
Lightweight Semantics for Automating the 
Invocation of Web APIs 

Maria Maleshkova, Carlos Pedrinaci, Ning Li, Jacek Kopecky, John Domingue 
Knowledge Media Institute (KMi), The Open University 

{m.maleshkova, c.pedrinaci, n.li, j.kopecky, j.b.domingue}@open.ac.uk 

Abstract—The past few years have been marked by the rapid 
increase in popularity and use of Web APIs as indicated by 
the growing number of available APIs and the multitude of 
applications built on top of them. The development and evolution 
of applications based on Web APIs is, however, hampered by 
the lack of automation achievable with current technologies. In 
this paper, we focus in particular on invocation, which as of 
now requires manual implementation of custom-tailored clients 
for each individual API. We present an approach for employing 
lightweight semantics for supporting the automated invocation 
of Web APIs. We investigate current Web API description forms 
and conduct an analysis of the requirements for a description 
model capable of supporting unified API invocation. In the light 
of these results, we propose a shared API description model that 
overcomes the current heterogeneity of the documentation and 
provides common grounds for enhancing APIs with semantic an-
notations that facilitate a general automated invocation solution. 
We evaluate the applicability of our approach by determining 
the coverage provided by our description model and via a 
prototypical implementation of an invocation engine. 

Index Terms—Web APIs; Semantic Web Services; Service 
Invocation; 

I. INTRODUCTION 

The past few years have been marked by a trend towards 
a simpler approach for developing and exposing Web service 
APIs, moving away from traditional services based on SOAP 
and WSDL. Instead of relying on the rather complex WS-* 
specification stack, current Web service providers are inspired 
by a technology that is based on adopting the original design 
principles of the World Wide Web [1] to the world of services 
on the Web. The result is the current proliferation of Web APIs 
that rely directly on the interaction primitives provided by the 
HTTP protocol, with data payloads transmitted directly as part 
of the HTTP requests and responses. 

Despite their growing importance, Web APIs are still facing 
a number of limitations. In contrast to traditional Web services, 
whose invocation relies on the information provided in the 
WSDL [2] documentation and is supported by a stack of 
specifications, the development of Web APIs is not guided by 
standards. In fact, only about a third of the APIs are currently 
conforming to the REST principles, while the majority ignore 
these best-practices and define interfaces in terms of operations 
instead of resources [3]. Moreover, providers implement and 
publish programmable interfaces in any way they see fit, 
commonly documenting them in human-oriented descriptions 
such as HTML webpages. The lack of a unified approach 
directly influences invocation because some APIs require the 

construction of a URI by filling in specific parameter values, 
while sometimes key information such as the input datatypes 
or the used HTTP method is missing. The absence of a 
common structured language for describing Web APIs is 
addressed by some initial proposals such as WSDL 2.0 [2] 
and WADL [4], which would provide a good basis for a 
common invocation solution, however, unfortunately they are 
not being adopted. Therefore, lightweight annotations over 
Web API descriptions [5], [6] have been developed as means 
for overcoming the existing heterogeneity and providing ba-
sic support for service task automation. Both MicroWSMO 
[5] and SA-REST [6] rely on syntactically structuring the 
description by marking service properties within the HTML 
and subsequently liking these to semantic entities, based 
on adapting the SAWSDL [7] approach. The importance of 
invocation support has already been recognised by some API 
provides, who deliver custom client libraries in order to ease 
the use of individual APIs or a particular type of APIs, such 
as strictly RESTful ones. However, even with these, further 
implementation work would still be required when develop-
ing applications based on service compositions. There are a 
number of mashup frameworks and “pipe”-based solutions, 
where a user interface allows for composing a set of services 
that are pre-adapted to the platform 1. Therefore, currently API 
consumers need to manually process and interpret the available 
documentation and produce custom invocation solutions that 
are rarely reusable. 

With the proliferation of Web APIs, invocation is becoming 
a key task. In this paper, we present a pioneering contribution 
in the area of Web APIs invocation, namely, to the best of our 
knowledge, the very first description model and invocation 
engine capable of invoking Web APIs in a unified way. We 
provide a detailed analysis of the process of invoking Web 
APIs and of the information necessary to automate it. In the 
light of these results, we propose a shared API description 
model that overcomes the current heterogeneity of the docu-
mentation and provides a common ground for adding semantic 
annotations for supporting invocation. Finally, we provide a 
proof-of-concept implementation in the form of our invocation 
engine OmniVoke [8] and we evaluate the applicability of our 
approach by determining its coverage of common types of 
Web APIs. 

