
Composition and Semanti
 Enhan
ement ofWeb-Servi
es:The CASheW-s Proje
tSimon Foster, Andrew Hughes, and Barry NortonDepartment of Computer S
ien
e, University of She�eld,Regent Court, 211 Portobello Street, She�eld S1 4DP, UK1 Introdu
tionCASheW-s is an ongoing resear
h proje
t looking at the
omposition of semanti
web-servi
es via work�ow-oriented or
hestrations. We have
hosen to look �rstat OWL-S [BHLM04℄ as it has sensibly taken out the
ore features needed ina work�ow language for or
hestration and given two existing forms of work�owsemanti
s, as
an be seen in [AHS02℄ and [NM02℄. Our aim is to give anotherform of semanti
s, in a style whi
h
an be e�
iently implemented, analysedand extended,
ourtesy of the prin
ipal of
ompositionality. We do this via anintermediate syntax in an extension to the pro
ess
al
ulus CaSE [NLM03℄,whi
h we
all CaSHew-NUtS.Formally speaking, we take
ompositionality to mean that � a

ording toour semanti
 fun
tion [[]] mapping OWL-S, via our pro
ess
al
ulus, to a la-belled transition system semanti
s, and some notion of semanti
 equality, = �
[[t1; t2]] = [[t1]] | [[t2]] and furthermore that [[t1]] = s =⇒ [[t1; t2]] = s | [[t2]].The reason this is su
h an important property of semanti
s is that this allowsa semanti
 model to be built by
omposition alongside the de�nition of syntax,for instan
e in an intera
tive editor, as well as being the enabling property ofsemanti
s for modular analysis. We
laim that no semanti
s
urrently de�nedhave this property.Furthermore we will de�ne an extension to OWL-S
alled CaSheW-s, withpart of our motivation being to introdu
e purely fun
tional language exten-sions [Nor04℄. The or
hestration engine is being developed in the purely fun
-tional language Haskell [Jon03℄, and should be able to exe
ute any work�owwhose semanti
s
an be des
ribed in the pro
ess
al
ulus. We thus envisagein the future the
reation of or
hestration semanti
s for ontologies su
h asWSMO [FB02℄.Along with the engine, an editor is being produ
ed, whi
h diagrammati
allyrepresents an OWL-S work�ow using an extended fragment of the UML A
tivityDiagram notation. We believe it is important to use a graphi
al notation familiarto engineers, rather than invent a new one. This takes the form of a plug-in forE
lipse, a popular open-sour
e development environment.

2 RepresentationWhile the syntax represented in the OWL-S ontology is appropriate for thestorage and
ommuni
ation of a work�ow, it does not represent the way su
h adesign is built in an editor. In parti
ular, to
ompose the performan
e of a newpro
ess in an existing
ontext, i.e. building a
omposite pro
ess, all previous per-forman
es have to have been de�ned along with their
omplete work�ow, withno possibility to extend this, if the
urrent syntax is used as a model. To in
reasethe utility of
ompositionality within our semanti
 translation, we
hoose to ab-stra
t out the
onne
tions so that these
an be interleaved with the performan
esthey
onne
t within those pro
ess types that allow su
h
ommuni
ation.
Process ::= Atomi
Pro
ess m AProcess |CompositePro
ess m CProcess

ConsumeList ProduceList

CProcess ::= Sequen
e PerformanceList |Split PerformanceList |SplitJoin PerformanceList |Any-Order PerformanceList |ChooseOne PerformanceList |IfThenElse Performance Performance |RepeatWhile Performance |RepeatUntil Performance

Performance ::= Perform n Process DataAggregation

Connection ::= Conne
t n1, c, n2, a, j

PerformanceList ::= Performance |
Performance; (PerformanceList) |
Connection; (PerformanceList)

DataAggregation ::= V alueDataList

V alueCollectorList

V alueDataList ::= () | a; (V alueDataList)
V alueCollectorList ::= () | a, k; (V alueCollectorList)

