
Two-staged approach for semantically annotating and brokering TV-related
services

Hong Qing Yu, Neil Benn, Stefan Dietze, Carlos
Pedrinaci, Dong Liu, John Domingue

Knowledge Media Institute
The Open University

Milton Keynes, United Kingdom
e-mail: {h.q.yu, n.j.l.benn, s.dietze, c.pedrinaci, d.liu,

j.b.domingue}@open.ac.uk

Ronald Siebes
Department of Computer Science

Vrije Universiteit Amsterdam
The Netherlands

e-mail: rm.siebes@few.vu.nl

Abstract—Nowadays, more and more distributed digital TV
and TV-related resources are published on the Web, such as
Electronic Personal TV Guide (EPG) data. To enable
applications to access these resources easily, the TV resource
data is commonly provided by Web service technologies. The
huge variety of data related to the TV domain and the wide
range of services that provide it, raises the need to have a
broker to discover, select and orchestrate services to satisfy the
runtime requirements of applications that invoke these
services. The variety of data and heterogeneous nature of the
service capabilities makes it a challenging domain for
automated web-service discovery and composition. To
overcome these issues, we propose a two-stage service
annotation approach, which is resolved by integrating Linked
Services and IRS-III semantic web services framework, to
complete the lifecycle of service annotating, publishing,
deploying, discovering, orchestration and dynamic invocation.
This approach satisfies both developer’s and application’s
requirements to use Semantic Web Services (SWS)
technologies manually and automatically.

Semantic Web Services; Linked Services; Semantic Web;
Linked Data; Digital TV

I. INTRODUCTION
With high demands of Digital TV and IP TV, more and

more TV broadcast organizations provide TV related content
as multimedia resources to be accessed through Web
technologies [1]. This allows audiences to better interact
with the broadcast content and allows them to watch
programs via various kinds of media and devices. For
example, a user can view EPG data via an iPhone, or to get
personal recommendations via a TV Box. Also, a user can
search for a TV program that she/he is interested in and
retrieve the actors’ detailed information along with the
broadcast information of the TV program. To enable end-
user applications to access these TV resources easily, the TV
resource data is commonly provided by Web service
technologies. There are many different service message
schemas and many different service functionalities available
such as video processing services, video transcoding
services, EPG related services, etc. Dealing with this level of
heterogeneity is a major challenge that raises the need to

have a broker to discover, select, mediate, and orchestrate
services to satisfy the runtime requirements of the end-user
applications. Furthermore, with large-scale availability of
TV online resources, such a middleware component is
essential for not only sharing the resources but also enabling
interoperability between the functionalities that use and
process the resources.

In this paper, we propose and implement a Semantic TV
Resource Broker (STRB) based on a Service Oriented
Architecture (SOA) approach in combination with Semantic
Web Services standards. In other words, the functionalities
are deployed as Web services with semantic metadata. Here
we refer to a Web service as any kind of software
functionality that is accessible through HTTP, varying from
REST-based APIs to SOAP interfaces.

To achieve this goal, we need to meet some important
challenges:

• Develop an easy approach that allows service
developers to annotate semantic metadata for their
TV-related services. Currently, semantic annotations
are mainly based on WSMO [6] and OWL-S [5].
However, there is a gap between developer’s
knowledge about these ontologies and tools for
supporting developers. In addition, the complexity of
the WSMO and OWL-S standards impedes the
adoption by the developers’ community to use them
in large-scale applications.

• Enable both the developer and the applications to
seamlessly interact and align the available semantic
metadata provided by the developers. This challenge
is to bridge the somewhat conflicting requirements.
A developer needs an easy-to- understand and
human-readable description of the functionalities of
the services. In contrast, in order for applications to
interact and integrate services, they require a
machine-oriented environment to dynamically work
with services and their metadata. Therefore, the
service metadata annotations should have two
different levels of interoperability.

The contributions of our approach in meeting the above
challenges are:

• We implement a two-stage approach for
semantically annotating the services in the STRB.

