Web-based Image and Video Navigation
Final Report
Alex May

adm00@doc.ic.ac.uk

June 16, 2004

Supervisor: Stefan Riiger
srueger@doc.ic.ac.uk

Second Marker: Ian Harries
ih@doc.ic.ac.uk

Abstract

Content-based image and video retrieval has always been a challenging
problem in computer science. In response, many techniques have been
developed to exploit both the visual and semantic similarity between images.
These include feature-based searching mechanisms and the creation of novel
browsing structures.

In this project, we present a web-based image browser and search engine
application. We consolidate paradigms of text-based search, content-based
search with relevance feedback, hierarchical browsing, lateral browsing,
temporal browsing and historical browsing into a unified interface. By
providing tight integration of techniques and a rich set of user interactions we
are able to equip the user with substantial navigational power.

Project homepage and demonstration:
http://www.doc.ic.ac.uk/~adm00

Code archive:
/homes/adm00/public_html/ibase_code

Acknowledgements

I would like to thank Dr. Stefan Riiger for his supervision, feedback and
encouragement throughout the project. It has been a great pleasure to benefit
from his experience and insight in the field and he has been a great source of
inspiration. I would like to thank Ian Harries for his invaluable feedback and
suggestions during the early stages of the project.

My utmost thanks also go to Daniel Heesch. This project builds upon much
of his research, and I have learned a great deal from his work. Our
discussions were sometimes lengthy and I express gratitude for the time and
energy he has invested.

Finally, I would like to thank all those who helped with evaluation: Xia Wu,
Tristan Carmichael, Eleanor Davies, Phil Carmalt and Jing Zhang. Their
participation was crucial to the insightful evaluation of system performance
and usability.

Contents

ADSETACE ...eveiiiiiiiiiiiiicirtc e 2
ACKNOWIEdZEIMENTSeeeeiiiiiiiiiiiiieeeeieieeiettee ettt e et e e e e s 3
1 Introduction..........ccccoiiiiiiiiiiiiiiiiici 6
1.1 Content-based image retrievalccccceeiiiiiiiiiiiii e 6
1.2 The challengesccccoimiiiiiiiiiiiiiiiiiiicc e 7
1.3 Project aim.....cooooi e 7
2 Background ...ttt ssssseseee 8
2.1 SEATCRING ...vviiiiiiiiiiiiiiee e 8
2.2 BIOWSIIZ..coiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeee e 13
2.3 Types of BrOWSINGvvvieiiiiiiiiiiiiiiic e 13
2.4 The State-of-the-artcccoooeiiiiiiiiiii 19
2.5 TRECVID ..ottt 20
3 System Specification and Prototypecccccccvviiiiiiiiiiiiiiiiiiiiiiiiieniiiinnn 21
3.1 SYSEEIN OVEIVIEW cuueiiiiiiiiiieeiiiiiiiieee ettt e 21
3.2 Image and video COLlECtIONS.uuveeiiiiiiiiiiiiiiiiieiiiicc e 21
3.3 Pre-computed data.......ccceeviiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeee 22
3.4 User interface (clent-side)cocovvierieniiniiiiiiiiiieiieneenecsecseceees 22
3.5 CBIR engine (Server-side)coceeveriieriiriiniieieeiieneenee e 27
3.6 IMPTIOVEIMENES . ..uuuieeiiiiiiiiiiee et 28
3.7 EXEeNSIONSccooiiiiiiiiiiiiiiiiiiiiiiiiiiii 28
4 User Interface Design........ccccovvummmmiiiiiiiii s 29
4.1 Integration of browsing and searching methods.........c..ccccccceeevnnnnii. 29
4.2 SeATCh.cciiiiiii e 32
4.3 Hierarchical bBrowSIngccccovmiiiiiiiiiiiiiimiiiiic e 40
4.4 Lateral browsing (NN* Networks).......ccocervrverirerireininieienieieeeeenes 41
4.5 Temporal BrOWSING.........uveiiiiiiiiiiiiiiiiicee e 47
4.6 Historical DrOWSING.....cccuvveiiiiiiiiiiiiiiiie e 48
4.7 TMAZE VIEWET ...eouiiiiiiiiiiiiiiiiiiiiii e 49
4.8 SEUEINES.cceiiiiiiiiiiii e 50
5 Implementation.......cc.cooiiiiuiiiiiiiiiiiiee et e e e e 52
5.1 System architecture.......cccccoovviiiiiiiiiiiiiiiiiiic e 52
5.2 The applet ..ooeeeiiiiiiiiiiiiiiiiiiiieeeeeee e 63
5.3 The SErVIEt ..eeeiiiiiiiiiiiiiic e 76
6 Evaluation........cccoooiiiiiiiiiiiii e 79
6.1 Performance analysiS.....ccccccoeveuiiiiiiiiiiiiiiiiiiiieiie e 81
6.2 Usability Study ..ccooeevviiiiiiiiiiiicce e 86
7 ConClUSIONS. ...cuuiiiiiiiiiiiiiiici i 89
7.1 AChIEVEMENES .oooeeiiiiiiiiiii e 89
7.2 Further Work.....oooooiiiiiiiiii e 90
Referencesoooiiuiiiiiiiiiiiic s 91

Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.

Figure 16
Figure 18

Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.

The searching ProCesscceieiiiiriiiiiiieeiiiieee e 8
Taking first moments about §c...eeeviiiiimiiiiiiiiiiiiiees 10
Hierarchical browsing examples.........cccccovveiiiiiiieiiniiiiinieeeennnins 14
The IDIAP Video BIOWSET ..cceeiiiiiiiiiiieeeeeiiiiieeee et 15
NNK network shown around the chosen butterfly image 17
MS Internet Explorer displaying a hierarchical image collection ... 17
Google Image search and Aetos browsercccceeeeeiii. 18
Suggested system architecturecccccovveiiiiiiiiiiiiniiiiiiins 21
Searching with relevance feedback..........cccoviiiiiiiiiniiii, 24

Hierarchical browsing.........ccccveviiiiiiiniiiiiicciiiicceeeeee 25
Lateral DrOWSINGceeeiiiiiiiiiiiiiiieeeiiiiec e 25
THE VIEWET .eeiiiiiiiiiiiiiiiie e 26
Final interface 1ayoutccccoveiiiiiiiiiiii e 31

The searching ProCessoocccuvvveiieiiiiiiiiiiiieee e 33
The search Interface.......cooevviiiiiiiiiiii e 33
(above) and Figure 17 (below). Explaining the search results....... 35
(above) and Figure 19 (below). Relevance feedback.............c....... 39

Hierarchical browsing interface.......c..ccccceiiiiiiniiiiiiiiiiinnn. 40
Lateral browsing interface after initial image selection 42
Lateral browsing interface after relevance feedback 43
Adding relevant images to the user networkcccccocoeeinnnii. 44
Exploring the networkccccceiiiiiiiiiiiii e 45
Explaining neighbours.........ccccvviiiiiiiii e 47
The temporal browsing interfacecccccceeeiniiiiiiiiiinnniinn. 48
The IMAage VIEWETuuviiiiiiiiiiiiiiiieee et 50
The settings interface.......oooccoveviiiiiiiiiiii e 51
Client queries and SEIVEr IE€SPOISES......cuvurrerirerrrererereeereeeeereeeeeeeeees 62
Applet class INEETraCtioNueeeuueeeeiiiiiiii 64
Interaction of classes involved in searchingccccccovviiiiniie. 66
Interaction of classes involved in hierarchical browsing 67
Interaction of classes involved in lateral browsing........c.ccccueeeeee. 68
Interaction of classes involved in temporal browsing.................... 70
Interaction of classes involved in the image viewer 71
Servlet class INtEractionceeveviiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeees 78
Assembling the ranked list output......cccceeeeeiiiniiiiiiiiinn. 81
Precision-recall graph for each system variantcccoeceniie. 84
Mean average precision for each system variant..........cccocccceeeee. 84
Usability questionnaire reSultscccoeeooiiiiiiiiiiiiiiiiiee 87

1 Introduction

1.1 Content-based image retrieval

Images and video have become commonplace on the WWW and in many
multimedia applications. This has given rise to large digital image and video
databases that need to be searched effectively and on demand. Manually
classifying or annotating images is laborious and relies on the judgement of
experts. Even if a database is manually annotated with keywords, it can be
difficult to formulate a text query which describes exactly what is sought.
Clearly there are many benefits of a content-based image retrieval (CBIR)
system. That 1is, a retrieval method based upon features that are
automatically extracted from the images themselves. There are many
challenges involved in developing CBIR techniques and the area has received
much attention from the research community in recent years.

By dissecting video into keyframe shots we can use the same strategies in
approaching content-based video retrieval as we can in content-based image
retrieval [1]. We shall assume the equivalence of the two problems based
upon this principle. Video has the advantage that textual data can be
automatically obtained from subtitles and speech recognition transcripts,
rather than manual annotation.

There are many commercial and research applications of CBIR [2], including
those in the areas of:

Security and defence, e.g. fingerprint matching

Intellectual property, e.g. trademark databases

Media archives, e.g. television footage, art galleries
Scientific imaging, e.g. medical imaging, weather forecasting

Several previous studies of CBIR such as [3] have found that user’s search
strategies fall into several main types:

e Search by association — when there is no specific aim other than to
find items of general interest, analogous to ‘surfing’ the web

e Search for a class of image — when the aim is to find images that
fulfil certain criteria, e.g. all pictures of animals

e Search for a specific image — when the user has a particular image in
mind, e.g. a picture of Tony Blair

Often, the CBIR techniques applied in a system are predominantly suited to
fulfilling the requirements of only one or two of these types of user.

1.2 The challenges

The challenges of CBIR lie in two main areas [4].

Firstly, there is a problem of deriving high-level image meaning from
primitive image features such as texture, colour and shape. It is apparent
that the raw image data alone is not sufficient, but that a large amount of
prior world knowledge is required. This is commonly referred to as the
‘semantic gap’.

Secondly, there is a problem resulting from the semantic ambiguity of images.
Each image might have a number of possible high-level representations, and
there is no way of knowing which the user has in mind. This problem is
commonly referred to as ‘polysemy’.

In tackling these challenges, most of the main CBIR systems have focused
research on the set of features extracted from the images, and there has been
little emphasis put on wuser interaction, except allowing some system
configuration such as defining the weights of features used for retrieval.

For a user to determine the relevance of an image requires a relatively small
mental load compared to, for example, text documents. This would suggest
that user-interaction (compared with automated retrieval) has a more
important role to play in CBIR than in text document retrieval, and deserves
greater attention from the research community.

1.3 Project aim

This project proposes that there are advantages in the seamless integration of
a number of searching and browsing techniques that have independently
proved successful in the past. By increasing the level of user interaction and
feedback into the searching process, we believe that relevant images can be
located in large collections quicker and easier than ever before.

Section 2 presents background information to CBIR searching and browsing
techniques and Section 3 outlines a specification of what is to be achieved.
Section 4 discusses the interface design decisions made and Section 5
describes implementation methods used. Section 6 provides some initial
quantitative and qualitative evaluation and in section 7 we reflect on the
achievements made and the contributions of this project to the image
retrieval research community.

2 Background
2.1 Searching

A traditional CBIR search engine involves the following steps:

e Feature extraction for each image in collection (pre-computed)

e Feature extraction for query image(s) (real-time if not in collection
already)

¢ Calculation of the distance of each image in the collection from the
query image, based on a combination of the distance values
computed for each feature descriptor (real-time)

® Results returned ordered by lowest distance (real-time)

Figure 1 shows two common processes used for searching in traditional CBIR
systems. Results from the manual process are wholly reliant on the
performance of the system. Results from the interactive process are a
consequence of an iterative procedure involving the user modifying the query
based upon the system results. This allows the system to draw upon the
user’s prior knowledge of the world and hence understanding of the high-level
meaning of an image, and their knowledge of the topic from which the query
was derived. There has been much research into the best way of effectively
integrating this feedback from the user into the search process. Examples of
techniques include interalia supervised learning prior to retrieval [5],
interactive region segmentation [6], and interactive image database
annotation [7]. We shall focus on one of the more effective methods called
relevance feedback.

BT,
MANUAL: HUMAN ™| QUERY SYSTEM
e

Human formulates System mkes i
) query as input
query based on topic and produces result without

and queery interface, not further human intervention
on knowledge of collection

or search results

SRR
INTERACTIVE: HUM AN)—- QUERY SYSTEM

Human {re)formulates
query based on topic,
query, and/or results

Systemn t=kes query as input
and produces result without
further human intervention on
this invocation

Figure 1. The searching process [8]

2.1.1 Query generation

The problem of automated topic analysis and query generation is beyond the
scope of this project. We shall assume that the wuser has enough
understanding of the topic to generate a query using one or more example
images along with textural input. Another possibility for providing the query
includes giving a rough sketch of the image sought [9].

2.1.2 Feature extraction

Much scrutiny has been placed on the feature set used as image descriptors in
the search engine. The optimal combination of features differs depending on
the type of image collection. Certain features are better at describing the
semantics of certain types of image. For example, a Colour Histogram
descriptor would be useless when describing similarity between images in a
collection of black and white sketches. Because this project is largely
concerned with the user-interaction side of CBIR, we shall only provide an
overview of some of the commonly used features in current.

Most features are based upon extracting colour, shape and texture
information. The following are used for video and photo retrieval. See [10] for
more information.

HSV Global Colour Histograms — This histogram descriptor involves
quantising the distribution of pixels in an image in the HSV (hue, saturation
and brightness) colour space. The histogram is then normalised so that all
bins add up to 1.

HSV Focus Colour Histograms — This method applies the HSV colour
histogram technique to the central 25% of pixels. Hence this can be used to
disregard the background, and find similarities between the objects of focus.
Colour Structure Descriptor — This method uses the HMMD (Hue, Min, Max,
Diff) used in the MPEG-7 standard. To encapsulate local image structure, an
8x8 window is slid over the image. This allows the descriptor to distinguish
images with the same global colour distribution but a different local colour
distribution.

Marginal RGB Colour Moments — This method involves taking histograms
for each of the RGB colour channels, and computing the mean, second, third
and fourth central moments.

Convolution filters — Here, Tieu and Viola’s [11] method is used to generate
25 different feature maps based upon applying a set of 25 primitive filters to
the grey level image.

Variance — The variance feature is based upon taking the standard deviation
of grey values within a sliding window of 5 x 5.

Uniformity — This is a statistical measure based upon the frequency of pixels
with a particular grey level in 8 x 8 tiles.

Smoothness — This is another statistical measure based upon the variance of
particular grey values, again in 8 x 8 tiles.

Thumbnail — The thumbnail descriptor scales down the image to 44 x 27
pixels and records the grey values of each pixel. This helps identify near-
identical copies of images.

Text — By using speech recognition transcripts, the Managing Gigabytes [12]
search engine is used to annotate each image. This allows the images to be
searched effectively by text as well as by example.

The following are used for sketch retrieval. See [13] for more information.

Chain Code Histograms — This is a method of deriving a description of the
sketch contour by reading in the contour in a clock-wise or counter clock-wise
direction and recording the relative position of each pixel to its neighbour.
This can then be encoded to a representation which is invariant of translation,
rotation and scaling.

Moments — The moment of an image can be used to capture distributional
properties. It is calculated in a similar way to mechanical moments. The first
order moment (p=1, q=1) are for an X by Y size image can be calculated as
follows:

Xmax Ymax

m,, =Y > i’ j'f(,)

i=1 j=1

Ioment of each
pixzel 15 [*x

v

Figure 2. Taking first moments about y [14]

Central moments can be used to provide translation invariance.

Fourier Descriptors — A Fourier descriptor can be generated by obtaining a
periodic function from the contour pixels. This periodic function can be
expanded into its sinusoidal components. The low frequency components are
of most interest, since these describe the general shape of the object.

10

2.1.3 Retrieval

Retrieval can be carried out using the k-nearest neighbour approach, by
providing positively and negatively classified examples, and classifying test
images according to their proximity to these. The following is an extract from
[10].

We use a variant of the distance-weighted k-nearest neighbour approach.
Positive examples are supplied by the user, and a number of negative
examples are randomly selected from the database. The distances, for
descriptor d, from the test image T, to each of the k nearest positive or
negative examples (where ‘nearest’ is defined by the Euclidean distance in
feature space) are determined, and a distance measure d calculated as follows:

D (dist,(T;,n)+ €)™

d ,T — neN ,
e > (dist (T,q)+&)" +¢
qeQ

where Q and N are the sets of positive and negative examples respectively
amongst the k nearest neighbours, such that |Q| + |N| = k. € is a small
positive number to avoid division by zero. Images are ranked according to the
convex combination

D.(Q.T)=> w,d (Q,1),
f

where w; is the weight of descriptor f subject to wa =1 and w, >0.

2.1.4 Relevance feedback

Relevance feedback is a method of improving the performance of a search by
increasing the level of user-interaction. After the user has formulated a query,
and the CBIR system has retrieved a set of results, the user can provide
information about which of the images in the results are relevant and which
are irrelevant. This can be used to give the system a better indication of the
weight vector to use when combining features.

