1.9

2.1.2.3.3.6
GUI support for the
provenance service

NeOn shall provide a user interface to the
provenance service Average NeOn R&V

2.1.1.13
3.2.6

2.1.2.3.4

Access management
to information
resources

NeOn shall provide a GUI to show and manage
access rights to resources Average

NeOn R&V
NeOn case
studies

2.1.1.3
3.6.3.1

2.1.2.3.4.1

Access management
to ontological
resources

NeOn shall provide a GUI to show and manage
access permission to ontological resources Average NeOn R&V

2.1.1.3
3.6.3.1.1

2.1.2.3.4.2

Access management
to non-ontological
resources

NeOn shall provide a GUI to show and manage
access permission to non-ontological resources Average NeOn R&V

2.1.1.3
3.6.3.1.1

2.1.2.3.5 Rich client

NeOn shall provide support for rich clients, i.e.
NeOn clients with a large amount of service
logic within Critical

NeOn TA
3.5.1.1

2.1.2.3.6 Thin client

NeOn shall provide support for thin clients, i.e.
NeOn clients with hardly any logic within, like
web clients. Average

NeOn TA
3.5.1.2

Table 2: User interface requirements

3.1.1.3 Hardware requirements

This section specifies the logical characteristics of interfaces between the NeOn architecture and the
hardware components of the system, including configuration characteristics. It also covers such matters

as e.g. what devices are to be supported, how they are to be supported, and protocols. Hardware
requirements gathered so far have been structured in

Table 3. This table will definitely change as the project evolves. Currently, the minimum processor and memory
specifications are provided.

Req # Title Description Importance External traceability

2.1.3.1 Minimum processor Pentium IV 2 GHz or better Critical
NeOn TA

2.1.3.2 Minimum memory 1GB RAM Critical
NeOn TA

Table 3: Hardware requirements

3.1.1.4 Software requirements
The use of additional software products, e.g. data management systems or operating systems, and interfaces with
other applications, e.g. linkage with software libraries, are specified here. As Table 4 shows, NeOn shall be
compatible with the main operating systems in the market, including the popular Microsoft family of windows
systems and the different distributions of the open source alternative operating system, Linux. Additionally, Java
will be the main technology underlying the implementation of NeOn.

Page 20 of 50 NeOn Integrated Project EU-IST-027595

Req # Title Description Importance External traceability

2.1.4.1
Compatibility with
several platforms

The NeOn toolkit shall be compatible with
several platforms Critical

NeOn TA

2.1.4.1.1 Operating Systems
NeOn infrastructure shall be compatible with
several Operating Systems Critical

NeOn TA

2.1.4.1.1.1 Windows XP/2000 family
NeOn infrastructure shall be compatible with
the Windows XP/2000 family Average

NeOn TA

2.1.4.1.1.2 Linux family
NeOn infrastructure shall be compatible with
the Linux family Average

NeOn TA

2.1.4.1.1.3 Mac OS X
NeOn infrastructure shall be compatible with
Mac OS X Average

NeOn TA

2.1.4.1.2 Java Platform
NeOn infrastructure shall run on all Java
1.4.2-compatible JVMs Average

NeOn TA

Table 4: Software requirements

3.1.1.5 Communication interfaces
Table 5 shows two meta-requirements for communication in the NeOn infrastructure. Communication interfaces
are seen under the perspective of the different components which form part of the NeOn platform. Hence, it is
certainly important that NeOn shall offer a service-oriented interface that allows legacy components to be included
with the smallest impact on the rest of the system. This way, the standard interface methods described as part of
the NeOn compatibility and extension policies in section 0 shall be enforced. However, components built from
scratch under the NeOn specification shall rather use more direct, higher performance methods for integration. In
this direction, the NeOn architecture shall offer an API accessible by means of several client interfaces.

Req # Title Description Importance
External
traceability

Internal
traceability

2.1.5.1

Service
oriented
architecture

NeOn shall offer a service oriented
interface in order to ease the inclusion of
new components into any of the three
architecture layers Critical

NeOn TA
2.1.1.19

2.1.5.2
API –based
interface

The NeOn backend will be accessible by
means of several client interfaces, e.g.
Java, .NET. Critical

NeOn TA
2.1.1.5

Table 5: Communication interfaces

3.1.2 Functions of the NeOn architecture

This section contains a list of the major functions that the NeOn architecture shall perform, to be detailed in section
0. Next, we summarize these functions, organized following a classification that groups them in self-contained
categories.

D 6.1.1 Requirements on NeOn Architecture Page 21 of 50

2006 © Copyright lies with the respective authors and their institutions.

Geographically-transparent access to distributed repository: NeOn shall allow access to ontological and non
ontological information pieces transparently from their location.

Support of heterogeneous knowledge: Different types of information sources will be managed by NeOn, which
shall provide the necessary means to include them all into its knowledge model.

Dual language approach: NeOn shall be compliant with the current and future Semantic Web standards.
Additionally, other languages shall be supported as required.

Ontology modularization: Large ontologies, where information tends to be dispersed, shall be properly managed
by means of a modular structure.

Multilinguality support: As pointed out by the NeOn pharmaceutical and fishery case studies, support for
multilingual ontologies shall be provided.

Mapping support: NeOn shall provide means to simplify alignment between entities of two or more globally
inconsistent ontologies.

Support for contextualized ontologies: NeOn shall provide the means to parameterize ontologies with respect
to their different contexts.

Lifecycle support for ontology development: NeOn shall support knowledge acquisition and ontology
development and maintenance throughout their lifecycle, extending standard ontology development facilities to the
networked arena.

Reasoning and inference: The NeOn backend shall provide reasoning capabilities on top of the aggregated
knowledge contained in a network of ontologies.

Query support: Standard ontology query languages like e.g. SPARQL shall be supported by NeOn, allowing the
retrieval of information contained within.

Question formulation: Question formulation facilities shall be built on top of ontology querying that will allow
users to build more complex and expressive questions for information retrieval.

Semantic annotation: NeOn shall incorporate semantic annotation functionalities which will provide information
characterization in terms of the model described in a set of networked ontologies.

 Access management to information resources: Access rights to information resources managed by NeOn
need to be administrated as shown by the case studies

User profiling: NeOn shall accumulate information about user profiles during system interaction and provide a
customized set of functionalities according to the inferred profile.

Ontology summarization: NeOn shall provide users with the means to summarize ontology state and properties.

Provenance support: Ontology traceability shall be kept by automatically storing relevant information like authors
or contributors.

System documentation and help: The different user types of NeOn shall be provided with extensive help and
training materials, including tutorials.

Support for different client types: Rich and thin clients shall be supported by the NeOn architecture, as
described in section 0.

Service access to the NeOn backend: Access to the NeOn backend shall be provided to NeOn clients.

3.1.3 Users characteristics

We have focused the contents of this section under the perspective of the properties that NeOn shall satisfy in
order to allow ontology developers to easily and quickly get acquainted with the system. First of all, each
functionality provided by the system shall be accessible, i.e. the effort required by the user in order to reach them
shall be kept certainly low. This requirement is mainly focused on the NeOn toolkit layer of the architecture but
shall also be supported by the other two layers.

We plan to achieve this goal by following the conclusions of the user study carried out in [5] where a complete and
deep analysis on current ontology engineering tools was made. This user study provided as a result a set of
guidelines for the development of successful, human-ontology interaction compliant tools.

On the other hand, NeOn shall be delivered to the end user as a self-contained software package ready for
installation. We foresee to provide two different types of installation packages, one containing the open source
version of NeOn and a different one for the full fledged commercial version of the software. Both shall be
automatically deployable, and an installation wizard will be provided along.

Page 22 of 50 NeOn Integrated Project EU-IST-027595

3.1.4 Constraints

Herein we describe the factors that shall constrain the development process of the NeOn infrastructure, including
quality assurance criteria. Table 6 contains a detailed collection of these requirements.

Development constraints can be classified under four main categories, also graphically shown in Figure 6:

- Cost estimation: Different methods shall be used that allow evaluating the cost of each component of the
NeOn infrastructure in a preliminary stage, after implementation design.

- Testing: Unit and functional tests shall be used to check the NeOn software.

- Bug tracking and fixing: Continuous bug tracking and fixing shall be carried out during the lifecycle of
NeOn. The necessary infrastructure shall be provided in order to support this effort.

- Software licensing: NeOn or at least part of it shall be licensed as open source software, with the
corresponding license, like e.g. (L)GPL.

Figure 6: Constraints classification

The methods considered for cost estimation include classification of each component implementation complexity.
Values ranging from 1 to 4 will be assigned that quantify this complexity. Additionally, as soon as preliminary
prototypes are ready, estimations of the software complexity in terms of lines of codes (LOC) shall be made.
Finally, when software maturity allows, a port-mortem analysis will be performed that evaluate the accuracy of
predictions by comparing estimated cost with actual cost after implementation.

Tests will be carried out aiming to evaluate two main issues: i) system performance and ii) usability. Performance
tests will be focused in measuring the throughput of the reasoning and inference engine of the NeOn backend in
different situations. In this direction, a benchmark suite shall be built and executed against large, real-world
ontological and non-ontological knowledge repositories. Connectivity shall also be evaluated in order to determine
quality of service in terms of throughput and latency with respect to the number of components as well as external
clients supported by the architecture.

