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Abstract.—Context-adaptive information systems (IS) are 
highly desired across several application domains and 
usually rely on matching a particular real-world situation to 
a finite set of predefined situation parameters. To represent 
context parameters, semantic and non-semantic 
representation standards are widely used. However, 
describing the complex and diverse notion of specific 
situations is costly and may never reach semantic 
completeness. Whereas not any situation parameter 
completely equals another, the number of (predefined) 
representations of situation parameters is finite. Moreover, 
following symbolic representation approaches leads to 
ambiguity issues and does not entail semantic 
meaningfulness. Consequently, the challenge is to enable 
fuzzy matchmaking methodologies to match real-world 
situation characteristics to a finite set of predefined situation 
descriptions. In this paper, we propose Conceptual Situation 
Spaces (CSS) which enable the description of situation 
characteristics as members in geometrical vector spaces 
following the idea of Conceptual Spaces. Consequently, fuzzy 
matchmaking is supported by calculating the semantic 
similarity between the current situation and prototypical 
situation descriptions in terms of their Euclidean distance 
within a CSS. Aligning CSS to existing symbolic 
representation standards, enables the automatic 
matchmaking between real-world situation characteristics 
and symbolic parameter representations. To prove the 
feasibility, we apply our approach to the domain of e-
Learning. 

I. INTRODUCTION 

ONTEXT-awareness is an highly important feature 
in  information systems (IS) across a wide variety of 
application domains and subject to intensive research 

throughout the last decade [3][10][18]. Whereas the 
context is defined as the entire set of surrounding situation 
characteristics, each individual situation represents a 
specific state of the world, and more precisely, a 
particular state of actual context. A situation description 
defines the context in a particular situation, and is 
described by a combination of situation parameters, each 
representing a particular situation characteristic. 
Following this definition, context-adaptation can be 
defined as the ability of IS to adapt to distinct possible 
situations. 
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IS usually are build upon the principle of matching a 
particular real-world situation to a set of predefined 
situation parameters in order to enable predefined context-
adaptation rules to be applied. To represent situation 
parameters, currently either non-semantic representations, 
based on XML or relational database models, or more 
recently, semantic representations - namely ontologies 
[12] - based on representation languages such as RDF 
[19] or OWL [21] are used.  

However, describing the complex notion of a specific 
situation in all its facets is a costly task and may never 
reach semantic completeness. The symbolic approach - 
describing symbols by using other symbols without a 
grounding in the real world - of established representation 
standards leads to ambiguity issues and does not entail 
semantic meaningfulness, since meaning requires both the 
definition of a terminology in terms of a logical structure 
(using symbols) and grounding of symbols [1][16] to a 
conceptual level. Furthermore, whereas not any situation 
and situation parameter completely equals another, the 
number of (predefined) representations of situations or 
situation parameters is finite. Consequently, the challenge 
is to enable fuzzy matchmaking methodologies to match 
the potentially infinite set of real-world situation 
characteristics to a finite set of predefined situation and 
situation parameter descriptions. 

Conceptual Spaces (CS), introduced by Gärdenfors 
[8][9], follow a theory of describing entities at the 
conceptual level in terms of their natural characteristics 
similar to natural human cognition in order  to avoid the 
symbol grounding issue. CS enable representation of 
objects as vector spaces within a geometrical space which 
is defined through a set of quality dimensions. For 
instance, a particular color may be defined as point 
described by vectors measuring the quality dimensions 
hue, saturation, and brightness. Describing instances as 
vector spaces where each vector follows a specific metric 
enables the automatic calculation of semantic similarity, 
in terms of the Euclidean distance between two instances 
(members), in contrast to the costly representation of such 
knowledge through symbolic Semantic Web (SW) 
representations. Even though several criticisms have to be 
taken into account when utilizing CS (Section IV) they 
are considered to be a viable option for knowledge 
representation. 

In this paper, we propose Conceptual Situation Spaces 
(CSS), which enable the conceptual representation of 
situation characteristics and their mapping to symbolic 
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SW representations. Utilizing CSS enables a fuzzy, 
similarity-based matchmaking methodology between real-
world situation characteristics and predefined symbolic 
situation parameters representations. Whereas similarity 
between situation parameters, as described through CSS, 
is indicated by the Euclidean distance between them, real-
world situation parameters are classified along predefined 
prototypical parameters, which are implicit elements of 
SW-based representations.  

To prove the feasibility of our approach, we extended  
previous work in the e-Learning domain [4] by adopting 
CSS to describe learning styles, following the Felder-
Silverman Learning Style theory [5] as particular learning 
situation parameter.  

