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ABSTRACT 
With the growing amount of semantic data being published 
on the Web the problem of finding individuals in different 
datasets which correspond to the same entity is gaining im-
portance. Given that datasets are often structured using 
different ontologies, automatic schema-matching techniques 
have to be utilized before proceeding with data-level align-
ment. In this paper we discuss how ontology schema mis-
matches influence data-level alignment based on our first 
experience with implementing a data fusion tool for a multi-
ontology environment. 

Categories and Subject Descriptors 
H.4.m [Information Systems]: Miscellaneous; 
D.2 [Software]: Software Engineering 
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1. INTRODUCTION 
The data integration process has to deal with two top-level 

problems: resolving schema-level and data-level issues. On 
the Web scale, semantic heterogeneity of data is inevitable, 
which makes it necessary for a data coreference resolution 
system to use results of automatic ontology matching tech-
niques. These techniques do not guarantee 100% accuracy 
and errors produced by them may influence the quality of the 
data fusion stage. In our previous work we developed an ar-
chitecture for semantic data fusion called KnoFuss [14]. The 
initial version of the system was designed for the enterprise 
knowledge management scenario, in which it was assumed 
that schema-level issues were resolved and datasets being in-
tegrated were already structured according to the same on-
tology. We implemented an extension of the system, which 
utilizes schema-level mappings, produced automatically, to 
resolve coreferences between datasets using different ontolo-
gies. In this paper we discuss the impact of the ontology 
heterogeneity on the quality of instance coreferencing. 

2. ONTOLOGICAL MISMATCHES AND 
DATA INTEGRATION ISSUES 

The situation when datasets to be integrated use different 
ontologies makes it hard for data integration methods to use 
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the semantic data structure. Mappings between ontology 
terms are needed to provide a uniform view over individuals 
in two datasets and make the individuals comparable. 

2.1 Ontological mismatches and
correspondence patterns 

Obtaining an adequate representation of mappings which 
allows correct data transformation is a non-trivial problem 
due to ontology mismatches. A classification framework of 
different types of mismatches between overlapping ontolo-
gies was given in [11]. Assuming that ontologies are repre-
sented in the same language, the framework distinguishes: 

• Conceptualisation mismatches caused by different ways 
of domain interpretation. These different ways in turn 
may concern: 

– Scope, when two classes seemingly representing 
the same concept do not contain the same in-
stances (e.g., the class PoliticalOrganization in 
TAP ontology includes terrorist groups, while in 
SWETO it is meant to represent only legal organ-
isations). 

– Model coverage and granularity, when parts of the 
domain in one ontology are not covered in another 
or covered with a different level of detail (e.g., in 
SWETO the class Company does not have sub-
classes while TAP and DBPedia 3.2 distinguish 
between different types of companies). 

• Explication mismatches caused by different ways the 
conceptualisation is specified. These are further di-
vided into: 

– Modelling style mismatches, when the same do-
main is modeled using different paradigms (e.g., 
point vs interval logic for time representation) 
or concept specification (e.g., splitting the sub-
classes of the same class in a hierarchy according 
to different criteria). 

– Terminological mismatches, when different terms 
are used to represent the same entity (synonymy) 
or the same term represents different entities 
(homonymy). 

– Encoding mismatches, when the values at the data 
level have different formats. This one has to be 
dealt at the data-level stage, so we do not consider 
it in this paper. 



Figure 1: Correspondence patterns of ontology 
matching according to [16] (fragment). A commonly 
used DisjointClass pattern is included. 

To represent correctly the correspondences between on-
tologies and overcome these mismatches mappings of vary-
ing degrees of complexity are required. In [16] common cor-
respondence patterns are introduced to represent such map-
pings (see Fig. 1). For the most part mapping patterns 
represent description logic relations. Available automatic 
ontology matching algorithms can only produce a subset of 
possible mappings. Given the limited capabilities of ontol-
ogy matching tools we can expect that some of the ontology 
mismatches will remain unresolved or partially unresolved 
at the data integration stage. Below we try to consider the 
impact of such mismatches during the data integration pro-
cess. 

