Hyperdata: Update APIs for RDF Data Sources
(Vision Paper)*

Jacek Kopecky

Knowledge Media Institute, The Open University, UK
j -kopecky@open.ac.uk

Abstract. The Linked Data effort has been focusing on how to publish
open data sets on the Web, and it has had great results. However, mech-
anisms for updating linked data sources have been neglected in research.
We propose a structure for Linked Data resources in named graphs, con-
nected through hyperlinks and self-described with light metadata, that
is a natural match for using standard HTTP methods to implement
application-specific (high-level) public update APIs.

1 Vision

A major function of Web APIs is to give users a way to contribute to data
sources (whether they be social networks, photo sharing sites, or anything else)
through rich scripted web sites, rather than through simple web forms, and also
through external (even 3rd-party) tools. Facebook API, Flickr API and so on,
support interactive Web interfaces as well as mobile apps or desktop tools.

Some of the data in these apps then gets published as Linked Data, a machine-
friendly representation suitable for combining with other data. Commonly, there
is a technologies disconnect, though, between the Linked Data read-only view
on the data source (which employs RDF and URIs), and the update APIs (with
JSON or XML, and non-URI identifiers).

In this paper, we describe a vision of hyperdata' — data that is not only
hyperlinked and self-describing in terms of its schema, but also self-describing
on how it can be updated.

As we’ve discussed in [1], update access cannot practically be provided through
protocols such as SPARQL Update. Indeed, public update access should be
through a data-source-specific application layer that enforces consistency and
security. There are several reasons for this: 1) data dependencies, where an up-
date needs to propagate into dependent data, 2) security, where low-level access
policies for RDF stores are harder to manage than if they were policies on the

* This work has been funded by the European projects SOA4All (www.soadall.eu) and
PlanetData (www.planet-data.eu).

! The term “hyperdata”, which predates the Web, has been used in connection
with the Web of Data, for example in http://www.novaspivack.com/technology/
the-semantic-web-collective-intelligence-and-hyperdata.

level of application-specific resources, 3) data constraints and consistency vali-
dation, and guiding the users in the structure of the accepted data (for example
preventing well-meaning users from using the wrong ontology by mistake), and
4) creation of identifiers, because SPARQL Update does not (as yet) provide
the equivalent of an AUTO_INCREMENT field in an SQL database, and leaving the
creation of identifiers to clients is undesirable due to the potential for conflicts.

With self-describing read-write hyperdata, applications that consume Linked
Data could easily add update functionalities, currently generally missing from
mash-ups and other Linked-Data-based apps. Further, data browsers such as
Tabulator, which currently supports SPARQL Update and WebDAV [2], would
be able to provide edit/update capabilities over a wider range of resources.

Linked Data may be compared to Web 1.0: the latter was mostly read-only
documents, and the former is mostly read-only RDF views on some databases.
The Web of Data should be more like Web 2.0, with many sites allowing (and
even relying on) contributions from their users. With hyperdata, that will be
possible, because hyperdata is not only linked to other data, but also to its
update APIs.

In our vision, the optimal update API should fit well with the structure of
Linked Data (including the application of the principle of following your nose
to discovering update capabilities), it should rely as much as possible on the
methods of HTTP (adhering to REST’s uniform interface constraint), and it
should easily accommodate application-specific update authorization, validation
and propagation logic.

2 Use Case Description

Our hyperdata approach was developed within a use case of the European re-
search project SOA4AIllL The use case is an application called “Offers4All” that
allows diverse companies to advertise offers to subscribers of the service (more
detail in [1]). These offers might be “last-minute” travel deals, predefined cam-
paign offers of restaurants, and so on. The Offers4All application allows an offer
provider to create a new offer by describing what the offer is and who it is tar-
geted at. An appropriate set of subscribers are then chosen and are made aware
of the offer.

The application is backed by an RDF database that stores information about
offer providers, their offers, and the users registered to receive the offers. Users
can specify what offer categories they are interested in, and they can also choose
to “like” some offers which allows social-networking-style recommendations to
be used to increase the uptake of offers. Naturally, users can also specify various
contact details, such as an email address and a mobile phone number.

