CASheW-s

Composition and Semantic
Enhancement of Web-Services

THE UNIVERSITY OF SHEFFIELD
Department of

computer science

Introduction to the CASheW-s Project

* Our main objective 1s to develop a more generic
approach to Web-Service composition.

* Therefore we are investigating the use of a timed
process calculus to provide compositional
behavioural semantics tor worktlows.

* The culmination of this will be a worktlow
engine,which will first be able to orchestrate

OWL-S worktlows.

* In this presentation we look at the operational
semantics for OWL-S, and our approach to
building them.

: - Iniversity
Vv Al 4
'r:'i._-.f:'-" Of .
= Sheffield.

CaSHew-NUtS

* A conservative extension of the timed process
calculus CaSE, which itself 1s a conservative
extension of Milner's CCS.

e Extends CCS with the notion of abstract clocks,
which facilitate multi-party synchronization.

* In CaSE, clocks are bound by maximal progress,
meaning silent actions always take precedence
over clock ticks.

* CaSHew-NUtS extends this concept with the
possibility of clocks which do not exhibit
maximal progress.

The
University
& Of

w Sheffield.

Language
extensions

CASHeW-s Editor

Publish Workflow

qq odAT, dSX
A

OWL-S

Publishing

Gateway
—

Haskell Evaluator Service

CASheW-s Engine

Compiled Workflow Processes

e 48\

P1 P2 P3

SOAP Endpoints

CaSHew-NUtS Composition Rules

ESE.FSF A = {
E WDy | Fatnds= | {
ac A=AUAU{T}

E S F 2
Coml ~ Com?2 ~
E|F3FE|F E|F3E|F

<

Com3

E- 2B F 2 F
E|F X2 B | F
vye AUT
T = Apo,--}

Com4

o

2 al 1Versl
oGy Of
e Sheftield.

a Of
Sheftield.

CASheW-s Syntax

* Problems with OWL-S Syntax

— Incoming dataflow tied to Performance restricting
further composition.

— Fine for persistence/communication, but doesn't
represent the composition of a system.

— Uncomiortable notion of Produce tied to dummy
variable TheParentPerform.

* CASheW-s syntax

— More open to composition.

— Allows compositional translation from OWL-S syntax.

] Ulli\'[ﬁ!’ﬁit_\'
;___:_;.,. Of
e Sheffield.

Process Syntax for CASheW-s

Process ::= AtomicProcess m AProcess |
CompositeProcess m C'Process
C'onsumelList ProducelList
C'Process ::= Sequence PerformancelList |
Split Per formanceList |
SplitJoin Per formanceList |
Any-Order Performancelist |
ChooseOne PerformanceList |
IfThenElse Per formance Per formance
RepeatWhile Per formance |
RepeatUntil Per formance

Performance Syntax for CASheW-s

Per formance
Connection
Per formanceList

DataAggregation

ValueData
ValueDatalList
ValueDataT ail
ValueCollector

ValueCollector List
ValueCollectorT ail
Consume
ConsumelList
Consumel ail
Produce

ProducelList
ProduceTl ail

A The
4 University
& ;-_.f_:". Of
Sheffield.

Perform n Process DataAggregation
Connect ncoa j

Per formance |

(Per formanceList); Per formance |
(Per formanceList); Connection
ValueDatalList

ValueCollectorList

ValueData a

ValueData ValueDataT atl

. ValueData ValueDataT ail
alueCollector a £

ValueCollector ValueCollectorT ail
. ValueCollector ValueCollectorT atl
onsume a n b j

Consume Consumel ail

. Consume Consumel ail

roduce c n d

Produce Producel ail

;. Produce Producel ail

<("h("h

i] niversity
Vv Al 4
= Sheffield.

Orchestration Channels

* r1s the ready to execute channel, which a process
uses to indicate that 1t has no further execution pre-
conditions. (Something the informal semantics rely
on, but no-one else has formalised).

* e 1s the permission to execute channel, which a
process must receive input on before i1t can begin
executing.

* t signifies the foken, which signifies permission to
execute for each of the process's child
performances (in a similar fashion to a token ring
network). Different token passing games facilitate
performance serialization.