Usability testing shall eventually reproduce the user study conducted in [5] to evaluate NeOn in terms of human-
ontology interaction. The questionnaire created therein will be the perfect tool in order to compare NeOn with the
ontology engineering tools evaluated already. Nevertheless, this kind of user study needs a certain degree of
stability. Until then, other tests can be performed in order to ensure usability satisfaction. These measures include,
but are not limited to, cognitive walkthroughs and interviews with representative user groups throughout the
different stages of the NeOn lifecycle, periodic user observation in order to assess GUI intuitiveness and
acceptance, and questionnaires that shall help to collect early feedback from test users.

Bug tracking infrastructure shall be available both for the members of the NeOn consortium and end users though
different interfaces, focused on the particular needs of each groups of users, will be provided. Apart from the

D 6.1.1 Requirements on NeOn Architecture Page 23 of 50

2006 © Copyright lies with the respective authors and their institutions.

infrastructure, it is also necessary to establish policies for bug fixing. Thus, resources shall be allocated for swift
bug fixing.

Finally, open source versions of NeOn shall be licensed in order to achieve maximal dissemination of the
framework among the community that shall coexist with commercial versions, as introduced in section 3.2.3. Sites
like SourceForge shall be used to distribute open source versions of NeOn.

Req # Title Description Importance
External
traceability

2.4.1 Development process
NeOn components shall be developed following
a predefined design and implementation method Critical

NeOn TA

2.4.1.1
Implementation
design validation

The implementation design shall be checked
against the functional specification of the
component Critical

NeOn TA

2.4.1.2
Implementation
changes

Implementation design of the components shall
be modified according to eventual changes Critical

NeOn TA

2.4.1.3 Cost estimation
The cost of each component shall be estimated
after implementation design Critical

NeOn TA

2.4.1.3.1 Estimation in LOC
Implementation cost shall be measured in terms
of lines of code Critical

NeOn TA

2.4.1.3.2

Predicted cost
versus real cost
analysis

The estimated cost shall be compared against
the actual cost after implementation Critical

NeOn TA

2.4.1.3.2.1
Deviation
analysis Deviation analyses shall be used Critical

NeOn TA

2.4.1.4 Testing
Unit and functional tests shall be used to check
the software Critical

NeOn TA

2.4.1.4.1 Stress testing Stress testing using large, real-world ontologies Critical
NeOn TA

2.4.1.4.2
Inference server
testing

A benchmark suite shall be used to guarantee
performance of the inference server Critical

NeOn TA

2.4.1.4.2.1 Server scalability tests
How many concurrent clients the server can
handle Critical

NeOn TA

2.4.1.4.2.2
Client/server
I/O performance test Throughput and latency Critical

NeOn TA

2.4.1.4.2.3

Reasoning and
inference kernel
performance testing

The inference kernel shall be intensively tested
with large, real-world ontologies Critical

NeOn TA

2.4.1.4.3

Large-scale,
real-world integration
scenarios

Industrial partners shall use NeOn technology in
their commercial products, e.g. Software AG
shall apply it to the EII product using real-world
integration scenarios from several customers Critical

NeOn TA

2.4.1.4.3.1
Transparent use of
non-ontological resources

Transparent use of non-ontological resources
shall be evaluated Critical

NeOn TA

2.4.1.4.3.2
Runtime access to
external data sources

Runtime access to external data sources via
inferencing on integration ontologies Critical

NeOn TA

2.4.1.4.4
Usability and
user-centered tests

Usability and user-centered tests shall be
executed Critical

NeOn TA

Page 24 of 50 NeOn Integrated Project EU-IST-027595

2.4.1.4.4.1

Cognitive walkthroughs
and structured
interviews

Cognitive walkthroughs and structured
interviews with small, focused, representative
user groups throughout the different stages of
NeOn toolkit/methodology design and
development Critical

NeOn TA

2.4.1.4.4.2 User observation
User observation shall asses intuitiveness and
acceptance of user interface features Critical

NeOn TA

2.4.1.4.4.3 Questionnaires
Users shall fill in questionnaires in order to
evaluate their perception on NeOn Critical

NeOn TA

2.4.1.4.4.4
Involvement of
NeOn toolkit

Involvement of NeOn toolkit, methodology and
techniques used by ontology developers in
acquiring and analyzing user-centered test; also
performing usability studies on the developers
themselves Critical

NeOn TA

2.4.1.4.4.5
Involvement of
cross-disciplinary teams

Involvement of cross-disciplinary teams (incl.
Experts on HCI, psychology of programming,
practicing developers, accessibility for less
abled users, etc.) Critical

NeOn TA

2.4.1.5

Infrastructure for
continuous
bug tracking and
fixing

Infrastructure for continuous bug tracking and
bug fixing management Critical

NeOn TA

2.4.1.5.1

Infrastructure for
continuous bug tracking
and fixing for
NeOn partners

Infrastructure for continuous bug tracking and
bug fixing management available for the
consortium. A bug fixing methodology shall
accompany this infrastructure. Critical

NeOn TA

2.4.1.5.2

Infrastructure for
continuous bug tracking
and fixing for the public

Infrastructure for continuous bug tracking and
bug fixing management available for the public
and participating developers Critical

NeOn TA

2.4.1.5.2.2 Bugzilla
Bugzilla shall be used as bug tracking main
infrastructure Critical

NeOn TA

2.4.2 Software licensing

NeOn or at least part of it shall be licensed as
open source software, with the corresponding
license, e.g. (L)GPL. Critical

NeOn TA

2.4.2.1 SourceForge
SourceForge shall be used to distribute the
open source version of NeOn Average

NeOn TA

Table 6: Development constraints

3.2 Specific requirements

D 6.1.1 Requirements on NeOn Architecture Page 25 of 50

2006 © Copyright lies with the respective authors and their institutions.

This section details all the requirements of the NeOn architecture that shall be implemented. These requirements
are aimed towards designers and testers.

3.2.1 External interfaces

This section of the NeOn architecture requirements specification has been focused on how NeOn shall be related
with existing software in order to ease integration of this technology into the NeOn framework. With this aim, we
approach the integration issue from the plugin paradigm. Figure 1 shows how we have classified this kind of
requirements. A complete set of requirements on external interfaces is shown in Table 7. Integration of
components has also been discussed in SEKT project (http://www.sekt-project.org/) and some of the components
developed in the scope of this project will be integrated in the architecture of NeOn. The techniques used in SEKT
will be analysed in order to integrate the different components in the NeOn architecture.

Figure 7: Classification of external interfaces requirements

NeOn shall inherit from Eclipse, on top of which the NeOn infrastructure will be implemented, a simple plugin
mechanism that will allow easy integration of new components. This plugin mechanism will be endowed with
summarization capabilities that will provide information about the plugin properties as required.

On the other hand, consortium members count with a certainly representative sample of Semantic Web and
information integration technology that shall be reused and extended in the context of NeOn. Examples of this
technology are e.g. KAON6, WebODE, Magpie, OntoStudio, OntoBroker, GATE7, or Tamino. Nevertheless, the
use of such technology shall not be enforced but take place as a natural consequence of specific user needs. In
this direction, the NeOn case studies will have a prominent role.

Directly related to section 0, NeOn shall be transparent from the different types of existing ontology stores. Thus,
the main ontology stores shall be supported like e.g. JENA or Sesame. This can be achieved by means of
KPOntology, a software library which abstracts away the underlying ontology store, providing access to the
ontologies contained therein. The distributed repository layer shall use an extension of KPOntology that provides
this functionality in a distributed environment.

6 http://kaon2.semanticweb.org/ (Ontology management tool)
7 http://gate.ac.uk/ (GATE Information extraction library)

http://www.sekt-project.org/

Page 26 of 50 NeOn Integrated Project EU-IST-027595

Req. # Functionality
Requirement
Extracted Description Importance Type

Layer of
architecture

External
Traceability

Internal
Traceability

3.1.1
Plugin
Features Plugin System

NeOn shall be
composed by means
of plugins in order to
allow easy
integration of new
components Critical FR Neon toolkit NeOn TA 3.6.4.2

3.1.1.1
Plugin
Features

Eclipse-based
plugin system

NeOn shall adopt
Eclipse’s plugin
mechanism Critical FR Neon toolkit NeOn TA 2.1.1.3

3.1.1.2
Plugin
Features

Dynamic
plugin load

Plugin installation
shall be a simple
process Critical NFR Neon toolkit NeOn R&V 3.6.4.2

3.1.1.3
Plugin
Features

Plugin
summarization

NeOn shall provide
means to summarize
the functionalities
and characteristics of
plugins Average FR Neon toolkit NeOn R&V 3.6.4.2