The paper is organized as follows. Section II introduces 
Conceptual Situation Spaces. Section III illustrates the 
application of CSS to the e-Learning domain and 
introduces a Conceptual Learning Situation Space (CLSS) 
which is utilized within a proof-of-concept prototype 
application. Finally, we conclude our work in Section V 
and provide an outlook to future research.  

II. CONCEPTUAL SITUATION SPACES  

Conceptual Situation Spaces (CSS) enable the 
description of a particular situation as a member within a 
dedicated CS. Referring to [9][13][17], we define a CSS 
as a vector space (css:Conceptual Space as depicted in 
Figure 1): 
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with ci being the quality dimensions (css:Quality 
Dimension) of C. Please note, that we do not distinguish 
between dimensions and domains - being sets of integral 
dimensions [9] - but enable dimensions to be detailed 
further in terms of subspaces. Thus, a dimension within 
one space may be defined through an additional subspace 
by using further dimensions [17]. In such a case, the 
particular quality dimension cj is described by a set of 
further quality dimensions with  
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In that, a CSS may be composed of several subspaces 
and consequently, the description granularity of a specific 
situation can be refined gradually. Each dimension uses a 
specific metric (css:Metric Scale) whereas its values are 
described using a specific datatype (css:Datatype). To 
reflect the impact of a specific quality dimension on the 
entire space, a prominence value p (css:Prominence) is 
considered for each dimension. Therefore, a conceptual 
space is defined by: 
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where P is the set of real numbers. However, the usage 
context, respectively the domain, of a particular CSS 

strongly influences the ranking of its quality dimensions. 
For instance, within a learning situation the competencies 
of a particular learner may be more important whereas in 
a business situation, the costs of a particular task may 
have a higher impact. This clearly supports our position of 
describing distinct CSS explicitly for specific domains 
only. 

Members (css:Member) in the CSS are described by a 
set of valued dimension vectors (css:Valued Dimension 
Vectors). Moreover, referring to [9], we consider 
prototypes which represent specific prototypical members 
(css:Prototypical Member) within a particular space. 
Prototypical members are utilised to categorize a specific 
CSS member, in that they enable the classification of any 
arbitrary member m within the same space, by simply 
calculating the Euclidean distances between m and all 
prototypical members to identify the closest neighbours of 
m. For instance, given a CS to describe apples based on 
their shape, taste and colour, a green apple with a strong 
and fruity taste may be close to a prototypical member 
representing the typical characteristics of the Granny 
Smith species. Figure 1 depicts the CSS metamodel:   
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 Fig. 1. The CSS metamodel and its relation to generic domain 
ontology representations. 

 
Even though, the CSS metamodel depicted in Figure 

1could be represented by using any kind of knowledge 
representation language, it currently has been formalized 
in a Conceptual Situation Space Ontology (CSSO) 
utilizing the OCML knowledge modelling language [15]. 
In particular, each of the depicted entities is represented 
as a concept within CSSO whereas associations are 
reflected as their properties in the most cases. The 
correlation relationship between two quality dimensions 
indicates, whether or not two dimensions are correlated. 
For instance, when describing an apple, the quality 
dimension describing its sugar content may be correlated 
with the taste dimension. Information about correlation is 
expressed within the CSSO through axioms related to a 
specific quality dimension instance.  

Figure 1 also depicts the relation between a CSS and 
symbolic conceptualisations. Given the fact, that CSS can 
be refined gradually based on subspaces, either a 
symbolic domain conceptualization (Domain Ontology) or 
a particular domain concept (Domain Concept) is defined 



by a CSS (css:Conceptual Situation Space). Instances of 
concepts are represented as members within a CSS. By 
creating domain-specific derivations of the CSSO, 
opportunely aligned to specific domain ontologies, the 
metamodel can be applied to distinct domains.    

Semantic similarity between two members of a space is 
perceived as a function of the Euclidean distance between 
the points representing each of the members. Applying a 
formalization of CS proposed in [17] to our definition of a 
CSS, the Euclidean distance between two members in a 
CSS is formalized as follows. 