2.2 Data-level impact of ontology mismatches 
The first type of mismatches in the classification presented 

in [11] concerns conceptualisation. For the coreference reso-
lution stage shared conceptualisation allows the system to: 

• consider individuals belonging to the same class as can-
didates for matching; 

• estimate the likelihood of individuals being equiva-
lent given available evidence (e.g., having two people 
with the same name belonging to a specific class Se-
manticWebResearcher is a much stronger evidence of 
equivalence than if they only had a generic class Per-
son in common). 

Conceptualisation mismatches between two ontologies (in 
particular, scope mismatches) may reduce both recall and 
precision of coreference resolution algorithms. For exam-
ple, the class Company in SWETO does not include finan-
cial organisations, while its counterpart in TAP includes 
them. Thus, when the system tries to find for each com-
pany in TAP coreferent individuals in SWETO only having 
the equivalence relation between these classes, it will not 
find matching pairs for financial organisations, because they 
belong to a different class in SWETO. This will make the 
recall decrease. On the other hand, the class ComputerSci-
entist in TAP contains only world-famous computer scien-
tists while most researchers are classified according to their 
place of work (e.g., CMUPerson, W3CPerson). Computer-
ScienceResearcher in SWETO, which automatic tools often 
consider equivalent, has much wider coverage and includes 

Figure 2: Fusion task decomposition incorporating 
schema matching. 

everybody who contributed to a CS paper mentioned in the 
knowledge base. Thus, labels in SWETO are much more 
ambiguous and the danger of matching two unrelated in-
dividuals increases, which may affect precision. The same 
happens when there is no equivalence between classes but a 
Sub-Super-Class relation: the same degree of similarity be-
tween individuals may provide much weaker evidence, which 
makes it hard to adequately estimate the reliability of meth-
ods’ output. Another area of impact involves disjointness re-
lations. Disjointness between classes can be used as evidence 
to consider some coreference mappings incorrect and delete 
them. Scope mismatches can lead to errors when classes con-
sidered disjoint in one ontology are overlapping in another 
one (like in the case with PoliticalOrganization and Ter-
roristOrganization above): correct mappings can be deleted 
if they are perceived as causing inconsistency. Granularity 
mismatches do not allow using ontological constraints de-
fined for classes at the lower levels of the hierarchy if the 
other ontology does not distinguish between these classes. 

Among the explication mismatches modelling style differ-
ences are the hardest to solve automatically. Translation 
between paradigms is a very domain-specific problem and 
common correspondence patterns are often not sufficient to 
align two ontologies. In a simple example case, if one ontol-
ogy represents colours using a set of pre-defined labels (red, 
yellow, black) and another one uses RGB encoding, it is very 
hard to find similar values automatically: a hand-tailored 
matching procedure is necessary. To our knowledge, no ex-
isting automatic ontology matching tool is capable of deal-
ing with different paradigms. For the case when subclasses 
of the same class in two ontologies are split according to 
different criteria, no useful DL relations can be established 
between them (apart from the fact that there may be some 
overlap). Such differences can make any automatic data in-
tegration procedures intractable. If these mismatches occur 
at lower levels of the hierarchy, methods can operate only 
with information defined at a higher level. 

Finally, terminological mismatches are the primary focus 
of most existing ontology matching tools [5], which makes 
them the simplest to handle. They can be solved by creating 
EquivalentClass and EquivalentAttribute correspondences. 

3. KNOFUSS ARCHITECTURE 
The KnoFuss architecture [14] implements a modular frame-

work for semantic data fusion. The fusion process is divided 
into subtasks as shown in the Fig. 2 and the architecture 
focuses on its second stage: knowledge base integration. 
The first subtask is coreference resolution: finding poten-



tially coreferent instances based on their attributes. The 
next stage, knowledge base updating, refines coreferencing 
results taking into account ontological constraints, data con-
flicts and links between individuals. Algorithms performing 
fusion subtasks (e.g., string-based similarity matchers) are 
represented as problem-solving methods. All methods for 
the same task have a common interface and their capabil-
ities (range of applicability and reliability of output) are 
formally defined using the fusion ontology. Because each al-
gorithm behaves differently depending on the data to which 
it is applied, optimal parameters can be defined depending 
on the application context (type of data): e.g., Jaro-Winkler 
string similarity is appropriate for comparing person names 
but not suitable for publication titles, etc. 