3.1.2

Extension of
state-of-the-
art semantic
technology

Re-use and
extension

Re-use and
extension of existing
technology Critical FR System-wide

NeOn TA

3.1.2.1

Extension of
state-of-the-
art semantic
technology WebODE

NeOn shall re-use
and extend WebODE Average FR

Distributed
components NeOn TA

3.1.2.2

Extension of
state-of-the-
art semantic
technology KAON

NeOn shall re-use
and extend KAON Average FR

Distributed
components NeOn TA

3.1.2.3

Extension of
state-of-the-
art semantic
technology Magpie

NeOn shall re-use
and extend Magpie Average FR

Distributed
components

NeOn TA

3.1.2.4

Extension of
state-of-the-
art semantic
technology

OntoBroker
and
OntoStudio

NeOn shall re-use
and extend
Ontobroker and
Ontostudio Average FR

Distributed
components NeOn TA

3.1.2.5

Extension of
state-of-the-
art semantic
technology GATE

NeOn shall re-use
and extend GATE Average FR

Distributed
components NeOn TA

3.1.2.6

Extension of
state-of-the-
art semantic
technology

XML-based
repository

NeOn shall re-use
and extend XML-
based repository
from SAG Average FR

Distributed
repository

NeOn TA

3.1.3

Transparency
from ontology
store

Transparency
from ontology
store

NeOn ontology
repository shall be
transparent from
actual
implementation Critical FR

Distributed
repository

NeOn TA 3.2.1.1
3.2.1.2

3.1.3.1

Transparency
from ontology
store

Adoption of
KPOntology

The distributed
repository layer shall
be partially built as
an extension of the
KPOntology library Average FR

Distributed
repository

NeOn TA 3.2.1.1
3.2.1.2

D 6.1.1 Requirements on NeOn Architecture Page 27 of 50

2006 © Copyright lies with the respective authors and their institutions.

3.1.3.2

Transparency
from ontology
store

NeOn
ontology store
bridging

The NeOn ontology
repository shall be
bridged to a number
of existing
technologies Average FR

Distributed
repository

NeOn TA 3.2.1.1
3.2.1.2

3.1.3.2.1

Transparency
from ontology
store

Bridge to
JENA

JENA shall be
interfaced from the
neon repository Average FR

Distributed
repository

NeOn TA 3.2.1.1
3.2.1.2

3.1.3.2.2

Transparency
from ontology
store

Bridge to
Sesame

Sesame shall be
interfaced from the
neon repository Average FR

Distributed
repository

NeOn TA 3.2.1.1
3.2.1.2

Table 7: External interfaces

3.2.2 Detailed functions of the NeOn architecture

In this section we detail the main functions, introduced in section 0, that the NeOn infrastructure shall perform.
Table 8 shows the complete collection of requirements on the functions of the NeOn architecture.

3.2.2.1 Geographically-transparent access to distributed repository
NeOn shall allow access to ontological and non ontological information pieces transparently from their location.
Load and storage of information resources will be virtualized by the NeOn infrastructure aiming to abstract away
the actual location of these resources. In this direction, the NeOn distributed repository will internally manage the
physical resource where information is actually stored by means of a virtual file system which provides the user
with a unique storage space. Figure 8 provides a high-level description of these statements.

Figure 8: Transparent access to Distributed Repository

Distributed systems like NeOn need to implement optimizations that allow fast recovery of information since it will
usually be geographically dispersed. These optimizations will extend the basic mechanism of information retrieval
in terms of enhanced performance and flexibility. Foreseen optimizations are:

- High availability of information resources: The NeOn distributed repository will automatically
distribute and maintain replicas of information resources among the nodes of the system. This will
allow increasing performance of information retrieval by means of enabling local access to
information.

Page 28 of 50 NeOn Integrated Project EU-IST-027595

- Information caching: Information resources will be cached once they are accessed by the first
time. This will facilitate access to frequently used information. At the same time, it will require
establishing a cache expiration time to dispose of unused cached information.

In both cases, NeOn shall implement a mechanism that ensures replica and cache consistency. Additionally, the
distributed NeOn repository will provide an API to programmatically allow management of the knowledge
resources contained within.

3.2.2.2 Support of heterogeneous knowledge
Four different types of information sources will be managed by NeOn, i.e. unstructured content like e.g. free text,
structured knowledge without clear semantics, formal knowledge i.e. ontologies and data, and data annotations.
In summary, we can classify knowledge as ontological and non-ontological knowledge. As shown in Figure 9,
NeOn shall provide the necessary means to load and store non-ontological resources into the NeOn knowledge
model, including methods that allow conversion from the original format into the NeOn data model. Additionally
NeOn shall provide operational transparency, i.e. operations like e.g. query execution shall be executed
transparently from the particular type of knowledge and information repository.

Figure 9: Support of heterogeneous knowledge

3.2.2.3 Dual language approach
NeOn shall support OWL-based and Rule languages.

3.2.2.4 Ontology modularization
Nowadays, one of the main problems in ontology engineering is to manage large ontologies where information
tends to be dispersed. In such scenarios, consistent updates are certainly complicated as it is not straightforward
to detect which parts of the ontology need to be modified, for example. As a consequence, ontologies tend to grow
chaotically and the model contained within drifts further from the actual domain.

A way to avoid this kind of problems is to use ontology modules, by means of which ontology developers can
decide how to structure their ontologies in self-contained units. NeOn shall support ontology modularization and
provide the means to treat modules as first class citizens in the ontological realm. By extension, developers will
have the means to manage ontologies to the desired module granularity level, i.e. facilities like e.g. ontology load
and store shall also be applicable to ontology modules.

D 6.1.1 Requirements on NeOn Architecture Page 29 of 50

2006 © Copyright lies with the respective authors and their institutions.

3.2.2.5 Multilinguality support
A fundamental feature, shared by the NeOn pharmaceutical and fishery case studies, is support for multilingual
ontologies. It is the key for their respective domains that the models described by these ontologies are available in
a series of different languages. Possible ways to implement multilinguality is by means of contextualized
ontologies.

3.2.2.6 Mapping support
NeOn shall provide means to simplify alignment between entities of two or more globally inconsistent ontologies.
In this direction, as in the case of ontology modules, mappings will be treated as first class ontology citizens (see
Figure 10), with their own lifecycle. This will allow proper manipulation, creation, editing, and deletion of mappings.

On the other hand, ontologies evolve and change, and existing mappings between entities belonging to different
networked ontologies need to be updated. NeOn shall automatically check mapping consistency throughout their
entire lifecycle.

Additionally, mappings can be implicitly present either by means of ontology properties and relations or other
mappings. Treatment of mappings as first class ontology entities, together with reflexive properties, are expected
to allow reasoning on ontology mappings which will allow to bring out this hidden alignment knowledge.

Figure 10: Requirements on mapping support

3.2.2.7 Support for contextualized ontologies
As introduced in previous sections, context support in networked ontologies is especially critical for NeOn. We
define context as the set of all circumstances, properties, and facts within which the ontology has the desired
semantics. Thus, (networked) ontologies are dependent on the context in which they are built or in which they are
used. Additionally, different contexts can be valid for a particular ontology and all of them must be available when
necessary. As a consequence, NeOn will provide the means to parameterize ontologies with respect to its different
contexts.

3.2.2.8 Lifecycle support for ontology development
The main goal of NeOn is to support knowledge acquisition and ontology development and maintenance
throughout their lifecycle, extending standard ontology development facilities to the arena of networked
knowledge, where networking appeals both to the physical distribution of the available resources and to the
connections between the entities of different ontologies. Figure 11 summarizes these functions.

Page 30 of 50 NeOn Integrated Project EU-IST-027595

Figure 11: Functions for ontology development

The main functions that need to be supported are the following:

- Networked ontology editing and building: NeOn will extend the creation and editing of
ontologies to the networked case. This task shall be assisted by means of consistency checkers
and reasoners scaled to a network of ontologies.

- Browsing and visualization of networked ontologies: NeOn will extend ontology browsing
and visualization to the case where several ontologies are semantically connected, creating a
knowledge network.

- Ontology selection and reuse: NeOn will allow selection and reuse of ontologies and ontology
entities from a network of ontologies.

- Modularization in networked ontologies: NeOn will support the creation and maintenance of
trans-ontological modules, i.e. ontology modules built with parts of different ontologies
simultaneously.

Additionally, NeOn shall support collaborative ontology development by means of adopting the CVS metaphor for
collaborative work on shared ontological resources. This includes the following functions:

- Synchronization of ontology concurrent updates: In a networked, collaborative environment,
concurrent updates of shared information are a very real possibility. In such cases, the necessary
means to synchronize changes must be provided. CVS-like techniques will be implemented that
allow committing changes safely.

- Consistency checking for ontology concurrent updates: Safe commitment of ontology
updates needs prior detection of conflicts between concurrent changes. Inconsistencies can also
appear between the updated portion of the ontology and the rest of the knowledge contained
within. Both need to be detected and, when possible, remedial actions shall be automatically
applied.

- Ontology versioning: The CVS metaphor shall be supported for collaborative ontology
development.

Finally, ontology changes shall be propagated across the network of ontologies with which a particular ontology is
connected. For consistency reasons, it might be impractical to automatically update dependent ontologies but the
change can be evaluated and reported to the ontology developer by means of the corresponding GUI (see section
0).