The two stages are (1) allowing developers to
annotate and publish the services by using the
Linked Services [2] approach based on lightweight
RDF annotations through a Web form; (2) the
Linked Services RDF annotations feed into IRS-III
[4] semantic execution environment to semantically
deploy the service. The term Linked Services is used
to describe the fact that the semantic service
annotations using this approach are much easier to
produce (than say those based on WSMO or OWL-
S) and can be populated with references to widely
established Linked Data vocabularies. Furthermore,
they address a much wider audience and allow even
non-SWS experts and lay people to describe and
annotate services.

• With these two levels of annotations, the developer
can manually discover and select services by simply
using SPARQL [18] queries to develop applications
on top of the STRB. Meanwhile, applications can
invoke the atomic service or orchestrated service
through the IRS-III semantic execution environment
that can automatically discover, orchestrate and
invoke the available Web services.

This paper is organized as follows: Section 2 introduces
the background information about the NoTube project1 and
related terminologies and technologies. Section 3 shows two
realistic use cases that present the main requirements of the
STRB. Section 4 illustrates the architecture of STRB and the
detailed implementation of the prototype. Finally, the
conclusion and future work are discussed in Section 5.

II. BACKGROUND
The STRB is defined as an important middleware

component for the NoTube project with the purpose of
automatically finding, combining and invoking relevant Web
Services based on goals specified by the NoTube application
developers. The ultimate goal of this project is to develop a
flexible/adaptive end-to-end architecture, based on semantic
technologies, for personalized creation, distribution and
consumption of TV content. The project takes a user-centric
approach by investigating the fundamental aspects of
consumers' content-customization needs, interaction
requirements and entertainment wishes, which will shape the
future of the television experience. Figure 1 shows the
overall NoTube environment, containing four conceptual
layers of service, broker (or called control), application (or
called view) and screen. The broker is centrally located in
the architecture because it is responsible for the
communication between applications and services.

At this moment, we have collected more than 40 existing
services relevant to the TV domain. The functionality of the
services contains EPG services, context logging services
(e.g. user profiling service), enrichment services (getting
richer information about a certain TV resource from multiple
resources), social network services (like interfaces to the
functionality of. Twitter or Facebook), and recommendation
services.

1 http://www.NoTube.tv/

Figure 1. NoTube overall framework from STRB side.

The technology used to develop the broker is based on
SWS. The broker uses a repository of SWS in order to
perform its functionalities. SWS are Web Services enriched
with ontological descriptions of Web services in terms of
their capabilities, interfaces and non-functional properties.
SWS technologies aim at automatic discovery, selection and
orchestration of distributed services for a particularly
expressed user’s request/goal. The SWS approach utilises
both standard Web service technology such as SOAP [8],
UDDI [9] and WSDL [10] and more lightweight approaches
such as REST or XML-RPC.

The current efforts of the SWS research community
resulted in reference ontologies, such as OWL-S, WSMO
and SAWSDL2 as well as comprehensive frameworks to
demonstrate the SWS approach (i.e. DIP project3). Whereas
WSMO is intended to enable fully automated service
matchmaking based on comprehensive semantic
specifications of service capabilities, recent derivations of
WSMO, like WSMO-Lite4, MicroWSMO5 and hRESTs6,
enable representation of rather lightweight service
descriptions based on RDF.

Most recently, the Linked Services concept has been
proposed based on Linked Data principles. Linked Data is a
way to publish data on the Web in order for machines to
automatically derive the meaning of the data. The Linked
Data cloud contains a rich variety of alignments between
external data, which makes it possible to create services that

2 http://www.w3.org/2002/ws/sawsdl/
3 DIP Project: http://dip.semanticweb.org
4 http://cms-wg.sti2.org/TR/d11/v0.2/
5 http://cms-wg.sti2.org/TR/d12/v0.1/
6 http://knoesis.wright.edu/research/srl/projects/hRESTs

make use of relevant combinations [12]. We implement the
STRB by integrating the available Linked data with the IRS-
III semantic web services framework.