1Yahoo Pipes (http://pipes.yahoo.com/pipes/), Google App Engine’s 
Mashup Editor (http://code.google.com/appengine/), Deri Pipes (http://pipes. 
deri.org/) 

https://deri.org
http://pipes
http://code.google.com/appengine
http://pipes.yahoo.com/pipes
mailto:j.b.domingue}@open.ac.uk


TABLE I: Requirements Coverage 

Description R1: HTTP 
Method 

R2: Operation 
Based 

R3: Param. 
URI 

R4: Service-
Op. Address 

R5: Input 
Grounding 

HTML Doc. 60.4% 68% 96.4%1 N/A 100% 
WADL 
WSDL 2.0 

Yes 
Yes 

No 
Yes 

Yes 
Yes 

Yes 
Yes 

Yes 
Yes 

MicroWSMO 
SA-REST 

Yes 
Yes 

Yes 
No 

Yes 
Yes 

No 
No 

No 
No 

R6: Lo 
Mapping 

R7: Opt. Param 
& Further 

R8: Msg. 
Parts 

R9: Li 
Mapping 

R10: Custom 
Errors 

HTML Doc. N/A 61%-opt. param N/A N/A ∼50% 
WADL 
WSDL 2.0 

No 
No 

Yes 
Yes 

Yes 
Yes 

No 
No 

No2 

No2 

MicroWSMO 
SA-REST 

Yes 
Yes 

No 
No 

No 
No 

Yes 
Yes 

Yes 
No 

II. DESCRIBING WEB APIS FOR SUPPORTING INVOCATION 

Despite their popularity, the use of Web APIs is currently 
a challenging task. Since the majority of the documentation 
is provided in a human-oriented form as part of webpages, 
API users have to invest a lot of manual effort into finding 
services, interpreting their descriptions and realising hard-
wired implementations. In this section we focus on deriving 
the requirements (marked with ’R’) for a semantic Web API 
description capable of supporting the automated invocation, 
so that given its description, an API can directly be invoked 
by our invocation engine, without further implementation 
efforts or completion of manual tasks. A Web API request 
is implementation-wise equivalent to an HTTP request. In 
fact, no matter what the underlying technology is, manual 
invocation by the user or programatic, the invocation of an 
API comprises the following three steps: 
1. Construct HTTP request (identify the HTTP Method, 
construct invocation URI, construct HTTP body and header, 
prepare the input data) 
2. Actual invocation 
3. Process the HTTP response (response handling, process 
the output data, present the output, error handling) 

HTTP method. As part of our previous work, we found out 
that currently about 40% of the APIs do not state the HTTP 
method to be used [3]. This is possibly because providers 
assume that the method to use is GET, especially for APIs 
that can be invoked directly through parameterising the URI. 
Existing approaches, such as MicroWSMO and SA-REST 
already include the HTTP method and since it is necessary 
for invocation, R1: the HTTP method should be specified. 

Construct invocation URI. Even though, RESTful services 
and Web APIs are often used as synonyms, actually only about 
a third of the APIs are truly RESTful [3] and the majority 
of the APIs (67%) are described in terms of operations. 
Therefore, R2: the description formalism should be based on 
service and operation definition in order to guarantee a larger 
coverage. The definition of parameters is also an important 
part of the URI, therefore R3: support for parameterised URIs 
is also necessary. It is also common that one API has a 
number of operations, that share the same domain as part of 
the invocation URI, so R4: assign an address to the service 

and this address can be overwritten or further specialised by 
the definition of individual operation addresses. 

Construct HTTP body and header. Even though, many 
APIs transmit the input data directly as part of the invocation 
URI, it is also very common, especially in the cases were 
entries are created or published, that the data payload is sent 
as part of the HTTP body. In fact, about one third of the APIs 
require the construction of the HTTP request [3]. Therefore, 
R5: it is necessary to be able to specify the parts of the HTTP 
requests that are used to transmit the input. 