D 6.1.1 Requirements on NeOn Architecture Page 31 of 50

2006 © Copyright lies with the respective authors and their institutions.

3.2.2.9 Reasoning and inference
The NeOn backend shall provide reasoning capabilities on top of the aggregated knowledge contained in a
network of ontologies. Regardless of ontology distribution, inference will take place on a common knowledge
meta-model. Thus, it is necessary to ensure consistency of the ontologies and data to be reasoned upon. A nice
optimization would be to allow the encapsulation of the knowledge participating in the reasoning process, avoiding
executing it against all the knowledge held by the system.

3.2.2.10 Query support
Standard ontology query languages like e.g. SPARQL shall be supported by NeOn, allowing the retrieval of
information contained within.

3.2.2.11 Question formulation
Question formulation functionality shall be built on top of ontology querying that will allow users to build more
complex and expressive questions for information retrieval. Natural language questions shall be supported that
after automatic translation into the corresponding ontology query standard will be submitted to the query service
and run against the information contained in the system.

Usually, this kind of interfaces show a gap between what the user tried to express in the form of a free text
question and the information retrieved by the system as the answer to this question. Thus, it is necessary to
explain the results obtained in terms of the question helping the user understand the result set.

3.2.2.12 Semantic annotation
NeOn shall incorporate semantic annotation functionalities (see Figure 12), which will provide information
characterization in terms of the model described in a set of networked ontologies. The different types of knowledge
sources available in NeOn apart from ontological knowledge, i.e. unstructured knowledge like e.g. free text, and
structured, non-semantic knowledge like e.g. an XML store, will be subject of semantic annotation. Different
annotation techniques shall be provided, including data and text mining.

Figure 12: Semantic annotation functionalities

3.2.2.13 Access management to information resources
Access rights to information resources managed by NeOn need to be administrated. Case studies have shown
that not all kinds of users can have access to all types of information. For example, a particular ontology describing

Page 32 of 50 NeOn Integrated Project EU-IST-027595

an invoice model must remain stable unless a change in the law or the business dynamics requires it to be
updated. Hence, the capability to see, modify, or delete complete or parts of ontologies shall be constrained by the
author.

3.2.2.14 User profiling
NeOn shall accumulate information about user profiles during system interaction and provide a customized set of
functionalities according to the inferred profile.

3.2.2.15 Ontology summarization
NeOn shall provide users with the means to summarize ontology state and properties.

3.2.2.16 Provenance support
Ontology characteristics and state provided by the functionality described in section 0 are closely related to
ontology provenance information. Ontology traceability shall be kept by automatically storing relevant information
like authors or contributors, as well as versioning information. This information will be reported to ontology
developers by means of the corresponding GUI.

3.2.2.17 System documentation and help
The different user types of NeOn shall be provided with extensive help and training materials, including tutorials,
which will allow improving understanding of the system, either by means of providing information that solves
specific problems or by helping the novice ontology developer get acquainted with the system. A help subsystem
shall be built that provides contextualized help, in terms of the materials available in each situation and the
particular user profile.

3.2.2.18 Support for different client types
Rich and thin clients will be supported by the NeOn architecture, as described in section 0.

3.2.2.19 Service access to the NeOn backend
Access to the NeOn backend shall be provided both to rich and thin clients. A programmatic Java API will be
provided to rich clients while a socket-based interface will be available for thin clients.

Req. # Functionality
Requirement
Extracted Description Imp. Type

Layer of
architecture

External
Traceability

Internal
Traceability

3.2.1

Access to
distributed
repository

Transparent
access to
information
resources

NeOn shall allow
access to
ontological and non
ontological
information pieces
transparently from
their location Critical FR

Distributed
repository

NeOn TA
2.1.1.1

3.2.1.1

Access to
distributed
repository

Distributed
Repository
access API

NeOn distributed
repository API shall
provide access to
knowledge
contained in the
repository Critical FR

Distributed
repository NeOn TA

2.1.1.1

3.2.1.2

Transparent
access to
distributed
repository

Resource
transparent
storage

NeOn shall provide
transparent access
to resource
storage. The NeOn
Distributed
Repository shall
internally manage
the physical
location where the
resource is actually
stored. Critical NFR

Distributed
repository NeOn R&V 2.1.1.1

D 6.1.1 Requirements on NeOn Architecture Page 33 of 50

2006 © Copyright lies with the respective authors and their institutions.

3.2.1.3

Transparent
access to
distributed
repository

Resource
transparent
load

NeOn shall provide
a virtual file system
which abstracts
away the actual
resource location,
offering a virtual
unique storage
space Critical NFR

Distributed
repository NeOn R&V 2.1.1.1

3.2.1.4

Access to
distributed
repository

Optimized
information
retrieval

NeOn shall
implement
optimizations to the
basic mechanism
of information
retrieval that allow
to increase
performance and
flexibility Average FR

Distributed
repository

NeOn TA
2.1.1.1

3.2.1.4.1

Access to
distributed
repository

High availability
of information
resources

The NeOn
architecture shall
automatically
distribute replicas
of information
resources to
facilitate local
access to
information. Average FR

Distributed
repository

NeOn TA
2.1.1.1

3.2.1.4.1.1

Access to
distributed
repository

Consistency
maintenance of
replicas

NeOn shall
implement a device
to ensure
consistency of
distributed replicas Average FR

Distributed
repository

NeOn TA
2.1.1.1

3.2.1.4.1

Access to
distributed
repository Caching

The NeOn
architecture shall
implement a
caching
mechanism to
improve
performance Average FR

Distributed
repository

NeOn TA
2.1.1.1

3.2.2

Support of
heterogeneous
knowledge

Access to the
different kinds
of knowledge

NeOn shall provide
access to the main
four different kinds
of information i.e.
unstructured
content, structure
knowledge without
a clear semantics,
formal knowledge
(ontologies and
data), and
semantic
annotations Critical FR

Distributed
repository

NeOn TA
2.1.1.5

3.2.2.1

Support of
heterogeneous
knowledge

Operational
transparency

Operations, like the
query execution
mechanism of
NeOn, shall be
transparent from
the kind of
information and
repository Critical NFR

Distributed
components NeOn TA

2.1.1.5

3.2.2.2

Reuse of
legacy non-
ontological
resources

Load non-
ontological
resources

NeOn shall provide
facilities to load
non-ontological
resources in the
NeOn knowledge
model Critical FR

Distributed
components
Distributed
repository

NeOn R&V
NeOn case
studies 2.1.1.5

3.2.2.2.1

Reuse of non-
ontological
resources

Converting non-
ontological
resources

NeOn shall provide
the appropriate
conversion Critical FR

Distributed
components NeOn R&V 2.1.1.5

Page 34 of 50 NeOn Integrated Project EU-IST-027595

methods between
the non-ontological
resources and the
specifics of the
NeOn data model

3.2.2.3

Reuse of non-
ontological
resources

Store non-
ontological
resources

NeOn shall provide
facilities to store
non-ontological
resources in the
NeOn knowledge
model Critical FR

Distributed
components NeOn R&V 2.1.1.5

3.2.2.4

Reuse of
existing
ontological
resources

Load
ontological
resources

NeOn shall provide
facilities to load
ontological
resources in the
NeOn knowledge
model Critical FR

Distributed
components NeOn R&V 2.1.1.5

3.2.2.5

Reuse of
ontological
resources

Store
ontological
resources

NeOn shall provide
facilities to store
ontological
resources in the
NeOn knowledge
model Critical FR

Distributed
components NeOn R&V 2.1.1.5

3.2.3
Ontology
modularization

Management of
ontology
modularization

NeOn shall allow to
structure ontologies
using modules Critical FR

Distributed
components

NeOn
architecture
partners
NeOn case
studies

3.2.3.1
Ontology
modularization

Treatment of
ontology
modules as first
class citizens

NeOn shall allow
users to manage
ontologies to the
module granularity
level, i.e. ontology
facilities like
ontology load and
store, shall be
applicable to
ontology modules,
too. Critical FR NeOn toolkit

NeOn
architecture
partners

3.2.4
Semantic
annotation

Semantic
annotation

NeOn shall allow to
annotate
information sources Critical FR

Distributed
components

NeOn TA

NeOn case
studies 2.1.1.6,

2.1.1.5

3.2.4.1
Data
annotation

Semantic
Annotation of
unstructured
knowledge

NeOn shall allow to
annotate
unstructured
content, e.g. text Critical FR

Distributed
components

NeOn TA 2.1.1.6,
2.1.1.5

3.2.4.2
Data
annotation

Semantic
Annotation of
non-formal
structured
knowledge

NeOn shall allow to
annotate structured
knowledge without
clear semantics,
e.g. database and
XML repositories Critical FR

Distributed
components

NeOn TA 2.1.1.6,
2.1.1.5

3.2.4.3 Text mining Text mining
NeOn shall support
text mining Average FR

Distributed
components NeOn TA

2.1.1.7

3.2.5

Access to
Distributed
Components

Middleware
layer accessible
by an API

The middleware
layer API shall
provide
programmatic
access to the
NeOn distributed
components Critical FR