For read and update access, the database is facaded by a custom API, whose
functionalities can be seen as the following types of operations:

e listUsers() returns a list of the known users
e getUser(id) returns user data

Instance Property Property Value Value Legend:

& graph reification ®)
Instance GET, POST, GET, PUT App data nod
,) , s pp data node
graph DELETE DELETE .
GET, POST, [offers/439 App data triple
DELETE Jusers/1345/likes/43905
Jusers/1345/likes —
Joffers/637 Generic
S - container graph
lusers/1345#this — T Jusers/1345/likes/43906
e _ Jusers/1345/interests Conarete ;?;;?]
S —Dasiteresy T ea Jusers/1345/intorests/6433 ©XCA1S -~
Jusers/1345 | S—— 5 Graph

containment

Fig. 1. Hyperdata structure of the API

addUser(data) creates a new user record

getUserInterests(id) returns the offer categories of interest to the user
addUserInterest (id, uri) adds to the user’s list of interests
deleteUserInterest(interest-id) removes one from the user’s list of interests
deleteAllUserInterests(id) clears the list of interests

and so on for the various properties of the various objects in the database,
incl. “likes” and contact information

The granularity of these operations corresponds to the intended uses of the
system: these are the types of operations that clients of such a database want to
perform, and they are a good input for analyzing access control.

Following the principles of Linked Data and REST (useful even if the data
is not published openly), the database is split into a number of resources: a
single container users resource, multiple user resources (one per known user),
container user interests resources (one per known user), and concrete interest
value resources (one per a stated interest of a user), etc.

In a read-only data source, this fine level of granularity could be seen as too
much, as retrieving all the data about a user does not present much overhead
even if the client is only interested in the user’s interests. However, with all these
resources in place, update operations naturally map to HT'TP methods.

Figure 1 shows the RDF graph of a user who likes two specific offers and
has interest in one category. For brevity, the figure doesn’t show the container
resource for users. Along with the actual data triples, the figure also displays
the self-description aspects, discussed in the next section.

3 Hyperdata Approach

The API in our use case consists of the following generic four types of resources:
1) containers of instances (users, offers etc.), 2) the instances themselves, 3) con-
tainers of property values, 4) concrete property values. Listing 1 illustrates the

1 </users/13454this> a uc:User ; uc: likes < /offers/439>, < /offers/637> .
2

3 </users/1345> a g:Graph ; g: defines < /users/1345#this> ;

4 g:contains < /users/1345/likes> ; g:isContainedIn < /users> .

5

6 </users/1345/likes> a g:Graph ;

7 g:contains < /users/1345/likes/43905>, < /users/1345/likes/43906> ;

8 g: defines [a rdf:Statement ;

9 rdf: subject < /users/13454this> ; rdf:predicate uc: likes ; rdf:object []

12 </users/1345/likes/43905> a g:Graph ;

13 g: defines [a rdf:Statement ;

14 rdf: subject < /users/1345#this> ; rdf:predicate uc: likes ; rdf:object </offers/439>
15].

Listing 1. Example graph description triples (truncated)

self-description metadata and hyperlinks, also shown in Figure 1; it starts on
line 1 with (a subset of) the actual data about the particular user.

Line 3 indicates the graph that is the description of the user instance, making
it possible for a client to infer that an HTTP DELETE request can remove
the instance. Line 4 links the instance graph with one of the property graphs
(/users/1345/1ikes), and with the high-level class graph.

Lines 6-10 describe the property graph: it contains concrete value graphs,
and a reified triple pattern (lines 8-10) that indicates that the graph includes
statements of the form /users/1345#this uc:likes something (note the blank
node as object). The triple pattern is meant to indicate what kind of data can
be POSTed to the property resource to add a value, and what subset of the data
about the user can be expected when GETting the property resource.

For adding a property value, the client can POST several kinds of data: an
RDF graph, a list of URISs, or a literal value. Primarily, the POSTed data can be
an RDF graph that contains a triple /users/1345#this uc:likes something, and
any triples about the something. To prevent adding arbitrary statements, all the
triples in the submitted data must be about the instance (the particular user) or
about the values of other triples in the graph — we use the phrase that all the
triples are “forward-reachable” from the instance. Further, the data must not
contain any triples about other instances managed by this particular hyperdata
store (for example about an offer) because submissions of such triples must go
through that instance’s update APIL.