III. USE CASES AND CHALLENGES
In order to explain the role and functionalities of the

STRB, we select and illustrate two use cases that were driven
by the TV broadcast industry partners within the EU NoTube
project.

A. Personalized Semantic News
The Personalized Semantic News use case describes how

a user acquires news items from generic broadcast streams
and obtains additional enriched news information by using a
set of personalised news related services through the NoTube
platform. The NoTube platform understands the meaning of
video news items and the physical context in which news
items are going to be shown. Based on this, the platform will
apply criteria for matching and filtering the user profile and
preferences to match the available news items. Figure 2
shows a possible scenario where a user asks his/her context-
aware news-agent to search interesting news when he/she is
using an iPhone and travelling by bus. He/she registered
his/her profile to the agent and he/she prefers to use English
and is generally interested in sports. The agent will invoke
the STRB to get the interesting news data by discovering,
selecting and invoking the suitable news services that match
the user’s context.

Figure 2. Personalized Semantic News use case.

B. Personalized TV Guide
This use case allows a user to send a request for getting

EPG data with program recommendations and additional

related information gained from Internet resources that are
provided by a set of TV program enrichment services. The
recommendations should be based on the context of the user,
such as user activities, languages and personal interests. This
information is stored by a User Profiling service. Thus, the
core services that underpin this scenario are User Profiling
services, EPG services, TV program recommendation
services, and content enrichment services.

Unlike the first use case, the Personalized TV Guide
scenario requires the broker to orchestrate a group of
services according to an orchestration process shown in
Figure 3. The orchestration process does not combine any
concrete services at the beginning and only assigns services
at runtime, which is the main difference contracting to
current WSBPEL[11] technology (e.g. activeBPEL 7 and
ODE8).

Figure 3. Personalized TV Guide use case orchestration.

Thus, the additional challenge raised by this use case is
how to dynamically orchestrate different services throughout
discovery, selecting and invoking steps.

IV. SEMANTIC TV RESOURCES BROKER ARCHITECTURE
Our STRB solution integrates two semantic web

technologies although they are currently still under
development for improvement, namely, Linked Services and
the IRS-III framework. Figure 4 shows the core development
workflow in which the STRB operates. That is:

• Service providers annotate, register and publish their
services into the Linked Services RDF repository
that adapts Linked Data principles for linking
services to their functional and non-functional
annotations and other services in order to
dynamically discover services. It is as simple as

7 http://www.activepbel.org/
8 http://www.ode.org/

searching a web page and automatically selecting
services based on required properties described as
SPARQL query.

• After service registration, the services repository will
feed the new functional annotations into the IRS-III
framework. The registered service can be
discovered, selected, orchestrated by the IRS-III
semantic execution environment.

• The Application Developer can request invocation
URIs from the STRB for the required services to
develop NoTube applications.

Figure 4. NoTube services development workflow.

A. Linked Services
The idea of Linked Services is inspired by the Linked

Data movement. Linked Data is a way to publish data on the
Web in order for machines to understand the explicit
meaning of the data. The data is linked to other external data
sets, and can in turn be linked from external data sets [2]. In
this way, the data can be found and operated directly by
machines. In another words, Linked data is an
implementation standard of the Semantic Web.

Based on a similar idea, we publish “linked services”
with their semantic descriptions on the Web. The basic
principles are:

• Using WSMO-Lite and MicroWSMO as functional
semantic description schema and using a number of
domain ontologies as non-functional semantic
description schema.

• Representing and persisting the semantic
descriptions as RDF data stored in a Sesame RDF
database. The database includes two divided RDF
repositories: (1) iServe [3] for storing functional
descriptions, such as invocation endpoint, input
message and output message and so on, and (2) non-
funServe for storing non-functional descriptions,
such as IRS-III goal URI, QoS and keywords and so
on.

• Allowing service providers to annotate publish their
services using a web-based form UI (see Figure 5).
Figure 6 shows an example of linked data for
semantically describing a service after annotated and
published by provider via the web-based form.

