
Building SPARQL-Enabled Applications with 
Android Devices? 

Mathieu d’Aquin, Andriy Nikolov, Enrico Motta 

Knowledge Media Institute, The Open University, Milton Keynes, UK 
{m.daquin, a.nikolov, e.motta}@open.ac.uk 

Abstract. In this paper, we show how features can be added to an 
Android device (a smartphone) to enable mobile applications to expose 
data through a SPARQL endpoint. Using simple query federation mech-
anisms, we describe a demonstrator illustrating how SPARQL-Enabled 
Android devices can allow us to rapidly develop applications mashing-up 
data from a collaborative network of sensor-based data sources. 

1 Introduction 

In recent years, the Android platform (http://www.android.com/) became a de-
facto standard for different types of mobile devices from several manufacturers. 
These devices possess several types of embedded sensors such as a camera, an 
accelerometer, a GPS sensor and a microphone. On the other hand, as shown by 
our previous work [1], the computational power of these devices already allows 
efficient processing of small to medium volumes of semantic data. 

In this paper, we describe a lightweight architecture that adapts and de-
ploys a triple store on an Android device, providing a shared, local repository 
for Android-based applications to populate. The information gathered through 
this shared repository is exposed using an externally accessible SPARQL end-
point, making it possible to build applications that exploit data collected from 
a network of devices through query federation. 

2 Overview 

The idea on which this paper is based on is very simple: making data created 
from applications and sensors attached to an Android device exposed through a 
SPARQL endpoint so that this data can be gathered by application, potentially 
aggregating multiple devices (see Figure 1). 

The idea is that application developed for the Android platform can produce 
data to be stored in the shared repository on the device, so that it can be made 
accessible, without the need for post-processing, to external applications. 

3 Implementation 

At the core of our approach is the deployment of a triple store on the Android de-
vice, which is shared by applications populating it and by the SPARQL endpoint 
deployed in the device. As discussed, in [1], Sesame (http://www.openrdf.org/) 
is, amongst the available options, the one that best fits an environment where 

? Part of this research has been funded under the EC 7th Framework Programme, in 
the context of the SmartProducts project (231204). 

http://www.openrdf.org
http://www.android.com
mailto:e.motta}@open.ac.uk


Fig. 1. Overview of the approach to create Semantic Sensor Networks out of Android 
devices. 

only limited resources are available. We therefore adapted Sesame to be deploy-
able as an Android Library. The Android environment is based on a specialised 
Java Virtual Machine, and Sesame being developed entirely in Java, most com-
ponents of its components did not require any adaptation. Access to files is 
however different on the Android platform than it is on a usual computer. We 
therefore extended Sesame so that it provides a persistent RDF store using the 
shared, external storage available on most Android Devices (in SmartPhones, 
it corresponds to the SDCard). In other terms, a shared persistent repository 
is installed on the Android device that is accessible, and can be populated, by 
applications using the device’s sensors. 

The other element to be included on the Android device is a Web inter-
face giving access, through the SPARQL protocol, to the content of the shared 
triple store. One of the difficulty here is to deploy a Web server on the phone, 
being accessible externally. Luckily, the popular Web application server Jetty 
(http://jetty.codehaus.org/jetty/) has been ported to work on the Android Plat-
form in iJetty (http://code.google.com/p/i-jetty/), providing both a Web server 
and a servlet environment. We therefore implement (a simplified version of) a 
SPARQL endpoint as a web application relying on our Android-adapted version 
of the Sesame API. 

Finally, a mechanism is needed for the federation of SPARQL query over the 
various Android devices. In the cases where the data comes only from isolated 
and independent sources, this federation mechanism can be very simple, as it 
only requires concatenating the results obtained from different devices. In more 
complex scenarios where information from different sensors can be linked, a more 
sophisticated mechanism is needed. We rely here on our own implementation of 

http://code.google.com/p/i-jetty
http://jetty.codehaus.org/jetty


a distributed SPARQL query endpoint based on federating queries to multiple 
other SPARQL endpoints (see [2]). 