ConsumeList ::= () | a, n, b, j; ConsumeList

ProduceList ::= () | c, n, d; ProduceListTable 1. The OWL-S Pro
ess TypeWe have therefore
reated, as shown in Table 1, a representation of OWL-Sin whi
h
omposite pro
esses1 depend on performan
es2 whose de
lared data�owhas only two
omponents: value data de
larations, as before, and what we have
alled value
olle
tors. A value data list just names whi
h inputs3 are providedby
onstants. A value
olle
tor allows the representation of a value fun
tion, butonly de
lares how many
omponents are needed, k, not where they
ome from.In the absen
e of an expli
it value
olle
tor de
laration, an input is assumed tohave a singleton
omponent.1 Note that the names of pro
esses are ranged over by m.2 Note that the names of performan
es are ranged over by n.3 Note that the names of inputs are ranged over by a and b, and outputs c and d.

Conne
tions are represented as �rst
lass members of the performan
e lists inthe body of
omposite pro
ess de
larations. Note that those
omposite pro
esseswithout a performan
e list do not allow
ommuni
ation between their
omponentparts. Ea
h
onne
tion names the performan
e, n1, providing the output, c,as well as whi
h
omponent, j, of whi
h input, a, of whi
h performan
e, n2,expe
ts the values. In this way new
onne
tions
an be
omposed with existingperforman
es and the
ompositionality of our semanti
 representation extendsto this. Note further that a
ompositional translation from the existing OWL-Srepresentation to this model is possible sin
e a performan
e
an be immediatelyfollowed by the
omplete set of
onne
tions a

ording to its value sour
es andvalue fun
tions.In manipulating the syntax, we have also taken the opportunity to add anexpli
it
onsume operator, whi
h a
ts as the
omplement of the produ
e operator.Impli
itly ConsumeLists both name the inputs, a, of the
omposite pro
ess, asin the OWL-S syntax, and at the same time the
omponents, j, of the inputs, b,of the
omponent performan
e, n, they provide. The symmetri
al nature of theprodu
e operator avoids the need to overload the typing of the
onne
tions; valuesour
e and value fun
tion de
larations are used in OWL-S with a dummy `parentperform' variable, even though a pro
ess
ommuni
ation is what is a
tually beingimplied.CaSE is a
onservative extension of CCS [Mil89℄ dealing with multi-partysyn
hronizations, whi
h represents the �ow of time as abstra
t
lo
k ti
ks. Theseare governed by maximal progress, meaning that internal a
tion is prioritizedover, and preempts, the advan
e of time. CaSE has been used to provide se-manti
s for data�ow-oriented software
omposition [NF04℄. We believe that byextension it
an be used to provide a
ompositional model for web-servi
e or-
hestration. However, our approa
h needs both ti
ks respe
ting maximal progressand a looser version in whi
h maximal
an be bypassed. CaSHEW-NUtS is afurther
onservative extension to CaSE whi
h expands the transition labels inthe operational semanti
s with the notion of indexed
lo
ks. This index is usedto di�erentiate between
lo
ks for whi
h the transitions respe
t the propertiesof maximal progress and determinism, and those whi
h do not. One motivationbehind this extension was the provision of semanti
s for the split operator inOWL-S. The split operator
ompletes when ea
h subpro
ess is s
heduled forexe
ution, and, thus, the
lo
k signaling
ompletion of the pro
ess has to ti
k,despite the presen
e of the remaining internal work still to be a
hieved in theen
apsulated performan
e.3 ImplementationUsing indu
tive data-types we have a dire
t representation for OWL-S andCaSHew-NUtS pro
esses. In fun
tional style we
an then perform a dire
t im-plementation of the mathemati
al translation between the two, that will bedes
ribed in this work, as well as the operational semanti
s for CaSHew-NUtS.

