
 Scaling up Question-Answering to Linked Data

Vanessa Lopez1, Andriy Nikolov1, Marta Sabou1, Victoria Uren2, Enrico Motta1,
Mathieu d’Aquin 1

1 KMI. The Open University, MK76AA, UK {v.lopez, a.nikolov, r.m.sabou, e.motta,

m.daquin}@open.ac.uk, 2 The University of Sheffield, S14DP, UK v.uren@dcs.shef.ac.uk

Abstract. Linked Data semantic sources, in particular DBpedia, can be used to answer
many user queries. PowerAqua is an open multi-ontology Question Answering (QA)
system for the Semantic Web (SW). However, the emergence of Linked Data,
characterized by its openness, heterogeneity and scale, introduces a new dimension to
the Semantic Web scenario, in which exploiting the relevant information to extract
answers for Natural Language (NL) user queries is a major challenge. In this paper we
discuss the issues and lessons learned from our experience of integrating PowerAqua as
a front-end for DBpedia and a subset of Linked Data sources. As such, we go one step
beyond the state of the art on end-users interfaces for Linked Data by introducing
mapping and fusion techniques needed to translate a user query by means of multiple
sources. Our first informal experiments probe whether, in fact, it is feasible to obtain
answers to user queries by composing information across semantic sources and Linked
Data, even in its current form, where the strength of Linked Data is more a by-product
of its size than its quality. We believe our experiences can be extrapolated to a variety
of end-user applications that wish to scale, open up, exploit and re-use what possibly is
the greatest wealth of data about everything in the history of Artificial Intelligence.

Keywords: question answering, link data, fusion, semantic web, natural language.

1 Introduction

The SW has expanded rapidly, offering a wealth of semantic data that can be used for
experimental purposes, for example to enhance keyword search technologies. A prominent
example is the amount of web data in the Linked Data [2] cloud. It is possibly, the largest
Knowledge Base (KB) about everything in the history of Artificial Intelligence. Till now,
most KBs covered specific domains and were created by relatively small groups. Yet, this
is starting to change and we are reaching the critical mass required to realize the vision of
large scale, distributed SW, with real-world datasets, representing real community
agreement, and leading to astonishing research possibilities that can exploit and reuse these
freely available data. For instance, the DBpedia project [3] extracts structured information
from Wikipedia. The DBpedia ontology describes 170 classes in a shallow subsumption
hierarchy, and more than 900 properties1. DBpedia has a high degree of conceptual overlap
with other datasets, and it is increasingly becoming the central interlinking hub. The web of
data around DBpedia covers 4.7 billion pieces of information about domains such as
geography, people, companies, films, music, genes, amphibians, books and publications.

Ultimately, by integrating and connecting data on the web, Linked Data, and DBpedia in
particular, as stated in [3] “can be used to answer quite surprising queries about a wide
range of topics”. E.g., by failing to link the content one can obtain films directed by Francis
Ford Coppola but not what actors have played in any of his movies. However, while back

1 Plus a dataset of 8000 property types for which there is no formal ontology (as November 2009).

end technologies and semantic applications can be robust at the small or medium scale, they
may not be suitable when applying them to a real-world scale of heterogeneous web data.
In other words, while Linked Data datasets literally may contain the answers to millions of
questions, locating and exploiting the relevant information to extract these answers from
them is a major challenge. In fact, most tools analyzed in Section 2 only perform a shallow
exploitation of these data. Thus, in this paper we analyze the practicability of this ambition
from the end-user application side, by looking at the scalability issues when integrating our
multi-ontology QA system, PowerAqua, which uses state of the art methods from
computational linguistics, ontology mapping, and data fusion, with some of the large
general purpose data offered by the Linked Data community: DBpedia, the BBC backstage
data whose scope is TV broadcasts and music [6], umbel2 and musicBrainz.

Kaufmann and Bernstein [5] demonstrated, via a usability experiment comparing four
query interfaces to an ontology, that casual users preferred the interface that used full NL
queries to those using keywords, partial sentences and a graphical interface. Furthermore,
the intuition that it would be easier to obtain answers from structured data than open text
had lead to much interest in open NL interfaces that build and query their own massive
trusted comprehensive factual KBs about the world (e.g., commercial ventures such as
Powerset, START, Wolfram Alpha or True Knowledge3). Hence, it is worth considering an
open NL interface for the end user to locate and query the Linked Data content on the web.

PowerAqua [9] takes a NL query from the user and retrieves answers from
heterogeneous semantic data repositories. In particular, PowerAqua is able to integrate, on
the fly, statements drawn from different sources to generate integrated answers to
questions. Knowledge can be aggregated to complete information partially presented in
single sources, fusing similar answers and filtering irrelevant ones. Furthermore, the most
accurate answer(s), in terms of their relevance to the query and the varying levels of
quality, popularity and trust, are elicited from different sources [8]. As such, PowerAqua
supports users in locating, reusing and querying the open SW or organizations with large
semantics intranets, where the information is distributed across independent departmental
sites and external semantic sources. However, the SW has been rapidly evolving during the
development of PowerAqua. PowerAqua was first envisioned in 2006 as a shift between the
first generation of closed domain semantic systems, akin to smart KB applications, and the
next generation of open SW applications to exploit the increasing amounts of semantic
markup data, which is heterogeneous with respect to both the ontology characterization and
provenance. Again, now, we can distinguish a new turning point in the evolution of the SW
driven by the emergence of Linked Data. Querying Linked Data brings up a new scenario,
the differentiating characteristics of which (detailed in Section 4) are:
I. Scalability is not only in the number of ontologies but also on their size (number of

ontological elements). E.g., more than 2.9 million things are described in DBpedia.
II. From specific domain ontologies to large generic ontologies about everything, with a

wider coverage of relationships across entities from a variety of domains.
III. Ontologies are decentralized, containing redundant and heterogeneous terminology, and

connected to each other creating a network or cloud of ontologies.
In what follows, we look at the abilities of existing tools that handle the sheer amount of
multi-domain data offered by Linked Data to provide easy access to the end user (Section
2). Then we briefly describe PowerAqua (Section 3), and present the major issues (Section

2 Derived form OpenCyc and which consists of 20,000 classes (http://www.umbel.org/backbone.html)
3 http://www.powerset.com/, http://start.csail.mit.edu/, http://www.wolframalpha.com/index.html and
 http://www.trueknowledge.com/ respectively.

