
NeOn: Lifecycle Support for Networked Ontologies

Integrated Project (IST-2005-027595)

Priority: IST-2004-2.4.7 � �Semantic-based knowledge and content systems�

D1.1.1 Networked Ontology Model

Deliverable Co-ordinator: Peter Haase, Sebastian Rudolph, Yimin Wang,
Saartje Brockmans

Deliverable Co-ordinating Institution: Universität Karlsruhe � TH (UKARL)

Other Authors: Raul Palma (UPM), Jérôme Euzenat (INRIA), Mathieu d'Aquin
(OU)

In this deliverable we present the NeOn networked ontology model for representing and manag-
ing relations between multiple networked ontologies. To achieve �exibility and applicability, we
de�ne the networked ontology model using a metamodeling approach. The metamodel consists
of individual modules for the individual aspects of networked ontologies. The main modules
are: (1) a metamodel for the OWL ontology language, (2) a rule metamodel, (3) a metamodel
for ontology mappings, and (4) a metamodel for modular ontologies. Additionally, we provide
a vocabulary to describe ontology metadata in a network of ontologies, the Ontology Metadata
Vocabulary OMV.

Document Identi�er: NEON/2006/D1.1.1/v1.0 Date due: November 30, 2006
Class Deliverable: NEON EU-IST-2005-027595 Submission date: November 30, 2006
Project start date March 1, 2006 Version: v1.0
Project duration: 4 years State: Final

Distribution: Public

2006 c© Copyright lies with the respective authors and their institutions.

Page 2 of 60 NeOn Integrated Project EU-IST-027595

NeOn Consortium

This document is part of a research project funded by the IST Programme of the Commission of the
European Communities, grant number IST-2005-027595. The following partners are involved in the project:

Open University (OU) � Coordinator Universität Karlsruhe � TH (UKARL)
Knowledge Media Institute � KMi Institut für Angewandte Informatik und Formale
Berrill Building, Walton Hall Beschreibungsverfahren � AIFB
Milton Keynes, MK7 6AA D-76128 Karlsruhe
United Kingdom Germany
Contact person: Martin Dzbor, Enrico Motta Contact person: Peter Haase
E-mail address: {m.dzbor, e.motta}@open.ac.uk E-mail address: pha@aifb.uni-karlsruhe.de
Universidad Politécnica di Madrid (UPM) Software AG (SAG)
Campus de Montegancedo Uhlandstrasse 12
28660 Boadilla del Monte 64297 Darmstadt
Spain Germany
Contact person: Asunción Gómez Pérez Contact person: Walter Waterfeld
E-mail address: asun@�.ump.es E-mail address: walter.waterfeld@softwareag.com
Intelligent Software Components S.A. (ISOCO) Institut `Jo�ef Stefan' (JSI)
Calle de Pedro de Valdivia 10 Jamova 39
28006 Madrid SL�1000 Ljubljana
Spain Slovenia
Contact person: Richard Benjamins Contact person: Marko Grobelnik
E-mail adress: rbenjamins@isoco.com E-mail address: marko.grobelnik@ijs.si
Institut National de Recherche en Informatique University of Shef�eld (USFD)
et en Automatique (INRIA) Dept. of Computer Science
ZIRST � 665 avenue de l'Europe Regent Court
Montbonnot Saint Martin 211 Portobello street
38334 Saint-Ismier S14DP Shef�eld
France United Kingdom
Contact person: Jérôme Euzenat Contact person: Hamish Cunningham
Universität Kolenz-Landau (UKO-LD) Consiglio Nazionale delle Ricerche (CNR)
Universitätsstrasse 1 Institute of cognitive sciences and technologies
56070 Koblenz Via S. Marino della Battaglia
Germany 44 � 00185 Roma-Lazio Italy
Contact person: Steffen Staab Contact person: Aldo Gangemi
E-mail address: staab@uni-koblenz.de E-mail address: aldo.gangemi@istc.cnr.it
Ontoprise GmbH. (ONTO) Asociación Española de Comercio Electrónico
Amalienbadstr. 36 (AECE)
(Raumfabrik 29) C/lcalde Barnils, Avenida Diagonal 437
76227 Karlsruhe 08036 Barcelona
Germany Spain
Contact person: Jürgen Angele Contact person: Gloria Tort
E-mail address: angele@ontoprise.de E-mail address: gtort@fecemd.org
Food and Agriculture Organization of the United Atos Origin S.A. (ATOS)
Nations (FAO) Calle de Albarracín, 25
Viale delle Terme di Caracalla 28037 Madrid
00100 Rome, Italy Spain
Contact person: Marta Iglesias Contact person: Tomás Pariente Lobo
E-mail address: marta.iglesias@fao.org E-mail address: tomas.parientelobo@atosorigin.com

D1.1.1 Networked Ontology Model Page 3 of 60

Work package participants

The following partners have taken an active part in the work leading to the elaboration of this document, even
if they might not have directly contributed writing parts of this document:

• Universidad Politécnica di Madrid (UPM)

• Institut National de Recherche en Informatique et en Automatique (INRIA)

• Open University (OU)

Change Log

Version Date Amended by Changes
0.1 03-27-2006 Peter Haase creation
0.2 04-10-2006 Yimin Wang Requirements section
0.3 04-28-2006 Raul Palma Ontology Metadata Input
0.5 04-30-2006 Peter Haase First draft for partners to comment
0.6 06-30-2006 Peter Haase Incorporating comments and introduction

from J. Euzenat
0.7 10-10-2006 Yimin Wang Incorporating comments from H. Lewen;

formatting
0.8 10-15-2006 Peter Haase Incorporating modularization

0.85 10-28-2006 Peter Haase Reworking Introduction, modularization
0.9 11-01-2006 Peter Haase Incorporating comments from J. Euzenat

0.99 11-16-2006 Peter Haase Incorporating �nal comments from WP1
partners

1.0 12-15-2006 Peter Haase Incorporating �nal comments from inter-
nal reviewer

2006 c© Copyright lies with the respective authors and their institutions.

Page 4 of 60 NeOn Integrated Project EU-IST-027595

Executive Summary

In this deliverable we present a proposal for the NeOn networked ontology model for representing and man-
aging relations between multiple networked ontologies. As the networked ontology model provides the basis
for the entire project, the de�nition of the model is driven by the requirements from the individual workpack-
ages.
To achieve �exibility and applicability, we de�ne the networked ontology model using a metamodeling ap-
proach. The metamodeling features of Model Driven Architecture provide the means for the speci�cation
of modeling languages in a standardized, platform independent manner. In short, the Meta Object Facility
(MOF) provides the language for creating metamodels, UML de�nes the language for creating models corre-
sponding to speci�c metamodels. De�ning the networked ontology model in terms of a MOF compliant meta-
model yields a number of advantages, including (1) interoperability with software engineering approaches,
(2) model transformations, to support the automated generation of APIs, exchange syntaxes, etc., (3) reuse
of UML for modeling, and (4) independence from particularities of speci�c formalisms, enabling the ability
to support currently competing formalisms (e.g. in the case of mapping languages), for which no standard
exists yet.
The metamodel consists of individual modules for the individual aspects of networked ontologies. The main
modules are: (1) a metamodel for the OWL ontology language, (2) a rule metamodel, (3) a metamodel for
ontology mappings, and (4) a metamodel for modular ontologies. The metamodel is grounded by translations
to speci�c logical formalisms that de�ne the semantics of the networked ontology model.
Additionally, we provide a vocabulary to describe ontology metadata in a network of ontologies, the Ontology
Metadata Vocabulary OMV. Metadata here refers to data about the actual ontologies, as opposed to the
content contained in an ontology, e.g. the provenance and authorship of an ontology, but also dependencies
from other ontologies, etc. Metadata plays an important role in describing and managing the networked
ontologies. Its purpose is to be able to clarify the relations between the available ontologies so that they are
easy to search, to characterize and to maintain.

D1.1.1 Networked Ontology Model Page 5 of 60

Contents

I Foundations 8

1 Introduction 9
1.1 The NeOn Big Picture . 9
1.2 Networked Ontologies . 10

1.2.1 The current situation . 10
1.2.2 Objective and De�nition of the NeOn networked ontology model 12
1.2.3 A metamodel of networked ontologies . 12
1.2.4 Networked Ontology Metadata . 13

1.3 Overview of the Deliverable . 13
1.4 Relationships and Dependencies with other Workpackages 15

1.4.1 Workpackage 2 � Collaboration . 15
1.4.2 Workpackage 3 � Context . 15
1.4.3 Workpackage 4 � Human Ontology Interaction . 16
1.4.4 Workpackage 5 � Methodology . 16
1.4.5 Workpackage 6 � Infrastructure . 16
1.4.6 Workpackage 7 � Fishery Case Study . 16
1.4.7 Workpackage 8 � Pharmaceutical Case Study . 17

II The NeOn Metamodel for Networked Ontologies 19

2 Metamodeling for Ontologies 20
2.1 Metamodeling with MOF . 20

2.1.1 Meta Object Facility . 20
2.1.2 A Networked Ontology Metamodel . 21
2.1.3 MOF vs. UML . 21

2.2 Design Considerations . 22
2.3 Semantics of the Metamodel . 22

3 The OWL Metamodel 24
3.1 Design considerations . 24
3.2 A Metamodel for OWL DL . 24

4 The Rule Metamodel 31
4.1 Design Considerations . 31

4.1.1 Possible Directions to Cover other Rule Languages . 31
4.2 A Metamodel for SWRL Rules . 32

2006 c© Copyright lies with the respective authors and their institutions.

Page 6 of 60 NeOn Integrated Project EU-IST-027595

4.2.1 Rules . 32
4.2.2 Atoms, Terms and Predicate symbols . 32

5 The Mapping Metamodel 34
5.1 Design Considerations . 34

5.1.1 What do mappings de�ne? . 34
5.1.2 What do mappings preserve? . 35
5.1.3 What do mappings connect? . 35
5.1.4 How are mappings organized? . 36

5.2 A Metamodel for Ontology Mappings . 36
5.2.1 OCL Constraints for C-OWL . 38
5.2.2 OCL Constraints for DL-Safe Mappings . 38

6 The Metamodel for Modular Ontologies 40
6.1 Design Considerations . 40

6.1.1 Existing Formalisms for Ontology Modularization . 40
6.1.2 Requirements for a Module De�nition Languages . 43

6.2 A Metamodel for Modular Ontologies . 44
6.2.1 Abstract Syntax for Ontology Modules . 45

III Metadata for Networked Ontologies 47

7 The NeOn Ontology Metadata Vocabulary 48
7.1 Preliminary considerations . 48

7.1.1 Metadata Categories . 48
7.2 Ontology Metadata Requirements . 49
7.3 OMV - Ontology Metadata Vocabulary . 50

7.3.1 Core and Extensions . 50
7.3.2 Ontological representation . 50
7.3.3 OMV core metadata entities . 50

8 Conclusion 53
8.1 Summary . 53
8.2 Roadmap for Future Work . 53

A Naming Conventions 55
A.1 Delimiters and capitalization . 55
A.2 Pre�x conventions . 55
A.3 Singular form . 55
A.4 Additional considerations . 55

D1.1.1 Networked Ontology Model Page 7 of 60

List of Figures

1.1 Relationships between different workpackages in NeOn . 10
1.2 The current state of networked ontologies on the web. Dashed relations are in fact not explicitly

recorded on the web but can be inferred from user actions. 11
1.3 The NeOn networked ontology model as a MOF-metamodel 12
1.4 The localization of the NeOn networked ontology metadata (M) with regard to the actual on-

tologies (O). Rectangular boxes refer to machines . 14

2.1 How a metamodel and a UML pro�le for ontologies �t into the picture of the Meta Object Facility
framework . 21

2.2 OMG Four Layer Metadata Architecture . 21
2.3 Modules of the Networked Ontology Metamodel and possible groundings in ontology languages 22

3.1 Main Elements of the OWL DL Metamodel . 25
3.2 Properties . 25
3.3 Property axioms . 25
3.4 Property axioms . 26
3.5 Annotations . 27
3.6 Class constructors . 27
3.7 OWL Restrictions . 28
3.8 Class axioms . 29
3.9 Data types . 29
3.10 Knowledge Base Items . 30
3.11 Knowledge Base Axioms . 30

4.1 The Rule De�nition Metamodel . 33

5.1 Metamodel for ontology mappings . 36
5.2 Metamodel for ontology mappings - de�nition of a query . 37

6.1 Metamodel extensions for ontology modules . 44

7.1 OMV overview . 51

2006 c© Copyright lies with the respective authors and their institutions.

Page 8 of 60 NeOn Integrated Project EU-IST-027595

Part I

Foundations

D1.1.1 Networked Ontology Model Page 9 of 60

Chapter 1

Introduction

1.1 The NeOn Big Picture

Next generation semantic applications will be characterized by a large number of ontologies, some of them
constantly evolving. As the complexity of semantic applications increases, more and more knowledge will be
embedded in applications, typically drawn from a wide variety of sources. This new generation of applications
will thus likely rely on ontologies embedded in a network of already existing ontologies. Ontologies and
metadata will have to be kept up to date when application environments and users' needs change. We argue
that in this scenario it will become prohibitively expensive for people to directly adopt the current approach
to semantic integration, where the expectation is to produce a single, globally consistent semantic model
that serves the needs of application developers and fully integrates a number of pre-existing ontologies In
contrast to the current model, future applications will very likely rely on networks of contextualized ontologies,
which are usually locally, but not globally consistent.
This report is part of the work performed in WP 1 on �Dynamics of Networked Ontologies�. The goal of this
work package is to develop an integrated approach for the evolution process of networked ontologies and
related metadata. For the individual phases of the process we will develop new methods that consider the
complex relationships in a network of ontologies. These include dependencies, mappings, different versions
and also take possible inconsistencies into account. Where possible, these methods will be supported by
automatic or semi-automatic approaches based on natural language processing (NLP), data mining and
machine learning techniques, and the corresponding tools will be developed to support the evolution process.
Speci�c goals in this workpackage include support for:

1. representing, managing and interpreting dependencies between multiple networked ontologies

2. evolution of networked ontologies in exploiting various models of change propagation, which have
different applicabilities depending on the model of coordination and control

3. maintaining partial/local consistency of a set of networked ontologies, which might not be globally
consistent

4. evolving metadata along with changing ontologies and predicting future structural changes in ontolo-
gies.

In order to achieve the goals mentioned above it is crucial that a toolkit designed within NeOn offers a basic
set of functionalities, which are also essential for the use cases. These are: (a) Integration of a large number
of heterogeneous information sources (b) Maintenance of ontologies to re�ect changes in the domain (c)
Consensus forming in a decentralized scenario.
As shown in Figure 1.1, WP1 belongs to the central part of the research and development WPs in NeOn.
The tasks of WP1 are heavily inter-related with other work packages. The most fundamental contribution of
WP1, and in particular Task 1.1, is to provide the networked ontology model and its related dynamic aspects

2006 c© Copyright lies with the respective authors and their institutions.

Page 10 of 60 NeOn Integrated Project EU-IST-027595

to other work package partners. As a consequence, a major objective in the de�nition of the networked
ontology model is the consideration of requirements from other work packages. We will closely collaborate
with the case study partners to apply our technologies within the case studies.

Figure 1.1: Relationships between different workpackages in NeOn

1.2 Networked Ontologies

The goal of this deliverable is to de�ne and formalize the notion of networked ontologies in order to make it
applicable throughout the NeOn project. Before formally de�ning the model, we will �rst informally discuss
the notion of a networked ontology.