Input Data. The preparation of the input data is one of 
the most challenging tasks related to invocation. Providers 
commonly use parameters with optional values, default values, 
alternative values (for example: 1, 2 or 3) and coded values 
(’en’ instead of ’english’). In addition, more than two thirds 
of the APIs do not explicitly state the datatype of the input. 
In order to avoid having to process data on the syntactic 
level and to be able to benefit from the automation support 
provided by describing the APIs and their inputs and outputs 
semantically, we handle the preparation of the input data with 
the help of R6: definition of input data transformations in 
terms of lowering schemas. The lowering schema defines how 
to transform the semantic input into the parameters used in 
the invocation HTTP message. In addition, more than half 
of the APIs use optional parameters, which means that the 
invocation can be completed even if no input values are 
provided. Therefore, R7: the capturing of characteristics that 
have a direct impact on invocation, such as optional values 
or output-format parameters is required. Furthermore, this 
observation leads to the need to be able to describe not only 
the input and output as a whole but also parts of the message 
individually. It is necessary to support R8: the description of 
the complete messages as well as the explicit annotation of 
their message parts. 

Actual invocation. Once the HTTP method, the invocation 
URI, the HTTP body and headers, and the input data are 
prepared, the actual HTTP message can be constructed. The 
Web API invocation itself, including the sending of the HTTP 
request, the waiting for the response as well as the receiving 
of the response is realised as part of the system implementing 
the invocation engine (see Section IV). 



Fig. 1: Web API Grounding Model 

Response handling and output data processing. Once the 
HTTP response is received, the actual output, which is com-
monly sent as part of the body, needs to be extracted. There are 
a number of possible formats for the output formats, however, 
providing support for the use of XML and JSON would cover 
the majority of the APIs [3]. Since we are basing our approach 
on the use of lightweight semantics, the R9: definition and 
inclusion of a lifting schema mapping is required. If the API 
invocation runs smoothly, the output is extracted and lifted to 
RDF, but if the invocation fails, an appropriate mechanism for 
error handling needs to be implemented. In the case of custom 
errors, R10: the lifting schema mapping needs to be able to 
process those and transform them to RDF. 

In summary, we have identified the main steps of completing 
the invocation process and have derived the resulting require-
ments. However, surprisingly enough as visualised in Table I, 
currently none of the existing description approaches cover all 
of the necessary details (1Percentage that provides the invocation 
URI; 2No support for custom errors.). The two main gaps that 
we have identified are in providing means to specify the data 
grounding, i.e. which parts of the input are transmitted via 
which parts of the HTTP request (in the URI, in the HTTP 
body or in the HTTP header), and enabling the description of 
individual input parts. In particular, currently it is not possible 
to differentiate between input that is simply transmitted as part 
of the request and input that actually influences the way, in 
which the invocation is performed, such as output format or 
authentication credentials parameters. 

III. SUPPORTING AUTOMATED INVOCATION 

Based on the results of the analysis conducted in the 
previous section and taking into consideration existing ser-
vice description approaches, we aggregate the collected data 

and devise an invocation model, capable of supporting the 
automated invocation for a large percentage of the APIs. The 
here presented model is a result of refining and extending the 
original Minimal Service Model (MSM), which was initially 
introduced with in [9]. We provide a strict decoupling between 
the parts that capture the core service properties (msm:) 
and the specific extensions for supporting invocation (rest:). 
Figure 1 visualises the Web API grounding model, consisting 
of the msm namespace elements (http://cms-wg.sti2.org/ns/ 
minimal-service-model#), including Service, Operation, Mes-
sageContent and optional or mandatory MessageParts, and 
the rest namespace elements (http://purl.org/hRESTS/1.1) that 
represent the main extensions to the model. The model cap-
tures the HTTP method (R1) and is based on defining the 
service in terms of operations (R2), which have URI Template-
based addresses (R3) that can further extend or overwrite 
the service address definition (R4). The model also provides 
means for specifying data grounding via the isGroundedIn 
property, in particular defining whether the input values are 
transmitted as part of the HTTP body or the URI (R5). 

