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ABSTRACT 
Schema-level heterogeneity represents an obstacle for auto-
mated discovery of coreference resolution links between in-
dividuals. Although there is a multitude of existing schema 
matching solutions, the Linked Data environment differs 
from the standard scenario assumed by these tools. In par-
ticular, large volumes of data are available, and repositories 
are connected into a graph by instance-level mappings. In 
this paper we describe how these features can be utilised to 
produce schema-level mappings which facilitate the instance 
coreference resolution process. Initial experiments applying 
this approach to public datasets have produced encouraging 
results. 

Categories and Subject Descriptors 
H.4.m [Information Systems]: Miscellaneous; 
D.2 [Software]: Software Engineering 
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1. INTRODUCTION 
The Web of Data is constantly growing [1], and the coref-

erence links between data instances stored in different repos-
itories represent a major added value of the Linked Data 
approach. These links connect individuals which refer to 
the same real-world entities using different URIs. Based 
on these links, it is possible to combine bits of informa-
tion about the same real-world entity which were originally 
stored in several physical locations. Because of the large 
amount of data, it is not possible to generate these links 
manually, and automatic coreference resolution tools are 
used. However, the usage of these tools is complicated by se-
mantic heterogeneity between repositories: although reusing 
common terminologies (e.g., FOAF1 or Dublin Core2) is en-
couraged [1], existing repositories often use their own schemas. 
If repositories use different ontological schemas, it is not 
clear which sets of individuals should be compared by the 
coreference resolution tool, and which properties can be used 

1http://xmlns.com/foaf/0.1/ 
2http://www.purl.org/dc/ 
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to measure similarity between individuals. Thus, as a pre-
processing step for generating coreference links between in-
dividuals, it is desirable to align schema terms in an auto-
mated way as well. 

Although the schema matching task (discovering map-
pings betweem classes and properties) is an established re-
search topic both in the database and the Semantic Web 
communities [4], the Linked Data environment has its spe-
cific features which are not utilised by existing methods and 
can be exploited to support the schema matching process. 
In particular: 

• It is possible to consider several interlinked datasets 
in combination instead of comparing each pair in iso-
lation and to involve information contained in third-
party datasets as background knowledge to support 
matching. 

• Large volumes of instance data are available, which 
makes it possible to learn and exploit data patterns 
not represented explicitly in the ontologies. 

• Actual relations between concepts and properties are 
fuzzy and cannot be adequately captured using de-
scription logic terms: i.e., we are dealing with relations 
like “class overlap” or “relation overlap” rather than 
strict equivalence and subsumption. 

In this paper we describe how these features can be utilised 
to perform schema-level matching between Linked Data repos-
itories and, in turn, to facilitate instance coreference reso-
lution. We have implemented this approach and obtained 
encouraging results in the test experiments. 

2. RELATED WORK 
The problem of instance-level coreference resolution is well-

recognised in the Linked Data community [1]. Although in 
some key property values (inverse functional properties) can 
be compared [6], this is not sufficient in general case. In or-
der to deal with it, the methods developed in the database 
community are commonly adopted, in particular, determin-
ing equivalence based on aggregated attribute-based similar-
ity [5] and the use of string similarity to compare property 
values [3]. For example, these principles are implemented 
in SILK [10]. However, applying such a tool to a new pair 
of datasets requires significant user effort: the user has to 
specify which sets of individuals from two datasets are po-
tentially overlapping, which attributes should be compared, 
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and which similarity metrics should be used for comparison. 
If afterwards one of the datasets has to be connected to an-
other repository which uses a different schema, the user has 
to redefine these settings. 

To minimise this user effort, it is currently a common 
practice that a newly published repository is only linked to 
one or a few “hub” repositories. DBPedia is the most pop-
ular generic “hub” repository, while there are also several 
domain-specific ones (e.g., Geonames for geographical data 
and Musicbrainz for music-related information). Then, in 
order to obtain complete information about a certain entity 
we need to compute a transitive closure of coreference links 
and gather all URIs used to represent this entity in differ-
ent datasets. These transitive closures can be maintained 
in a centralised way [7]3 and the mutual impact of atomic 
mappings can be analysed [2]. However, this approach often 
leads to the loss of information. For example, it can happen 
that several datasets connected to the same “hub” reposi-
tory mention the same entity under different URIs. If the 
“hub” repository itself does not mention this entity, then the 
coreference links between these URIs cannot be established. 
It is also possible that one of the intermediate coreference 
links is omitted due to an error of the coreference resolution 
tool. 