Given a CSS definition C and two members within C 
which are represented by two vector sets V and U, defined 
by vectors v0, v1, …,vn and u1, u2,…,un the distance between 
V and U can be calculated as: 
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where z(ui) is the so-called Z-transformation or 
standardization [2][17] from ui. Z-transformation 
facilitates the standardization of distinct measurement 
scales which are utilized by different quality dimensions 
in order to enable the calculation of distances in a multi-
dimensional and multi-metric space. The z-score of a 
particular observation ui in a dataset is to be calculated as 
follows: 
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where u  is the mean of a dataset U and us is the 

standard deviation from U. Considering prominence 
values pi for each quality dimension i, the Euclidean 
distance d(u,v) indicating the semantic similarity between 
two members described by vector sets V and U can be 
calculated as follows: 
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III. SPANNING A CONCEPTUAL LEARNING SITUATION SPACE 

As Gärdenfors states in [9], the prioritization of certain 
quality dimensions within a CS is highly dependent from 
the context and purpose of the space. This applies 
particularly to situations represented through CSS. 
Whereas a learning situation may be dependent on quality 
dimensions such as ones competencies or learning 
objectives, a business situation context may be more 
affected by a quality dimension reflecting the costs of a 
business task. Thus, we assume, that a CSS is best to be 
described for a specific domain context. 

To prove the feasibility of our approach, we apply CSS 
to the e-Learning domain and utilize it within a prototype 
application which is thoroughly described in [4]. The 

application is aimed at context-aware retrieval of learning 
resources by using symbolic SW representation standards. 
In order to enable rather fuzzy situation awareness, we 
introduce a CSS for the e-Learning domain, a Conceptual 
Learning Situation Space (CLSS). The CLSS grounds to a 
conceptual level the symbolic representations of a 
Learning Process Ontology (LPO), which conceptualizes 
e-Learning domain-specific situations and parameters. 
Therefore, the fuzzy allocation of context-appropriate 
resources is supported. 

A.  Learning Style as a particular CLSS Subspace 
As described in [4], a learning situation is defined by 

parameters such as the technical environment used by a 
learner, his/her competency profile or the current learning 
objective. Since each of these parameters apparently is a 
complex theoretical construct, most of the situation 
parameters cannot be represented as a single quality 
dimension within the CSS, but have to be represented as 
dedicated subspaces which are defined by their very own 
dimensions (Section II). Therefore, this section focuses 
exemplarily on the representation of one parameter 
through a CLSS subspace, which is of particular interest 
for the e-Learning domain: the learning style of a learner. 
A learning style is defined as an individual set of skills 
and preferences on how a person perceives, gathers, and 
processes learning materials [14]. Whereas each 
individual has his/her distinct learning style, it affects the 
learning process 0 and consequently has to be perceived 
as an important parameter describing a learning situation.  

Due to the complex and diverse nature of learning 
styles, traditional symbolic approaches of the SW are 
supposed to fail when describing a specific learning style, 
since it is nearly impossible to define a specific learning 
style in a non-ambiguous and comprehensive way by just 
following a symbolic approach. Moreover, a one-to-one 
matchmaking between different learning styles is hard to 
achieve, since fairly not any learning style completely 
equals another one. Therefore, fuzzy similarity detections, 
as enabled through CSS, are required.  

B.  A CLSS following the Felder-Silverman Learning 
Style Theory 
To describe a learning style, we refer to the Felder-

Silverman Learning Style Theory (FSLST) [5] as 
approach to describe learning styles within computer-
aided educational environments 0. However, please note 
that distinct theories can be applied to describe each 
situation parameter. 

Following FSLST, a learning style is described by four 
quality dimensions which are explained in detail in [5]. In 
short, the Active-Reflective dimension describes whether 
or not a learner prefers to interact with learning material, 
whereas the Sensing-Intuitive dimension, describes 



whether a learner tends to focus on facts and details 
(Sensing) rather than abstract theories (Intuitive). The 
Visual-Verbal dimension obviously covers, whether a 
learner prefers visual rather than verbal learning material, 
while the Global-Sequential dimension describes, whether 
a learner tends to learn gradually in small steps 
(Sequential) rather than following a holistic learning 
process marked by large learning leaps. Literature shows 
[7][11][19] that these dimensions can be assumed to be 
virtually linearly independent, apart from the fact that 
there seem to be moderate correlations between the 
Sensing-Intuitive dimension and the Sequential-Global 
dimension. With regard to the Felder-Silverman theory, 
we define a CSS L with 4 quality dimensions li: 

 
( ){ }LlllllL i ∈= 4321

4 ,,,  

Figure 2 depicts the key concepts of the ontology 
describing L as subspace (clss:FSLST Space) within the 
CLSS representing the Felder-Silverman Learning Style 
Theory.  
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Fig. 2. Key concepts representing the FSLST as CLSS subspace. 

Moreover, Figure 2 depicts the alignment of the 
subspace L (clss:FSLST Space) with the CSS metamodel 
as well as LPO descriptions (grey-colored concepts).  

