Composition and Semantic Enhancement of
Web-Services:
The CASheW-s Project

Simon Foster, Andrew Hughes, and Barry Norton

Department of Computer Science, University of Sheffield,
Regent Court, 211 Portobello Street, Sheffield S1 4DP, UK

1 Introduction

CASheW-s is an ongoing research project looking at the composition of semantic
web-services via workflow-oriented orchestrations. We have chosen to look first
at OWL-S [BHLMO04] as it has sensibly taken out the core features needed in
a workflow language for orchestration and given two existing forms of workflow
semantics, as can be seen in [AHS02] and [NM02]. Our aim is to give another
form of semantics, in a style which can be efficiently implemented, analysed
and extended, courtesy of the principal of compositionality. We do this via an
intermediate syntax in an extension to the process calculus CaSE [NLMO03],
which we call CaSHew-NULS.

Formally speaking, we take compositionality to mean that according to
our semantic function [] mapping OWL-S, via our process calculus, to a la-
belled transition system semantics, and some notion of semantic equality, = —
[t1;t2] = [t1] | [¢2] and furthermore that [[t1] = s = [t1;t2] = s | [¢2].
The reason this is such an important property of semantics is that this allows
a semantic model to be built by composition alongside the definition of syntax,
for instance in an interactive editor, as well as being the enabling property of
semantics for modular analysis. We claim that no semantics currently defined
have this property.

Furthermore we will define an extension to OWL-S called CaSheW-s, with
part of our motivation being to introduce purely functional language exten-
sions [Nor04]. The orchestration engine is being developed in the purely func-
tional language Haskell [Jon03], and should be able to execute any workflow
whose semantics can be described in the process calculus. We thus envisage
in the future the creation of orchestration semantics for ontologies such as
WSMO [FBO02].

Along with the engine, an editor is being produced, which diagrammatically
represents an OWL-S workflow using an extended fragment of the UML Activity
Diagram notation. We believe it is important to use a graphical notation familiar
to engineers, rather than invent a new one. This takes the form of a plug-in for
Eclipse, a popular open-source development environment.

2 Representation

While the syntax represented in the OWL-S ontology is appropriate for the
storage and communication of a workflow, it does not represent the way such a
design is built in an editor. In particular, to compose the performance of a new
process in an existing context, i.e. building a composite process, all previous per-
formances have to have been defined along with their complete workflow, with
no possibility to extend this, if the current syntax is used as a model. To increase
the utility of compositionality within our semantic translation, we choose to ab-
stract out the connections so that these can be interleaved with the performances
they connect within those process types that allow such communication.

Process ::= AtomicProcess m AProcess |
CompositeProcess m CProcess
ConsumelList ProduceList
CProcess ::= Sequence Per formanceList |
Split PerformanceList |
SplitJoin Per formanceList |
Any-Order PerformanceList |
ChooseOne Per formanceList |
IfThenElse Per formance Per formance
RepeatWhile Per formance |
RepeatUntil Per formance

Per formance ::= Perform n Process DataAggregation
Connection ::= Connect ni,c,n2,a,j
Per formanceList ::= Per formance |

Per formance; (Per formanceList) |
Connection; (Per formanceList)
DataAggregation ::= ValueDataList
ValueCollector List
ValueDataList ::= () | a; (ValueDataList)

ValueCollectorList ::= () | a, k; (ValueCollector List)
ConsumelList := () | a,n,b, j; ConsumeList
ProduceList ::= () | ¢,n,d; ProduceList

Table 1. The OWL-S Process Type

We have therefore created, as shown in Table 1, a representation of OWL-S
in which composite processes' depend on performances? whose declared dataflow
has only two components: value data declarations, as before, and what we have
called wvalue collectors. A value data list just names which inputs® are provided
by constants. A value collector allows the representation of a value function, but
only declares how many components are needed, k, not where they come from.
In the absence of an explicit value collector declaration, an input is assumed to
have a singleton component.

! Note that the names of processes are ranged over by m.
? Note that the names of performances are ranged over by n.
3 Note that the names of inputs are ranged over by a and b, and outputs ¢ and d.

Connections are represented as first class members of the performance lists in
the body of composite process declarations. Note that those composite processes
without a performance list do not allow communication between their component,
parts. Each connection names the performance, ny, providing the output, c,
as well as which component, j, of which input, a, of which performance, no,
expects the values. In this way new connections can be composed with existing
performances and the compositionality of our semantic representation extends
to this. Note further that a compositional translation from the existing OWL-S
representation to this model is possible since a performance can be immediately
followed by the complete set of connections according to its value sources and
value functions.