One implementation of such a technique is given in [2]. This uses a user-
interface in which the thumbnails that are returned from a search are
displayed such that their respective distance from the centre of the screen is
proportional to the dissimilarity D,(@,T;) of the thumbnail T to the query set
Q. The user then provides relevance feedback by moving relevant items closer
to the centre of the screen and irrelevant items to the outside of the screen.

11

Hence the user provides a vector of distances D,(@,T;) which differs from that
computed by the system.

We then find a new weights vector w,for which the sum of squared errors

2
N N

SSE(w)=Y[D,(Q.T)-D,(Q.T)I'=>"| > w,d,(Q.T)-D,(Q.T))
f

i=l1 i=1

is minimised under the constraint of convexity. We can then repeat the
search to retrieve a new set of results using the new weights vector. [2] found
that the boost in performance provided by relevance feedback levelled off
after about 4 iterations, leaving a 20% improvement in mean average
precision.

12

2.2 Browsing

As well as searching for images by providing text and example images, we
shall also provide several methods of browsing the image archive. Browsing is
the traditional method of a finding an image in a collection when the images
have been manually sorted or categorised. However, it has been shown that
browsing is an effective method even when the browsing structure has been
automatically generated [10].

The benefits of browsing arise from the human ability to quickly and
accurately assess the relevance of a set of images — much more accurately
than any automatic feature set comparison. The task lies in structuring the
search space such that the set of images the user has to assess is sufficiently
narrow. Five types of browsing have been outlined below.

2.3 Types of browsing

2.3.1 Hierarchical

Hierarchical browsing is used to navigate many traditional image collections,
where the images have been manually sorted into categories. The browsing
structure is often derived from the underlying file structure of the image
collection. Indeed, an image browsing function is included within the file
exploring capabilities of recent operating systems. Figure 3 shows two
examples of traditional hierarchical image browsers. Many web-based
collections employ a simple hierarchical structure such as BINS [15]. The
browsing structure provides a fast and efficient method to locate an image in
a collection.

Hierarchical browsing is suited to small collections which can be categorised
easily. However, a large collection of, say, video keyframes requires much
manual work to categorise the images before this method can be used.

Most hierarchical browsers tend to have a tree structure user interface, which
clearly shows the hierarchical organisation. This allows the user to expand
and collapse parts of the tree/hierarchy as they browse through the images.
Tree interfaces have been used for years to browse hierarchical file structures
in WIMP operating systems.

13

File Edit Wew Tools Help Type a questior

B Search... B > & Clips Orline _
= -

* Collection List

- ﬁ Office Collections ~
@ Academic e
2y Agriculture

ﬁ Animals

2y Arts

ﬁ AutoShapes

i ﬁ Backgrounds

ﬁ Buildings

@ Business

@y Character Collections

ﬁ Communication -

ﬁ Concepts

% Decorative Elements

0.

& Government
ﬁ Healthcare
i ﬁ Medicine
; ﬁ Services

2§ Household v

7 Items A

WildlifeLands Image Archive - Microsoft Internet Explorer

Fle Edit View Favoritss Tools Help 7]
5 £l Z & P E [e =N &
Back Stop Refresh Home Search Favorites Media History Mail Print
address [] https frome planet. i/ ~poppe2 13 home tm=havigation v Beo
a

R A O S SN A . N WM. CER. W W a2 W

Fllcknna thumbnail for a large +National Geographic's Wings Over
haBe. the Serengeti.

In the heat withersd Serengeti a ungry loness
click B for a wallpaper image. spots her unsuspecting prey and springs into
click Wfor sound from this. agmal action. Wings over the Serengeti reveals the

complex aftermath of the kill......Read More

birle Lur.764 Lhnr.s87
nr. 2003672 nr. 952 o104 Ehar 2002079 . 2002769
Return of the
Eagle -
Photo Book
Buy it! Read more... nr.1999338 nr. 1992616 nr.319 @‘q‘nr. 2002770
Mammals
Landscapes
Reptiles -

In the Oceans

Pnr. 208 nr. 299 763 Bhnrs3s
& P Internet

Figure 3. Hierarchical browsing examples: WildlifeLands Image Archive [16]
and Microsoft Clip Organiser [17]

14

2.3.2 Temporal

Temporal browsing arises from the concept that each image in a collection
has a predecessor and a successor image. This is suited to browsing a video
archive, since a keyframe’s neighbours can be determined from the video
sequence. By storing this information offline in an index file, we enable the
user to easily browse backwards and forwards in the video sequence at
runtime.

If a particular keyframe is deemed by the user as relevant then it is likely
that the neighbours of that image will also be relevant, since they are likely
to be keyframes within the same video sequence. Hence this method is
valuable when searching video archives.

Its applicability to a pure image collection is less clear, however. It is possible
this technique is still of use when some temporal or, more generally,
sequencing information is available. An example of such information might be
timestamps applied to photographs by a camera. In this case, temporal
browsing could be used to browse the photos in chronological order.

Figure 4 shows a content-based video browser which employs both
hierarchical browsing and temporal browsing.

Idiap Content-Based Video Browser : Bubbles - Mozilla <|
— =

Idiap Video Browser

Video Brawser Wark:

11 videa shots

12:31.84
1707 28

Figure 4. The IDIAP Video Browser [18]

15

2.3.3 Lateral (NN* Networks)

Lateral browsing is a fresh approach to CBIR and has proved a useful
additional browsing structure [19]. The idea of lateral browsing is borne out
of several limitations with the traditional query by example approach to
searching. These include the inability to navigate across the results provided
by different weightings of features (the ‘feature space’) and the fact that time
complexity increases linearly with collection size. Below I have summarised
the mechanism, as described in [19].

Lateral browsing seeks to overcome these problems by determining the set of
images that could be retrieved for a particular example image using any
combination of features. We define the similarity between two images @) and
I to be the weighted sum over the feature specific similarities:

S(Q.1)=) w,F,
f

where w; is the weight of descriptor f subject to wa =1 and w, >0. On
this principle, we can build up a network whereby image @ is connected to an
image I if there is at least one instantiation of the weight vector w such that
it causes the image I to have the highest similarity S(@,7) among all images
of the collection.

This set of images can be pre-computed for each image in the collection. For
each image, we store a set of images that were retrieved top under some
feature regime and the number of times this occurred. In this way, we expose
the polysemy involved in image retrieval. Because we can compute and store
this network structure (dubbed an NN* network), the user can navigate the
collection through this network in real time, regardless of the size of the
collection. The network produced was found to have properties that balance
randomness (far-reaching arcs to other parts of the network) and high
regularity (similar content is in close proximity to the current image). This
makes it ideal for organizing and navigating through image information.

[19] suggests an implementation in which the user can be provided with
access to the network without the need for a prior search through a clustering
of the high-connectivity nodes. When the user clicks on a particular image,
they are presented with that image in the centre of the screen and the
network of neighbours drawn around it (Figure 5). By clicking on a neighbour,
this node is transferred to the centre, and its neighbours are drawn
accordingly. Thus the user can follow relevant links in the network to browse
for an image.

16

2.3.4 Historical

Many recent graphical applications have included a function to maintain a
history of events, and allowing the user to navigate backwards and forwards
through their events. The classic example is a WWW browser (Figure 6). The
browser maintains a list of pages visited. At any point, the user can browse
back to the previous page viewed and forward again if necessary. This allows
the user to retrace their steps if they make a mistake in their browsing path,

instead of having to start over.

o
FUATURS COMPITE DATA

Quary Text
Tnage Brosser | Inage Search Assemly
~ 5o aack

Retriava

Fashumo

SAVE

Zeam N

200M oL

RESOLUTION -

RESOLUTION +

+ IMAGES

IMACES

S | £l » # 3 =
Back Forward Stop Refiesh Home Search Favorites Meda History Mall print

ic.ac.uk/~mzm00 frx fmages fireworks _ger/
firen jerds = |
fireworks_ger 10
$label
Google

(1 History Crl+H

Metering Mod

a make

4 Internet

Figure 6. MS Internet Explorer displaying a hierarchical image collection

17

2.3.5 Search results

Another type of browsing that should be considered is browsing the results of
a search. Many traditional search engines such as the Google Image Search
[20] have used a simple line-by-line system, where the results are ranked from
best in the top-left corner to worst in the bottom-right. Thus the user would
scan the results in a similar way to reading a piece of English text.

A novel approach employed in the Aetos browser [10] is to return the results

in a spiral, where the distance to each image from the centre is proportional
to its dissimilarity to the query as computed by the system. This layout
facilitates the relevance feedback implementation employed.

/4 -« @ -
St Fares veds oy | e
e 0T ai-en Y8«

Advanced Image Search Preferences Image Search Help

GOUgle oo (GoogiSeaen]

Image Search

Modsrate SafeSearch is on

X ufo-amppg ufo pg
293 x 310 pixels - 15K 640 % 500 pixel - 86k 640 x 384 pixels - 14k
onine.de/ org/mages/ 641327 pixels - 14k
alexsi2ifos him woramp pg zeonealufojpg users.aol com/dosware3 ufo pog

ufo pg
544 x 356 poxels - 56k
rasmus uib.no/~st01369/
Akt bl

ufo pg
380 x 280 pixels - 13k 583 x 398 pixels - 96k
‘w515, jo/~north onling.de

52002314
2l

E ufo's jpg
ufo g ufojog 300 x 300 pixels - Sk 300 x 193 pixel - T
1080 x 720 pvals - 70k 8 il~objocts!
iy wacubo oighanfivo pg v sportouring ne/ bikes/uo ipg rend386/o gif atscentreigallry him
X —_— 2
s
12 ® et
FENTURES COMPUTE DATA
Query Text 'sheep URL | [adato quory
Back
Retrieve
Reshufflel
+z00m
-z00m
-+ density
- density

CLOSE TO LOCK IN FRESHNESS THE

Figure 7. Google Image search [20] and Aetos browser [10]

18

2.4 The State-of-the-art

Image retrieval requires research in multiple different disciplines. This is
especially true for the areas of computer vision responsible for describing
images in terms of a number of features. Some examples of different
techniques used in recent research include [4]:

grouping

edge extraction

image segmentation
texture features
wavelets

probabilistic matching
histograms

As previously mentioned, there has been some effort in recent years in
improving the level of user-interaction and improving the user-interface.
Notable examples from TRECVID 2003 include:

Video Browsing and Retrieval System (VIRE) [21] - The MediaTeam
Oulu and VIT TRECVID experiments provided a novel approach
using cluster-temporal browsing. This combines timeline presentation
of video with videos with content-based retrieval. This reduced the
effect caused by ambiguous results usually obtained from a
traditional content-based example search.

Interactive search using indexing, filtering, browsing and ranking [22]
- This Mediamill and Univ. of Amsterdam team presented a four-step
process for interactive search in which the user performs a traditional
content-based search, and then browses the results to build up a set
of ranked images.

CDVP Dublin City University - Interactive Search Task Experiments
[23] - This team employed a method in which results are presented as
a group of five sequential shots, shown with their associated text.
The user can then choose to save a particular image or add it to the
query. The user must select the relative importance of the image in
the query.

ViewFinder [24] — The team from Indiana University demonstrated a
user interface in which 8 results are returned in rank order. The user
can then choose to view details about a particular image, or provide
feedback by ‘promoting’ an image. This retrieves keywords associated
with that shot includes them in the next search iteration. They also
employ a video browsing mechanism using a combination of the date
and video source.

19

2.5 TRECVID

The TRECVID [25] conference series is sponsored by the US National
Institute of Standards and Technology. It aims to encourage research in
automatic segmentation, indexing, and content-based retrieval of digital video.
TRECVID provides a large test collection, uniform scoring procedures, and a
forum for participants to compare their results. Imperial College has
participated in several areas of the TRECVID evaluation in the past [1, 10].
The search task of TRECVID has provided a useful way to measure the
effectiveness of new research into searching and browsing strategies and also
provides an indication of the current state of research from the world’s
leading organisations in the field.

The search task for TRECVID 2003 was as follows: “Given the search test
collection, a multimedia statement of information need (topic), and the
common shot boundary reference for the search test collection, return a
ranked list of at most 1000 common reference shots from the test collection,
which best satisfy the need”. More details of the restrictions for the task are
included in the guidelines [8]. It is expected that the search task will not
change significantly for TRECVID 2004.

20

3 System Specification and Prototype

The overall aim of the project is to create a web-based image and video
browser for content-based retrieval that integrates the current research into
browsing and searching into a unified interface. The resulting browser should
provide the user with the power to browse a large image collection quickly
and accurately. We shall build upon the work presented in [10] to enable us
to concentrate on the important issues of integrating the searching and
browsing mechanisms, and improving the user-interface.

3.1 System overview

The browser and search engine should be implemented under a client-server
model. This enables us to centralise the search engine backend and the
interface to the image collection. Figure 8 shows the suggested system
architecture for a web-based model:

Client machine Server machine
WWW browser Application server
. Other services
Client component | » Server component < .
(eg.. annotations)

Pre-computed

Image

collection index files

Figure 8. Suggested system architecture

3.2 Image and video collections

The browser will primarily be used with three image collections:
e Corel image collection (6192 images with category information)
e Sketch collection (238 black and white images)
e TRECVID test collection (32318 keyframes of video)

21

The differences between these collections should aid evaluation of the browser.
If time permits, then the possibility of applying the searching and browsing
mechanisms to a new collection could be considered.

3.3 Pre-computed data

3.3.1 Search

To reduce the calculation that has to be done in real-time, we can pre-
compute much of the data involved in searching and browsing. We can pre-
compute the feature descriptors for each image in the collection and save the
results to disk in the same structure as the images themselves. Hence to
compare the similarity of two images at runtime we simply need to compare
the saved feature descriptors rather than compute them on the fly.

3.3.2 Hierarchical browsing

The hierarchical structure of the images is preserved in the file structure of
the collection. Having been pre-categorised by an expert, the user can browse
the hierarchy in the browser at runtime.

3.3.3 Lateral browsing

The NN* network structure should be pre-computed and stored offline. This
is represented by an index file for each image, containing that image’s nearest
neighbours. These files are used at run time to draw the lateral browsing
structure.

3.3.4 Temporal browsing

The temporal sequence of images should be stored as an index file containing
a list of the images along with their predecessor and successor as defined by
some criteria, such as order in a video sequence. This file can be used at
runtime to perform temporal browsing.

3.4 User interface (client-side)

The user interface should seamlessly integrate the following main features:

Search with relevance feedback, browsing results by rank
Hierarchical browsing

Lateral browsing using NN* network

Temporal browsing

22

e Historical browsing
e Image/video viewer

Figure 9-Figure 12 demonstrate a prototype implementation that might
satisfy these requirements. It is based upon the notion that at any time in the
browser, we have an ‘image of interest’. We could then provide a number of
tabs for browsing in different dimensions with respect to this image. For
example, if the user starts browsing using the hierarchy of categories, and
then wishes to proceed browsing using the NN* network, they can select the
image in the hierarchical browsing tab, and this will become the centre of
interest in the lateral browsing tab. In this way, we can maintain consistency
across all the tabs, and thus provide different ‘views’ upon the same
information. Below we outline what effect changing the image of interest
would have on each of the views:

e Search with relevance feedback, browsing results by rank — if the
image of interest is among the search results, then it would be
selected, otherwise there is no change.

e Hierarchical browsing — the category in which the image of interest
resides is shown. The image of interest is selected.

e Lateral browsing using NN* network — if the image of interest is
within the currently displayed network, then it is selected, else the
network surrounding the image of interest is shown.

e Temporal browsing — the image of interest becomes the central image.
The predecessor and successor images are updated accordingly.

e Historical browsing — the image of interest is added to the list of
images visited, so that the user can easily navigate Back to this
image if necessary.

e Image/video viewer — this would update to show the high-resolution
image of interest.

It is proposed that the temporal browsing pane is shown at all times at the
bottom of the window, since this tends to be frequently used. Therefore the
image of interest will always be at the centre of this pane. At all times, the
interface should be as consistent with current WIMP operating systems as
possible. This should enable the user to learn how to use the application
quickly and intuitively.

Other required features of the user interface include:
e Progress information — the user should be kept informed as to the
current status of the system. For example, a status bar at the bottom

of the window could be updated with current information, such as
the percentage of search complete.

23

¢ Consistency — we have already described our strategy for maintaining
consistency across browsing mechanisms. This could be extended by
saying that, where the collection and pre-computed data remains the
same, all behaviour of the system should be deterministic.

e Cater for different users — the user-interface should be as easy and
intuitive to use for inexperienced users, but also flexible enough to
cater for the needs of advanced users.

e It should be screen-aware and bandwidth-aware, as described below.