• Using a Similarity-based Conceptual Space approach
proposed in [14] for semantic web service discovery
and selection.

Figure 5. Linked Services publishing form UI.

Figure 6. An RDF data example of a linked service annotation.

B. IRS-III framework
IRS-III is a Semantic Web Service execution

environment. It acts as “broker” – mediating between the
goals of a client and relevant services that are deployed on
the Web. IRS-III adopts the WSMO conceptual model of
services, the ultimate aim of which is to be able to provide
unambiguous models of services with a well-defined
semantics, which can then be interpreted by a reasoner to
enable automatic discovery, selection, composition,
mediation, execution, and monitoring of services.

At runtime, IRS-III automatically discovers and invokes
Web services suitable for a given client request, formulated
as a goal instance. Thus, the first important part of the IRS-
III for STRB is to define a service goal that allow user to
automatically consume the service by invoking the goal URI
which is stored as one piece of data in Linked service
database. Listing 1 shows a simple example of EPG service
goal and related semantic annotations. From the definition
we can see that BBC-ZAPPER-EPG-BY-KEYWORD-
AND-DATE-GOAL service has four input parameters (line
4: HAS-IPUT-ROLE) and all parameters are binding to
SOAP string type (see from line 5 to 9). The output message
only includes one parameter of has-epg-data, which is a
SOAP string type as well (see line 11). We also can find that
the service address is located at luisa.open.ac.uk:
8080/axis/engineService171.jws (see from line 26 to 28).

The second important part is that IRS-III can orchestrate
services based on services’ WSMO semantic annotations.
Listing 2 shows an example of orchestration of all English
EPG services that are deployed in IRS-III. The orchestration
process is assigned to a HAS-PROBLEM-SOLVING-
PATTERN (line 2). The pattern (defined in from line 3 to the
end) has an orchestration sequence (“orch-seq” in the list)
and each individual sequence step assigns a concrete goal
with input semantics to complete the task of the step (e.g.
from line 6 to 10). Finally, all the services’ output will be
collected and integrated to become one single output (see
line from 18 to 20).

1	
 (DEF-­‐CLASS	
 get-­‐BBC-­‐ZAPPER-­‐EPG-­‐BY-­‐KEYWORD-­‐AND-­‐DATE-­‐GOAL	

2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (GOAL)	

3	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ?GOAL	

4	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ((HAS-­‐INPUT-­‐ROLE	
 :VALUE	
 has-­‐method	
 :VALUE	
 has-­‐keywords	

:VALUE	
 has-­‐start-­‐date	
 :VALUE	
 has-­‐end-­‐date)	

5	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (HAS-­‐INPUT-­‐SOAP-­‐BINDING	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 :VALUE	

6	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (has-­‐method	
 "string")	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 :VALUE	

7	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (has-­‐keywords	
 "string")	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 :VALUE	

8	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (has-­‐start-­‐date	
 "string")	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 :VALUE	

9	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (has-­‐end-­‐date	
 "string"))	

10	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (HAS-­‐OUTPUT-­‐ROLE	
 :VALUE	
 has-­‐epg-­‐data)	

11	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (HAS-­‐OUTPUT-­‐SOAP-­‐BINDING	

12	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 :VALUE	

13	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (has-­‐epg-­‐data	
 "string"))	

14	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (has-­‐method	
 :TYPE	
 String)	

15	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (has-­‐keywords	
 :TYPE	
 String)	

16	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (has-­‐start-­‐date	
 :TYPE	
 String)	

17	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (has-­‐end-­‐date	
 :TYPE	
 String)	

18	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (has-­‐epg-­‐data	
 :TYPE	
 String)	

19	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (HAS-­‐NON-­‐FUNCTIONAL-­‐PROPERTIES	

20	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 :VALUE	

21	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 get-­‐BBC-­‐ZAPPER-­‐EPG-­‐BY-­‐KEYWORD-­‐AND-­‐DATE-­‐GOAL-­‐NON-­‐
FUNCTIONAL-­‐PROPERTIES)))	