1.2.1 The current situation

The OWL ontology language is now well established as the standard ontology language for representing
knowledge on the web. At the same time, rule languages, such as F-Logic, have shown their practical applica-
bility in industrial environments. Often, ontology-based applications require features from both paradigms�
the description logics and the rule paradigm�but their combination remains dif�cult. This is not only due to
the semantic impedance mismatch [HPPSH05], but already because of the disjoint landscape in ontology
engineering tools that typically support either the one or the other paradigm.
Additionally, to address distributed and networked scenarios as envisioned on NeOn, current ontology lan-
guages lack a number of features to explicitly express the relationships between ontologies and their el-

D1.1.1 Networked Ontology Model Page 11 of 60

ements. These features include in particular formalisms for expressing modular ontologies and mappings
(also called alignments) between ontologies that are heterogeneous on various respects.
Finally, in the current situation we lack the means to express information about ontologies and the rela-
tionships between them. Ontologies are distributed over the web, sometimes available directly, sometimes
hidden within corporate networks (see Figure 1.21). These ontologies are related to each others, but this
remains dif�cult to assess:

• some are simple copies of other ones (it is hard to know which one is the master copy);

• some are versions of others (it is hard to know which one came �rst);

• some are used jointly with others (this information is hidden in applications);

• some are imported by others (this can be found through owl:imports).

Moreover, the ontologies have different characteristics:

• they are written in different languages and with different language variants;

• they use labels in different natural languages;

• they are built for different purposes.

In consequence, each application developer has to manually assemble ontologies, modify, import and export
them, resulting in yet other disconnected, un-contextualized ontologies. Each time one of these ontologies is
changed, at best, the developer will propagate the changes, at worst, they will not be taken into account at
all.

A 1, 2 A 1 ‘
, 2

O2 O1 O ‘
1

O ‘’
1

O3 O4

relatedW ith priorV ersionOf priorV ersionOf

d
ep

en
d

sO
n exten

d
s

ta
rg

et source

target source

includes

Figure 1.2: The current state of networked ontologies on the web. Dashed relations are in fact not explicitly
recorded on the web but can be inferred from user actions.

This state of affairs constitutes a threat for ontology-based application development by incurring costs of
sorting out the available material as well as lack of support for maintaining ontologies over their full life-cycle.

1In this �gure, O denotes ontologies, A denotes mappings (alignments).

2006 c© Copyright lies with the respective authors and their institutions.

Page 12 of 60 NeOn Integrated Project EU-IST-027595

1.2.2 Objective and De�nition of the NeOn networked ontology model

The purpose of the NeOn networked ontology model is not to be a completely new language for expressing
ontologies on the web. Its purpose it to de�ne an integrated model of an ontology language covering the
relevant existing ontology languages and extending them with primitives to express the relationships in a
network of ontologies. For that purpose, it will introduce � complementary to existing languages (e.g. OWL
Web Ontology Language [Mv03], F-Logic) � a model of the interrelations between ontologies. Because
the goal of NeOn is to non-exclusively account for existing formalisms, it will attempt to reuse these legacy
formalism as much as possible and refrain from de�ning new languages when this is not necessary.
Subsequently, if we talk about networked ontologies and networks of ontologies, we refer to the following
de�nition:

De�nition 1 A Network of Ontologies is a collection of ontologies related together via a variety of different
relationships such as mapping, modularization, version, and dependency relationships. We call the elements
of this collection Networked Ontologies.

1.2.3 A metamodel of networked ontologies

In this deliverable, we describe the networked ontology model in terms of a metamodel. Metamodels are used
for the speci�cation of modeling languages in a standardized, platform independent manner. Furthermore,
a grounding essentially speci�es the bi-directional translation of the terms of the metamodel to those of the
speci�c formalism.
The general idea of using a metamodel-based approach and UML pro�les for this purpose is depicted in
Figure 2.1: The metamodel for networked ontologies as well in MOF, i.e. it is de�ned in terms of the MOF
meta-metamodel (explained in Detail in Chapter 2). The term meta-model is chosen, as a meta-model refers

NeOn Metamodel

NeOn Networked

Ontologies

Metaobject Facility

(MOF)

Model

Meta-

Model

Meta-

Meta-

Model

Figure 1.3: The NeOn networked ontology model as a MOF-metamodel

to model of a language, whereas the instances of the meta-model are referred to as models. In our case,
models thus refer to the actual ontologies.
The metamodeling features of Model Driven Architecture (MDA, [MKW04]) provide the means for the spec-
i�cation of modeling languages in a standardized, platform independent manner. In short, the Meta Object
Facility (MOF, [Obj02]) provides the language for creating metamodels, UML ([Fow03]) de�nes the language
for creating models corresponding to speci�c metamodels. De�ning the networked ontology model in terms
of a MOF compliant metamodel yields a number of advantages:

Interoperability with Software Engineering approaches In order for the NeOn reference architecture and
toolkit to be widely adopted by users and to succeed in real-life applications, they must be well integrated
with mainstream software trends. This includes in particular interoperability with existing software tools and

D1.1.1 Networked Ontology Model Page 13 of 60

applications to put them closer to ordinary developers. MDA is a solid basis for establishing such interoper-
ability. With the networked ontology model de�ned in MOF, we can utilize MDA's support in modeling tools,
model management and interoperability with other MOF-de�ned metamodels.

Model Transformations MOF speci�cations are independent of particular target platforms (e.g. program-
ming languages, concrete exchange syntaxes, etc.). Industry standardized mappings of the MOF to speci�c
target languages or formats can be used by MOF-based generators to automatically transform the meta-
model's abstract syntax into concrete representations based on XML Schema, Java, etc. For example, using
the MOF-Java mapping, it is possible to automatically generate a Java API for a MOF metamodel. In NeOn,
we use this transformation to generate a Java API for the networked ontology model as part of the NeOn
reference architecture developed in WP6.

Reuse of UML for modeling With respect to interoperability with other metamodels, UML is of particular
importance. UML is a well established formalism for visual modeling and recently has been proposed as
a visual notation for knowledge representation languages as well ([HEC+04], [BKK+01], [CP99], [Kre98]).
While UML itself lacks speci�c features of KR languages, the extension mechanisms�UML pro�les�allow
to tailor the visual notation to speci�c needs.

Independence from particularities of speci�c formalisms The metamodeling approach of MDA and
MOF allows to de�ne the networked ontology model in an abstract form independently from the particulari-
ties of speci�c logical formalisms. This enables to be compatible with currently competing formalisms (e.g. in
the case of mapping languages), for which no standard exists yet. Language mappings, also called ground-
ings, de�ne the relationship with particular formalisms and provide the semantics for the networked ontology
model. Furthermore, the extensibility capabilities of MOF allow to add new modules to the metamodel if
required in the future.

1.2.4 Networked Ontology Metadata

Additionally, we provide a vocabulary to describe ontology metadata in a network of ontologies. Metadata
here refers to data about the actual ontologies, as opposed to the content contained in an ontology, e.g.
the provenance and authorship of an ontology, but also dependencies from other ontologies, etc. Metadata
plays an important role in describing and managing the networked ontologies. Its purpose is to be able to
clarify the relations between the available ontologies so that they are easy to search, to characterize and to
maintain. It aims at making explicit the virtual and implicit network of ontologies.
A NeOn enabled tool will be able to take advantage of the NeOn networked ontology metadata for selecting
the resources appropriate for users' needs. It will also enhance maintainability by updating the resources
used by the applications when these resources evolve and tracking the con�icts that can occur in such
a case. Moreover it should be able to export metadata descriptions according to the speci�cation of the
networked ontology model so that other tools can take advantage of them.
As presented in Figure 1.4, the metadata about networked ontologies can reside anywhere with regard to
the ontologies: it can be embedded within actual ontology �les, expressed in separate �les along with the
ontologies, expressed on completely different servers (like independent annotations) or reside on the local
machine with the ontologies.

1.3 Overview of the Deliverable

In Chapter 2, we introduce the concept of metamodeling and its role for the de�nition of the networked
ontology model. In the following chapters we introduce the speci�c modules of the metamodel: We start with

2006 c© Copyright lies with the respective authors and their institutions.

Page 14 of 60 NeOn Integrated Project EU-IST-027595

editor editor editor editor

O O O O

M M

M

M

embedded

description

separated

description

third-party

description

local

description

Figure 1.4: The localization of the NeOn networked ontology metadata (M) with regard to the actual ontolo-
gies (O). Rectangular boxes refer to machines

the metamodel of OWL in Chapter 3. We then present the metamodel for rule extensions in Chapter 4, for
mappings in Chapter 5, and for modularization in Chapter 6.
We then present OMV as a metadata ontology to capture information about networked ontologies in Chapter
7. Finally, in Chapter 8 we provide a summary and an outlook to subsequent deliverables.

D1.1.1 Networked Ontology Model Page 15 of 60

1.4 Relationships and Dependencies with other Workpackages

In general, the networked ontology model will be applied throughout the NeOn project, but in each individual
workpackage, different aspects of the model are addressed and added. In this section, we discuss the
relationships and dependencies of the networked ontology model with other workpackages.

1.4.1 Workpackage 2 � Collaboration

In general, Workpackage 1 and 2 are clearly linked by the general issue of �evolution� of an ontology. This
issue involves not only versioning, but also modularization, mapping, and parametrization. The usefulness
of possible reasoning tools on these aspects depends on the capacity of the system to express complex
versioning patterns, or to describe the structure of the ontology in a rich way, which requires the networked
ontology model to include a possibility to represent the different aspects of ontologies.
From the perspective of workpackage 2, following four aspects are mainly related to the work in Workpackage
1.

1. Networked ontology and its dynamics. Workpackage 2 essentially needs from Workpackage 1 a
notion of networked ontology that is �exible enough to be used in the collaborative and relaxed way
that practical modeling of ontologies requires. A collaborative toolkit that supports handling dynamic,
contextualized metadata, will provide a listener registration and change noti�cation mechanism for
propagating ontology changes into metadata.

2. KOS reengineering to OWL ontology. Knowledge Organization Systems (KOS) such as thesauri,
terminologies, glossaries, electronic dictionaries and etc. are important sources for ontology construc-
tion, but need to be reengineered. The challenge will be: What kind of support could come from WP1
in order to ef�ciently access and transform KOSes? A possible solution is to create meta-meta-models
to map a KOS meta-model to an OWL meta-model or other ontology language formalisms.

3. Translation support. A MOF-like approach may be adopted for language interoperability. It would be
highly desirable that a close-to-maximal expressivity for the languages to be translated is supported,
e.g., by allowing translation of (fragments of) FOL (�rst order logic) into OWL+Rules. Semantic trans-
lation languages might be con�gured at a higher level, in order to create ad hoc translators between
any two logical languages.

4. Reasoning support. For successful collaboration between ontology designers, a very lightweight
reasoning service should be provided, even at development time, and even at the cost of giving up
some completeness.

1.4.2 Workpackage 3 � Context

The networked ontology model is closely related to the notion of context developed as part of Workpackage
3.

1. The networked ontology model needs to be able to represent context as de�ned in the workpackage,
which means, the context information should be represented as a language formalism that is contained
in the networked ontology model.

2. The network of ontologies in which a particular ontology is embedded, can itself be a special form of
context: For an ontology K (or knowledge base), we assume that there are other ontologies which
are related to K in various networked ways, including versioning and mapping information, etc. Then
other ontologies together with these links can be understood as a context for K, as they will (in some
cases) alter the knowledge which can be inferred from K.

2006 c© Copyright lies with the respective authors and their institutions.

Page 16 of 60 NeOn Integrated Project EU-IST-027595

3. The context information will also be used in mapping ontological information, and possibly help in
de�ning the different ontology modules based on different contexts.

1.4.3 Workpackage 4 � Human Ontology Interaction

The objective of Workpackage 4 is to �nd a proper way to build �ne-grained ontologies. The networked
ontology model calls for a new generation of human ontology interaction.
In the networked ontological scenario, humans are not only required to perform traditional tasks to collect
concepts and construct axioms, etc., but they are also asked for the de�nition of mapping, modularization
and parameters of an ontology. These notions are provided by the networked ontology model proposed in
this deliverable.
Otherwise, users should also have a good understanding of the networked ontology model, e.g. of its struc-
ture, its meaning. Therefore, the challenge in designing the networked ontology model is to make it under-
standable intuitive to the users.

1.4.4 Workpackage 5 � Methodology

First, WP5 will use the de�nition of networked ontologies (provided by WP1) to identify the activities to be
included in the networked development process and in the ontology lifecycle. Besides, WP5 will use the work
related to dynamics of networked ontologies in the methodology for building networked ontologies.
Although there are many ways to build ontologies, there is still no very ef�cient and effective methodology to
build ontologies in a networked environment with strong emphasis on the dynamic aspects and distribution.
This is one of the major requirement of NeOn and also should be carefully considered in WP1 while modeling
the networked ontologies. WP5 is going to provide such a methodology to support the lifecycle of networked
ontologies.

1.4.5 Workpackage 6 � Infrastructure

The NeOn infrastructure relies on the scienti�c and technical outcome from WP1, WP2, WP3 and WP4. WP1
will contribute the overall model and the corresponding partial reasoning support to the infrastructure work
package. To be speci�c:

1. The applications developed in NeOn will build upon NeOn infrastructure and aim to support the net-
worked ontology lifecycle development. Thus, the NeOn infrastructure is depending on the networked
ontology model as input from Workpackage 1 in order to have good support to handle networked
ontologies.

2. The development of components relying on the networked ontology model need to be aligned with the
architecture developed inWorkpackage 6.

1.4.6 Workpackage 7 � Fishery Case Study

In WP7, partners will design and implement ontologies in the �sheries domain that can become widely-used
standards and references for the �shery communities around the world.
To increase information accessibility to and from non-FAO resources, the ontology mapping and modulariza-
tion techniques will be helpful to identify and handle the relations between ontologies with different natural
languages.
The mappings between multilingual ontologies are important for the WP7 �shery case study. One scenario
is: One ontology has mappings to another ontology in a different language, from which it is translated.
The relationships between these two ontologies need to be formally de�ned by the networked ontology

D1.1.1 Networked Ontology Model Page 17 of 60

model. Moreover, if these two ontologies are connected for some speci�c needs (e.g., applications requiring
multilingual information), it is important to have an appropriate use of the ontologies based on their languages
to make sure the knowledge captured is equal in both languages (e.g. Concept AE in English should be equal
to concept AS in Spanish if AE is a correct translation of AS within the context of this ontology.) This scenario
has not yet occurred within FAO, but could happen in the future.
Modularizing the �shery ontology with respect to regional or economic regional differences is probably useful.
Further, a modularization according to natural languages might be promising. For example, having one
multilingual ontology, where concepts have names (attributes) in several languages (multilingual layers).
The structure of the ontology is meant to be independent of the multilingual layer (which means it has been
modularized), possibly with a strict 1-1 correspondence between the various languages and single ownership
of the entire ontology.
A particular use case is the AGROVOC thesaurus (which is to be converted into an ontology). AGROVOC
is built by agronomy experts in a collaborative setting, and does not grow simultaneously in all languages.
Given its collaborative nature, it needs a modularization tool (in terms both of structure and language layers,
to be able to have different authors and/or institutions work on it) that is built on the modularization model.

1.4.7 Workpackage 8 � Pharmaceutical Case Study

Invoicing Management

The main goal of the invoicing management use case is to enable pharmacies in Spain to exchange invoices
with wholesalers electronically without having to adapt to the wholesalers' invoice exchange standard �rst.
This is especially challenging since all recent approaches to unify invoice exchange at a larger scale have
failed. To support the vision of real time invoice exchange between parties not sharing a common standard,
several technologies have to be provided by WP1:

1. The Networked Ontology Model supplies the formal grounding of the technologies applied in the
case study. It will de�ne the ontology language, the representation and interpretation of rules, ontology
mappings and modules as well as the corresponding operators and algebra for modular ontologies. For
annotation purposes, an ontology metadata standard will also be developed. Using these techniques,
ontologies (as representations of the local invoice data schema of pharmacies or wholesalers) can
be mapped and matched and even background knowledge about past transactions can be exploited.
For the pharmacies it will thus become easier to exchange invoices. Ideally, the complexity of the
underlying problem is hidden completely so to the users exchanging invoices is simply a click.