In order to discover such missing links, the coreference 
resolution procedure has to be directly applied to the corre-
sponding subsets of datasets which are linked via one or sev-
eral intermediate repositories. To identify such correspond-
ing subsets and comparable properties, the above-listed fea-
tures of the Linked Data environment can be exploited. Be-
cause large volumes of data and partial sets of equivalence 
links are available, it is possible to apply the instance-based 
ontology matching techniques [4]. This is implemented in 
our approach. 

3. USING BACKGROUND DATA FOR ON-
TOLOGY MATCHING 

Our approach is a further extension of the work presented 
in [9]. Its main idea is to use a pre-existing set of instance-
level links for two purposes: 

• Infer schema-level relations between concepts and prop-
erties of two different repositories. For example, by 
analysing the LinkedMDB repository4 , which describes 
movies from the IMDB database, and DBPedia5 , which 
describes Wikipedia entries, together with their incom-
ing and outgoing instance-level links, we can establish 
relations between their classes movie:music contributor 
and dbpedia:Artist, and between properties movie:actor 
and dbpedia:starring. These schema-level mappings 
can afterwards be utilised by an instance-level corefer-
ence resolution tool. 

• Infer data patterns which hold for instances of these 
concepts and properties. For example, it is possible to 
infer that identical movies usually have the same re-
lease year and overlapping sets of actors. Later, these 
patterns can be used to highlight the existing identity 
links which violate these patterns and are likely to be 
spurious. 

3http://www.sameas.org, http://www.rkbexplorer.com 
4http://data.linkedmdb.org/ 
5http://dbpedia.org 

Figure 1: LinkedMDB and DBPedia: exploit-
ing instance-level coreference links with third-party 
datasets. Solid arrows show existing owl:sameAs 
(=) and movie:relatedBook links. Dashed arrows 
connect sets containing potentially omitted links. 

In the following subsections we will describe these two parts 
of our approach in more detail using illustrative examples 
from actual Linked Data repositories. 

3.1 Inferring schema-level mappings 
In order to produce schema-level mappings between two 

data repositories based on existing instance-level links, the 
Linked Data environment allows two types of background 
knowledge to be utilised: 

• Data-level evidence. This includes instance coreference 
links between the two repositories being analysed and 
third-party repositories. These links can be aggregated 
to indicate potentially overlapping sets of individuals 
in two original datasets. 

• Schema-level evidence. This includes ontological schemas 
used in third-party repositories. Schema-level evidence 
can be utilised when (a) one dataset uses two different 
vocabularies which model the domain with different 
levels of detail or (b) the same schema is reused by 
several repositories. This schema-level evidence can 
provide additional insights into the meaning of con-
cepts and properties based on their usage. 

3.1.1 Data-level evidence 
Let us consider an example shown in Fig. 1. The Linked-

MDB repository contains data about movies structured us-
ing a special Movie ontology. Many of its individuals are 
also mentioned in DBPedia under different URIs. Some of 
these coreferent individuals, in particular, those belonging to 
classes movie:film and movie:actor, are explicitly linked to 
their counterparts in DBPedia by automatically produced 
owl:sameAs relations. However, for individuals of some 
classes direct links are not available. For instance, there 
are no direct links between individuals of the class movie: 
music contributor representing composers, whose music was 
used in movies, and corresponding DBPedia resources. Then, 
there are relations of the type movie:relatedBook from movies 

https://5http://dbpedia.org
https://4http://data.linkedmdb.org
http://www.rkbexplorer.com
https://3http://www.sameas.org


to related books in RDF Book Mashup6 , but not to books 
mentioned in DBPedia. Partially, such mappings can be 
obtained by computing a transitive closure for individu-
als connected by coreference links via intermediate repos-
itories (MusicBrainz7 for composers and Book Mashup for 
books). In this way, many links are not discovered because 
of omissions of an intermediate link in a chain (e.g., 32% of 
movie: music contributor instances were not connected to 
corresponding DBPedia instances). Such links can be dis-
covered by applying an instance coreference resolution tool 
(like SILK [10] or KnoFuss [8]) directly to corresponding 
subsets of LinkedMDB and DBPedia. However, in order to 
apply them, it is necessary to separate these correspond-
ing subsets from irrelevant data, in other words, to specify 
mappings between classes which are likely to contain iden-
tical individuals. 

In this situation, we can use our schema matching ap-
proach which includes the following steps: 

1. Combining identical individuals into clusters. At this 
stage all identical individuals from a set of datasets are com-
bined into clusters based on the transitive closure of existing 
owl:sameAs relations. 

2. Establishing relations between clusters and schema terms. 
For example, if one individual in the cluster belongs to the 
class dbpedia:Artist, then we say that the whole cluster be-
longs to this class. The same applies for properties of each 
individual in the cluster. 