Historical browsing is Tabbed pane layout provides an intuitive
provided by a Back and method of switching between ‘views’ (browsing
Forward button, like a methods)

web browser

& Search for mages Browsing of query results:
uery by text
Query by e here we have shown a

or by image . traditional line-by-line

method that maximises
the use of space. A
discrete scale relevance
feedback mechanism could
be provided with tick and

cross icons next to each

Indication of

image
relevance feedback

included in search [e 3

Temporal
L —— browsing panel is

visible at all times

Ready

‘Image of interest’

Figure 9. Searching with relevance feedback

24

Hierarchical navigation is
provided by a tree GUI
component showing the
categories of the image

collection

Nearest neighbours are
shown in a circle about
the ‘image of interest’. By
drawing the NNk network

B hetos 2 =]

Back Forward

Searsh | Categories | WKnetwork | Viewer | Output | Settings

& Browse for Images

0 foatball
hackey

& £ food

[hot dogs

D pizz

D

Ready

Figure 10. Hierarchical browsing

£ Aetos 2
Back Forvard

[EN=1E]

Search | Categories | NMKRetwork | Viewsr

arcs, we can provide the
user with further
information as to
similarities between
images. If the user clicks
on an image, that
becomes the ‘image of
interest’ and the display
redraws to show that
image in the centre,
surrounded by its nearest
neighbours.

‘Image of interest’

Figure 11. Lateral browsing

25

Browsing of images within
a collection: here we have
shown a traditional line-
by-line method that
maximises the use of
space. The search function
could be used to rank all
images within a certain
category, so that we could
display them in rank
order.

We could improve use of
space by developing a
more sophisticated
drawing mechanism. We
could provide the user
with a way to configure
the number of neighbours
shown, and the depth of
network to be shown.

B setor 2 =]

R
Search | Categaries | Meknetwork | Wewer | Guput | Settings
‘We could include more

features such as a zoom

An image / video .
. facility or a full screen mode.
viewer should be .
. Also we could display
included. Here we have

shown the high- -

resolution version of the

further information about
the image, such as EXIF
tags or associated

image of interest. .
annotations.

We could also allow the user
to build up a collection of
images and browse through
their collection in this panel.

‘Image of interest’

Figure 12. The viewer

26

3.4.1 Screen-awareness

The user interface should make appropriate use of the available screen space.
That is, it should be able to adapt to both different sizes and different
orientations of screen. We shall assume that the minimum screen space
available is 800x600. It is uncommon for modern workstations to use a screen
resolution of less than this. Ideally, the interface should dynamically update
to optimise the layout of components as the user resizes the window.

3.4.2 Bandwidth-awareness

The client should be able to adapt to varying amounts of available
bandwidth between the applet and servlet. This might involve decreasing the
resolution of the thumbnail images returned if the network connection has
limited bandwidth. The client should also make use of caching and pre-
fetching techniques to limit the effects of limited bandwidth upon the
usability of the browser. If the user does have to wait for data to be
transferred from server to client, then they should be informed of its progress
by means of a status bar or progress bar.

3.5 CBIR engine (server-side)

The functionality of the server component will be based upon the Aetos
browser described in [10]. The server component receives search/browse
commands from the client and responds accordingly. For example, if the user
performs a search using a particular query, the client sends the query to the
server, where the search takes place and the images are compared according
to their descriptor similarity. The server then responds appropriately with the
ranked list of images. Similarly, the user might want to browse the NN*
network. The client sends a command to the server requesting the nearest
neighbours of the current image. The server looks this up using the pre-
computed index files, and returns the list to the client.

27

3.6 Improvements

We have determined several areas in which there are scope to improve the
level of user-interaction:

¢ Relevance feedback — further investigation of relevance feedback
could be undertaken to try and identify the benefits and drawbacks
of a discrete scale feedback system against a continuous scale
feedback system. Negative feedback might also be a useful area to
explore.

e Poor use of space during retrieval and browsing — it is possible that
there are benefits in organising the search results or the NN*
networks to make best use of space. This can expose the user to more
results, who is able to quickly and accurately scan the thumbnails for
relevant images.

3.7 Extensions

There are many extensions that could be carried out if time permits. These
include:

e Search by an external image — currently the user is only allowed to
search using an image which has had its feature descriptors pre-
computed. This process could be integrated into the browser to allow
any image to be used in a query. However, some estimation would be
required to normalise the image descriptors in the same way as the
rest of the collection.

e Add new image to existing collection — this is similar to the above
problem, but has the additional difficulty of adding a new image to
the various browsing structures at run-time. It is impractical to re-
compute the whole lateral browsing network in order to include the
new links to this image.

¢ Adding annotations to images — this would involve storing some
annotation metadata along with each image. It is possible to
associate annotations with particular regions of images by adding
location information to the metadata.

28

4 User Interface Design

The wuser-interface of the browser was developed using a user-oriented
approach. At each stage we considered how the features of the interface
would enhance the browsing process for the user. Several key concepts of HCI
were maintained throughout the design process:

¢ Consistency — This applies both to concepts used within the browser
interface and also to concepts used in general in recent human-
computer interfaces. For example, if we can bring up a popup menu
to apply actions to a particular image in the interface, the user might
expect that he could use the same method to bring up a popup menu
for any image displayed in the browser, no matter what the current
method of browsing. General HCI standards would suggest that the
menu should appear when the user right-clicks on an image.

¢ Responsiveness — The user should at no point be presented with an
unresponsive interface. This means that there must always be some
processing power available to servicing the interface. This is a
common oversight in many simple Java programs, in which the
event-dispatching thread is wused to perform time consuming
computation. If the browser is occupied performing computation or
retrieval then the user should always have the option to cancel this
action. Ideally, the time-consuming task should be performed in the
background and the user can proceed with initiating other actions.

¢ Informing the user of progress — When a time-consuming task is
taking place, such as computation or retrieval of data from the
network we must ensure that the user is kept informed of progress.
This serves two purposes: to indicate that progress is still being made
(a failure has not occurred) and to allow the user to estimate the
time remaining before the time-consuming task terminates.

4.1 Integration of browsing and searching methods

The seamless integration of the different browsing methods is key to
providing the user with the benefits of each method during the browsing
process. We based the interface design upon the notion of an ‘image of
interest’ as suggested in the prototype interface, as this seems most intuitive
to the user. We then considered several paradigms for the integration of the
different methods. Firstly, we considered whether the ‘image of interest’
should be displayed once or multiple times in the interface. The following two
options were considered:

29

e Placing the ‘image of interest’ in the centre of the screen, with a
‘fisheye’ visualization of neighbours coming off in horizontal, vertical
and diagonal directions to represent browsing in different dimensions.
Although this works for a small number of simple browsing methods,
such as temporal browsing, it is not conducive to more complex
browsing mechanisms. Also it presents each dimension in the same
way, so we cannot configure the display depending upon the browsing
method used. Separate panels would have to be provided for
performing a search or browsing more complex structures such as the
tree hierarchy.

e Splitting the interface into a number of separate panels on the same
screen. Each panel presents the functionality of one browsing method.
The ‘image of interest’ is clearly shown in each panel, for example by
a coloured border.

It was decided that the second option provided many benefits. By allocating
a particular browsing method its own panel, we can ensure the functionality
for that method is consolidated in that panel. We can design the presentation
of each panel to suit the paradigms of the method being used, whist
maintaining consistency with other panels via the ‘image of interest’.

Next we considered which GUI mechanism should be used to split the
interface into separate panels. We considered the following options:

£ S ¢ Include all panels on the same screen, allowing

ﬁf the user to allocate space by dragging divider
bars.

e Separate browsing panels using a desktop-style

CE——— parent window containing child windows. The
T FaE user can maximise, minimise, scale and arrange
windows as necessary within the parent
window.
[I [=] E3 . .
e Separate browsing panels using a tabbed

layout. When the user selects a tab for a
particular browsing method, that panel is
shown and fills the whole screen.

30

It was decided that the second option was not suitable in this case, since
child windows are usually used in cases where the user can open and close a
number of documents and apply common actions to them, like in a word
processing application. Hence using this model for different browsing methods
might go against what the user might intuitively expect.

We decided to use a combination of a tabbed layout and a split pane layout.
The final interface layout did not deviate considerably from the prototyped

interface. Figure 13 shows the final layout.

Actions that can be applied at any time are
located in a toolbar. Most users who are
familiar with a web browser will find this

interface intuitive.

Tabbed pane layout provides an intuitive
method of
(browsing methods)

switching between ‘views’

@ iBase :: Image Brgwser and Search Engine / g@
o0 0o]@
Back E Stop Refresh

| gearch | Categories | NNK netwark [Viewer | Output | Settings |

EI-E--
e

BT
B =

ET A T I

e

s Browse for Images

Collection categories:
AL CTYSIETS I JES e o)
—& Apes 'al
4% Beads L
—% Bears

— % Beautiful Roses
— % Beverages

— % Bonsai and Penjing
— & Bridges |l o
— & Canadian Historic Railways
% Canadian Rockies

— % Cards

— & Castles of Europe |

— & Caverns

— % Clouds

% Copastal Landscapes

— % Contemporary Buildings
— & Crystallography

% Duoors of Paris

% Fine Dining

Se\ect Selectimage

Add image to My selection
Add image to guery
Add text fo query

o

% Forests and Trees

N

| Ternporal | My selection |

i I

\rlmage ID: 1371 Filename: Cloudsi 31000 jpg Keywords: aerial altgstratus close-up clouds cloudy detail pattern sky texture

Statusbar user Split pane divider allows user to adjust Context-aware popup menu

with progress information.

provides

allocation of screen space between displays list of possible user

bottom panels and top panels interactions

Figure 13. Final interface layout

31

It was decided that the bottom panel should not only display the temporal
browsing panel but also a panel to which a user can add or remove relevant
images that he/she finds while browsing. We have called this panel ‘My
selection’. This helps with the integration of browsing methods since it allows
the user to build up a selection of images using one browsing method, and
then explore these images further under different browsing methods. Hence
the user should be able to have this panel displayed constantly while they
change between browsing methods using the upper panel tabs.

To ensure clear consistency between browsing methods we show the current
‘image of interest’ with a blue border. The user selects an image as ‘image of
interest’ simply by clicking on it. This updates all other views to show this
image and hence maintains consistency. We also employ a context-aware
right click menu for each image. This presents the user with a pop-up menu
containing the set of possible actions for an image in the context of a
particular browsing method. This assists with integration since we can use an
image from one browsing method in another. For example, if we find a
relevant image by lateral browsing, we can then right-click on it and add it to
the query images used in a content-based search.

4.2 Search

4.2.1 The searching process

In a traditional text-based search engine, the user inputs one or more
keywords which are matched against each image and a ranked list of results
are returned. In a content-based search engine, the user inputs a combination
of one or more query images (and possible textual keywords also). A content-
based search also needs one more ingredient: the feature weights. The weights
define how much influence each feature descriptor has on the overall results
and can considerably affect the outcome. Figure 14 shows the CBIR, searching
process which was considered when designing the interface.

32

Modification of query
and/or feature weights

A 4

Query text
Query images

Feature weights

A 4

Search engine

A 4

Browsing of results

A 4

Add relevant images to
My selection

Figure 14. The searching process

& iBase 12 Image Browser and Search Engine

ek

| Back

Stop

o | o | 0| @

Refresh

l Search | Categories | NNk netwark | Viewer | Output | Selings

. Search for Images
Search text:
sun

Search images

Search weights
Colour Structure..
Colour Focus
Global HEY
Convolution 2
Smoothness

Thumbnail

Search Mow) (Clear)

Page 1 of4 MNext page

TemporaH Wy gelection |

Image 10: 1381 Filename: Cloudsi191010jpg Keywords: aerial background close-up clouds cloudy detail sky sratus sun

Figure 15. The search interface

33

Figure 15 shows the final search interface. We have split the panel vertically
to give a smaller left-hand panel used for query formulation and a larger
right-hand panel used for browsing the search results. This is a commonly
used layout for searching mechanisms in operating system GUIs.

4.2.2 Initial query formulation

To perform an initial query, the user types text into the ‘search text’ box and
adds one or more image to the ‘search images’ panel. Any image in the
browser can be used in a query by right-clicking on it and selecting ‘Add to
query’. Often an initial text search is performed to locate a relevant image
which is subsequently added to the query. The user can also import an image
from an external URL to use in the query. Initially, the feature weights are
equally weighted (or as estimated on the sliders by the user), although the
user can use weights retrieved from the NNk browser, as discussed in section
4.4.2.

4.2.3 Browsing of results

Results are returned in a page-wise fashion that is common for search engines.
This has the advantage that only a limited number of images must be fetched
from the server. If the search is clearly not producing relevant results, we do
not waste any time or bandwidth retrieving images. The user is able to
manually configure how many images are returned on each page, or leave it
to the browser to automatically return the number of images that will fit on
the screen (screen-awareness). The user browses from page to page with the
buttons at the bottom of the results panel.

Results are laid out on each page in a traditional line-by-line fashion, with
the most relevant image located in the top-left corner, and the least relevant
in the bottom-right corner. Although there has been some research into novel
layouts of results, such as clustering or spiralling techniques, we believe that
there are advantages in the traditional approach. It is simple and intuitive to
the user. We make maximum use of the available space which helps the user
to assess the relevance of many images quickly and use them in the search
query if required. In this way we are maximising feedback from the user in
the searching process.

Because an image is ranked in the results according to the combined
distances from the query image(s) under each feature, it is useful to convey to
the user the relative contribution of each feature to the total distance from
the query image. We considered carefully how to represent this information in
a meaningful way. We decided that a pie chart would be suitable as it is
only the relative contribution of each feature which is important; the absolute
distance to the query image(s) is represented by the position in the results.

34

‘& iBase :: Image Browser and Search Engine =<

|
| Back Stop | Reftesh

Search | Categories | NNk network | Viewer | Output | Settings

{& Search for Images

Search text

Search images:

Search weights

Colour Structure S 100% =
Colour Focus S 100%
Global HSW @ 100%
Convolution 2 100%
Smoothness @ 100% |
Thumknail 100 [

Image ID: 525

(pe—e—) i -) (Page10f19 Cantribution to similarity (hefore weights).

® Gomvolution 2 (26.9%)

—_— Variance (16.9%)
Temporal | My selection | 13.9%)

H I o

Image D¢ 489 Filename: Beauliful_Roses(476000 jog Keywords: ‘aroygueli' backaround beautiful closeup fiower gold grandiflara medal nature plant rose roses

“ iBase :: Image Browser and Search Engine

|
| Back Stop | Reftesh

Search | Categories | NNk network | Viewer | Output | Settings

{& Search for Images

Search text

Search images:

Image ID: 4102
Conribution to similarity (before weights)

= Colour Focus (23.7%)
= Gonvolution 2 (16.3%)
Variance (15.5%)
= Global HSY (10.9%)

Search weights

Colour Structure S 100% =
Colour Focus S 100%
Global HSW @ 100%
Convolution 2 100%
Smoothness @ 100% |
Thumknail 100 [

Search Mow) [Clear

Temporal | My selectian |
H I

Image D¢ 489 Filename: Beauliful_Roses(476000 jog Keywords: ‘aroygueli' backaround beautiful closeup fiower gold grandiflara medal nature plant rose roses

Page 1 0f194 Next page

Figure 16 (above) and Figure 17 (below). Explaining the search results

35

Although the list of images is ranked according to minimum distance
(dissimilarity) to the query, it is more intuitive to the user if we display the
relative contribution of features in terms of similarity. Initially we calculated
for each image the contribution C ¢ of a feature f to the total similarity as:

d;

>4,
i=1

where d pls the distance from the image to the query images and n is the
number of features. This ensures that all C s values are [0,1] bounded.
However, after testing it was apparent that this similarity measure does not
show relative similarities well when there are many features. Instead we
favoured a measure in which we calculate for each image the contribution
C ¢ of a feature f to the total similarity as:

c, =1

1
=
d, +¢&
where d,is the distance from the image to the query images and &€ is a
constraining factor so that all C s values are [0, 1/ €] bounded. In practice,
we found that a value of €= 0.1 provides a similarity scale which shows the
different feature contributions clearly.

The pie chart is displayed within a tooltip-style box which is displayed after
1 second of hovering the pointer over an image. We display a key to the pie
chart for the top four contributors, in order of contribution.

Figure 16-17 demonstrate how this information helps to explain the search
results to the user.

Figure 16 shows the pie chart representing the relative contribution of each
feature to the total similarity between the yellow rose query image and the
yellow flowers that have been returned at position 9 in the results. The pie
chart shows that Colour Focus (a colour-based descriptor) is the highest
contributors. Figure 17 shows a similar chart for the red rose at position 25 of
the results. Here the pie chart shows that Convolution and Thumbnail are
the highest contributors, which we would expect since the texture of the rose
is very similar to the query image but the colour is different. It is clear that
this information would be very useful to the user in the case where it is not
immediately apparent which feature descriptors provide the greatest
contribution to the similarity rating.

36

4.2.4 Query modification (relevance feedback)

It is difficult for the user to estimate the best combination of feature weights
to use for a particular query. We decided to investigate a heuristic approach
based upon the similarity contributions computed from the feature distance
values, as discussed above. The user adds relevant images to a feedback panel.
Weight Wf for a feature f is then computed as:

%6

Wf—‘

n

where C ¢ Is the contribution of a feature f to the total similarity for image
i and n is the number of images in the feedback panel. By adjusting the
weights in this way, we allocate importance to the features that contributed
most to the similarity between the query image(s) and the image(s) chosen as
relevant by the user. In this way, we encode information about what the user
perceives as a relevant image within the feature weighting. In subsequent
searches, images with similar distributions of feature contributions to those
chosen by the user as relevant will be ranked higher. After some initial
testing, we found that this approach did not provide a substantial gain in
performance. Indeed on some occasions it reduced the quality of the search
results.