2. Dynamics and Change Propagation are important because it can be expected that external factors
are subject to change. Legislation could be changed for instance, or an important new feature could
become mandatory for electronic invoices. WP1 will provide methods for ontology evolution, change
propagation and ontology versioning. It will provide the features required to keep ontologies across
partners consistent and synchronized by keeping track of different versions and propagating changes.

3. Consistency Models: Due to the fact that we have to deal with multiple ontologies instead of just a
single global one, it can be expected that inconsistencies will occur and will have to be resolved. WP1
will thus address consistency models and inconsistency handling, both for single as well as multiple
ontologies. That way, the reasoning needed for adaptive behavior can be performed.

4. Management of Networked Ontologies: This refers to the framework holding the different technolo-
gies together and providing functionalities like reasoning over networked ontologies and management
of ontology metadata. Without the ability to reason over the boundary of single ontology, using map-
pings and modules does not make sense. So it is of great importance to enable distributed reasoning.
Also, ontology metadata has to be generated and stored.

2006 c© Copyright lies with the respective authors and their institutions.

Page 18 of 60 NeOn Integrated Project EU-IST-027595

5. Dynamics of Metadata: Since most of the ontologies are not static but will likely evolve and be
changed over time, it is important to discover and propagate changes.

Semantic Nomenclator

The goal of this case study is to facilitate the work of the General Spanish Council of Pharmacists (GSCoP)
which has to maintain the Health Information Data Base (BOT Plus) for health professionals. This database
comprises diverse information about medicines and patients. It provides access to information on diseases,
symptoms, treatments and so on. The entries are harmonized, so access is possible within any pharmacy
in Spain. The problem is that there are constant updates of the information in the database but no system-
atized approach for creating, maintaining and updating information. Data is provided by the pharmacies in
diverse formats and protocols, leading to manual updates which take long time and are error-prone. Using
NeOn technology, these obstacles can be overcome by automatizing knowledge processing and consistency
checks. The technologies provided by WP1 are the same as for the invoice management scenario, since the
idea is to rely on a common infrastructure for both use cases. The emphasis however lies more on versioning,
evolution, data integration, and consistency handling.
In the domains of both of the above case studies, the application development has previously been driven
by technologies from software engineering, rather than ontology engineering. The use of model driven
approaches has been underrated thus far. The technologies of Model Driven Architectures and a networked
ontology model de�ned in terms of the standards of MDA is expected provide the interoperability with current
software engineering approaches and to enable an easier transition from current technologies to semantics-
based techniques.

D1.1.1 Networked Ontology Model Page 19 of 60

Part II

The NeOn Metamodel for Networked
Ontologies

2006 c© Copyright lies with the respective authors and their institutions.

Page 20 of 60 NeOn Integrated Project EU-IST-027595

Chapter 2

Metamodeling for Ontologies

2.1 Metamodeling with MOF

This section introduces the essential ideas of MOF and shows how a metamodel and a UML pro�le for
networked ontologies �t into this more general picture. The need for a dedicated visual ontology modeling
language stems from the observation that an ontology cannot be suf�ciently represented in UML [HEC+04].
The two representation mechanisms share a set of core functionalities such as the ability to de�ne classes,
class relationships, and relationship cardinalities. But despite this overlap, there are many features which can
only be expressed in OWL, and others which can only be expressed in UML. Examples for these differences
in expressiveness are transitive and symmetric properties in OWL or methods in UML. For a full account of
the conceptual differences we refer the reader to [IBM05].
UML methodology, tools and technology, however, seem to be a feasible approach for supporting the devel-
opment and maintenance of networked ontologies.
The general idea of using MOF-based metamodels and UML pro�les for this purpose is depicted in Fig-
ure 2.1: A metamodel for networked ontologies as well as a UML pro�le are grounded in MOF, in that they are
de�ned in terms of the MOF meta-metamodel, explained further in this section. The UML pro�le mechanism
is an extension mechanism to tailor UML to speci�c application areas. Our proposed UML pro�le de�nes
a visual notation for optimally supporting the speci�cation of ontologies, rules and ontology mappings. This
visual syntax is based on the metamodel and is independent from a concrete mapping formalism. Mappings
in both directions between the metamodel and the pro�le have to be established.
OWL DL ontologies, rules, and ontology mappings in a concrete language instantiate the metamodel. The
constructs of the speci�c languages have a direct correspondence with those of the metamodel. Analogously,
speci�c UML models instantiate the UML pro�le. Within the MOF framework, the UML models are translated
into de�nitions based on the above mappings between the metamodel and the UML pro�le. In case of
ontology mappings, the decision about a concrete mapping formalism is taken in this translation step, so
after the visual modeling of the ontology mappings. This decision is based on the types of the mappings
which were modeled.

2.1.1 Meta Object Facility

The Meta Object Facility (MOF) is an extensible model driven integration framework for de�ning, manipulat-
ing and integrating metadata and data in a platform independent manner. The goal is to provide a framework
that supports any kind of metadata and that allows new kinds to be added as required. MOF plays a cru-
cial role in the four-layer metadata architecture of the Object Management Group (OMG) shown in Figure
2.2. The bottom layer of this architecture encompasses the raw information to be described. For example,
Figure 2.2 contains information about a wine called ElyseZinfandel and about the Napa region, where this
wine grows. The model layer contains the de�nition of the required structures, e.g. in the example it contains
the classes used for grouping information. Consequently, the classes Wine and Region are de�ned. If these

D1.1.1 Networked Ontology Model Page 21 of 60

Figure 2.1: How a metamodel and a UML pro�le for ontologies �t into the picture of the Meta Object Facility
framework

MOF - Meta-metamodel

MetaClass, MetaAttr, ...

Metamodel:

MetaClass(“Class“), MetaClass(“Property“), ...

Model:

Class(“Wine“), Class(“Region“), ...

Information:

Wine: ElyseZinfandel, Region: NapaRegion

Figure 2.2: OMG Four Layer Metadata Architecture

are combined, they describe the model for the given domain. The metamodel de�nes the terms in which the
model is expressed. In our example, we would state that models are expressed with classes and proper-
ties by instantiating the respective meta classes. Finally, the MOF constitutes the top layer, also called the
meta-metamodel layer. Note that the top MOF layer is hard wired in the sense that it is �xed, while the other
layers are �exible and allow to express various metamodels such as the UML metamodel or the metamodel
for OWL DL ontologies, SWRL rules and ontology mappings.

2.1.2 A Networked Ontology Metamodel

The ontology metamodel as well as a UML pro�le are grounded in MOF in that they are de�ned in terms
of the MOF meta-metamodel. The UML pro�le mechanism is an extension mechanism to tailor UML to
speci�c application areas. UML pro�les de�ne a visual notation for optimally supporting the speci�cation of
networked ontology models. This visual syntax is based on the metamodel. Mappings in both directions
between the metamodel and the pro�le have to be established.
However, the OWL ontology metamodel is just one part of the networked ontology metamodel. The meta-
model consists of several modules. The core module, i.e. the OWL metamodel, is extended by different
modules that provide additional features, e.g. rules or mappings. In many application scenarios, only partic-
ular aspects of the networked ontology model are needed. In these cases, only the relevant modules need
to be supported and used.
While the OWL ontology metamodel has a direct grounding in the OWL ontology language, the extensions
have a generic character in that they are formalism independent and allow a grounding in different formalisms.

2.1.3 MOF vs. UML

It should be noted that a MOF speci�cation is not merely a UML diagram. Instead, MOF borrows OO class-
modeling constructs from UML and presents them as the common means for describing the abstract syntax

2006 c© Copyright lies with the respective authors and their institutions.

Page 22 of 60 NeOn Integrated Project EU-IST-027595

NeOn Networked Ontology Metamodel Networked Ontology Metamodel

OWL Metamodel OWL Metamodel

Rule Metamodel Rule Metamodel
Mapping

Metamodel

Mapping

Metamodel

Modularization

Metamodel

Modularization

Metamodel

extends

Ontology Languages / Formalisms

OWL

SWRL

F - Logic C - OWL …

…

Language Mappings / Groundings

DL for II

Figure 2.3: Modules of the Networked Ontology Metamodel and possible groundings in ontology languages

of modeling constructs. Thus, MOF metamodels look like UML class models, and one can use UML class-
modeling tools to create them.

2.2 Design Considerations

Modularization The metamodel consists of several modules. The core module, i.e. the OWL metamodel,
is extended by different modules that provide additional features, e.g. modularization, mappings, etc. In many
application scenarios, only particular aspects of the networked ontology model are needed. In these cases,
only the relevant modules need to be supported and used.

Compatibility with standards In terms of the metamodel, two aspects of standards are relevant: The
�rst aspect relates to the fact that we are using a standard formalism�namely the Meta Object Facility�
to describe the metamodel. The second aspect relates to the metamodel of networked ontologies itself:
A major design goal is compatibility with existing ontology languages. With the Web Ontology Language
OWL we have a standard for representing ontologies, therefore we provide a metamodel of OWL directly,
with a one-to-one translation. For the other aspects of networked ontologies (mappings, rules, . . .) no
such standards exist yet. In favor of general applicability we therefore provide generic metamodels for these
extensions that allow translations to different formalisms, as shown in Figure 2.3.

2.3 Semantics of the Metamodel

The MOF does not completely de�ne the semantics of the language speci�ed by a metamodel. The se-
mantic features of the MOF are limited to describing constraints on the structure of models, using the Object
Constraint Language OCL. Obviously, this is not suf�cient � and not intended � to capture the complete
semantics of arbitrary languages.
The actual semantics of the language speci�ed by the metamodel is de�ned by so called language mappings,
also called groundings. They de�ne the relationship with particular (logical) formalisms and provide the
semantics for the metamodel.
For the networked ontology model this means the following:

• Our metamodel for OWL DL ontologies has a one-to-one mapping to the abstract syntax of OWL DL
and thereby to its formal semantics.

D1.1.1 Networked Ontology Model Page 23 of 60

• The rule metamodel currently has a translation to SWRL and its semantics. However, SWRL is not
generally accepted as a standard for representing rules. Other proposals for rule languages exist,
which differ in their semantics. To support such languages (such as F-Logic) in the future, it would
either be possible to de�ne new language mappings from our metamodel to these languages, or to
de�ne different rule metamodels, each of which is tailored to a speci�c rules language.

• For the mapping metamodel, we deliberately abstained from subscribing to a particular mapping lan-
guage, but instead constructed the metamodel to be able to cover all relevant approaches to map-
ping languages. We believe that many of them are useful in different contexts and that a formalism-
independent metamodel is appropriate. The work on groundings in speci�c mapping languages is
work in progress and will be reported in subsequent deliverables.

• Also for the modularization metamodel, we did not subscribe to a speci�c language for modular ontolo-
gies. Different language mappings would allow to support various languages for modular ontologies.
As part of subsequent deliverables (D1.1.2 and D1.1.3) we will de�ne the appropriate semantics for
modular ontologies in NeOn.

2006 c© Copyright lies with the respective authors and their institutions.

Page 24 of 60 NeOn Integrated Project EU-IST-027595

Chapter 3

The OWL Metamodel

3.1 Design considerations

A metamodel for an ontology language can be derived from the modeling primitives offered by that language.
The formal semantics of OWL is derived from Description Logics (DL), an extensively researched KR for-
malism. Hence, most primitives offered by OWL can also be found in a Description Logic. Three species
of OWL have been de�ned. One variant called OWL Full can represent arbitrary RDF components inside of
OWL documents. This allows, for example, to combine the OWL language with arbitrary other representation
languages. From a conceptual perspective a metamodel for OWL Full necessarily has to include elements
for the representation of RDF.
Another variant called OWL DL states syntactic conditions on OWL documents, which ensure that only the
primitives de�ned within the OWL language itself can be used. OWL DL closely corresponds to the SHOIN(D)
description logic and all language features can be reduced1 to the primitives of the SHOIN(D) logic. Naturally,
a metamodel for OWL DL is smaller and less complex than a metamodel for OWL Full. Similarly, an OWL
DL metamodel can be built in a way such that all elements can be easily understood by people familiar
with description logics. A third variant called OWL Lite disallows some constructors of OWL DL, speci�cally
number restrictions are limited to arities 0 and 1. Furthermore, the oneOf class constructor is missing. Other
constructors such as class complement, which are syntactically disallowed in OWL Lite, can nevertheless
be represented via the combination of syntactically allowed constructors [Vol04][Corollary 3.4.1]. Hence, a
metamodel for OWL DL necessarily includes OWL Lite.
While OWL Full is the most expressive of the members of the OWL family that has mainly been de�ned
for compatibility with existing standards such as RDF, OWL Full is undecidable and thus impractical for
applications that require complete reasoning procedures. OWL DL as a sublanguage was designed to regain
computational ef�ciency, which is deemed important in the NeOn project. For OWL DL practical reasoning
algorithms are known, and increasingly more tools support this or slightly less expressive languages. We
therefore decided for OWL DL as the core of the metamodel for NeOn networked ontologies.

3.2 A Metamodel for OWL DL

This section will provide an overview of the OWL language whilst introducing our metamodel. Interested
readers may refer to the speci�cations [Mv03] for a full account of OWL. Our metamodel for OWL DL on-
tologies has a one-to-one mapping to the abstract syntax of OWL DL and thereby to its formal semantics. It
primarily uses basic well-known concepts from UML2. Additionally, the metamodel is augmented with con-
straints, expressed in the Object Constraint Language ([WK04]), specifying invariants that have to be ful�lled
by all models that instantiate the metamodel. Constraints are given in footnotes.

1Some language primitives are shortcuts for combinations of primitives in the logic.

D1.1.1 Networked Ontology Model Page 25 of 60

Ontology

AnnotatableElement

-uri:URI

OntologyElement

OntologyProperty

AnnotationProperty

Property

Class

Individual

DataRange

Figure 3.1: Main Elements of the OWL DL Metamodel

Class Property

−deprecated :Boolean =false

−functional:Boolean =false

ObjectProperty

−transitive :Boolean =false

−symmetric :Boolean =false

−inverseFunctional :Boolean =false

−/complex:Boolean

DatatypeProperty DataRange

domain*

range

*

range

inverseOf

*

*

Figure 3.2: Properties

Ontologies

URIs are used to identify all objects in OWL. Figure 3.1 shows the central part of the OWL DL metamodel.
Among others, it shows that every element of an ontology is a subclass of the class OntologyElement
and hence a member of an Ontology.

Properties

Properties represent named binary associations in the modeled knowledge domain. OWL distinguishes
two kinds of properties, so called object properties2 and datatype properties3. Figure 3.2 shows that both

2Object properties can only be subproperties of other object properties:
subPropertyOf->forAll(oclIsTypeOf(ObjectProperty)).

3Datatype properties can only be subproperties of other datatype properties:
subPropertyOf->forAll(oclIsTypeOf(DatatypeProperty)).

Property

*

equivalentProperty

*

subPropertyOf

Figure 3.3: Property axioms

2006 c© Copyright lies with the respective authors and their institutions.

Page 26 of 60 NeOn Integrated Project EU-IST-027595

OntologyProperty

OntologyOntologyPropertyValue

type

filler

ontologySlot*

Figure 3.4: Property axioms

are generalized by the abstract metaclass Property. Properties can be functional, i.e. their range may
contain at most one element. Their domain is always a class. Object properties may additionally be inverse
functional, transitive, symmetric or inverse to another property. Their range is Class45, while the range of
datatype properties is Datarange.
Users can relate properties by using two axioms, modeled as in Figure 3.3. Property subsumption
(subPropertyOf)6 speci�es that the extension of a property is a subset of the related property. Similarly,
property equivalence (equivalentProperty)7 de�nes extensional equivalence. OWL DL disallows that
object and datatype properties are related via axioms.