Distributed
components

NeOn TA
2.1.1.4

3.2.6
Provenance
Support

Ontology
provenance
service

NeOn shall keep
ontology
traceability by
automatically
storing relevant Average FR

Distributed
components NeOn R&V 2.1.1.13

D 6.1.1 Requirements on NeOn Architecture Page 35 of 50

2006 © Copyright lies with the respective authors and their institutions.

information like
authors or
contributors, as
well as timeline and
versions

3.2.7 Summarization
Ontology
briefing

NeOn shall provide
users with the
means to
summarize the
state and
characteristics of
the ontology Average FR

Distributed
components NeOn R&V 2.1.1.8

3.2.8 User profiling User profiling

NeOn shall
accumulate
information about
user profiles during
system interaction
and provide a
customized set of
functionalities
according to that
profile Average FR

Distributed
components

NeOn R&V
NeOn case
studies

2.1.1.3,
2.1.1.13

3.2.9
Mapping
support

Mapping
capabilities

NeOn shall provide
techniques for
simplifying the
mapping process
between entities of
two or more
ontologies that are
globally
inconsistent Critical FR

Distributed
components

NeOn TA
NeOn case
studies 2.1.1.2

3.2.9.1
Mapping
support

Treatment of
mappings as
first class
citizens

NeOn shall provide
means to treat
mappings as
ontological entities
themselves, with
their own lifecycle,
in order to allow
easy manipulation,
creation, editing,
and deletion. Critical FR

Distributed
components NeOn R&V

3.2.9.2
Mapping
support

Mapping
consistency
checking

NeOn shall
automatically check
the consistency of
mappings
throughout their
lifecycle Critical FR

Distributed
components NeOn R&V

3.2.9.3
Mapping
support

Discovery of
implicit
mappings

NeOn shall have
reflexive
capabilities which
allow reasoning on
ontology mappings
with the aim of
checking them as
well as inferring
and automatically
applying new
mappings Critical FR

Distributed
components NeOn R&V 2.1.1.10

3.2.10

Extended
support for
ontology
relations

Extended
support for
ontology
relations

NeOn shall provide
the means to
improve acquisition
of relations Critical FR

Distributed
components

NeOn TA

3.2.10.1

Extended
support for
ontology
relations

Multiple
inheritance
relations

NeOn shall support
multiple inheritance
relations Average FR

Distributed
components NeOn TA

3.2.10.2

Extended
support for
ontology

Complex slot
compositions

NeOn shall support
multi slot
composition Average FR

Distributed
components

NeOn TA

Page 36 of 50 NeOn Integrated Project EU-IST-027595

relations

3.2.11

Lifecycle
support for
ontology
development

Knowledge
Acquisition

NeOn shall support
knowledge
acquisition and
ontology
development Critical FR

NeOn toolkit
Distributed
components

NeOn case
studies

2.1.1.1,
2.1.1.2,
2.1.1.3,
2.1.1.4

3.2.11.1

Lifecycle
support for
ontology
development

Extended
ontology
support to the
networked
paradigm

NeOn shall extend
standard ontology
development
facilities to the
distributed,
networked case Critical FR

NeOn toolkit
Distributed
components NeOn R&V

3.2.11.1.1

Lifecycle
support for
ontology
development

Networked
Ontology
editing and
building

NeOn shall extend
ontology creation
and editing to the
networked case Critical FR

NeOn toolkit
Distributed
components NeOn R&V

3.2.11.1.1.1

Lifecycle
support for
ontology
development

Ontology
checking and
consistency

NeOn shall assist
the ontology editing
and building
process by
providing users
with consistency
checkers and
reasoners Average FR

Distributed
components NeOn R&V

3.2.11.1.2

Lifecycle
support for
ontology
development

Browsing and
visualization of
networked
ontologies

NeOn shall extend
ontology browsing
and visualization to
the networked case Critical FR

NeOn toolkit
Distributed
components NeOn R&V

3.2.11.1.3

Lifecycle
support for
ontology
development

Ontology
selection and
reuse

NeOn shall provide
the means to
access one or
several ontology
repositories for
ontology selection.
Then, the selected
ontology/ies will be
imported by means
of the ontology
load functionality Critical FR

NeOn toolkit
Distributed
repository NeOn R&V

3.2.11.1.4

Lifecycle
support for
ontology
development

Selection and
reuse of
networked
ontologies

NeOn shall allow to
select and reuse
ontologies and
ontology entities
from a network of
ontologies Critical FR

NeOn toolkit
Distributed
components NeOn R&V

3.2.11.1.5

Lifecycle
support for
ontology
development

Modularization
in networked
ontologies

NeOn shall allow to
create and
maintain trans-
ontological
modules Critical FR

NeOn toolkit
Distributed
components NeOn R&V

3.2.11.1.6

Lifecycle
support for
ontology
development

Mappings
across
networked
ontologies

Mappings are
inherent to the
concept of ontology
networking. NeOn
shall provide the
means to support
them. Critical FR

Distributed
components NeOn R&V

3.2.11.1.7

Ontology
collaborative
development

Ontology
collaborative
development

NeOn shall allow
collaborative
ontology
development Critical FR

NeOn toolkit
Distributed
components

NeOn TA

3.2.11.1.7.1

Ontology
collaborative
development

Adoption of
CVS
development
model

NeOn shall adopt
the CVS metaphor
for collaborative
work on shared
ontological
resources Critical FR

NeOn toolkit
Distributed
repository

NeOn TA

D 6.1.1 Requirements on NeOn Architecture Page 37 of 50

2006 © Copyright lies with the respective authors and their institutions.

3.2.11.1.7.1.1

Ontology
collaborative
development

Synchronization
of ontology
concurrent
updates

NeOn shall allow
synchronization of
ontologies edited
by multiple users Critical FR

Distributed
repository NeOn TA

3.2.11.1.7.1.2

Ontology
collaborative
development

Consistency
checking for
ontology
concurrent
updates

NeOn shall provide
the means to
detect the
introduction of
inconsistencies
when a shared
ontology is
updated. In such
case remedial
actions should be
automatically taken
(when possible)
and affected users
notified Critical FR

Distributed
components
Distributed
repository NeOn R&V

3.2.11.1.7.1.3

Ontology
collaborative
development

Ontology
versioning

NeOn shall provide
support for
ontology versioning
based on the CVS
metaphor Critical FR

NeOn toolkit
Distributed
repository NeOn R&V

3.2.11.1.7.1.3.1

Ontology
collaborative
development

Global
awareness of
local ontology
versioning

NeOn shall ease
the adoption of
new versions of an
ontology in an
already existing
network of
ontologies Average FR

NeOn toolkit
Distributed
repository NeOn R&V

3.2.11.1.7.2

Ontology
collaborative
development

Change
propagation in
a ontology
network

NeOn shall
automatically
propagate updates
in a particular
ontology
throughout the
network of
interrelated
ontologies Average FR

Distributed
components
Distributed
repository NeOn R&V

3.2.11.1.7.2.1

Ontology
collaborative
development

Ontology
network
consistency
maintenance

NeOn shall
maintain partial and
local consistency
among a network
of ontologies Critical FR

Distributed
components
Distributed
repository

NeOn TA

3.2.12
Reasoning &
Inferencing

Reasoning with
networked
ontologies

The NeOn backend
shall support
reasoning
capabilities using
the aggregated
knowledge
contained in a set
of networked
ontologies Critical FR

Distributed
components

NeOn TA
2.1.1.10

3.2.12.1
Reasoning &
Inferencing

Unique data
model for
modelling and
reasoning
infrastructure

NeOn reasoning
and inference
operates on the
same data model
as the NeOn
knowledge
formation Critical NFR

Distributed
components

NeOn TA

3.2.12.2
Reasoning &
Inferencing

Reasoning with
up-to-date data

NeOn shall ensure
ontology and data
are consistent for
reasoning and
inference Critical NFR

Distributed
components

NeOn TA

3.2.13 Query support Query support

NeOn shall provide
the means, e.g. by
supporting
standard query Critical FR

Distributed
components NeOn R&V 2.1.1.11

Page 38 of 50 NeOn Integrated Project EU-IST-027595

languages, to
query the
information
contained within

3.2.14
Question
formulation

Question
formulation

NeOn shall provide
the means that
allow users to
express queries
naturally, e.g. by
free test questions Average FR NeOn toolkit NeOn R&V 2.1.1.12

3.2.14.1
Question
formulation

Answer
Explanation

NeOn shall explain
the results upon
question answering
in the terms of the
formulated
question Critical FR

Distributed
components NeOn R&V 2.1.1.12

3.2.15
Multilinguality
Support Multilinguality

NeOn shall support
multilingual
ontologies Critical FR

Distributed
components NeOn R&V

3.2.16

Support for
contextualized
ontologies

Context support
in networked
ontologies

Ontologies are
dependent on the
context in which
they are built or in
which they are
used. NeOn shall
support context in
networked
ontologies Critical FR

Distributed
components

NeOn R&V
NeOn case
studies

3.2.16.1

Support for
contextualized
ontologies

Multi-context
ontologies

Different contexts
shall be applied to
networked
ontologies Critical FR

Distributed
components

NeOn R&V
NeOn case
studies

3.2.16.2

Support for
contextualized
ontologies

Support for
ontology
context
parameters

NeOn shall provide
means to
parameterize
ontologies with
respect to a given
context Critical FR

Distributed
components

NeOn R&V
NeOn case
studies

Table 8: Functions provided by the NeOn infrastructure

3.2.3 Performance requirements

This section contains a number of factors that need to be taken into account in order to maximize performance
during the execution of the functionalities provided by NeOn. Additionally, the key aspects where performance is
required are highlighted. Figure 13 shows these factors and aspects.