We therefore decided to implement a variant of the method discussed in 2.1.4,
since this has proved successful in the past. Due to our interface design, we
modified the method to use a discrete relevance feedback scale instead of a
continuous one. To indicate relevance, the user right-clicks on an image and
selects “Mark positive” from the menu, or holds Ctrl and left-clicks on an
image. By marking images as relevant, the user indicates this image should
have a distance close to zero. The system then computes a new set of weights
by minimising the sum of the squared errors between the user allocated
distances and the system computed distances as discussed. We evaluate the
effectiveness of this method in improving the search performance in section
6.2.

Figure 18 and 19 demonstrate this relevance feedback technique in use.
Figure 18 shows the search result after querying on a yellow rose. The user
has selected a number of images as relevant (shown with a red border) and
hence assigns a distance close to zero. When the user searches again, the
system minimises the error between the user assigned distances and the
system computed distances.

37

Figure 19 shows the updated feature weight sliders and search results using
this relevance feedback. We can see that the error is minimised when there is
less importance placed on the colour feature descriptors and the results show
more roses of different colours. In this way, we are encoding the user’s
perception of relevance (eg. ‘a single rose of any colour’) in the feature weight
selection.

38

‘£ {Base :: Image Browser and Search Engine =]

o | o| o] @

J Back stop Refresh

|/ Bearch | Categories | NNk nebwork | Viewsr | Output | Settings

& Search for Images

Search text

Search images:

~z

Search weights

Colour Strueture... P100% =
Colour Focus S100%
Global HSV S100%
Convolution 2 S100%
Smoothness @100% ‘
Thumbnail @100% L

Search Mow Clear) Pagetor1as (Netpage)

Temporal | hiy selectian |

Image ID: 489 Filename: Beautiful_Roses/476000,jpy Keywords: ‘aroyqueli' background beautiful closeup flower gold grandiflora medal nature plantrose roses

£ {Base :: Image Browser and Search Engine mEX]
o |o| o
J Back stop | Refresh

[[seareh Categories | NNK network | Viewer | Output | Setiings

& Search for Images

Search text

Search images:

Search weights:

Colour Structure... & 1% |2
ColourFocus 0%
Global H3Y O 53%
Comvolution 2 O 74%
Smoothness @100% ‘
Thumbnail o= 4% U

(searcnvow) (crear) () Pagetofiss (Nedpage)

Temporal | My selection |

Image ID: 439 Filename: Beautiful_Roses476000,jng Keywords: 'aroyquell’ background beautiful closeup flower gald grandifiora medal nature plant rase roses

Figure 18 (above) and Figure 19 (below). Relevance feedback

39

4.3 Hierarchical browsing

Hierarchical browsing allows the user browse for images using a set of pre-
defined categories. This lets us take advantage of any expert pre-
categorization that has taken place. The hierarchical browsing structure is
derived directly from the directory structure on disk. Hence we cater for any
arbitrary tree structure allowed by the file system. Figure 20 shows the user
interface for the hierarchical browsing panel. Again, we have split the panel
into a left-hand panel for category navigation and a right-hand panel to view
the contents of the currently selected category. The user can allocate screen
space by dragging the divider. We have represented the tree structure as an
expandable and collapsible tree interface component. Most users will be
familiar with the paradigm, as it is used commonly in operating system GUIs
for browsing the file system. The contents of the currently selected category
are shown in a line-by-line fashion, in the same way as the search results.
This maximises screen space and helps the user to quickly assess whether
there are any relevant images. A scrollbar appears if there are too many
images in a category to fit on the page. The current ‘image of interest’ is
shown, as usual, with a blue border. If the ‘image of interest’ is changed in
another panel, the panel updates to show the contents of the category in
which the ‘image of interest’ resides. If the user selects a category in the tree
which itself contains sub-categories (non-leaf node), then all images in the
selected category and all images in each of the sub-categories are displayed.

{2 iBase :: Image Browser and Search Engine | =%]

o o0 @

Back Stop Refresh |

| Search | Categories | MNK network | Viewsr | Settings |

{. Browse for Images

Collection categories
% Beauliiul Roges [a]
. Bridges I
% Canadian Rockies
% Caverns
% Clouds
% Coastal Landscapes
% Doors of Paris
% Forests and Trees
% Insects
% Lighthouses
* [Clone]
% Warine Life
4 Maolecules and Moths and Butterflies
Molecules
I:t“ Type A
% Type B

% Moths and Butterflies

FTT T I T I T 1111

i

| Temparal | My selection |

-E

Image ID: 230 Filename: LionsM 05014.jpg Keywords: - aftican animal cat feline grass huge lion lions male mamrmal mane vegetation

Figure 20. Hierarchical browsing interface

40

4.4 Lateral browsing (NN* networks)

Improving the interface and browsing process for the NN* networks was a
particularly challenging area of the project. For each image in a collection we
pre-compute the set of other images which were ranked top for some
combination of feature weights. In this way, the user can browse across the
weight space, and we address the problem of polysemy involved in image
retrieval.

We described in 2.3.3 how the network has been presented to the user as a
graph where the currently selected image is placed in the centre of the graph,
and its neighbours are displayed around it, with the distance to the centre
representing the relative similarity. By clicking on a neighbour image, the
user can re-centre the graph about that image, and show its neighbours. It is
clear that this method has several limitations. This interface does not assist
the user in keeping track of which parts of the NN* network he/she has
already explored. The user may find several neighbours that are worth
exploring, but then lose track of them while exploring one. Also, it is
beneficial if we can modify the network displayed to only show parts of the
network that the user has not already explored. In this way, the user does
not waste time assessing images he/she has already considered. We also have
the problems of overlap and poor use of space associated with a static graph
layout.

We have formulated an interface and browsing process which overcomes these
problems. Initially we tried displaying the network such that the user could
dynamically expand and collapse nodes to view or hide their neighbours. The
user could also drag images in the network to arrange them as they wish on
the page. This has the problem that the screen would fill up very quickly,
and the user would spend much time removing irrelevant images. We
modified the strategy so that for each image, the user prunes away irrelevant
neighbours (by marking relevant ones) before they are displayed in the
network.

Figure 21 shows the final lateral browsing interface. Once again, we have split
the panel vertically, allowing the user to allocate space with the divider. On
the right-hand side we show the ‘image of interest’ surrounded by its
neighbours according to the NN* structure. Neighbours are displayed in a
square-spiral fashion in order of similarity, to eliminate overlap and maximise
use of space. On the left-hand side, the user can select to view either the ‘Hub
network’ (static network showing 36 most highly-connected nodes) or ‘My
network’ (dynamic network in which the user can add relevant nodes in order
to systematically explore the neighbours of each). The hub network can
provide a useful entry point for browsing the network.

41

4.4.1 The browsing process

Below we describe each step involved in browsing the NN* network for
relevant images using our interface. We use an example topic from the
TRECVID 2003 search task. The problem is to find all images showing an
aeroplane appearing to take off.

1. Select an initial ‘image of interest’

Figure 21 shows the initial browsing interface after an initial image has been
selected. This can either be from the hub network or from elsewhere in the
browser, such as the search results. In the example we have performed a text-
search for ‘plane’ to locate the selected image. The top 24 neighbours of this
image in the NN* network are then displayed.

‘£ iBase :: Image Browser and Search Engine E]@

® ©| 0| @

Back Stop Refresh

| Search | Categories | MMk network | viewer | Setlings |

£ Browse for Images Hub netwark | My network |

Mearest neighbours,

I I8

h..=.!..:==
Rt | 1
Eoem ~ &
il Ll 2 nie

Prune Reset

\fempura\[My selection |

Iy

BEEERAR

nﬁiﬁﬁﬁ
e o B

(262 remainingg) Loading images

Figure 21. Lateral browsing interface after initial image selection

42

2. Assess neighbours for relevance

We can observe that there are several relevant images (i.e. planes taking off).
There are also several images which are not directly relevant, but may lead to
relevant images in a different area of the NN* network (e.g. planes on the
runway) and so should not be immediately dismissed. The rest of the images
are irrelevant and can be disregarded for the duration of the browsing process.
By selecting ‘mark positive’ from an image’s right-click menu, or holding Ctrl
and left-clicking on an image, the user can declare to the system that that
image is relevant (or is not directly relevant but should be marked for further
exploration). Figure 22 shows the positively marked images drawn with a red
border.

@ iBase :: Image Browser and Search Engine g@

J@‘@ 0| o

Back Stop Refresh

| Search | Categories | MMk network | Viewer | Seftings |

& Browse for Images HUB network | iy network |

Mearest neighbours

-
U NS
] — ﬁ=

garkpusmve
ry = | d image to My selection
-
=, == ﬁ il Add image to query

Add image to feedback

B@Eﬁ
HAlkh
b= |3

| Adid text to gquery >
il Lm- =

Frune Reset m

[Tempura\ I Wy selection |

ERPAEL

b [B

(262 remaining) Loading images..

Figure 22. Lateral browsing interface after relevance feedback

43

3. Prune irrelevant neighbours and add relevant neighbours to user network

Having marked the relevant images, the user can prune away the irrelevant
images by pressing the prune button. This removes irrelevant images from
the display and leaves only relevant images. The irrelevant images will not
appear as a neighbour of any other image in the collection, since the user has
already assessed them as irrelevant. The user can undo this action by
pressing the reset button.

Pressing the prune button also adds the selected image and its pruned
neighbours to the ‘My network’ panel. Here the neighbours are shown in a
network where an arc between images A and B represents the fact that image
A is a neighbour of image B or image B is a neighbour of image A. The user
can arrange the network as they wish by dragging the images.

@iBase :: Image Browser and Search Engine g@

Back Stop Refresh

[Search | Categories | NNK netwark | Viewsr | Setings |

{0 Browse for Images [Hub network | My rietwork |

Mearest neighbours:

E =

i i &

|
- xay -~
it

—
Tt
= = e

Frune Reset (pad pruned) (" clearpruned) add all) (clearall)

:ﬁampural] Tty selection |

(262 remaining) Loading images

Figure 23. Adding relevant images to the user network

44

4. Repeat steps 2 and 3 for all un-pruned images in the network

Having added relevant images to the network we can now systematically
apply the pruning steps to all un-pruned images in the network. Figure 24
shows the effect of pruning one of the neighbours of the initial image. The
network grows and we can now in turn explore this image’s relevant
neighbours. To help the user keep track of the parts of the network already
explored, we show pruned images with a black border. All neighbours that
have already been assessed as relevant or irrelevant are not shown in the
neighbours of un-pruned images, until the user presses ‘Reset’, to reset the
pruning decisions of one image, or ‘Clear All', to reset the whole browsing
process and clear the user network.

The user can add images from the ‘My network’ panel to the ‘My selection’
panel at any time by pressing ‘Add pruned’ or ‘Add all’ to add only pruned
images or all images respectively. To prevent the panel from becoming
cluttered, the user can press ‘Add pruned’ and then ‘Clear pruned’ to remove
pruned images from the network, and then continue exploring un-pruned
images.

& iBase :: Image Browser and Search Engine E]@

O ©| 0| @ |

Back E Stop Refrash

| Search | Categories | MMk network | Viewer | Settings |

. Browse for Images [Hulb netwark | iy network |

Mearest neighbours 5

-

—
|~ |25 =/
Bt
Prune Reset (Add pruned) [Clear pruned) Add all Clear all)

| Temporal | My selection |

Image ID: 3532 Filenama: TRECYID2003_166/shot1 B6_33_RKF jpy Keywords: AS AIRTRAMN FLIGHT FOR TWENTY SE{ APPROACHED THE AIRFORT IN CHATTANOOGA THERE'RE

Figure 24. Exploring the network

45

Using this technique we can very quickly build up a large collection of
relevant images for complex queries which are difficult to describe in a search,
possibly due to the high-level nature of the topic or the difficulty in feature
weight estimation.

4.4.2 Explaining neighbour images

In our discussion of the browsing of search results, we demonstrated how we
could provide the user with a pie chart showing the contribution of each
feature to the total similiarity of an image compared to the query image(s).
This helps to explain why a particular image appears in the results. We can
employ a similar technique when browsing the neighbours of an image in the
NN* network. However, the problem in this case is more difficult, since we
need to convey weight information also.

Recall that an image I is a neighbour of an image Q if there is a feature
vector for which I is ranked top under the combination of all feature
discriptors describing the similairty between I and Q. Hence one neighbour
corresponds to the top image for some region in n-dimensional feature space,
where n is the number of features. This is a very difficult concept to visualize
and therefore difficult to convey to the user in a meaningful way.

We must show for each image not only the contribution of each feature to the
total similiarity of a neighbour but also the relevent region in weight-space
which adjusts the contribution of each feature. In order to retain simplicity
and consistency, we decided to take the centroid of the area in weight-space
represented by a neighbour, and hence show the weighted contribution C p
of a feature f as:

Wy

C,=——
s
df+8

where d,is the distance from the image to the central image, w, is the
weight of feature f at the centroid of the region in weight-space for which
this image was ranked top, and € is a constraining factor so that all
C values are [0, 1/ €] bounded.

We draw the relative contributions of each feature on a pie chart as before.
Figure 25 shows us that the image to the bottom-left of the central image is a
neighbour because it was ranked top under a feature regime which places
heavy importance on the Thumbnail descriptor.

46

& iBase :: Image Browser and Search Engine E]@

J@‘@i@‘@

Stop Refresh

| Search | Categories | MMk network | Viewer | Settings |

{& Browse for Images Hub netwark | Wy netwark |

Mearest neighbours

Thurnbnall (58%)

Smoathness (3%) A m
= Uniformity (9%

= Colour Structure Descriptor (7%)

.
e §
RC

(e > L

| Temporal | My selection |

Image ID: 19 Filename: Affican_Antelope/7 7089 jpg Keywards: affican animal antelope eland fisld ground homs mammal plain wild

Figure 25. Explaining neighbours

By right-clicking on a neighbour, a user can add that image to the feedback
for a content-based search. This updates the weights sliders according to that
neighbour’s weight-space centroid. This follows the same principle as
relevance feedback described in 4.2.4. By indicating to the system which
features are important for describing similarity to the query image under the
user’s perception of relevance, we can improve the performance of the search.
Search results will favour those images which are similar under that
weighting of features.

4.5 Temporal browsing

In an image collection, we might have temporal information which tells us the
predecessor and a successor of each image. For the TRECVID collection of
video shots, we can determine each image’s temporal neighbours from the
video sequence. The temporal neighbours of a relevant image may also be
relevant since the shots are adjacent in the video sequence. Figure 26
demonstrates temporal browsing during a search for images of Osama Bin
Laden. The temporal browsing user interface is at the bottom of the screen.

47

r@ iBase :: Image Browser and Search Engine E]@

o | o | 0o @ |

Back Stop Refresh

Search | Categories | NNKnetwork | Viewer | Setings

{. Browse for Images Hub netwark | Wy netwark |
Mearest neighbours
——
i
!
—
®=
—
.
.n- :
| W
—
- 1
i i
\
Prune Reset Add pruned) | Clearpruned) Add all Clearall)

| Temporal | Wy selection

Image ID: 24551 Filename: TRECWID2003_223fshot223_217_RKF jpg Keywords: WE DONT DIFFERENTIATE BETWEEN THOSE DRESSED IN MILITARY UNIFORMS AND CIVILIAMS

Figure 26. The temporal browsing interface

The ‘image of interest’ is shown in the centre of the screen. The user can then
look forwards and backwards along the sequence of images in the temporal
dimension. The size of each shot decreases with distance from the image of
interest. This maximises use of screen space and reflects the fact that images
closer to the centre are likely to be more relevant than those further away.

4.6 Historical browsing

The ability to retrace one’s steps is paramount in any browser. This
functionality has become commonplace in applications such as file system
browsers and web browsers, to the extent that this functionality is expected
by the user.

We must be careful to define exactly what is expected of historical browsing
capabilities, and to what extent it should recreate the prior state of a system
when the user decides to go ‘back’. There is a clear distinction between
recreating the prior system state in terms of navigation and in terms of user
action. The paradigm that we shall adopt is that prevalent in HCI today.
Navigational historical browsing is provided by ‘back’ and ‘forward’ buttons.

48

This allows the user to go backwards and forwards along the past navigation
path of objects. In the case of a file system browser, this is the path of
directories viewed and in the case of a web browser this is the path of web
pages viewed. In our case it is the path of images viewed. In contrast,
historical browsing of user action is provided by ‘undo’ and ‘redo’ buttons.
This allows the user to go backwards and forwards along the past sequence of
user actions. For example, in a file system browser, the user may be able to
undo a file copy operation by pressing the ‘undo’ button. Pressing the ‘back’
button would just change the view to the previous directory, leaving the file
copy operation intact.

Under this interpretation, we decided to provide historical browsing for
navigation but not for user action. This is because most user actions in our
system (eg. ‘Add image to My Selection’) are very simple to undo with the
provided inverse options (eg. ‘Remove image from My Selection’). Preserving
the exact state of a complex system every time the user performs an
operation is also a time-consuming implementation task that adds little
power to the browsing process. In contrast, navigational historical browsing
can be implemented relatively easily and adds important functionality to the
browser.