To refer symbolic representations of the LPO to CSS-
based representations, a domain-specific derivation of the 
CSSO has been provided for the e-Learning domain: the 
Conceptual Learning Situation Space Ontology (CLSSO). 
Referring to the learning style, instances of a parameter 
representing the learning style within the LPO 
(lpo:Learning Style) are defined by particular members 
(clss:FSLST Member) within the space L (clss:FSLST 
Space), which itself uses 4 quality dimension li. The 
metric scale, datatype, value range and prominence values 
for each dimension li are presented in Table 1: 

TABLE 1.  
QUALITY DIMENSIONS L1 – L4 DESCRIBING LEARNING STYLES FOLLOWING 

FSLST. 

 Quality 
Dimension 

Metric 
Scale 

Data-
type 

Range Promi-
nence 

l1 Active-
Reflective 

Interval Integer -11..+11 1.5 

l2 Sensing-
Intuitive 

Interval Integer -11..+11 1 

l3 Visual-
Verbal 

Interval Integer -11..+11 1.5 

l4 Global-
Sequential 

Interval Integer -11..+11 1 

 
As depicted in Table 1, each quality dimension is 

ranked on an ordinal scale with a value range being 
integers between -11 and +11. This particular 
measurement scale was defined with respect to an 
established assessment method, the Index of Learning 
Styles (ILS) questionnaire defined by Felder and Soloman 
[6], aimed at identifying and rating the particular learning 
style of an individual. Utilizing 44 questions within the 
ILS, each answer is valued by either -1 or 1 indicating a 
tendency for one of the two extreme values of a particular 
dimension. Consequently, for instance within the Active-
Reflective dimension a vector size below 0 indicates a 
rather active learning style while otherwise a reflective 
style can be assumed.  

The authors would like to highlight, that prominence 
values have been assigned which rank the first (l1) and the 
third dimension (l3) higher than the other two, since these 
have a higher impact on the context of the learning 
situation, which is focused on the aim to deliver 
appropriate learning material to the learner. Since 
dimensions l1 and l3 are highly critical for the selection 
process, respectively the adaptation rules which are 
applied to suit a particular learning style (Section D), a 
higher prominence value was assigned. It is obvious, that 
the assignment of prominence values is a highly 
subjective process, strongly dependent on the purpose, 
context and individual preferences. Therefore, future 
work is aimed at enabling learners to assign rankings of 
quality dimensions themselves in order to represent their 
individual priorities regarding the learning context-
adaptation and learning resource selection. 

C.  Context Classification based on Prototypes 
To classify an individual learning style (clss:FSLST 

Member), we define prototypical members (clss:FSLST 
Prototypical Member) in the FSLST-based vector space 
L. To identify appropriate prototypes, we utilized existing 
knowledge about typical correlations between the FSLST 
dimensions, as identified throughout research studies such 
as [7] and [19]. In particular, we refer to correlation 
coefficients which describe dependencies of one 
particular dimension with each of the other dimensions 



[19]. For instance, given the fact that a learning style is 
active in the Active-Reflective dimension, the correlation 
coefficients with each of the other dimension indicate, 
that the learner is likely to be sensing, visual and global in 
the other dimensions. We defined one prototype for each 
extreme value of each dimension li following the indicated 
correlations in [19]. Moreover, we subsumed prototypes 
which are equivalently defined by the same prototypical 
vectors. This resulted in the following 5 prototypical 
members and their characteristic vectors: 

TABLE 2.  
PROTOTYPICAL LEARNING STYLES. 

Prototype Act/Ref Sen/Int Vis/Ver Seq/Glo 
P1: Active-Visual -11 -11 -11 +11 
P2: Reflective +11 -11 -11 0 
P3: Sensing-Seq. -11 -11 -11 -11 
P4: Intuitive-Glob. -11 +11 -11 +11 
P5: Verbal -11 +11 +11 +11 

D. Fuzzy Context-Adaptation at Runtime 
Given a particular CSS description, a member 

(representing a specific parameter instance) as well as a 
set of prototypical member descriptions (representing 
prototypical parameter instances), similarities are 
calculated by a dedicated Web service at runtime in order 
to classify a given situation parameter. Referring to CLSS 
subspace L (Section B), given a particular member U in L, 
its semantic similarity with each of the prototypical 
members is indicated by their Euclidean distance, 
calculated by using the formula described in Section II. 