…	

…	

…	

22	
 (DEF-­‐CLASS	
 get-­‐BBC-­‐ENGIN-­‐EPG-­‐BY-­‐KEYWORD-­‐AND-­‐DATE-­‐WS-­‐
PUBLISHER-­‐INFORMATION	

23	
 	
 	
 	
 	
 (PUBLISHER-­‐INFORMATION)	

24	
 	
 	
 	
 	
 ((HAS-­‐ASSOCIATED-­‐WEB-­‐SERVICE-­‐INTERFACE:	
 VALUE	

25	
 	
 	
 	
 get-­‐BBC-­‐ENGIN-­‐EPG-­‐BY-­‐KEYWORD-­‐AND-­‐DATE-­‐INTERFACE)	

26	
 	
 	
 	
 (HAS-­‐WEB-­‐SERVICE-­‐HOST	
 :VALUE	
 "luisa.open.ac.uk")	

27	
 	
 	
 	
 (HAS-­‐WEB-­‐SERVICE-­‐PORT	
 :VALUE	
 8080)	

28	
 	
 	
 	
 (HAS-­‐WEB-­‐SERVICE-­‐LOCATION	
 :VALUE	
 	
 	
 	
 "/axis/enginService171.jws"	

)))

Listing 1. Atomic Service goal definition code.

1	
 (DEF-­‐CLASS	
 get-­‐AGGREGATED-­‐ENGLISH-­‐LANGUAGE-­‐EPG-­‐BY-­‐KEYWORD-­‐
AND-­‐DATE-­‐INTERFACE-­‐ORCHESTRATION	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (ORCHESTRATION)	

2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ((HAS-­‐PROBLEM-­‐SOLVING-­‐PATTERN	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 :VALUE	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 get-­‐AGGREGATED-­‐ENGLISH-­‐LANGUAGE-­‐EPG-­‐BY-­‐KEYWORD-­‐AND-­‐
DATE-­‐INTERFACE-­‐ORCHESTRATION-­‐PROBLEM-­‐SOLVING-­‐PATTERN)))	

	

	

3	
 (DEF-­‐CLASS	
 get-­‐AGGREGATED-­‐ENGLISH-­‐LANGUAGE-­‐EPG-­‐BY-­‐KEYWORD-­‐
AND-­‐DATE-­‐INTERFACE-­‐ORCHESTRATION-­‐PROBLEM-­‐SOLVING-­‐PATTERN	

4	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (PROBLEM-­‐SOLVING-­‐PATTERN)	

5	
 	
 	
 	
 	
 ((has-­‐body	

	
 	
 	
 	
 	
 	
 :value	

6	
 	
 	
 	
 	
 	
 ((orch-­‐seq	

	
 	
 	
 	
 	
 	
 	
 	
 (achieve-­‐goal	
 'ocml::get-­‐BBC-­‐ENGIN-­‐EPG-­‐BY-­‐KEYWORD-­‐AND-­‐DATE-­‐
GOAL	

7	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (orch-­‐get-­‐input-­‐role	
 'ocml::has-­‐method)	

8	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (orch-­‐get-­‐input-­‐role	
 'ocml::has-­‐keywords)	

9	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (orch-­‐get-­‐input-­‐role	
 'ocml::has-­‐start-­‐date)	

10	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (orch-­‐get-­‐input-­‐role	
 'ocml::has-­‐end-­‐date)))	

11	
 	
 	
 	
 	
 	
 	
 (orch-­‐seq	

12	
 	
 	
 	
 	
 	
 	
 (achieve-­‐goal	
 'ocml::get-­‐BBC-­‐ZAPPER-­‐EPG-­‐BY-­‐KEYWORD-­‐AND-­‐DATE-­‐
GOAL	

13	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (orch-­‐get-­‐input-­‐role	
 'ocml::has-­‐method)	

14	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (orch-­‐get-­‐input-­‐role	
 'ocml::has-­‐keywords)	

15	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (orch-­‐get-­‐input-­‐role	
 'ocml::has-­‐start-­‐date)	