We decided that browser should maintain a list of the past ‘images of
interest’ so the user can retrace their steps and each panel would update
accordingly to show this image under that view. There is then the problem of
how the search panel should update when the past ‘image of interest’ resides
in the search results of a prior search. It was decided that we should also
preserve the query parameters of each search, so that when we go back
through the path of selected images the search results at that time are
recreated.

4.7 Image viewer

The image viewer provides the user with the full-resolution version of the
current ‘image of interest’. It also shows the full details (ID, filename,
resolution and associated caption) of this image. This is particularly useful to
browse the collection of images that the user has built up in the ‘My
Selection’ panel. Figure 27 shows a case in which the user is unsure from the
thumbnail whether the image does actually show Bin Laden. The high-
resolution image confirms that the figure being interviewed is in fact Bin
Laden.

49

& iBase :: Image Browser and Search Engine E]@

| o ©| 0| @

Back Stop Refresh

Search | Categories | NNk network | Viewer | Setings

* Image Properties

Image 1D 24511
Caollection: Video
Resolution: 352x 264

Filename: TRECVID2003_223ishot223_
215_RKF jpg

Keywords: CALLING ON HIS FOLLOWER
5T0 KILL AMERICANS

Temporal | My selection

o %, NS |

Image ID: 24511 Filename: TRECWID2003_223fshat223_216_RKF jpg Keywords' CALLING OM HIS FOLLOWYERS TO KILL AMERICANS

Figure 27. The image viewer

4.8 Settings

Figure 28 shows the settings panel from which the user can configure the
browser. On startup, the collection listbox is populated with image collections
served by the server. The user can switch between collections simply by
selecting it in the listbox and pressing ‘Apply’. When the user switches to a
particular collection the feature listbox is populated with the implemented
feature descriptors for that collection. By default all features are selected. The
user can alter the combination of features used by the image search by
selecting them and pressing ‘Apply’. The user can also configure many other
program settings, by selecting the relevant setting in the ‘program settings’
listbox, altering the value in the textbox and pressing ‘Apply’. This
maximises the flexibility of the browser and ensures the user is restricted as
little as possible by minor design decisions, such as thumbnail display size. In
the right-hand panel, we log all communication with the server and also any
exceptions that may occur.

50

%% iBase :: Image Browser and Search Engine

[B[=1%|

o o0 @

Stop Refresh

Search | Categories | NNk network | Viewer | Settings |

[Collection Settings

Collection selection:
Wideo

CorelGrand
Sketches
CorelLuze

Anses

Caslmage

Jenny

e
\feelr J

Feature selection

Colour Structure Descriptor
Calour Focus

Global HSY

Convolution 2
Smoothhess

Thumbnail

Unifarmity

Wariance

Apply)

|| Temparal | My selection

Program setings:

Category image size =100
Auto fit search results = true
Results per page = 50
Query image size = 70

Size ofimage cache = 2000
MMk graph image size = 100
Temporal images = 13

100

P

o
_Apply)

[Thu Jun L0 13:09:46 BST 2004] Started

[Thu Jun L0 13:09:47 BST 2004] Serviet initialized

[Thu Jun L0 13:09:47 BST 2004] Fetching list of colleetions

[Thu Jun L013:09:43 BST 2004] Setting current collection to: Vidso

[Th Joun 10 13:09:48 BST 2004] Using features: Colowr Structuze Descriptor, Colour Forus, Global HSW, Convolution 2,
Stoothness, Thumbrail, Uniformity, Variance, Convolution 3, Maxginal RGB

[Thu Jun L0 13:09:48 BST 2004] Fetching hub nstwork for collsction

[Thu Joun L0 13:10:02 BST 2004] Fetehing search results

[Thu Jun 10 18:10:12 BST 2004] Fetching search results

[Thu Jun L019:57:58 BST 2004] Setting current collection to: CorelLuce

[Thu Joun L0 19:57:58 BST 2004] Using features: Colowr Structuze Descriptor, Colour Forus, Global HSW, Convolution 2,
Stoothness, Thurbrail, Uniformity, Variance

[Thu Jun L019:57:58 BST 2004] Fetching hub nstwork for collsction

[Th Joun L0 21:45:14 BST 2004] Setting owrent collection to: Video

[Thu Jun 1021:45:15 BST 2004] Using features: Colour Structuze Descriptor, Colour Focus, Global HSW, Convolation 2,
Stmoothness, Thumbnail, Uniformity, Varianss, Convolution 3, Marginal RGB

[Thu Joun L0 21:45:16 BST 2004] Fetehing hub network for collection

[Thu Jun L021:45:28 BST 2004] Fetehing search results

[Thu Jun L0 21:45:58 BST 2004] Fetching search results

[Thu Joun L0 21:46:06 BST 2004] Fetehing search results

[FriJun 11 00.04:57 BST 2004] Setting current eollsction to: CozelGrand

[Fri Jun 11 00:04:57 BST 2004] Using fratures: Colour Structure Descriptor, Colour Focus, Global HSY, Corvolution 2,
Strpothness, Thurbnail, Unifornity, Veriance

[Fri Jun 11 00.04:57 BST 2004] Fetohing hub nstwork for oollection

Image ID: 24511 Filename: TRECWID2003_223fshat223_216_RKF jpg Keywords' CALLING OM HIS FOLLOWYERS TO KILL AMERICANS

Figure 28. The settings interface

51

5 Implementation

5.1 System architecture

It was decided at an early stage that the implementation should be web-
based. This provides platform independence on the client-side and hence wide
accessibility, allowing many users to browse a collection simultaneously using
a single server instance. Users only need a standard web browser and do not
need any additional software to run the browser. However, it was accepted
that a user may be required to install one of the common web-browser plug-
ins to enable interactive content within web pages. We discuss the various
options below.

5.1.1 Implementation language
5.1.1.1 Server component

Static HTML generation

The simplest web-based image browsers take an image collection and
compute a set of static HTML pages for every possible state that the browser
could be in. In this way, the user simply navigates between the generated
web pages to browse through the collection. This model is fine if the
collection is small and the browsing method is simple (eg. hierarchical).
However, our browser should cater for very large image collections and a
whole range of browsing methods. Hence it is not practical and almost
impossible to compute static HTML pages for every single state of the
browser. Obviously where searching is involved we will need an interface that
dynamically updates according to the search results. Therefore the concept of
static HTML generation was dropped at an early stage in the project.

Dynamic HTML generation (JSP / PHP / ASP)

More sophisticated web-based applications can be produced using server-side
scripting to dynamically generate pages to pass to a web browser or client.
This method is usually used to directly generate a pure HTML interface.
Once a page has loaded, it is relatively static and only a limited amount of
user interaction can take place on the client-side before another page must be
retrieved from the server. Data can be passed (eg. using XML) to other client
software such as a Java applet or Flash presentation, but this incurs encoding
and decoding overheads.

52

Java servlet

Java servlets are Java programs that inherit from the HttpServlet class and
override the doGet (or doPost) method. They are run inside an application
server environment (such as Apache Tomcat) which passes on a web request
to the servlet by triggering the doGet (or doPost) method of the servlet. The
servlet then processes the command and provide a stream of dynamic HTML
or other output. The advantage of using Java servlets is that it is easy and
efficient to send Java objects from the server-side process to a client-side Java
applet and vice versa. Most of Java's data types are serializable and hence
any custom object composed purely of such objects is also serializable. This
means that little additional marshalling code is required from the
programmer, and we can use the standard HTTP protocol.

Others (eg. C++/.NET)

There are many other options for implementing the server-side process,
including C++ and .NET. Although we could gain efficiency in server-side
processing, these would be standalone server processes and as such the
protocol for communication with the client component would have to be
defined at a much lower level. This would require a great deal more work and
might take time away from the main issues in the project.

It was concluded that a Java servlet would provide the most effective server-
side solution, since Java is a powerful language with a wide library of classes.
By using a servlet, we can perform easy communication to an applet client
with minimum overheads and additional work for the programmer.

5.1.2 Client component

We narrowed the implementation options for the client component to a pure
HTML interface, an embedded Java applet, or Flash content. We also
considered a mixture of these technologies in order to take advantage of the
strengths of each. We summarise the advantages and disadvantages of each
in turn below.

53

HTML

Advantages Disadvantages
e Maximum compatibility with e Restricted to web page style
client platform — only need a interaction
standard web browser e Restricted client-side processing
e Javascript can be used for e Poor client context awareness —
(limited) client side processing difficult to adjust for screen size
e Simplicity and bandwidth capacity

Overall it was felt that a pure HTML interface was too restrictive in client-
side operations. Since the project’s focus is on reaping the benefits of a
seamlessly integrated interface and increasing the level of user interaction, a
more powerful client side technology was thought to give more scope in
providing a rich set of user interactions which would assist the searching and
browsing process.

Macromedia Flash

Advantages Disadvantages
e Rich user interaction possible ¢ Not suited to web application
e The defacto standard for client-server communication, more
multimedia presentation on the appropriate for client-side
internet presentations and animations
e Plug-ins available for numerous | ® Non-standard and limited
browsers/platforms ActionScript programming
language
e Supporting browser / plug-in
required

Although use of Flash has become widespread on the web in recent times, it
is more suited to presentation of vector graphics and animations. A high level
of user interaction can be achieved but it is uncommon that it is used as the
front-end for a web-based application where there is much communication
with a backend server. Graphics must be designed and imported by the user,
and there are limited pre-assembled interface components. Client-side
processing can be performed in ActionScript. This is Macromedia’s own
language which was developed simply for performing client side operations in
Flash presentations. It is by no means as comprehensive or as powerful as
mature languages such as Java.

54

Java Applet

Advantages Disadvantages

e Extensive libraries of interface | ® Plug-in is reasonably heavyweight
components (AWT/Swing) e Supporting browser / plug-in

e Can harness the full power of required

Java to provide maximum
flexibility in developing client
side functionality

e Tried and tested applet-servlet
communication can be used

e Plug-ins available for numerous
browsers/platforms

Java applets have become another method of delivering feature-rich
applications on the Internet. They allow a user to run a Java program inside
a web page as if it were a regular Java application. Of course because Java
Applet code is downloaded and executed on the fly from a website, there are
extra security implications for the client machine. It is usual for an applet to
run in a restricted ‘sandbox’ environment, with limited privileges on the local
machine. Additional permissions, such as access to the local file system, can
be granted if the applet is signed. In this case, the user is presented with an
applet’s digital certificate before executing any code and the user must
confirm their trust for the source.

It was concluded that a Java applet implementation has the power and
flexibility to provide the rich set of user interactions that will bring real
benefits to the browsing and searching process. Most major platforms and
browsers support the Sun Java plug-in.

Swing vs AWT

Traditionally, applets have used the Abstract Window Toolkit (AWT) set of
classes to provide basic GUI features which are platform independent.
However, the newer Swing library provides many advantages over AWT. We
discuss the main differences below:

e AWT components hide differences between GUI components on
different platforms by taking the least common denominator
approach. This restricted AWT components to the functionality
present on every supported platform.

55

¢ Swing components are implemented with absolutely no native code.
Hence they are not restricted to features that are present on every
platform and can have more functionality than AWT components.

* Swing components extend AWT capabilities. Examples include:
Displaying images in buttons and labels

Extensive control of component borders

Support for multiple look-and-feels

Components do not have to be rectangular

O O O O

The following excerpt was taken from Sun’s website:

“Although the Java 2 Platform still supports the AWT components, we
strongly encourage you to use Swing components instead>”

Hence we shall develop our user interface using Swing components. The only
apparent disadvantage is that client machines will need at least Sun Java
plug-in 1.1.1.

5.1.3 Architecture and component interaction

The focus on a web-based system led to the development of a three-tier
architecture found in many web applications. In this model, multiple clients
can connect to a single server process which retrieves data from the image
collection and index files, performs computation and returns the results to the
client. The idea is that the bulk of the processing is taken away from the
client and we ensure that the underlying data is only accessed by the
centralised (and trusted) middleware.

Client machine Server machine

WWW browser Serialized Application server (Apache Tomcat)

Java objects

Java applet < » Java servlet

X

Pre-computed

Image

collection index files

Fig 12. Final system architecture

56

5.1.4 Image collection and index files

An image collection is stored on disk in a hierarchical structure, either in
human-allocated categories or arbitrary directories. Alongside the image data
itself are various pre-computed index files which reduce the need for runtime
computation. It is these index files that store the relationships between
images that we will be exploring in the browser, and also feature descriptor
values for images to facilitate a searching mechanism. Figure 13 shows the file
structure used for image collections. The purpose of each part is described

below.
Collections'
! .
| | |
Collection names — Corel Sketches Video
| | | | | |
browser? data’ dist* text® image.lst® neighs.txt’
H _____ H _____ 1
Apes Bears Apes Bears Variance Convolution <—— Supported features for
| | ; current collection
- - T
77000.net 77001.net 77000.ipg 77001.ipg Apes Bears <€—— Category names for

| current collection

77000.xrds 77001.rds

Fig 13. File structure of image collections

1. All image collections are stored under one directory. The servlet process
is initialised with this location on disk.

For each collection:

2. The browser directory contains index files which contain a list of the IDs
of the NN* neighbours for each image, and the weight centroid values for
which this image was ranked top by the combined feature distances.
These files are in the same hierarchical structure as the image data itself.

57

The data directory contains the actual image files preserved in the
hierarchical structure from which the hierarchical browsing structure is
directly derived.

The dist directory contains directories for each of the supported features
in the current collection (different feature sets are suited to different
types of image collection). For a particular feature, we store an .rds file
for each image which contains distance values to all other images in the
collection (truncated to the top 1000 shortest distances). This can be
used in calculating content-based search results.

The text directory contains index files holding the text
annotations/keywords for each image. This is used to implement a text-
based search.

The image.lst file is a list of the filename and path of every image in the
collection. The position in this file is taken as a particular image’s unique
ID.

The neighs.txt file is a list of the image IDs for the left and right
temporal neighbour of each image in the collection. This is generated
from the position of an image in a video sequence or from timestamp
information. If there is no temporal information, we simply allocate the
left and right temporal neighbours to be the previous and next images as
ordered by the file system.

58

5.1.50 Common data types

The requirements of each method of browsing and searching an image
database were taken into consideration when formalising the data types used
in the system. The system is based around several key user-defined data

types (Java classes):

ImageCollection

[#] category_first_image_ids : Integer]
[#] category_names : String[]

[# id : int

[# name : String

[¥ supported_features : Featurel]

[# ImageCollection...)
[#] toString(...)

The ImageCollection class holds data
associated with a single image collection.
Required parameters include:
e Image collection ID, as allocated by
the servlet
e Image collection name (directory
name on disk)
e List of features supported by this
collection as Feature records (see
below)

e List of category names in this collection (as given by hierarchical file

structure)

e List of image IDs corresponding to the first image in each of the

categories.

Feature

[# dirName : String
[#] dispName : String

[# Feature(...)

[toString(...)

The Feature class holds the directory name
and corresponding display name for a given
Feature.

59

Thumbnail

[#] caption : String

[#] collection : int

[# filename : String

[#] highRes : boolean

[#] id : int

[# image : byte]]

[#] leftTemporalNeighbour : int
[#] nnkDecompDist : double]]
[# nnkNeighbours : Neighbour{]
[# nnkW eightCentroids : double[]
[#] pruned : boolean

[#] rightTemporalNeighbour : int
[#] searchDecompDist : double[]

[# Thumbnail(...)
[# toString(...)

Optional parameters include:

The Thumbnail «class holds all data
associated with one image in a collection as
well as the actual image data itself.

Required parameters include:

e Collection ID and Image ID to
uniquely identify an instance

e Filename of the image as in the
hierarchical file system

e Associated caption if available

e Image itself (byte array)

e IDs of left and right temporal
neighbours

e IDs of neighbours in NN* network

e Flag stating whether the thumbnail
contains the high resolution or low
resolution version of an image

¢ Distances (under each feature) to the currently selected image and
centroids of weights for which this image was ranked top (used in
presenting the NN* network, as described in 4.4.2)

e Distances (under each feature) to the current query image or set of
query images (used in presenting the search results, as described in

4.2.3)

e TFlag stating whether the current image has been pruned in the NN*
browsing process or not (used during browsing process of the NN*
network, as described in 4.4.1)

Optional parameters are populated as needed by the client applet, for
example, when search results are retrieved.

<<interface>>
::<<Unknown>>::Comparator

\

Neighbour

[# id : int
[# similarity : int
[# weightCentroids : double[]

[® compare...)
[Neighbour(...)
[# Neighbour(...)
[toString(...)

The Thumbnail class has an association
relationship with the Neighbour class.
This contains information about an
image’s neighbour in the NNk network:
e The image ID of the neighbour
e The similarity of the neighbour to
the image, represented by the
proportion of the weight space
matrix for which this image was
ranked top.
e The centroid of the area in weight
space for which this image was
ranked top.

60

Neighbour implements the Comparator interface, so that we can sort an
array of Neighbours by similarity for use when presenting the NN* network
to the user.