4) that we faced to scale up PowerAqua to take advantage of Linked Data’s potential to
answer queries. The feasibility of the solutions presented (in Section 5) is assessed through
initial experiments that measure the QA performance before and after using the main
representative Linked Data set, DBpedia (Section 6). We finish by drawing some
conclusions (Section 7). We believe that the lessons learned obtained with our experiments
can be extrapolated to a large proportion of semantic tools that wish to retrieve, use and
combine these large, rich multi-domain semantic data on the fly.

2 Motivations: Current interfaces for Linked Data and limitations

The database and SW communities had developed back-end technologies for managing
large amounts of web data. Various RDF stores can scale over large amounts of data
originating from different sources, such as Virtuoso or the Talis platform4. Search engines
such as Watson [10] and Sindice [11] come also with features for indexing data from the
SW. Linked Data sources usually offer a SPARQL endpoint for their dataset(s)5.
Alternatively, they also provide RDF data dumps to build and query your own store6.
However, users can hardly know which identifiers and properties are used in the KBs and
hence can be used for querying. Consequently, they have to be guided when building
queries, e.g., through the suggestion of reasonable alternatives. Creating innovative ways to
interact with Linked Data is crucial and even envisioned as a potential “killer app”.

Nonetheless, to find a trade-off between the complexity of the querying process and the
amount of data it can use and integrate is still an open problem for ontology-based
approaches. Semantic search models that have proved to work well in specific domains still
have to undertake further steps towards an effective deployment on a decentralized,
heterogeneous and massive repository of content about a potentially unlimited number of
domains. Here we present a state of the art of the available user interfaces that can, in
principle, scale enough to explore the Linked Data.
• Triple query builder interfaces: a Query Builder allows users to query the KB by means

of multiple triple patterns. For each triple pattern variable, identifiers or filters for the
subject, predicate and object can be defined. The user needs to follow the terminology
and structure of the ontology to pose queries, e.g., the DBpedia Leipzig query builder
[1]. However, for each typed identifier name a look ahead search proposes suitable
options in a (in some cases long) drop down menu that helps the user to create complex
queries, e.g.: <?x, rdf:type, db-ont:Person> <?x, notablePrize, Nobel_Peace_Prize>.
Graph-based visualizations, on the contrary, in which all property values of the selected
instances are analyzed for facet-filtering, are more resource demanding [1].

• Relationship finder: i.e., the DBpedia relationship finder [7] explores connections
between objects. DBpedia is treated as an undirected graph and given two objects, the
relationship finder looks for a path between them (not necessarily the shortest).

• Keyword lookup: e.g., the DBpedia URI Lookup Index and OpenLink Software7 find
the most likely matches (URIs) for a given term. The service combines Lucene’s string
similarity based ranking with a relevance ranking similar to PageRank. The OpenLink
Software builds a text, label and URI lookup service upon a larger collection of sources,
but it limits the number of results to only those containing an exact mapping of the input

4 Virtuoso: http://virtuoso.openlinksw.com and Talis: http://www.talis.com/platform/
5 A more complete list of SPARQL Endpoints at: http://esw.w3.org/topic/SparqlEndpoints
6 Jena http://jena.hpl.hp.com/wiki/TDB; Sesame http://www.openrdf.org; 4store http://4store.org;
7 http://lookup.dbpedia.org/ and http://lod.openlinksw.com

keyword and the search can be refined by specifying URIs of classes, properties or
values, but usability is limited (e.g., 1358 classes are associated to the keyword “actor”).

• Data aggregators and mash-ups: e.g., in Sig.ma (http://sig.ma/) the user enters a
keyword and is able to explore all the aggregated data coming from the search engine
Sindice (including synonyms and approximate mappings). Although mash-up
technologies provide support for large-scale indexing and aggregating heterogeneous
information, they do not attempt to disambiguate or rank between different
interpretations, however, in Sig.ma the user can filter out the irrelevant sources.

• Linked Data browsers: they bring a way to browse RDF data on the web (data should
be in RDF/XML or embedded in web documents using microformats). Examples are
Tabulator and Disco8. Given a dereferenceable URI (i.e. an application can look up a
URI over the HTTP protocol), these browsers render all information that they can find
about that URI. All aggregated data across sources is viewed in a tabular form and the
user can navigate through interlinked sources. However, it does not aggregate
unconnected entities with different URIs representing the same individual.

• DBpedia Faceted search9: it allows the user to easily ask queries like “recent films about
Buenos Aires”, by typing the keyword “Buenos Aires” and then applying an intelligent
filtering base on the underlying ontology, in this case by the item type “Film”. The
interface guides the user to filter objects according to facets (properties) and range of
values. Nevertheless, the user needs to familiarize herself to some extent with the
vocabulary and the structure of the KB, e.g., lexically related words like “Movie” are
not understood. This applies not only to undefined terms, but also when there is not a
straight mapping between the user query and the way the knowledge is structured in the
ontology. For example, the query “Give me the husbands of Elizabeth Taylor” cannot
be easily formulated if the user does not know that the relevant relation “spouse” is
defined only for the entities representing Elizabeth Taylor’s husbands, whose
ontological type is “Actor”, and it is neither defined for the instance “Elizabeth Taylor”,
nor for the types “Person” or “Artist”. As the system is unable to map “husband” to the
relation “spouse”, the only solution left is to manually explore among all the results that
contain a match for “Elizabeth Taylor”.

Research on user interfaces for Linked Data is a open-ended area, each of the above
paradigms have different abilities to handle the sheer amount of multi-domain data and the
following limitations according to the criteria presented in Table 1:
1) Usability: if the input of the system is a URI or is some of the components of a triple,

usability is limited to knowledgeable users, familiar with semantic source contents.
2) Expressivity: if the system builds upon keywords, then it provides limited capabilities to

grasp and exploit the conceptualizations involved in user needs, with limitations such as
the inability to account for relations between terms, or to cope with complex queries.

3) Scalability: if the system is restricted to one or a set of domains to maintain
performance then it cannot scale to a truly open environment.

4) Mapping: the vocabulary that the system can understand is limited to that used in the
ontology, the input is controlled and if a term has more than one sense, disambiguation
is done manually by the user. Although these guided interfaces solve the old habitability
problem (a mismatch between the user expectations and the abilities of the system), the
burden or responsibility to formulate the queries is shifted from the system to the user.

