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Abstract. Semantic heterogeneity caused by the use of different on-
tologies to describe the same topics represents an obstacle for many 
data integration tasks on the Web of Data, in particular, discovering 
relevant repositories for interlinking and comparing repositories with re-
spect to the coverage of specific domains. To facilitate these tasks, map-
pings between schema terms are needed alongside the links between in-
stances. Currently, explicitly specified schema-level mappings are scarce 
in comparison with instance-level links. However, by analysing existing 
instance-level links it is possible to capture correspondences between 
classes to which these instances belong. In our experiments, we applied 
this approach on a large scale to generate schema-level mappings be-
tween several Linked Data repositories. The results of these experiments 
provide some interesting insights about the use of ontologies on the Web 
of Data and schema-level relations which emerge from existing data-level 
interlinks. 

1 Introduction 

One of the main motivations behind large-scale data publishing using the Linked 
Data approach [1] is the possibility to integrate relevant information originally 
published by different providers. This is achieved, in particular, by establishing 
links between instances in different repositories. However, linking a new reposi-
tory to other datasets in the cloud remains a non-trivial task for a data publisher. 
In order to tackle this task, several questions have to be answered, in particular: 

– Which other repositories contain relevant data? 
– Which of these repositories should a new repository be connected to? (or, 

alternatively, URIs from which repositories should be reused in a new repos-
itory? ) 

In order to answer the first question, one needs to know what types of individuals 
are stored in the datasets. With respect to the latter question, the choice of a 
candidate third-party repository for establishing links depends on several factors, 
in particular, their coverage (are all instances from the new repository mentioned 
in a candidate repository?), popularity (which one is the commonly accepted 
reference source for a specific type of data?), and level of detail (which repository 
describes the most properties for instances of a particular class?). 

mailto:e.motta}@open.ac.uk


These questions can partially be answered with the help of meta-level descrip-
tions using the voiD ontology1 . However, voiD descriptors may be insufficient 
to compare some of the characteristics (e.g., whether the domain of food and 
diets is better covered in Freebase or DBPedia). Moreover, voiD descriptors not 
always describe all relevant properties of datasets (e.g., dcterms:subject is not 
always provided) and for some datasets may be not available. 

One of the major obstacles which complicate this kind of analysis is schema 
heterogeneity. It can be difficult to establish automatically that two repositories 
describe the same kind of data, retrieve relevant data subsets from them, and 
make a comparison, if these repositories use different terminology to describe 
the same or semantically similar types of instances. For example, a hypothet-
ical repository describing a TV program may need to refer to descriptions of 
movies, music pieces, and their performers. There are several repositories avail-
able on the Web: e.g., specific sources describing the music topic (MusicBrainz, 
Jamendo, etc.), the movie topic (LinkedMDB), as well as generic sources cov-
ering both (DBPedia, Freebase). In order to compare how well these reposito-
ries are suitable as reference sources, it is useful to know which classes in the 
respective ontologies contain overlapping data: e.g., music:MusicArtist and db-
pedia:MusicalArtist, linkedmdb:film and dbpedia:Movie, etc. Having a high-level 
overview of schema-level correspondences, which would show the coverage of top-
ics by available ontologies would help the data publisher to make appropriate 
choices. 

In this paper, we described our work on constructing such a network of class 
level mappings for a subset of the Linked Data cloud. So far, several ontologies 
used by popular Linked Data repositories were enriched with mappings con-
necting them to other ontologies (most notably, in the context of the UMBEL 
project2). However, these mappings, constructed in a top-down way, only cover 
a limited subset of the Web of Data and do not fully reflect the structure of the 
repository network formed by instance-level links (e.g., such important reposi-
tories as Freebase, RKBExplorer, and LinkedMDB are not covered). Given the 
abundance of existing instance-level links, a bottom-up process where the cor-
respondences between classes are captured based on the links between sets of 
their instances becomes a promising approach. We applied light-weight instance-
based ontology matching techniques to a snapshot of the Web of Data which 
was proposed for the Billion Triple Challenge 2009 competition3 and extracted 
a large-scale network of ontology mappings. This network provides interesting 
insights into the use of ontologies on the Web of Data and can be employed to 
facilitate data integration. 

The rest of the paper is organised as follows: in section 2 we briefly outline 
the ontology matching process we used to extract the mappings and discuss 
our observations about its applicability and limitations. Then, in section 3 we 
describe the resulting network of schema mappings we obtained. In section 4 we 

1 http://semanticweb.org/wiki/VoiD 
2 http://www.umbel.org 
3 http://vmlion25.deri.ie/ 
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overview relevant existing work. Finally, section 5 discusses the limitations of 
our work and directions for the future work. 