SearchResult The SearchResult class contains
&l decompDist - doublel] information about an individual result whe'n
M id : int returned as part of the search results. This
includes the image ID and distances to the

[#] SearchResult...) query image(s) under each active feature.

5.1.6 Server-client interface

The server-client interface was designed with simplicity in mind to make it
easy to use the same client-side interface with a different server-side
implementation. The interface is implemented using standard applet-servlet
communication. We package requests and replies (with relevant parameters)
into a Java vector object which are serialized and sent across the network as
HTTP. Figure 29 shows possible client queries and corresponding server
replies.

61

Query

Parameters

Response

getCollections

N/A

ImageCollection[] collections

This query returns an
client applet

array of ImageCollecti

ons for use when initialising the

getImageByID

int collectionID

int imageID

Thumbnail image

Given a collection ID

and image ID, this query

returns the relevant Thumbnail

from the image collection with low-resolution image data.

getHighResImageByID

int collectionID

int imageID

Thumbnail image

Given a collection ID

and image ID, this query

returns the relevant Thumbnail

from the image collection with high-resolution image data.

getSearchResults

int collectionID

int[] queryImagelDs
String queryText
boolean[] activeFeature
double[] featureWeights
int page

int resultsPerPage

SearchResult[] results

S

This query is used to fetch search results from the server. The client must pass the
query image IDs and search text, as well as details of which features are active and
their relative weights. The server uses these parameters to return an array of
SearchResults, ranked from most similar to least similar for the specified page.

Figure 29. Client queries and server responses

62

5.2 The applet

5.2.1 Client architecture

iBaseApplication

[=] backButton : JButton

[=] backHistory : ArrayList

[=] categoryPanel : CategoryPanel
[=] codeBase : URL

[=l curThumb : Thumbnail

[=] forwardButton : JButton

[=] forwardHistory : ArrayList

[=] mySelectionPanel : ResultsPanel
[=] networkPanel : NetworkPanel
[=] options : Hashtable

[=] refreshButton : JButton

[=] refreshed : boolean

[=] searchPanel : SearchPanel

[=] settingsPanel : SettingsPanel
[=] stopButton : JButton

[=] temporalPanel : TemporalPanel
[=] viewerPanel : ViewerPanel

[#] addimageToFeedback(...)
[#] addimageToMySel(...)

[#] addIimageToQuery(...)

[# addTextToQuery(...)

[#] clearSearchResults(...)

[getCodeBase(...)

[getSetting(...)

[# iBaseApplication(...)

[init(...)

[# main(...)

[# markNNKPositiveFeedback(...)
[#] refresh...)

[#] removeAllFromMySel(...)

[#] removelmageFromFeedback(...)
[#] removelmageFromMySel(...)
[#] removelmageFromQuery(...)
[#] removeNNKImage(...)

[#] setCollection(...)

[#] setSelectedimage(...)

[#] setSetting(...)

[#] stopAllThreads...)

[#] stopAndClearAllThreads...)

We implemented the client interface using
Java’s Swing library of interface components.
The main window is constructed as a JFrame,
from which we inherit in the
iBaseApplication class. This class is
responsible for constructing the overall
layout of the interface and the various
different browsing panels. It also handles all
communication between different parts of
the interface. It is this mediator design
pattern that is responsible for providing the
integration between different browsing
methods in the applet. Each time the user
selects a new ‘image of interest’ in one panel,
a call to setSelectedImage () on
iBaseApplication cascades this selection to
all other browser panels.

The panels for each method of browsing are
implemented as classes which inherit from
JPanel. FKEach panel is responsible for
constructing its own interface and
implementing the functionality specific to
that method of browsing. To change the
status of another panel, a class may call the
relevant method on the iBaseApplication
class, which will pass the request to the
appropriate panel.

Figure 30 shows the inheritance and
association relationships between classes in a
UML diagram. We have only shown the
main components of the interface to avoid
the diagram becoming too complex.

63

79

uorjoeIoul sse jorddy ‘gg oInsig

BILEIUSLL| e—
_ PueRdydeIngnipjiomay 7

.— UDNRID0SSY
|aue 4suondgsbuyag
_/ [pue Jydeindpyomiay |aue Jaunl Jyomia N
aue jzbuipa:
I dFhumss 7 [aue gaal | diobaje] 7
_ |puweddiobae] _
_ PueJudeinoensqynomiany
7 o ie1odua | 7
i ekt) [Aueds1ybia pysIea s
[aueddianipaieag
PuEJopIaMaly |oue Jabew ramany, e
7 _ puejyamacg 7
PueJIamal s

uonesddyaseq::a1on:: InoH:=

ServletConn The applet communicates with the servlet
through the servletConn class. Any class
[H initialised : boolean in the applet can construct a new
[=] servlet : String ServletConn and call the relevant method.
This packages the request and parameters

tData(... . .
E ggtc§||2§;ti<))ns<...) into a Vector and sends it to the servlet as
[getHighReslmageBylD(...) a serialized object. The ServletConn class
[# getimageByID(...) then unpackages the response from the

[# getNetworkHublmagesy...)
[# getNNkResult(...)

[# getSearchResults(...)

[# ServletConn(...)

servlet, and returns the approriate data
type to the caller.

::<<Unknown>>::Hashtable | FEach time the applet requests an image
from the servlet by calling

getImageByID (collectionID, imagelID),

% we first perform a look up in the image

f ImageCache)} cache to see if that Thumbnail object has
been retrieved already. If it has, we return

[=] cache : ImageCache the caches Thumbnail. The ImageCache is
[=] keyHistoryList : ArrayList implemented as a Hashtable indexed with

[l max_size : int a 64-bit key of type 1ong computed as:

[El ImageCache...)
[# getDefaultinstance...)
& put(...)

252 * collectionID + imagelD

We impose a (user-configurable) limit on the cache size so that we control
memory usage. If a Thumbnail is not in the cache, then it is fetched from the
server and copied to the cache by the ServletConn class before being
returned to the caller.

5.2.2 Image search and browsing of results

The SearchQueryPanel class is responsible for formulation of the search
query and initiation of a search. When the search button is pressed or the
search () method is called, a new ServletConn object is instantiated, and
the getSearchResults () method called with the query parameters. Then a
new FetchResultsImagesThread is created and passed the list of search
results and a reference to the ResultsPanel. This thread takes the time-
consuming task of retrieving the Thumbnail of each search result away from
the event-dispatching thread (the thread that executes code when the user
triggers an action through the interface). This ensures that the interface
remains responsive while we fetch images from the server. We are also able to

65

update the interface after each image is retrieved, so that the user does not
have to wait for the whole set of results to be retrieved. The user can stop or
refresh the thread using the toolbar buttons, which invokes a call to
stopImageThread() or refreshImageThread(), which gets cascaded down to
the thread.

The FetchResultsImageThread locally selects the current ‘image of interest’
if it appears in the results. If it does not appear, then the first image in the
results is globally selected (setSelectedImage () cascaded to all other
browsing panels).

::GUI::5earchPanel

addimageT cFeedback]...]

[# addimageT oQuery...]

[addTextT oluen...]

[getlastl astSearchPararms]...|
M getlastSearchParams]..]
refreshimagel hread(..)

[# removelmageFromFeedback]...]
[removelmageFromQuenyl...]
[zearchi...]

[SearchPanel...]

[setCollection...]

[# setPages]...]
setSearchPaams]...)

[# zetSelectedimage]...]

[stoptndCleaimageThread...]
[# stopimageThead]...]

::GUI::SearchQueryPanel

® addmageToFeedbackl...] ::GUI:ResultsPanel

addmageToluenl...) :

addTexT oluen...] agglune[...F]

* decPagel. | addlragel...

g:Eaas?lfastS earchParams]..] [autaScraltoSelsction...]

getlastSearchParams]...) ::Core::FetchResultslmagesThread cle?llmagi%s[.[..]]

incPagef...] H getimagel Dl .

[refreshimageT hread],..] ; [# FetchResultsimages Thread]...) > getlmages(...)

remaovel mageFromFesdback]...) killl...] getimagesPerPage]...)

remavelmageFromuery]...] [# kildndClear...] H getReqSelectedimagel...)
resetQuenyl...] H runl...] aetResultsP anslSizel...)

releasel.)
SearchlueryPanel...] ;:?mo\lrelpmagT[[...]]
setCollection...] esulksPanel..

#at5 earchParars]] setSelectedimage...]
setSelectedmagel...) triggerS elect magel...]

zearch..]

EHEHEE

stopdindClear mageThread...)
stoplmageThread...]

N

[:GUI::S5earchweightsPanel

] B [(3 [[E E

aebw/eights]...)

[resatweightSliders!...]
H SeachweightsPanel...]
[setCollection...]
sebweights]..)

Figure 31. Interaction of classes involved in searching

66

5.2.3 Hierarchical browsing

The CategoryTreePanel class is responsible for constructing the tree
interface component from the category name information of the currently
selected ITmageCollection. When the user selects a category from the tree,
or a call to setCategory () has been cascaded from iBaseApplication, a
new FetchCatImagesThread is created and passed the category path, a flag
to say whether or not the change is user-invoked or system-invoked, and a
reference to the ResultsPanel. Again, we instantiate a new thread to take
the time-consuming task of retrieving Thumbnails away from the event-
dispatching thread to ensure responsiveness of the interface. The thread
updates the ResultsPanel as each image is retrieved in the same way as the
search results. If the new category selection is system-invoked (a result of a
user selecting a new image in another panel) then this image is locally
selected when it is retrieved. If the new category selection is user-invoked (a
result of the user choosing the category from the tree interface) then the first
image in the category is globally selected (triggers a change in all other
panels).

::GUI::CategoryPanel

[CategaryPanel...
setCallection]...)
setSelectedmagel...)
stopdindClearlmageThread|...]
stoplmageThread...)

::GUI::ResultsPanel

[acquirel...]
[# addimage]...]
autoScroltoSelectionf..)

::GUI::CategoryTreePanel

::Core::FetchCatimagesThread

[H buildTreel...)

[# CategoryTreePanel]..]

[H setCategony...]

[# stopandClear mageThread...]
[# stoplmageThread...)

B FetchCatimagesThread(...)
> [Kill[...)

kilindClearf...)

B nl..]

—=

Figure 32. Interaction of classes involved in hierarchical browsing

67

[clealmages(...)
[getimagelDsf...]
getlmages|
aetlm ¢
B geth
B getResul
[# releasel...)
removelmage]...)
[ResutsPanel|..)
setSelectedimanel...)
[# triggerSelectimagel...)

5.2.4 Lateral browsing (NN* networks)

The NetworkPanel constructs the three different panels involved in lateral
browsing: the NetworkMyGraphPanel, and
NetworkHubGraphPanel. There is much common functionality between the
panel displaying the hub network and the panel displaying the user network,
which we have abstracted to the class NetworkAbstractGraphPanel. When
the user selects an image collection, a call to setCollection() is cascaded
from iBaseApplication. This invokes the instantiation of
FetchNNKHubImagesThread which retrieves the hub images from the server.

NetworkPrunePanel,

The NetworkPrunePanel is responsible for drawing the nearest neighbours of
the currently selected image in a spiral. When a call to setSelectedImage ()
is received, FetchNNKNeighbourImagesThread is instantiated. This fetches
all neighbour images of the currently selected image and updates the interface
as they are retrieved by calling addImage () on the NetworkPrunePanel.

After the user has selected which images are relevant and presses the ‘prune’
button, the NetworkPrunePanel calls addImage () on the
NetworkMyGraphPanel to add the pruned neighbours to the user’s graph,
where they can be manipulated. By selecting an image in the graph, the
prune panel is updated to show the neighbours of that image via the
cascading setSelectedImage () mechanism.

{ ::GUl::NetworkPanel =GUI A phPa
[# markPositiveFeedback(...) [# acquire(...)
NetworkPanel(...) [# clearimages(...)

[# removelmage...) [# drawArcs(...)

setCollection(...) [H getThumbnailLabel(...)

[# setSelectedimage...) [H getThumbnails(...)
stopAndClearlmageThread(...) [# NetworkAbstractGraphPanel(...)
[# stoplmageThread(...) [# paint(...)

/ [# release...)

[# removelmage...)
[# setSelectedimage(...)

{ ::GUI::NetworkPrunePanel

[# acquire...)
[# addimage(...)
[# addToNegFeedback(...)

::GUI::NetworkMyGraphPanel

[# clearFeedback(...)

[# clearimages(...)

[# markPositiveFeedback(...)

[# NetworkPrunePanel(...)

[# prune(...)

[release...)

[# setSelectedimage...)

[# stopAndClearlmageThread(...)

[# addimage...)
[# NetworkMyGraphPanel(...)

[# stoplmageThread(...)

::Core::FetchNNKNeighbourlmagesThread

[FetchNNKNeighbourlmagesThread(...)
[kill(...)

[# kilAndClear(...)

[# run(...)

::GUI::NetworkHubGraphPanel

[# addimage...)

[# NetworkHubGraphPanel(...)
[# setCollection...)

[# stopAndClearlmageThread...)
[# stoplmageThread(...)

o)

::Core::FetchNNKHublmagesThread

FetchNNKHublmagesThread(...)
[kill(...)

killAndClear(...)

[run(...)

Figure 33. Interaction of classes involved in lateral browsing

68

5.2.5 Historical browsing

Every time the current ‘image of interest’ is changed, a call is made to
setSelectedImage () in iBaseApplication, so that the change is cascaded
to all other browsing panels. Therefore this is the perfect place to implement
historical browsing. Each time the selected image is changed, we can log the
previous image in our history of image navigation. Recall our notion of
historical browsing discussed in 4.6. As well as the last selected image, we
must also store the search parameters at the point when that image was
selected, so that we can reconstruct the search results.

p

SystemState

\

[# feedback Thumbs : Thumbnail[]
[# queryText : String

[# queryThumbs : Thumbnail[]

[# resultsPage : int

[# selectedThumb : Thumbnail

[# weights : double[]

& isNull(...)

[# searchParamsEqual...)
[# SystemState...)

[# toString(...)

On change of the selected image:
e C(Clear forwardHistory

To achieve this, we defined a data type
SystemState which stores all necessary
information about the state of a system.
This method makes it easy to extend our
notion of the system state in the future. We
use two ArraylLists, backwardHistory
and forwardHistory, to keep track of
SystemState objects. Below we have given
the pseudo-code operations required to
maintain a history of the system state:

e Instantiate a new SystemState object with current search parameters
and current selected image
e Add SystemState object to backwardHistory

¢ Change to new image

On press of ‘back’ button:

e Instantiate a new SystemState object with current search parameters
and current selected image

e Add SystemState object to forwardHistory

e Remove last SystemState object from backwardHistory, restore
search parameters and select image

On press of ‘forward’ button:

e Instantiate a new SystemState object with current search parameters
and current selected image

e Add SystemState object to backwardHistory

¢ Remove last SystemState object from forwardHistory, restore search
parameters and select image

69

5.2.6 Temporal browsing

The TemporalPanel class is responsible for the temporal sequence of images.
When setSelectedImage() is «called, a FetchTemporalNeighbour-
ImagesThread is instantiated. This retrieves the left and right temporal
neighbours of the selected image using an instance of ServletConn. It
continues to retrieve the left temporal neighbour of the leftmost image in the
sequence and the right temporal neighbour of the rightmost image in the
sequence, until the (user-configured) required number is reached. As usual,
the interface is updated with the thumbnail images as they are retrieved. By
clicking on an image in the sequence, the user selects it as the ‘image of
interest’ and the panel updates to show the temporal neighbours of that
image. The other browsing panels also update accordingly.

::GUI::TemporalPanel

[acquirex...)

[# addImage...)

[# clearimages(...)

[# release...)

[#] setSelectedimagey...)

[#] stopAndClearimageThread(...)
[# stoplmageThread(...)

[#] TemporalPanel(...)

0

[::Core::FetchTemporalNeighbourimagesT hread‘

[# FetchTemporalNeighbourlmagesThread(...)
[kill...)

[# killAndClear...)

[run(...)

Figure 34. Interaction of classes involved in temporal browsing

70

5.2.7 Image viewer

The ViewerPanel class constructs the two panels of the image viewer
interface: ViewerInfoPanel and ViewerImagePanel. When
setSelectedImage () is called, a FetchHighResImageThread is instantiated.
This fetches the high-resolution image from the server by calling
getHighResImageByID () instead of the usual getImageByID (). When the
thread has received the Thumbnail object, it calls addImage () on the
ViewerImagePanel to draw the high-resolution image on the interface, and
setDetails () on the ViewerInfoPanel to display the image’s details.

::GUI::ViewerPanel

[clearimage...)

[setSelectedimage...)

[# stopAndClearimageThread(...)
[# ViewerPanel(...)

v

N

::GUI::ViewerinfoPanel
. ::GUI::ViewerimagePanel
= — ::Core::FetchHighReslmageThread
acquire(...
[clear(... - [# acquire(...)
= clearl(_aier(...) e 3] FetchHighReslmageThread(...) % [addimage(...
[# release...) % killAndGiear...) [# clearimage(...)
[setDetails(... un... [release...
[ViewerlnfoPanel(...) [# ViewerlmagePanel(...)