8 http://www.w3.org/2005/ajar/tab and http://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/disco/
9 http://dbpedia.neofonie.de/browse

5) Fusion: if the system has limited abilities to merge heterogeneous facts or multiple
different answers (representing the same individual) across different semantic sources.

6) Ranking: the lack of ranking algorithms to cope with large-scale information sources.

Table 1. Limitations of the existent paradigms according to 6 criteria.

Criteria Query Builder Rel. Finder Term Lookup Mash-ups Browsers Facets
Usability √ √ √ √ -- √
Expressivity √ -- Χ Χ Χ √
Scalabilty √ √ √ √ √ √
Mapping Χ Χ -- -- Χ Χ
Fusion Χ Χ Χ -- -- Χ
Ranking Χ Χ -- Χ Χ Χ

The existing querying approaches for Linked Data are restricted, among all of them, only
facets and query builder interfaces provide an efficient way to pose complex and expressive
queries to a large repository, with varying levels of usability depending on the query
complexity and the number of filtered options presented on the drop menus, as end-users
can get lost in large-scale information spaces. In fact, a common drawback of all these
systems is that the user, not the application, is the one who has the responsibility and
burden to reformulate the query in a way that can be understood. Another open issue
concerns the usability of menu views and facets over multiple heterogeneous sources. Only
keyword-based mash-ups (and lookup services to some extent) can aggregate information
across sources, but they do not attempt to fuse similar results, nor do they have enough
context to interpret and elicit the best answers. What is achievable on small/medium scale
data by querying interfaces (in particular sophisticated NL ones) has until now not been
achieved on large Linked Data. In this paper, we aim to go one step beyond the state of the
art, by adapting the mapping and fusion techniques required by a particular NL interface,
PowerAqua, to the Linked Data scenario.

3 PowerAqua: an open NL interface over structured data

Contrary to existing ontology-based NLI systems (see [5] for an example) whose scope is
limited to one or a set of a-priori selected medium size ontologies at a time, PowerAqua
dynamically selects and combines information drawn from multiple and heterogeneous
ontologies in order to interpret and answer a query, making it worth investigating whether it
can be successfully used to exploit the metadata offered by Linked Data. We briefly explain
PowerAqua through the illustrative example “Find me university cities in Japan”, a
linguistically simple query that nevertheless, to be answered requires knowledge fusion
across different sources. PowerAqua follows a pipeline architecture, the query is first
transformed by the linguistic component10 into a triple based intermediate format called
Query-Triples (QTs): <university cities, ?, Japan>. At the next step, the QTs are passed on
to the PowerMap mapping component, which identifies potentially suitable semantic
entities in various ontologies that are likely to describe QT terms and answer a query,
producing initial element level mappings. For example, PowerMap selects 81 mappings
over 23 ontologies for the query term “Japan”. PowerMap maximizes recall by searching
for approximate mappings (e.g., “CountryJapan” in the TAP ontology) as well as exact
mappings. These are jointly referred to as equivalent mappings. PowerMap also uses both
WordNet and the SW itself (owl:sameAs) to find synonyms, hypernyms, derived words,

10 The linguistic component uses GATE (www.gate.ac.uk) to transform into triples factual queries

formed with wh-terms (which, what, who, when, where) or commands (give, list, show, tell,..).

meronyms and hyponyms (e.g., “Japanese islands”, “Nippon”, etc). In the third step, the
Triple Similarity Service (TSS), exploring the relations of these entities, matches the QTs to
ontological expressions or ontology based triple patterns specific to each of the considered
semantic sources, producing a set of Onto-Triples (OTs), from which answers are derived
as a list of entities matching the given triple patterns in each semantic source.

The algorithm iteratively refines candidates only as needed, analyzing most likely
solutions first, and using more expensive but broader techniques last, if the previous steps
fail to obtain a solution. First, the TSS chooses, whenever possible, the ontologies that
better cover the user query and domain (i.e., it first searches for OTs in the ontologies that
have potential mappings for at least two of the terms in a given QT). In our example, as
PowerMap does not find any covering ontology with mappings for both arguments in the
QT: “university cities” and “Japan”, the TSS algorithm reiterates again by splitting the
compound term “university cities”, and consequently modifying the QT into: <cities /
universities, ?, Japan> and creating a new QT for the compound <university, ?, cities>. For
the QTs obtained in this second iteration, the TSS extracts, by analyzing the ontology
relations, a small set of ontologies containing the valid OTs that jointly cover the user query
and produce an answer. The resultant OTs are partially presented in Table 2.

Table 2. Triple Mapping Tables returned by PowerAqua for the example query.

QT1: <cities / universities, ?, Japan>
Agrovoc OT1 <city, generic-location, Japan> 27 answers: Ibaraki, Kyoto, kushiro-shi, etc.
SWETO OT1 <city, attribute-country, Japan> 30 answers: Chuo-ku Tokyo, Chuo-ku Osaka, etc.
KIM OT1 <city, locatedIn, Country_T.JA (Japan)> 290 answers: Mishima, Kodaira, Soka, etc.
TAP OT1 <city, locatedIn, CountryJapan> 30 answers: CityChitose, CityKyoto, etc.
DBpedia OT1 <RadioStation, city, Japan> 2 answers: FM802, J-Wave.

QT2: <university, ?, cities>
DBpedia OT3 <PopulatedPlace, city, University> 7177 answers: Madrid

(Polytechnic_University_of_Madrid), Kyoto (Kyoto_University), etc.

Finally, because each resultant OT only leads to partial answers, they need to be combined
into a complete answer. The fourth component merges and ranks the various interpretations
produced in different ontologies. In our example, 19 final answers are selected (e.g.: Kyoto
(Kyoto_University), Fukushima (Fukushima_University)), by intersecting the answers from
both QTs to obtain as a final set of answers those shared between the 7177 answers of cities
with a university from DBpedia, and the more than 500 answers about cities in Japan
derived from 8 ontologies (agrovoc, KIM, TAP, ATO, DBpedia, nepomuk, mid-level, and
SWETO). Among other things, merging requires the system to identify similar entities
across ontologies, e.g., “Kyoto” in DBpedia and “CityKyoto” in TAP. Furthermore, ranking
(based on the quality and popularity of the mappings and answers) can be applied to sort
the answers. E.g., a ranking measure is capable of providing a lower confidence to the noisy
answers derived from the DBpedia OT: <RadioStation, city, Japan>. Although, in this case
all answers derived after fusion are correct (as irrelevant answers only appear in one triple).
As we show in [8], merging and ranking algorithms enhance the quality of the results.

