
A Compositional Semantics
for OWL-S

Barry Norton,
Knowledge Media Institute,

Open University, UK

with

Simon Foster and Andrew Hughes
University of Sheffield, UK

Introduction

• OWL is Web Ontology Language,
proposed to W3C for Semantic Web

• OWL-S is ‘service ontology’, defining
Semantic Web Services

• OWL-S process model describes
formation of services by composition

• OWL-S process model therefore defines
orchestration via workflow

Context

• OWL-S process model aims to capture
common subset of workflow features

whereas

• WS-BPEL ends up with an all-inclusive
superset of features

More Context

• YAWL attempts to capture all workflow
‘patterns’ in Petri net dialect

whereas

• Much process calculus-like work directly
models specific features

‘Composability’ vs.
Compositionality

• ‘Composability’ implies:
– Existing (semantic) results should extend to

new syntactic features
(not so for direct process model)

• Principle of compositionality:
– Semantics of (syntactic) composite should

derive from semantics of components
(not so for Petri nets)

Aims

• Create a compositional model for OWL-S
process model in general process algebra

but

• Composable?

• Compositional through what equivalence?

Approach

• Take existing model of coarsely
(sequentially) interleaved dataflow
(CONCUR03), which is one of OWL-S
composite process types

• ‘Compose’ other OWL-S process types
• Apply existing notion of behavioural

equivalence (temporal observation
congruence)

(Generalised) OWL-S Processes

Process ::= AtomicProcess … |

CompositeProcess CProcess …

CProcess ::= AnyOrder PerformanceList |

Sequence PerformanceList |

Split PerformanceList |

SplitJoin PerformanceList |

ChooseOne PerformanceList |

IfThenElse Performance

Performance |

RepeatWhile Peformance |

RepeatUntil Performance

PerformanceList Performance |

PerformanceList; Performance |

PerformanceList; Connect …

Performance ::= Perform Process

Existing Model

• Take automata describing interfaces of
components

• Compose agent representing participation
in global synchronisation to form instance

• Compose instances together, in model
aware of communication-style (local) and
global synchronisations

• Compare for conformance to interface
(automaton) assigned to composite

‘Interface Automata’

• Generally:

input

/ready execute

…

/output

…

a

b

…

c

d

r e

Instantiation

c

d

a

b

…
�cn cn

�n

…

�dn dn

… an

… bn

r e

Basis (Regular CCS) …

Basis (CCS) …

+ Deterministic Time …

+ Maximal Progress (≈TPL) …

+ ‘Stalling’(=PMC’s 0)…

+ Multiple Clocks (a la PMC,
CSA)…

+ Hiding (= CaSE)

Compositional Broadcast

• Broadcast

• Connection

Composition

r e

t
�n1 r e

t
�n2

an2cn1

�cn1

…

…

…

�m

Conclusion

• Modulo small extension, calculus allows
‘composition’ of OWL-S process types

• Theoretical results:
– Temporal observation congruence holds
– Full abstraction holds
– To do:

• extension of algebraic theory

• Practical results
– Implementation in Haskell
– To do:

• extend partition refinement
• implementation in LISP

Further Work

• Fix cashew-s as a rich language for
choreography (WSMO insists service interface
provide both orch & chor)

• Establish expressiveness of cashew-nuts to give
semantics to orchestration and choreography

• Investigate temporal observation congruence as
a conformance test between orch & chor

• Now part of DIP (European Integrated) Project,
therefore providing input to WSMO