2 Constructing the schema network 

The snapshot of the Web of Data which we used in our work was proposed 
for the Billion Triple Challenge 2009 competition4 . This is a large-scale dataset 
containing about 1.14 billion statements. It contains the core portion of the 
repositories published within the Linking Open Data (LOD) initiative, as well 
as many smaller datasets retrieved using Semantic Web search engines, such 
as Watson and Falcon-S. The LOD datasets included into the BTC repository 
such as DBPedia, Freebase, Bio2RDF, RKBExplorer, Geonames, and others still 
constitute the core of the Web of Data cloud and are commonly used to connect 
other datasets. Thus, their schema ontologies are particularly interesting for 
potential data integration scenarios. 

To derive the sets of mappings between these ontologies, we applied a light-
weight matching technique which computes the similarity between a pair of 
classes based on the degree of overlap between their instance sets. Originally, we 
used this approach to produce schema-level mappings in order to facilitate fur-
ther instance coreference resolution and discover previously missing links [2]. An 
advantage of using instance-based ontology matching techniques in the Linked 
Data environment lies in their ability to capture interconnections between on-
tologies which emerged from the way they are used by actual repositories rather 
than the way they were originally designed. 

When two classes share at least one individual, we say that there is an overlap 
relation between these classes. There are two common cases where an individual 
becomes assigned to several classes defined in different ontologies: 

– Declared coreference association. In this case, two individuals belonging to 
different repositories are declared to be identical and linked via the owl:sameAs 
property. This creates an overlap relation between the classes to which the 
instances belong. 

– Co-typing. In this case the publishers of a repository structure the data 
using terms of several ontologies. In this way, one individual can be explicitly 
assigned to several classes from different ontologies. One example is DBPedia, 
which uses Yago and UMBEL ontologies in addition to its native DBPedia 
ontology. 

These two types of overlaps illustrate different aspects of the data structure. 
Declared association-based overlap relations characterise the distribution of data 
in different repositories and correspondences between sets of their individuals. 
Co-typing-based mappings mostly highlight the choices of data publishers to 
use specific vocabularies to annotate their data. To keep this distinction, in 

4 Dataset statistics can be found on http://vmlion25.deri.ie/ and 
http://gromgull.net/blog/category/semantic-web/billion-triple-challenge/. 
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this paper we analyse the declared association-based and co-typing-based overlap 
mappings separately. 

In order to generate all overlap relations present in the dataset, we used the 
following procedure: 

1. Extract all rdf:type relations present in the dataset: A(I), where A is a class 
and I is an instance of this class. 

2. For each class A, generate the set of its instances (extension): e(A) = 
{I|A(I)}. 

3. For each pair of classes A and B, generate the co-typing-based overlap set: 
ecA ∩ B = {I|A(I), B(I)}. In total, this constituted about 3.6M co-typing-
based overlap mappings (we only considered intersections between classes 
which did not share the same URI namespace) 

4. Extract all owl:sameAs relations present in the dataset (sameAs(I1, I2)) and 
generate their transitive closure. 

5. Generate association-based overlap sets: ea(A ∩ B) = {I1|A(I1), B(I2), 
sameAs(I1, I2)} (one sameAs relation corresponds to one element in the 
set). In total, about 1M (992482) association-based overlap mappings were 
produced. 

For association-based overlap sets we distinguished between a direct class link 
(when their individuals were explicitly stated in the dataset as identical) and 
an indirect link (when owl:sameAs relations were inferred using transitivity). 
Indirect mappings occurred, in particular, when two repositories were connected 
via a third one (e.g., MusicBrainz and Freebase via DBPedia). Both sets of 
mappings were filtered to remove general-purpose concepts (such as OWL and 
RDFS terms) and blank nodes. These two sets of mappings constitute the “raw 
data” which were later analysed to retrieve valid semantic mappings. 

In our original work [2], we used a set similarity-based metrics to discover 
relations between “strongly overlapping” classes in the ontologies. We used a 
fuzzy notion of “strong overlap” instead of strict subsumption or equivalence 
for two main reasons. First, in the Linked Data environment such mappings in 
many cases are impossible to derive: sometimes even strong semantic similarity 
between concepts does not imply strict equivalence. For instance, the concept 
dbpedia:Actor denotes professional actors (both cinema and stage), while the 
concept movie:actor in LinkedMDB refers to any person who played a role in 
a movie, including participants in documentaries, but excluding stage actors. 
Second, such “strong overlap” relations are valuable because they often point to 
semantically similar categories which to a large extent share the same instances. 
While not always strictly logically correct, these relations are still valuable for 
the goals we discussed in section 1: determining and comparing suitable sources 
for linking. 