In manipulating the syntax, we have also taken the opportunity to add an
explicit consume operator, which acts as the complement of the produce operator.
Implicitly ConsumeLists both name the inputs, a, of the composite process, as
in the OWL-S syntax, and at the same time the components, j, of the inputs, b,
of the component performance, n, they provide. The symmetrical nature of the
produce operator avoids the need to overload the typing of the connections; value
source and value function declarations are used in OWL-S with a dummy ‘parent
perform’ variable, even though a process communication is what is actually being
implied.

CaSE is a conservative extension of CCS [Mil89] dealing with multi-party
synchronizations, which represents the flow of time as abstract clock ticks. These
are governed by maximal progress, meaning that internal action is prioritized
over, and preempts, the advance of time. CaSE has been used to provide se-
mantics for dataflow-oriented software composition [NF04]. We believe that by
extension it can be used to provide a compositional model for web-service or-
chestration. However, our approach needs both ticks respecting maximal progress
and a looser version in which maximal can be bypassed. CaSHEW-NULS is a
further conservative extension to CaSE which expands the transition labels in
the operational semantics with the notion of indexed clocks. This index is used
to differentiate between clocks for which the transitions respect the properties
of maximal progress and determinism, and those which do not. One motivation
behind this extension was the provision of semantics for the split operator in
OWL-S. The split operator completes when each subprocess is scheduled for
execution, and, thus, the clock signaling completion of the process has to tick,
despite the presence of the remaining internal work still to be achieved in the
encapsulated performance.

3 Implementation

Using inductive data-types we have a direct representation for OWL-S and
CaSHew-NULS processes. In functional style we can then perform a direct im-
plementation of the mathematical translation between the two, that will be
described in this work, as well as the operational semantics for CaSHew-NULS.

Inputs, outputs and explicit silent actions, at the implementation level, can
be bound to IO actions, which allows the calculus to call atomic web-services and
execute inline Haskell code. OWL-S already allows the insertion of expressions
written in an external syntax to be bound to control points, for example in
valueFunctions and if-then-else conditions. As a result, it is our aim to allow
the insertion of arbitrary, well-typed Haskell expressions at these points. In order
to facilitate this, we are implementing a Haskell evaluation web service, which
takes serialized input, executes the expression and returns serialized output.

In conjunction with the CASheW-s project, we are also working on expand-
ing the existing libraries provided by the HAIFA* project; a library from our
previous work for implementing Web-Services in Haskell. Included in HAIFA
is a Generic XML Serializer, which allows serialization of Haskell data with
minimum intervention from the programmer, a SOAP/1.1 implementation, a
web-service publisher and a simple HTTP server, on which the orchestration en-
gine will be based. Currently, the work in this area primarily focuses on creating
an implementation of XML Schema [TBMT01| in Haskell, so that XSD types
used in an ontology can be directly imported for use in a workflow.

In providing this language to the end-user we allow the tree structured data
typical of XML to be processed easily for the purpose of mediation and so on.
Haskell, being a purely functional language, explicitly distinguishes between
what are pure functions, that is computations which only depend on the in-
puts supplied, and side-effecting computations, which can be effected by the I0
monad [Wad90]. This allows a greater degree of safety in executing workflow
code, and when working with pure functions only, the behaviour of a piece of
code can be guaranteed. All I0 sections can also be explicitly guarded with
try/catch blocks in order to improve run-time safety and make a programs be-
haviour fully predictable. Furthermore, potentially harmful behaviour exhibited
by code which effects the world can be restricted and potential security holes
reduced, a concept very important in the world of the semantic web. Together
with the process calculus semantic rules, it should therefore be possible to pro-
vide formal semantics for how a given workflow should behave, right down to the
grounding level, with the only uncertainty being the behaviour of the servant
network and hardware.

We use Haskell as an implementation and mediation language for the reasons
of safety already mentioned, but also for many of its unique qualities. Being
a lazy language, it natively provides an ideal platform on which to construct
code incorporating the complex recursive data-structures presented by RDF and
XLink, rather than placing reliance on the termination of a link sequence. This
allows Haskell to intrinsically deal with infinitely expanding XML trees. Higher-
order polymorphic functions will also enable a more abstracted and modular
way of combining mediators. We also envisage that Haskell will lend itself to a
straightforward implementation of the partition refinement algorithm, capturing
the calculus’ behavioural equivalence theory and thereby allowing diagnosis of
deadlocks etc.