Ontology properties

Ontologies themselves can have properties, which are represented via the OntologyProperty meta-
class. For example, the ontology property owl:imports allows to logically include the elements of
one ontology in another ontology. OWL DL prede�nes several ontology properties and allows users to
de�ne further ontology properties. A concrete instance of an ontology property is represented through
OntologyPropertyValue, which instantiates a certain type of OntologyProperty and is a ref-
erence between two ontologies (cf. Figure 3.4).

Annotation properties

Given elements of an OWL ontology can be annotated with metadata. Several annotation prop-
erties, e.g. owl:versionInfo, are prede�ned and users can de�ne further annotation proper-
ties. We treat annotation properties similarly to ontology properties. However, the subject of an
AnnotationPropertyValue is an AnnotateableElement and the object is a Annotation, which
can be either a DataValue, a URI or an Individual (cf. Figure 3.5).

Class Constructors

In comparison to UML, OWL DL does not only allow to de�ne simple named classes. Instead, classes can
be formed with several class constructors (cf. Figure 3.6). One can conceptually distinguish the boolean
combination of classes, restrictions and enumerated classes. EnumeratedClass is only available in OWL

4A property is complex, when it is functional or inverse functional, when it is used in a (unquali�ed) cardinality restriction, when it
contains a complex inverse, or when it has a complex superproperty:
complex=functional or inverseFunctional
or NumberRestriction.allInstances()->exists(onProperty=self)
or inverseOf->exists(complex)
or subPropertyOf->exists(complex).

5OWL DL mandates that no complex property may be transitive:
complex implies not transitive.

6This association is transitive:
Property.allInstances()-> forAll(r,s,t|(r.subPropertyOf->includes(s)
and s.subPropertyOf->includes(t) implies r.subPropertyOf->includes(t))).

7Every equivalent property is a superproperty:
subPropertyOf->includesAll(equivalentProperty).

D1.1.1 Networked Ontology Model Page 27 of 60

AnnotationProperty

AnnotationPropertyValue

AnnotateableElement

Annotation

DataValue << primitive >>

URI

Individual

subject

object

type

Figure 3.5: Annotations

Class

ClassDescription AtomicClass

−deprecated :Boolean =false

BooleanCombination Restriction

Complement Intersection Union

EnumeratedClass

Individual

combinationOf

*

oneOf

*

Figure 3.6: Class constructors

2006 c© Copyright lies with the respective authors and their institutions.

Page 28 of 60 NeOn Integrated Project EU-IST-027595

Restriction

QualifiedNumberRestriction

−minCardinality :int

−maxCardinality :int

UniversalRestriction

NumberRestriction ExistentialRestriction

HasValue

Property

Class

Datatype

onProperty
0..1

toClass

0..1
toDatatype

Figure 3.7: OWL Restrictions

DL and is de�ned through a direct enumeration of named8 individuals. Boolean combinations of classes are
provided through Complement9, Intersection and Union.
Restrictions are class constructors that restrict the range of a property for the context of the class (cf. Fig-
ure 3.7). Restrictions can be stated on datatype and object properties. Accordingly they limit the value to a
certain datatype or class extension101112. UniversalRestriction provides a form of universal quan-
ti�cation that restricts the range of a class to the extension of a certain class or datatype13. We introduce an
abstract metaclass QualifiedNumberRestriction to relate unquali�ed cardinality restrictions (which
are available in OWL) and existential restrictions. Obviously the minimum cardinality is by default 0 and may
not be negative14 while the maximum cardinality should not be smaller than the minimum cardinality15, even
though OWL allows this by making the class de�nition become inconsistent. Unquali�ed number restrictions
(NumberRestriction) are available in OWL and de�ne how many elements the range of the given prop-
erty has to have while not restricting the type of the range16. ExistentialRestricion can logically
and semantically be seen as a special type of quali�ed number restrictions where the cardinality is �xed17.
OWL also provides HasValue, which is a special type of existential restriction allowing us to specify classes
based on the existence of particular property values18.

8The enumerated individuals are not anonymous:
oneOf->forAll(name.notEmpty()).

9Exactly one class is involved:
combinationOf->size()=1.

10The value can be either one class or one datatype:
toClass->size()=1 xor toDatatype->size()=1.

11The value of a datatype property can only be a datatype:
onProperty.ocllsKindOf(DatatypeProperty) implies toDatatype->size()=1.

12The value of an object property can only be a class:
onProperty.ocllsKindOf(ObjectProperty) implies toClass->size()=1.

13The reader may note that this is logically not understood as a constraint but as an entailment rule.
14The minimum cardinality is nonnegative:

minCardinality>=0.
15The minimum cardinality should not excess the maximum cardinality:

maxCardinality>=minCardinality.
16The cardinality restriction is unquali�ed:

toClass=owl::Thing or toDatatype=rdfs::Literal.
17The minimum cardinality is 1, the maximum cardinality is in�nite:

minCardinality=1 and maxCardinality=*.
18toClass.oclssTypeOf(EnumeratedClass)

and toClass.oclAsType(EnumeratedClass).oneOf->size()=1)
or (toDatatype.ocllsTypeOf(EnumeratedDatatype)

D1.1.1 Networked Ontology Model Page 29 of 60

Class

*

disjointWith

*

equivalentClass

*

subClassOf

Figure 3.8: Class axioms

Figure 3.9: Data types

Figure 3.8 shows that classes can be related with each other using class axioms, such as class
subsumption (subClassOf)192021, class equivalence (equivalentClass)22 and class disjointness
(disjointWith). These relations between classes are naturally modelled as associations.

Datatypes

The datatype system of OWL is provided by XML Schema, which provides a prede�ned set of named
datatypes (PrimitiveType), e.g. strings xsd:string. Additionally users may specify a range of data
values (EnumeratedDataRange), using the oneOf construct (cf. Figure 3.9).

Knowledge Base

OWL does not follow the clear conceptual separation between terminology (T-Box) and knowledge base
(A-box) that is present in most description logics and in MOF, which distinguishes between model and in-
formation. The knowledge base elements (cf. Figure 3.10) are part of an ontology. An Individual
is an instantiation of a Class and is the subject of a PropertyValue, which instantiates a
Property. Naturally, an ObjectPropertyValue23 relates its subject with another Individual
whilst a DatatypePropertyValue24 relates its subject with a DataValue, which is an instance of
a primitive datatype.
Individuals25 can be related via three axioms, as shown in Figure 3.11. The sameAs26 association allows

and toDatatype.oclsAsType(EnumeratedDatatype).oneOf->size()=1).
19The subclass relation is transitive:

Class.allInstances()->forAll(b,c,d|(b.subClassOf->includes(c)
and c.subClassOf->includes(d)) implies b.subClassOf->includes(d)).

20Every class is a subclass of owl:Thing:
subClassOf->includes(owl::Thing).

21owl:Nothing is a superclass of every class:
owl::Nothing.subClassOf->includes(self).

22Every equivalent class is trivially a superclass:
subClassOf->includesAll(equivalentClass).

23This can only be an instance of an object property:
type.oclIsTypeOf(ObjectProperty).

24This can only be an instance of a datatype property:
type.oclIsTypeOf(DatatypeProperty).

25Every Individual is an instance of owl:Thing:
type->includes(owl::Thing).

26This attribute is symmetric:
sameAs->forAll(sameAs(self)).

2006 c© Copyright lies with the respective authors and their institutions.

Page 30 of 60 NeOn Integrated Project EU-IST-027595

Class Property

Individual PropertyValue

ObjectPropertyValue DatatypePropertyValue

DataType

DataValue

type type type

objectobject

subject

Figure 3.10: Knowledge Base Items

Individual AllDifferent
* distinctMembers

*

differentFrom

*

sameAs

Figure 3.11: Knowledge Base Axioms

users to state that two individuals (with different names) are equivalent. The differentFrom27 association
speci�es that two individuals are not the same28. AllDifferent is a simpler notation for the pairwise
difference of several individuals.

27This feature is symmetric:
differentFrom->forAll(differentFrom(self)).

28The reader may note that OWL does not take the unique names assumption.

D1.1.1 Networked Ontology Model Page 31 of 60

Chapter 4

The Rule Metamodel

4.1 Design Considerations

Although OWL DL is very expressive, it is a decidable fragment of �rst-order logic, and thus cannot express
arbitrary axioms: the only axioms it can express are of a certain tree-structure. In contrast, decidable rule-
based formalism such as function-free Horn rules do not share this restriction, but lack some of the expressive
power of OWL DL: they are restricted to universal quanti�cation and lack negation in their basic form. To
overcome the limitations of both approaches, several rule extensions for OWL have been heavily discussed
[W3C05a]. Just recently the W3C has chartered a working group for the de�nition of a Rule Interchange
Format [W3C05b]. One of the most prominent proposals for an extension of OWL DL with rules is the
Semantic Web Rule Language (SWRL, [HPSB+04]). SWRL proposes to allow the use of Horn-like rules
together with OWL axioms. We extend our metamodel for OWL DL presented in the previous chapter with a
metamodel for SWRL that directly resembles the extensions of SWRL to OWL DL.
While we consider SWRL as the most relevant rule extension for OWL in the context of NeOn, other rule
languages may become relevant as well. In the following we brie�y discuss how such languages could at a
later stage be incorporated in our approach.

4.1.1 Possible Directions to Cover other Rule Languages

DL-safe rules [MSS04] are a decidable subset of SWRL. As every DL-safe rule is also a SWRL rule, DL-safe
rules are covered by our metamodel. Using additional constraints (e.g. in OCL) it can be checked whether
a rule is DL-safe. It should be noted that SWRL is not the only rule language which has been proposed
for ontologies. Other prominent alternatives for rule languages are mentioned in the W3C Rule Interchange
Format Working Group charter [W3C05b], namely the Web Rule Language WRL [ABdB+05] and the rules
fragment of the Semantic Web Service Language SWSL [GKM05]. These languages differ in their semantics
and consequently also in the way in which they model implicit knowledge for expressive reasoning support.
From this perspective, it could be desirable to de�ne different metamodels, each of which is tailored to a
speci�c rules language.
From the perspective of conceptual modeling, however, different rule languages appear to be very similar to
each other. This opens up the possibility to reuse the SWRL metamodel de�ned here by augmenting it with
some features to allow for the modeling of language primitives which are not present in SWRL. As a result,
one would end up with a common metamodel for different rules languages. An advantage of the latter ap-
proach would be a gain in �exibility. Overcoming the intricate semantic differences between different ontology
and rule languages � that are often dif�cult to understand for the practitioner � is an ongoing research effort.
Building on recent advances in this �eld, e.g. [MHRS06] and we are con�dent of extending the networked
ontology model to integrate both logic programming based languages (F-Logic) and DL-based languages
(OWL).

2006 c© Copyright lies with the respective authors and their institutions.

Page 32 of 60 NeOn Integrated Project EU-IST-027595

4.2 A Metamodel for SWRL Rules

We propose a metamodel for SWRL rules as a consistent extension of the metamodel for OWL DL ontolo-
gies which we described in the previous section of this paper. Figure 4.1 shows the metamodel for SWRL
rules. We discuss the metamodel step by step along the SWRL speci�cations. To state the rule metamodel
more precisely, we augment it with appropriate OCL constraints. We list them in footnotes and explain their
semantics. Interested readers may refer to the speci�cations [HPSB+04] for a full account of SWRL. For
a complete reference of the formal correspondence between the metamodel and SWRL itself, we refer the
reader to [BH06b].

4.2.1 Rules

SWRL de�nes rules as part of an ontology. The SWRL metamodel � as shown in Figure 4.1 � de�nes
Rule as a subclass of OntologyElement. OntologyElement is de�ned in the OWL DL meta-
model (Figure 3.1) as an element of an Ontology, via the composition link between NamedElement
and Ontology. As can also be seen in Figure 3.1, the class OntologyElement is a subclass of the
class AnnotatableElement, which de�nes that rules can be annotated. As annotations are modeled in
the OWL DL metamodel, a URI reference can be assigned to a rule for identi�cation.
A rule consists of an antecedent and a consequent, also referred to as the body and the head of the rule,
respectively. Both the antecedent and the consequent consist of a set of atoms which can possibly be empty,
as depicted by the multiplicity in Figure 4.1. Informally, a rule says that if all atoms of the antecedent hold,
then the consequent holds. An empty antecedent is treated as trivially true, whereas an empty consequent
is treated as trivially false.
The same antecedent or consequent can be used in several rules, as indicated in the metamodel by the
multiplicity on the association between Rule on the one hand and Antecedent or Consequent on the
other hand. Similarly, the multiplicities of the association between Antecedent and Atom and of the
association between Consequent and Atom de�ne that an antecedent and a consequent can hold zero
or more atoms. The multiplicity in the other direction de�nes that the same atom can appear in several
antecedents or consequents. According to the SWRL speci�cations, every Variable that occurs in the
Consequent of a rule must occur in the Antecedent of that rule, a condition referred to as �safety�1..

4.2.2 Atoms, Terms and Predicate symbols

The atoms of the antecedent and the consequent consist of predicate symbols and terms. According to
SWRL, they can have different forms:

• C(x), where C is an OWL description and x an individual variable or an OWL individual2, or C is an
OWL data range and x either a data variable or an OWL data value3;

• P (x, y), where P is an OWL individual valued property and x and y are both either an individual

1context Rule inv:
self.hasConsequent.containsAtom->term->forAll(t|
t.oclIsTypeOf(Variable) implies (self.hasAntecedent.containsAtom->term->exists(t))).

2context Atom inv:
(self.hasPredicateSymbol.oclIsTypeOf(Class))
implies (self.term->size()=1
and ((self.term.oclIsTypeOf(IndividualVariable))
or (self.term.oclIsTypeOf(Individual)))).

3context Atom:
(self.hasPredicateSymbol.oclIsTypeOf(DataRange))
implies ((self.term->size()=1)
and ((self.term.oclIsTypeOf(DataVariable))
or (self.term.oclIsTypeOf(DataValue)))).

D1.1.1 Networked Ontology Model Page 33 of 60

variable or an OWL individual4, or P is an OWL data valued property, x is either an individual variable
or an OWL individual and y is either a data variable or an OWL data value5;

• sameAs(x, y), where x and y are both either an OWL individual or an individual variable;

• differentFrom(x, y), where x and y are both either an OWL individual or an individual variable;

• builtIn(r, x, ...), where r is a built-in predicate and x is a data variable or OWL data value6.
A builtIn atom could possibly have more than one variable or OWL data value.

OntologyElement

Rule

Antecedent Consequent

Atom

PredicateSymbol

Class DataRange Property BuiltIn

−builtInID:URI

Term

Variable Constant

TermList

−order:int

DataVariable IndividualVariable Individual DataValue

hasConsequenthasAntecedent

containsAtomcontainsAtom

hasPredicateSymbol

* *

* *

* *

* *

*

1 1

1

1
1

Figure 4.1: The Rule De�nition Metamodel

The �rst of these�OWL description, data range, and property�were already provided in the OWL DL meta-
model namely as metaclasses Class, DataRange, and Property, respectively. As can be seen in
Figure 4.1, the predicates Class, DataRange, Property, and BuiltIn are all de�ned as subclasses
of the class PredicateSymbol, which is associated to Atom. The remaining two atom types, sameAs
and differentFrom, are represented as speci�c instances of PredicateSymbol.
To de�ne the order of the atom terms, we put a class TermOrder in between Atom and Term. This UML
association class connects atoms with terms and de�nes the term order via the attribute order.

4context Atom inv:
(self.hasPredicateSymbol.oclIsTypeOf(ObjectProperty))
implies ((self.term->size()=2)
and (self.term->forAll((oclIsTypeOf(IndividualVariable))
or (oclIsTypeOf(Individual))))).