The base code and components to deploy and populate a SPARQL endpoint 
on an Android device are available at http://code.google.com/p/android-sparql/ 
(see in particular the basic documentation at http://code.google.com/p/android-
sparql/wiki/Deploying a SPARQL Endpoint and Populating the triple store). 

4 Example Application 

To illustrate the benefits of the architecture we are proposing, we developed 
a simple application used to collaboratively “map” a geographical area using 
pictures (for example, to give an idea of the views at certain points of a path, in 
an area where Google Streetview does not cover, such as a University Campus). 

Fig. 2. Extension of the SSN ontology used in our example application. 

The Application can take pictures and represent the information about the 
picture and its location as an Observation using the extension of the Semantic 
Sensor Network ontology shown in Figure 2. This application records the path of 
the picture on the device, the location of the device at the time of taking it, as well 
as the time and the identifier of the device used to make the observation. We used 
this application with several different SmartPhones. Using the simple SPARQL 
federation method described above, we implemented a Javascript application 
that displays the pictures taken from this network of phones into a map of the 
covered area (see Figure 3). 

5 Related Work 

At the moment the range of semantic data management tools specially tar-
geted for resource-constrained devices is limited. MobileRDF1 and microJena2 

(or µJena) provide Java APIs to load and manipulate RDF data on a device run-
ning Java ME virtual machine. Neither MobileRDF nor µJena allow querying 
these data using the SPARQL query language: only Java API access is provided. 
µOR [3] represents an ontological reasoner optimised for resource-constrained 
devices. µOR supports a subset of OWL-Lite axioms for reasoning and provides 
1 http://www.hedenus.de/rdf/ 
2 http://poseidon.elet.polimi.it/ca/?page id=59 

http://poseidon.elet.polimi.it/ca/?page
http://www.hedenus.de/rdf
http://code.google.com/p/android
http://code.google.com/p/android-sparql


Fig. 3. Application mapping pictures from Android phones with SPARQL endpoints. 

its own query language (SCENT - Semantic Device Language for N-Triples), 
which implements a subset of SPARQL’s expressivity, to access data. However, 
none of the tools mentioned above provides a triple store for permanent stor-
age of semantic data. One existing experimental storage solution is i-MoCo [4] 
which provides an experimental implementation of a triple store for the iPhone 
platform. For the Android platform, Androjena3 adapts the well-known Jena 
framework4 . However, this solution only allows working with a local store with-
out the possibility to access distributed data. Mobile, Android applications such 
as [5] exist that exploit RDF and SPARQL, but mostly as clients of external, 
server side SPARQL endpoint. 

References 

1. d’Aquin, M., Nikolov, A., Motta, E.: How much semantic data on small devices? 
In: EKAW 2010, Conference - Knowledge Engineering and Knowledge Management 
by the Masses, Lisbon, Portugal (2010) 565–575 

2. Miche, M., Erlenbusch, V., Allocca, C., Nikolov, A., Mascolo, J.E., Golenzer, J.: Fi-
nal concept for storing, distributing, and maintaining proactive knowledge securely. 
Technical Report D4.1.3, SmartProducts Consortium (2011) 

3. Ali, S., Kiefer, S.: muOR - A Micro OWL DL Reasoner for Ambient Intelligent 
Devices. In: 4th International Conference on Advances in Grid and Pervasive Com-
puting (GPC 2009), Geneva, Switzerland (2009) 305–316 

4. Weiss, C., Bernstein, A., Boccuzzo, S.: i-MoCo: Mobile conference guide – storing 
and querying huge amounts of Semantic Web data on the iPhone/iPod Touch. In: 
Billion Triple Challenge 2008, ISWC 2008, Karlsruhe, Germany (2008) 

5. d’Aquin, M., Zablith, F., Motta, E.: wayou – linked data-based social location 
tracking in a large, distributed organisation. In: Proc. of the Extended Semantic 
Web Conference, ESWC (demo). (2011) 

3 http://code.google.com/p/androjena/ 
4 http://jena.sourceforge.net/ 

http://jena.sourceforge.net
http://code.google.com/p/androjena