To scale our model to a truly open web environment implies exploiting all the
increasingly available semantic metadata in order to provide a good coverage of topics. To
address this, PowerAqua is coupled with: a) the Watson SW gateway [10], which collects
and provides fast access to the increasing amount of online available semantic data, and b)
its own internal mechanism to index and query selected online ontological stores11, as an
alternative way to manage large repositories, like those offered by the Linked Data

11 Using Lucene indexes and a common API to access and query ontologies (currently in sesame).

community, often not available in Watson due to their size and format (RDF dumps
available for download as compressed files). One of the main issues for PowerAqua is to
keep real time performance in a scenario of perpetual change and growth. The time needed
to answer a query depends on: (1) the number of calls required to the Watson API or to
query the repositories and the indexes, and (2) the response times to these calls. The total
number of calls depends directly on the number of semantic sources and mappings that take
part in the answering process. The response times to these calls depend on the complexity
of the (SPARQL-alike) query and the size of the ontology. PowerAqua algorithms are
optimized to reduce the number of expensive calls in the following way:
• The algorithm operates in a sequential fashion, by first collecting all candidate

ontological entities for the terms in a query, and then identifying relevant relationships
between them. However, the algorithm can re-iterate through the two different phases in
order to look only for the mappings needed in the first instance. As such, the algorithm
looks for mappings for terms forming a compound, e.g., “university cities”, only if the
first iteration, without splitting the compound, fails to produce results.

• The time consuming process of analyzing indirect relationships between two entities
(i.e., relationships which require two triples to be joined, as the length of the path is
limited to one mediating concept) is only carried out when no satisfactory is-a or ad-hoc
direct relationships between any of the candidate entities within the ontology are found.

• The number of mappings returned by Watson is reduced through a functionality used to
restrict the mappings for a given term to the ontologies that also contain mappings for
another given term. E.g., in our query PowerMap retrieves hits for “university”, “cities”,
or any of its lexical variations, from ontologies that also contain mappings for “Japan”.

4. Before and After Linked Data: a new dimension in QA

We have identified three crucial factors that give a new perspective and draw a new line in
the scope of SW applications before and after Linked Data, therefore, challenging Linked
Data’s potential in the QA context.

4.1 Scaling to highly populated and dense ontologies

A well-known limitation of the SW is its sparseness, as stated in [13], without a well
populated SW, developing semantic search systems is only an intellectual exercise. Only a
reduced number of topics were covered entirely or partially by an existing ontology
(domain sparseness), and added to this, sparseness at the level of instances and relation
(model complexity) was also found [4, 10]. However, Linked Data initiatives are producing
a critical mass of semantic data, and it is likely that soon we will have so much data that the
core issues would not be so much related to sparseness as to scalability and robustness.

Furthermore, as reported in an analysis of 25,500 ontologies and semantic documents
collected by Watson [10] in 2007: “the SW is characterized by a large number of small,
lightweight ontologies and a small number of large-scale, heavyweight ontologies”, the
biggest one at that time containing more than 28,000 entities. By contrast, an obvious
characteristic of Linked Data is that it is very large, DBpedia alone consists of more than
103 million RDF triples, and describes more than 2.9 million entities. Also, as analyzed in
[7] the DBpedia dataset is densely connected. As ever, the links between entities are more
important than the entities themselves because that’s where the context lives. Exploring

these connections between entities, e.g., through SPARQL queries, is the major bottleneck.
Scale matters since the response time of the calls to query the ontologies depends directly
on the size of the ontology, in particular when a query involves one or more classes with
lots of instantiated data. Therefore, to query Linked Data mapping algorithms need to be
able to explore the relevant connections while trying to avoid expensive computations.

4.2. Mapping query terms to large generic ontologies about everything

The really challenging aspects of these Link Datasets appeared to be not only their scale but
also their heterogeneity: new challenges are introduced by simultaneously querying not
only a large number of domain specific ontologies but also a few very large populated
ontologies about everything.

The first version of PowerAqua was developed to work on an initial, sparsely populated
SW. Therefore, PowerAqua algorithms were designed to maximize recall in order to bridge
the gap between user terminology and terms used in the ontologies. Nevertheless, to keep
up with the continuous and rapidly growth of the SW and to avoid analyzing an unfeasibly
large space of solutions, the algorithms are iterative, and try to find an answer by
augmenting the search space in each re-iteration until either an answer is found or all
possibilities have been analyzed. The algorithm is based on the assumption that the
ontologies that better cover a query (i.e. contain matches for most of the elements on a QT)
are likely to represent better the domain(s) of the query and contain an answer. The
algorithm uses this coverage criterion to restrict the mappings to be analyzed to those in the
covering ontologies, extending the search space only if no answers are found.

However, the main distinctive feature of DBpedia, apart from its size, is that it is a
repository about everything. Therefore, even in the cases where the answer to the user
query is not contained in DBpedia, this dataset is frequently selected as relevant, and often
contains a huge number of potential ontological hits, from a large number of domains, for
one or more of the terms in the user query. Consequently, this coverage criterion to filter
ontologies, ergo candidate mappings, becomes insufficient when most of the lexical
matches for a user query belong to just one large open domain KB and often have different
meanings than the one intended by the user. For instance, DBpedia alone contains more
than 1000 mappings for an apparently unambiguous keyword like “Russian”: e.g., the exact
mappings Russia (instance) & russia (property); the synonyms Soviet_Union (instance) &
USSR (instance); the hypernym country (class); the approximate instances:
Russian_empire, president_of_russia, MTV_Russia, Rocket_to_Russia, Russia_Today,
Anastasia_of_Rusia, etc. Analyzing the ontological context of all potentially relevant hits,
to select the ones containing an answer, would result in unacceptably slow response time
for a run time algorithm. Therefore, new filtering heuristics are needed.

