

Cross-Lingual Web API Classification and
Annotation

Maria Maleshkova, Lukas Zilka, Petr Knoth, Carlos Pedrinaci

Knowledge Media Institute (KMi)
The Open University, Milton Keynes, United Kingdom

{m.maleshkova, l.zilka, p.knoth, c.pedrinaci}@open.ac.uk

Abstract. Recent developments on the Web are marked by the growing
support for the Linked Data initiative, which encourages government
and public organisations, as well as private institutions, to expose their
data on the Web. This results in a plentitude of multi-lingual document
collections where the original resources are published in the language,
in which they are available. The challenges of multilingualism present
on the Semantic Web are also reflected in the context of services on the
Web, characterised by the rapid increase in popularity and use of Web
APIs, as indicated by the growing number of available APIs and the
applications built on top of them. Web APIs are commonly described in
plain-text as part of Web pages, following no particular guidelines and
conforming to no standards, despite some initial approaches in the area
[1, 2]. Therefore, API providers publish descriptions in any language they
see fit, making the service discovery and the subsequent processing of the
documentation challenging tasks. In this paper, we present a cross-lingual
approach that calculates semantic similarity of text to help classify and
annotate Web APIs, based on their textual descriptions. Furthermore, we
show how our solution can be implemented as part of SWEET [3], which
is a tool that enables the semi-automated creation of semantic Web API
descriptions. In addition, we demonstrate how the cross-lingual approach
can be adopted to support the language-independent discovery of Web
APIs.

1 Introduction

In the research context, English has established itself as a de-facto standard
language for conducting and publishing work. It is therefore easy to forget that
multilingualism is actually one of the main characteristics of the Semantic Web.
The importance of language diversity is made evident by the growing support
for the Linked Data initiative, which encourages government and public organ-
isations, as well as private institutions, to expose their data on the Web. Since
the document collections are published in the language, in which the original
sources are available, the result is an abundance of multi-lingual resources. In
comparison, the situation is quite similar in the context of services on the Web,
where the past few years have been marked by the increasing popularity and use
of Web APIs. The growing importance of Web APIs, also referred to as RESTful

services [4] (especially when conforming to the REST [5] architectural principles)
was initially triggered by popular Web 2.0 applications like Facebook, Google,
Flickr and Twitter that offer easy-to-use, publicly available APIs as means for
accessing their resources. Currently, Web APIs not only enable retrieval and
manipulation of different resources but also facilitate building of versatile appli-
cations based on combining heterogeneous data coming from diverse services.

Despite their proliferation, Web APIs are facing a number of limitations. The
majority of the Web APIs have only textual descriptions that are given directly
as part of HTML Web pages, disregarding efforts towards a common formal
language for describing Web APIs [1, 2]. Providers publish the documentation in
any form and any language that they see fit and as a result, finding and using
Web APIs can be quite challenging and requires extensive manual effort. API
consumers need to search for suitable services, manually process and interpret
the available documentation, which is sometimes in a different language, and
produce custom implementation solutions that are rarely reusable.

In this paper, we focus in particular on supporting the Web API search and
discovery tasks by enhancing the descriptions with: 1) information about the
type of provided functionality (for example, a weather service or a shopping
service) and 2) central concepts that can be used for determining the domain
of the service or be taken directly for annotating service properties such as the
inputs and outputs. For this purpose we present an approach that makes use
of Cross-lingual Explicit Semantic Analysis [6] to classify and annotate APIs,
given their textual description. As a result we are able to discover APIs with a
particular functionality, or characterised by a set of keywords, across languages.
Moreover, by including the computed classification and annotation details as
part of the semantic Web API descriptions, we support service discovery as
well as directly contribute to a Semantic Web that integrates Web APIs with
multilingual documentation. We also validate the applicability of the devised
approach by introducing a design of a system capable of supporting the creation
of semantic Web API descriptions, enhanced with classification information and
further annotations, and describe the implementation of its key components.