To deal with the multi-ontology scenario the architecture 
has to cover the ontology integration stage, which includes 
two subtasks: ontology matching and instance transforma-
tion. 

3.1 Ontology matching 
The Ontology matching task involves creation of mapping 

rules or alignments: sets of correspondences between two 
ontologies [5]. 

Considering correspondence patterns, data fusion needs 
both correspondences between concepts (ClassCorrespon-
dence) and correspondences between properties (Attribute-
Correspondence). Class mappings allow relevant method 
application contexts to be translated into the terms of the 
source ontology, if they were initially defined in terms of the 
target ontology. Attribute correspondences are needed in 
order to retrieve properties relevant for coreference resolu-
tion in both knowledge bases. Equivalence and subsumption 
relations allow relevant data structures in the source ontol-
ogy to be found. Disjointness relations between concepts 
are usable for the Knowledge base updating stage, providing 
evidence for inconsistency resolution. The architecture as-
sumes that ontology matching methods provide their output 
in the standard Alignment API format [4]. 

3.2 Instance transformation 
The goal of the Instance transformation stage is to resolve 

structural differences between two knowledge bases so that 
the architecture itself and instance-level methods can pro-
cess individuals in the source and target knowledge bases in 
the same way. Alignments produced by ontology match-
ing methods are applied to provide a uniform view over 
data in two knowledge bases. In the KnoFuss architecture 
SPARQL queries are used as a primary means of retriev-
ing data (method applicability ranges, application contexts, 
sets of relevant attributes). These queries are translated into 
the terms of the source ontology using available mappings. 
Sometimes a term in the target ontology potentially corre-
sponds to several terms in the source ontology. This happens 
when there are several candidate EquivalentClass mappings 
provided by one or several ontology matching tools. In such 
situations we combine these mappings and consider them as 
a single ClassUnion mapping. For instance when we con-
sider the query 
SELECT ?uri WHERE {

?uri rdf:type sweto:Computer Science Researcher }
the system tries to find all ClassCorrespondence mappings, 
which include the class sweto:Computer Science Researcher. 
In our example with the CIDER tool (see below) these in-

cluded EquivalentClass mappings with classes tap: CMU-
Person, tap:ComputerScientist and tap:MedicalScientist. 
Such a variety of potentially corresponding classes is caused 
by several existing mismatches between ontologies, in par-
ticular terminological mismatches (Computer Science Re-
searcher vs ComputerScientist), modelling style mismatches 
(tap: CMUPerson includes computer science researchers who 
worked in the CMU) and conceptualisation scope mismatches 
(tap: ComputerScientist represents only a subset of “world-
famous” researchers and tap:Medical-Scientist includes au-
thors of medical AI expert systems). From the strict logical 
point of view the only correct mapping would be a Sub-
Super-Class mapping tap:ComputerScientist ⊆ sweto: Com-
puter Science Researcher. However, excluding other map-
pings would remove from consideration many TAP individ-
uals, which have their equivalent SWETO counterparts. In 
reality, the data integration system needs information about 
partial alignments between concepts to select individuals 
which may potentially be coreferent rather than strict logical 
relations. We can call this the OverlapClass correspondence 
pattern. Thus, the query from our example is translated 
into: 
SELECT ?uri WHERE 
{ {?uri rdf:type tap:CMUPerson}
UNION {?uri rdf:type tap:Computer Scientist}
UNION {?uri rdf:type tap:Medical Scientist}}

These pairs of queries assumed to be equivalent are then 
used at the later stages of the workflow, which allows the 
system to operate in the same way as in a single ontology 
case. At this stage the system utilizes the DisjointClass 
mappings. The system uses a simple algorithm to search 
for contradictory mappings: it finds situations when two 
classes in different ontologies are connected via a Sub-Super-
Class mapping (created by ontology matching methods or 
inferred) and at the same time are disjoint (again, directly 
or via inference). Such mappings are considered conflicting. 
If the DisjointClass mapping has higher confidence then the 
contradictory Sub-Super-Class mapping (or the mapping it 
was inferred from) is removed from consideration. 