Inputs, outputs and expli
it silent a
tions, at the implementation level,
anbe bound to IO a
tions, whi
h allows the
al
ulus to
all atomi
 web-servi
es andexe
ute inline Haskell
ode. OWL-S already allows the insertion of expressionswritten in an external syntax to be bound to
ontrol points, for example invalueFun
tions and if-then-else
onditions. As a result, it is our aim to allowthe insertion of arbitrary, well-typed Haskell expressions at these points. In orderto fa
ilitate this, we are implementing a Haskell evaluation web servi
e, whi
htakes serialized input, exe
utes the expression and returns serialized output.In
onjun
tion with the CASheW-s proje
t, we are also working on expand-ing the existing libraries provided by the HAIFA4 proje
t; a library from ourprevious work for implementing Web-Servi
es in Haskell. In
luded in HAIFAis a Generi
 XML Serializer, whi
h allows serialization of Haskell data withminimum intervention from the programmer, a SOAP/1.1 implementation, aweb-servi
e publisher and a simple HTTP server, on whi
h the or
hestration en-gine will be based. Currently, the work in this area primarily fo
uses on
reatingan implementation of XML S
hema [TBM+01℄ in Haskell, so that XSD typesused in an ontology
an be dire
tly imported for use in a work�ow.In providing this language to the end-user we allow the tree stru
tured datatypi
al of XML to be pro
essed easily for the purpose of mediation and so on.Haskell, being a purely fun
tional language, expli
itly distinguishes betweenwhat are pure fun
tions, that is
omputations whi
h only depend on the in-puts supplied, and side-e�e
ting
omputations, whi
h
an be e�e
ted by the IOmonad [Wad90℄. This allows a greater degree of safety in exe
uting work�ow
ode, and when working with pure fun
tions only, the behaviour of a pie
e of
ode
an be guaranteed. All IO se
tions
an also be expli
itly guarded withtry/
at
h blo
ks in order to improve run-time safety and make a programs be-haviour fully predi
table. Furthermore, potentially harmful behaviour exhibitedby
ode whi
h e�e
ts the world
an be restri
ted and potential se
urity holesredu
ed, a
on
ept very important in the world of the semanti
 web. Togetherwith the pro
ess
al
ulus semanti
 rules, it should therefore be possible to pro-vide formal semanti
s for how a given work�ow should behave, right down to thegrounding level, with the only un
ertainty being the behaviour of the servantnetwork and hardware.We use Haskell as an implementation and mediation language for the reasonsof safety already mentioned, but also for many of its unique qualities. Beinga lazy language, it natively provides an ideal platform on whi
h to
onstru
t
ode in
orporating the
omplex re
ursive data-stru
tures presented by RDF andXLink, rather than pla
ing relian
e on the termination of a link sequen
e. Thisallows Haskell to intrinsi
ally deal with in�nitely expanding XML trees. Higher-order polymorphi
 fun
tions will also enable a more abstra
ted and modularway of
ombining mediators. We also envisage that Haskell will lend itself to astraightforward implementation of the partition re�nement algorithm,
apturingthe
al
ulus' behavioural equivalen
e theory and thereby allowing diagnosis ofdeadlo
ks et
.4 The HAIFA proje
t page
an be found at http://savannah.nongnu.org/proje
ts/haifa

4 EditingOur editor, as an E
lipse plug-in, allows for the parsing, serialization and visualmanipulation of OWL-S
onstru
ts. Eventually, the editor will also allow theserialized OWL-S to be passed dire
tly to the engine for exe
ution, via theuse of an appropriate web-servi
e. In addition, the notion of extension points,
ommon within the E
lipse environment [GB04℄, will be utilised to mirror theextension points seen within the OWL-S syntax. Notably, the editor will allowthe handling of value fun
tions via this me
hanism. There is
urrent work inrestri
ted extensible settings like Protegé [Ele04℄ and other early work in E
lipsefrom CMU, but it is not
lear that either is working with the aim of beingextensible, as we plan. When extended as a CASheW-s editor these fun
tions willbe written in Haskell. Our implementation of this fun
tionality will
enter aroundthe editor's
ommuni
ation with a Haskell evaluator web-servi
e. The user willbe able to enter Haskell fun
tions and have them validated by this servi
e.This pro
ess also ensures that the fun
tion is well-typed, and that this propertyextends to the surrounding work�ow. On
e the feasibility of this approa
h isvalidated we should like to establish a formal type-theory in
luding a suitableHaskell fragment; that [AHS02℄ is already based in Haskell semanti
s suggeststhat this would be a promising approa
h.As well as being able to integrate Haskell fun
tions into an OWL-S work�ow,we will also build a CASheW-s ontology of mediators, whi
h will
ontain semanti-
ally annotated Haskell fun
tions, enabling mediation between XSD data-typesgrounding
on
epts within a work�ow. The editor will be
apable of lookingup fun
tions in this ontology, and inserting them at appropriate points in thework�ow.In this presentation, we will review the CaSHew-NUtS pro
ess
al
ulus, for-mally des
ribe the translation of OWL-S into this language, des
ribe its imple-mentation and sket
h the ar
hite
ture by whi
h the resulting engine intera
tswith our editor.A
knowledgmentsThis work is being
ondu
ted within the Darwin proje
t programme for Mastersstudents and Finalists in the Department of Computer S
ien
e at the Universityof She�eld; we should like to a
knowledge the e�orts of the other CASheW-smembers Atheesh Sanka, Ravish Baghdev and Xian Liu. The work is also partlysupported by the LIRICS proje
t, sponsored by the eCONTENT program ofthe European Union (grant EDC-22236), and previously by Dot.Kom proje
t,sponsored by the IST part of EU Framework V (grant IST-2001-34038).