3. Inferring mappings between schema terms using in-
stance set similarity. Instead of strict owl:equivalentClass or 
owl:subClassOf relations we produce fuzzy relations #over-
lapsWith. Formally this relation is similar to the umbel: 
isAligned property defined in the Umbel vocabulary8 and 
states that two classes share a subset of their individuals. 
This relation has a quantitative measure (a number be-
tween 0 and 1) which is used to distinguish between strongly 
correlated classes (like dbpedia:Actor and movie:Actor) and 
merely non-disjoint ones (like movie:actor and dbpedia: Foot-
ballPlayer, which share several instances such as “Vinnie 
Jones”). This measure is computed as the value of the over-
lap coefficient: 

|c(A) ∩ c(B)|
sim(A, B) = overlap(c(A), c(B)) = ,

min(|c(A)|, |c(B)|) 

where c(A) and c(B) - sets of instance clusters assigned to 
classes A and B respectively. The strength of a relation 
between properties is computed as 

|c(X)|
sim(r1, r2) = ,|c(Y )| 

where c(X) - a set of clusters which have equivalent values 
for properties r1 and r2 and c(Y) - a set of all clusters which 
have values for both properties r1 and r2. 

Resulting mappings are filtered by comparing the strength 
of each relation with a pre-defined threshold, and weak map-
pings are removed from the resulting set. The resulting 
set of mappings is passed to the coreference resolution tool 
(in our case, KnoFuss) which compares instances belonging 
to mapped classes and generates instance coreference map-
pings. 

6http://www4.wiwiss.fu-berlin.de/bizer/bookmashup/ 
7http://dbtune.org/musicbrainz/ 
8http://www.umbel.org/technical documentation.html 

Figure 2: DBPedia and DBLP: exploiting schema-
level links with third-party datasets. Solid arrows 
show existing owl:sameAs (=) and rdf:type links. 
Dashed arrows represent discovered schema rela-
tions. The system identifies the subset of dbpe-
dia:Person instances, which overlaps with DBLP 
foaf:Person instances, as a union of classes defined 
in Yago. 

3.1.2 Schema-level evidence 
In the example shown in Fig. 1 the main source of back-

ground knowledge are existing instance-level coreference links 
with third-party repositories (MusicBrainz and Book Mashup). 
One case when schema-level evidence can be utilised is when 
instances in a dataset are linked to a schema used by a third-
party repository. For example, in Fig. 2 both DBPedia and 
DBLP contain individuals representing the same computer 
scientists. However, only a small proportion of these indi-
viduals is explicitly linked by owl:sameAs mappings (196 
links). Applying automatic coreference resolution, which 
could derive more mappings, is complicated by two issues: 

• Datasets do not contain overlapping properties for their 
individuals apart from personal names. 

• Individuals which belong to overlapping subsets are 
not distinguished from others: in DBLP all paper au-
thors belong to the foaf:Person class, while in DBPe-
dia the majority of computer scientists are assigned to 
a generic class dbpedia:Person and not distinguished 
from other people. 

Using name similarity to produce mappings between in-
stances is likely to produce many false positive links due 
to ambiguity of personal names. The source of the schema-
level evidence which can resolve this issue is the Yago repos-
itory9 . The Yago ontology is based on Wikipedia cate-
gories and provides a more detailed hierarchy of classes than 
the DBPedia ontology. Using the procedure described in 
section 3.1.1, we can approximate the boundaries of the 
DBPedia subset which overlaps with DBLP. The algorithm 
returns a set of mappings between the Yago classes and 
the foaf:Person class in DBLP, e.g., between foaf:Person 
and yago:MicrosoftEmployees and between foaf:Person and 
yago:BritishComputerScientists. Having these mappings, the 
9http://www.mpi-inf.mpg.de/yago-naga/yago/ 
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Figure 3: Gutenberg/DBPedia/Book Mashup: 
Aligning relations dc:creator and dbpedia:author 
which have strongly overlapping domains 
(Book Mashup/DBPedia) and ranges (Guten-
berg/DBPedia) 

instance-level coreference resolution can be applied only to 
instances of mapped classes and produce results with higher 
accuracy. 