Lifting and lowering schema mappings (R6 and R9) can 
be associated with the inputs and outputs as a whole, i.e. 
MessageContent, but also with individual message parts (R8). 
In particular, we allow for fine-grain definition of the in-
puts and outputs (R8) that can have optional or mandatory 
parts (R7). In its original version, hRESTS expected a single 
lowering transformation that would apply to the whole input 
message, without distinguishing between different parameters 
of the URI. In our extension, we allow finer-grained (and 
thus more reusable) lowering transformations on individual 
message parts. Errors are handled via the definition of output 
faults and as part of the lifting transformation, which can be 
adjusted to deal with custom errors (R10). 

http://purl.org/hRESTS/1.1
http://cms-wg.sti2.org/ns


IV. IMPLEMENTATION AND EVALUATION 

The contribution described here is implemented as part 
of a general invocation engine – OmniVoke, which is 
exposed as a RESTful API, where the invocation func-
tions are abstracted into resources such as request, re-
sponse and status, etc., identified by the semantically-
described service Unique ID (UID). Therefore, OmniVoke 
provides a “meta” API that repents a common invoca-
tion point for the majority of the APIs. In particular, the 
service and operation names are exposed in the follow-
ing form http://iserve-dev.kmi.open.ac.uk:8080/RestInvoke/ 
service/{ServiceUID}/operation/{OperationName}/invoke, 
where the request data is sent to the invocation engine in the 
HTTP body via POST, since the calling of the invocation API 
represents the creation of a new request resource. 

Listing 1 shows the semantic description of the Last.fm 2 

artist.getInfo operation, which is created based on its HTML 
documentation. We provide a tool called SWEET [10] that 
supports the creation of semantic Web API descriptions. 
The LastFMService contains an ArtistGetInfo operation with 
input ArtistGetInfoInput. The input contains message parts 
artist, api key, and their links to external ontology entities, 
i.e. to Music Ontology, as well as the links to lowering-
SchemaMapping and liftingSchemaMapping scripts, which are 
in the form of SPARQL queries. The input data grounding 
is realised trough the definition of the operation address as a 
parameterized URI Template, where each of the message parts 
has a isGroundedIn property specifying its place in the URI. 

Listing 1: Example RDF Service Description 
1 @prefix : <http:// iserve.kmi.open.ac.uk/resource/ 
2 services/e8f9548e−bbed−43fe−9d8a−71b7fdef9da#> . 
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#>. 
4 @prefix msm: <http://cms−wg.sti2.org/ns/minimal−service−model#>. 
5 @prefix rest: <http:// purl .org/hRESTS/1.1#>. 
6 :LastFMService a msm:Service; 
7 msm:hasOperation :ArtistGetInfo; 
8 rest :hasAddress ”http://ws.audioscrobbler.com/2.0/?”ˆˆrest:URITemplate. 
9 :ArtistGetInfo a msm:Operation; 

10 msm:hasInput :ArtistGetInfoInput; 
11 msm:hasOutput :ArtistGetInfoOutput; 
12 rest :hasMethod ”GET”; 
13 rest :hasAddress ”method=artist.getinfo&artist={p1}
14 &api key={p2}”ˆˆrest:URITemplate. 
15 :ArtistGetInfoInput a msm:MessageContent; 
16 msm:hasPart :artist, :api key. 
17 : artist a msm:MessagePart; 
18 sawsdl:loweringSchemaMapping http://iserve.kmi.open.ac.uk/ 
19 lilo /ArtistLowering. txt ; 
20 sawsdl:modelReference ”http://purl.org/ontology/mo/MusicArtist”; 
21 rest : isGroundedIn ”p1”ˆˆrdf: PlainLiteral . 
22 :api key a msm:MessagePart; 
23 sawsdl:loweringSchemaMapping http://iserve.kmi.open.ac.uk/ 
24 lilo /APIKeyLowering.txt; 
25 sawsdl:modelReference ”http :// purl .oclc.org/NET/ 
26 WebApiAuthentication#API Key”; 
27 rest : isGroundedIn ”p2”ˆˆrdf: PlainLiteral . 
28 :ArtistGetInfoOutput a msm:MessageContent; 
29 sawsdl:liftingSchemaMapping http :// iserve.kmi.open.ac.uk/ 
30 lilo / ArtistGetInfoLifting . txt . 

Based on this description, the Last.fm API 
can be invoked by OmniVoke via the POST 
http://iserve-dev.kmi.open.ac.uk:8080/RestInvoke/service/ 

2http://www.last.fm/api/show?service=267 

db4b646a-4665-4337-9626-4669cc8bce56/operation/ 
ArtistGetInfo/invoke. We also evaluate our model based 
on the coverage that it provides, given the heterogeneity 
of the Web API world. We do this by both annotating 
actual Web APIs and testing their invocability and by 
determining the overall percentage of coverage, depending on 
the different API characteristics. All examples are available 
at http://purl.org/hRESTS/examples. 