Referen
esAHS02. Anupriya Ankolekar, Frank Hu
h, and Katia Sy
ara. Con
urrent exe
u-tion semanti
s of DAML-S with subtypes. In Pro
. 1st Intl. Semanti
 WebConferen
e (ISWC2002), volume 2342 of LNCS, pages 308�332. SpringerVerlag, May 2002.BHLM04. Mark Burstein, Jerry Hobbs, Ora Lassila, and Drew M
Dermott. OWL-S: Semanti
 markup for web servi
es. http://www.daml.org/servi
es/owl-s/1.1/overview/, 2004.Ele04. Daniel Elenius. The OWL-S editor � a development tool for semanti
web servi
es. In Pro
. of the 2nd European Semanti
 Web Conferen
e(ESWC05), 2004.FB02. D. Fensel and C. Bussler. Web servi
e modeling framework (WSMF), 2002.GB04. Eri
h Gamma and Kent Be
k. Contributing To E
lipse: Prin
iples, Patternsand Plug-Ins,
hapter 8, page 65. The E
lipse Series. Addison-Wesley, 1stedition, 2004. ISBN: 0-321-20575-8.Jon03. Simon Peyton Jones. Haskell 98 Language and Libraries. Cambridge Uni-versity Press, 2003.Mil89. Robin Milner. Communi
ation and Con
urren
y. Prenti
e Hall, 1989.NF04. Barry Norton and Matt Fairtlough. Rea
tive Types for Data�ow-OrientedSoftware Ar
hite
ture. In Pro
. 4th Working IEEE/IFIP Conferen
e onSoftware Ar
hite
ture (WICSA04), IEEE Computer So
iety Press, page2172, 2004.NLM03. Barry Norton, Gerald Luettgen, and Mi
hael Mendler. A CompositionalSemanti
 Theory for Syn
hronous Component-Based Design. In Pro
. 14thIntl. Conferen
e on Con
urren
y Theory (CONCUR'03), volume 2761 ofLNCS, pages 461�476, 2003.NM02. Srini Narayanan and Sheila A. M
Ilraith. Simulation, veri�
ation and au-tomated
omposition of web servi
es. In Pro
. 11th Intl. World Wide WebConferen
e (WWW2002), May 7-10 2002.Nor04. Barry Norton. Proposed fun
tional-style extensions for semanti
 web
om-position. In Pro
. of the 1st AKT Workshop on Semanti
 Web Servi
es(AKT-SWS04), volume 122 of CEUR Workshop Pro
eedings, De
 2004.TBM+01. Henry S. Thompson, David Bee
h, Murray Maloney, Noah Mendel-sohn, Paul V. Biron, and Asho�k Malhotra. XML S
hema.http://www.w3.org/TR/2001/REC-xmls
hema-1-20010502 , May 2001.Wad90. Philip Wadler. Comprehending monads. In LFP '90: Pro
eedings of the1990 ACM
onferen
e on LISP and fun
tional programming, pages 61�78.ACM Press, 1990.