Orchestration Clocks

* Two main clock types used for orchestration.

* ¢ 1s the process clock, it ranges over the entire
scope of the process and 1ts child performances
and may be used to resynchronize (such as after a
split-join), where m 1s the name of the process.

* ¢", 0° are performance clocks, they are used to
signal that a performance has completed, and are
used to decide when control can be passed on to
another scheduler in the system, where n and o are

names of performances.

..‘ Al The

& ﬁ University

eXgayprs Of
Sheffield.

Composite Process Layout

CompositeProcess cp
Sequence
Perform n; p;
Connect cnqy a no 0
Connect d n1 a n3 2
Perform ns ps
ValueData a
Connect ¢ ny a n3 1
Perform ns po
ValueCollector a 2
Consume a n1 a 0
Produce c n3 ¢

Composite Process Layout in CASheW-s

CProcess
Sequence (((@™)))
N (((Unl)))
)
T
a
= Consumer Sched, €;
t -Cn1 -dn1
—
t; 12 'I'a82 (((e™)))
” B
Value
. Scheds e Data i A D2
B— Producer T
t *0”2
t; al’® ay’ (((e™)))
r
Scheds e VC Ps

Iniversity

-’:-: m"" el Ut
"":.- 7 Sheffield.

OWL-S Process Semantics

[AtomicProcess m PJ]& m[P]A

[[CompositeProcess m P G H]A =
("IP&~ | [GT; | [H]E) \ A™uC™/{o° | ce C}

Where ® mis a process name * Gisa Consume List
® D 1S a Process * His a Produce List
* A1s a set of inputs
* C1sa set of outputs

Example Atomic Process Semantics

| AnAtomicProcess]| %ZJ]{ az)
uX. < ap,as > .r.e.T.c.X

a Of
Sheftield.

Consume Semantics

* Consume pulls an input which 1s required to run a
process.

[Consume a n b j]]éa} = uX.a.b?. X

O

* Wires like Consume, patiently wait for input and then insistently output.

& ’ ; "“-‘ a Of
Sheffield.

Produce Semantics

* Produce pushes an output which has been
produced by a process.

|Produce c n d]|7 , = uX.d".c. X

)
{c}

O

* Within CASheW-s, Produce 1s not a type of performance, rather a type of
connection

i 5 Iniversity
Vv Al 4
of
= Sheffield.

Connection Semantics

* Connect shunts the output of one performance in a
composite process, to the input of another.

[Connect n c o a j] = puX.c".a3.X

O

Composite Process Semantics

* Defined in terms of a top-level Governor process,
and 1n the case of unbounded child-performances
an 1inductively defined context-based composition
semantics, which pair a Scheduler with the
performance semantics.

"[Sequence Q& =" [*?Q[&/0™ \ ¢
m[SplitJoin Q)& = ("[* Q)4 | uX.c™.F.e.c™.0c™.X) o™

"[AnyOrder Q& =™ [*"Q]& /o™ \ t

Sequence Semantics
Base Case

m*¢?Perform n p U V]]C -
(n[[Perform n p U V]gnle €' r 1] | e
uX.r'r.e.et.c” . |t.o™. XJUm(X))/Jn\{TZ’GZ}

m m m m m

O

O O O O

Sequential Composition Semantics
General Case

mi[se Q n
[°¢1(Q); Perform n p U V]]éQLdén —

(”[[Perform npU V]]Cn le — e',r — 1] | m[[squ]]AQ [t — t'] |
puX.ttrtet.o”™ . |t.o™. X |o™(X)) /o™ \ {r’, e’}

Base Case

manyPerform n p U V][4 =
([Perform n p U V]&[e — e, r — 1] |
uX.1t o (Foeel.a” . |t.o™. X |o™(X)
t.et.o” . |t.o™. X |o™(X))\ {e?,)} /o

General Case

merY(Q); Perform n p U V]]égBéZ 23

mlerYPerform n p U V]] | m [any Q]]

* We use this induction 1n all cases to define the
semantics for the general case where all
performances are handled 1n the same way.