4.3 Fusion across the heterogeneous and decentralized cloud of ontologies

When searching multiple collections together, knowledge needs to be shared and reused
through fusion techniques. Redundant information or partial results from different sources
need to be either combined and merged together or ranked in terms of their relevance to the
query and the confidence in the answers derived from different sources.

Fusion requires matching at the schema level as well as entity reconciliation at the data
level; it assigns the individuals returned as answers from different ontologies into subsets of
answers that represent identical entities. A decision about the equivalence of two answers is
made based on string similarity metrics applied to their labels, local names, and, in case of

uncertainty, other datatype attributes. Pairwise comparison of entities would make the
complexity of the procedure N2 with respect to the input set size. In order to avoid this,
candidate matches are selected using a search over the indexes and the comparison focuses
only on the entities that appear among the search results. This makes the complexity linear
with respect to the answer set size, but in cases where the answer set is formed by
thousands of partial answers, further heuristics to improve efficiency are needed.

5 Solutions to challenges and lessons learned

Next, we report on the solutions adopted by PowerAqua to solve the challenges outlined
above. Our experiments also give us an insight on the quality of the datasets and a better
understanding of the concrete issues encountered when handling large-scale data.

5.1 Large scale data: Shifting focus onto precision for mapping and fusion

DBpedia contains a large number of instances across domains, and as said before, it can
produce a large number of diverse mappings for a single query term. Strategies to select the
most likely mappings to answer a query and filter the least promising ones are crucial to
keep run time performance especially when querying a huge amount of semantic data.

These strategies start with a quick filtering mechanism based on scores (not processing),
returned by Lucene string similarities, to ensure that the mappings for a given term, within
one single repository, have a minimum quality and their number does not go over a given
threshold. This favors precision and can negatively affect recall, however, it is a necessary
measure to ensure that all questions can be answered in real time. Secondly, the number of
mappings is reduced according to heuristics to filter out the least promising individual
mappings. These heuristics are not based on a PageRank-like algorithm (i.e., the popularity
of the entity within the ontology)12 but rather on the context of the query. The reason behind
this is that we do not want to penalize searches in which the user is interested in the unique
meaning (not the popular meaning) of the word. For instance, the meaning of Turkey is
clear when asking for “Give me books written in Turkey” or “which wine is good for a
meal based on Turkey?”. Based on the coverage criterion ontologies about geography or
food would be selected respectively. However, a dataset like DBpedia contains both
meanings of Turkey (Turkey_(bird) and Turkey) plus several mappings for “books” and
“wine”. Before the time consuming process of analyzing the relationships between the
mappings to obtain the interpretation that better translates the query in a given ontology,
further heuristics to reduce the number of mappings within an ontology are applied. These
heuristics are based on the syntactic relevance of the mappings: (1) the quality: exact vs.
approximate; (2) the semantic relation: equivalent, synonyms, hyper(hypo)rnyms, or
meronyms. Next, more expensive semantic mechanisms based on the ontology taxonomy
are applied, i.e. to discard redundant mappings by selecting those that are higher in the
same ontology hierarchy (e.g., the class “wine” selected over its subclasses “rose-wine”,
“white-wine”, “sugary-wine”, etc). Also, unconnected mappings with no ontological
context, in the form of ad-hoc or is-a relations, are discarded.

These strategies applied by PowerMap mapping algorithms to increase precision, and
consequently performance, require making certain assumptions about the quality of the
semantic sources, without making any unreasonable or a-priori assumption. As explained in

12 Popularity measures are used only to rank the final answers obtained across ontologies [8].

Section 5.2, if the heuristics are too strict recall is affected and valid answers are missed, in
particular for the heterogeneous and general datasets such as DBpedia. The mapping
finishes with, the TSS iterative algorithms [9] that exploit the ontological relationships
between the candidate entities to translate the user query (starting with the most
straightforward solutions and executing expensive steps last, if no solution is found).

In order to improve the efficiency of the fusion procedure, our approach is to balance the
quality of the resulting set of the answers and the expected time cost. When the number of
answers, which have to be processed by the fusion module is large, our procedure tries to
minimize the number of index search calls. The input of the fusion procedure is a set of
answers retrieved from one or more ontologies

!

oi,i =1...n . Let

!

Ai denote a set of answers

!

{ai1...aim} coming from the ontology

!

oi. By default, for each

!

aij we searched the index
using as keywords the label and local name of

!

aij together with their synonyms extracted
from WordNet. Instances

!

akx which were retrieved by the search, and at the same time
belonged to the original set of query answers, were considered as candidates for fusion. In
the new version of the algorithm, we introduced two thresholds for

!

| Ai |. The first regulates
the use of WordNet synonyms in search: if

!

| Ai |> " , then WordNet synonyms are not used
when searching for instances similar to

!

aij " Ai . The second one excludes the whole set

!

Ai
from search: if

!

| Ai |> µ , then the module does not try to search for instances similar to
any

!

aij " Ai . Thus, if there is an instance

!

akx belonging to an ontology

!

ok such that

!

akx " aij , they can only be merged if a search for

!

akx returns

!

aij , which potentially leads
to lower recall of the fusion procedure. However, this potential loss of recall is justified
when we are dealing with very large answer sets.

5.2 Heterogeneity and duplicated terms: filtering based on quality and semantics

In DBpedia, the most valuable contents extracted from Wikipedia are the infoboxes.
However, different infobox templates use different names for the same attribute (e.g.,
birthplace and placeofbirth). The DBpedia project deals with this situation by using two
different extraction approaches in parallel: a generic one that aims at a high coverage, and a
mapping-based one that aims at high data quality by mapping Wikipedia terms to a
manually created ontology [3]. However, the latest covers only 350 Wikipedia templates.

One of the filtering heuristics to favor precision is to consider the quality and semantic
relation of the mappings. However, the presence of duplicated entities within the same
semantic source limit the effectiveness of this criterion. Consider the example: “Give me
the husbands of Elizabeth Taylor”, the keyword “husbands” produce several mappings in
DBpedia, the approximate equivalent instances: Clifford_Husbands, Commuter_Husbands,
Dead_Husbands, Husbands_and_Wives, Young_Husbands, etc; the exact equivalent
properties: husbands, husband, etc; and the exact hypernyms: spouse, spouses, partner, etc.
The equivalent properties representing “husband(s)” do not produce any valid OTs with the
entity “Elizabeth Taylor”. The answer is encoded in the hypernym property “spouse”.
Therefore, hypernyms can be as relevant as equivalent mappings. With this kind of dataset,
in which different terms have the same semantics, heuristics need to be flexible. First, exact
mappings, if any, independent of their semantic relation, are selected over approximate
mappings. Furthermore, exact mappings are a requirement in cases where the type of the
mapping is not the expected one. E.g., in “who won a Nobel prize” the linguistic relation
“won” is mapped to the instance “Won_James_Won”, this approximate mapping is
discarded before analyzing how it relates to the subject and object of the triple.