In order to capture the optimal parameters for distinguishing valid semantic 
mappings, in the experiments described in this paper we employed a machine 
learning approach. To construct a gold standard set, we have randomly selected 
a set of 6000 mappings (3000 association-based and 3000 co-typing-based ones) 
and annotated them manually (“strong overlap” relations were assigned based on 



subjective judgement). In these initial experiments, annotation was done by one 
person. After that, we used this gold standard set to train a classification model 
which would assign the relation type to any pair of overlapping classes. Our 
goal was to find a suitable classifier to distinguish between valid subsumption 
and equivalence mappings (owl:equivalentClass and rdfs:subClassOf ) and other 
mappings. 

For the classifier, we included the following features: 

– ns1, ns2 : namespaces of two class URIs A and B respectively. 
– |e(A ∩ B)|: the size of the set of instances belonging to both classes A and 

B. 
– |e(A)|, |e(B)|: sizes of instance sets for classes A and B respectively. 

|e(X∩Y )|– λ(A, B), λ(B, A), where λ(X, Y ) = |e(X)|
– direct (only for declared association-based links): a boolean value equal to 

true for direct declared association-based mappings and false otherwise. 

To test the resulting model, we used the standard 10-fold cross-validation mech-
anism. After testing, we found that the J48 decision tree algorithm was able 
to achieve the best performance (Table 1), so this learned classifier was then 
applied to the whole dataset. 

Table 1. Test results: class matching 

Mapping set Test Algorithm Precision Recall F1 
Association-based 1 J48 0.939 0.689 0.795 
co-typing-based 2 J48 0.952 0.944 0.948 

The resulting set of mappings was compared against the set of already ex-
isting schema-level relations declared in the dataset. We discovered that the 
majority of overlap mappings were not covered by explicitly defined axioms. 
Only 3119 mappings (2162 and 957 for the declared association-based and co-
typing-based subsets respectively) were found to be defined as rdfs:subClassOf 
and owl:equivalentClass (or could be inferred), which constituted less than 2.6% 
and 1.4% of the number of mappings selected by the learned classifier in each 
case. 

3 Analysing the resulting mappings 

We applied the learned decision tree models (J48) to our two sets of mappings 
containing declared association-based and co-typing-based overlap mappings. At 
the next step, we filtered out redundant mappings: when a class A is found to be a 
subclass of two classes B and Bsuper where B v Bsuper and the distance metrics 
are equal (λ(A, B) = λ(A, Bsuper)), then only the mapping A v B remains, and 
the mapping A v Bsuper is removed. Two resulting sets of mappings were then 



used to construct networks connecting classes from different ontologies. The 
characteristics of this network are discussed in section 3.1. Then, in order to 
study the relations between whole vocabularies, we used the original mappings 
between classes to generate a set of mapping-based links between ontologies. 
This stage is described in section 3.2. 

3.1 Links between classes 

We obtained two graphs where classes played the role of nodes and mappings 
represented edges. The properties of these resulting networks of classes are given 
in Table 2. To give an overview of the most important “hub” nodes in the 

Table 2. Networks of classes 

Property Declared association-based Co-typing-based 
Number of nodes 20365 35578 
Number of edges 82422 67620 
Maximum number of 
connections per node 

5301 18137 

Node with the maximum 
number of connections 

geonames:Feature foaf:Person 

Average number of 
connections per node 

8.09 3.80 

network, Table 3 lists the top 10 classes ranked by the number of connections 
they are involved in. 

We can see that the “hub” nodes represent classes representing popular con-
cepts and defined at the high level in the class hierarchy. Large number of 
mappings per class is mostly caused by many rdfs:subClassOf relations. After 
analysing the distribution of mappings per class, we found that in both cases it 
follows the power law and most classes had only one mapping to another class. 