D 6.1.1 Requirements on NeOn Architecture Page 39 of 50

2006 © Copyright lies with the respective authors and their institutions.

Figure 13: Performance factors and application contexts

Performance is closely related to scalability. If a distributed system like NeOn is not scalable, then, there is a high
probability, it will not be meeting performance targets either. There are three different ways in which NeOn shall be
scalable. Nevertheless, there is a limit up to which a distributed system can be scaled. Above that limit,
performance decreases.

- Load scalability: NeOn shall allow expansion and contraction of its resource pool without
performance decrease. This applies both to ontological and non-ontological resources.

- Geographic scalability: NeOn shall maintain usefulness and performance regardless of how
apart its resources and components are located.

- Administrative scalability: NeOn shall allow increasing concurrent access without performance
loss.

Additionally, performance shall not suffer from the heterogeneity of the knowledge resources maintained by NeOn.
It shall remain homogenous with respect to the nature of this knowledge, either unstructured, structured, or formal.
Operational transparency regarding the sources implied in the execution of a NeOn service shall be observed in
such way that performance be independent from them.

We have identified a number of circumstances where performance is certainly a critical requirement:

- Load and storage of ontological and non-ontological resources shall be timely and efficient.

- Ontology browsing and visualization: NeOn visualization techniques shall guarantee quick
access to the required ontology elements and easily browse taxonomy and data. By extension,
this also applies to networked ontologies.

The execution of NeOn services shall also comply with the following properties:

- Liveliness: NeOn services and functions shall guarantee that results of execution are returned in
a limited amount of time.

- Progress awareness: NeOn GUIs shall keep users informed of the current state of service
execution.

Req. # Functionality
Requirement
Extracted Description Importance Type

Layer of
architecture

Internal
Traceability

3.3.1

Access to
distributed
Information
repositories Scalability

NeOn shall be
scalable Critical NFR

Distributed repository
Distributed components

3.2.1
3.4.1.1

Page 40 of 50 NeOn Integrated Project EU-IST-027595

3.3.1.1

Access to
distributed
Information
repositories Load scalability

NeOn shall allow
to expand and
contract its
resource pool with
no performance
decrease Critical NFR Distributed repository

3.2.1
3.4.1.1

3.3.1.1.1

Access to
distributed
Information
repositories

Load scalability
for
non-ontological
resources

NeOn shall allow
to expand and
contract its pool of
non formal
resources with no
performance
decrease Critical NFR Distributed repository

3.2.1
3.4.1.1

3.3.1.1.2

Access to
distributed
Information
repositories

Load scalability
for
ontological
resources

NeOn shall allow
to expand and
contract its
ontology pool with
no performance
decrease Critical NFR Distributed repository

3.2.1
3.4.1.1

3.3.1.2

Access to
distributed
Information
repositories

Geographic
scalability

NeOn shall
maintain
usefulness and
performance,
regardless how
apart its
resources and
components are Critical NFR

Distributed repository
Distributed components

3.2.1
3.4.1.1

3.3.1.3

Access to
distributed
Information
repositories

Administrative
scalability

NeOn shall allow
increasing
concurrent access
without
performance loss Critical NFR Distributed repository

3.2.1
3.4.1.1

3.3.1.4

Access to
distributed
Information
repositories

Scalability
limitations

There is a limit up
to which we can
scale a distributed
system, and
above that the
performance of
the system
degrades

Critical NFR
Distributed repository
Distributed components

3.2.1
3.4.1.1

3.3.2

Support of
heterogeneous
knowledge

Performant
access
to
heterogeneous
knowledge

Performance of
access to
knowledge
repository shall be
homogenous
regardless the
nature of this
knowledge, i.e.
unstructured,
structured, or
formal Average NFR

Distributed repository
Distributed components

3.2.2
3.4.1.2

3.3.2.1

Support of
heterogeneous
knowledge

Performant
operational
transparency

Operational
transparency shall
not imply
performance loss Average NFR

Distributed repository
Distributed components

3.2.2.1
3.4.1.2

3.2.2.2

Reuse of
ontological
Resources

Efficient reuse
of existing
ontological
resources

NeOn shall
provide efficient
support for reuse
of existing
ontological
resources Critical NFR

Distributed repository
Distributed component

3.2.2.4
3.4.1.2.1

D 6.1.1 Requirements on NeOn Architecture Page 41 of 50

2006 © Copyright lies with the respective authors and their institutions.

3.3.2.2.1

Reuse of
ontological
Resources

Performant
load of
ontological
resources

Loading
ontological
resources into the
NeOn knowledge
model shall be
timely and
efficient Critical NFR

Distributed repository
Distributed component

3.2.2.4
3.4.1.2.1

3.3.2.2.1

Reuse of
ontological
Resources

Performant
storage of
ontological
resources

Storing updated
ontological
resources in the
repository shall be
timely and
efficient Critical NFR Distributed repository

3.2.2.5
3.4.1.2.1

3.2.2.3

Reuse of
non-
ontological
resources

Efficient reuse
of
existing
non-ontological
resources

NeOn shall
provide efficient
support for reuse
of existing non-
ontological
resources Critical NFR

Distributed repository
Distributed component

3.2.2.2
3.4.1.2.2

3.3.2.3.1

Reuse of
non-
ontological
resources

Performant
load of
non-ontological
resources

Loading non-
ontological
resources into the
NeOn knowledge
model shall be
timely and
efficient Critical NFR

Distributed repository
Distributed component

3.2.2.2
3.4.1.2.2

3.3.2.3.1

Reuse of
non-
ontological
resources

Performant
storage of
ontological
resources

Storing updated
non-ontological
resources in their
native repository
shall be timely
and efficient Critical NFR Distributed repository

3.2.2.3
3.4.1.2.2

3.3.3

Execution of
NeOn services
and
functionalities Liveliness

All NeOn services
and functions
shall guarantee
that execution
results are
returned in a
limited amount of
time Critical NFR Distributed components

3.3.3.1

Execution of
NeOn services
and
functionalities

Progress
user-awareness

NeOn shall keep
users informed of
service execution
progress Average NFR NeOn toolkit

3.3.4 Visualization

Fluent ontology
browsing and
visualization

NeOn
visualization
techniques shall
guarantee quick
access to the
required ontology
elements and
easily browse
ontology
taxonomy and
data Critical NFR NeOn toolkit

3.3.4.1 Visualization

Fluent
networked
ontology
browsing and
visualization

NeOn visualization
techniques shall
guarantee quick
access to the
required ontology
elements and easily
browse networked
ontologies taxonomy
and data Critical NFR NeOn toolkit

Table 9: Performance requirements

Page 42 of 50 NeOn Integrated Project EU-IST-027595

3.2.4 Logical database requirements

Next, requirements on the information repositories maintained by NeOn are described. The whole list of
requirements is contained in Table 1. NeOn information repositories will be distributed and heterogeneous.
Accordingly with section 0, ontological repository stores like e.g. JENA, Sesame, OWLIM, and Kowari shall
be supported by NeOn. Additionally NeOn shall manage information contained in other information
repositories. The most representative of these non-ontological information repositories are relational
databases. NeOn shall support widespread database systems like Oracle, MySQL, and Postgres. Special
interesting would be to manage XML information repositories built on top of SAG’s Tamino.

Req. # Functionality
Requirement
Extracted Description Importance Type

Layer of
architecture

Internal
Traceability

3.4.1
Information
repositories

Information
repositories

NeOn shall
manage and run
on information
repositories Critical FR

Distributed repository

2.1.1.1
2.1.1.5
2.1.2.3.4

3.4.1.1
Distributed
repositories

Distributed
Information
repositories

Information
repositories shall
be geographically
distributed Critical FR

Distributed repository

2.1.1.1
3.2.1

3.4.1.2

Heterogeneous
knowledge
sources

Heterogeneous
knowledge
sources

NeOn shall
manage
heterogeneous
knowledge
sources Critical FR

Distributed repository

2.1.1.5
3.2.2

3.4.1.2.1
Ontological
repositories

Ontological
repositories

NeOn shall
manage formal
knowledge in the
form of ontologies Critical FR

Distributed repository

2.1.1.5
2.1.2.3.4.1
3.5.1.5.1
3.5.1.5.2

3.4.1.2.1.1
Ontological
repositories

Ontological
repository
stores

NeOn shall
support
widespread
ontology store,
e.g. JENA,
Sesame, OWLIM,
Kowari Critical FR

Distributed repository

2.1.1.5
3.1.3.2

3.4.1.2.2

Non-
ontological
repositories

Non-
ontological
repositories

NeOn shall
manage non-
formal, legacy
information
sources Critical FR

Distributed repository

2.1.1.5
2.1.2.3.4.2

3.4.1.2.2.1

Non-
ontological
repositories Free text

NeOn shall
support free text
information
sources Critical FR

Distributed repository

2.1.1.5

D 6.1.1 Requirements on NeOn Architecture Page 43 of 50

2006 © Copyright lies with the respective authors and their institutions.