The remainder of this paper is structured as follows: Section 2 provides a
motivating example that illustrates the challenges of searching for APIs with
particular functionality or from a particular domain, while Section 3 lists related
work and gives some background in the area of semantic Web API descriptions
and details on the cross-lingual semantic relatedness approach. Our API classi-
fication and annotation approaches are given in Section 4. Section 5 describes in
more detail the solution design and the implementation of the key components,
and Section 6 concludes the paper.

2 Motivation

One of the most common service discovery tasks is discovery based on the func-
tionality or the domain of the service (for example, “I am looking for an API that
can map my travel route” or “I am looking for a shopping service”). Therefore,

in this paper we focus our work on supporting this basic but essential discovery
type. Currently the search options for APIs are very limited. One possibility
is to use conventional search engines such as Google or Yahoo and do keyword
search and hope that one of the returned matches is a Web API description. It is
important to point out that so far there is no way of automatically distinguishing
between webpages that describe Web APIs and webpages that simply mention
an API, such as a news article, so this differentiation has to be done manually.
Another way is searching in Web API directories, such as ProgrammableWeb
(http://www.programmableweb.com), which are based on manually collecting
and registering APIs. A final option is looking in developer forums and asking
other users for suitable APIs, i.e. the “word of mouth” approach.

Figure 1 visualises a simple example, which demonstrates the necessity of
supporting cross-language Web API search. The presented API provides ca-
pabilities for geocoding and reverse geocoding. If we use Google to search for
a geocoding API, the query will be language specific; therefore, we would ei-
ther find a service such as the popular GeoNames (http://www.geonames.org/
export/web-services.html), which is in English, or the example description
in Czech (http://ondras.zarovi.cz/smap/geokodovani/). However, it would
not be possible to find both descriptions with one and the same search keywords.
Similarly, existing Web API directories are language specific, in particular re-
stricted to English, as are developer sites and forums too.

Fig. 1. Example Web API Description in Czech

In summary, even though there are at least two geocoding Web APIs, given
the existing search possibilities, we would find either one or the other, depend-
ing on which language we use to conduct the search. Therefore, we propose to
employ a cross-language classification approach and to enhance the API descrip-
tions with metadata about the service functionality. Furthermore, we propose to
determine the key concepts, characterising the textual documentation, and to
use those directly as tags or even use them to determine the domain of the ser-
vice and specific annotations for individual service properties, such as inputs and
outputs. In particular, we follow a lightweight semantic approach for enhancing
existing API description with metadata, which supports the completion of tasks
such as discovery, but also composition and invocation, on the level of semantics,

abstracting away from syntactic specifics, including the original language of the
documentation [3, 7]. We provide more detail to the proposed approach in the
following sections.

3 Background and Related Work

In this section we provide some background on the use of lightweight semantics
for describing Web APIs, list existing annotation and tagging tools, and focus
on providing details on common classification approaches and, in particular, on
classification based on cross-lingual semantic relatedness.

3.1 Lightweight Semantic Web API Descriptions

Since the advent of Web service technologies, research on semantic Web services
(SWS) has been devoted to reduce the extensive manual effort required for ma-
nipulating Web services. The main idea behind this research is that tasks such
as discovery, negotiation, composition and invocation can have a higher level
of automation, when services are enhanced with semantic descriptions of their
properties. Similarly to “classical” Web services based on WSDL/SOAP, Web
API-related tasks also require a lot of developer involvement and face even fur-
ther difficulties, since there is no established common formalism for describing
Web APIs. In order to address this, lightweight annotations over API descrip-
tions have been proposed as means for achieving a higher-level of automation.

Currently, there are two main contributions aiming at using semantics to
support the automation of common Web API service-related tasks. Both ap-
proaches rely on marking service properties within the HTML description and
subsequently linking these to semantic entities. MicroWSMO [7] is a formal-
ism for the semantic description of Web APIs, which is based on adapting the
SAWSDL [8] approach for enhancing service properties with semantic informa-
tion. MicroWSMO uses microformats for adding semantic information on top
of HTML service documentation, by relying on hRESTS [9] for marking service
properties. Another formalism is SA-REST [10], which also applies the ground-
ing principles of SAWSDL but instead of using hRESTS relies on RDFa [11]
for marking service properties. Similarly to MicroWSMO, SA-REST enables
the annotation of existing HTML service descriptions by identifying service ele-
ments and linking these to semantic entities. The main differences between the
two approaches are not the underlying principles but rather the implementation
techniques. For the here presented work, we have adopted hRESTS and Mi-
croWSMO that are already implemented as part of SWEET [3], which is a tool
that enables the semi-automated creation of semantic Web API descriptions.