The TSS ultimately establishes the semantic validity of the candidate mappings by
analyzing the ontological context, which is translated in many SPARQL-like queries to find

the OTs. However, for queries that are particularly expensive, heuristics based on the
semantic relation (synonym, hyper(hypo)nym) together with the quality of the mapping
(exact, approximate) are also applied to minimize the number of those expensive queries. In
large ontologies like DBpedia, searching for both ad-hoc relationships (1:1) between two
highly populated classes and indirect relationships with one mediating concept (1:2) are
expensive computations. In these two cases, to favor precision when looking for
relationships among the mappings, only pairs in which at least one candidate mapping is
exact and equivalent are analyzed (singulars and plurals are considered exact mappings). In
this way for the query “which languages are spoken in a country?” the TSS avoids
searching for relations between DBpedia matches such as “text”, an hypernym of
“language”, and “land”, a synonym of “country”.

Finally, heterogeneity is not only present in the vocabulary but also in the granularity of
the data (i.e., entities modeled with different degrees of richness). For instance, the
deepness that characterizes the YAGO hierarchy [12] and its conjunctive schema classes
(used in DBpedia classification), which encode too much information in one class, e.g.,
“MultinationalCompaniesHeardquarteredInTheNetherlands”, make the processing of the
labels too difficult for automatic QA understanding.

5.3 Lack of semantics or formal ontology: light-weight reasoning

PowerAqua is able to scale thanks to the various strategies and filtering heuristics that keep
the number of mappings and queries to the semantic sources more or less constant, even
when adding large semantic sources or a large number of them. However, as said in Section
3, performance also depends on the size of the ontologies, which influences the response
time of the calls (SPARQL or Serql) to query them. The effectiveness of these queries,
which use the ontology semantics to perform basic light-weight inferences based on the
taxonomy and relationships, also relates to the quality of the sources they are querying.

In DBpedia the properties defined in the namespace http://dbpedia.org/ontology belong
to the data generated by the mapping-based approach. In this approach, fine-grained rules
are applied to define the target datatype and ignore additional text that may be present in
the attribute value. However, although the percentage of properties pointing to other
DBpedia entities is much higher in the mapping-based dataset (53%) than in the generic
dataset (25.6%) [3], the coverage is lower (843,000 compared to 1,462,00 entities). In the
generic approach, http://dbpedia.org/property/, coverage of all infoboxes is complete but
synonymous attribute names are not resolved, and there is a high error rate to determine the
datatype of a value. The effectiveness of finding answers in the generic approach is limited
with respect to the mapping approach and it has an important impact on query performance.
a) Domain and range: In the mapping approach OTs can be extracted with reasonable
performance by querying the schema (domain and range). However the answer can be
encoded in a property defined within the generic approach, where properties do not map to
a schema. The lack of domain and range information, results in either sending expensive
SPARQL / SeRQL queries or missing connections between the analyzed entities. To
balance performance and recall, domain and range information is crucial in cases where we
are looking for indirect relationships, or ad-hoc relations between two classes or a class and
a literal. For example in “give me languages used in Islamic countries?” the query is
translated into OTs representing “languages spoken in a country” and “countries that are
Islamic”, domain and range are used to get all possible relations among the two classes
“language” and “country”, because it is not feasible to check all the instances of languages
to find ad-hoc relations with any instance of country in real time, particular for highly

populated classes. Therefore, the answers encoded in the OTs formed with the KB relation
“http://dbpedia.org/property/states” are not found, but it finds answers for the schema
relation: <language, http://dbpedia.org/ontology/states, country>. Furthermore, domain and
range information is also needed in order to complete a triple when the relation is mapped
but not the subject of the triple. E.g., the query “in which region is Cantonese spoken?” is
mapped to the OT: <PopulatedPlace (domain of region), region, Cantonese> with 12
answers (Hong Kong, Macau, etc). Because an instance can instantiate a relation with
thousands of other instances, schema information is needed to model the OT.
b) Inference of relationships: When looking for relationships between two entities, the
ontology is treated as an indirect graph, and all direct and inverse relations are retrieved.
Inheritance of relations is considered: if the ontological platform does not offer schema
inferencing (as it is the case for Postgres repositories in Sesame 2), then complex SeRQL
queries need to be generated to consider the relationships defined for the superclasses of the
classes involved. In our previous example, domain and range information is used to find
instantiated relations between the classes “language” and “country”, or any of their
superclasses. If looking for indirect relations inherency is also considered, but the search is
restricted to candidate mediated concepts with relations defined in the schema, looking for
indirect inverse relations is avoided as it is computationally expensive to search for
relations to and from highly populated mediated concepts. Also, inferences cannot be done
with instances whose type is defined in another ontology.
c) Literals and good enough labels: a literal has no structure and the meaning is given just
by its label. E.g, the unprocessed value for the property “states” in the instance “Tamil
language” ("India, Sri Lanka and Singapore, where it has an official status; with significant
minorities in Canada, {..}") is too complex to automatically infer answers.