For instance, a particular situation description 
represented through LPO includes a learner profile 
indicating a learning style parameter which is defined by a 
member U in the specific CLSS subspace to describe 
learning styles following FSLST (clss:FSLST Space) with 
the following vectors: 
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Learning styles such as the one above, could be 
assigned to individual learners by utilizing the ILS 
Questionnaire [6], as assessment method. Calculating the 
distances between U and each of the prototypes described 
in Table 2 of Section C led to the following results: 

 

TABLE 3.  
EUCLIDEAN DISTANCES BETWEEN U AND PROTOTYPICAL LEARNING 

STYLES. 
Prototype Euclidean Distance 

P1: Active-Visual 12.649110640673518 
P2: Reflective 20.85665361461421 
P3: Sensing-Sequential 17.08800749063506 
P4: Intuitive-Global 19.493588689617926 
P5: Verbal 31.20897306865447 

As depicted in Table 3, the lowest Euclidean distance 
between U and the prototypical learning styles applies to 
P1, indicating a rather active and visual learning style 
described as in Table 2 of Section C.   

Given the similarities with existing predefined 
parameters, a user is able to select prototypical parameters 
that best suit his specific profile. The use of such 
similarity-based classifications enables the gradual 
refinement of symbolic learning situation descriptions and 
finally, fuzzy matchmaking between real-world situation 
parameters, such as U, and prototypical parameters such 
as P1. Given this approach, similarity-based matching 
between a real-world context and symbolic resource 
descriptions - for instance described using LPO – is 
supported.  

IV. CONCLUSIONS 

In this paper, we proposed an approach to support 
fuzzy, similarity-based matchmaking between real-world 
situation parameters and predefined semantic situation 
descriptions by incorporating semantic context 
information on a conceptual level into common symbolic 
SW descriptions utilizing a novel metamodel of 
Conceptual Situation Spaces. Given the CSS metamodel, 
the most appropriate resources, whether data or services, 
for a given situation can be identified based on the 
semantic similarity, calculated in terms of the Euclidean 
distance, between a given real-world situation and 
predefined resource descriptions. To prove the feasibility 
of our approach, a proof-of-concept prototype application 
was implemented, which applies the CSS metamodel to 
enable context-adaptive resource discovery in the domain 
of e-Learning. Whereas the Felder-Silverman Learning 
Style Theory (FSLST) was exemplarily represented as 
CSS, the authors would like to highlight that distinct 
theories could be applied to represent situation 
parameters. In this paper, FSLST just serves the purpose 
to illustrate the application of CSS but is not explicitly 
supported by the authors. 

However, although our approach applies CS to solve 
SW-related issues such as the symbol grounding problem, 
several criticisms still have to be taken into account when 
applying CSS, and CS in general. Whereas defining 
objects, respectively situations, within a given CSS  
appears to be a straightforward process of assigning 
specific values to each quality dimension, the definition of 



the CS itself is not trivial at all and is strongly dependent 
on individual perspectives and subjective appraisals. 
Whereas the semantics of an object are grounded to 
metrics in geometrical vector spaces within a CSS, the 
quality dimensions itself are subject to ones perspective 
and interpretation what may lead to ambiguity issues. 
With regard to this, the approach of CS does not appear to 
completely solve the symbol grounding issue but to shift 
it from the process of describing instances to the 
definition of a CS. This becomes apparent, when defining 
a CSS for the simple notion of a learning style. Whereas 
one may define its dimensions to be linearly independent, 
another one may argue, that, for instance, the Active-
Reflective dimension and the Sensing-Intuitive dimension 
are correlated. Moreover, distinct semantic interpretations 
and conceptual groundings of each dimension may be 
applied by different individuals. For instance, terms such 
as “Intuitive” or “Sensing” are not unambiguous in 
themselves. Apart from that, whereas the size and 
resolution of a CSS is indefinite, defining a reasonable 
CSS for a specific context might become a challenging 
task. Nevertheless, distance calculation as major 
contribution of the CSS approach, relies on the fact, that 
concepts are described in the same geometrical space. 

Consequently, CS-based approaches such as CSS may 
be perceived as step forward but do not fully solve the 
issues related to symbolic SW-based knowledge 
representations. Hence, future work has to deal with the 
aforementioned issues. For instance, we foresee to enable 
adjustment of prominence values to quality dimensions of 
a specific CSS to be accomplished by a user him/herself, 
in order to most appropriately suit his/her specific 
priorities and preferences regarding the resource 
allocation process, since the prioritization of dimensions 
is a highly individual and subjective process. Besides that, 
we consider the enrichment of the CLSSO in order to 
enable the representation of further e-Learning situation 
parameters based on the CSS metamodel. Nevertheless, 
further research will be concerned with the application of 
CSS to further domain situations, for instance business 
process situations.  
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