Currently, there are quite a few tagging tools that enable the tagging of
web pages but also support the user in choosing the correct tags. Some of the
main ones include TagAssist [12], collaborative tagging [13] and user-based col-
laborative tagging [14]. In the context of our work, there are also a number of
application that are especially developed for supporting Web service and API
annotation [15, 16]. However, since we propose a general approach for classifying

APIs and determining further annotations, any of the existing tagging or service
description tools can be extended to include the computed results and present
them to the user. In this paper, we verify the applicability of our approach
by enhancing SWEET through integration with the developed cross-language
classification and central concepts deriving components.

3.2 Cross-lingual Text Classification

Text classification has been successfully applied to many real world problems
including spam detection, plagiarism detection or newspaper content classifica-
tion, and its importance grew quickly with the amount of information available
on the Web. Along with the widespread use of text classification methods comes
the need for automated classification of new documents or web pages into hi-
erarchies. This can be demonstrated on the Web by the existence of large web
directories, such as Open Directory Project or ProgrammableWeb.

Over the past 20 years, text classification largely benefitted from the advances
in the field of machine learning [17]. The machine learning approach, which aims
at inducing a classifier given a set of training examples, already dominates over
the knowledge engineering approach, which consisted of manually constructing
the classifier. A common way to address the problem is to represent a textual
document using a Vector Space Model [18], i.e. as a weighted vector of terms,
and to automatically build a classifier from a set of training examples. While
this approach often produces good results when applied to monolingual texts, it
is not directly applicable in a multilingual environment.

There are two common approaches to address this problem:
– Machine translation approach - involves machine translation of texts to a

common language or interlingua and then represents the documents as vec-
tors in that language.

– Mapping to a shared conceptual space - represents the documents as term vec-
tors in their source language and then projects them into a shared conceptual
space. This is typically done in practice with the help of ontologies/vocabu-
laries or by applying the distributional hypothesis [19].
An approach, which received much attention in the recent, years is to use

Wikipedia terms as a shared conceptual space. Texts can be mapped into this
space by performing Explicit Semantic Analysis (ESA) [20], hence this method
is called Cross-language Explicit Semantic Analysis (CL-ESA) [6]. While there
has been significant research involvement in monolingual text classification, the
multilingual context has been addressed only recently. The Cross-Language Eval-
uation Forum (CLEF) has been, over the last decade, the main conference spe-
cialising in this research field.

In this paper we describe a Web API classification and annotation method
that uses CL-ESA to classify the textual description of a Web API, given a
background collection of APIs. The form of CL-ESA that we utilise is equivalent
to [6], and lies in finding the correct cross-lingual mapping of the ESA concepts
from the Wikipedia. Since CL-ESA uses Wikipedia concepts to represent doc-
uments in a multilingual shared vector space, the approach is applicable to the
majority of languages.

4 Supporting the Cross-lingual Web API Classification
and Annotation

In this section we describe in detail our approach for classifying Web APIs based
solely on their textual documentation. We provide the devised algorithm as
well as a specific application example. We take the cross-lingual processing one
step further and use it to determine the key concepts of the description, which
can be used directly as tags or can serve as the basis for deriving further API
annotations.

4.1 Cross-lingual Web API Classification

Our approach towards Web API classification is based on comparing the descrip-
tion of an API, which is to be classified, with a set of APIs already classified
according to a given taxonomy. The specific implementation of our approach
is based on the ProgrammableWeb taxonomy, which comprises of 54 classes
(http://www.programmableweb.com/apis/directory). We refer to the set of
pre-classified services as Background Collection. In particular, we determine a
number of representative service descriptions for each class in the taxonomy.
These service descriptions are used as service models for the classification pro-
cess. Moreover, the actual classification process is not based on the textual de-
scriptions in the background collection but rather on the pre-computed ESA
vector representations, thus saving computation time at runtime.