6 Initial Experiments and Discussion

Despite using community driven large scale knowledge obtained from sources that are
heterogeneous, redundant and not always complete or well formed, the SW technology is
mature enough to interpret and answer NL user queries. In this section, we present some
example queries13 to justify our claim that we can obtain answers to queries directly from
the DBpedia semantically rich information – even in its current form. The solutions in
Section 5 had allowed us to improve PowerAqua mapping and fusion algorithms to exhibit
better performance, measured in terms of speed or seconds to answer a query, by shifting
the focus on precision while minimizing the loss in recall. We have made an initial
comparative study between PowerAqua efficiency before and after adding DBpedia dataset
and the heuristics to favor precision, by using the semantic data and a subset of queries
from previous evaluations [9, 8, 4]. This semantic data consists of 700 semantic documents
distributed in 130 repositories, 3GBs data in which the biggest source (SWETO and
SWETO-DBLP) is not more than 1GB (over 3 million triples). A sample of 16 queries can
be seen in Table 3, where the last 6 queries can only be answered if DBpedia is included in
the query dataset. As shown, the average time for the mapping algorithms to translate a
query increases from 32 to 48 secs when using the same queries and datasets but adding
DBpedia, even with the use of filtering heuristics. However, the resulting number of valid
answers obtained after applying the fusion algorithm (which has a precision of 94%[15])
rises from 64 to 370 on average. The average mapping time with DBpedia increases to 52
secs when adding complex queries like Q11 and Q12 that require fusing partial translations

13 More demo queries at: http://kmi.open.ac.uk/technologies/poweraqua

from DBpedia and other datasets to obtain a complete one. While this is acceptable for a
research demo, work still has to be done to improve the speed. In any case, it shows that
semantic data can be handled in modest projects, our demo runs in one reasonable sized
server (a 3GHz Intel Pentium dual core with 8GB RAM).

The reasons behind the decrease in speed are not so much because of the increase of the
number of resultant hits obtained when querying more and larger repositories. Heuristics
that balance precision and recall reduce SeRQL calls by more than 40% (352/587) and even
keep them lower (540) when mapping complex queries into multiple facts. However, speed
falls because of a suboptimal performance at the back end, where the response times to
calls to the repositories increases for single large datasets, in particular for expensive
queries to find: (1) relationships between instances of highly populated classes (domain-
range information is limited and inherency is take into account); (2) indirect relationships;
(3) relationships involving literal values. The first fact explains that Q1 is executed faster
than Q12, even if it implies twice as many (SeRQL) calls, because there are 47,821 actors
starring in films in DBpedia while there are just 3,224 languages related to a country. The
second and third facts explain why Q9 is the slowest query, because answers are obtained in
DBpedia through 21 indirect OTs, with mediating concepts such as airlines, company,
person, military conflict, that relate to both DBpedia entities “island” and “spain”, plus the
SWETO ontology contains multiple literal values for “spain” (corresponding to instances of
Spanish cities) that need to be analyzed. Nevertheless, we are optimistic that PowerAqua
(and other query-intensive interfaces) can scale to a huge amount of semantic information,
as long as the semantic software it is based on can efficiently respond to the growth of the
semantic sources. Furthermore, if the quality of ontologies improves and more semantic
data becomes available, it should be easier to find more precise mappings with answers.

Table 3.: Examples of queries after and before using the DBpedia dataset + heuristics (precision)

(Qi) NL Query: After DBpedia / Before Dbpedia N°Ont Answ. Secs Calls
 Q1: How many languages are used in Islamic countries? 2/ 2 170/ 0 95.2/ 34.5 1078/ 419
 Q2: Which Russian rivers end in the Black Sea 3/ 1 4/ 1 41.3/ 27.3 639/ 428
 Q3: Who lives in the white house 4/ 3 12/12 17.9/ 13.7 310/ 144
 Q4: Give me airports in Canada 2/ 1 156/155 23/ 14.22 157/ 40
 Q5: List me Asian countries 6/ 6 64/ 72 15.3/ 67.4 298/ 1308
 Q6: Give me the main companies in India 2/ 2 710/ 386 17.4/ 43.9 298/ 588
 Q7: Give me movies starring Jennifer Aniston 3/ 2 28/ 23 10.7/ 4.5 94/ 22
 Q8: Which animals are reptiles? 9/ 8 2518/ 23 42.8/ 7.1 165/ 49
 Q9: Which islands belong to Spain 3/ 3 13/ 7 206/ 104 387/ 2617
 Q10: Find all the lakes in California 2/ 2 37/ 2 13.6/ 12.9 103/ 258
 Average (10 queries) – after / before DBpedia 3.6/3 371/68 48.3/32 352/587
 Q11: Find me university cities in Japan 7/- 19/- 68/- 1087/-
 Q12: Tell me actors starring in films directed by Francis Ford Coppola 3/- 135/- 120/173 574/-
 Q13: Show me Spanish films with Carmen Maura 1/- 2/- 30.5./- 477/-
 Q14: Give me English actors that play in Titanic 1/- 4/- 144/- 3340/-
 Q15: Give me tennis players in France 1/- 29/- 14.7/- 113/-
 Q16: Television shows created by Walt Disney 1/ - 8/ - 9.4/ - 137/ -
 Average (16 queries) – after DBpedia 3.1 244.3 54.3 578.5

Table 4.: Fusion with DBpedia – after precision heuristics / before precision heuristics
 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Avg
Secs 16.5/516 6.7/25 1.8/2 0.3/77 50.9/30 55.7/219 0.1/6.5 74.43/255 3.6/2.3 1.6/3 126/940 30.7/188
 Calls 11/771 16/177 14/16 1/311 131/138 370/1148 44/53 19/2803 14/26 38/40 579/3792 112/843

We do not always have enough ontological context to focus on precision when, because of
heterogeneity, there are many alternative translations. Take the query Q14, which requires
an unusual number of calls (3340) to find the OTs that translate to the QTs <actors/
English, play, Titanic> and <English, ?, actors>. There are 31 OTs in DBpedia for the first

QT linking the class “Actor” to 7 instances of “Titanic” (Cinematic_Titanic,
Titanic_1943_film, Titanic_1953_film, Titanic_1997_film, Titanic_TV_miniseries, etc),
through several ad-hoc relations (starring, director, producer, academyawards, etc.),
because the matches for the linguistic relation “play” (the properties: play, plays and show)
turn out not to be relevant for the query. Similarly, the second QT is mapped to 18 DBpedia
OTs formed with various ad_hoc relations (residence, ethnicity, location, hometown,
deathPlace, etc, and the duplicated properties: birthplace, birthPlace and born) between the
class “Actor” and the instance “England”. Moreover, the keyword “English” alone
produces several mappings that had to be analyzed to determine or not their relevance (e.g.,
English language, English people, English channel, English actor, English football, etc).