Alternatively to submitting RDF data, there are media types that give the
client a simpler way for submitting a new property value: if the client wants to
add a property value that is some resource (e.g. /offers/439#this), the URI
can be submitted as text/uri-list and it will be added as a direct value. And
finally, a new literal value (not appropriate for uc:likes but possible for other
properties) can be submitted simply as text/plain.

The listing concludes on lines 12-15 with a description of a concrete value
graph. The client can use PUT or DELETE here to update or remove a particular
statement. PUT here has the same options for payload formats as POST for

submitting new property values above — it can be an RDF graph, a URI list or
a plain literal value.

The metadata uses a few very simple concepts to communicate much informa-
tion: a Graph is a resource that besides GET may also accept update and delete
requests (actually available methods can be discovered with HTTP OPTIONS).

The meaning of updates depends on the contents of the graph, described
through reified statements. The reified statement may indicate a concrete triple
like on line 14 (meaning that it represents a specific value, to be updated with
PUT or removed with DELETE), or it may use blank nodes to indicate a col-
lection (accepting POST with new items). The listing indicates a collection of
property values for uc:likes on line 9. A reified statement of the form something
rdf:type uc:User would be shown on the user container graph to indicate that it
contains instances of the given ontology class, and that’s what can be POSTed.

4 Prototype Implementation

We have developed a proof-of-concept triple-store wrapper (also described in [1])
that uses very simple configuration to realize the hyperdata API. Configured with
a set of “classes of interest” , whose instances the API manages, and “properties of
interest” on those classes, the wrapper implements the necessary read and update
resources to cover the structure of the hyperdata graph. The code generates and
maintains all the self-description metadata as data is submitted and updated.

Currently, the metadata is stored in the underlying triple store along with
the application data. If this overhead should become a performance or scalability
issue, the metadata could be stored in a separate triple store (so that it does
not affect reading and querying performance), or generated at runtime as the
data is being accessed. On-the-fly generation of the metadata would decouple
the data from the current configuration of the update API; however, it could
itself present performance overhead. We have not evaluated performance and
scalability issues in the scope of the use case.

The prototype does not address the issue of concurrent updates from mul-
tiple clients, beyond serializing the addition of instances; however, the HTTP
specification defines the “entity tag” mechanism that supports conditional up-
dates, performed only if the resource has not changed since the client has last
seen it.

5 Conclusion

The Web included update capabilities from the start—the first browser? was
also an editor—but still Web 1.0 was mostly read-only. A significant boom came
with the advent of the Web 2.0 with its attitude that anybody on the Web
can—and should be allowed to—contribute. The Web of Data so far remains on
the Web 1.0 level where contributions to it mostly happen outside it. Hyperdata

2 http://www.w3.org/People/Berners-Lee/WorldWideWeb. html

APIs can bring update capabilities to the Web of Data, and make it more like
Web 2.0. After all, Web 2.0 gave us Wikipedia, the heart of Linked Data.

Our prototype implementation is very basic, but the structure of the code and
its configuration seems amenable to extensions towards access control policies,
data validation and custom update propagation/processing (including logging
and versioning). Also in future work, we would like to develop a client access
library for hyperdata, and to extend Tabulator to support it. Client support will
let us better evaluate the communication and client-side-processing overhead
cost of all the metadata.

The hyperdata vision relies on the assumption that self-description of up-
date capabilities can help clients adapt to changes in evolving hyperdata APIs,
as hyperlinking allows clients to discover locations of new data, and to adapt
to changed locations of expected data sources. This assumption needs to be
evaluated on further case studies.

References

1. Kopecky, J., Pedrinaci, C., Duke, A.: RESTful Write-oriented API for Hyperdata
in Custom RDF Knowledge Bases. In: Proceedings of the International Conference
on Next Generation Web Service Practices (NWeSP), Salamanca, Spain (2011)

2. Berners-Lee, T., Hollenbach, J., Kanghao Lu, Presbrey, J., Prud’hommeaux, E.,
mc schraefel: Tabulator Redux: Browsing and Writing Linked Data. In: Proceedings
of the WWW 2008 Workshop on Linked Data on the Web, Beijing, China (2008)