The declared association-based network derived from owl:sameAs links be-
tween instances is more connected: average number of mappings per class is 
8.09 compared to 3.8 in the co-typing-based case despite the fact that it con-
tains less nodes. This is possibly caused by the “data-level focus” of the LOD 
initiative: the priority for a data repository owner is to generate instance-level 
links to other repositories rather than reuse several different vocabularies for 
data description. In this case, class-level mappings automatically derived from 
owl:sameAs links can be particularly helpful for data integration tasks, because 
they add new information which was not explicitly stated in any one repository. 
On the other hand, the co-typing-based network illustrates the impact of ontol-
ogy popularity: although the graph has more nodes, it is less connected, and a 
single class foaf:Person contributes to more than 25% of all mappings. From the 
results we obtained, we can see the strong influence of DBPedia on the result-
ing mappings. In the association-based set, 7 out of the top 10 nodes relate to 



Table 3. Top 10 classes (by number of edges) 

Rank 
Rank 

Declared association-based Co-typing-based 
Name Edges Name Edges 

1 geonames:Feature 5301 foaf:Person 18137 
2 freebase:people.person 2318 umbel:Person 4533 
3 yago:PhysicalEntity100001930 2230 dbpedia:Person 2478 
4 yago:Object100002684 2076 foaf:OnlineAccount 1983 
5 yago:Abstraction100002137 1759 dbpedia:FootballPlayer 1300 
6 yago:Whole100003553 1511 wordnet:Person 1237 
7 linkedmdb:film 1085 dbpedia:Album 996 
8 yago:LivingThing100004258 975 dbpedia:Species 920 
9 yago:Organism100004475 974 dbpedia:Artist 900 
10 yago:CausalAgent100007347 956 dbpedia:MusicalArtist 853 

top-level entities from the YAGO ontology. High positions of geonames:Feature 
and freebase:people.person are also largely due to the number of DBPedia and 
YAGO classes modelling the respective topics. In the co-typing-based network, 
we can see the strong presence of the FOAF and WordNet ontologies (largely 
due to their high reuse in small-scale datasets even before the start of the LOD 
initiative). Beyond that, all top nodes in the network were produced based on 
DBPedia instances annotated using different schemas. It is interesting to see the 
high position of the class dbpedia:FootballPlayer. The main reason for it is the 
large number of YAGO classes (Wikipedia categories) describing this topic. 

When we merged two mapping sets into one, we found that only a small sub-
set of mappings (3591) was shared between two networks. Two types of evidence 
we used produced complementary sets of mappings rather than duplicated each 
other. 

3.2 Mapping-based links between ontologies 

In order to capture the relations between different vocabularies used on the 
Web of Data, we generated a set of mapping-based links between ontologies. 
In accordance with [3], we say that there is a mapping-based link between two 
ontologies O1 and O2 if there exists a mapping between classes A and B such 
that A ∈ O1 and B ∈ O2. The classes were assigned to ontologies based on their 
URI prefixes, and mappings between classes from the same pair of ontologies 
were grouped together. Table 4 contains the details of the resulting graphs, and 
Table 5 lists for each case top 10 nodes sorted by the number of edges they are 
connected to. 

The graphs constructed using declared association-based and co-typing-based 
evidence are shown in Fig. 1 and Fig. 2. In the declared association-based graph 
(Fig. 1), the main factor which influences the position of an ontology in the 
graph is topic coverage. The top 5 “hub” ontologies with wide coverage do not 
have a large difference in the number of connections: YAGO (29), Freebase (28), 



Table 4. Networks of ontologies 

Property Declared association-based Co-typing-based 
Number of nodes 52 743 
Number of edges 172 1352 
Maximum number of 
connections per node 

29 504 

Node with the maximum 
number of connections 

YAGO FOAF 

Average number of 
connections per node 

3.96 1.85 

Connected 
components 

5 35 

Average path 
length 

2.92 2.48 

Fig. 1. The network of ontologies derived from instance coreference links. Ontologies 
with wide coverage used by popular repositories serve as “hubs”: YAGO, DBPedia, 
OpenCYC, Freebase, and UMBEL. 



UMBEL(27), OpenCYC (26), and DBPedia (23). The 6th and the 7th ranking 
nodes (LinkedMDB and eurostat), which cover specific domains, have only 13 
connections each. It is interesting to note that although Freebase is connected 
to less repositories than DBPedia in the LOD cloud5 , this does not have an 
impact at the schema level. This is the effect of indirect owl:sameAs mappings 
inferred by transitivity. Connections of domain-specific ontologies (such as Mu-
sic ontology or Geonames) point to other ontologies covering the same domain, 
and, indirectly, to the underlying repositories which contain relevant data. This 
makes them good starting points when the task is to find several datasets rel-
evant to a specific topic. Both networks contain several disjoint subgraphs (5 
and 35 respectively), and in both cases the same pattern occurs: there exists one 
large central cluster including the majority of nodes and several small ones usu-
ally including a pair of ontologies (e.g., a cluster {http://purl.uniprot.org/core/, 
http://bio2rdf.org/ns/uniprot#}). In Fig. 1, similarly to the data-level LOD 