Yet, the needed filtering heuristics impose a toll in recall, e.g., new DBpedia answers are
obtained for Q5 but the answers from one ontology (KIM) are missed, producing a loss in
total answers (64/72). Moreover, in Q13, relevant films are missed because the mapping
“spanish_language” was not selected and only OTs formed with the mapping “Spain” were
retrieved. Notwithstanding, generally, we cannot see any negative effect on recall if we
compare the total number of final answers with the previous version of PowerAqua but
quite the contrary (371/68), in fact, many of the missed mappings were imprecise (and in
any case filtered after fusion), like the city “Mammoth Lake” as an answer for Q10, or their
answers were already obtained from other ontologies.

Table 4 compares the average fusion times before and after applying the fusion
heuristics to reduce the number of calls to the indexes, and therefore improve efficiency.
The average fusion times have been reduced from 188 secs to 30.7 secs. We could not see
any loss in recall due to the new fusion heuristics in this query sample.

Nevertheless, there are many open grounds for exploration of techniques to: (1) lead to
better mappings, e.g., “British actors in Titanic” translates into multiple OTs but with no
answers after fusion, because British is not mapped to England, and the resultant answers
like “Kate Winslet” are related to England but not to Britain; (2) improve the selection of
mappings by trust mechanisms and user feedback; (3) we have not yet fully exploited the
explicit linkage for bridging data in the Linked Data world, e.g., if no ontology offers a
complete translation of a single QT, instead of obtaining partial translations, explicit
connections stated across different sources (owl: sameAs) can be use to efficiently search
for cross ontology connections across entities as if they were part of the same graph.

7 Conclusions and Future Work

In the early stages of development, sparseness overshadowed the potential for QA using
semantic data [4], however the transition from restricted domains to real world scale
structured datasets stimulated by Linked Data, adds a new dimension of scalability for both
applications and back-end technologies that aim to exploit the SW, opening new QA
possibilities, beyond prototypes and proof of concepts. In this paper, we analyzed the
implications of fusion and mapping techniques for querying large scale Linked Data
content across multiple domains in NL, which allow us to extract useful lessons for the
Linked Data community and developers in the wider SW community.

Existing techniques focusing simply on effectiveness may not scale to large amounts of
data. To scale to a large amount of data, applications need to leverage precision and recall
needs with the potential of scaling up through parallelization and adaptive load balancing.
Although still more work needs to be done in our back end infrastructure to cover not just a
subset but all Linked Data available, in this paper we analyzed the implications from the
front-end (application) perspective on the way the query process should be realized to

efficiently extract answers from large and highly heterogeneous community-driven open
data, beyond any particular implementation, and in particular, the issues that we have
addressed in order to scale our mapping and fusion techniques to millions of triples.

Currently, evaluation initiatives that would allow formal evaluations and direct
comparison between systems are being investigated, e.g., in the SEALS (semantic
evaluation at large scale) project. In this work our aim is to present some examples and
initial experiments to justify our claim that we can obtain answers to queries from the huge
amount of semantically rich information extracted from DBpedia – even in its current form.

QA over Linked Data opens the way to ambitious future research directions. For
instance, DBpedia entities are also being used to annotate web content, i.e., DBpedia is
being used as the controlled vocabulary to annotated BBC news. In this way, stories across
different BBC domains are linked together through DBpedia data [6]. As the number of
annotated sites increases, the answers to a question extracted by PowerAqua in the form of
lists of entities (e.g., from DBpedia), that can be used as a valuable resource for discovering
classic web content that is related (annotated) with those entities. Our future goal is to
complement the answers given by PowerAqua with web pages to enhance the expressivity
of traditional search engines with semantic information. Summing up, PowerAqua aims to
provide a service that extends capabilities from querying a large number of unconnected
sources to more interlinked ecosystems of data, in response to a user demand.

Acknowledgements Research partially funded under the Smart-products project (EC-
231204).

References

1. Auer, S., and Lehmann, J. What have Innsbruck and Leipzig in common? Extracting Semantics
from Wiki Content. In Proc. of the 4th European Conference on the Semantic Web, Austria, 2007

2. Bizer, C., Heath, T., Berners-Lee, T. Linked Data – The Story So Far. Int. Journal on Semantic
Web and Information Systems, Vol. 5(3), 2009.

3. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellman, S. DBpedia.
A Crystallization Point for the Web of Data. Journal of Web Semantics, Vol. 7(3), 2009

4. Fernandez, M., Lopez, V., Sabou, M., Uren, V., Vallet, D., Motta, E., and Castells, P. Semantic
Search meets the Web. In Proc. of the Int. conference on Semantic Computing, California, 2008

5. Kaufmann, E., Bernstein, A. - How Useful Are Natural Language Interfaces to the Semantic Web
for Casual End-Users? In Proc. of the ISWC/ASWC, Korea, 2007

6. Kobilarov, G., et al. Media Meets Semantic Web --- How the BBC Uses DBpedia and Linked
Data to Make Connections. In Proc. of the 6th European Semantic Web Conference, Greece, 2009

7. Lehmann, J., Schüppel, J., Auer, S. Discovering unknown connections – the DBpedia relationship
finder. In Proc. of the 1st SABRE Conference on Social Semantic Web, Germany, 2007

8. Lopez, V., Nikolov, A., Fernandez, M., Sabou, M, Uren, V. and Motta, E. Merging and Ranking
answers in the Semantic Web: The Wisdom of Crowds. In Proc. of the ASWC, China, 2009

9. Lopez, V., Sabou, M., Uren, V. and Motta, E. Cross-Ontology Question Answering on the
Semantic Web – an initial evaluation. In Proc. of the KCAP Conference, California, USA, 2009

10. d'Aquin, M., Baldassarre, C., Gridinoc, L., Angeletou, S., Sabou, M., Motta, E. Characterizing
knowledge on the semantic web with Watson. In Proc. of 5th Int. EON Workshop, Korea, 2007

11. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G. Sindice.com: A
document-oriented lookup index for open linked data. Journal of Metadata, Semantics and
Ontologies, 3(1), 2008

12. Suchanek, F. M., Kasneci, G., Weikum, G. YAGO: A Large Ontology from Wikipedia and
WordNet, Web Semantics. In Proc. of the WWW, 6 (3), 2008

13. Uren, V., Sabou, M., Motta, E., Fernandez, M., Lopez, V., Lei, Y.: Reflections on five years of
evaluating semantic search systems. Journal of Metadata, Semantics and Ontologies, 5(2), 2010