3.4.1.2.2.2

Non-
ontological
repositories

Structured
knowledge

NeOn shall
support structured
knowledge with no
clear semantics Critical FR

Distributed repository

2.1.1.5

3.4.1.2.2.2.1

Non-
ontological
repositories

XML
knowledge

NeOn shall
support Software
AG XML
information
repository Average FR

Distributed repository

2.1.1.5
3.1.2.6

3.4.1.2.2.2.1

Non-
ontological
repositories

Relational
databases

NeOn shall
support
widespread
database
systems, e.g.
Oracle, MySQL,
Postgres Average FR

Distributed repository

Table 10: Logical database requirements

3.2.5 Standards compliance

NeOn shall be compliant with the current and future Semantic Web standards. Table 11 details the complete set
of architecture requirements focused on compliance with standards.

Several types of clients based on a number of technologies shall be integrated with NeOn. As advanced in section
0, the NeOn backend will provide an API-based interface to rich clients and a socket-based interface to thin
clients. The API-based interface shall support Java clients like e.g. JSP and also COM clients like e.g. ASP, .NET,
and VB.

As shown in Figure 4, OWL and Rule languages coexist in the Semantic Web arena. Thus, NeOn, as the next
generation ontology framework, will take a dual language approach and support both trends, allowing users to
exploit the properties of their respective paradigms conveniently. Additionally, other languages shall be supported
as required.

Finally, SPARQL shall be adopted as standard query language.

Req. # Functionality
Requirement
Extracted Description Importance Type

Layer of
architecture

External
Traceability

Internal
Traceability

3.5.1.1

Service
access to the
NeOn
backend

Java-based
interface to
NeOn
backend

The NeOn
backend shall
provide a
Java-based
interface to
rich clients Critical FR

Distributed
components NeOn TA

2.1.1.15

3.5.1.2

Service
access to the
NeOn
backend

Socket-based
interface to
NeOn
backend

The NeOn
backend shall
provide a
socket-based
interface to
thin clients Average FR

Distributed
components NeOn TA

2.1.1.15

3.5.1.3 Client support
Client
support

Several types
of clients shall
connect to the
NeOn
backend by
means of the
above-
mentioned
interfaces Critical FR Neon toolkit

NeOn TA 3.5.1.1
3.5.1.2

3.5.1.3.1 Client support
Support of
Java Clients Java clients Average FR

Distributed
components NeOn TA 3.5.1.1

3.5.1.2

Page 44 of 50 NeOn Integrated Project EU-IST-027595

3.5.1.3.1.1 Client support JSP client JSP clients Average FR
Distributed
components NeOn TA 3.5.1.1

3.5.1.2

3.5.1.3.2 Client support
Support of
COM Clients COM clients Average FR

Distributed
components NeOn TA 3.5.1.1

3.5.1.2

3.5.1.3.2.1 Client support ASP client ASP clients Average FR
Distributed
components

NeOn TA 3.5.1.1
3.5.1.2

3.5.1.3.2.2 Client support .NET client .NET clients Average FR
Distributed
components NeOn TA 3.5.1.1

3.5.1.2

3.5.1.3.2.3 Client support
Visual Basic
client

Visual Basic
clients Average FR

Distributed
components

NeOn TA 3.5.1.1
3.5.1.2

3.5.1.3.3 Client support
Support other
kind of clients

Support other
kind of clients Average FR

Distributed
components

NeOn TA 3.5.1.1
3.5.1.2

3.5.1.4

Support for
common
ontology
query
languages

Support for
common
ontology
query
languages

Query
language
standards
shall be
supported by
the NeOn
query service Critical FR

Distributed
components NeOn R&V 3.2.18

3.5.1.4.1

Support for
common
ontology
query
languages

Support for
common
ontology
query
languages

SPARQL shall
be supported
by the NeOn
query service Critical FR

Distributed
repository NeOn R&V 3.2.18

3.5.1.5

Dual
language
approach

Semantic
Web
Standards

A family of
Semantic
Web
Standards
shall be used
as formal
representation
languages Critical FR

Distributed
repository NeOn TA 2.1.1.16

3.5.1.5.1

Dual
language
approach OWL support

Several OWL
flavours Average FR

Distributed
repository

NeOn
architecture
partners 2.1.1.16

3.5.1.5.2

Dual
language
approach

Support for
rule-based
languages,
e.g. FLogic,
DL

Other
languages
shall be used Average FR

Distributed
repository NeOn TA 2.1.1.16

Table 11: Standards compliance

3.2.6 Software system attributes

Some characteristics that the NeOn architecture shall meet can be included as non-functional requriements in the
specification. These requirements include properties like reliability and security.

D 6.1.1 Requirements on NeOn Architecture Page 45 of 50

2006 © Copyright lies with the respective authors and their institutions.

3.2.6.1 Reliability

Reliability requirements have focused on system availability, including resource and service availability. Since
NeOn is a distributed system, special concern deserves fault tolerance issues. Both in the case of resource and
service availability, NeOn shall guarantee normal access to the overall system in case some problem occurs in a
determined node. Table 12 shows complete information on reliability requirements.

Req # Functionality
Requirement
Extracted Description Importance Type

Layer of
architecture

External
Traceability

Internal
Traceability

3.6.1.1
System
availability

System
availability

NeOn shall
guarantee system
availability Critical NFR

NeOn toolkit
Distributed
components
Distributed
repository [1]

3.6.1.1.1
Resource
availability

Resource
fault
tolerance

Regardless of
whether any node of
the distributed
repository is
temporarily
unavailable, NeOn
shall guarantee
normal access to
the rest of the
system Critical NFR

Distributed
repository [1] 3.4.1.1

3.6.1.2.1
Service
availability

Service
fault
tolerance

NeOn services shall
be decoupled from
each other to
guarantee overall
system availability
in case a particular
service is
temporarily disabled Critical NFR

NeOn toolkit
Distributed
components [1]

Table 12: Reliability requirements

3.2.6.2 Security

This section specifies the requirements necessary to prevent malicious access to NeOn data or functionality from
occurring in the NeOn framework with the aim to avoid system malfunction and unexpected behaviour. Ontology
access rights shall allow to specify what users can access the ontologies and data maintained by NeOn and under
what conditions. The analogy with a Unix filesystem applies here, i.e. resource owners shall specify what rights the
rest of the users will have on them. Additionally, certain information, both contained in ontological and non
ontological requirements, shall be constrained to a reduced group of users.Table 13 shows specific requirements
on security for NeOn.

Req. # Functionality
Requirement
Extracted Description Importance Type

Layer of
architecture

External
Traceability

Internal
Traceability

3.6.3.1

Access
management
to
Information
resources

Access
management
to
Information
resources

Access to
information
resources shall
be
administrated Average FR

Distributed
repository

NeOn R&V
Case
studies 3.2.1

3.6.3.1.1

Access
management
to
Information

Access
management
to
ontological

NeOn shall
allow to specify
access
permissions to Average FR

Distributed
repository

NeOn R&V
Case
studies

3.2.1
3.4.1.2.1

Page 46 of 50 NeOn Integrated Project EU-IST-027595

resources resources ontological
resources

3.6.3.1.2

Access
management
to
Information
resources

Access
management
to
non-
ontological
resources

NeOn shall
allow to specify
access
permissions to
non-ontological
resources Average FR

Distributed
repository

NeOn R&V
Case
studies

3.2.1
3.4.1.2.2

Table 13: Security requirements

3.2.6.3 Maintainability
Modular design is a key factor in order to build a complex system like NeOn, which at the same time allows simple
and cheap maintenance in terms of effort. As shown in Table 14, loose coupling is NeOn’s bet in this regard.
Loose coupling of components and resources shall allow increasing software modularity. Thus, the cost of
software update, substitution of old components with new versions, and uptake of external resources will be
reduced. It will also be limited to the directly attained components, since interfaces with the rest of the system will
be kept in most occasions, allowing connected components to be unaware of such change.

Req. # Functionality Description Importance Type
Layer of
architecture

External
Traceability

Internal
Traceability

3.6.4.1 Loosely Coupling

The loosely coupled
design of the
architecture shall
help keeping
maintenance effort
low and focused Critical FR

Distributed
components

NeOn architecture
partners 2.1.1.19

3.6.4.1.1 Loosely Coupling

The loosely coupled
design of the
architecture shall
help keeping
maintenance effort
low and constrained
to the local
component Critical FR

Distributed
components

NeOn architecture
partners 2.1.1.19.2

3.6.4.1.2 Loosely Coupling

The loosely coupled
design of the
architecture shall
help keeping
maintenance effort
low and constrained
to the local resource Critical FR

Distributed
components

NeOn architecture
partners 2.1.1.19.1

Table 14: Maintainability requirements

3.2.6.4 User documentation
Complex systems like NeOn need to make a special effort and incorporate high quality documentation and help
that allow users to fully grasp all the possibilities offered by the software. Besides, as shown in the user study
conducted in [5] it is certainly frustrating for users to find particular problems or bogus system behaviours which
the system itself does not explain. Thus, it is fundamental for NeOn to provide users with a complete and sound
documentation, including reliable tutorials and examples.

