
Integrating Heterogeneous Web Service Styles
with Flexible Semantic Web Services Groundings

Dave Lambert, Neil Benn, and John Domingue

Knowledge Media Institute, The Open University
Milton Keynes, United Kingdom

Semantic web services are touted as a means to integrate web services inside
and outside the enterprise, but while current semantic web service frameworks—
including OWL-S [1], SA-WSDL, and WSMO1 [2]—assume a homogeneous ecosys-
tem of SOAP services and XML serialisations, growing numbers of real services are
implemented using XML-RPC and RESTful interfaces, and non-XML serialisations
like JSON. 2 Semantic services platforms based on OWL-S and WSMO use XML
mapping languages to translate between an XML serialisation of the ontology
data and the on-the-wire messages exchanged with the web service, a process
referred to as grounding. This XML mapping approach suffers from two problems:
it cannot address the growing number of non-SOAP, non-XML services being
deployed on the Web, and it requires the modeller creating the semantic web
service descriptions to work with the serialisation of the service ontology and a
syntactic mapping language, in addition to the knowledge representation language
used for representing the semantic service ontologies and descriptions.

Our approach draws the service’s interface into the ontology: we define
ontology objects that represent the whole HTTP message, and use backward-
chaining rules to translate between semantic service invocation instances and the
HTTP messages passed to and from the service. This novel approach is based on
several principles:

1. Target HTTP, the Web’s native protocol: all three Web services approaches
in use today, namely SOAP, XML-RPC, and RESTful, use HTTP.

2. Be agnostic about content type: HTTP carries not only XML, but other text
serialisations such as JSON, as well as images, sound, and other data.

3. Stay within the ontology language: the fewer languages the service semantics
engineer must deal with, the better.

When a semantic broker invokes a web service, it translates an abstract ontological
representation of the service invocation into an HTTP message that can be sent
to the server. The server’s response is, in due course, translated from the HTTP
message to an ontological representation of the result. These two processes are
respectively known as lowering and lifting. In our scheme we define two generic
rules, which we call lower and lift:

(lower ?serviceType ?serviceInvocation ?httpRequest)
(lift ?serviceType ?httpResponse ?serviceInvocation)

1 The WSMO specification deftly sidesteps the issue of grounding to any kind of Web
service, current WSMO implementations are SOAP-centric.

2 http://www.json.org/

http://www.json.org/

Each web service description can define its own version of lift and lower,
which the broker distinguishes by unifying on the ?serviceType parameter
that names the service being invoked. The ?serviceInvocation represents the
abstract invocation message, and ?httpRequest and ?httpResponse the ontological
representations of the on-the-wire messages. The lower rule’s successful fulfilment
leads to the instantiation of ?httpRequest, which can then be directly interpreted
by the broker to call the web service. When a response is received from the
server, the lift rule runs on the the newly returned ?httpResponse, modifying
the original ?serviceInvocation frame to record the return values. We have fully
implemented the approach in the Internet Reasoning Service (IRS),3 a broker
based on WSMO and using OCML4 for its ontology language. In another paper [3]
we showed how the approach integrates RESTful and XML-RPC services, and we
now demonstrate the same approach cleanly extends to JSON serialisations.

JSON is a simple data format derived from Javascript, and is increasingly
popular as a lightweight alternative to XML, particularly in RESTful services.
Our lift and lower rules could directly manipulate the string representations of
JSON, but this becomes cumbersome, prone to error, and fails to model in any
meaningful way the transformations. Instead, we introduce a simple ontologisation
of JSON. JSON is built on two main structures: objects and arrays. An object
is an unordered set of key/value pairs, whereas an array is a sequence of values.
Values are strings, numbers, booleans, other objects or arrays, or null. Our
JSON ontologisation in OCML introduces a top-level class Value, which is then
subclassed by Object and Array. An Object is made up of a list of Members, where
each element of the list is a Pair consisting of a key (a string) and a Value.
An Array is made up of a list of Elements, where each element of the list is a
Value. Finally, the JSON value-types string, number, and boolean, are matched to
OCML’s equivalent built-in types, while JSON null values are treated as OCML
nil. The OCML relation serialiseJson converts between JSON ontologisations
in OCML, and the string containing the serialised JSON. The key definitions are:

(def -class Value () ?value
(def -class Elements () ?elements

:sufficient
:iff -def (and (listp ?elements)

(or (String ?value)
(every ?elements Value)))

(Number ?value)
(Boolean ?value)

(def -class Members () ?members
(= ?value nil)))

:iff -def (and (listp ?members)
(every ?members Pair)))

(def -class Object (Value)
((members :type Members)))

(def -class Pair ()
((key :type String)

(def -class Array (Value)
(value :type Value)))

((elements :type Elements)))

To illustrate how we can invoke, in a uniform way, Web services employing JSON
and XML formats, we use two Flickr5 services: a) getting a list of recently changed
photos in a user’s account (flickr.photos.recentlyUpdated), and b) getting a list
of sizes in which those are available (flickr.photos.getSizes). We will ground

3 http://technologies.kmi.open.ac.uk/irs/
4 http://technologies.kmi.open.ac.uk/ocml/
5 http://www.flickr.com/services/api/

http://technologies.kmi.open.ac.uk/irs/
http://technologies.kmi.open.ac.uk/ocml/
http://www.flickr.com/services/api/

the first service in a RESTful way, consuming JSON output, and the second service
via XML-RPC, consuming XML output, integrating the services at the ontological
level. We begin with lowering rule for the flickr.photos.recentlyUpdated service:

(def -rule lower -for -photosRecentlyUpdated/RestJson
((lower photosRecentlyUpdated/RestJson ?invocation ?http -request) if
(= ?account (wsmo -role -value ?invocation hasAccount))
(= ?token (wsmo -role -value ?invocation hasToken))
(= ?min -date (wsmo -role -value ?invocation hasMinimumDate))
(hasKey ?account ?apikey)
(hasValue ?apikey ?apikey -string)
(hasValue ?token ?token -string)
(= ?args (new -instance Arguments))
(addArgument ?args "method " "flickr .photos .recentlyUpdated ")
(addArgument ?args "api_key " ?apikey -string)
(addArgument ?args "auth_token " ?token -string)
(addArgument ?args "min_date " ?min -date)
(addArgument ?args "format " "json ")
(addArgument ?args "nojsoncallback " "1")
(signArguments rest ?args ?account)
(argsToRestRequest ?args ?http -request)))

The rule is straightforward, with the first half concerned with extracting from
the ?invocation the necessary argument values, and the second half constructing
an Arguments instance using those values. The rule signArguments takes care of
signing arguments with a valid Flickr account key, while argstoRestRequest takes
care of converting the arguments set to URL parameters of the form

param1 =value1¶m2 =value2 ...

and sets the ?http-request fields appropriately (neither rule is shown due to
space constraints, but they are relatively simple). The lifting rule is:

(def -rule lift -for -photosRecentlyUpdated/RestJson
((lift photosRecentlyUpdated/RestJson ?http -response ?invocation) if
(rfc2616:get -content ?http -response ?http -content)
(json:serialiseJson ?json ?http -content)
(json:Object ?json)
(json:members ?json ?objMembers)
(member ?photosKeyValuePair ?objMembers)
(json:key ?photosKeyValuePair "photos ")
(json:value ?photosKeyValuePair ?innerPhotosObject)
(extractPhotoListFromJson ?innerPhotosObject ?photolist)
(set -goal -slot -value ?invocation hasPhotoList ?photolist)))

In lifting the response, we extract the content from the ?http-response into an
ontological model of the JSON. This extraction is done through the two rules
extractPhotoListFromJson and extractPhotoFromJson defined below:

(def -rule extractPhotoListFromJson
((extractPhotoListFromJson ?innerPhotosObject ?photolist) if
(= ?photolist

(setofall ?photo
(and (json:Object ?innerPhotosObject)

(json:members ?innerPhotosObjectMembers)
(member ?photoKeyValuePair ?innerPhotosObjectMembers)
(json:key ?photoKeyValuePair "photo ")
(json:value ?photoKeyValuePair ?photoObject)
(extractPhotoFromJson ?photoObject ?photo))))))

(def -rule extractPhotoFromJson
((extractPhotoFromJson ?photoObject ?photo) if
(json:Object ?photoObject)
(json:members ?photoObject ?photoObjectMembers)

(member ?idKeyValuePair ?photoObjectMembers)
(json:key ?idKeyValuePair "id ")
(json:value ?idKeyValuePair ?id)
(member ?titleKeyValuePair ?photoObjectMembers)
(json:key ?titleKeyValuePair "title ")
(json:value ?titleKeyValuePair ?title)
(= ?slots ((id ?id) (title ?title)))
(new ?photo Photo ?slots)))

With this list of photographs, represented in OCML, we are now ready to invoke
the second service, flickr.photos.getSizes, using XML-RPC.

(def -rule lower -for -photosGetSizes/Xmlrpc
((lower photosGetSizes/Xmlrpc ?invocation ?http -request) if
(argsForPhotosGetSizes ?invocation ?args)
(= ?account (wsmo -role -value ?invocation hasAccount))
(signArguments xmlrpc ?args ?account)
(argsToXmlrpcRequest ?args ?http -request)))

This time, the conversion from the invocation object to the argument pairs used
by Flickr is done in another rule argsForPhotosGetSizes (not shown). The use
of a rule for this means we could share the logic between the XML-RPC version
shown here, and a REST or SOAP version. The argument set is again signed
using signArguments, and then passed to the rule argsToXmlrpcRequest:

(def -rule argsToXmlrpcRequest
((argsToXmlrpcRequest ?args ?http -request) if
(getArgument ?args "method " ?method)
(= ?nonmethodargs

(setofall ?member
(and (hasArgument ?args ?arg)

(hasName ?arg ?name)
(not (= ?name "method "))
(hasValue ?arg ?value)
(= ?member (xmlrpc:Member ?name

(xmlrpc:String ?value))))))
(= ?xmlrpc (xmlrpc:MethodCall ?method

(xmlrpc:Param (xmlrpc:Struct ?nonmethodargs))))
(xmlrpc:mapToXml ?xmlrpc ?xmlmodel)
(xml:serialiseXml ?xmlmodel ?xmlstring)
(rfc2616:set -content ?http -request ?xmlstring)
(rfc2616:set -method ?http -request "POST ")
(rfc2616:set -url ?http -request "http :// api .flickr .com/services/xmlrpc /")))

The argsToXmlrpcRequest rule performs a similar function to argsToRestRequest,
but this time we create an XML-RPC message with a Struct to hold the pairs,
rather than embedding them in a URL.

References

1. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara,
K.: OWL-S: Semantic Markup for Web Services. W3C member submission, World
Wide Web Consortium (W3C) (November 2004)

2. Lausen, H., Polleres, A., Roman, D.: Web Service Modeling Ontology (WSMO).
W3C member submission, World Wide Web Consortium (W3C) (June 2005)

3. Lambert, D., Domingue, J.: Photorealistic semantic web service groundings: Unifying
RESTful and XML-RPC groundings using rules, with an application to Flickr. In:
Proceedings of the 4th International Web Rule Symposium (RuleML 2010). (October
2010)

http://api

	Integrating Heterogeneous Web Service Styles with Flexible Semantic Web Services Groundings