5context Atom inv:
(self.hasPredicateSymbol.oclIsTypeOf(DatatypeProperty))
implies ((self.term->size()=2)
and ((self.termList.order=1) implies ((self.term.oclIsTypeOf(IndividualVariable)) or
(self.term.oclIsTypeOf(Individual))))
and ((self.termList.order=2) implies ((self.term.oclIsTypeOf(DataVariable))
or (self.term.oclIsTypeOf(DataValue))))) .

6context Atom inv:
(self.hasPredicateSymbol.oclIsTypeOf(BuiltIn))
implies (self.term->forAll(oclIsTypeOf(DataVariable) or oclIsTypeOf(DataValue))).

2006 c© Copyright lies with the respective authors and their institutions.

Page 34 of 60 NeOn Integrated Project EU-IST-027595

Chapter 5

The Mapping Metamodel

5.1 Design Considerations

In contrast to the area of ontology languages, where the Web Ontology Language OWL has become a
de facto standard for representing and using ontologies, there is no agreement yet on the nature and the
right formalism for de�ning mappings between ontologies. In a recent discussion on the nature of ontology
mappings, some general aspects of mapping approaches have been identi�ed [SU05]. We brie�y discuss
these aspects in the following and clarify our view on mappings that is re�ected in the proposed metamodel
with respect to these aspects.

5.1.1 What do mappings de�ne?

We here restrict our attention to declarative mapping speci�cations. In particular, we see mappings as axioms
that de�ne a semantic relation between elements in different ontologies.
A number of different kinds of semantic relations have been proposed. Most common are the following kinds
of semantic relations:

Equivalence (≡) Equivalence states that the connected elements represent the same aspect of the real
world according to some equivalence criteria. A very strong form of equivalence is equality, if the
connected elements represent exactly the same real world object.

Containment (v,w) Containment states that the element in one ontology represents a more speci�c aspect
of the world than the element in the other ontology. Depending on which of the elements is more
speci�c, the containment relation is de�ned in the one or in the other direction.

Overlap (o) Overlap states that the connected elements represent different aspects of the world, but have
an overlap in some respect. In particular, it states that some objects described by the element in the
one ontology may also be described by the connected element in the other ontology.

In some approaches, these basic relations are supplemented by their negative counterparts. The corre-
sponding relations can be used to describe that two elements are not equivalent (6≡), not contained in each
other (6v) or not overlapping or disjoint respectively (Ø). Adding these negative versions of the relations
leaves us with eight semantic relations that cover all existing proposals for mapping languages. In addition
to the type of semantic relation, an important distinction is whether the mappings are to be interpreted as
extensional or as intensional relationships.

Extensional In extensional mapping de�nitions, the semantic relations are interpreted as set-relations be-
tween the sets of objects represented by elements in the ontologies. Intuitively, elements that are
extensionally the same have to represent the same set of objects.

D1.1.1 Networked Ontology Model Page 35 of 60

Intensional In the case of intensional mappings, the semantic relations relate the elements directly, i.e. con-
sidering the properties of the element itself. In particular, if two elements are intensionally the same,
they refer to exactly the same real world object.

5.1.2 What do mappings preserve?

It is normally assumed that mappings preserve the `meaning' of the two models in the sense that the
semantic relation between the intended interpretations of connected elements is the one speci�ed in the
mapping. A problem with this assumption is that it is virtually impossible to verify this property. Instead, there
are a number of veri�able formal properties that mappings can be required to satisfy. Examples of such
formal properties are the satis�ability of the overall model, the preservation of possible inferences or the
preservation of answers to queries. Often, such properties can only be stated relative to a given application
context, such as a set of queries to be answered or a set of tasks to be solved.

The question of what is preserved by a mapping is tightly connected to the hidden assumptions made by
different mapping formalisms. A number of important assumptions that in�uence this aspect have been
identi�ed and formalized in [SSW05a]. A �rst basic distinction concerns the relationship between the sets
of objects (domains) described be the mapped ontologies. Generally, we can distinguish between a global
domain and local domain assumption:

Global Domain It is assumed that both ontologies describe exactly the same set of objects. As a result,
semantic relations are interpreted in the same way as axioms in the ontologies. There are special
cases of this assumption, where one ontology is regarded as a `global schema' and describes the set
of all objects, other ontologies are assumed to describe subsets of these objects.

Local Domains It is not assumed that ontologies describe the same set of objects. This means that map-
pings and ontology axioms normally have different semantics. There are variations of this assumption
in the sense that sometimes it is assumed that the sets of objects are completely disjoint and some-
times they are assumed to overlap each other.

These assumptions about the relationship between the domains are especially important for extensional
mapping de�nitions, because in cases where two ontologies do not talk about the same set of instances,
the extensional interpretation of a mapping is problematic as classes that are meant to represent the same
aspect of the world can have disjoint extensions. In such cases, e.g. in C-OWL [BGvH+03], the relationship
is not de�ned directly as a set relationship between the extensions of the concepts, but can be de�ned in
terms of domain relations that connect the interpretation domains by codifying how elements in one domain
map into elements of the other domain.
Other assumptions made by approaches concerns the use of unique names for objects�this assumption
is often made in the area of database integration�and the preservation of inconsistencies across mapped
ontologies. In order to make an informed choice about which formalism to use, these assumptions have to
be represented by the modeler and therefore need to be part of the proposed metamodel.

5.1.3 What do mappings connect?

In the context of this work, we decided to focus on mappings between ontologies represented in OWL DL.
This restriction makes it much easier to deal with this aspect of ontology mappings as we can refer to the
corresponding metamodel for OWL DL speci�ed in [BH06a]. In particular, the metamodel contains the class
OntologyElement that represents an arbitrary part of an ontology speci�cation. While this already covers
many of the existing mapping approaches, there are a number of proposals for mapping languages that rely
on the idea of view-based mappings and use semantic relations between (conjunctive) queries to connect
models, which leads to a considerably increased expressiveness.

2006 c© Copyright lies with the respective authors and their institutions.

Page 36 of 60 NeOn Integrated Project EU-IST-027595

Mapping

−uri:URI

−uniqueNameAssumption :Boolean

−inconsistencyPropagation :Boolean

−domainAssumption :String ={overlap, soundContainment,

completeContainment, equivalence}

Ontology

MappingAssertion

SemanticRelation

−interpretation:String ={intensional, extensional}

−negated :Boolean

Equivalence Containment

−direction:String ={sound. complete}

Overlap

MappableElement

OntologyElement

* sourceOntology

* targetOntology

*
targetElement

* sourceElement

Query

hasSemanticRelation

1

1

1

1

1

Figure 5.1: Metamodel for ontology mappings

5.1.4 How are mappings organized?

The �nal question is how mappings are organized. They can either be part of a given model or be speci�ed
independently. In the latter case, the question is how to distinguish between mappings and other elements in
the models. Mappings can be uni� or bidirectional. Further, it has to be de�ned whether a set of mappings
is normative or whether it is possible to have different sets of mappings according to different applications,
viewpoints or different matchers.

In this work, we use a mapping architecture that has the greatest level of generality in the sense that other
architectures can be simulated. In particular, we make the following choices:

• A mapping is a set of mapping assertions that consist of a semantic relation between mappable ele-
ments in different ontologies

• Mappings are �rst-class objects that exist independently of the ontologies. Mappings are directed and
there can be more than one mapping between two ontologies

These choices leave us with a lot of freedom for de�ning and using mappings. Approaches that see mappings
as parts of an ontology can be represented by the ontology and a single mapping. If only one mapping is
de�ned between two ontologies, this can be seen as normative. Bi-directional mappings can be described in
terms of two directed mappings.

5.2 A Metamodel for Ontology Mappings

We propose a metamodel for OWL ontology mappings as a consistent extension of the metamodels for
OWL DL ontologies and rules, which supports mappings as described in Section 5.1. Constraints in OCL
are de�ned to concretize the metamodel for a speci�c formalism. Like this, a constraint checker could for
example check to which concrete formalism a certain UML model of mappings conforms.
Figure 5.1 shows the metamodel for mappings. In the �gures, darker grey classes denote classes from the
metamodels of OWL DL and rule extensions. The central class in the metamodel is the class Mapping,

D1.1.1 Networked Ontology Model Page 37 of 60

Query

Atom

PredicateSymbol

Class DataRange Property BuiltIn

−builtInID:URI

Term

VariableConstant

TermList

−order:int

DataVariable IndividualVariableIndividual DataValue

*

*

* *

*

1..*

*

1

1
1

containsAtom

hasDistinguishedVariable

Figure 5.2: Metamodel for ontology mappings - de�nition of a query

having four attributes. The URI, de�ned by the attribute uri, allows to uniquely identify a mapping and refer
to it as a �rst-class object.
A mapping is always de�ned between two ontologies. An ontology is represented by the class Ontology
in the OWL DL metamodel. Two associations from Mapping to Ontology, sourceOntology and
targetOntology, specify the source respectively the target ontology of the mapping. Cardinalities on
both associations denote that to each Mapping instantiation, there is exactly one Ontology connected as
source and one as target.
A mapping consists of a set of mapping assertions, denoted by the MOF aggregation relationship be-
tween the two classes Mapping and MappingAssertion. The elements that are mapped in a
MappingAssertion are de�ned by the class MappableElement. A MappingAssertion is
de�ned through exactly one SemanticRelation, one source MappableElement and one target
MappableElement. This is de�ned through the three associations starting from MappingAssertion
and their cardinalities.
In Section 5.1.1, we have introduced four semantic relations along with their logical negation to be de�ned
in the metamodel. Two of these relationship types are directly contained in the metamodel through the
subclasses Equivalence and Overlap of the class SemanticRelation. The other two, containment
in either direction, are de�ned through the subclass Containment and its additional attribute direction,
which can be sound (v) or complete (w).
The negated versions of all semantic relations are speci�ed through the boolean attribute negated of the
class SemanticRelation. For example, a negated Overlaps relation speci�es the disjointness of two
elements. The other attribute of SemanticRelation, interpretation, de�nes whether the mapping
assertion is assumed to be interpreted intentionally or extensionally. Please note that the metamodel in
principle supports all semantic relations for all mappable elements, including individuals.
As discussed in Section 5.1, a mapping assertion can connect two mappable elements, which may be ontol-
ogy elements or queries. To support this, MappableElement has two subclasses OntologyElement
and Query. The former is previously de�ned in the OWL DL metamodel. The class Query reuses con-
structs from the SWRL metamodel. The reason for reusing large parts of the rule metamodel lies in the
fact that conceptually rules and queries are of very similar nature [TF05]: A rule consists of a rule body
(antecedent) and rule head (consequent), both of which are conjunctions of logical atoms. A query can be
considered as a special kind of rule with an empty head. The distinguished variables specify the variables
that are returned by the query. Informally, the answer to a query consists of all variable bindings for which the
grounded rule body is logically implied by the ontology. Figure 5.2 shows this connection and shows how a
Query is composed. They depict how atoms from the antecedent and the consequent of SWRL rules can be
composed. Similarly, a Query also contains a PredicateSymbol and some, possibly just one, Terms.
We de�ned the permitted predicate symbols through the subclasses Class, DataRange, Property and
BuiltIn. Similarly, the four different types of terms are speci�ed as well. The UML association class

2006 c© Copyright lies with the respective authors and their institutions.

Page 38 of 60 NeOn Integrated Project EU-IST-027595

TermList between Atom and Term allows to identify the order of the atom terms. Distinguished variables
of a query are differentiated through an association between Query and Variable.

5.2.1 OCL Constraints for C-OWL

As explained before, we de�ne OCL constraints on the mapping metamodel to concretize it according to
speci�c formalism. This section lists the constraints for the C-OWL formalism.

• C-OWL does not have unique name assumption:
context Mapping inv:
self.uniqueNameAssumption = false

• C-OWL does not have inconsistency propagation:
context Mapping inv:
self.inconsistencyPropagation = false

• The domain assumption is always overlap:
context Mapping inv:
self.DomainAssumption = 'overlap'

• Mappings can not be de�ned between queries; mappable elements are object properties, classes and
individuals:
context MappableElement inv:
self.oclIsTypeOf(ObjectProperty) or
self.oclIsTypeOf(Class) or
self.oclIsTypeOf(Individual)

• Elements being mapped to each other, must be of the same kind:
context MappingAssertion.sourceElement.oclType : OclType
body MappingAssertion.targetElement.ocltype

• C-OWL supports the following semantic relations: equivalence, containment (sound as well as com-
plete), overlap and negated overlap (disjoint):
context SemanticRelation inv:
(self.oclIsTypeOf (Equivalence) and self.negated = false) or
(self.oclIsTypeOf(Containment) and self.negated = false) or
self.oclIsTypeOf(Overlap)

5.2.2 OCL Constraints for DL-Safe Mappings

As for C-OWL, for DL-Safe Mappings we also de�ne OCL constraints which specialize the abstract meta-
model in the �rst part of this chapter. We list the constraints below.

• DL-safe mappings have no unique name assumption:
context Mapping inv:
self.uniqueNameAssumption = false

• DL-safe mappings have inconsistency propagation:
context Mapping inv:
self.inconsistencyPropagation = true

D1.1.1 Networked Ontology Model Page 39 of 60

• The domain assumption is always equivalence:
context Mapping inv:
self.domainAssumption = 'equivalence'

• Mappable Elements are queries, Properties, Classes, Individuals and DataRange:
context MappableElement inv:
self.oclIsTypeOf(Query) or
self.oclIsTypeOf(Property) or
self.oclIsTypeOf(Class) or
self.oclIsTypeOf(Individual) or
self.oclIsTypeOf(DataRange)

• Elements being mapped to each other, must be of the same kind (this means, if someone wants to
map e.g. a concept to a query, the concept should be modelled as a query):
context MappingAssertion.sourceElement.oclType : OclType
body MappingAssertion.targetElement.oclType

• If queries are being mapped to each other, they must have the same distinguished variables:
context MappingAssertion inv:
(self.sourceElement.oclIsTypeOf(Query)
and self.targetElement.oclIsTypeOf(Query))
implies (self.sourceElement.hasDistinguishedVariable
= self.targetElement.hasDinstinguishedVariable)

• In DL-safe mappings, interpretation is always extensional:
context SemanticRelation inv:
self.interpretation = ÔextensionalÕ

• DL-safe mappings support the following semantic relations: equivalence and containment (sound as
well as complete):
context SemanticRelation inv:
(self.oclIsTypeOf(Equivalence) and self.negated = false) or
(self.oclIsTypeOf(Containment) and self.negated = false)

2006 c© Copyright lies with the respective authors and their institutions.

Page 40 of 60 NeOn Integrated Project EU-IST-027595

Chapter 6

The Metamodel for Modular Ontologies

In software engineering, a modular software is a program in which signi�cant parts, modules, are identi�ed.
A module generally plays a particular role in the whole program that, when combined with the other mod-
ules, contributes to the objective of the overall software. Well known advantages of modular design include
clarity, reusability, and extensibility: a module is designed to be an intrinsically self-contained and reusable
component, de�ned and managed independently from the programs it is intended to be included in.
It is a common opinion that ontology engineering shares a lot with software engineering, and the advantages
of having modular ontologies instead of big and monolithic ones are easy to understand. Ontology modules
are made to be reusable knowledge components, facilitating collaborative design and maintenance within
a network of ontologies. Therefore, the goal of this chapter is to come up with a language for de�ning
and managing ontology modules, as a part of the NeOn metamodel. We here directly build on the OWL
metamodel for the speci�cation of the content of a module and the mapping metamodel to relate the content
of heterogeneous modules.