In addition to the background collection, we also define a set of stop words.
Web API documentation use very limited vocabulary for describing the format
of data and also for describing the behaviour of the Web API. For this reason,
a stop-word file must be built to prevent the Explicit Semantic Analysis from
focusing on the features of Web API descriptions that do not differentiate the
services into classes. Therefore, a sufficiently large document collection in each
of the input languages must be acquired and used to build the stop-word list.
The stop-word list serves as an input for the pre-processing step of the Explicit
Semantic Analysis.

Algorithm 1 formally describes the proposed API classification approach. In
particular, the devised method includes the following steps. First we determine
the language, in which the Web API description is written. This is currently
not an issue and can be done easily by comparing the word distribution of
the Web API description to average word distributions of other languages, or
using one of the Web Services1 . Second, we remove the web-service specific stop-
words and project the Web API description into the concept space given by
the particular language version of Wikipedia. After that we project the vector
into the English Wikipedia concept space, to facilitate its comparison with our
Web API background. In the following step we iterate over each document in
the background and record its similarity with the previously determined vector
1 http://code.google.com/apis/language/translate/v1/using_rest_
langdetect.html

http://code.google.com/apis/language/translate/v1/using_rest
http://www.programmableweb.com/apis/directory

of the input Web API description. Finally, for each category, we add up the
acquired similarity measure and divide it by the number of examples for the
given category. We do this in order to derive a normalised similarity measure,
which is not influenced by the number of representative services. There are a
number of further ways for determining the similarity measure (selecting the
category with best service score, selecting the category with best median, etc.).
The output is a list of categories, sorted according to their score.

Algorithm 1 Assigning Class Labels to a Web API Description
Require: webAPIDescription, backgroundCollection
Ensure: Scored class suggestions

language ← recognize language(webAPIDescription);
esa vector ← esa analyze(language, webAPIDescription);
esa vector en ← esa map vector(esa vector, language, “en”);
category score ← new Map();
category cnt ← new Map();
for ⟨background api vector, category⟩ ∈ backgroundCollection do

doc score ← vector similarity(esa vector en, background api vector);
category score[category] ← category score[category] + doc score;
category cnt[category] ← category cnt[category] + 1;

end for
for category, score ∈ category score do

result[category] ← score / category cnt[category];
end for
sort(result);
return result

Coming back to the example introduced in Section 2, independently of whether
we want to classify the GeoNames API or the Czech geocoding API, both de-
scriptions will be converted to English ESA vectors. Based on each vector a list
(ideally, an identical list) of sorted categories will be produced. Therefore, inde-
pendently of the language, both descriptions would in the end be mapped to the
same category. We do not consider the case where a new category needs to be
created but simply map the API to the closest of the existing categories. Previ-
ous approaches base classification on word matches or word stemming/similarity,
therefore, they are not applicable to a multi-lingual context.

4.2 Cross-Lingual Web API Annotation

Central Concepts Detection We assume that two APIs can be described
with the same central concepts if their descriptions are semantically similar
(their semantic relatedness measure is above some threshold). Our approach
towards detecting the Central Concepts of a non-english Web API description
is to find similar descriptions in a repository of English-based APIs (in this
approach serving as background collection), and re-use its central concepts.

The Central Concepts for API descriptions in the repository. i.e. background
collection, can be assigned either manually (e.g. by letting users assign keywords

to services), using a concept extraction method or a concept extraction Web ser-
vice. We will use the concept extraction Web service AlchemyAPI2 . It would be
possible to extract concepts from the non-English WebAPI description directly
using the aforementioned Web service, but from our experience the concept de-
tection from an English text yields much better results.

Algorithm 2 Determining the Central Concepts for a Web API Description
Require: webAPIDescription, backgroundCollection

language ← recognize language(webAPIDescription);
esa vector ← esa analyze(language, webAPIDescription);
esa vector en ← esa map vector(esa vector, language, “en”);
for ⟨background api vector, central concepts⟩ ∈ backgroundCollection do

score ← cosine similarity(esa vector en, background api vector);
results[score] ← central concepts;

end for
return max(results)

Algorithm 2 represents the pseudo-code for our central concepts detection
method. First, the language of the input API description is determined, and the
description is projected into the ESA concept space of the particular language.
Then, the ESA vector is mapped into the English concept space to facilitate
its comparison with the ESA vectors of the services in the background API
collection. The best matching service from the background collection is chosen
and its central concepts are suggested as central concepts for the input API
description.