Figure 35. Interaction of classes involved in the image viewer

5.2.8 Client settings

The SettingsPanel class constructs and adds the SettingsOptionsPanel
and Log to the interface. Settings are stored in a static Hashtable. Any class
can set or retrieve settings by calling the static functions
iBaseApplication.setSetting(name, value) and iBaseApplication.
getSetting (name). The SettingsOptionsPanel is responsible for the interface
and functionality which allows the user to modify the program settings. On
start-up, the image collection list is populated with all served image
collections and the first image collection is selected. The feature list is
populated with the implemented features of this collection and they are all
selected by default. The program settings list is populated with the program
setting default values. When the user selects an image collection and presses
the ‘Apply’ button, it calls the setCollection() method on
iBaseApplication. In a similar way to setSelectedImage(),
setCollection() 1is cascaded to all browsing panels, which update

71

accordingly. The feature list is repopulated with the implemented features of
the new collection. Selecting an image collection and selecting features
updates the system settings “Selected Features” and “Current Collection”
respectively. All other settings are directly modifiable by the user under the
program settings interface. It is easy to make parts of the browser user-
configurable by providing a new setting which can be modified on the
SettingsOptionsPanel.

5.2.9 Other implementation issues

5.2.9.1 Swing layout managers

Due to the nature of the project, it is imperative that our design is not
restricted by the limitations of our chosen programming language’s GUI
capabilities. One of the reasons for choosing Java was its flexibilty and power.
Where the (already extensive) Swing library does not cater for our needs, we
can extend Swing objects with our own implementations. One important area
in which we have done this is in laying out interface components. Swing uses
LayoutManagers to define how components should be laid out on a panel. In
this way, we can ensure components scale gracefully when the user resizes the
window or adjusts the allocation of space with a divider, making our browser
‘screen-aware’.

We have implemented the following custom layout managers:

® NetworkGraphLayout (opposite) — P
all components in the panel scale in | ::<<Unknown>>::LayoutManager
proportion to the panel size.

b

® TemporalLayout — Component 0 is
added to the centre of the panel and NetworkGraphLayout
is scaled so that the height of the

component occupies all available Egg?é:g?u;oonponent(m)

space. Additional components are |@ getThumbSize(...)

laid out alternatively to the left and |E layoutContainer(...

ight of the central component, |& nmuTLaOUISEZE(.)

g - e b > | @ NetworkGraphLayouty...)
decreasing in size in proportion to |[E NetworkGraphLayout(...)
displacement from component 0, |B preferedlayoutSize(.)

. [#] removeLayoutComponenty...)
until there are no more components & toString(...)

or the edges of the panel are reached.

72

® PrunePanellLayout — components are laid out in a spiral fashion
from the centre. Component size is scaled so that the spiral occupies
the available space.

e vViewerLayout — Component 0 is scaled to occupy the available space
but retain aspect ratio. Additional components are ignored.

5.2.9.2 Thread safety

Thread safety is an important concern in any application where multiple
threads access or update shared objects. We use threads to increase the
apparent performance of the browser to the user by ensuring the event-
dispatching thread is not blocked with time-consuming tasks. In our case, the
output of our threads’ time-consuming tasks is the retrieval of images which
must be displayed on the interface. This poses a problem since Swing code is
not thread-safe. That is, it does not inherently manage the problems of
multiple threads executing the same code. In certain situations, multiple
threads accessing shared methods and variables could conflict and cause
errors or even deadlock.

To overcome this problem, Sun suggests that “all code that might affect or
depend on the state of a component should be executed in the event-
dispatching thread”. The SwingUtilities class provides the static method
invokeAndWait (Runnable work) for deferring work the event-dispatching
thread.

Below we show the addImage method on ViewerImagePanel. The add
operation needs to be executed by the FetchHighResImageThread when the
image has been retrieved from the server. In order to make the method
thread-safe, we must defer the code which adds the image to the interface to
the event-dispatching thread by calling invokeAndwait ().

public void addImage (ThumbnaillLabel tl) {

if (!SwingUtilities.isEventDispatchThread()) {
final Thumbnaillabel thumbLabel = tl1;
Runnable addImage = new Runnable () {

public void run() {add(thumbLabel); updateUI();}

i
SwingUtilities.invokeAndWait (addImage) ;

} else {
add (tl); updateUI();

}

73

By applying this technique to all methods which affect or depend upon
interface components, we guard against thread conflicts while executing
Swing code.

However, conflicting threads may still cause anomalies. Consider the situation
where we wish to kill a thread that is adding images to a panel, clear the
panel, and start a different thread to add images to that panel. Because
threads are independently executing entities, we do not know in which order
these actions will take place. The previous thread may not stop before the
next has started, and so we would see an incorrect mixture of images in the
panel. To overcome this problem, we place locks on shared interface
components so that only one thread can act on a particular component at
any time. Before a thread can act on an interface component, it must
acquire () its lock, and release () it when it has finished updating to allow
waiting threads to execute. Furthermore, we queue waiting threads in order,
to ensure threads act upon the component in the correct order. The Java
code for the lock mechanism is shown below.

public synchronized void acquire() {

try {
lockRegQueue.enQueue (Thread.currentThread()) ;
while (lockRegQueue.front ()!=Thread.currentThread()) wait();
notifyAll () ;

} catch (InterruptedException ie) { }

}

public synchronized void release() {
try {
while (lockRegQueue.front ()!=Thread.currentThread()) wait();
lockRegQueue.deQueue () ;
notifyAll();
} catch (InterruptedException ie) { }

5.2.9.3 Pop-up menus

Each image displayed on the interface is a ThumbnailLabel. This inherits
from JLabel and is essentially a Swing wrapper for the Thumbnail data type.
Associated with each Thumbnaillabel is a ThumbnaillLabelMenu. This
inherits from JPopupMenu to provide the menu that appears when the user
right-clicks on an image. When we instantiate a Thumbnaillabel, we must
declare in which interface context the image resides. This enables the
ThumbnaillLabel to construct a ThumbnaillLabelMenu that is context-aware,
i.e. provide only those options which are relevant for the browsing interface
in which the image is displayed.

74

5.2.94 Custom tooltips

In order to draw the pie charts, we create our own tooltip class,
ThumbnailToolTop, which inherits from JToolTip. We then override the
paint () method so that the pie chart is drawn with the features similarity
contribution information. We must also override the createToolTip ()
method of ThumbnaillLabel, to return a ThumbnailToolTip instead of a

JToolTip.

5.2.9.5 Statusbar

::c<Unknowns>>::JLabel

T

StatusLabel

[# createDefaultinstance...)
[#] declmagesRemaining(...)
[# getDefaultinstance...)
[® getMaximumSize(...)

[# getMinimumSize(...)

[# getPreferredSize(...)

[# inclmagesRemaining...)
[# setlmageLabel(...)

[# setText(...)

To keep the user fully informed as to the
total number of images that are still to be
retrieved, we implemented a custom status
bar by inheriting from JrLabel. Of course
this is a shared resource, so we must ensure
access is thread-safe.

A thread can add to the number of images
remaining by calling incImagesRemaining
(int number) and similarly decrement
from the number of images remaining by
calling deCImagesRemaining(int number) .
Each time these methods are called, the
total remaining is adjusted and the
statusbar interface component is updated.

If there are no images remaining, the statusbar displays the details of the

currently selected image.

75

5.3 The servlet

The servlet component of the browser is run in an application server
environment such as Apache Tomcat. The application server maps a URL on
the local machine to the doPost method of the Java program (HttpServlet).
When an HTTP request is received by the server on the appropriate URL,
the doPost method is called, passing references to the HttpServletRequest
and HttpServletResponse. The servlet takes the request, performs some
processing and then writes its response to the HttpServletResponse. In our
case, the server class takes the request vector, unpacks the arguments and
calls the appropriate method on ImageCollectionReader or
ImageCollectionSearcher. It then packages the response into a vector,
and writes this to the HttpServletResponse OutputStream. See 5.1.6 for
more information about the client-server interface.

Figure 36 shows the interaction between classes in the server.
ImageCollectionReader and ImageCollectionSearcher are defined as
interfaces to allow the underlying implementation to be changed
transparently. If we had an image collection with a different file structure on
disk to that described in 5.1.4, we could replace the implementing classes
without affecting the rest of the system.

When the servlet is started by the application server, the server class reads
the server parameters from the server.properties file and instantiates a new
IBaseImageCollectionReader and IBaseImageCollectionSearcher. On
instantiation, IBaseImageCollectionReader scans the collections directory
and for each collection reads in:

e The list of image filenames from image.lst
The collection category names from image.lst
The first image ID of each category from image.lst
The list of implemented features from config.xml
The temporal neighbour for each image from neighs.txt

If the Server’s doPost () method is called with a getCollections request, it
calls getCollections () on IBaseImageCollectionReader class to return
an array of the served Collections constructed from the data read in above.

If a getImageByID or getHighResImageByID request is received, the
getImageByID method of IBaseImageCollectionReader is called. This
performs the following steps:
¢ Reads the image data from the data directory (or images directory if
high-resolution request)
¢ Reads the associated image caption from the text directory
e Reads the NN* neighbours from the browser directory

76

Looks up the temporal neighbours in this collection’s temporal
neighbours list
Constructs and returns a new Thumbnail object with the above data

If a getSearchResults request is received, the search() method of
IBaseImageCollectionSearcher is called. This performs the following steps:

If there is query text, it instantiates TextSearchService and calls
the search() method. This uses the external text search engine
Apache Lucene to construct an array of SearchResults. We also
compute an array containing the distance of each image from the
query text, according to the relevance score that Lucene assigns each
result. This is used to combine a text-based search with an image-
based search.

If there are no query images, then the text search results are returned.
If there are query images, then ImageSearchService is instantiated
and the search() method called. If there is also query text, then
text distances are passed. The search method reads in the distance
to the query image(s) for each active feature and for each image in
the collection. The distances for each feature (including text) are
combined into a total distance according to the feature weightings
that have been passed from the client. The distances for each image
are then sorted, and the requested interval (depending on the results
page number and size of page) of results is returned to the client.

7

::<<Unknowns>>::HttpServlet

?

Server

[E] COLLECTIONS_PATH : String
[l imageCollectionReader : ImageCollectionReader
[l imageCollectionSearcher : ImageCollectionSearct
[= log : Logger

[= LOG_FILENAME : String
[E] READ_FEATURES_FROM_CONFIG : String

[El receiveObject...)
[=] sendObject...)
[# doPost(...)

[Server(...)

<<interface>>
ImageCollectionReader

[# getCollections(...)

[getDistances(...)

[getFilenamelLists(...)

[getimageBylID(...)

[l getimagelDHashtable...)
getNearestNeighbours(...)
[getNetworkHublmages(...)
[getTextSearchindexDir(...)

b

IBaselmageCollectionReader

v/

[=] allFeatures : Feature(]

[=] collections : ImageCollection(]

[=] collectionsPath : String

[=] filenameLists : String[][]

[=] imageNameTolDTables : Hashtabl
[=l log : Logger

[=] neighsLists : int[][][]

[=] readFeaturesFromConfig : boolean|

<<interface>>

ImageCollectionSearcher

[® getNNkInfo(...)
[search(...)

b

IBaselmageCollectionSearcher

[=] imageCollectionReader : ImageCollectionRea
[=] imageSearchService : ImageSearchService
[=] log : Logger

[=] textSearchService : TextSearchService

[# getNNkInfo(...)
[# |BaselmageCollectionSearcher...)
[search(...)

/ N\

[El getCaption(...)

[El getTemporalNeighbours...)
[=] readCollections...)

[=] readFeatures(...)

[# getCollections...)

[# getDistances(...)

[# getFilenameLists(...)

[# getimageBylD(...)

[# getimagelDHashtable(...)
[# getNearestNeighbours(...)
[getNetworkHublmages...)
[# getTextSearchindexDir(...)
[# IBaselmageCollectionReader(...)

TextSearchService

[=] imageCollectionReader : ImageCollectionRea
[=l log : Logger
[= textDistances : double(]

ImageSearchService

[# getDistances...)
[search(...)
[# TextSearchService...)

[=] imageCollectionReader : ImageCollectionRea
[=l log : Logger

[El getDeconpDist(...)
[# ImageSearchService...)
[search(...)

Figure 36. Servlet class interaction

78

6 Evaluation

There has been much research and discussion into formal evaluation methods
for information retrieval systems. We shall first discuss the need to evaluate
the quality of the search results in terms of document relevance. The first
problem we encounter in establishing a formal evaluation metric is that of
defining relevance. Relevance is subjective to the user of an information
retrieval system and so is hard to formalise for evaluation purposes.

Ideally, an evaluation metric should be based upon an expert’s judgement of
relevance for each document. To limit the effects of differing opinions of
relevance, TREC uses the following working definition of relevance: “If you
were writing a report on the subject of the topic and would use the
information contained in the document in the report, then the document is
relevant.” There is also a problem when a collection is so large that it is
impractical for humans to examine every document for relevance. In these
cases, and as adopted by TRECVID, a subset of the collection is presented
for relevance judgements.

The most established and widely-used performance measures are those of
precision and recall. They are defined as follows:

No. relevant documents retrieved

precision = -
Total no. documents retrieved

No. relevant documents retrieved

recall = - -
Total no. relevant documents in collection

These are set-based measures that assess the quality of the set of documents
retrieved and do not place any significance on the ordering of relevant
documents within the results. This limits their usefulness when computed as
single values. A more informative presentation of overall system performance
can be provided with a precision-recall graph.

In order to evaluate a ranked list of results we can compute average precision.
This corresponds to the area under an ideal (non-interpolated) recall-precision
graph. It is calculated by taking the precision after every retrieved relevant
document and then averaging these precisions over the total number of
relevant documents in the collection. In this way, we favour highly ranked
relevant documents. To test performance of a system over many different
queries (known as ‘topics’), we can take the average of the average precisions

79

over the number of topics. This is known as the mean average precision
(MAP) and forms the basis of the TRECVID evaluation.

Several other measures which are based on precision and recall are also used
in TREC, as summarized in [26]:

e P(10), P(30), P(NR) — the precision after the first 10, 30, NR
documents are retrieved, where NR is the number of relevant
documents for this topic.

e Recall at 0.5 precision — recall at the rank where precision drops
below 0.5.

R(1000) - recall after 1000 documents are retrieved.
Rank first relevant — the rank of the highest-ranked relevant
document.

Performance measures allow us to easily compare system results but do not
provide us with any direct measure of usability. This is obviously of utmost
importance in a user-oriented application such as a browser where user
interaction is so important. Indeed it has been argued that in many cases
usability is more important than performance. No user will want to use an
application which is inflexible, unresponsive or non-deterministic, irrespective
of performance. In evaluation we shall aim to address Nielsen’s [27] five
usability attributes: learnability, efficiency, memorability, errors and
satisfaction.

Usability evaluation is extremely subjective and as such difficult to quantify.
One method of gauging strengths and weaknesses in usability is to use a
questionnaire. The effectiveness of questionnaires as an evaluation method
lies in the careful formulation of its questions. We must be sure to address
the evaluation questions asked, and avoid introducing any bias. We must also
ensure that the questionnaire is quick and easy for a user to complete.

80

6.1 Performance analysis

6.1.1 Creating a ranked list output

Until now we have considered the outcome of the user’s browsing and
searching to be the set of images added to the ‘My Selection’ panel. These are
results that the user has assessed as relevant and individually added to the
panel. However, it is possible that the user might want to find the best 100 or
1000 images that match certain criteria. In these cases, it is not feasible for
the user to assess each individually for relevance and add to the output
accordingly.

For this purpose, and to assist performance analysis, we have added a panel
to the application on which the user can create a ranked list of images as
‘output’ from the searching and browsing process, using the ‘My Selection’
panel and the search results as sources. Since all images added to ‘My
Selection’ have been individually assessed by the user, it seems reasonable
that these will be relevant and so can be added to the start of the output list.
We then append search results until the required number of images is met,
ensuring there are no duplicated images.

‘% iBase :: Image Browser and Search Engine B@

Back Stop Reftash

Search | Categories | NNK network | Viewer | Output | Settings

1

[@ Assemble Output

Source:
(3] My Selection

@ Search Results

Required images: [10gp

Papulate) (Clear)

Ferormance measures:

e —

Frecision: 0.3464

Recall 043

Av. Precision: 04228

Calculate

| Ternporal | My selection

(846 remaining) Loading images

Figure 37. Assembling the ranked list output

81

We also provide the user with the ability to manually rearrange the order of
the output list of images. This is performed using a slide-sorter style drag and
drop mechanism. This is an established and intuitive method for rearranging
a list of objects and has been used for years in presentation packages. This
functionality allows the user to perform some final ‘tweaking’ of results where
obvious improvements could be made.

6.1.2 Experiments

We discussed above the common performance metrics used. We shall evaluate
the retrieval power of the application in terms of recall-precision graphs and
mean average precision, in the same fashion as TRECVID evaluate image
retrieval systems. However, we do not have the resources to manually
evaluate each image in the output list for relevance, so we shall adopt an
automated approach suggested in [28]. This involves using an image collection
in which each image has been assigned a category by a human. We can
therefore take our notion of relevance as membership of a particular category.
So if we search for penguins then we can determine if an output images is
relevant by testing for membership of the ‘penguins’ category.