6.1 Design Considerations

Modularization is essential to support collaborative ontology editing and browsing, reuse and selection.
Within the networked scenario, ontologies are mainly built in distributed locations, which means naturally,
they are modules in a network of ontologies. At the same time, ontologies are dif�cult to manage especially
when they are interconnected in a network. Interdependencies between modules of interconnected ontolo-
gies have to be made clear so that these modules can be easily managed (e.g., reused, shared). Ontology
selection and reuse will play a major part in the future of the Semantic Web because with the increasing num-
ber of ontologies available over the internet, people will more likely use ontologies just like program libraries
by selecting and reusing ontology modules [dSM06]. Modularization will offer the possibility for a more �ne-
grained sharing mechanism where ontology modules are well encapsulated and ready for future reuse and
development. Many formalisms for handling ontology modules have been proposed [BS03, SK03, SP04],
however, they have their own limitations in some scenarios [SR06, BCH06b].

6.1.1 Existing Formalisms for Ontology Modularization

In the following we provide an overview of several modular ontology formalisms.

Modularization with OWL Import The OWL ontology language provides limited support to modular ontolo-
gies: an ontology document � identi�ed via its ontology URI � can be imported by another document using
the owl:imports statement. The semantics of this import statement is that all de�nitions contained in the
imported ontology document are included in the importing ontology, as if they were de�ned in the importing
ontology document. It is worth to mention that owl:imports is directed �only the importing ontology is

D1.1.1 Networked Ontology Model Page 41 of 60

affected� and transitive �if A imports B and B imports C, then A also imports the de�nitions contained in
C. Moreover, cyclic imports are allowed (e.g. A imports B and B imports A).
One of the most commonly mentioned weaknesses of the importing mechanism in OWL is that it does
not provide any support for partial import [VOM02, PSZ06]. Even if only a part of the imported ontology
is relevant or agreed in the importing ontology, every de�nition is included. Moreover, there is no logical
difference between imported de�nitions and proper de�nitions in the importing ontology: they share the
same interpretations.

Distributed Description Logics Unlike import mechanisms that include elements from some modules
into the considered one, Distributed Description Logics (DDLs) [BS02] adopt a linking mechanism, relating
the elements of "local ontologies" (called context) with elements of external ontologies (contexts). Each
context Mi is associated to its own local interpretation. Semantic relations are used to draw correspondences
between elements of local interpretation domains. These relations are expressed using bridge rules of the
form:

• i : φ
v−→ j : ψ (into rule), with semantics: rij(φIi) ⊆ ψIj

• i : φ
w−→ j : ψ (onto rule), with semantics: rij(φIi) ⊇ ψIj

where Ii = (∆i, .
Ii) (respectively Ij = (∆j , .

Ij)) is the local interpretation of Mi (respectively Mj), φ
and ψ are formulae, and rij is a domain relation mapping elements of the interpretation domain of Mi

to elements of the interpretation domain of Mj (rij ⊆ ∆i × ∆j). We only discuss bridge rules between
concepts (meaning that φ and ψ are concept names or expressions) since it is the only case that has reported
reasoning support [ST05].
Bridge rules between concepts cover one of the most important scenarios in modular ontologies: they are
intended to assert relationships, like concept inclusions, between elements of two different local ontologies.
However, mainly because of the local interpretation, they are not supposed to be read as classical DL axioms.
In particular, a bridge rule only affects the interpretation of the target element, meaning for example that
i : φ

v−→ j : ψ is not equivalent to j : ψ
w−→ i : φ.

Arbitrary domain relations may not preserve concept unsatis�ability among different contexts which may
result in some reasoning dif�culties [BCH06c]. Furthermore, while subset relations (between con-
cept interpretations) is transitive, DDL domain relations are not transitive, therefore bridge rules can-
not be transitively reused by multiple contexts. Those problems are recently recognized in several pa-
pers [BCH06b, BCH06c, SSW05b, SSW05a] and it is proposed that arbitrary domain relations should be
avoided. For example, domain relations should be one-to-one [SSW05a, BCH06c] and non-empty [SSW05b].

Integrity and Change of Modular Terminologies in DDL In�uenced by DDL semantics, [SK03] adopts
a view-based information integration approach to express relationships between ontology modules. In par-
ticular, in this approach ontology modules are connected by conjunctive queries. This way of connecting
modules is more expressive than simple one-to-one mappings between concept names but less expressive
than the logical language used to describe concepts.
[SK03] de�nes an ontology module � abstracted from a particular ontology language � as a triple M =
(C,R,O), where C is a set of concept de�nitions, R is a set of relation de�nitions and O is a set of object
de�nitions. A conjunctive query Q over an ontology module M = (C,R,O) is de�ned as an expression of
the form q1 ∧ ... ∧ qm, where qi is a query term of the form C(x), R(x, y) or x = y, C and R concept and
role names, respectively, and x and y are either variable or object names.
In a modular terminology it is possible to use conjunctive queries to de�ne concepts in one module in terms
of a query over another module. For this purpose, the set of concept de�nitions C is divided into two disjoint
sets of internally and externally de�ned concepts CI and CE , respectively, with C = CI ∪CE , CI ∩CE = ∅.

2006 c© Copyright lies with the respective authors and their institutions.

Page 42 of 60 NeOn Integrated Project EU-IST-027595

An internal concept de�nition is speci�ed using regular description logics based concept expressions with
the form of C v D or C ≡ D, where C and D are atomic and complex concepts, respectively.
An external concept de�nition is an axiom of the form C ≡ M : Q, where M is a module and Q is
a conjunctive query over M . It is assumed that such queries can be later reduced to complex concept
descriptions using the query-rollup techniques from [HT00] in order to be able to rely on standard reasoning
techniques. A modular ontology is then simply de�ned as a set of modules that are connected by external
concept de�nitions. The semantics of these modules is de�ned using the notion of a distributed interpretation
as introduced in the previous paragraph.
Although the de�nition of a module, in its abstract form shown above, may allow arbitrary concept, relation
and object de�nitions, only concept de�nitions is studied in [SK03]. This is due to the focus of the approach
to improve terminological reasoning with modular ontologies by precompiling implied subsumption relations.
In that sense it can be seen as a restricted form of DDLs that enables improved ef�ciency for special T-Box
reasoning tasks.

E-Connection While DDLs are focused on one type of relation between module elements, concept in-
clusion, the E-connection approach [KLWZ03, GPS04] allows to de�ne link properties from one module to
another. For example, if a module M1 contains a concept named 1 : Fish and a module M2 contains a
concept named 2 : Region, one can connect these two modules by de�ning a link property named livesIn
between 1 : Fish and 2 : Region.
Formally, given ontology modules {Li}, a (one-way binary) link E ∈ Eij , where Eij , i 6= j is the set of all
links from the module i to the module j, can be used to construct a concept in module i, with the syntax and
semantics speci�ed as follows:

• 〈E〉(j : C) or ∃E.(j : C) : {x ∈ ∆i|∃y ∈ ∆j , (x, y) ∈ EM , y ∈ CM}
• ∀E.(j : C) : {x ∈ ∆i|∀y ∈ ∆j , (x, y) ∈ EM → y ∈ CM}}
• ≤ nE.(j : C) : {x ∈ ∆i|#({y ∈ ∆j |(x, y) ∈ EM , y ∈ CM}) ≤ n}
• ≥ nE.(j : C) : {x ∈ ∆i|#({y ∈ ∆j |(x, y) ∈ EM , y ∈ CM}) ≥ n}

where M = 〈{mi}, {EM}E∈Eij 〉 is a model of the E-connected ontology, mi is the local model of Li; C is a
concept in Lj , with interpretation CM = Cmj ; EM ⊆ ∆i ×∆j is the interpretation of a E-connection E.
E-connection restricts the terms of modules, as well as their local domains, to be disjoint. This can be a
serious limitation in some scenarios, particularly because, to enforce domain disjointness, subclass relations
cannot be declared between concept of two different modules.

P-DL P-DL, Package-based Description Logics [BCH06d], uses importing relations to connect local mod-
els. In contrast to OWL, which forces the model of an imported ontology be completely embedded in a
global model, the P-DL importing relation is partial in that only commonly shared terms are interpreted in the
overlapping part of local models. The semantics of P-DL is given as the follows: the image domain relation
between local interpretations Ii and Ij (of package Pi and Pj) is rij ⊆ ∆i ×∆j . P-DL importing relation is:

• one-to-one: for any x ∈ ∆i, there is at most one y ∈ ∆j , such that (x, y) ∈ rij , and vice versa.

• compositionally consistent: rij = rik ◦rjk, where ◦ denotes function composition. Therefore, semantic
relations between terms in i and terms in k can be inferred even if k doesn't directly import terms from
i.

Thus, a P-DL model is a virtual model constructed from partially overlapping local models by merging
�shared� individuals.

D1.1.1 Networked Ontology Model Page 43 of 60

P-DL also supports selective knowledge sharing by associating ontology terms and axioms with �scope
limitation modi�ers (SLM)�. A SLM controls the visibility of the corresponding term or axiom to entities on
the web,in particular, to other packages. The scope limitation modi�er of a term or an axiom tK in package
K is a boolean function f(p, tK), where p is a URI of an entity, the entity identi�ed by p can access tK iff
f(p, t) = true. For example, some representative SLMs can be de�ned as follows:

• ∀p, public(p, t) := true, means t is accessible everywhere.

• ∀p, private(p, t) := (t ∈ p), means t is visible only to its home package.

P-DL semantics ensures that distributed reasoning with a modular ontology will yield the same conclusion
as that obtained by a classical reasoning process applied to an integration of the respective ontology mod-
ules [BCH06c]. However, reported result [BCH06a] only supports reasoning in P-DL as extensions of the
ALC DL. Reasoning algorithms for more expressive P-DL TBox, as well as for ABox reasoning, are still to
be investigated.

6.1.2 Requirements for a Module De�nition Languages

A Module is an Ontology. As shown in the above overview, there is generally no clear distinction between
the notion of ontology and the one of ontology module. A modular ontology is made of smaller local ontologies
that can be seen as self-contained and inter-related modules, combined together for covering a broader
domain. Indeed, an ontology is not inherently a module, but rather plays the role of a module for other
ontologies because of the way it is related to them in an ontology network. In other terms, an ontology
module is a self-contained ontology, seen according to a particular perspective, namely reusability. The
content of an ontology module does not differ from the one of an ontology, but a module should come with
additional information about how to reuse it, and how it reuse other modules.

Encapsulation / Information Hiding. The idea of encapsulation is crucial in modular software develop-
ment, but has not really been studied and implemented in the domain of ontologies yet. In software en-
gineering, it rely on the distinction between the implementation, i.e. internal elements manipulated by the
developer of the module, and the interface, i.e. the elements that are exposed to be reused. This distinc-
tion between interface and implementation cannot be clearly stated when using ontology technologies like
OWL. However, the essential role of a module interface is to guide the reusability of the module, by exposing
reusable elements and hiding intermediary internal ones (the "implementation details"). By de�ning the set
of reusable entities of an ontology module (the export interface), the developer of this module provide entry
points to it, and clearly states which are the elements that can be "safely reused". Elements that are hidden
behind the interface can then evolve, be re-designed or changed, without affecting the importing modules
relying on this export interface.

Partial Import. As already mentioned, the owl:imports mechanism has been criticized in several pa-
pers for being "global" (see e.g. [VOM02, PSZ06]): it is not possible when using this mechanism to import
only the relevant and useful elements in the importing ontology. Allowing partial import has many advan-
tages, among which scalability is probably the most obvious. For this reason, some intermediary solutions
have been recently proposed, using, prior to import, ontology partitioning [SK04, GPSK05] techniques or
some forms of reduction to a sub-vocabulary [SR06, Stu06, dSM06]. We believe that the set of elements that
are used in an importing module should be explicitly stated in the module de�nition, so that the in�uence of
the imported module is clari�ed. The semantics of the module de�nition language should re�ect the idea of
partial import by "ignoring" the de�nitions that are not related to the imported elements (the import interface),
preventing the importing module to deal with irrelevant knowledge, and giving the developer of such a module
the possibility to disagree with some part of the imported modules.

2006 c© Copyright lies with the respective authors and their institutions.

Page 44 of 60 NeOn Integrated Project EU-IST-027595

Ontology OntologyElement

OntologyModule Interface

exposes

exports

imports

imports

Mapping MappingAssertion

sourceOntology targetOntology

MappableElement

includes

sourceElement targetElement

** * *

11

1 1

Figure 6.1: Metamodel extensions for ontology modules

Links Between Modules. The formalisms for modular ontologies presented in the previous section can
be divided in two main approaches: importing and linking. The previous requirements are focused on the
importing approach, whereas languages like C-OWL and E-connection exclusively deal with the linking ap-
proach. In the NeOn framework, these two aspects are relevant, and should be considered together: even
when they are not imported, elements from different modules can be related through mappings. The NeOn
metamodel already provide the required elements for expressing mappings, and these can easily be consid-
ered as a part of the content of an ontology module. However, it is important to take this aspect into account
when designing the semantics of the module description language, as well as the operations for manipulating
modules, so that the two approaches, importing and linking, are well integrated. Indeed, scenarios where,
for example, there exist mappings between imported modules are not hard to imagine.

6.2 A Metamodel for Modular Ontologies

We propose a generic metamodel for modular ontologies according to the design considerations discussed
above. The metamodel is a consistent extension of the metamodels for OWL DL ontologies and mappings.
Figure 6.1 shows elements of the metamodel for modular ontologies. The central class in the metamodel
is the class OntologyModule. A module is modeled as a specialization of the class Ontology. The
intuition behind this modeling decision is that every module is also considered an ontology, enriched with
additional features. In other words, a module can also be seen as a role that a particular ontology plays.
In addition, an ontology provides an export interface and a set of import interfaces. The export interface,
modeled via the exports association, exposes the set of OntologyElements that are intended to be
reused by other modules.
The reuse of a module by another module is modeled via the regular imports relationship already pro-
vided by the class Ontology. To each imported ontology module is associated an import interface, mod-
eled through the imports association, that exposes the OntologyElements the importing module
reuse from the imported module. Additionally, a Module also provides an imports relationship with the
Mapping class, which is used to relate different ontology modules via ontology mappings.

D1.1.1 Networked Ontology Model Page 45 of 60

6.2.1 Abstract Syntax for Ontology Modules

The goal of this section is to come up with an abstract syntax for the ontology modularization. The purpose of
this is to identify the necessary information to be accommodated in an ontology module as well as structural
properties of a modularized networked ontology. This will be done on a solid formal basis which will enable
us to de�ne a corresponding semantics at a later stage.
We start by de�ning sets of identi�ers being used for unambiguously referring to ontology modules and
mappings that might be distributed over the Web. Obviously, in practice, URIs will be used for this purpose.
So we let

• IdModules be a set of MODULE IDENTIFIERS and

• IdMappings be a set of MAPPING IDENTIFIERS.

Next we introduce generic sets describing the used ontology language. They will be instantiated depending
on the concrete ontology language formalism used (e.g., OWL). Hence, let:

• Nam be a set of language NAMED ELEMENTS.
In the case of OWL, Nam will be thought to contain all class names, role names and individual names.

• Elem be a the set of ONTOLOGY ELEMENTS.
In the OWL case Elem would contain e.g. all complex class descriptions. Clearly, Elem will depend
on Nam (or roughly speaking: Nam delivers the �building blocks� for Elem).

• We use L : 2Nam → 2Elem to denote the function assigning to each set P of named elements the set
of ontology elements which can be generated out of P by the language constructs1,

• For a given set O of ontology axioms, let Sig(O) denote the set of named elements occurring in O, so
it represents those elements the axioms from O deal with.

Having stipulated those basic sets in order to describe the general setting, we are now ready to state the
notion of an ontology module on this abstract level.