If we use the algorithm to process the examples introduced in Section 2,
the central concepts for the GeoNames API can be determined directly by us-
ing the AlchemyAPI. However, calculation of the central concepts for the Czech
geocoding API is more challenging and is based on computing the cross-lingual
similarity between its description and the descriptions in the background collec-
tion. The results, however, are comparable for both APIs.

The benefits of determining the central concepts for an API description are
multifold. First, they can be used directly as tags for the Web API. These tags
can be employed to enhance search within directories or as complementary infor-
mation presented to the user as part of the API description. However, with some
further processing, the central concepts can serve as the basis for determining
semantic annotations for separate service parts, such as inputs and outputs, or
for extrapolating the domain of the service. In particular, we propose to input
the computed words into Watson [21] or Sindice (http://sindice.com) and
to use the results as suggestions for semantic entities suitable for annotating
the API. In our example, two of the central concepts are “latitude” and “lon-
gitude”, which when posted in Watson return http://www.w3.org/2003/01/
geo/wgs84_pos#long and http://www.w3.org/2003/01/geo/wgs84_pos#lat.
These properties can directly be used to semantically describe the inputs of the
API. Furthermore, the central concepts can be processed in order to determine

2 http://www.alchemyapi.com/

http://www.alchemyapi.com
http://www.w3.org/2003/01/geo/wgs84_pos#lat
http://www.w3.org/2003/01
http://sindice.com

the domain of the service and extrapolate a set of relevant domain ontologies.
However, this work is beyond the scope of the paper but is envisioned as part of
our future work.

4.3 Supporting Web API Search and Discovery

The here described methods for cross-lingual classification and determining cen-
tral concepts can be employed for supporting Web API search and discovery,
overcoming language boundaries. In particular, the benefits of enhancing Web
API descriptions with classification information and specific key words can be
implemented both directly on the level of the API documentation as well as on
the semantic level. For instance, existing Web API directories could be extended
with search functionality about the type of service or based on keywords de-
scribing the service, which in contrast to current solutions, would be language
independent. This is a simple, yet effective way for enabling cross-language Web
API search.

Furthermore, our work supports enhanced discovery by following the general
approach outlined by semantic Web service technologies that aims to reduce
the extensive manual effort required for performing tasks such as discovery, ne-
gotiation, composition and invocation by enriching services with semantic de-
scriptions of their properties. In particular, the computed classification type and
annotations can directly be included as part of lightweight semantic Web API de-
scriptions given in MicroWSMO or SA-REST. These, in turn serve as a basis for
applying automated discovery approaches. In the following section we describe
the implementation of a system that enables precisely the semi-automatic cre-
ation of semantic API descriptions in MicroWSMO, where the user is presented
with a list of suitable categories and annotations to choose from.

5 System Design and Implementation

In this section we validate our approach by presenting a system design and giving
an implementation solution realised by extending the Semantic Web sErvice
Editing Tool – SWEET [3]. SWEET3 is a Web application developed using
JavaScript and ExtGWT, which is started in a Web browser by calling the
host URL. It takes as input an HTML Web page describing a Web API and
offers functionalities, which enable users to annotate the service properties and
to associate semantic information with them. As it can be seen in Figure 2,
the architecture of SWEET consists of three main components, including the
visualisation component, the data preprocessing component and the annotations
recommender. In order to integrate the here presented work, we have extended
the interface of the Annotations Recommender, to receive input from the Cross-
lingual Classification and Central Concept Detection components.

The implementation of our cross-lingual Web API classification and annota-
tion approach consists of three parts. The first one is the background builder,
3 http://sweet.kmi.open.ac.uk/

http://sweet.kmi.open.ac.uk

which prepares the background collection for further classification, the second
one proceeds with the actual classification, and the third one detects the central
concepts. As background for the Explicit Semantic Analysis, we use different lan-
guage versions of Wikipedia, in particular, English and Czech. The text analysis
and its projection into ESA concepts space is done by our Java library, created
by adapting the code from Wikiprep ESA implementation4 .