16	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (orch-­‐get-­‐input-­‐role	
 'ocml::has-­‐end-­‐date)))	

17	
 	
 	
 	
 	
 	
 (orch-­‐seq	

	
 	
 	
 	
 	
 	
 	
 	
 	

18	
 	
 	
 	
 	
 	
 	
 (string-­‐concatenate	
 'string	

19	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (remove-­‐close-­‐metadata-­‐tag	
 (orch-­‐get-­‐goal-­‐value	
 get-­‐
BBC-­‐ENGIN-­‐EPG-­‐BY-­‐KEYWORD-­‐AND-­‐DATE-­‐GOAL))	

20	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (remove-­‐open-­‐metadata-­‐tag	
 (orch-­‐get-­‐goal-­‐value	
 get-­‐
BBC-­‐ZAPPER-­‐EPG-­‐BY-­‐KEYWORD-­‐AND-­‐DATE-­‐GOAL))))	

	

))))

Listing 2. Service orchestration code.

The Broker’s functionalities are exposed through an

HTTP-based REST API, which applications use to interact
with the Broker. Primary among the functionalities of the
Broker is the 'achieve-goal' method. In the IRS approach,
Web services are semantically described and associated to

“goal” representations. Goals are then exposed through the
Broker’s REST interface to allow them to be “achieved” by
the client application. We have also implemented a Java API
to the IRS-III Broker.

C. IRS-III Java API

Figure 7. IRS-III Java API implementation blocks.

As Figure 7 shows, IRS-III Java API is implemented
based on OCML-WSMO ontology and communicates to
IRS-III via OCML4J 9 interface. Thus, the NoTube
application developer can define a goal of using service
through this IRS-III Java API. On runtime, the NoTube
application, firstly, connects to IRS III via the API and
executes the application goal definition for mapping a goal
defined in IRS-III and retrieving it. Secondly, the application
sends the goal to IRS III by invoking the function of
achieving goal in IRS API. IRS III performs the discovery,
selection, orchestration and invocation of Web services, and
sending back the result to the application as a HTTP
response.

• IRS-III Java API defines the programming interfaces
of the IRS-III knowledge base. IRS-API supports a
cache per concept, In other words, it allows using a
caching mechanism per kind of instances. The API
can retrieve, WSMO entities stored in IRS III, which
are independent from the underlying communication
mechanism.

• As WSMO is the ontology built for modelling Web
services, OCML-WSMO provides a specific
interface on top of OCML4J to facilitate the
processing of the entities defined in WSMO, i.e.
goals, mediators, Web services and non-functional
properties.

• Since IRS-III is implemented using OCML,
OCML4j helps manipulating OCML entities in IRS-
III, such as class, function, instance, relation,
ontology, as well as slot and logical expressions. In
addition, XMLBeans3 is utilized for processing
XML messages exchanged during communications
between Java applications and the IRS server.

V. CONCLUSION AND FUTURE WORK
In this paper, we described the implementation of a

Semantic TV Resources Broker. The broker allows
application developers within the TV domain to express
application goals in human-readable format, and discovers,
integrates and invokes the relevant services in order to fulfill
these goals.

9 http://technologies.kmi.open.ac.uk/ocml/

 The technologies that we used are: (1) Linked service
repositories for publishing services and annotating functional
and non-functional properties; (2) the IRS-III framework
including the Java API for service logical annotation based
on WSMO, service invocation and orchestration through
achieving-goal interface.

At present our work is at an early stage and we still need
to evaluate the entire two-stage approach. In the future, we
will conduct this evaluation by comparing our work to other
related frameworks, for example, the Dino framework of
Dynamic and Adaptive Composition of Autonomous
Services [17], to analyze the efficiency, adaptability,
scalability and other aspects.

Other future work includes elaboration on more advanced
selection mechanisms, e.g. LSP-based selection method [15],
into the implementation to test and compare the selection and
composition performances.

REFERENCES

[1] Dietze, S., and Domingue, J. (2009) Towards Context-aware
Multimedia Processing through Semantic Web Services, in
Proceedings of the seventh european conference on European
interactive television conference (EuroITV 2009), ACM, pp. 129-
132, Leuven, Belgium.