* The HAIFA project page can be found at http://savannah.nongnu.org/projects/haifa

4 Editing

Our editor, as an Eclipse plug-in, allows for the parsing, serialization and visual
manipulation of OWL-S constructs. Eventually, the editor will also allow the
serialized OWL-S to be passed directly to the engine for execution, via the
use of an appropriate web-service. In addition, the notion of extension points,
common within the Eclipse environment [GBO04], will be utilised to mirror the
extension points seen within the OWL-S syntax. Notably, the editor will allow
the handling of value functions via this mechanism. There is current work in
restricted extensible settings like Protegé [Ele04] and other early work in Eclipse
from CMU, but it is not clear that either is working with the aim of being
extensible, as we plan. When extended as a CASheW-s editor these functions will
be written in Haskell. Our implementation of this functionality will center around
the editor’s communication with a Haskell evaluator web-service. The user will
be able to enter Haskell functions and have them validated by this service.
This process also ensures that the function is well-typed, and that this property
extends to the surrounding workflow. Once the feasibility of this approach is
validated we should like to establish a formal type-theory including a suitable
Haskell fragment; that [AHS02] is already based in Haskell semantics suggests
that this would be a promising approach.

As well as being able to integrate Haskell functions into an OWL-S workflow,
we will also build a CASheW-s ontology of mediators, which will contain semanti-
cally annotated Haskell functions, enabling mediation between XSD data-types
grounding concepts within a workflow. The editor will be capable of looking
up functions in this ontology, and inserting them at appropriate points in the
workflow.

In this presentation, we will review the CaSHew-NULS process calculus, for-
mally describe the translation of OWL-S into this language, describe its imple-
mentation and sketch the architecture by which the resulting engine interacts
with our editor.

Acknowledgments

This work is being conducted within the Darwin project programme for Masters
students and Finalists in the Department of Computer Science at the University
of Sheffield; we should like to acknowledge the efforts of the other CASheW-s
members Atheesh Sanka, Ravish Baghdev and Xian Liu. The work is also partly
supported by the LIRICS project, sponsored by the eCONTENT program of
the European Union (grant EDC-22236), and previously by Dot.Kom project,
sponsored by the IST part of EU Framework V (grant IST-2001-34038).

References

AHSO02.

BHLMO04.

Ele04.

FBO02.
GB04.

Jon03.

Mil89.
NF04.

NLMO3.

NMO2.

Nor04.

TBM™01.

‘Wad90.

Anupriya Ankolekar, Frank Huch, and Katia Sycara. Concurrent execu-
tion semantics of DAML-S with subtypes. In Proc. 1st Intl. Semantic Web
Conference (ISWC2002), volume 2342 of LNCS, pages 308 332. Springer
Verlag, May 2002.

Mark Burstein, Jerry Hobbs, Ora Lassila, and Drew McDermott. OWL-
S: Semantic markup for web services. http://www.daml.org/services/owl-
s/1.1/overview/, 2004.

Daniel Elenius. The OWL-S editor — a development tool for semantic
web services. In Proc. of the 2nd European Semantic Web Conference
(ESWC05), 2004.

D. Fensel and C. Bussler. Web service modeling framework (WSMF), 2002.
Erich Gamma and Kent Beck. Contributing To Eclipse: Principles, Patterns
and Plug-Ins, chapter 8, page 65. The Eclipse Series. Addison-Wesley, 1st
edition, 2004. ISBN: 0-321-20575-8.

Simon Peyton Jones. Haskell 98 Language and Libraries. Cambridge Uni-
versity Press, 2003.

Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
Barry Norton and Matt Fairtlough. Reactive Types for Dataflow-Oriented
Software Architecture. In Proc. 4th Working IEEE/IFIP Conference on
Software Architecture (WICSA04), IEEE Computer Society Press, page
2172, 2004.

Barry Norton, Gerald Luettgen, and Michael Mendler. A Compositional
Semantic Theory for Synchronous Component-Based Design. In Proc. 14th
Intl. Conference on Concurrency Theory (CONCUR’03), volume 2761 of
LNCS, pages 461-476, 2003.

Srini Narayanan and Sheila A. Mcllraith. Simulation, verification and au-
tomated composition of web services. In Proc. 11th Intl. World Wide Web
Conference (WWW2002), May 7-10 2002.

Barry Norton. Proposed functional-style extensions for semantic web com-
position. In Proc. of the 1st AKT Workshop on Semantic Web Services
(AKT-SWS04), volume 122 of CEUR Workshop Proceedings, Dec 2004.
Henry S. Thompson, David Beech, Murray Maloney, Noah Mendel-
sohn, Paul V. Biron, and Ashok Malhotra. XML Schema.
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502 , May 2001.
Philip Wadler. Comprehending monads. In LFP ’90: Proceedings of the
1990 ACM conference on LISP and functional programming, pages 61 78.
ACM Press, 1990.