V. CONCLUSIONS AND FUTURE WORK 

Nowadays, finding, interpreting and invoking Web APIs 
requires extensive human involvement. There are a number of 
approaches targeted at supporting the invocation of a particular 
type of APIs, specifically RESTful, and some solutions that 
rely on the ’pipe’-based approach that enables the compo-
sition and invocation of a predefined set of services. Still 
the invocation of the majority of the Web APIs currently 
requires the manual implementation of custom solutions that 
are rarely reusable. Therefore, we propose an approach for 
capturing invocation-related information by using the Web API 
Grounding Model, which overcomes Web API heterogeneity 
and provides the basis for automated invocation handling. 
We base the annotation approach on an analysis of currently 
existing Web service and API description forms and on the 
requirements resulting from the steps involved in sending, 
processing and receiving HTTP messages. We show the prac-
tical applicability of our model by describing how it can be 
used as input to OmniVoke, implementing automated Web 
API invocation. Future work will mainly focus on integrating 
the invocation engine as part of a process engine in order to 
support the orchestration of semantically annotated Web APIs. 

Acknowledgments The work presented in this paper is 
supported by EU funding under SOA4All (FP7 - 215219). 

REFERENCES 

[1] R. T. Fielding: Architectural styles and the design of network-based 
software architectures. PhD thesis, University of California, 2000. 

[2] Web Services Description Language (WSDL) Version 2.0. Recommen-
dation, W3C, June 2007. Available at http://www.w3.org/TR/wsdl20/. 

[3] M. Maleshkova, C. Pedrinaci, J. Domingue: Investigating Web APIs on 
the World Wide Web. In Proc of the 8th European Conf. on Web Services 
(ECOWS), 2010. 

[4] M. J. Hadley: Web Application Description Language (WADL). Tech-
nical report, Sun Microsystems, November 2006. Available at https: 
//wadl.dev.java.net. 

[5] J. Kopecky,´ T. Vitvar, D. Fensel, K. Gomadam: hRESTS & Mi-
croWSMO. Technical report, available at http://cms-wg.sti2.org/TR/ 
d12/, 2009. 

[6] A. P. Sheth, K. Gomadam, J. Lathem: SA-REST: Semantically Inter-
operable and Easier-to-Use Services and Mashups. In IEEE Internet 
Computing, 11(6):9194, 2007. 

[7] J. Kopecký, T. Vitvar, C. Bournez, J. Farrel: SAWSDL: Semantic 
Annotations for WSDL and XML Schema. IEEE Internet Computing, 
11(6):60-67, 2007. 

[8] N. Li, C. Pedrinaci, M. Maleshkova, J. Kopecky, J. Domingue: Omni-
Voke:A Framework for Automating the Invocation of Web APIs. Fifth 
IEEE International Conference on Semantic Computing, 2011. 

[9] T. Vitvar, J. Kopecký, J. Viskova, D. Fensel: WSMO-Lite Annotations 
for Web Services. In the Semantic Web: Research and Applications, 
ESWC 2008. 

[10] M. Maleshkova, C. Pedrinaci, J. Domingue: Semantic annotation of Web 
APIs with SWEET. 6th Workshop on Scripting and Development for the 
Semantic Web at ESWC, 2010. 

http://cms-wg.sti2.org/TR
https://wadl.dev.java.net
http://www.w3.org/TR/wsdl20
http://purl.org/hRESTS/examples
http://iserve-dev.kmi.open.ac.uk:8080/RestInvoke/service
http://iserve.kmi.open.ac.uk
http://purl.oclc.org/NET
http://iserve.kmi.open.ac.uk
http://purl.org/ontology/mo/MusicArtist
http://iserve.kmi.open.ac.uk
http://ws.audioscrobbler.com/2.0/?���rest:URITemplate
https://purl.org/hRESTS/1.1
http://cms�wg.sti2.org/ns/minimal�service�model
http://www.w3.org/2000/01/rdf�schema
http://iserve.kmi.open.ac.uk/resource
http://iserve-dev.kmi.open.ac.uk:8080/RestInvoke