[2] Pedrinaci, C., Domingue, J., and Reto Krummenacher (2010)
Services and the Web of Data: An Unexploited Symbiosis,
Workshop: Linked AI: AAAI Spring Symposium "Linked data Meets
Artificial Intelligence".

[3] Carlos Pedrinaci, Dave Lambert, Maria Maleshkova, Dong Liu, John
Domingue, and Reto Krummenacher. Adaptive Service Binding with
Lightweight Semantic Web Services. In Service Engineering:
European Research Results (S. Dustdar and F. Li eds.). Springer
(2010).

[4] Cabral, L., Domingue, J., Galizia, S., Gugliotta, A., Norton, B.,
Tanasescu, V., Pedrinaci, C. (2006): IRS-III: A Broker for Semantic
Web Services based Applications. Proceedings of the 5th
International Semantic Web Conference (ISWC), Athens, USA.

[5] OWL-S Coalition: OWL-S 1.1 release. (2004).
http://www.daml.org/services/owl-s/1.1/

[6] WSMO Working Group (2004), D2v1.0: Web service Modeling
Ontology (WSMO). WSMO Working Draft, (2004).
(http://www.wsmo.org/2004/d2/v1.0/).

[7] Wagner, M., Kellerer, W. 2004. Web services selection for
distributed composition of multimedia content, Proceedings of the
12th annual ACM international conference on Multimedia, October
10-16, 2004, New York, NY, USA.

[8] World Wide Web Consortium, W3C: Simple Object Access Protocol,
SOAP, Version 1.2 Part 0: Primer, (2003).
(http://www.w3.org/TR/soap12-part0/).

[9] World Wide Web Consortium, W3C: Universal Description,
Discovery and Integration: UDDI Spec Technical Committee
Specification v. 3.0, (2003). http://uddi.org/pubs/uddi-v3.0.1-
20031014.htm).

[10] World Wide Web Consortium, W3C: WSDL: Web services
Description Language (WSDL) 1.1, (2001).
(http://www.w3.org/TR/2001/NOTE-wsdl20010315)

[11] Advanced Open Standards for the Information Society (OASIS),
WSBPEL: Web Service Business Process Execution Language 2.0,
(2007). (http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-
OS.html)

[12] Bizer, C., T. Heath, et al. (2009). "Linked data - The Story So Far."
Special Issue on Linked data, International Journal on Semantic Web
and Information Systems (IJSWIS).

[13] Domingue, J., Cabral, L., Galizia, S., Tanasescu, V., Gugliotta, A.,
Norton, B., Pedrinaci, C.: “IRS-III: A broker-based approach to
semantic Web services”, Jounal of Web Semant, pp. 109-132.
Elsevier Science Publishers B. V, 2008.

[14] Dietze, S., Benn, N., Domingue, J., Conconi, A., and Cattaneo, F.:
"Interoperable Multimedia Metadata through Similarity-based
Semantic Web Service Discovery". In Proceedings of 4th
International Conference on Semantic and Digital Media
Technologies (SAMT '09), 2--4 December 2009, Graz, Austria.

[15] Yu, H.Q., Reiff-Marganiec, S., "A Method for Automated Web
Service Selection", services, pp. 513-520, 2008 IEEE Congress on
Services - Part I, 2008

[16] E. Motta, Reusable Components For Knowledge Modelling: Case
Studies in Parametric Design Problem Solving. IOS Press, ISBN I
58603 003 5, 1999.

[17] A. Mukhija, A. Dingwall-Smith, and D. S. Rosenblum, 2007. QoS-
Aware Service Composition in Dino. In Proceedings of the Fifth
European Conference on Web Services (November 26 - 28, 2007).
ECOWS. IEEE Computer Society, pp. 3-12.

[18] W3C Recommendation, SPARQL query language for RDF, 2008,
(http://www.w3.org/TR/rdf-sparql-query/)