We shall use a subset of the Corel Gallery 380,000 photograph collection
which contains a total of 6,162 images split into 63 categories. Topics were
chosen by selecting 8 categories which showed both some intra-category
visual similarity and some higher-level semantic meaning. This should appeal
to the strengths of the content-based search engine and the browsing methods
respectively. For each of the 8 categories we selected 3 query images at
random. This gave us the following topics:

Topic Category Size Query image IDs
T1 African Antelope 99 24, 56, 93
T2 Bears 99 413, 420, 457
T3 | Bridges 90 803, 838, 871
T4 Castles of Europe 82 1190, 1242, 1263
T5 Coastal Landscapes 72 1471, 1489, 1512
T6 Contemporary Buildings 89 1593, 1617, 1630
T7 | Penguins 99 4522, 4526, 4544
T8 Spectacular Waterfalls 94 5620, 5626, 5673

82

In order to investigate the interaction between the different searching and
browsing techniques used, and their relative contributions to the quality of
the results, we conducted the experiments under four system variants. This is
an approach that was employed successfully for Imperial’s entry to
TRECVID 2003 [10].

I Search 4+ NN¥ browsing + Relevance feedback
II Search 4+ NN¥ browsing

III NN* browsing only

IV Search + Relevance feedback

V Search only

Text search and temporal browsing were disabled for the experiments, since
they are based upon human annotation and human categorization
respectively. The search-only experiment is not subject to any user
interaction and was computed for comparison purposes.

To test the performance under the four interactive system variants we used a
latin square method in which we use four users and the 8 topics are divided
into pairs:

T1/T2 | T3/T4 | T5/T6 | T7/T8
Ul I I il v
U2 v I I it
U3 I vV I I
U4 I 111 v I

In this way, we minimise the effect of searcher and topic learning on the
resulting performance measure. Each user had at least 30 minutes prior use of
the system with a different image collection, to become acquainted with the
techniques used. They were then given 10 minutes to assemble a ranked
output list of 1000 images for each system variant. In each case, we computed
the interpolated precision values for a set of standard recall levels (0 to 1 in
increments of 0.1) standard as described in [29]. This facilitates the
computation of average performance over a set of topics with different
numbers of relevant documents. For each scenario, we also computed the
(non-interpolated) average precision which was averaged over all topics to
give the mean average precision of each system variant.

83

6.1.3 Results

Full experiment results are given in the Appendix. Figure 38 shows the
precision-recall graphs for each system variant averaged over the 8 topics.
Figure 39 shows the corresponding mean average precision values.

——S+B+RF
0.9 ——S+B
—B

S+RF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Recall

Figure 38. Precision-recall graph for each system variant

(averaged over all topics)

System variant Mean average precision
S+B+RF 0.4269
S+B 0.4072
B 0.2672
S+RF 0.1687
S 0.1112
Random list 0.0035

Figure 39. Mean average precision for each system variant

84

6.1.4 Discussion

It is clear from the results that by integrating the different techniques of
searching, browsing and relevance feedback we gain a substantial
improvement in the quality of the ranked list of images. Relevance feedback
(including query modification) provided us with a 52% increase in mean
average precision (MAP) over a standard search. However it proved less
significant when browsing and searching were used together, giving a mere
4% increase in MAP.

Perhaps the most surprising of all the results is the performance gain through
NN¥ browsing. On average, browsing boosted a system variant’'s MAP by
over 300% relative to the equivalent non-browsing system variant. We can
explain the magnitude of this increase in several ways. It might be attributed
to the relatively small size of the image collection and relatively large
category sizes. Since there are 6,192 images and 63 categories, on average
approximately 1 image for every 100 examined will be relevant. This means
that the user can find a relevant image relatively quickly through browsing.
Once a relevant image is found, the user can often go on to uncover many
more relevant images by exploring the lateral neighbours. The size of the
image collection might also mean that the NN* network is more tightly
connected than in a larger collection.

Our category choices might also play a significant role in determining the
relative performance of searching and browsing. For topics in which category
images are visually similar (eg. penguins), searching performed well. However
where little visual similarity exists (eg. contemporary buildings) searching did
not perform well. It is in these cases where we can see the benefits of the NN*
browsing structure. By exposing the semantic richness of an image to the user
we can elicit a user’s high-level notion of relevance.

By combining all three methods, we can gain an almost fourfold improvement
in mean average precision over a standard feature-based search. However, we
must understand the limitations of our evaluation technique. The Corel
categorisations where not designed for use in such relevance tests, and it
means we are locked into one fixed notion of relevance for each image. This
causes inaccurate relevance assessment in the case where an image can fall
into more than one category. Our evaluation was also limited by time and
resources. Although our initial testing suggests there are large gains to be had
from combining retrieval methods, the system should be subject to real-world
queries involving many topics and whose results are assessed for relevance by
humans such as in the TRECVID evaluation. This would allow us to gain
more compelling evidence for the benefits of the system.

85

6.2 Usability study

As part of the system evaluation, we conducted a questionnaire-based
usability study. We based our method on the general usability questionnaire
suggested in [30]. This uses a system similar to the “Likert scale” where the
subject indicates to what extent they agree or disagree with a statement
about the system. The statements are constructed so that half are positive in
tone (odd numbers) and half are negative in tone (even numbers). They have
also been designed to address Nielsen’s [27] five usability attributes. A sample
questionnaire is shown in the Appendix.

Each user responds to the questions with a rating as follows:

Rating Strongly Agree Undecided | Disagree S?rongly
agree disagree
Positive 5 4 3 9 1
statement
Negative
statement 1 2 3 4 5

In this way, a higher score indicates greater usability.

Before completing the questionnaire, each user was given a 15 minute
demonstration of the system and then was allowed (at least) 15 minutes to
use the system without assistance. A relatively small sample of 6 users
participated in the study due to time and resource constraints. Ideally, we
would maximise the sample size within practical limits. The users were all of
the age range 21-23 and their knowledge of the information retrieval domain
extended no further than everyday use of operating systems and Internet
search engines.

Figure 40 shows the score assignment to the questionnaire responses. For
each question we have computed the sum of the scores, and then ordered
from highest score to lowest. A high score indicates greater usability. We can
see that the speed and responsiveness of the system was highlighted as a
strong point. This might be attributed to our careful use of threads to ensure
time-consuming tasks can run the background so that the interface remains
responsive and the user can continue with other tasks. Other strengths
include lack of frustration and a feeling of user control. This is due to the rich
set of user actions available and the standard browser “Back”, “Forward”,
“Stop” and “Refresh” buttons which is a familiar paradigm that creates a
sense of complete control over navigation.

86

Score

Statement (max 30)

18 The system was slow and unresponsive 27
14 I often felt frustrated when using the system 27
15 The system’s functions were well integrated 26
13 I was always in control of what the system was doing 25
2 The system was difficult and cumbersome to use 25
7 The system was easy to use 24
16 Mistakes were difficult to rectify 24
9 System functions were easy to remember 23
5 The system performed in the way I expected it to 23
17 I never felt limited by settings that I could not modify 23
1 I would choose to use this system again 22
3 I felt confident when using the system 22
12 It was difficult to remember icon/button functions 22
19 I enjoyed using the system 22
10 The system was too complicated 21
11 Most people could use this system efficiently with no problems 19
20 System feedback was not helpful 18
4 I could not use this system without some form of technical support 17
6 I was often unsure as to what action I should take next 17
8 I would need much practice before I could use this system competently 14

Total (max 600) 441

Figure 40. Usability questionnaire results

87

It was pleasing to see that users rated the integration of the system highly.
This has been one of the main goals of the project and appears to have been
achieved successfully.

General questions regarding ease of use and user satisfaction were ranked in
the middle of the table with reasonably good scores. Questions which
achieved the lowest scores appear to be those concerning the prior knowledge
required by wusers. Because the wuser-base had limited knowledge of
information retrieval systems, and only a relatively short demonstration of
the system was carried out, there was a feeling that users would need more
help and practice to use the browser effectively. Some users felt they could
not use some functions as they did not know enough about the underlying
searching and browsing mechanisms. This is a problem that faces any
implementation of new and novel navigation techniques. Although we have
tried to make the browser as easy to use as possible, the user does need some
knowledge of the browsing and searching processes. Currently there is limited
online help, which explains why users might feel unsure on how to proceed in
their navigation.

There is a clear dilemma here. We must strike a balance in the mechanisms
which we expose to the user and which we make transparent. There is a
trade-off between simplicity of use and the user’s level of control or
navigational power. For example, we could have decided to make the concept
of feature weights transparent to the user. However, this would limit the
user’s control over the searching process. There are some ways in which we
can limit the problem of prior knowledge requirements and increase
learnability while retaining navigational power. These include increasing the
level of online help available and using more user-friendly terminology and
analogies. For example, we could rename our feature descriptors to “Colour”,
“Texture” and so on.

The overall score of 441/600 seems positive. However, it is difficult to draw
many useful conclusions from this total usability rating. This value might be
useful in the comparison of different interfaces which have been assessed
under the same criteria.

88

7 Conclusions

7.1 Achievements

We have devised, implemented and evaluated a web-based image browser and
search engine which encompasses the following techniques in information
retrieval:

e Text-based search — search using manual annotations or speech
recognition transcripts to find relevant images in a collection
¢ Content-based search with relevance feedback — search using a

combination of feature descriptors to match query images to images
in a collection. We use relevance feedback to optimise the feature
weightings

¢ Hierarchical browsing — browsing of image categories which have
either been generated manually or arbitrarily

e Lateral browsing (NN* networks) — browsing across the feature
weight space by our notion of an NN* network

e Temporal browsing — browsing in the temporal dimension, derived
from video sequence information or timestamps

e Historical browsing — browsing through the history of the navigation
path

Through careful analysis of the browsing and search processes, we have
maximised user interaction to confront the problems of semantic gap and
polysemy associated with content-based image retrieval. We have maintained
sound HCI principles throughout with regard to consistency, responsiveness,
progress information and other interface design issues. We have developed the
software using object-oriented methodologies and common design patterns to
ensure it is easily maintainable and extensible in the future.

Initial evaluation of the system is promising. It appears that large gains in
performance can be achieved by integrating different paradigms in image
retrieval to enable the user to take advantage of the merits of each. Further
performance analysis, for example at the TRECVID evaluation, would add
weight to this claim. Usability analysis is also encouraging. More extensive
evaluation could be carried out to identify usability in comparison with other
retrieval systems so that we can identify possible interface improvements.

89

7.2 Further work

Besides further evaluation, we have identified several areas which could be
investigated in future work:

¢ Leaning — an interesting area which we have not mentioned is the
notion that the system can learn from the user interaction that takes
place. For example, if some neighbours are consistently pruned off in
the NN network then it is probable that they bear no real semantic
relationship with the query image and they could be permanently
removed from the network structure.

e Multiple selection — in many cases it would be advantageous to be
able to multiply-select images so that the same action can be applied
to many images at the same time. This would be particularly useful
for adding relevant images to ‘My Selection’ without having to add
each image individually.

e Bandwidth-awareness — although the current implementation
employs caching and pre-fetching, the browser has no concept of the
available bandwidth. For a modem user it may be useful to be able
to disable pre-fetching, so that only images that are on the currently
viewer panel are downloaded from the server. A more sophisticated
implementation might detect available bandwidth and retrieve
thumbnails at an appropriate size.

¢ Add an external image to a collection — it is useful for a user to be
able to add an image to the collection on-the-fly. This poses some
implementation challenges since currently image collections are
indexed in advance to compute the necessary feature and browsing
structure data.

¢ Edit or add image annotations — a useful feature might be the ability
to edit or add annotations to an image collection.

e EXIF tags — further image information could be extracted from
images by means of the Exchangeable Image File Format (EXIF)
tags. Digital cameras often store extra information with an image
which could be retrieved and displayed in the viewer.

90

References

[1] M. Pickering, D. C. Heesch, R. O’Callaghan, S. Riiger and D Bull. Video
Retrieval using Global Features in Keyframes. Proceedings of TREC 2002,
NIST (Gaithersburg, MD, Nov 2002), NIST Special Publication 500-251, pp
318-324, 2003

[2] C. Naster. Content-Based Image Retrieval: A State of the Art. LTU
technologies.

[3] S. Siggelkow. Feature Histograms for Content-Based Image Retrieval. MSc
Thesis, Luneburg 2002

[4] D. C. Heesch and S. Riiger. Performance boosting with three mouse clicks
— relevance feedback for CBIR. In Proceedings of the Furopean Con ference
on IR Research 2003. LNCS, Springer, 2003.

[5] D. Daneels, D. Campenhout, W. Niblack, W. Equitz, R. Barber, E. Bellon,
and F Fierens. Interactive outlining: an improved approach using active
contours. In Proceedings of SPIE Storage and Retrieval for Image and Video
Databases, 1993

[6] W. Y. Ma and B. S. Manjunath. Texture features and learning similarity.
In Proceedings of IEEE Con f. Computer Vision and Pattern Recognition, pages
425-430, 1996

[7] T. P. Minka and R. W. Picard. Interactive learning using a society of
models. In Proceedings of IEEE Conf. Computer Vision and Pattern
Recognition, pages 447-452, 1996

[8] Guidelines for the TRECVID 2003 Evaluation.
http://www-nlpir.nist.gov/projects,/tv2003/tv2003.html

[9] C. E. Jacobs, A. Finkelstein, and D. H. Salesin. Fast multiresolution
image querying. In ACM International Con ference on Computer Graphics and
Interactive Techniques (SIGGRAPH), pages 277-286, Los Angeles, CA,
August 1995.

[10] D. C. Heesch, M. J. Pickering, S. Riiger, and Alexei Yavlinsky. Video

Retrieval using Search and Browsing with Key Frames. Proceedings of TREC
Video Retrieval Fvaluation TRECVID, Gaithersburg, MD, Nov 2003).

91

th

[11] K. Tieu and P. Voila. Boosting image retrieval. In 5" International

Con ference on Spoken Language Processing, Dec. 2000

[12] 1. H. Witten, A. Moffat, T. C. Bell. Managing Gigabytes: Compressing
and Indexing Documents and Images, Morgan Kaufmann 1999

[13] D. C. Heesch and S. Riiger. Combining Features for Content-Based
Sketch Retrieval - A Comparative Evaluation of Retrieval Performance.
Proceedings of the 24th Furopean Colloguium on Information Retrieval
Research (ECIR, Glasgow, 25-27 Mar 2002), LNCS 2291, pp 41-52, Springer-
Verlag, 2002

[14] G. Z. Yang and D. F. Gillies. Shape Recognition Lecture Notes,
Computer Vision Course, Dept of Computing, Imperial College

[15] BINS static image browser. http://bins.sautret.org

[16] WildlifeLands image archive.
http://www.gironet.nl/home/cdon/home.htm

[17] Microsoft Clip Organiser (a component of Microsoft Office).
http://office.microsoft.com

[18] The IDIAP Video Browser.
http://www.idiap.ch/~guillemo/videobrowser.html

[19] D. Heesch and S. Riiger. NNk networks for content-based image retrieval.
Accepted for publication in the Proceedings of the 26th FEuropean
Conference on Information Retrieval (ECIR, Sunderland, UK, Apr 2004).

[20] Google Image Search. http://images.google.co.uk

[21] M. Rautianen, K. Noponen, M. Hosio, T. Koskela, J. Liu, T. Ojala and T.
Seppanen, J. Penttild, P. Piertarila, S-M. Mé&keld, J. Peltola. TRECVID
2003 Experiments at Media Team Oulu and VIT

[22] M. Worring, G.P Nguyen, L. Hollink, J. van Gemert, D.C Koelma.
Interactive Search Using Indexing, Filtering, Browsing and Ranking

[23] P. Browne, G. Gaughan, C. Gurrin, G.J.F. Jones, H. Lee,

S. Marlow, K. McDonald, N. Murphy, N.E. O’Connor, A.F. Smeaton, J. Ye.
CDVP & TRECVID-2003 Interactive Search Task Experiments

92

[24] D. Albertson, J. Mostafa, J. Fieber. Video Searching and Browsing Using
ViewFinder : Interactive Search Experiment for TRECVID 2003

[25] TREC Video Retrieval Evaluation, NIST.
http://www-nlpir.nist.gov/projects/trecvid/

[26] H. Miiller, W. Miiller, D McG. Squire, T. Pun. Performance Evaluation in
Content-Based Image Retrieval: Overview and Proposals.
http://vision.unige.ch/publications/postscript/99/VGTR99.05_HMueller WM
uellerSquirePun.pdf

[27] J. Nielsen. Usability engineering. Morgan Kaufmann, 1994

[28] M Pickering and S Riiger. Evaluation of key-frame based retrieval
techniques for video. Computer Vision and Image Understanding, 92.1, 217-235,
2003

[29] TRECVID Common Evaluation Measures
http://trec.nist.gov/pubs/trec10/appendices/measures.pdf

[30] T.-S. Lai. CHROMA: A Photographic Image Retrieval System.
http://osiris.sunderland.ac.uk/ " csOsla/thesis/

93