Split/SplitJoin Process Semantics

(Governor)
"[SplitJoin Q¢ = (™[Q]E \ mreo™o™ X) o™
m[Split Q& = (" [Q)& | uX.c™ T.e.0™. 0™ . X) o™

SplitJoin Composition Semantics

msiPerform n p U V]& =
(m[*¥Perform n p U V]ale — e’ r — 1] |
uX.r'_m.o™om.elo” _n.0™X)\ {e,r'}/o"

O.m

O.m
r ’Q o' o™ et
o—o é
o' o

Ao _<_-.-. Of
¥ Sheffield.

Split Composition Semantics

msPlitPerform n p U V]& =
(m[[Sp”tPerform npUV]ile H-ei,.r — 7] |
pX.1t o™ o™l 0™ X))\ {ef, ')} o™

og™m
fr,i »Q oM om
o—o }é
oM

* Split 1s our primary motivation for clock ticks not bound by maximal progress

Next Step : Haskell Implementation

* We already have an implementation of the
CaSHew-NUtS Process Calculus 1in Haskell, the
next step 1s to define semantics for mapping
OWL-S to this representation.

* The Haskell implementation allows the calculus
to be grounded 1n 10 operations, enabling Web-
Service invocation.

* This can then be combined with our HAIFA
interoperability kit to enable orchestration.

Conclusion

* We have presented a timed process calculus
semantics for OWL-S, which we will shortly be
using to build an orchestration engine.

* We predict that this approach to providing
operational semantics can be applied to other
work-flow languages, allowing a single engine to
be able handle heterogeneous orchestration.

* All of this will be combined with the safety of
Haskell, to build reliable, predictable workflows.

el The
- University
axrasy s Of
G Sheffield.

More to come soon...

..‘ Al The

& ﬁ University

eXgayprs Of
Sheffield.

Basic CCS Rules

)) RNy
Act > Suml ! - a
> R E+F — E E+ F — F7

Eﬁ)E, F&F/
o - Com?2
RO E|FSE|F

T T i
E—>ET7FHF Res 7 ’}/g{a”a}
PlEm e EF\a— FE'\a

Com3

£ E

Rec 5
pX.E— E{pX.E/X}

17 =l IvVersl
oGy Of
S Sheffield.

CaSE Additions to CCS

Idle - Patient - Stall 1
0—0 a.FF — a.E A, 25 A,

R
TO1 ——a T02 2 Li, 2
\Elo(F) — F | E|o(F)— E'

]nev*o 1\ n 4L and: a) g — Nif - c TA(p\ 1 nthorwvwicon
/ V 7’— v aliul. OJ/ U UJ 11 J = -U_\.\J_J/, 1 UvUvullivl 10o0v
a 4 . N — T)) -1 i .
2) fi-vy =0 b) k=0if 7 € ZA(E | F), 1 otherwise
C) 01 ¢ :Z;4(E)

d) #i-o; € ZA(E)

CaSE Additions (cont)

E 2% E

STO1 ——a STO2a ——
Elo(F) — F Elo(F)— E'
03 / & /
STO3 —\~ Lot STO2b——
E|o(F) — E' Elo(F) — E'

E-5FB F-—HF,
E|FZZ E | F

Com4

where: 1) p#o and: a)i=01if 7 € ZA(E), 1 otherwise
2) Pi v =0 b) k=0if r € ZA(E | F), 1 otherwise
c) o1 ¢ TA(E)

1

[§ Un
sXa s Of
e Sheffield.

CaSE Additions (cont)

o1 / P &/ Pl
Hidl —— % Hid2 -
Plc 5 P'/o Plo — P'/o
p -2, pr
Hid3 L,c

where: 1) p#o and: a)i=01if 7 € ZA(E), 1 otherwise
2) Pi v =0 b) k=0if r € ZA(E | F), 1 otherwise
c) o1 ¢ TA(E)

13 n
P Of
TN Sheffield.

CaSHew-NUtS

O; / P o P
UHid1 — = UHid2 ———
P//O'%P///o' P//O'%P’//o'
pi /
UHid3 et 1. d

Pjo i)P,//O' ’

where: 1) p#o and: a)i=01if 7 € ZA(E), 1 otherwise
2) Pi v =0 b) k=0if r € ZA(E | F), 1 otherwise
c) o1 ¢ TA(E)