Another scenario where schema-level evidence can be utilised 
is the case when one ontology is reused in several reposi-
tories. Then data from all these repositories can be used 
to reason about the usage patterns of the terms of this 
ontology. For example, in Fig. 3 three datasets (Guten-
berg project10 , RDF Book Mashup, and DBPedia) describe 
books and their authors, and two of them (Book Mashup 
and Gutenberg) use the Dublin Core vocabulary. There ex-
ist a set of owl:sameAs links between books in RDF Book 
Mashup and DBPedia, and a set of links between authors 
in DBPedia and Gutenberg project. However, there are no 
links between Book Mashup and DBPedia authors or be-
tween Gutenberg and DBPedia books. Again, direct classes 
foaf:Person and dbpedia:Person are too generic to provide 
useful input for the coreference resolution stage: comparing 
all Person individuals in DBPedia and RDF Book Mashup 
is likely to produce many spurious mappings between people 
having the same names. But, using evidence from all three 
repositories, it is possible to establish a relation between the 
properties dc:creator and dbpedia:author. Based on the set 
of co-referent books from DBPedia and Book Mashup we 
can infer that these properties have the same domain, and 
based on the mappings between authors we can infer that 
they have the same range. Given that no property in DB-
Pedia is a stronger candidate for the matching relation, we 
can produce the schema-level mapping between properties 
dc:creator and dbpedia:author. After that we can establish 
missing relations from Gutenberg to DBPedia (books) and 
from Book Mashup to DBPedia (authors) by comparing in-
dividuals which are connected via these properties to already 
mapped ones. 

When processing schema-level evidence, it is important to 
bear in mind that the same ontological terms can be used 
in different repositories with different interpretation: e.g., 
in our example, in DBLP a generic foaf:Person class in fact 
refers only to people related to computer science. 

3.2 Inferring data patterns and refining the 
set of existing mappings 

It is sometimes the case that the existing set of owl:sameAs 
mappings contains spurious mappings connecting distinct 
individuals: it is hard to avoid errors when an automatic 
coreference resolution tool applies some fuzzy similarity met-
rics to process large amounts of data. If the resulting set of 
mappings is large, it is not feasible to check their correct-

10http://www4.wiwiss.fu-berlin.de/gutendata/ 

ness manually. However, by analyzing the data patterns 
it is possible to select subsets of mappings which are more 
likely to contain spurious mappings and highlight them. For 
instance, in the example shown in Fig. 1, we established 
the relations between pairs of properties {movie:actor ; dbpe-
dia:starring} (sim = 0.98) and {movie:initial release date; 
dbpedia:releasedDate} (sim = 0.96). In other words, most 
equivalent movies have the same release date and are re-
lated to overlapping sets of actors. Thus, we can hypothesise 
that the mappings between individuals representing movies 
where these patterns do not hold are more likely to be spu-
rious. 

Currently, our algorithm can infer two kinds of patterns 
corresponding to the functionality and inverse functionality 
property restrictions: 

• Property value equivalence. This states that for a pair 
of aligned properties {r1, r2}, equivalent individuals 
I1 ≡ I2 should have equivalent values: r1(I1, x), r2(I2, y), 
x ≡ y 

• Property subject equivalence. This states that for a 
pair of aligned properties {r1, r2}, if the objects of 
these properties are equivalent individuals I1 ≡ I2, 
the subjects should be equivalent as well: r1(I3, I1), 
r2(I4, I2), I3 ≡ I4. 

It is important to note that these data patterns can be use-
ful for refinement of existing mapping sets only if they were 
not taken into account by the original instance coreference 
resolution algorithm. Otherwise, they become tautological: 
e.g., by analysing a set of mappings produced by comput-
ing label similarity we can infer that equivalent instances 
usually have similar labels. Therefore, the refinement pro-
cedure can be used in two cases: (i) where the provenance of 
original mappings is available and the algorithm which pro-
duced them is known, or (ii) where a significant body of new 
evidence is discovered, e.g., a new set of instance mappings 
as a result of the process described in section 3.1. 

4. EXPERIMENTS 
In order to test our approach, we experimented with ex-

isting Linked Data repositories mentioned in our examples: 

1. Finding equivalence links between individuals repre-
senting people in DBPedia and DBLP11 (auxiliary dataset: 
Yago, gold standard size 1229). 

2. Finding equivalence links between music contributor 
individuals in LinkedMDB and corresponding individ-
uals in DBPedia (auxiliary dataset: Musicbrainz, gold 
standard size 942). 

3. Finding movie:relatedBook links between movie:film 
individuals in LinkedMDB and books mentioned in 
DBPedia (auxiliary dataset: RDF Book Mashup, gold 
standard size 419). 

11DBLP contains a substantial proportion of internal coref-
erence errors: e.g., several authors having the same URI 
or the same person having several URIs. In our tests we 
did not consider these issues: e.g., a mapping between in-
stances from DBLP and DBPedia was considered correct if 
the DBLP instance was linked to at least one publication 
which was written by the person represented by the DBPe-
dia instance. 