4. EXPERIMENTS 
To test the KnoFuss architecture in a multi-ontology sce-

nario we used two artificially created knowledge bases in-
tended to be used as benchmarks for Semantic Web ap-
plications: TAP [9] and SWETO testbed [1]. As primary 
methods for ontology matching we used two tools, which 
participated in the last OAEI contest: CIDER [8] and Lily 
[18]. Also we used the SCARLET service [15] as a method 
for generating DisjointClass mappings using existing ontolo-
gies defined elsewhere on the Web. Assuming that all sib-
ling classes in the target ontology (SWETO) were mutually 
disjoint and using equivalence mappings produced by the 
CIDER tool we inferred additional disjointness mappings. 
Disjointness mappings were used to filter out conflicting 
equivalence relations with a low reliability. As coreference 
resolution methods for instances we used the same string 
similarity techniques as in our single-ontology scenario ex-
periments [14]. While our experiments are still ongoing, 
from these tests we could make several observations. 

First, as could be expected, errors during schema match-
ing stage are propagated and can potentially lead to signifi-
cant distortions during instance coreferencing. For instance, 
when matching instances of the class sweto:Company the 



CIDER tool incorrectly aligned it with the class tap:Country. 
This led the coreference precision to drop to 41% while it 
reached 74% without this mistake (many companies have 
names derived from country names). We found ontological 
constraints to be extremely valuable as a means to repair 
such errors. Apart from the widely used owl:Functional-
Property and owl:InverseFunctionalProperty, which allow 
non-ambiguous instance identification, ontological axioms, 
which may lead to inconsistency, allow filtering out incor-
rect mappings. These constraints include disjointness and 
datatype properties with cardinality constraints. E.g., know-
ing that Company is disjoint with Country (or inferring 
that) would repair the problem. However, most ontologies 
do not define these constraints explicitly because they are 
not needed in common ontology usage scenarios. 

Second, although semantic heterogeneity (different mean-
ing attached to similar resources) is seen primarily as a 
schema-level knowledge modelling issue, it can cause prob-
lems at the instance level as well. For instance, the TAP on-
tology contains a single individual describing the Coca-Cola 
Company while SWETO contains several individuals de-
scribing Coca-Cola branches in different countries. Whether 
such instances should be considered coreferent depends on 
the context of the task. 

Then, as for the single-ontology scenario, it is hard to find 
a single instance matching algorithm to apply to all kinds 
of data: settings have to be optimized for a specific type 
of data rather than for a specific pair of ontologies as in 
schema matching. Ontology mismatches may lead not just 
to irrelevant instances being compared, but also to instances 
being compared using inappropriate similarity measures. 

5. DISCUSSION 
As we said in the beginning, our primary interest when 

implementing the version of the KnoFuss architecture to be 
used in a multi-ontology scenario was to observe the in-
fluence of schema-level mismatches on the data integration 
stage. 

In comparison with the single-ontology data fusion sce-
nario, adding the ontology heterogeneity challenge results 
both in decreased reliability of methods’ output and diffi-
culties in precise estimation of this decrease. For data-level 
coreference resolution methods we assume that the perfor-
mance of the method depends on some common features of 
individuals belonging to a class: this assumption was the 
basis for the usage of application contexts in the KnoFuss 
architecture. For ontology matching methods even knowing 
the estimated quality of a method (e.g., precision/recall in 
some test scenarios) it is hard to estimate whether it will 
hold for a different pair of datasets. Second, it is hard to 
measure precisely the impact of a single ontology-level error 
at the data level. This possible negative impact can result 
in: 

• Erroneous widening or narrowing of the applicability 
range of integration methods (misaligned concepts). 

• Providing noisy evidence for data-level methods (mis-
aligned properties and ontological restrictions). 

Finally, some ontological mismatches, such as modelling style, 
cannot be resolved fully automatically by currently existing 
tools and can make data-level methods inapplicable. Based 

on our experience, we can outline several directions for as-
sisting data fusion in the presence of schema heterogeneity. 

First, label comparison is usually not considered suffi-
ciently reliable evidence for coreference resolution (e.g., [7]). 
However, more complex algorithms utilizing context data 
(additional properties and links between individuals) can 
only be applied to datasets containing sufficiently overlap-
ping data. It can be expected that many data integration 
tasks on the Web scale will only be able to rely on in-
stance names and thus can only provide suggestions rather 
than generate owl:sameAs statements carrying strong im-
plications. Given that the output is likely to be noisy it is 
necessary to keep track of data integration decisions (such 
as instance coreference mappings or statements considered 
incorrect) and their provenance. One possible way is to ex-
tend the coreference bundles approach [10] to include for 
each URI the confidence of its inclusion into the set. 