It is also interesting for NeOn developers to rely on standard methods that help simplifying the process of building
the software. These methods shall include functional specification and implementation design of each system
component using standard design tools like e.g. UML.

Table 15 includes a full description of documentation requirements.

D 6.1.1 Requirements on NeOn Architecture Page 47 of 50

2006 © Copyright lies with the respective authors and their institutions.

Req. # Functionality
Requirement
Extracted Description Importance Type

Layer of
architecture

External
Traceability

3.7.1 Documentation Documentation

Industry-strength
documentation shall
be written for NeOn
components, toolkit,
etc. Critical NFR Neon toolkit

NeOn TA

3.7.1.1 Documentation
Functional
specification

A functional
specification of each
component shall be
written Average NFR Neon toolkit

NeOn TA

3.7.1.2 Documentation
Implementation
design

An implementation
design of each
component shall be
written Average NFR Neon toolkit

NeOn TA

3.7.1.3 Documentation UML compliance
NeOn design shall be
UML compliant Average NFR Neon toolkit

NeOn TA

3.7.2

Support to the
modelling
process

Support to the
process of
modelling
ontologies

Samples of
ontologies and
tutorials for the
novice users shall be
provided Average FR Neon toolkit

NeOn TA

3.7.2.1

Support to the
modelling
process Accessibility

The help features
shall be accessible to
the user. Critical NFR Neon toolkit NeOn R&V

3.7.2.2

Support to the
modelling
process Reliability

The tutorials and the
sample ontologies
shall be reliable so
that the user can
trust them Average NFR

Distributed
components Case studies

Table 15: Requirements on user documentation

Page 48 of 50 NeOn Integrated Project EU-IST-027595

4. Preliminary risk analysis

The requirements specified herein cover an ambitious set of functional and non-functional needs. The
resulting requirements are not purely requirements for the NeOn architecture but also process requirements
and requirements for concrete components for populating the NeOn architecture. As described in the
document, this specification is not final and, across the lifecycle of the NeOn project, requirements will evolve
along.

Many of these requirements represent approaches which complement each other in order to provide
complete solutions to existing problems in networked ontologies management and use. Thoroughly
implementing all these approaches might result in overkill for the project. This is especially true as the
architecture cannot contain all components but must be extensible to add such components by many NeOn
members. Additionally at some point it shall be necessary to focus on concrete choices for particular
requirements. For example, this might be the case of the rich vs. thin client dicotomy which repeatedly
appears in this deliverable.

On the other hand, all this technology aims at both i) reducing the complexity of ontology engineering in a
world where the amount of distributed, networked ontologies is larger and larger and ii) allowing its use in
real life applications like the ones described in the case studies of NeOn. Hence, as the project evolves, the
participation of both types of users, i.e. ontology engineers and domain experts, will be more and more
important in order to keep NeOn on the right track. For this aim, methodological requirements, like e.g. the
ones described in section 0, shall be enforced if we intend to produce industry-strength software which
serves to this purpose.

Finally, it seems quite sensible that a number of core functionalities be specified in the upcoming architecture
design that provides at the same time the fundaments of the NeOn infrastructure and establishes the
guidelines that flexibly allow future extensions.

5. Conclusion

We have provided a description of the NeOn architecture requirements and the methodology that has been used,
based on the IEEE proposal for software requirements specification, in order to gather them. Our aim has been to
build the NeOn architecture requirements specification on top of both the expertise of system architecture core
partners, technology and methodology providers, as well as the actual needs of the case studies. The description
of the requirements contained herein analyzes current practices in ontology engineering and gathers
information that can be used to identify strengths and weaknesses of current tools in order to develop a
precise understanding of NeOn needs. These requirements shall feed the design of the NeOn architecture
and overall infrastructure.

D 6.1.1 Requirements on NeOn Architecture Page 49 of 50

2006 © Copyright lies with the respective authors and their institutions.

6. Annex I: Requirements sheet templates

Next, the templates used for NeOn architecture requirements gathering are described.

The following sheet shows the fields that describe the requirements listed in Section 0. These fields are
Req.# specifying the number of the requirement, Title which specifies the name of the requirement, a short
description, the importance of the requirement in the NeOn architecture (critical, average or low) and the
traceability to the document where the requirement was extracted.

Req # Title Description Importance External traceability

The following sheet shows the main fields for specifying the specific requirements of Section 0. It contains
Req.#, that specifies the requirement number, Functionality specifying the function that is associated to this
requirement, a short description of the requirement, the importance of the requirement for the NeOn
architecture (critical, average or low), the layer of the architecture that the requirement belongs to and the
traceability of the requirement, internal (to the requirements related) and external (to the document that this
requirement has been extracted).

Req. # Functionality Description Importance Type
Layer of
architecture

External
Traceability

Internal
Traceability

Page 50 of 50 NeOn Integrated Project EU-IST-027595

References

[1] Sabou M.R, Gómez-Pérez J.M. et al. NeOn Requirements and Vision, 2006

[2] Lamport L, Shostak R, Pease M. The Byzantine generals’ problem. ACM Transactions on
Programming Languages and Systems, 4(3):382—401. ACM, July 1982

[3] IEEE-SA Standards Board, IEEE Recommended Practice for Software Requirements
Specifications, 1998.

[4] Horrocks I, Parsia B, Schneider P, Hendler J. Semantic Web Architecture: Stack or Two
Towers? Principles and Practice of Semantic Web Reasoning (PPSWR), 2005.

[5] Dzbor M, Gómez-Pérez J.M, Buil C. Analysis of user needs, requirements, and behaviours
with respect to user interfaces for ontology engineering. NeOn Deliverable D4.1.1, 2006.

[6] Project cBio: Advancing biology and medicine with tools and methodologies for the
structured organization of knowledge.

[7] Iglesias M, Caracciolo C. Specification of users and user requirements and detailed use
cases. NeOn Deliverable D7.1.1, 2006.

[8] Gómez-Pérez J.M, Pariente T, Daviaud C, Herrero G. Analysis of the pharma domain and
requirements. NeOn Deliverable D8.1.1, 2006.

[9] Kiryakov A., Popov B., Terziev I., Manov D. and Ognyanoff D. Semantic annotation,
indexing, and retrieval. Journal of Web Semantics, 2, Issue 1, 2005.

[10] Hearst M. A., Untangling Text Data Mining. Proceedings of ACL'99: the 37th Annual
Meeting of the Association for Computational Linguistics, 1999

[11] Davies J., Studer R., Warren P. (Eds), Semantic Web Technologies: Trends and Research
in Ontology-based Systems. John Wiley & Sons. June 2006.

	NeOn Consortium
	 Table of contents
	Work package participants
	Change Log
	Executive Summary
	 1. Introduction
	2. NeOn architecture requirements: Methodology
	2.1 Analysis of textual sources
	2.2 Requirements sheet
	2.3 IEEE methodology for software requirements specification (SRS)
	2.4 Requirements lifecycle

	3. NeOn architecture requirements
	3.1 Overall Description
	3.1.1 NeOn architecture perspective
	3.1.1.1 System requirements
	3.1.1.2 User interface
	3.1.1.3 Hardware requirements
	3.1.1.4 Software requirements
	3.1.1.5 Communication interfaces

	3.1.2 Functions of the NeOn architecture
	3.1.3 Users characteristics
	3.1.4 Constraints

	3.2 Specific requirements
	3.2.1 External interfaces
	3.2.2 Detailed functions of the NeOn architecture
	3.2.2.1 Geographically-transparent access to distributed repository
	3.2.2.2 Support of heterogeneous knowledge
	3.2.2.3 Dual language approach
	3.2.2.4 Ontology modularization
	3.2.2.5 Multilinguality support
	3.2.2.6 Mapping support
	3.2.2.7 Support for contextualized ontologies
	3.2.2.8 Lifecycle support for ontology development
	3.2.2.9 Reasoning and inference
	3.2.2.10 Query support
	3.2.2.11 Question formulation
	3.2.2.12 Semantic annotation
	3.2.2.13 Access management to information resources
	3.2.2.14 User profiling
	3.2.2.15 Ontology summarization
	3.2.2.16 Provenance support
	3.2.2.17 System documentation and help
	3.2.2.18 Support for different client types
	3.2.2.19 Service access to the NeOn backend

	3.2.3 Performance requirements
	3.2.4 Logical database requirements
	3.2.5 Standards compliance
	3.2.6 Software system attributes
	3.2.6.1 Reliability
	3.2.6.2 Security
	3.2.6.3 Maintainability
	3.2.6.4 User documentation

	4. Preliminary risk analysis
	5. Conclusion
	6. Annex I: Requirements sheet templates
	References