Table 1: Test results 

N Dataset Test Precision Recall F1 

1 DBPedia/DBLP 
Baseline 0.90 0.14 0.25 
Aligned 0.93 0.89 0.91 

2 
LinkedMDB/DBPedia 
(composers) 

Baseline 0.99 0.68 0.81 
Aligned 0.98 0.97 0.98 

3 
LinkedMDB/DBPedia 
(books) 

Baseline 0.97 0.82 0.89 
Aligned 0.96 0.97 0.96 

4 
LinkedMDB/DBPedia 
(films) 

Baseline 0.993 1.0 0.996 
Aligned 1.0 0.999 1.0 

5 
Gutenberg/ 
DBPedia (books) 

Baseline N/A N/A N/A 
Aligned 1.0 1.0 1.0 

6 
Book Mashup/ 
DBPedia (authors) 

Baseline N/A N/A N/A 
Aligned 1.0 1.0 1.0 

4. Refining existing equivalence links between movie:film 
individuals in LinkedMDB and corresponding individ-
uals mentioned in DBPedia by analysing related actors 
and release dates (total link set size 18512). 

5. Finding equivalence links between books mentioned 
in Gutenberg project and DBPedia (auxiliary dataset: 
RDF Book Mashup, gold standard size 1201). 

6. Finding equivalence links between book authors men-
tioned in DBPedia and RDF Book Mashup, (auxiliary 
dataset: Gutenberg project, gold standard size 1235). 

These tests were relatively small scale due to the need to 
construct gold standard mappings manually. In the tests we 
initially applied our instance-based schema-matching algo-
rithm to the datasets to obtain schema-level relations. Then, 
these relations were passed as input to our data-level corefer-
ence resolution tool KnoFuss, which processed the datasets 
to discover owl:sameAs links between instances. As a sim-
ilarity measure, we used Jaro string similarity applied to 
the label. Test results (precision, recall and F1 measure) 
are given in the Table 1. Two sets of results are provided: 
(i) baseline, which involves computing transitive closure of 
already existing links12 , and (ii) combined set of existing 
results and new results obtained by the algorithm after the 
schema alignment. As was expected, the usage of automat-
ically produced schema alignments led to an improvement 
in recall (rows 1, 2, 3, 5, 6) because initially missed links 
were discovered. In case 4 precision was affected because 
the mappings which did not conform to the data pattern 
were removed. The change in precision was small due to 
the large size of the dataset (140 mappings were removed 
from the set of 18512), however, the precision of the refine-
ment procedure was high: out of 140 mappings identified as 
potentially incorrect, 132 were actually incorrect. 

When analysing the results of the experiments, we looked 
into the limiting factors which caused errors. The most im-
portant factor involved the quality of the datasets them-
selves, in particular, improper use of schema entities and 
incorrect data statements. For example, in the tests where 
inferred data patterns were applied to the filter out incor-
rectly linked movie:film entities (row 4), we found that the 
equivalence of release dates cannot be used as a restriction 
on its own: in about 50% of cases the mapping was cor-
rect, while the release date was not provided correctly in 
one of the datasets. Incomplete information could also lead 

12As was said in section 3.1.2, for Gutenberg and Book 
Mashup we did not have any baseline links available. 

to problems: for example, in the DBPedia dataset many 
musicians were not assigned to an appropriate class dbpe-
dia:MusicalArtist but instead were assigned to more general 
classes dbpedia:Artist or even dbpedia:Person. As a result, 
the mapping was established between classes movie: mu-
sic contributor and dbpedia:Artist instead of dbpedia: Musi-
calArtist. As a result, KnoFuss had to be applied to a larger 
set containing many irrelevant individuals and produced sev-
eral erroneous coreference links between movie composers 
and non-musical artists. Given that occurrences of incor-
rect data are inevitable in the Linked Data environment, 
these issues have to be taken into account when designing 
matching algorithms. 

5. FUTURE WORK 
In this paper, we described an approach which captured 

schema-level relations between linked data repositories based 
on available instance data and reused these relations to fa-
cilitate generation of new coreference links. In our experi-
ments, we applied this approach to small subgraphs of the 
Linked Data cloud. In future, we plan to analyse the “schema 
cloud” consisting of schema vocabularies used by Linked 
Data repositories in combination with the “data cloud” in-
cluding the datasets connected by instance-level links. In 
particular, it is interesting to investigate how the usage pat-
terns of the same vocabularies differ between repositories, 
to which extent it is possible to capture relations between 
their terms, and under which conditions these relations can 
be utilised to support the coreference resolution process. 
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