Fig. 2. SWEET Extended Architecture

The Web API background collection is built by getting APIs and categories
from http://www.programmableweb.com. Five APIs are taken as an example
for each category. Information about each API is saved to a database and af-
ter that the web pages describing each API are harvested. Subsequently, the
HTML mark-up is removed and the text is normalised by removing stop-words
and stemming. Then, the ESA vector is computed and stored in the database.
Additionally, central concepts for each API in the background collection can be
automatically determined by the AlchemyAPI. Before putting the Web API de-
scription into the AlchemyAPI engine, we remove the service-specific stop-words
to get the Web API specific concepts.

Both, classification and central concept detection operate similarly, and differ
only in the last step. They start with projecting the input API description into
the Czech Wikipedia concept space. Then, the resulting Czech ESA vector is
mapped into English ESA vector, using the concept mapping from Wikipedia.
Afterwords, the ESA vector is compared with each API description ESA vector
from the API background collection. The last step is the following:

– In case of classification, the results are aggregated and the best categories
are suggested as candidates.

– Concept detection does not summarise the results but rather suggests the
central concepts of the first few most semantically similar Web APIs as concept
suggestions.
The so computed results can be represented to the user as annotation sugges-
tions, aiding the process of creating the semantic Web API description. In the
case of the classification of the service functionality, the top 3 results, for ex-

4 http://github.com/faraday/wikiprep-esa

http://github.com/faraday/wikiprep-esa
http://www.programmableweb.com

ample, can be automatically assigned to the API and the annotator would only
need to validate them.

We also ran some preliminary evaluation and tests. In particular, we ran
the concept detection system on the APIs from the geocoding domain. The first
phase, which identifies the most similar service worked quite well, and was able to
locate relevant similar Web APIs. Therefore the classification task was completed
successfully. This evaluation needs to be extended to cover further domains, in
order to be able to make statements about the precision of the classification
approach in general. Our previous experiments with CL-ESA reported in [22]
suggest that the method is able to detect semantically comparable text across
languages with high precision (about 0.7 precision at top50) from a 3.5 million
large corpus. Given the fact that the size of ProgrammableWeb is smaller and we
are classifying only into 54 classes, significantly better results can be expected.

In contrast, the concept extraction phase must be further refined because
the returned central concepts were not always relevant. We discovered that the
results greatly depend on the quality of the background collection. In particular,
we are using the Web APIs from the ProgrammableWeb directory, where Web
APIs are sometimes assigned to the wrong category or the link to the API doc-
umentation is inaccurate. We can overcome these limitations by hand-picking
the APIs per category or by ensuring that the URLs pointing to the API docu-
mentation are correct. Even if improvements still remain to be done, the initial
results show that the approach, especially in the context of the classification
task, is quite promising.

6 Conclusions and Future Work

Nowadays, finding, interpreting and invoking Web APIs requires extensive hu-
man involvement due to the fact that the majority of the APIs have only tex-
tual documentation, not conforming to any particular standards and guidelines.
Moreover, providers publish API description in any language that they see fit,
making the discovery of suitable services a challenging tasks. In this paper, we
present a cross-lingual approach, based on calculating semantic similarity, for
classifying APIs and determining the central concepts of their descriptions, thus
enabling language-independent search and discovery. We validate the applica-
bility of the proposed method by implementing it as part of an extension to
SWEET [3], which support users in creating semantic Web API descriptions.
We also give some preliminary test results. Future work will mainly focus on
extensively evaluating the system, staring off with improving the quality of the
background collection and covering further domains in addition to the geocod-
ing/mapping one.
Acknowledgment The work presented in this paper is partially supported by
funding from the EC FP7, under grant agreement number 270001 – Decipher

References

1. M. J. Hadley: Web Application Description Language (WADL). Technical report,
Sun Microsystems, November 2006. Available at https://wadl.dev.java.net.

https://wadl.dev.java.net

2. Web Services Description Language (WSDL) Version 2.0. Recommendation, W3C,
June 2007. Available at http://www.w3.org/TR/wsdl20/.