De�nition 2 An ONTOLOGY MODULE OM is a tuple 〈id , Imp, I, M, O,E〉 where

• id ∈ IdModules is the identi�er of OM
• Imp ⊆ IdModules is a set of identi�ers of imported ontology modules (referencing those other modules

whose content has to be (partially) incorporated into the module),

• I is the set {Iid}id∈Imp of IMPORT INTERFACES, with Iid ⊆ Nam (characterizing which named ele-
ments from the imported ontology modules will be �visible� inside OM),

• M ⊆ IdMappings is a set of identi�ers of imported mappings (referencing � via mapping identi�ers �
those mappings between ontology modules, which are to be taken into account in OM),

• O is a set of ONTOLOGY AXIOMS (hereby constituting the actual content of the ontology),

• E ⊆ Sig(O)∪⋃
id∈Imp Iid is called EXPORT INTERFACE (telling which named entities from the ontology

module are �published�, i.e., can be imported by other ontology modules).

As a simple example let us consider an ontology moduleOMi (with module identi�er i) completely importing
another ontology module OMk (with module identi�er k) and exporting everything:
OMi = 〈i, {k}, {Sig(Ok)}, ∅, Oi, Sig(Oi) ∪ Sig(Ok)〉
In a further step we formally de�ne the term mapping (which is supposed to be a directed link between two
ontology modules establishing semantic correspondences between them).

1In most cases � and in particular for OWL � L(P) will be in�nite, even if P is �nite.

2006 c© Copyright lies with the respective authors and their institutions.

Page 46 of 60 NeOn Integrated Project EU-IST-027595

De�nition 3 A MAPPING M is a tuple 〈s, t, C〉 with

• s, t ∈ IdModules, with s being the identi�er of the source ontology module and t being the identi�er of
the target ontology module,

• C is a set of CORRESPONDENCES of the form e1 Ã e2 with e1, e2 ∈ Elem and Ã∈ R for a �xed set R
of CORRESPONDENCE TYPES2

To �nalize the de�nitional part, it remains to formally establish the connection between the ontology mod-
ules and mappings and their identi�ers. So we de�ne the module space which abstractly re�ects the URI
reference structure of the Web.

De�nition 4 A MODULE SPACE is de�ned as pair 〈Mod, Map〉 where

• Mod = {OMid}id∈IdModules
is a set of ontology modules (each endowed with a unique module iden-

ti�er) and

• Map = {Mmid}mid∈IdMappings
is a set of mappings (with associated unique mapping identi�ers).

We conclude this section by de�ning additional requirements to modules and module spaces which will be
assumed in the sequel:
We call a module space IMPORT-EXPORT-COMPATIBLE, if for everyOMid1 = 〈id1, Imp, I,M, O, E〉 ∈ Mod

and every id2 ∈ Imp with OMid2 = 〈id2, Imp′, I ′,M ′, O′, E′〉 we have that Iid2 ⊆ E′. Import-export-
compatibility just states that every primitive being imported from a module must be exposed in that module's
export.
For a given id ∈ IdModules, we call the moduleOMid = 〈Imp, I,M,O, E〉 of a module space 〈Mod, Map〉
MAPPING-COMPATIBLE, if for every mid ∈ M with Mmid = 〈s, t, C〉 we have that s, t ∈ Imp∪{id}. Mapping
compatibility demands that if a mapping is imported into a module, both source module and target module of
that mapping must be imported as well (or be the importing module itself).

2In accordance with the NeOn metamodel, this set will be �xed to R = {v,w,≡,⊥, 6v, 6w, 6≡, 6 ⊥}

D1.1.1 Networked Ontology Model Page 47 of 60

Part III

Metadata for Networked Ontologies

2006 c© Copyright lies with the respective authors and their institutions.

Page 48 of 60 NeOn Integrated Project EU-IST-027595

Chapter 7

The NeOn Ontology Metadata Vocabulary

Ontologies have undergone an enormous development and have been applied in many domains within the
last years, especially in the context of the Semantic Web. Currently however, ef�cient knowledge sharing
and reuse, a pre-requisite for the realization of the Semantic Web vision, is a dif�cult task. It is hard to �nd
and share existing ontologies because of the lack of standards for documenting and annotating ontologies
with metadata information. Without ontology-speci�c metadata, developers are not able to reuse existing
ontologies, which leads to problems of interoperability as well as duplicate efforts. Then, in order to provide
a basis for an effective access and exchange of ontologies across the web, it is necessary to agree on
a standard for ontology metadata. This standard then provides a common set of terms and de�nitions
describing ontologies and is called metadata vocabulary.
In the remainder of this chapter we present a compact overview of our contribution to the alleviation of this
situation: the ontology metadata standard OMV (Ontology Metadata Vocabulary), which speci�es reusability-
enhancing ontology features for human and machine processing purposes.

7.1 Preliminary considerations

7.1.1 Metadata Categories

OMV differentiates among the following three occurrence constraints for metadata elements�according to
their impact on the prospected reusability of the described ontological content:

• Required � mandatory metadata elements. Any missing entry in this category leads to an incomplete
description of the ontology.

• Optional � important metadata facts, but not strongly required.

• Extensional � specialized metadata entities, which are not considered to be part of the core metadata
scheme.

Complementary to this classi�cation we organize the metadata elements, according to the type and purpose
of the contained information, as follows:

• General � elements providing general information about the ontology.

• Availability � information about the location of the ontology (e.g. its URI or URL where the ontology is
published on the Web)

• Applicability � information about the intended usage or scope of the ontology.

• Format � information about the physical representation of the resource. In terms of ontologies, these
elements include information about the representation language(s) in which the ontology is formalized.

D1.1.1 Networked Ontology Model Page 49 of 60

• Provenance � information about the organizations contributing to the creation of the ontology.

• Relationship � information about relationships to other resources. This category includes versioning,
as well as conceptual relationships such as extensions, generalization/specialization and imports.

• Statistics - various metrics on the underlying graph topology of an ontology (e.g. number of classes)

• Other - information not covered in the categories listed above.

Note that the introduced classi�cation dimensions are not intended to be part of the metadata scheme itself,
but will be taken into consideration by the implementation of several metadata support facilities. The �rst
dimension is relevant for a metadata creation service in order to ensure a minimal set of useful metadata
entries for each of the described resources. The second can be used in various settings mainly to reduce
the user-perceived complexity of the metadata scheme whose elements can be structured according to the
corresponding classes.

7.2 Ontology Metadata Requirements

We elaborated an inventory of requirements for the metadata model as a result of a systematic survey of
the state of the art in the area of ontology reuse. Besides a scienti�c analysis, we conducted extensive
literature research, which focused on theoretical methods [PM01, GPS99, LTGP04], but also on case studies
on reusing existing ontologies [UHW+98, RVMS99, PBMT05], in order to identify real-world needs of the
community w.r.t. a descriptive metadata format for ontologies. Further on, the requirements analysis phase
was complemented by a comparative study of existing (ontology-independent) metadata models and of tools
such as ontology repositories and libraries (implicitly) making use of metadata-like information. Several
aspects are similar to other metadata standards such as Dublin Core. Differences arise however if we
consider the semantic nature of ontologies, which are much more than plain Web information sources. In
accordance to one of the major principles in Ontological Engineering, an ontology comprises a conceptual
model of a particular domain of interest, represented at the knowledge level, and multiple implementations
using knowledge representation languages. These two components are characterized by different properties,
can be developed and maintained separately. The main requirements identi�ed in this process step are the
following:

Accessibility: Metadata should be accessible and processable for both humans and machines. While the
human-driven aspects are ensured by the usage of natural language concept names, the machine-
readability requirement can be implemented by the usage of Web-compatible representation languages
(such as XML or Semantic Web languages, see below).

Usability: It is important to build a metadata model which 1). re�ects the needs of the majority of ontology
users�as reported by current case studies in ontology reuse�but at the same time 2). allows pro-
prietary extensions and re�nements in particular application scenarios. From a content perspective,
usability can be maximized by taking into account multiple metadata types, which correspond to spe-
ci�c viewpoints on the ontological resources and are applied in various application tasks. Despite the
broad understanding of the metadata concept and the use cases associated to each de�nition, several
key aspects of metadata information have already been established across computer science �elds
[Org04]:

• Structural metadata relates to statistical measures on the graph structure which underlies an
ontology. In particular we mention the number of speci�c ontological primitives (e.g. number
of classes or instances). The availability of structural metadata in�uences the usability of an
ontology in a concrete application scenario, as size and structure parameters constraint the type
of tools and methods which can be applied to aid the reuse process.

2006 c© Copyright lies with the respective authors and their institutions.

Page 50 of 60 NeOn Integrated Project EU-IST-027595

• Descriptive metadata relates to the domain modeled in the ontology in form of keywords, topic
classi�cations, textual descriptions of the ontology contents etc. This type of metadata plays a
crucial role in the selection of appropriate reuse candidates, a process which includes require-
ments w.r.t. the domain of the ontologies to be re-used.

• Administrative metadata provides information to help manage ontologies, such as when and
how it was created, rights management, �le format and other technical information.

Interoperability: Similarly to the ontology it describes, metadata information should be available in a form
which facilitates metadata exchange among applications. While the syntactical aspects of interoper-
ability are covered by the usage of standard representation languages (see �Accessibility�), the se-
mantical interoperability among machines handling ontology metadata information can be ensured by
means of an formal and explicit representation of the meaning of the metadata entities, i.e. by concep-
tualizing the metadata vocabulary itself as an ontology.

7.3 OMV - Ontology Metadata Vocabulary

This section gives an overview of the core design principles applied for the realization of the OMV metadata
scheme, which is described in detail later in this section.

7.3.1 Core and Extensions

Following the usability constraints identi�ed during the requirements analysis we decided to design the OMV
scheme modularly; OMV distinguishes between the OMV Core and various OMV Extensions. The former
captures information which is expected to be relevant to the majority of ontology reuse settings. However,
in order to allow ontology developers and users to specify task- or application-speci�c ontology-related in-
formation, we foresee the development of OMV extension modules, which are physically separated from the
core scheme, while remaining compatible to its elements.

7.3.2 Ontological representation

Due to the high accessibility and interoperability requirements, as well as the nature of the metadata which
is intended to describe Semantic Web ontologies, the conceptual model designed in the previous step was
implemented in the OWL language. An implementation as XML-Schema or DTD was estimated to restrict
the functionality of the ontology management tools using the metadata information (mainly in terms of re-
trieval capabilities) and to impede metadata exchange at semantical level. Further on, a language such
as RDFS does not provide means to distinguish between required and optional metadata properties. The
implementation was performed manually using a common ontology editor.
The main classes and properties of the OMV ontology are illustrated in Figure 7.1. 1

7.3.3 OMV core metadata entities

Additionally to the main class Ontology, the metadata scheme contains further elements describing
various aspects related to the creation, management, and usage of an ontology. We will brie�y dis-
cuss these in the following. In a typical ontology engineering process Persons or Organisation(s)
are developing ontologies. We group these two classes under the generic class Party by a
subclass-of relation. A Party can have several locations by referring to a Location individ-
ual and can create, contribute to ontological resources i.e. Ontology Implementations. Re-
view details and further information can be captured in an extensional OMV module. Further on we

1Please notice, that not all classes and properties are included. The ontology is available for download in several ontology formats
at http://ontoware.org/projects/omv/

D1.1.1 Networked Ontology Model Page 51 of 60

0
:
n

u
s
e
I
m
p
o
r
t
s

0
:
1

h
a
s
P
r
i
o
r
V
e
r
s
i
o
n

0
:
n

i
s
I
m
c
o
m
p
a
t
i
b
l
e
W
i
t
h

0
:
n

i
s
B
a
c
k
w
a
r
d
C
o
m
p
a
t
i
b
l
e

KnowledgeRepresen-

• name

• acronym

• description

• documentation

Ontology

• name

• acronym

• description

• documentation

• keywords

• resourceLocator

• status

• creationDate

• modificationDate

• naturalLanguage

• numClasses

• numProperties

• numIndividuals

• numAxioms

Paradigm

Party

Organisation

• name

• acronym

Person

• firstName

• lastName

• eMail

• phoneNumber

• faxNumber

subclass-of subclass-of

1
:
n

h
a
s
C
r
e
a
t
o
r

0
:
n

h
a
s
C
o
n
t
r
i
b
u
t
o
r

OntologyEngi-

neeringTool

• name

• acronym

• description

• documentation

0:n usedTool

t
e
d
P
a
r
t
y

0:n hasContactPerson

LicenseModel

• name

• acronym

• description

• documenation

0:n toolDevelopedBy

Class Name

DatatypeProperty

ObjectProperty

Range

Domain

MIN:MAX Cardinality
0
:
1

h
a
s
L
i
c
e
n
s
e

1:1 isOfType

OntologyLanguage

• name

• acronym

• description

• documentation

OntologySyntax

• name

• acronym

• description

• documentation

1:1 hasLanguage

1:1 hasSyntax

ringMethodology

• name

• acronym

• description

• documenation

usedMethodology

0:n [...]developedBy

OntologyType

• name

• acronym

• description

• documenation

OMV v.1.1

Location

• land, state

• city, street

0:n isLocatedAt

OntologyEnginee-

0:1

tationParadigm

0:1 usedKR-

OntologyTask

name

acronym

description

documenation

0
:
n

h
a
s
A
f
f
i
l
i
a
-

0:n specifiedBy

• domain

•

•

•

•

FormalityLevel

name

acronym

description

documenation

•

•

•

•

0:n designed-
ForTask

0:n hasLevel

Figure 7.1: OMV overview

2006 c© Copyright lies with the respective authors and their institutions.

Page 52 of 60 NeOn Integrated Project EU-IST-027595

provide information about the engineering process the ontology originally resulted from in terms of the
classes OntologyEngineeringMethodology, OntologyEngineeringTool and the attributes
version, status, creationDate and modificationDate. Again these can be elaborated as an
extension of the core metadata scheme. The usage history of the ontology is modelled by classes such as the
OntologyTask and LicenceModel. The scheme also contains a representation of the most signi�cant
intrinsic features of an ontology. Details on ontology languages are representable with the help of the classes
OntologySyntax, OntologyLanguage and KnowledgeRepresentationParadigm. Ontolo-
gies might be categorized along a multitude of dimensions. One of the most popular classi�cation differ-
entiates among application, domain, core, task and upper-level ontologies. A further classi-
�cation relies on their level of formality and types of Knowledge Representation (KR) primitives supported,
introducing catalogues, glossaries, thesauri, taxonomies, frames etc. as types of ontologies. These can
be modeled as instances of the class OntologyType, while generic formality levels are introduced with
the help of the class FormalityLevel. The domain the ontology describes is represented by the class
OntologyDomain referencing a pre-de�ned topic hierarchy such as the DMOZ hierarchy. Further con-
tent information can be provided as values of the DatatypeProperties description, keywords, and
documentation. Finally the metadata scheme gives an overview of the graph topology of an Ontology
with the help of several graph-related metrics represented as integer values of the DatatypeProperties
numClasses, numProperties, numAxioms, numIndividuals.

D1.1.1 Networked Ontology Model Page 53 of 60

Chapter 8

Conclusion

8.1 Summary

Next generation semantic applications will be characterized by a large number of networked ontologies; as
a consequence the complexity of semantic applications increases. In the NeOn project we address this
challenge by creating an open infrastructure, and associated methodology, to support the development life-
cycle of such a new generation of semantic applications. In this deliverable we have presented a metamodel
for the speci�cation of networked ontologies that will serve as a foundation for this infrastructure. We have
followed the metamodeling approach of Model Driven Architectures for the speci�cation of the metamodel.
Speci�cally, we have developed four modules of the metamodel:

1. The OWL metamodel serves as the core of our networked ontology model,

2. the rule metamodel extends the ontology language with the expressiveness to model horn-like rules,

3. the mapping metamodel allows for the speci�cation of ontology mappings that describe correspon-
dences between ontology elements in a network of ontologies, and

4. the metamodel for modular ontologies builds on the OWL and mapping metamodel to model ontologies
as reusable components in a network of ontologies.