Second, considering the limited capabilities of automatic 
ontology matching methods, availability of trusted reusable 
schema-level background knowledge is important. Such man-
ually built reference knowledge is useful when it covers the 
gaps existing in common ontology matching scenarios. 
Among others, such reference knowledge may include: 

• Specifying rich semantic restrictions existing in a cer-
tain domain, e.g., disjointness relations, property car-
dinality and domain/range constraints. 

• Covering common ontological mismatches, which can-
not be resolved automatically. For instance, these can 
include transformation rules between common time 
modelling approaches and overlaps between subclasses 
of the same concept divided according to different cri-
teria (e.g., classifying historical artifacts from China 
by centuries or by dynastic periods). In this way a 
complex modelling style mismatch can be reduced to 
a terminological one, which can be treated automati-
cally. 

Third, sometimes existing automatic matching tools im-
pose too rigid restrictions on their output aimed at improv-
ing the precision. For instance, some tools (like Lily) pro-
duce only one-to-one equivalence mappings assuming that 
two different classes in one ontology cannot be considered 
equivalent to the same class in another ontology. Thus, only 
the best candidate for equivalence is selected and all oth-
ers are filtered out. While a useful assumption for termi-
nological mismatches, it may miss important mappings in 
the presence of conceptualisation and modelling style mis-
matches. From the data fusion point of view it would be 
useful if ontology matching algorithms could produce weak 
mapping relations such as ClassOverlap. 

6. RELATED WORK 
Given the amount of data, which needs to be handled on 

the Web scale, the need to use automatic coreference reso-
lution techniques is recognized in the Semantic Web com-
munity [2], [7], [6]. Among the existing systems Sindice 
[17] uses a straightforward method for coreference resolu-
tion by utilizing explicitly defined key properties (inverse 
functional properties). Individuals, which have equal val-
ues for such properties are considered equivalent. This is 
an approach which provides high precision but can only 



be applied to a limited subset of data, where such prop-
erties are defined explicitly and have values in a standard 
format. Other tools implement approximate matching tech-
niques similar to those created in the database integration 
and ontology matching domains. The OKKAM server [3] 
used the Monge-Elkan string similarity metrics for select-
ing coreferent instances in the experiments. RDF-AI [12] 
concentrates on data-level issues when combining datasets 
using the same schema. The algorithm uses string (Monge-
Elkan) and linguistic (WordNet) similarity to calculate dis-
tance between literal property values and then uses the itera-
tive graph matching algorithm, similar to similarity flooding 
[13], to calculate distance between individuals. 

7. SUMMARY AND FUTURE WORK 
We implemented the first prototype of the KnoFuss data 

integration system for the multi-ontology environment and 
performed initial experiments with it. In our view, combin-
ing automatic schema-level and data-level alignment tech-
niques in a single workflow still presents difficulties not only 
because schema-level matching tools occasionally produces 
errors, but also because some important types of ontology 
mismatches are not handled properly by them. In partic-
ular, this concerns conceptualisation and modelling style 
mismatches. While being very hard to solve automatically, 
there are several ways to assist the coreference resolution 
process when dealing with these mismatches, in particular: 

• Extend the functionality of automatic schema-matching 
tools to discover different types of mappings such as 
DisjointClass and OverlapClass. 

• Develop and publish reference ontologies explicitly defin-
ing common relations between concepts and proper-
ties, which remain neglected in existing ontologies, in-
cluding disjointness relations and translation rules be-
tween common modelling paradigms. 

• Maintain provenance and estimated reliability of auto-
matically produced instance-level mappings so that an 
agent can make a decision about whether to use them 
or not. 

As the top priorities for the future work currently we are 
considering the following: 

• Continue more experimental testing with public linked 
data sources using detailed ontologies (such as DBPe-
dia 3.2). 

• Develop a data fusion service, which can operate on the 
Semantic Web in conjunction with existing linked data 
sources and semantic applications (such as WATSON, 
SCARLET, Alignment Server). 
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