3. M. Maleshkova, C. Pedrinaci, J. Domingue: Semantic annotation of Web APIs with
SWEET. 6th Workshop on Scripting and Development for the Semantic Web at
ESWC, 2010.

4. L. Richardson, S. Ruby: RESTful Web Services. O’Reilly Media, May 2007.
5. R. T. Fielding: Architectural styles and the design of network-based software ar-

chitectures. PhD thesis, University of California, 2000.
6. P. Sorg, P. Cimiano: Cross-lingual information retrieval with explicit semantic

analysis. In Working Notes for the CLEF Workshop, 2008.
7. J. Kopecký, T. Vitvar, D. Fensel, K. Gomadam: hRESTS & MicroWSMO. Tech-

nical report, available at http://cms-wg.sti2.org/TR/d12/, 2009.
8. J. Kopecký, T. Vitvar, C. Bournez, J. Farrel. SAWSDL: Semantic Annotations for

WSDL and XML Schema. IEEE Internet Computing, 11(6):60-67, 2007.
9. J. Kopecký , K. Gomadam, T.Vitvar: hRESTS: an HTML Microformat for Describ-

ing RESTful Web Services. In Proc of the 2008 IEEE/WIC/ACM International
Conference on Web Intelligence (WI-08), 2008.

10. A. P. Sheth, K. Gomadam, J. Lathem: SA-REST: Semantically Interoperable and
Easier-to-Use Services and Mashups. In IEEE Internet Computing, 2007.

11. RDFa in XHTML: Syntax and Processing. Proposed Recommendation, W3C,
September 2008. Available at http://www.w3.org/TR/rdfa-syntax/.

12. S. C. Sood, K. J. Hammond. TagAssist: Automatic tag suggestion for blog posts.
In Proc of International Conference on Weblogs and Social, 2007.

13. S. Lee, A. Chun: Automatic tag recommendation for the web 2.0 blogosphere
using collaborative tagging and hybrid ANN semantic structures. 6th Conference
on WSEAS International Conference on Applied Computer Science, 2007.

14. R. Jaeschke, R. Marinho, A. Hotho, L. Schmidt-Thieme, G. Stumme: Tag recom-
mendations in folksonomies. In PKDD, pages 506514, Springer, 2007.

15. A. Hess, E. Johnston, N. Kushmerick: ASSAM: A tool for semiautomatically an-
notating semantic web services. In Proc of the 3rd International Semantic Web
Conference (ISWC), 2004.

16. A. Patil, S. Oundhakar, A. Sheth, K. Verma: METEOR-S web service annotation
framework. pages 553562. ACM Press, 2004.

17. F. Sebastiani: Machine learning in automated text categorization. ACM Comput-
ing Surveys, 34(1):1-47, 2002.

18. C. D. Manning, P. Raghavan, H. Schutze: Introduction to Information Retrieval.
Cambridge Press, 2008.

19. C. D. Manning, H. Schutze: Foundations of Statistical Natural Language Process-
ing. The MIT Press, 1999

20. E. Gabrilovich, S. Markovitch: Computing semantic relatedness using Wikipedia-
based explicit semantic analysis. Proceedings of IJCAI, 1606-1611, 2007.

21. Watson - The Semantic Web Gateway: Ontology Editor Plugins. http://watson.
kmi.open.ac.uk. Online November 2008.

22. P. Knoth, L. Zilka, Z. Zdrahal: Using Explicit Semantic Analysis for Cross-Lingual
Link Discovery. Workshop: 5th International Workshop on Cross Lingual Informa-
tion Access: Computational Linguistics and the Information Need of Multilingual
Societies (CLIA) at The 5th International Joint Conference on Natural Language
Processing (IJC-NLP 2011), Chiang Mai, Thailand, 2011.

https://kmi.open.ac.uk
http://watson
http://www.w3.org/TR/rdfa-syntax
http://cms-wg.sti2.org/TR/d12
http://www.w3.org/TR/wsdl20