Table 5. Top 10 ontologies (by number of edges) 

Rank Declared association-based Co-typing-based 
Name Edges Name Edges 

1 YAGO 29 FOAF 504 
2 Freebase 28 Wordnet 296 
3 UMBEL 26 AKT 66 
4 OpenCYC 25 Music ontology 52 
5 DBPedia 23 semantic-mediawiki 37 
6 eurostat (VU Berlin) 13 RSS 30 
7 LinkedMDB 13 eurostat 30 
8 Geonames 12 DAML-OIL 29 
9 openlinksw-demo 12 geneontology 26 
10 FOAF 11 Mindswap 25 

cloud, we can also observe the existence of two “communities” centered around 
DBPedia and RKBExplorer. At the schema level these are centered around 
YAGO and AKT ontologies. Both communities are connected via the FOAF on-
tology (rdfs:subClassOf relations with the foaf:Person class). At the data level, 
RKBExplorer and DBPedia are connected via two other repositories: DBLP 
Hannover and DBLP Berlin. The reason for missing schema-level links between 
AKT and the ontologies used in DBPedia was the omission of intermediate 
owl:sameAs links on this route, which did not allow indirect declared association-
based class mappings to be produced. 

The co-typing-based network (Fig. 2) is substantially larger (746 nodes vs 
53) and mainly connects ontologies used outside the LOD cloud (including even 
legacy schemas like DAML-OIL). In this graph, the distribution of nodes primar-

5 http://richard.cyganiak.de/2007/10/lod/ 
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Fig. 2. The network of ontologies derived from ontology reuse (only ontologies with at 
least 10 populated classes are shown). FOAF and Wordnet, reused by many datasets, 
have the most connections. 



ily illustrates ontology popularity : FOAF (504 connections) and Wordnet (296) 
get the most connections because they are reused in many datasets. 

4 Related Work 

Originally, schema matching approaches in the database and Semantic Web do-
mains primarily focused on the task of matching two input schemas in isolation 
from others [4], [5]. With the availability of public ontologies, schema matching 
methods started to utilise external sources as background knowledge. One ap-
proach proposed in [6] matches two ontologies by linking them to an external 
third one. Then, semantic relations defined in this external ontology are used 
to infer mappings between entities of two original ones. The SCARLET tool [7] 
further elaborates this approach and employs a set of external ontologies, which 
it searches and selects using the Watson ontology search server6 . 

Recently, with the growing number of public repositories storing data about 
overlapping domains, it became important to analyse the emerging network 
of interconnections as a whole. The idMesh system[8] analysed the network of 
instance-level owl:sameAs coreference links between semantic repositories with 
the aim to identify spurious links and remove them. In [3] the authors used 
light-weight matching techniques to create a large set of schema-level mappings 
between ontologies from the BioPortal repository describing the medical do-
main. Then, the authors analysed the resulting network to gain insights about 
ontological coverage of the domain. We take a similar approach, however, our 
primary interest is in schema mappings which emerge from existing data-level 
links between repositories. 

5 Conclusion and future work 

As mentioned in section 1, schema-level mappings can become a valuable asset 
for the data publisher who wants to integrate a new repository into the Linked 
Data environment: for example, having a new repository about music described 
using the Music ontology, the pool of potential data sources to connect to would 
include other datasets using the the same ontology, but also repositories which 
use ontologies mapped to the it (DBPedia, Freebase, LinkedMDB, etc.). From 
this pool the publisher can select the most comprehensive data source for her 
needs. 

We consider the work described in this paper as our starting point in studying 
the emerging relations between ontologies on the Web of Data. There are several 
interesting future directions of research. First, our approach focused on estab-
lishing mappings between classes while ignoring mappings between properties, 
which are equally important in data integration scenarios. Mappings between 
properties are needed to represent data from different ontologies in a uniform 

6 http://watson.kmi.open.ac.uk/WatsonWUI/ 
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way, which is necessary for applying coreference resolution tools or, in a more 
general scenario, to present query results to the user. 

Second, in the context of our intended scenario (assisting the publisher in the 
choice of appropriate points of linkage) the quality of mappings had relatively 
low importance: a mapping is still useful if it connects two classes with a strong 
degree of overlap, but no strict logical relation holds. This allowed us to use very 
simple matching techniques to generate schema-level mappings. However, this 
assumption does not hold for many actual data integration scenarios: in general, 
a precise SPARQL query is not expected to return irrelevant results. Thus, ap-
plying state-of-the-art ontology matching tools to discover high-quality schema 
mappings in the Linked Data environment constitutes the second direction for 
future work. 
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