The speci�cation of the metamodel only is a �rst step towards the �nal goal of realizing a reference architec-
ture for semantic applications based on networked ontologies. In the following we discuss future steps to be
taken.
Further, in this deliverable we have proposed OMV as an Ontology Metadata Vocabulary, which aims at
facilitating the task of sharing, searching, reusing and managing the relationships between ontologies.

8.2 Roadmap for Future Work

Future Work will include:

1. Extensions and re�nements of the current metamodel to deal with additional aspects of networked
ontologies, such as an explicit representation of context, and the alignment with ongoing efforts for the
standardization of ontology languages.

2. The implementation of components in the NeOn toolkit to support the individual phases of the lifecycle
of networked ontologies, including modeling, maintaining, and evolving networked ontologies.

The extensions and re�nements will be the focus of the work on the subsequent Deliverable D1.1.2 Net-
worked Ontology Model, Updated Version. In particular, we will continue the re�nement of the language for

2006 c© Copyright lies with the respective authors and their institutions.

Page 54 of 60 NeOn Integrated Project EU-IST-027595

modular ontologies and work on extensions for versioning. At the same time, we will monitor ongoing stan-
dardization efforts around OWL 1.1 and the rule language to be developed in the RIF working group to align
our networked ontology model with these developments.
Several upcoming deliverables as part of WP1 will complement the networked ontology model with meth-
ods and techniques for Consistency Models for Networked Ontologies (D1.2.1), Change Propagation for
Networked Ontologies (D1.3.1) and support for the Management of Networked Ontologies (D1.4.1). The
corresponding tool support will be integrated into the NeOn toolkit as part of the WP6 activities. The �rst
version of this toolkit will be available by M12.
The next steps for OMV include the development of OMV extension ontologies elaborating aspects for spe-
ci�c domains, tasks or communities. For this task we envision the collaborations and contributions from NeOn
partners. Additionally, future work includes the evaluation of the application of OMV in different scenarios,
pushing OMV to a community standard and the re�nement of the current OMV core.

D1.1.1 Networked Ontology Model Page 55 of 60

Appendix A

Naming Conventions

Choosing a naming convention for ontology modeling and adhere to these conventions makes the ontology
easier to understand and helps to avoid some common modeling mistakes. Therefore, for the modeling
of ontologies in the context of the NeOn project, we adopted the following set of conventions for ontology
elements (i.e.classes, properties and instances)

A.1 Delimiters and capitalization

• Class Names - Class names are capitalized. If the class name contains more than one word, we use
concatenated words and capitalize each new word. I.e. "Ontology" "OntologySyntax"

• Property Names - Property names use lower case. If the property name contains more than one word,
we use concatenated words where the �rst word is all in lower case and capitalize each subsequent
new word. I.e. "name" "naturalLanguage" "hasLicense"

• Instance Names - Instance names are capitalized. If the instance name contains more than one
word, each word is separated by a blank space and capitalize each word. I.e. "Task Ontology" "Highly
Informal"

A.2 Pre�x conventions

The use of pre�x conventions helps to identify in an easy way ontology elements. NeOn uses pre�x con-
ventions to distinguish DatatypeProperty and ObjectProperty. Thus, the ObjectProperties start with a verb
specifying how the two classes are related to each other. I.e. "speci�edBy" "usedOntologyEngineeringTool"
"hasOntologySyntax".

A.3 Singular form

The convention adopted by NeOn was to use names for classes, properties and instances in singular form.
The decision was based on the fact that singular form is used more often in practice in many domains.
Besides, when working with XML, for example, importing legacy XML or generating XML feeds from the
ontology, it is necessary to make sure to use a singular form since this is expected convention for XML tags.

A.4 Additional considerations

• When a word within a name is all capitals, the next word should start in lower case. An hypothetical
example: "URLoriginal"

2006 c© Copyright lies with the respective authors and their institutions.

Page 56 of 60 NeOn Integrated Project EU-IST-027595

• Do not add strings such as "class" or "attribute", and so on to the names.

• Do not concatenate the name of the class to the properties or instances, i.e. there is no "ontology-
Name" "ontologySyantxName"

• Try to avoid abbreviations on the names of the ontology elements. The use of abbreviations in the
names can lead to names dif�cult to understand, therefore unless the names are self explanatory, we
will avoid them.

D1.1.1 Networked Ontology Model Page 57 of 60

Bibliography

[ABdB+05] J. Angele, H. Boley, J. de Bruijn, D. Fensel, P. Hitzler, M. Kifer, R. Krummenacher, H. Lausen,
A. Polleres, and R. Studer. Web Rule Language (WRL). World Wide Web Consortium, Septem-
ber 2005. W3C Member Submission, http://www.w3.org/Submission/WRL/.

[BCH06a] Jie Bao, Doina Caragea, and Vasant Honavar. A distributed tableau algorithm for package-
based description logics. In the 2nd International Workshop On Context Representation And
Reasoning (CRR 2006), co-located with ECAI 2006. 2006.

[BCH06b] Jie Bao, Doina Caragea, and Vasant Honavar. Modular ontologies - a formal investigation of
semantics and expressivity. In R. Mizoguchi, Z. Shi, and F. Giunchiglia (Eds.): Asian Semantic
Web Conference 2006, LNCS 4185, pages 616�631, 2006.

[BCH06c] Jie Bao, Doina Caragea, and Vasant Honavar. On the semantics of linking and importing in
modular ontologies. In I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273 (In Press), pages 72�86.
2006.

[BCH06d] Jie Bao, Doina Caragea, and Vasant Honavar. Towards collaborative environments for ontol-
ogy construction and sharing. In International Symposium on Collaborative Technologies and
Systems (CTS 2006), pages 99�108. IEEE Press, 2006.

[BGvH+03] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Sera�ni, and H. Stuckenschmidt. C-OWL: Con-
textualizing ontologies. In Second International Semantic Web Conference ISWC'03, volume
2870 of LNCS, pages 164�179. Springer, 2003.

[BH06a] Saartje Brockmans and Peter Haase. A Metamodel and UML Pro�le for Net-
worked Ontologies � A Complete Reference. Technical report, Universität Karlsruhe,
April 2006. http://www.aifb.uni-karlsruhe.de/WBS/sbr/publications/
ontology-metamodeling.pdf.

[BH06b] Saartje Brockmans and Peter Haase. A Metamodel and UML Pro�le for Rule-extended
OWL DL Ontologies �A Complete Reference. Technical report, Universität Karlsruhe,
March 2006. http://www.aifb.uni-karlsruhe.de/WBS/sbr/publications/
owl-metamodeling.pdf.

[BKK+01] K. Baclawski, M. Kokar, P. Kogut, L. Hart, J. Smith, W. Holmes, J. Letkowski, and M. Aronson.
Extending UML to Support Ontology Engineering for the Semantic Web. In 4th Int. Conf. on
UML (UML 2001), Toronto, Canada, October 2001.

[BS02] Alexander Borgida and Luciano Sera�ni. Distributed description logics: Directed domain corre-
spondences in federated information sources. In CoopIS/DOA/ODBASE, pages 36�53, 2002.

[BS03] Alexander Borgida and Luciano Sera�ni. Distributed description logics: Assimilating information
from peer sources. J. Data Semantics, 1:153�184, 2003.

2006 c© Copyright lies with the respective authors and their institutions.

Page 58 of 60 NeOn Integrated Project EU-IST-027595

[CP99] S. Crane�eld and M. Purvis. UML as an Ontology Modelling Language. In Proceedings of the
Workshop on Intelligent Information Integration, volume 23 of CEUR Workshop Proceedings,
Stockholm, Sweden, July 1999.

[dSM06] Mathieu d'Aquin, Marta Sabou, and Enrico Motta. Modularization: a key for the dynamic selec-
tion of relevant knowledge components. In Workshop on Modular Ontologies, 2006.

[Fow03] Martin Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Language.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[GKM05] B. Grosof, M. Kifer, and D. L. Martin. Rules in the Semantic Web Services Language (SWSL):
An overview for standardization directions. In Proceedings of the W3C Workshop on Rule Lan-
guages for Interoperability, 27-28 April 2005, Washington, DC, USA, 2005.

[GPS99] Aldo Gangemi, Domenico M. Pisanelli, and Geri Steve. An overview of the ONIONS project:
Applying ontologies to the integration of medical terminologies. Data Knowledge Engineering,
31(2):183�220, 1999.

[GPS04] Bernardo Cuenca Grau, Bijan Parsia, and Evren Sirin. Working with multiple ontologies on the
semantic web. In International Semantic Web Conference, pages 620�634, 2004.

[GPSK05] Bernardo Cuenca Grau, Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Automatic partitioning
of owl ontologies using -connections. In Description Logics, 2005.

[HEC+04] Lewis Hart, Patrick Emery, Bob Colomb, Kerry Raymond, Sarah Taraporewalla, Dan Chang,
Yiming Ye, and Mark Dutra Elisa Kendall. OWL full and UML 2.0 compared, March 2004. http:
//www.itee.uq.edu.au/\simcolomb/Papers/UML-OWLont04.03.01.pdf.

[HPPSH05] I. Horrocks, B. Parsia, P. F. Patel-Schneider, and J. A. Hendler. Semantic web architecture:
Stack or two towers?. In F. Fages and S. Soliman, editors, PPSWR, volume 3703 of Lecture
Notes in Computer Science, pages 37�41. Springer, 2005.

[HPSB+04] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin Grosof, and
Mike Dean. Swrl: A semantic web rule language combining owl and ruleml. Technical re-
port, May 2004. W3C Member Submission, http://www.w3.org/Submission/2004/
SUBM-SWRL-20040521/.

[HT00] I. Horrocks and S. Tessaris. A conjunctive query language for description logic aboxes. In
Proceedings of the Seventeenth National Conference on Arti�cial Intelligence and Twelfth Con-
ference on Innovative Applications of Arti�cial Intelligence, pages 399�404. AAAI Press / The
MIT Press, 2000.

[IBM05] IBM, Sandpiper Software. Ontology De�nition Metamodel, Fourth Revised Submission to OMG,
November 2005.

[KLWZ03] Oliver Kutz, Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. E-connections of descrip-
tion logics. In Description Logics Workshop, CEUR-WS Vol 81, 2003.

[Kre98] R. Kremer. Visual Languages for Knowledge Representation. In Proc. of 11th Workshop
on Knowledge Acquisition, Modeling and Management (KAW'98), Voyager Inn, Banff, Al-
berta, Canada, April 1998. Morgan Kaufmann. http://ksi.cpsc.ucalgary.ca/KAW/
KAW98/kremer/.

[LTGP04] A. Lozano-Tello and A. Gomez-Perez. ONTOMETRIC: A Method to Choose the Appropriate
Ontology. Journal of Database Management, 15(2), 2004.

D1.1.1 Networked Ontology Model Page 59 of 60

[MHRS06] B. Motik, I. Horrocks, R. Rosati, and U. Sattler. Can owl and logic programming live together
happily ever after? In I. F. Cruz, S. Decker, D. Allemang, C. Preist, D. Schwabe, P. Mika,
M. Uschold, and L. Aroyo, editors, International Semantic Web Conference, volume 4273 of
Lecture Notes in Computer Science, pages 501�514. Springer, 2006.

[MKW04] S. J. Mellor, S. Kendall, and A. Uhl D. Weise. MDA Distilled. Addison Wesley Longman Publish-
ing Co., Inc., Redwood City, CA, USA, 2004.

[MSS04] B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL with rules. In International
Semantic Web Conference, pages 549�563, 2004.

[Mv03] D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language Overview. Technical
report, World Wide Web Consortium (W3C), August 2003. Internet: http://www.w3.org/TR/owl-
features/.

[Obj02] Object Management Group. Meta Object Facility (MOF) Speci�cation. Technical report, Ob-
ject Management Group (OMG), April 2002. http://www.omg.org/docs/formal/
02-04-03.pdf.

[Org04] National Information Stadards Organization. Understanding metadata. NISO Press, 2004.

[PBMT05] E. Paslaru Bontas, M. Mochol, and R. Tolksdorf. Case Studies on Ontology Reuse. In Proceed-
ings of the IKNOW05 International Conference on Knowledge Management, 2005.

[PM01] H. S. Pinto and J. P. Martins. A methodology for ontology integration. In Proc. of the International
Conf. on Knowledge Capture K-CAP01, 2001.

[PSZ06] J.Z. Pan, L. Sera�ni, and Y. Zhao. Semantic import: An approach for partial ontology reuse. In
Workshop on Modular Ontologies, 2006.

[RVMS99] T. Russ, A. Valente, R. MacGregor, and W. Swartout. Practical experiences in trading off ontol-
ogy usability and reusability, 1999.

[SK03] Heiner Stuckenschmidt and Michel C. A. Klein. Integrity and change in modular ontologies. In
International Joint Conference on Arti�cial Intelligence (IJCAI), pages 900�908, 2003.

[SK04] Heiner Stuckenschmidt and Michel C. A. Klein. Structure-based partitioning of large concept
hierarchies. In International Semantic Web Conference, pages 289�303, 2004.

[SP04] Evren Sirin and Bijan Parsia. Pellet: An owl dl reasoner. In Description Logics, 2004.

[SR06] Julian Seidenberg and Alan Rector. Web ontology segmentation: Analysis, classi�cation and
use. In Proceedings of the World Wide Web Conference (WWW), Edinburgh, June 2006.

[SSW05a] L. Sera�ni, H. Stuckenschmidt, and H. Wache. A formal investigation of mapping languages for
terminological knowledge. In Proceedings of the 19th International Joint Conference on Arti�cial
Intelligence - IJCAIÂ�e05, Edinburgh, UK, August 2005.

[SSW05b] Heiner Stuckenschmidt, Luciano Sera�ni, and Holger Wache. Reasoning about ontology map-
pings. Technical report, Department for Mathematics and Computer Science, University of
Mannheim ; TR-2005-011, 2005.

[ST05] Luciano Sera�ni and Andrei Tamilin. Drago: Distributed reasoning architecture for the semantic
web. In European Semantic Web Conference - ESWC, pages 361�376, 2005.

[Stu06] Heiner Stuckenschmidt. Towards multi-viewpoint reasoning with OWL ontologies. In European
Semantic Web Conference, 2006.

2006 c© Copyright lies with the respective authors and their institutions.

Page 60 of 60 NeOn Integrated Project EU-IST-027595

[SU05] Heiner Stuckenschmidt and Michael Uschold. Representation of semantic mappings. In Yan-
nis Kalfoglou, Marco Schorlemmer, Amit Sheth, Steffen Staab, and Michael Uschold, editors,
Semantic Interoperability and Integration. Dagstuhl Seminar Proceedings, volume 04391, Ger-
many, 2005. IBFI, Schloss Dagstuhl.

[TF05] Sergio Tessaris and Enrico Franconi. Rules and queries with ontologies: a unifying logical
framework. In Description Logics, 2005.

[UHW+98] M. Uschold, M. Healy, K. Williamson, P. Clark, and S. Woods. Ontology Reuse and Application.
In Proc. of the Int. Conf. on Formal Ontology and Information Systems FOIS98, 1998.

[Vol04] R. Volz. Web Ontology Reasoning with Logic Databases. Phd thesis, Univer-
sity of Karlsruhe (TH), Karlsruhe, Germany, http://www.ubka.uni-karlsruhe.de/cgi-
bin/psview?document=2004/wiwi/2, February 2004.

[VOM02] R. Volz, D. Oberle, and A. Maedche. Towards a Modularized Semantic Web. In Semantic Web
Workshop, Hawaii, 2002.

[W3C05a] Accepted Papers of the W3C Workshop on Rule Languages for Interoperability, 27-28 April
2005, Washington, DC, USA, 2005. http://www.w3.org/2004/12/rules-ws/accepted.

[W3C05b] W3C. Rule interchange format working group charter. http://www.w3.org/2005/
rules/wg/charter, 2005.

[WK04] Jos Warmer and Anneke Kleppe. Object Constraint Language 2.0. MITP Verlag, 2004.

